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Abstract

In this work, we present a method for RGB-based action
recognition using multi-view videos. We present a super-
vised contrastive learning framework to learn a feature em-
bedding robust to changes in viewpoint, by effectively lever-
aging multi-view data. We use an improved supervised con-
trastive loss and augment the positives with those coming
from synchronized viewpoints. We also propose a new ap-
proach to use classifier probabilities to guide the selection
of hard negatives in the contrastive loss, to learn a more
discriminative representation. Negative samples from con-
fusing classes based on posterior are weighted higher. We
also show that our method leads to better domain general-
ization compared to the standard supervised training based
on synthetic multi-view data. Extensive experiments on real
(NTU-60, NTU-120, NUMA) and synthetic (RoCoG) data
demonstrate the effectiveness of our approach.

1. Introduction

Action recognition from videos is an active area of
research [55, 70] in computer vision. A lot of work
has focused on making better use of spatio-temporal in-
formation [54, 19, 4], developing more efficient architec-
tures [18, 36, 62], etc. The hope is to learn models which
are robust to novel viewpoints at test time. Much of this
recent progress in action recognition is based on datasets
where viewpoint information is not explicitly available. Our
paper focuses on multi-view action recognition in scenarios
where synchronized multi-view videos are available during
training. This scenario arises in many practical applications
in security, road safety, robotics, sports, etc.

Multi-view action recognition has been extensively stud-
ied, the availability of large scale datasets [50, 37] driv-
ing recent progress of deep learning-based methods. Ap-
proaches based on RGB [57, 11], depth [26], infrared [13],
skeleton [39, 8] modalities have been proposed. Recent ad-
vancements in multi-view action recognition are heavily fo-
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Figure 1: Motivation. In addition to being robust to aug-
mentations and temporal shifts, the feature embeddings of
synchronized viewpoints should be close in feature space.
Further, hard negatives should be handled differently from
easy ones for optimal learning. We realize these objectives
using a novel hardness-aware contrastive learning loss.

cused on skeleton-based action recognition. 2D [71] and
3D [20, 8] skeleton-based methods have achieved state-of-
the-art performance on benchmark datasets.

Methods relying on ground truth 2D/3D human pose in-
formation often assume access to datasets annotated with
pose information, which is not necessarily available in data
collected for real life applications. Annotating videos for
ground truth pose is very expensive and dataset collectors
often rely on specialized hardware (like Kinect) which ex-
ploit depth sensors to obtain accurate skeletons. An alter-
native could be to use estimated pose, but human pose es-
timation from RGB videos can be challenging, especially
in scenarios where activities include human-object interac-
tions, complex scenes with multiple people and heavy oc-
clusion. Moreover, high quality pose estimation methods
are slow, as most of these methods rely on object detection
as an intermediate step. In most practical settings, multi-
view setups have only RGB cameras.

In this paper, we focus on RGB-based multi-view action
recognition. Fig. 1 presents an overview of our approach.
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We use contrastive loss to achieve viewpoint robustness,
leveraging videos captured simultaneously from multiple
viewpoints. Specifically, we propose an improved version
of supervised contrastive loss, and incorporate viewpoint
synchronized videos as additional positives.

The quality and number of negatives is known to be
important for contrastive learning [24, 49]. It has been
shown [49, 47] that use of hard negatives for contrastive
loss improves the quality of learned representations. Moti-
vated by these observations in the self-supervised learning
setting, we propose a novel approach for using hard nega-
tives with contrastive loss in supervised settings. Our ap-
proach enables the classifier to guide the selection of nega-
tives. Intuitively, the classifier gives a high score for confus-
ing classes. This information lets us upweight negatives be-
longing to those classes for contrastive learning, effectively
learning better features. We term the resulting hardness-
aware contrastive loss ViewCon.

Extensive experiments on the NTU-RGB+D [50, 37] and
NUMA [60] datasets demonstrate that our method can learn
discriminative viewpoint-invariant representations, which
can be used for transferring to small datasets showing
generalization capability. We achieve state-of-the-art re-
sults compared to previous RGB-based approaches on these
datasets. We also analyze the various design choices for our
loss function. We note that it can be difficult to acquire syn-
chronized multi-view videos for arbitrary real world scenar-
ios/applications and there are associated privacy concerns.
Synthetic data provides a natural solution to these problems,
where it is easy to generate large-scale synchronized multi-
view data without any privacy issues. We show that our
approach also gives consistent improvements on a synthetic
multi-view dataset [14] and that the resulting features gen-
eralize better to the real test data.

Our main contributions are summarized below:
• We propose a method for RGB-based action recogni-

tion, using contrastive learning to leverage multi-view
training videos for achieving robustness to viewpoints.

• We propose a novel way to sample hard negatives
for contrastive loss in the supervised setting by re-
weighting the negatives using class probabilities. To
the best of our knowledge, the use of hard negatives
with supervised contrastive learning has not been ex-
plored before.

• Our method achieves state-of-the-art results on the
popular NTU-60, NTU-120 and NUMA datasets. We
also show the effectiveness of our method when using
synthetic training data, and in transfer learning setting,
validating our method in diverse scenarios.

2. Related Work

Action Recognition. There has been significant progress
in action recognition, from traditional methods [55], to the

latest advancements using deep learning [70]. Two-stream
networks [54] was one of the first works to show effec-
tiveness of using two-stream CNN, for integrating appear-
ance and flow features. I3D [4] introduced the idea of
inflating 2D CNN weights learnt from image datasets for
effectively training 3D CNNs. S3D [64] replaces spatio-
temporal 3D CNN layers by factored spatial and tempo-
ral 3D convolutions, and also incorporates feature gating in
their architecture. SlowFast networks [19] introduces two
pathways, a low frame-rate slow pathway for encoding spa-
tial semantics and a high frame-rate fast pathway to capture
motion dynamics. [18, 36, 62] aim to increase efficiency,
and transformer-based architectures have recently been pro-
posed [65] for action recognition.

While these methods show impressive performance, they
are prone to learn shortcuts and capture biases such as
scene, objects, context, viewpoints, etc [61, 35] and hence
may not generalize well. [32, 35] provides ways of quan-
tifying these biases for video models. [9] mitigates scene
bias by using an adversarial loss for scenes based on gra-
dient reversal, along with a human mask confusion loss.
[66, 59] suppresses scene information by performing video
transformations in the self-supervised learning setting. All
the methods discussed above mainly deal with single-view
videos, and do not consider multi-view action recognition.

Multi-View Action Recognition. Large-scale datasets with
multiple modalities (RGB, infrared, depth, skeleton, etc) for
multi-view action recognition [50, 37, 10] have enabled re-
cent progress in this area. A dominant paradigm among
these methods is to learn viewpoint-invariant representa-
tions [42, 63, 56, 69, 30, 46]. More recently, [33] uses
source view features to predict 3D motion in multiple tar-
get views for unsupervised view-invariant feature learning.
In a similar spirit, [57] uses cross-view prediction as an
auxiliary task for learning RGB-based view-invariant rep-
resentations. [11] employs a learnable viewpoint-generator
based on a neural projection layer along with a contrastive
loss. [57, 33, 45] makes use of depth videos for view-
invariant learning.

Skeleton-based methods [8, 20, 39, 31, 52, 53, 34, 3,
38, 67] have received a lot of attention due to the avail-
ability of accurate 3D skeleton ground truth in the bench-
mark datasets (all in indoor settings) as they are collected
using Kinect. [20] proposes a geometry-aware deep neu-
ral network for processing skeleton data, using rigid and
non-rigid transformations. [39] uses a disentangled multi-
scale aggregation scheme, processed with a unified spatial-
temporal graph convolution network. [53] proposes an ef-
ficient skeleton-based method by adaptively controlling the
number of input joints and the model size based on input.
Approaches combining skeleton and appearance modalities
[12, 10, 1, 40] have also been studied in literature.

Most of the current state-of-the-art methods use ground



truth 3D skeleton information for training and testing. It is
difficult to estimate accurate 3D skeleton for videos in-the-
wild without access to depth information. Hence, we focus
on RGB-based multi-view action recognition.

Contrastive Learning. Contrastive learning has recently
become a popular paradigm for learning self-supervised
representations, and has enjoyed wide success. [6, 24] have
shown superior performance compared to supervised learn-
ing methods for image classification. The main idea of con-
trastive learning is based on the classical noise-contrastive
estimation (NCE) [22], with recent methods adapting it to
effectively solve the instance classification task. The goal
is to learn a discriminative feature space by classifying pos-
itives (which are typically defined as data-augmented ver-
sions of input) from negatives. In the image domain, [6]
studies the effect of data-augmentations for defining posi-
tives and introduces the use of a non-linear projection head
for learning better representations. [24] enables the use of
more negatives by maintaining a queue. The idea has been
extended to video domain [44, 17], where [44] uses tempo-
rally distant clips from a given video with spatial augmenta-
tions as positives. Negatives are chosen from other videos.
[17] additionally incorporates temporally shuffled negatives
from the same video.

There has been work to adapt contrastive loss for super-
vised learning [29, 48, 5]. [29] extends the contrastive loss
to leverage label information, and suggests ways for incor-
porating multiple positives in the contrastive loss. Super-
vised contrastive loss has been applied for tasks such as do-
main adaptation [48], continual learning [5], etc.

Hard Negatives for Contrastive Learning. The qual-
ity of representations learned using contrastive loss is de-
pendent on the amount and quality of negative samples
used. Recently, [28, 49, 47] have proposed ways to choose
and include hard negatives in the contrastive loss for self-
supervised setting. [28] uses mixup to generate hard nega-
tives by combining highest similarity samples in the queue
with each other, and with the anchor. [49] selects hard nega-
tives as a sparse set of support vectors and contrastiveness is
enforced by maximizing the margin between positives and
negatives. [47] proposes a method to select hard negatives
based on the similarity of negatives to the anchor.

We propose to leverage hard negatives for the supervised
contrastive learning setting, which to the best of our knowl-
edge has not been explored.

3. Method

In this section, we first discuss the problem setup before
presenting our approach dubbed ViewCon.
Problem Formulation. Let us denote the dataset D
as {(x1

i , x
2
i , ..., x

V
i ), yi}Ni=1, where each activity instance

i consists of synchronised videos (x1
i , x

2
i , ..., x

V
i ) cap-

Figure 2: Overall pipeline. We first extract features for the
anchor xa and positives {xp}. The classifier scores of the
anchor are used to generate weights for negatives N using
the function W (.). The weights along with the projected
features (obtained using gϕ) for the anchor, positives and
negatives are used to compute the ViewCon loss.

tured from V viewpoints, with class label yi where yi ∈
{1, ..., C}. C denotes the total number of classes. The
dataset consists of a total of N × V videos, with N activity
instances, each captured from V viewpoints.

The goal is to learn a function fθ which maps a video clip
to its representation, such that the representation is robust
to changes in viewpoint, while also being discriminative of
action classes. We use contrastive learning to guide feature
embeddings of different viewpoints of the same activity in-
stance nearby in the feature space, close to same class fea-
tures. Contrastive learning methods usually devise different
ways of defining positives (data augmentations, sampling
at different frame rate, etc), such that the semantic content
in the data is preserved. [6, 24] use scaling, color jittering,
blurring, etc as augmentations, and [44, 23] use optical flow,
varying frame rate clips, etc as positives to learn features ro-
bust to these changes. In our work, we seek view invariance
in addition to robustness from various data augmentations.
To do so, we use features of different viewpoints of the same
activity instance as positives, to pull them closer. We em-
ploy an improved version of the supervised contrastive loss
to realize this. We also propose a novel method to make ef-
fective use of hard negative samples in the contrastive loss,
by leveraging classifier probabilities. Finally, we discuss
different practical considerations involved in using these
successfully. The overall pipeline is shown in Fig. 2. Next,
we describe each part of our method in detail.

View Contrastive Learning Contrastive learning-based
methods have shown great success in self-supervised rep-
resentation learning [6, 24, 25, 7, 23], as well as supervised
representation learning [29]. Our method is based on the
MoCo v2 [7] framework, which we briefly describe next.

Given an input video clip, an anchor (query) and a posi-
tive (key) sample is generated. The anchor sample is passed
through an encoder fθ to obtain anchor features, and a mo-
mentum updated version of the encoder is used to obtain



positive features. A projection head gϕ is used to project
these features to a lower dimensional space, where the con-
trastive loss is computed. A queue stores positive features
from previous batches which are used as negatives in the
contrastive loss.

For this task of instance discrimination, the InfoNCE
loss [6] is used for training encoder and projection head.

[29] studies ways to extend the InfoNCE loss to super-
vised setting where we have multiple positives, and no false
negatives. The supervised contrastive loss proposed by [29]
is given in Eq. 1.

LSupCon =
1

|Pi|
∑
p∈Pi

L(i, p) (1)

L(i, p) = − log
exp (zi · zp/τ)∑

p∈Pi

exp (zi · zp/τ) +
∑

n∈Ni

exp (zi · zn/τ)

(2)

Here, for an anchor video clip xi belonging to class yi,
the positive set Pi is made of data-augmented clips from
other videos with the same label, in addition to augmented
anchor clip. Ni is the set of negatives, which contains clips
from other classes. zi · zj denotes the cosine similarity be-
tween normalized features of clips xi and xj . τ is the tem-
perature parameter.

We improve the loss in Eq. 2 as discussed below and
use the updated loss in our method. Note that Eq. 2 can
be viewed as performing |Pi|+ |Ni| way classification, for
classifying the positive sample in the numerator, from all
the samples included in the denominator. We argue this
is not ideal, since it tries to discriminate one positive from
other positives, and hence we propose to remove other posi-
tives from the denominator (as in Eq. 4). This effectively
leads to discrimination of the current positive only from
other negatives.

Moreover, our problem formulation allows us to use syn-
chronized viewpoints as positives, which helps us achieve
robustness to viewpoints. More specifically, given an an-
chor video clip xi from class yi, the positive set Pi is con-
structed with three types of positives: 1) augmented clip
from the same video, 2) clips from videos of other view-
points of this instance, and 3) clips from other instances of
the same class. The negative set Ni consists of clips from
videos belonging to other classes. Intuitively, construction
of our positive and negative set enforces features from dif-
ferent viewpoints of the same activity instance to be pulled
together while being pushed away from features of other ac-
tivity classes. Next, we describe our approach for sampling
hard negatives.
Hard Negative Sample Re-weighting. Hard negative sam-
pling for self-supervised contrastive learning [49, 47, 28]
has been proven effective in learning better representations.

Figure 3: Generating negative weights. Consider negative
i belonging to class yi. The classifier score p(y|xa) is in-
dexed at yi to generate weights wi which is used to weigh
the exponential similarity between anchor and the negative
in our contrastive learning framework. Our approach effec-
tively generates higher weights for classes confusing to the
anchor (hard negatives).

In our supervised contrastive setting, we propose to leverage
the classifier probabilities for selecting and re-weighting
hard negative samples in the contrastive loss.

Specifically, given an anchor clip x, its features (h =
fθ(x)) are passed through the classifier cζ to obtain a prob-
ability distribution p(y|x) over all classes, where p(y|x) ∈
RC . The probability of classifying input clip x to class yj
is given by p(yj |x). This is used to determine the hard-
ness of class yj for anchor x. To see this, note that classes
more similar to anchor class are harder to discriminate (and
receive higher probability) than classes which are very dis-
tinct from the anchor class (which receive low probability).
For example, typing on keyboard is much more similar to
writing on paper than clapping. As shown in Fig. 3, a nega-
tive sample xn belonging to class yn in the contrastive loss
is re-weighted using wn, which is proportional to p(yn|x)
(the probability of anchor clip being classified to class yn).
The updated hardness-aware view contrastive loss (dubbed
ViewCon) is given in Eq. 3 below:

LViewCon =
1

|Pi|
∑
p∈Pi

L1(i, p) (3)

L1(i, p) = − log
exp (zi · zp/τ)

exp (zi · zp/τ) +
∑

n∈Ni

wn exp (zi · zn/τ)

(4)

Here, wn ∝ p(yn|xi). Negative classes similar to an-
chor xi class will have higher p(yn|xi) and will be weighted
higher.



We now explain how we obtain the final weights
{wn}n∈ Ni for an anchor xi, given the classifier probabil-
ities p(y|xi) and the labels of negatives Ni. First, we as-
sign the weight wn for each negative sample xn from class
yn to p(yn|xi). Note that these weights lie in [0, 1], and
hence only allow decreasing the effective similarity (push-
ing farther in feature space). To see this, recollect that
term si,n = zi · zn calculates the similarity between L2-
normalized features of the anchor zi and those of a neg-
ative sample zn. Our approach weights this exponential
similarity by wn as in Eq. 4. This reweighting can be
seen as effectively modifying the original similarity with
snewi,n = τ logwn+si,n. It can be seen that weights less than
one reduces effective similarity. Next, we normalize the
weights by the average weight, i.e. wn ← wn/mean(wn),
now allowing the weights to take values greater than one.
We clamp the minimum value of weights wn to 1, thus only
allowing increasing effective similarity.

We also note that the weights resulting from classifier
probabilities can be highly skewed if the classifier gives
overconfident predictions. Our approach relies on the fact
that there are multiple peaks in the probability distribution
which helps reweight the negatives. Note that overconfi-
dent predictions would likely lead to a single dominant peak
which will lead to very small weights. To correct this, we
use label smoothing for regularization and it helps in get-
ting better calibrated classifier predictions [41], resulting in
more useful weights.

Action Classifier. In the supervised contrastive learning
setting, it is a common practice [29] to pre-train using the
contrastive loss and train the classifier on top in a separate
stage while also fine-tuning the backbone. We instead train
the classifier simultaneously, and propose to use the out-
put probabilities of the classifier to guide sampling of hard
negatives for contrastive loss as described above. The clas-
sifier is trained using the cross-entropy loss LCE . This loss
is only used to train the classifier and the gradients are not
backpropagated to the encoder. We use label smoothing for
training the classifier in all our experiments as it reduces
overconfident predictions and helps provide more calibrated
classifier probabilities, as shown in [41].

4. Experiments
In this section, we present experimental results to show

the effectiveness of the proposed approach.

4.1. Datasets

NTU-RGB+D 60. NTU-60 [50] is a large-scale multi-view
action recognition dataset containing 56880 videos from 60
action classes, captured from 40 subjects, using Kinect v2.
Each activity instance is captured at the same time from
three different viewpoints. We evaluate our method on the

Algorithm 1 ViewCon loss computation

1: Input: anchor xa, positives {xp}, negative featuresN ,
feature extractor fθ, projection MLP gϕ, classifier cζ ,
temperature τ

2: Output: loss,
3: # extract features h and classifier output
4: ha, {hp} = extract features(xa, {xp},fθ)
5: ca = classify(ha,cζ)
6: # project and L2 normalize
7: za, {zp} = projector(ha, {hp},gϕ)
8:
9: # query GT class for all negatives

10: {yn} := get class(N)
11: # index prob for GT class of each negative
12: W := {index(ca,yn)}|N |

n=1

13: # normalize and clamp minimum to 1
14: {wn} = clamp(|N | Wn∑

Wn
),1,∞)

15:
16: # calculate ViewCon loss (Eq. 3)
17: lossViewCon = LViewCon(za, {zp}, {zn}, {wn}, τ)

two standard benchmarks as provided in [50]: (1) Cross-
Subject (xsub) and (2) Cross-View (xview). For the cross-
subject benchmark, the 40 subjects are split into two sets,
for training and testing, with 20 subjects each. For the
cross-view setting, videos from cameras 2 and 3 are used
for training, and videos from camera 1 are used for testing.

NTU-RGB+D 120. NTU-120 [37] is the extended version
of NTU-60 dataset, consisting of 114480 videos from 120
action categories. We evaluate on the two standard proto-
cols as in [37]: (1) Cross-Subject (xsub) and (2) Cross-
Setup (xset). The cross-subject setting splits the subjects
into training and testing subjects, whereas the cross-setup
setting divides the data into training and testing based on
the setup ID.

Northwestern-UCLA Multiview Action. NUMA [60] is
a smaller dataset consisting of 1493 videos from ten ac-
tion classes. Each action is performed by ten actors and
is captured from three viewpoints. The dataset provides
RGB, depth, and skeleton modalities. We use this dataset
for transfer learning setting and only use RGB frames for
our experiments.

Robot Control Gestures. RoCoG [14] is a gesture recog-
nition dataset for studying the usefulness of synthetic data.
It consists of synthetic and real videos from seven gestures
captured from multiple viewpoints. The real data includes
videos from fourteen subjects, while synthetic data is ren-
dered with varying parameters such as character, environ-
ment, camera angle, etc. We use the training and testing
splits provided in [14].



4.2. Implementation details

We choose S3D [64] as our encoder fθ for all our ex-
periments. A 2-layer MLP with ReLU non-linearity is used
as the projection head gϕ, a common practice as in [6, 7].
The action classifier is a single linear layer with batch norm,
whose inputs are L2-normalized. The encoder takes clips
of 32 RGB frames as inputs with a skip rate of 2, which are
sampled starting from a random time from the input video.
We apply the following clip-consistent data augmentations:
random crop, horizontal flip, gaussian blur, and color jit-
ter. We use a queue size of 2048 to cache negative features,
and use momentum of 0.999 for the momentum updated en-
coder and projection head. Label smoothing of 0.6 is used
for the cross-entropy loss in all experiments. We use the
Adam optimizer for all modules. For the encoder and pro-
jection head, we use a learning rate of 10−4 and weight de-
cay of 10−5. For classifier, we use a learning rate of 10−3

and a weight decay of 10−3. We use a batch size of 32 and
train our method for 100 epochs. For all the modules, the
learning rate is halved after every thirty epochs. We imple-
ment our method using the PyTorch framework, and use 4
GPUs for training each experiment. At test time, we use ten
crops from temporally overlapping clips spanning the du-
ration of the video and average their class probabilities to
produce the final prediction.

4.3. Comparisons to state-of-the-art

We evaluate our method on the cross-subject and cross-
view benchmarks on the widely used NTU-60 [50] and
NTU-120 [37] datasets. We compare our method to state-
of-the-art approaches using RGB information for multi-
view action recognition on these benchmarks. We also com-
pare with other methods that use additional input modal-
ities, such as skeleton pose and depth, along with RGB.
For unsupervised methods, we compare with the reported
end-to-end fine-tuned results using class labels. In our ex-
periments, at train time, we use the average probabilities
of anchor and its corresponding synchronized views to get
weights for negatives. We note that the predictions for
multiple viewpoints of a given instance are not combined
(which can lead to further improvements) to be consistent
with prior works.

Results on NTU-60 [50] and NTU-120 [37]. In Tables
1 and 2, we show that our method consistently outper-
forms previous RGB-based methods on the cross-view and
cross-subject benchmarks of both NTU-60 and NTU-120
datasets. On NTU-60, we show an improvement of 3.9% on
the cross-view setting, demonstrating that features learned
using our approach are more robust to viewpoint shifts. On
the cross-subject benchmark, we improve upon the state-of-
the-art by 1.7% showing the efficacy of our approach. On
the larger NTU-120 dataset with more fine-grained activi-

ties, we observe improvements of 1.3% on the cross-setup
benchmark and 1.1% on the cross-subject benchmark. We
also report our 1-crop results in supplementary (Sec. 2)
as some of the baselines ([57, 2, 21]) uses a single center
crop at test time. Moreover, we also compare with methods
using additional modality along with RGB, such as pose
and depth. Significantly, in three of the four benchmarks,
our RGB only method outperforms methods based on addi-
tional modalities. Similar to ViewCLR, we use AGCN [51]
(joint stream only) to process the pose modality and per-
form late fusion of logits from both modalities. AGCN
joint stream results in 94% on NTU-60 xview and 85.9%
on NTU-60 xsub benchmarks. In Table 1, we see that our
combined model leads to consistent improvements over sin-
gle modality only. This shows that our RGB-based method
extracts complementary information to pose-based AGCN.

Table 1: Comparison with state-of-the-art on cross-view
(xview) and cross-subject (xsub) benchmarks of NTU-60
dataset. The proposed approach outperforms SotA ap-
proaches trained on RGB on both benchmarks. Fusion with
pose modality leads to consistent improvements.

NTU-60 (%)
Method Modality xview xsub

STA-Hands [1] RGB+Pose 88.6 82.5
Separable STA [10] RGB+Pose 94.6 92.2
VPN [12] RGB+Pose 96.2 93.5
ViewCLR[11]+Pose RGB+Pose 97.0 92.9

Zhang et al. [68] RGB 70.6 63.3
DA-Net [58] RGB 75.3 –
Vyas et al. [57] RGB 86.3 82.3
Debnath et al. [16] RGB – 87.2
Glimpse Clouds [2] RGB 93.2 86.6
Piergiovanni et al. [43] RGB 93.7 –
ViewCLR [11] RGB 94.1 89.7

Ours RGB 98.0 91.4
Ours+Pose RGB+Pose 98.9 93.7

4.4. Transfer Learning

To show the generalization capability of features learned
using our method, we show results on the smaller NUMA
[60] dataset containing ten action classes. We report re-
sults on the cross-view benchmark. In this protocol, videos
from cameras 1 and 2 are used for training and videos from
camera 3 are used for testing. We initialize with weights
from NTU-60 pre-trained models and fine-tune on NUMA
dataset for 300 epochs. Table 3 reports accuracy on the
cross-view setting for NUMA dataset. Our method im-
proves by 2.6% over previous approaches, showing gener-
alizability of our approach.



Table 2: Comparison with state-of-the-art on cross-setup
(xset) and cross-subject (xsub) benchmarks of NTU-120
dataset. † uses RGB, flow and depth while training.

NTU-120 (%)
Method Modality xset xsub

Hu et al. [27] RGB + Depth 44.9 36.3
Hu et al. [26] RGB + Depth 54.7 50.8

DMCL [21] † RGB 84.3 –
Liu et al. [37] RGB 54.8 58.5
ViewCLR [11] RGB 86.2 84.5

Ours RGB 87.5 85.6

Table 3: Accuracy on the cross-view benchmark of NUMA
dataset. We significantly outperform other RGB-based
methods on this dataset in the transfer learning setting.

Method Modality Accuracy (xview)

Li et al. [33] RGB 62.5
Vyas et al. [57] RGB 83.1
DA-Net [58] RGB 86.5
ViewCLR [11] RGB 89.1

Ours RGB 91.7

4.5. Synthetic Data for Action Recognition

It can be difficult to collect and annotate activity videos,
especially in a synchronized multi-view capture setting. In
addition, collecting videos involving humans raises privacy
concerns. We highlight that synthetic data [15] provides a
practical alternative for creating custom multi-view action
recognition datasets. Using a simulator, it is relatively easy
to collect synchronized videos for each instance, with de-
sired diversity and without any privacy issues. RoCoG [14]
is a gesture recognition dataset consisting of videos from
seven gestures. The dataset allows benchmarking on a re-
alistic scenario where we have a large set of synthetic data
collected from multiple viewpoints and a small set of real
data for testing. For this dataset, we use the multi-view syn-
thetic data for training and evaluate on real test data, and
show that our method results in better domain generaliza-
tion as opposed to standard cross-entropy training.

We use the train/test split provided in [14].
We also compare our approach to a baseline that is

trained on real data alone. This gives us the upper bound
performance for models trained using synthetic data. Next
we train the same backbone on synthetic data using the
cross-entropy loss. This results in performance drop of
12.38%. Finally, we train using our proposed loss on syn-

Table 4: Results on RoCoG dataset. In this experiment,
models were trained using multi-view synthetic data and
then evaluated on real data. This experiment helps show
the domain generalization of the proposed approach. We
show that our approach leads to an improvement of 7.6%
over a standard classification baseline.

Method Train Test Accuracy

Cross-Entropy Real Real 59.05
Cross-Entropy Synthetic Real 46.67

Ours Synthetic Real 54.29

thetic data, and show that the domain gap reduces from
12.38% to 4.76%. The results of these experiments are pre-
sented in Table 4. The results show that features learned
using our approach show much better domain generaliza-
tion performance compared to standard loss function used
for action recognition. These results, along with the transfer
learning results show that our method can generalize well
across different scenarios.

4.6. Ablation Studies

We perform extensive ablation experiments to study the
effect of different contributions and design choices of our
method. All ablation experiments are performed on the
cross-subject benchmark of NTU-60 dataset. We use a
smaller dataset (NTU-60-small) for training, which consists
of half of the subjects from the original cross-subject train-
ing set chosen randomly, and perform testing on the full test
set of NTU-60 cross-subject benchmark.

Effect of View Contrastive Loss. We compare with dif-
ferent standard loss functions in Table 5 to show the effect
of incorporating viewpoint information in the loss. Specif-
ically, we train the same backbone models using cross-
entropy, SupCon [29] and our loss functions. We can see
that our loss function, which makes use of multi-view in-
formation, leads to better performance as expected. For our
loss function (Eq. 4), we modify the SupCon loss (Eq. 2) by
removing other positive samples from the denominator. We
train our method using both variants (i.e. by keeping (Ours-
A) and removing all other positives (Ours)) and show that
the modified loss makes better use of multiple positives.

Effect of Hard Negatives. We show the effectiveness of
our approach of incorporating hard negatives in the con-
trastive loss in Table 6. We train our model without using
the re-weighting of hard negatives, i.e. setting weight of all
negatives to one, giving them equal importance. From the
table, we can see that incorporating hard negatives improves
the performance over treating all negatives equally. We also
compare with HCL [47], a recent method which proposes



Table 5: Effectiveness of the improved supervised con-
trastive loss. Compared to standard cross-entropy and Sup-
Con, the loss function leads to higher accuracy. Ours-A uses
all positives in denominator (as in SupCon) whereas Ours is
the improved version. Models are trained on NTU-60-small
training set.

Method Accuracy (xsub)

Cross-Entropy 78.44
SupCon 78.47
Ours-A 78.89
Ours 79.75

Table 6: Effectiveness of our hard negative selection
method on NTU-60-small. Compared to HCL, our method
leads to better hard negatives. The proposed method selects
all negative samples from hard classes, which is better than
choosing a fixed number of hard classes.

Method Accuracy (xsub)

HCL 78.86
Ours w/o hard negatives 79.43
Ours w/ top-3 79.54
Ours 79.75

a way to use hard negatives in the contrastive loss for self-
supervised setting. We train using their loss in our super-
vised setting, and show that our approach of using classifier
probabilities for determining hardness leads to higher accu-
racy. Finally, we perform an experiment using only the top-
3 negative classes of each anchor point and setting weight
of other negatives to one. Note that our method uses all the
hard samples which leads to better performance than only
using the top-3 negative classes.

Sensitivity to viewpoints. The NTU-60 dataset has three
views: front view, ±45◦ view and ±90◦ view (side view).
To analyze the sensitivity to viewpoints, we perform three
experiments, holding out a different test view in each, and
training on the remaining views. We observe (Table 7) that
testing on ±45◦ views (standard xview setting) is better
compared to testing on front and side views. That said,
the difference in performance is small which shows that our
method is robust to different viewpoint configurations.

t-SNE Visualizations. We next visualize t-SNE embed-
dings for models trained using our approach. Fig. 4 com-
pares visualizations of features from ten randomly chosen
classes learned using ViewCon, which leverages multi-view
data, with those of SupCon. We see that class clusters in our
approach are better separated than those in SupCon. This

Table 7: Effect of holding out different viewpoints. We con-
duct three experiments, holding out one viewpoint for test-
ing and train on the remaining two views.

Front view ±45◦ view ±90◦ view

Accuracy 97.1 98.0 96.9

further confirms the improved performance of our proposed
ViewCon model.

(a) SupCon (b) ViewCon

Figure 4: t-SNE visualizations. In this figure, we visualize
the t-SNE plots on ten classes of the NTU-60 test set for
two approaches: SupCon and ViewCon. We can clearly see
that our approach of incorporating view invariance and use
of hard negatives improves the learned representations.

Please refer to the supplementary material to find single-
crop results and details on data augmentations and RoCoG
experiments.

5. Conclusion

In this work, we present an approach for multi-view ac-
tion recognition. We make use of an improved version of
supervised contrastive learning with the set of positives aug-
mented by synchronized views of clips in addition to aug-
mentations from the video. We also propose a novel tech-
nique to reweigh hard negatives guided by the classifier,
thus learning learning richer feature representations. We
demonstrate the superiority of our approach through com-
parisons on multi-view data from NTU-60, NTU-120 and
NUMA. In addition, experiments on synthetic data from
RoCoG show the generalizability nature of our approach.
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7. Supplementary Material
7.1. Data Augmentations

Video augmentations were applied similar to [23]. For
each clip, spatial augmentations are applied to all frames
consistently. Specifically we use, random crop, random hor-
izontal flip with flip probability 0.5, gaussian blur with a
standard deviation chosen randomly from [0.1, 2] and color
jitter the following parameter values: 0.4 for brightness,
contrast, saturation and 0.1 for hue. For temporal augmen-
tation, we sample clips from random time in video. At test
time, we use the center crop with no augmentations.

7.2. 1-crop results

We present our single (center) crop test results on NTU-
60, NTU-120 and NUMA datasets in Table 8, along with
results of baseline methods which report 1-crop test results.
Our method shows significant improvement in performance
over previous methods.

NTU-60 NTU-120 NUMA
xview xsub xset xsub xview

DMCL [21] - - 84.3 - -
Glimpse Clouds [2] 93.2 86.6 - - -
Vyas et al. [57] 86.3 82.3 - - 83.1

Ours 97.6 91.3 86.4 85.4 89.1

Table 8: 1-crop test results on NTU-60, NTU-120 and
NUMA.

7.3. More details on RoCoG experiments

RoCoG [14] is a gesture recognition dataset consisting
of synthetic and real videos from seven gestures captured
from multiple viewpoints.

Each video in the original dataset contains multiple in-
stances of a person performing different activities. We pre-
process the data by temporally splitting each video into in-
dividual instances containing a single activity. This results
in 9912 synthetic videos and 970 real videos, each with a
corresponding gesture label.

For RoCoG experiments, we use sixteen frame clips with
skip rate of two as input for each method. Label smoothing
of 0.2 is used for classifier targets. Temperature is set to
0.07. We choose the inception I3D network as the feature
encoder with 16 frame input clips.

7.4. Societal Impact

In our work we propose a novel approach for multi-
view action recognition. As such, our contribution is on a
more fundamental level and we do not anticipate any harms
through the method itself. But, given that we are working
with videos it is essential to ensure that we obtain required
consent for the people in the video. Further, we also show

experiments using synthetic data for training which elimi-
nates privacy concerns.



Figure 5: Confusion Matrix for NTU-60 test set.
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