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Abstract

We investigate the success conditions for compositional generalization of CLIP
models on real-world data through performance prediction. Prior work shows that
CLIP requires exponentially more pretraining data for linear performance gains
on individual concepts. This sample-inefficient scaling could be mitigated if CLIP
systematically understood new inputs as compositions of learned components,
allowing rare observation to be mapped to common concepts. To explore CLIP’s
compositional generalization ability, we filter retrieval corpora for samples with
object combinations not present in the pretraining corpus. We show that CLIP’s
performance on these samples can be accurately predicted from the pretraining
frequencies of individual objects. Our findings demonstrate that CLIP learns
to disentangle objects observed in its pretraining data and can recompose them
straightforwardly. Additionally, we are the first to show how this ability scales with
pretraining data. For data curation in practice, our results suggest that balancing
object occurrences improves generalization, which should benefit CLIP’s efficiency
and accuracy without scaling data volume.

1 Introduction

Vision Language Models (VLMs) like CLIP [28] have seen widespread adoption for downstream tasks
like classification, image retrieval, and image generation due to their transferability and impressive
zero-shot performance. However, CLIP models are data-hungry, requiring exponentially more
pretraining data for linear performance gains on downstream samples [36]. Similar sample-inefficient
scaling has been reported for Large Language Models (LLMs) [15, 2], raising doubts about the
feasibility of improving zero-shot performance of foundation models by scale alone.

A systematic way to overcome inefficient scaling is thought to be compositional generalization—the
ability to understand and form novel combinations of learned concepts [6, 12, 38]. A model that can
generalize in this way should more effectively combine learned concepts to understand new inputs,
ultimately leading to increased zero-shot performance. Yet, the compositional abilities of large VLMs,
such as CLIP, remain poorly understood: Existing studies in the visual domain are either theoretical,
operate on synthetic data, or fail to verify whether compositions used for evaluation are truly novel
given the pretraining data (see Sec. 2). Moreover, the relationship between a VLM’s compositional
abilities and its pretraining data is entirely uncharacterized.

*Equal contribution.
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To address this gap, we aim to investigate CLIP’s compositional generalization on real-world data as
a function of its pretraining corpus. Specifically, we make the following contributions:

• We leverage the scalable concept-extraction pipeline proposed by Udandarao et al. [36]
to curate text-to-image (T2I) and image-to-text (I2T) retrieval test sets for compositional
generalization (Sec. 3.1). Each test set is created for the pretraining corpus of the tested
model such that it contains only samples with novel combinations of known object classes.

• We show that CLIP models perform consistently well on our curated test sets, regardless of
the architecture or scale of the backbone.

• We demonstrate that across architectures, parameter counts, and pretraining data scales,
CLIP’s ability to compose objects can be accurately predicted from the independent pre-
training frequencies of each object in the composition (Sec. 3.3).

Our results are the first to establish a firm connection between the compositional generalization of a
VLM and its pretraining data. The nature of this connection shows that CLIP obtains an independent
understanding of object classes from web-scale data.

2 Related Work

Theoretical Works & Synthetic Data A growing body of works [24, 23, 30, 19, 38, 39, 27, 14]
provides significant theoretical understanding of compositional generalization results in the vision
domain. Similar works exist for compositionally in language [6, 12, 3], often under the more specific
term systematicity [6, 12, 3]. In the language domain, promising progress has been made [18], but
results in both domains nonetheless remain confined to synthetic datasets [17, 16]l; Sun et al. [33]
actively questions the transferability of insights to real-world data. In contrast, our work analyzes
compositional generalization using real-world retrieval datasets.

VLM Benchmarks & Contamination Several compositionality benchmarks have been proposed
for VLMs [35, 19, 43, 42, 21, 10, 29, 37, 1]. However, these studies do not consider the overlap of
concept combinations with web-scale pretraining data. Data contamination of this kind has been
shown to significantly impact CLIP’s zero-shot performance [22], making it difficult to distinguish
between genuine generalization and mere memorization. A notable exception is Abbasi et al. [1],
who generate test images of novel attribute-object pairs, but as a result, their benchmark resorts to
synthetic data. Our work controls for data contamination by only considering combinations that do
not occur in the pretraining data but do occur in real-world benchmarks.

3 Predicting Compositional Generalization from Pretraining Frequency

We adapt the pipeline from Udandarao et al. [36] in two steps to study the success conditions
for compositional generalization. First, we use it to curate retrieval test sets that contain novel
combinations of objects with respect to a pretraining set (Sec. 3.1). Second, we propose a simple
modification to predict downstream performance in terms of samples rather than concepts (Sec. 3.2).
Finally, we evaluate CLIP models with varying architectures, parameter counts, and pretraining data
scales and show consistent scaling behavior (Sec. 3.3).

3.1 Curating Compositional Generalization Test Sets

We consider two standard retrieval datasets: Flickr-1K [41] and COCO-5K [20]. Both can be used
for benchmarking text-to-image (T2I) or image-to-text (I2T) retrieval.

To measure compositional generalization, we follow Hupkes et al. [12] and retain only test samples
containing multiple concepts o1, ..., on, where

(i) the model has been familiarized with each concept oi only in the absence of oj ̸=i,
(ii) the combination o1, ..., on is plausible.

Udandarao et al. [36] compile a list of 945 nouns in the text captions for these 2 retrieval datasets as
possible concepts. The presence of a concept in a pretraining sample is established if it is part of the
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caption (after lemmatization) and it is found in the image using RAM++ [11]. Consequently, our
analysis of concepts is limited to tangible objects; more abstract concepts like actions or stylistic
information are harder to annotate in the visual domain and can, therefore, not be reliably quantified
using this pipeline. With this setup, the frequency fD(o) of object class o in a pretraining corpus D
simply counts the number of samples it occurs in.1

To address (i), we first consider how often objects o1, ..., on in a test sample x co-occur in the
pretraining dataset. We call this quantity the co-occurrence frequency, formally given by

f∩,D(x) = ∥{d ∈ D | for all o ∈ x : o ∈ d}∥ . (1)
Condition (i) above is then satisfied by test samples x which contain a novel combination of objects,
i.e., f∩,D(x) = 0, but each object has been observed at least once, i.e., fD > 0 for all o ∈ x.

Condition (ii) is hard to verify in general but is trivially met here since we filter real-world data.

Since all frequencies are dependent on the pretraining corpus, the size of our compositional gener-
alization test sets differ. The number of samples in each test set (total and percentage) is shown in
Figs. 1 and 2.

3.2 Per-Sample Prediction

Metrics We measure performance on each sample using Recall@k for k ∈ {1, 5, 10} following
Radford et al. [28]. Figs. 1 and 2 show results for Recall@10, other results are listed in App. A.

Sample Frequency We compute the average pretraining frequency favg of each test sample x as
the geometric mean of the frequencies of the objects o1, ..., on in the sample x, i.e.,

favg(x) =

(
n∏

o∈x

f(o)

) 1
n

. (2)

The choice of geometric mean is motivated by the assumption that the model’s performance on a
combination of objects depends on the quality of the model’s independent understanding of each
object in the combination. For example, a simple retrieval engine might find samples containing two
objects o1, o2 without considering their interaction by first finding samples containing o1 and then
filtering the results for samples containing o2. In this case, the probability of retrieving a correct
sample based on the prompt P can be written as

P (y = 1|o1, o2 ∈ P) = P (y = 1|o1 ∈ P)P (y = 1|o2 ∈ P). (3)
The geometric mean reflects the multiplicative impact of each object on the whole [27].

Fitting a Predictor Our evaluation yields (y, favg) for each test sample, where y = 1 (0) indicates
correct (wrong) retrieval. For each test set, we drop noisy outliers via IQR-removal on favg, following
Kandpal et al. [15], Udandarao et al. [36]. We fit a logistic regression model with bootstrapping to
predict P (y = 1) given favg.

3.3 Results

Fig. 1 collects results for the T2I task, Fig. 2 for I2T. More results can be found in App. A.

Models We test CLIP models [28] with both ResNet [9] and Vision Transformer [5] architectures.
Specifically, we evaluate ViT-B-16 [25] and RN50 [7, 26] trained on CC-3M [32] and CC-12M [4];
ViT-B-16, RN50, and RN101 [13] trained on YFCC-15M [34]; ViT-B-16, ViT-B-32, and ViT-L-14
trained on LAION400M [31]; and ViT-B-16 trained on SynthCI-30M [8]. We follow open_clip [13],
slip [25] and cyclip [7] for implementation details.

Fraction of Compositional Generalization Samples Looking at the histogram percentages,
17−44% of samples are unknown compositions of known concepts for the T2I task. For I2T,
the fraction is much higher with 89−98%. The discrepancy stems from many images containing
background objects that are inconsistently reflected in their captions. We also find that the fraction
generally decreases with the size of the pretraining set.

1We use the term frequency instead of count since we only compare quantities for a given, fixed-size
pretraining set, in which case normalization can be omitted.
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Figure 1: T2I Recall@10. CLIP’s performance on unknown combinations (bottom) matches that
on known combinations (top) and can be consistently predicted as a linear function of the average
pretraining frequency of the constituent objects. All regression fits are significant at p < 0.01.
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Figure 2: I2T Recall@10. CLIP’s performance on unknown combinations (bottom) almost matches
that on known combinations (top) and can be consistently predicted as a linear function of the average
pretraining frequency of the constituent objects. All regression fits are significant at p < 0.01.

Overall Performance We find that CLIP’s performance on the T2I task does not differ greatly
between samples with known combinations (top row) and samples with novel combinations of known
concepts (bottom row). The difference is slightly more pronounced on the I2T task, but performance
is still high overall, indicating that CLIP generalizes well to novel object compositions.

Predicting Compositional Generalization We show a clear and consistent relationship between
the average pretraining sample frequency favg and CLIP’s retrieval performance, even on samples
requiring compositional generalization. The relation is approximately linear, except for the best-
performing models, where it flattens as retrieval recall approaches 1. Since the contribution of each
object’s pretraining frequency to the average pretraining sample frequency favg is multiplicative, this
consistent relationship implies that underrepresented objects are the bottleneck for compositional
generalization.

Control on Synthetic Data SynthCI-30M [8] consists of synthetically generated images designed
to cover a diverse combination of concepts. Due to this process, we treat SynthCI-30 as a control
to see if our results hold for a pretraining dataset sourced differently. We find that more test set
combinations are unseen in SynthCI-30 than the pretraining sets derived from the real world, but the
scaling of compositional generalization observed on real-world pretraining corpora also holds here.
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Taken together, our results show that CLIP generalizes successfully to novel combinations of objects
if it has observed the constituents sufficiently often during pretraining. Note that objects in the
pretraining data do not occur independently. In fact, many training samples contain multiple objects,
and some object classes co-occur much more frequently than others. The consistent scaling of CLIP’s
compositional generalization implies that the model can nonetheless disentangle objects and obtain
an independent understanding of each object class.

For practitioners, our findings underline the importance of balancing object occurrences during data
curation, as generalization is bottlenecked by the occurrence of each object.

4 Next Steps

Model Selection While we control for architecture, parameter count, and pretraining scale, our
experiments could be extended to other CLIP variants [42], diffusion models, or even LLMs.

Type of Compositionality We only consider object compositions. We expect that our results
may extend to attribute-object, foreground-background, texture-shape compositions in single-object
scenes, since the independence assumption from Sec. 3.2 approximately holds. The bottleneck for
these experiments is the concept-extraction pipeline. On the other hand, the scaling behavior of
complex compositions, like attribute-binding with multiple objects, may not be as readily predictable.

Composition Granularity Our definition of the co-occurence frequency in Eq. 1 only considers
whether all objects have jointly been observed during pretraining. For samples containing more than
two objects, it might also be interesting to consider pair-wise object co-occurence and other partial
co-occurences. How to integrate this information in the selection of test samples for compositional
generalization remains is an open question.

5 Conclusion

Identifying conditions for successful real-world compositional generalization is a first step towards
a future where models can be relied upon to generate new ideas, as “an idea is nothing more nor
less than a new combination of old elements” [40]. The ability to forecast when such capabilities
will be unlocked is valuable not only to understand the compositional abilities of existing models but
also to guide the development and scaling of future methods. We take a first step in this direction by
demonstrating how CLIP’s ability to disentangle and recompose objects scales with the the frequency
with which each object has been observed in the pretraining data.
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A Additional Evaluations

Figs. 3 to 6 plot trends seen in Figs. 1 and 2 for Recall@5 and Recall@1. We observe similar trends.
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Figure 3: T2I Recall@5 We see that on combinations that are both known and unknown to the model,
across architectures and pretraining sets, there exists a predictive relationship between the sample
frequency, i.e. the aggregated frequencies of objects in the combination, and the performance.
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Figure 4: I2T Recall@5 We see that on combinations that are both known and unknown to the model,
across architectures and pretraining sets, there exists a predictive relationship between the sample
frequency, i.e. the aggregated frequencies of objects in the combination, and the performance.
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Figure 5: T2I Recall@1 We see that on combinations that are both known and unknown to the model,
across architectures and pretraining sets, there exists a predictive relationship between the sample
frequency, i.e. the aggregated frequencies of objects in the combination, and the performance.
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Figure 6: I2T Recall@1 We see that on combinations that are both known and unknown to the model,
across architectures and pretraining sets, there exists a predictive relationship between the sample
frequency, i.e. the aggregated frequencies of objects in the combination, and the performance.
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