
Visual-Locomotion: Learning to Walk on Complex
Terrains with Vision

Wenhao Yu1, Deepali Jain1, Alejandro Escontrela1,2, Atil Iscen1,
Peng Xu1, Erwin Coumans1, Sehoon Ha1,3, Jie Tan1, and Tingnan Zhang1

1 Robotics at Google, United States
2 University of California, Berkeley, United States
3 Georgia Institute of Technology, United States

Email: {magicmelon, jaindeepali, aescontrela, atil, pengxu,
erwincoumans, sehoonha, jietan, tingnan}@google.com

Abstract: Vision is one of the essential perception modalities for legged robots to
safely and efficiently navigate uneven terrains, such as stairs and stepping stones.
However, training robots to effectively understand high-dimensional visual input
for locomotion is a challenging problem. In this work, we propose a framework to
train a vision-based locomotion controller which enables a quadrupedal robot to
traverse uneven environments. The key idea is to introduce a hierarchical structure
with a high-level vision policy and a low-level motion controller. The high-level
vision policy takes as inputs the perceived vision signals as well as robot states
and outputs the desired footholds and base movement of the robot. These are
then realized by the low level motion controller composed of a position controller
for swing legs and a MPC-based torque controller for stance legs. We train the
vision policy using Deep Reinforcement Learning and demonstrate our approach
on a variety of uneven environments such as randomly placed stepping stones,
quincuncial piles, stairs, and moving platforms. We also validate our method on a
real robot to walk over a series of gaps and climbing up a platform.

Keywords: Legged Robot, Reinforcement Learning, Visual Locomotion

1 Introduction

Figure 1: Our approach trains a visual-locomotion policy for the Laikago robot in simulation (left)
and transfers to the real world (right). We use two depth sensors on the robot, as marked in red.

Reproducing natural vision-based locomotion skills seen in animals on artificial creatures such as
legged robots has long been at the forefront of robotics research. Progress towards developing
robust visual locomotion controllers not only deepens our understanding of how humans and animals
perceive the environment and control our limbs, but also enables us to build autonomous machines
that can reliably traverse real-world environments.

To tackle this problem, most existing methods adopt a three-stage pipeline [1, 2, 3, 4, 5, 6, 7]: per-
ception, motion planning, and control. In the perception stage, raw sensor data such as RGBD image
and/or LiDAR point clouds are carefully fused with proprioceptive streams such as IMU, motor an-
gles, and wheel odometry. For mobile robots, a SLAM (simultaneous localization and mapping) is

5th Conference on Robot Learning (CoRL 2021), London, UK.

often used to produce a elevation terrain map centered around the robot [8]. The generated elevation
map is then fed to the downstream motion planning modules to select paths, motion style, and foot
placements (on legged robots). Finally, the planned robot pose or joint angles are tracked by a low-
level motion controller: model predictive control (MPC) [9] or whole body control methods (WBC)
[4] are popular choices for unstable, highly dynamical platforms such as legged robots.

While there have been great results from previous works that adopt the three-stage control pipeline,
it often leads to a system that is overly complex and requires significant manual effort to develop.
For instance, SLAM algorithms require careful parameter tuning to achieve a balance between la-
tency and accuracy for mobile robots [10]. On the other hand, recent developments in reinforcement
learning (RL) based methods open an alternative path towards creating vision-based locomotion
controllers without relying on terrain reconstruction or extensive prior knowledge for foothold selec-
tion. Researchers have proposed learning-based algorithms that teach robot arms to retrieve objects
from cluttered environments [11] and teach drones to avoid obstacles [12] using vision input. They
demonstrate the great potential in an end-to-end learning approach to achieve a low-latency control
pipeline and reduce the prior knowledge required to design a working controller.

Inspired by this recent progress, we propose a novel control architecture that enables legged robots
to successfully solve various visual-locomotion tasks. Specifically, we adopt the philosophy of
end-to-end learning and merge the perception and motion planning modules using a neural network
(NN). Our contribution is a learnable hierarchical system that contains two individual layers: a high-
level vision policy and a low-level motion controller. The high-level vision policy takes two depth
images and outputs the desired pose of the robot’s base and foothold placements for all swing legs,
thereby eliminating the need for a complex SLAM algorithm. The low-level locomotion controller
takes the high-level vision policy output, and computes the target motor positions and torques to
achieve the desired states. This hierarchical approach allows us to achieve dynamic locomotion
in challenging simulated environments including randomly placed stepping stones, staircases, and
moving platforms. We also demonstrate zero-shot sim-to-real transfer of visual locomotion policies
on the real hardware for walking over stepping stones and climbing up a platform.

2 Related Work

Recently, visual-locomotion researchers have developed various promising approaches that tackle
the problem using on-board sensors [1, 2, 3, 4, 5, 6, 7, 13, 14, 15, 16]. A main idea in many of
these works is to perform explicit terrain shape reconstruction (i.e. local SLAM). For example,
Fankhauser and Hutter [13] developed a “Grid Map” stack to construct local elevation maps around
the robot and Kim et al. [14] utilized an Intel RealSense D435 depth sensor and a T265 tracking
camera to obtain an elevation map of the robot’s surroundings. In contrast, we do not employ any
explicit mapping mechanism: our learning based visual policy consumes raw depth images from
onboard cameras for decision making. Because we eliminate the highly complex mapping process
which requires special expertise to tune, our system has a simplified and low latency data pipeline
with less chance for manual error accumulation.

Given a representation of the environment provided by a perception module, the controller needs
to plan a sequence of leg movements that can guide the robot through the environment. Unlike
our approach where perception and motion planning are subsumed into a single neural network,
previous works utilize heuristic-based approaches or local optimization to plan adequate motions
[5, 3, 16, 2, 7, 17, 18, 19]. For instance, Jenelten et al. developed a metric for scoring each point on
an elevation map based on its roughness, closeness to an edge, as well as slope degrees. They then
employed an online batch optimization to choose the best landing positions for the feet. In contrast,
our learning system directly learns successful foot targets from reward, which greatly simplifies
the system architecture. Similar to our approach, Tsounis et al. also proposed to learn a high-level
planner module to plan the gait sequence and a low-level gait controller module to control the robot.
They demonstrated impressive simulated results of traversing a variety of terrains using a height
map as input in simulation. In this work, we focus on demonstrating visual-locomotion skills on
a real-robot, which led us to different design choices such as depth images input, an MPC-based
low-level controller, and the development of a sim-to-real transfer pipeline.

Foothold optimization is traditionally performed within a single swing step, however, recent works
have proposed multi-step contact sequence optimization [3, 16, 21] to account for upcoming changes

2

in the terrain. For instance, Nguyen et al. proposed a 2-step gait optimization to plan the footstep as
well as transition between walking gaits. They demonstrated the approach on a biped robot walking
over uneven terrains. In our work, we train the perception and planning module together using deep
reinforcement learning, which endows the policy with implicit long-horizon planning capabilities.
Although neural networks were also employed in prior works [2, 7] to decide optimal footholds, our
system differs in that it also decides the desired body pose and speed. By simultaneous adjusting
body pose and footholds, our system can learn challenging visual locomotion tasks such as random
stepping stones, which is deemed as difficult to solve with constant body velocities [5],

In addition to methods that leverages the vision input for controlling the robot, recent works have
also shown remarkable results for training robots to traverse some uneven terrain without relying
on visual perception [22, 23]. By carefully designing the reward function and training procedure,
these methods produces policies that can robustly handle moderate uneven terrains by adjusting
leg movements. Despite the impressive results demonstrated in these works, vision inputs are still
beneficial for efficiently and safely traversing general unstructured terrains. For some tasks, such as
walking over gaps, visual guidance is still necessary.

3 Methodoloy

3.1 Overview

Gait Scheduler

Swing Control

Stance Control

State Estimator

Vision Policy

CoM state, feet positions,
feet contact state

desired contact

depth images

desired CoM state,
swing feet targets

CoM state, feet
positions, joint state

motor angles

motor torques

Low level Control

Figure 2: Overview of the visual-locomotion control architecture.

In this work, we adopt a hierarchical architecture for vision-locomotion control, as illustrated in
Figure 2. The controller consists of two components: a high-level vision policy and a low-level
motion controller. The high-level vision policy uses raw depth images from the onboard cameras
and robot state to decide the desired center of mass (CoM) pose (and speed) and landing positions
of the swing feet (Section 3.2). Then the low-level motion controller tracks the desired CoM state
by combining a position-based swing leg controller and an model predictive control (MPC) based
stance leg controller (Section 3.3). The vision policy runs at 20 Hz, while the motion controller
runs at 250 Hz. We train our policy entirely in a physics simulation environment and transfer the
trained policy to a real robot platform using techniques described in Section 3.4. Unless otherwise
specified, all quantities are defined in the yaw aligned inertial frame (Appendix A.1).

3.2 Learning-Based Vision Policy

We formulate the visual-locomotion task as a Partially-observable Markov Decision Process
(POMDP), (O,S,A,R, P, p0, �), where O is the observation space, S is the state space, A is the
action space, R : S ⇥ A 7! R is the reward function, P : S ⇥ A 7! S is the dynamics equation, p0
is the initial state distribution and � is the discount factor. Our goal is to find a policy ⇡ : O 7! A
that maximizes the expected accumulated reward: J(⇡) = E⌧=(s0,a0,...,sT)

P
T

t=0 �
tr(st,at).

Observation and action spaces. We design the observation space in our experiments as O =
(I1,2,qs, ṗ, �̇, ⇥̇, r1...4, c1...4,�1...4,aprev), i.e the two depth images I1,2 from depth sensors
shown in Figure 1 (to cover terrains near both front and rear legs), a subset of the CoM pose

3

qs = (pz,�,⇥) (CoM height, roll, and pitch), estimated CoM velocity ṗ (Appendix C), gyro-
scope readings �̇, ⇥̇ , the robot’s feet positions r1...4, the feet contact states c1...4 (one if in contact
and zero otherwise), the phase � of each leg in its respective gait cycle (Appendix A.2), and the pre-
vious action. The action space is (qd

s
, q̇d, rd1...4), i.e. the desired CoM pose, velocity, and ith foot’s

target landing position (rxi, ryi). The z component of the landing location is inferred from the depth
readings: we compute the point cloud from the depth image near the predicted (x, y) coordinate and
take the average height of four nearest points. This enables us to achieve better exploration by elim-
inating invalid foothold targets (e.g. inside an obstacle or high in the air). We find this to be critical
for the policy to traverse highly uneven terrains such as stairs.

Reward function. We design a reward function:

R(s,a) = clip(ṗx,�ṗmax

x
, ṗmax

x
)� w1(|py|+ |ṗy|)� w2| |, (1)

where ṗx is the CoM velocity in the forward direction, py the CoM displacement in the lateral
direction, and the base yaw angle. The first term rewards the robot to move forward with a
maximum speed controlled by ṗmax

x
, the second term penalizes the robot from moving sideways, and

the last term encourages the robot to walk straightly; w1, w2 modulates the importance of different
terms. In our experiments, we chose ṗmax

x
= 0.375 m/s, w1 = 1.25, and w2 = 0.125.

Early termination. A training episode is terminated if: 1) the robot loses balance (CoM height
pz below 0.15 m, pitch |⇥| > 1 rad, or roll |�| > 0.3 rad in our experiments), 2) the robot steps
within 0.02 m of the boundary of the stepping stones or stairs, or 3) the robot reaches an invalid joint
configuration, e.g. knee bending backwards.

3.3 Motion Controller

The motion controller computes appropriate motor position and torque commands to achieve the
desired landing positions of the swing legs and the target base poses from high level policy. Our
motion controller separately controls swing and stance legs. The swing leg controller computes the
feet positions by interpolating a time based curve ↵(t) between the swing start and target landing po-
sitions. Instantaneous feet positions are converted to desired joint angles through inverse kinematics
(IK) and tracked using proportional-derivative (PD) control. The stance leg controller, on the other
hand, achieves the desired position and velocity of the robot base by computing sequences of con-
tact forces between the feet and the ground. By approximating the robot dynamics using Centroidal
Dynamics Model (CDM), we formulate this problem as a convex model predictive control (MPC)
problem similar to [24]. The optimized contact forces are mapped to stance leg joint torques using
Jacobian Transpose. More details regarding the motion controller can be found in Appendix A.

3.4 Sim-to-real Transfer

Figure 3: A post-processing technique to reduce the sim-to-real gap in perception. (A) An original
depth map obtained from the D435 camera with an invalid band on the left of the image and noises
near edges. (B) A simulated depth map. (C) The filtered and down-sampled D435 depth image. (D)
The filtered and down-sampled simulation depth image.

Sim-to-real transfer is a persisting problem in robotics, and is especially hard for visual locomotion
problems because of distribution shift in image space and discrepancies in robot dynamics.

Images from simulated and real-world sensors can be significantly different (Figure 3, A and B).
To bridge the gap, we adopt a post-processing procedure that maps both simulated and real depth
images to a similar domain. As shown in Figure 3, C and D, we first add random Gaussian noise

4

and randomly paint pixels black in the simulated depth image. To mimic the noise around the object
edges in a stereo depth camera, pixels along an edges in the depth image identified by a Canny edge
detector have a higher probability of being dropped. We then apply an in-painting operation for both
simulated and real images to fill the missing pixels[25], followed by a down-sampling operation.
This transforms the depth images in simulation and real world to a similar distribution.

Discrepancies in dynamics such as mismatch in friction make precise foot-placements difficult. For
example, we found the average difference of feet landing positions in the world frame can be 2 ⇠ 4
cm between sim and real when the same sequence of actions are executed. This is enough to trigger
a failure in the step-stone task. To compensate this issue, we adopt the domain randomization tech-
nique [26] to train a robust policy with randomized simulation parameters. More details regarding
the randomization process can be found in Appendix D. Adding randomization not only allows the
policy to be more robust, but also enables the vision policy to observe more diverse states.

4 Experiment and Results

4.1 Experiment Setup

A B C D

Figure 4: Examples of environments used for visual locomotion tasks: randomly placed stepping
stones, quincuncial piles, staircases, and uneven terrains.

We evaluate our method on the Unitree Laikago [27] quadruped robot, which weighs 24kg. The
robot is equipped with 12 actuated joints. To collect visual data, we install two depth cameras on
the robot: one Intel D435 in the front for a wider field of view and one Intel L515 on the belly with
better depth quality in close range (Figure 1). At inference time, we process all depth images as
described in Section 3.4, which results in two 32⇥ 24 depth images as inputs to the policy.

We train our hierarchical policies using the PyBullet physics simulator [28] with a distributed imple-
mentation of augmented random search (ARS) [29]. We use N = 256 perturbations per ARS itera-
tion and run the algorithm until convergence with a maximum of 2000 training iterations, amounting
to 1, 024, 000 simulation episodes per trial. We use a Multi-layer Perceptron (MLP)-based policy
architecture with 54, 656 parameters. For all experiments, we run ARS with a grid search for four
hyper-parameters, resulting in 12 trials. We report the performance of top-3 policies by testing them
on 150 randomized environments for each task. More training details can be found in Appendix E.

For experiments in both simulation and real world, we train policies with perception noise. We
then fine-tune them with the dynamics randomization scheme as described in Section 3.4 before
deploying to the real robot. We empirically find this helpful for faster training convergence. The
fine-tuned policy is deployed on the robot without the need of additional hardware data.1

4.2 Simulation Results

We first evaluate the capability of our learning system on a variety of challenging visual locomotion
tasks, including walking over randomly placed stepping stones, quincuncial piles, uneven terrains,
and moving platforms. A subset of the simulation environments are shown in Figure 4. We train
separate policies for each environment and show the statistical results in Figure 5. To measure
the performance of each policy, we design a metric, performance ratio, as p

T
x

pmax
x

, where pT
x

is the
distance travelled by the policy in the environment, and pmax

x
is the maximum distance the policy

could reach, e.g. where the terrain ends.
1Videos of our trained policies in simulation and real-world can be found at: https://youtu.be/1X-NH-EuynQ

5

Figure 5: Performance ratio of our policy for different simulated environments.

Randomly placed stepping stones. The first task is to walk over a series of randomly placed
stepping stones, Figure 4A. The widths, lengths and gap sizes of stepping stones are sampled from
[0.55, 0.7], [0.5, 0.8], and [0.07, 0.2] meters respectively. The agent fails the task if the robot steps
outside of the stone or into the gaps. Since the stones and their positions are randomly sampled, this
task cannot be accomplished without vision. To successfully achieve this task, the robot needs to
identify the position and size of the stones and also plan for future footholds. We demonstrate that
our method can obtain policies that solves this task using both trotting and pacing gaits.

Quincuncial piles. The random stepping stone task evaluates the robot’s ability to identify and
handle terrain changes in the forward direction. A natural extension is to also include the lateral
direction. In the second task we create a grid of 2 dimensional stepping stones (Figure 4B). Each
stone has an area of 0.15⇥ 0.15 m2 with a standard deviation of 0.015 m in height, and is separated
by [0.13, 0.17] m from each other in both x and y directions. At the beginning of each episode, we
also randomly rotate entire stone grid in [�0.1, 0.1] rad. Despite being significantly more difficult,
using our framework we can obtain policies that can traverse the field using trotting or walking gaits.

Uneven terrains. So far the tasks focus on evaluating the robot’s ability to avoid undesired re-
gions on relatively even terrains. To test the policy’s performance in handling different heights,
we designed a staircase climbing task (Figure 4C). The depth of each stair is uniformly sampled in
[0.25, 0.33] m and the height in [0.16, 0.19] m to mimic the dimensions of real-world stairs. This
task is quite challenging for Laikago robot because each stair is as tall as the robot’s knee joint. Fig-
ure 4D shows another environment we designed for evaluating the ability of our approach to handle
uneven terrains. In this environment, the height offsets of neighboring stones are uniformly sampled
in [�0.13, 0.2] m, and a gap of [0.05, 0.1] m is added between the stones.

Moving platforms. One benefit of using vision input to the policy is that it can potentially handle
moving objects better than methods that relies on explicit terrain reconstruction. To demonstrate
the capability of our learning system, we take the random stepping stone environment (Figure 4A)
and allow each piece to move. Each platform follows a periodic movement whose magnitude and
frequency are randomly sampled in [0.10, 0.15] m and [0.4, 1.0] Hz, respectively. Also, we randomly
pick half of the platforms to move horizontally and the rest vertically. This task requires the robot
to infer both the position and velocity of the platforms. To facilitate learning, we stack a history
of three recent images as input to the policy for this task. As shown in the accompanying video,
our policy learns to identify the moving objects in the scene and will slow-down and wait for the
platforms to reach an ideal location before striding.

4.3 Comparison to baseline methods

We compare our proposed method to two baselines: end-to-end training and heuristics-based foot
placement. For the sake of simplicity yet without loss of generality, all comparisons are done in the
uneven terrain environment (Figure 6 Top), which captures the difficulty of both the stepping stones
and staircases. The results can be found in in Figure 7.

4.3.1 End-to-end training

In the first baseline, we train an end-to-end neural network policy that takes the images and the
robot states as input (same as our hierarchical policy) and outputs desired motor angles. We choose
the architecture of Policy Modulating Trajectory Generator (PMTG) [30], which has demonstrated

6

Figure 6: Laikago robot walking over uneven terrain and randomized pillar terrains. The black curve
refers to the CoM trajectory, and colored curves represent the feet trajectories.

Figure 7: Comparison of performance between our method and the baseline methods.

high-quality and transferrable locomotion policies [22]. Since PMTG generates the trajectory in the
joint space, it was not able to achieve precise foot placement that is needed for many of our testing
environments, as shown in Figure 7.

4.3.2 Heuristics-based foot placement

In the second baseline, we compare our method to prior approaches that adjust the foot placement by
computing a score map of surrounding terrains [2, 4, 18]. In our baseline implementation, we define
a point on the nearby terrain to be valid if 1) it is within reach of the swing leg, 2) the z-component
of the surface normal is larger than 0.9 (i.e. pointing upward), and 3) the standard deviation of the
nearby heights (i.e. roughness) is less than 0.05m. For better comparison, we use the same motion
controller as in our approach and train a high-level policy to output the desired base pose and velocity
using the same observation space and learning procedure. As shown in Figure 7, using heuristics
alone to determine footplacement got lower score than our proposed approach. One important reason
is that this heuristics does not take the base movement of the robot into consideration. As a result, it
may propose landing positions that are incompatible with the robot’s CoM speed.

4.4 Ablation Study

A key hypothesis we make in this work is that, despite that the images have low resolution, they
contain critical information that enables our policy to traverse a large variety of environments. To
validate this hypothesis, we first perform an ablation run by removing the vision component from
the observation space and retraining a vision-less policy. As seen in Figure 7, without vision input,
the policy is not able to accomplish the task, indicating the importance of having vision as input.

Another key component in our method is to use the depth input for inferring the z-component of
the foothold location. This creates a more meaningful action space for the policy to explore during
learning. As shown in Figure 7, the performance drops significantly we do not use depth to infer the
z-component of the foot placement.

7

4.5 Validation on Real Robot

Stepping
Stone

Climbing

Figure 8: Laikago robot solving two challenging visual-locomotion tasks.

We deploy the trained policy to a Laikago robot for two tasks, walking over gaps and climbing onto
stepping stones (see supplementary video). Our real-world setup (Figure 8 Top) consists of four
stepping stones that are separated by three gaps with widths between [0.12, 0.18] m.

In the first task, the performance is measured by the number of gaps that are crossed successfully,
summed over legs. For instance, if all four legs cross one gap and the robot is completely on the next
stepping stone, the score would be 4. Therefore, the upper bound of the score is 12: three gaps times
four legs. An experiment episode is terminated if the robot falls, any leg steps into the gaps or the
robot steps outside the stones. As a baseline, the score is 0.9 ± 1.4 for a blind-locomotion policy:
it can rarely clear a single gap. Over eight real-world episodes, our policy is able to consistently
achieve a score of 10.1± 2.2. There are two episodes in which the robot completes the full course
with a score of 12; For seven out of eight episodes, the robot reaches the last stepping stone. The
real-world failure cases are mainly caused by the robot stepping too close to the edge of the terrain
and slipping into the gap. This is likely due to the discrepancies in the dynamics and vision model.
Despite applying domain randomization techniques to mitigate the model discrepancy, we found
precisely controlling the landing position of the feet for a moving robot still challenging.

In the second task, the robot needs to climb onto a stepping stone, which is 0.18 m above from
the ground (Figure 8 Bottom). Similarly, we also define the performance score as the number of
legs reached the top of the stone (4 is the max). The learned policy reaches a score of 3.7± 0.7
over seven experiment episodes. The robot successfully steps onto the stone for six out of the seven
times. In the only failure case, the robot loses balance because its rear foot hits the edge of the stone.

5 Conclusion and Future Work

In this work, we present a hierarchical learning system to tackle challenging visual-locomotion
tasks. By using a high-level learned vision policy that consumes raw camera images, we eliminate
the need to explicitly construct 3D terrain maps, and thus reduce the control latency and architecture
complexities, and more importantly, can handle dynamically moving terrains. The low-level, model
predictive control based motion controller greatly reduces the motion tracking error on the hardware
and thus narrows the sim-to-real gap. We demonstrate that policies trained using our system can
reliably walk over challenging terrains such as stepping stones that require fine visual-motor control.

One limitation of this work is that the gaits are manually specified and fixed for each task. In
contrast, animals can dynamically modulate their walking pattern to adapt to changes in the terrain.
In the future, we plan to extend our framework to enable the visual policy to adjust the gait pattern
online. Recent works have shown great potential in representation learning for vision-based robotic
control problems [31, 32]. For example, Hoeller et al. trained a VAE to encode the environment
for a legged robot navigation task. Incorporating these techniques can further improve the learning
performance of our framework. Additionally, animals can traverse complex terrains while paying
attention to a small area, and can reason about their hind limbs that they cannot see. This makes
adding memory [33] and attention [34] to the policy architecture another promising future direction.

8

Acknowledgement

We would like to thank Gus Kouretas, Thinh Nguyen, Noah Brown, Satoshi Kataoka, and the Oper-
ations team at Robotics at Google for the help in setting up the testing environment, debugging robot
hardware and camera issues. We would also like to thank Ken Caluwaerts, Krzysztof Choromanski,
Kuang-Huei Lee, Daniel Ho, Yuxiang Yang, and the anonymous reviewers for valuable discussion
and suggestions.

9

References
[1] C. Mastalli, M. Focchi, I. Havoutis, A. Radulescu, S. Calinon, J. Buchli, D. G. Caldwell, and

C. Semini. Trajectory and foothold optimization using low-dimensional models for rough ter-
rain locomotion. In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pages 1096–1103. IEEE, 2017.

[2] O. A. V. Magana, V. Barasuol, M. Camurri, L. Franceschi, M. Focchi, M. Pontil, D. G. Cald-
well, and C. Semini. Fast and continuous foothold adaptation for dynamic locomotion through
CNNs. IEEE Robotics and Automation Letters, 4(2):2140–2147, 2019.

[3] O. Villarreal, V. Barasuol, P. M. Wensing, D. G. Caldwell, and C. Semini. MPC-based con-
troller with terrain insight for dynamic legged locomotion. In 2020 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 2436–2442. IEEE, 2020.

[4] P. Fankhauser, M. Bjelonic, C. D. Bellicoso, T. Miki, and M. Hutter. Robust rough-terrain
locomotion with a quadrupedal robot. In 2018 IEEE International Conference on Robotics

and Automation (ICRA), pages 5761–5768. IEEE, 2018.

[5] F. Jenelten, T. Miki, A. E. Vijayan, M. Bjelonic, and M. Hutter. Perceptive locomotion in rough
terrain–online foothold optimization. IEEE Robotics and Automation Letters, 5(4):5370–5376,
2020.

[6] R. Grandia, A. J. Taylor, A. D. Ames, and M. Hutter. Multi-layered safety for legged robots
via control barrier functions and model predictive control. arXiv preprint arXiv:2011.00032,
2020.

[7] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis. RLOC: Terrain-
aware legged locomotion using reinforcement learning and optimal control. arXiv preprint

arXiv:2012.03094, 2020.

[8] P. Fankhauser, M. Bloesch, and M. Hutter. Probabilistic terrain mapping for mobile robots
with uncertain localization. IEEE Robotics and Automation Letters (RA-L), 3(4):3019–3026,
2018. doi:10.1109/LRA.2018.2849506.

[9] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim. Dynamic locomotion in the mit
cheetah 3 through convex model-predictive control. In 2018 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pages 1–9, 2018. doi:10.1109/IROS.2018.
8594448.

[10] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J.
Leonard. Past, present, and future of simultaneous localization and mapping: Toward the
robust-perception age. IEEE Transactions on robotics, 32(6):1309–1332, 2016.

[11] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, et al. Qt-opt: Scalable deep reinforcement learning for vision-
based robotic manipulation. arXiv preprint arXiv:1806.10293, 2018.

[12] L. He, N. Aouf, J. F. Whidborne, and B. Song. Integrated moment-based lgmd and deep
reinforcement learning for uav obstacle avoidance. In 2020 IEEE International Conference on

Robotics and Automation (ICRA), pages 7491–7497. IEEE, 2020.

[13] P. Fankhauser and M. Hutter. A Universal Grid Map Library: Implementation and Use
Case for Rough Terrain Navigation. In A. Koubaa, editor, Robot Operating System (ROS)

– The Complete Reference (Volume 1), chapter 5. Springer, 2016. ISBN 978-3-319-26052-5.
doi:10.1007/978-3-319-26054-9{ }5. URL http://www.springer.com/de/book/
9783319260525.

[14] D. Kim, D. Carballo, J. Di Carlo, B. Katz, G. Bledt, B. Lim, and S. Kim. Vision aided dy-
namic exploration of unstructured terrain with a small-scale quadruped robot. In 2020 IEEE

International Conference on Robotics and Automation (ICRA), pages 2464–2470. IEEE, 2020.

10

http://dx.doi.org/10.1109/LRA.2018.2849506
http://dx.doi.org/10.1109/IROS.2018.8594448
http://dx.doi.org/10.1109/IROS.2018.8594448
http://www.springer.com/de/book/9783319260525
http://www.springer.com/de/book/9783319260525

[15] C. Mastalli, I. Havoutis, A. W. Winkler, D. G. Caldwell, and C. Semini. On-line and on-board
planning and perception for quadrupedal locomotion. In 2015 IEEE International Conference

on Technologies for Practical Robot Applications (TePRA), pages 1–7. IEEE, 2015.

[16] H.-W. Park, P. M. Wensing, S. Kim, et al. Online planning for autonomous running jumps over
obstacles in high-speed quadrupeds. 2015.

[17] X. Da, Z. Xie, D. Hoeller, B. Boots, A. Anandkumar, Y. Zhu, B. Babich, and A. Garg.
Learning a contact-adaptive controller for robust, efficient legged locomotion. arXiv preprint

arXiv:2009.10019, 2020.

[18] Z. Xie, X. Da, B. Babich, A. Garg, and M. van de Panne. Glide: Generalizable quadrupedal
locomotion in diverse environments with a centroidal model. arXiv preprint arXiv:2104.09771,
2021.

[19] M. Xie, A. Escontrela, and F. Dellaert. A factor-graph approach for optimization problems
with dynamics constraints. arXiv preprint arXiv:2011.06194, 2020.

[20] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter. Deepgait: Planning and control of
quadrupedal gaits using deep reinforcement learning. IEEE Robotics and Automation Letters,
5(2):3699–3706, 2020.

[21] Q. Nguyen, A. Agrawal, X. Da, W. C. Martin, H. Geyer, J. W. Grizzle, and K. Sreenath.
Dynamic walking on randomly-varying discrete terrain with one-step preview. In Robotics:

Science and Systems, volume 2, 2017.

[22] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-
tion over challenging terrain. Science robotics, 5(47), 2020.

[23] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst. Blind bipedal stair traversal via sim-
to-real reinforcement learning. arXiv preprint arXiv:2105.08328, 2021.

[24] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim. MIT Cheetah 3:
Design and control of a robust, dynamic quadruped robot. In 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 2245–2252. IEEE, 2018.

[25] M. Bertalmio, A. L. Bertozzi, and G. Sapiro. Navier-stokes, fluid dynamics, and image and
video inpainting. In Proceedings of the 2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. CVPR 2001, volume 1, pages I–I. IEEE, 2001.

[26] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke. Sim-
to-real: Learning agile locomotion for quadruped robots. arXiv preprint arXiv:1804.10332,
2018.

[27] Unitree Robotics. URL http://www.unitree.cc/.

[28] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation in robotics, games
and machine learning, 2017.

[29] H. Mania, A. Guy, and B. Recht. Simple random search provides a competitive approach to
reinforcement learning. arXiv preprint arXiv:1803.07055, 2018.

[30] A. Iscen, K. Caluwaerts, J. Tan, T. Zhang, E. Coumans, V. Sindhwani, and V. Vanhoucke.
Policies modulating trajectory generators. In Conference on Robot Learning, pages 916–926.
PMLR, 2018.

[31] D. Hoeller, L. Wellhausen, F. Farshidian, and M. Hutter. Learning a state representation and
navigation in cluttered and dynamic environments. IEEE Robotics and Automation Letters, 6
(3):5081–5088, 2021.

[32] K.-H. Lee, I. Fischer, A. Liu, Y. Guo, H. Lee, J. Canny, and S. Guadarrama. Predictive infor-
mation accelerates learning in rl. arXiv preprint arXiv:2007.12401, 2020.

[33] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

11

http://www.unitree.cc/

[34] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins,
J. Davis, A. Mohiuddin, L. Kaiser, et al. Rethinking attention with performers. arXiv preprint

arXiv:2009.14794, 2020.

[35] M. H. Raibert. Legged robots that balance. MIT press, 1986.

12

	Introduction
	Related Work
	Methodoloy
	Overview
	Learning-Based Vision Policy
	Motion Controller
	Sim-to-real Transfer

	Experiment and Results
	Experiment Setup
	Simulation Results
	Comparison to baseline methods
	End-to-end training
	Heuristics-based foot placement

	Ablation Study
	Validation on Real Robot

	Conclusion and Future Work
	Appendices
	Implementation Details for Motion Controller
	Choice of Inertial Frame
	Gait Scheduler
	Swing Leg Control
	Stance Leg Control

	Action Space Adjustments
	State Estimator
	Domain Randomization
	Training Details
	Vision Policy Architecture

