
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a DeLTa Workshop Paper at ICLR 2025

FLOW ALONG THE K-AMPLITUDE FOR GENERATIVE MODELING

Anonymous authors
Paper under double-blind review

Figure 1: Unconditional generation using K-Flow using three types of K-amplitude decomposition.

ABSTRACT

In this work, we propose a novel generative learning paradigm, K-Flow, an algo-
rithm that flows along the K-amplitude. In physics, k is a measure to organize the
frequency bands of objects, and the amplitude is the norm of projected coefficients.
By incorporating the K-amplitude decomposition, K-Flow enables flow matching
across scaling as time. We discuss three venues of six properties of K-Flow, from
theoretical foundations, energy and temporal dynamics, and practical applications,
respectively. Specifically, from the practical usage perspective, K-Flow allows
steerable generation by controlling the information at different scales. To demon-
strate the effectiveness of K-Flow, we conduct experiments on unconditional image
generation and class-conditional image generation. Additionally, we conduct three
ablation studies to demonstrate how K-Flow steers scaling to effectively control
the resolution of image generation.

1 INTRODUCTION

Generative Artificial Intelligence (GenAI) represents a pinnacle achievement in the recent wave of
AI advancements. This field has evolved from foundational methods such as autoregressive models
(AR) [48], energy-based models (EBMs) [7, 20, 23, 32, 54], variational auto-encoders (VAEs) [29],
and generative adversarial networks (GANs) [18], to the most cutting-edge flow-matching (FM)
framework [3, 36, 40].

Among these, flow matching (FM) stands out as a density transport method that converts an initial
simple distribution into a complex target distribution through continuous-time flow dynamics. For
instance, in the context of image generation, FM learns to map a random Gaussian distribution
to the pixel-space distribution of images. This process, termed continuous flow, is governed by a
localized k-dependent vector field (or velocity field) and produces a time-dependent density path,
which represents the evolution of the probability distribution over time. As a versatile framework,
FM can incorporate a diffusion density path, linking it to established methods such as denoising score
matching (DSM)[53, 59] and the denoising diffusion probabilistic model (DDPM)[24].

Key Concepts. We first introduce several core concepts. The scaling and its parameter k can
be interpreted as a measure to organize the frequency bands of physical objects or processes, and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a DeLTa Workshop Paper at ICLR 2025

amplitude refers to the norm of coefficients obtained after projecting data concerning the scaling k,
which we term the K-amplitude space, or equivalently, scaling-amplitude space. The underlying
intuition behind the utility of K-amplitude space is that multi-scaling modeling inherently aligns
more naturally with data structures in the K-amplitude space, i.e., lower k tend to have higher
amplitudes, as observed in multi-resolution image modeling [1].

Our Method. Such an understanding of scaling and K-amplitude space inspires a new paradigm for
generative modeling, which we term K Flow Matching (K-Flow). In essence, K-Flow performs flow
along the K-amplitude. There are two main components in K-Flow, and the first is the K-amplitude
decomposition. The K-amplitude decomposition encompasses a family of transformations, and
in this work, we explore three types: Wavelet, Fourier, and principal component analysis (PCA)
decomposition, as illustrated in Figure 1. Building on this, the second component in K-Flow is its
flow process. K-Flow applies a K-amplitude transformation to project data from the spatial space
into the K-amplitude space, learns a time-dependent velocity field in this space accordingly, and
subsequently maps it back to the spatial space for velocity matching. A detailed pipeline is provided
in Figure 2. Next, we will discuss the strengths of K-Flow through six properties, which can be
organized into three categories: theoretical foundations (properties a & b), energy and temporal
dynamics (properties c & d), and practical applications (properties e & f).

Properties of K-Flow. We introduce six main properties of K-Flow below, and please refer to Ap-
pendix C for more detailed discussions. In summary, K-Flow (a) provides a first-principle way to
organize the scaling k, (b) enables multi-scale modeling in the K-amplitude space, (c) supports
a well-defined scale along with energy, (d) interprets scaling as time, (e) supports the fusion of
intra-scaling and inter-scaling modeling, and (f) supports explicit steerability.

Our Results. We conduct experiments on image generation to verify the effectiveness of K-Flow.
Quantitatively, K-Flow achieves competitive performance in both unconditional and class-conditional
image generation. Qualitatively, we conduct three ablation studies to demonstrate the steerability of
K-Flow: controllable class-conditional generation and scaling-controllable generation.

2 BACKGROUND

2.1 SCALING PARAMETER k, AMPLITUDE, AND K-AMPLITUDE DECOMPOSITION

Our data generation framework leverages the implicit hierarchical structure of the data manifold. By
‘implicit’, we refer to the hierarchical characteristics that emerge when a generalized K-amplitude
decomposition is applied, transitioning the representation from the original data space to the K-
amplitude space. Illustrations are in Figure 2.

More formally, we represent data as a signal ϕ : Rd → Rm, or a finite discretization of Rd and Rm,
where this signal function is equivalent to a vector. For example, in the case of image data, each
pixel can be viewed as a signal mapping from x-y-RGB coordinates to a pixel intensity value, i.e.,
R3 → R1. An alternative approach is to consider data as a high-dimensional vector Rd×m. However,
treating data as signal functions provides a more natural fit in this work.

Without loss of generality, we take m = 1 for illustration. A K-amplitude decomposition involves
the decomposition of a function using a complete basis set {ej}nj=1, where n can be infinite. We
introduce a scaling parameter k, which partitions the set {ei}ni=1 into subsets: {ei}ni=1 =

⋃
k{ek},

each with nk basis. Hence, signal ϕ is expressed as:

ϕ =
∑
k

ϕk, (1)

where ϕk :=
∑nk

j=1(ϕ · ejk)ejk for ejk ∈ {ek}. Inspired by the concept of frequency amplitude, we
also refer to the norm of ϕk as the K-amplitude. It is important to note that k is termed the scaling
parameter because it implies that a well-structured decomposition should ensure that the amplitude
decays with increasing k [17].

We define K-amplitude decomposition (or equivalently, K-amplitude transform) F as the map that
sends ϕ to the collection of ϕk, and denote the collection of all {(ϕ · ejk)ejk}j as F{ϕ}(k). Then,
F{ϕ} :=

⋃
k F{ϕ}(k). We further assume that this transform has an inverse, denoted by F−1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a DeLTa Workshop Paper at ICLR 2025

2.2 EXAMPLE: FOURIER AMPLITUDE DECOMPOSITION

Suppose the data ϕ : R3 → R, is drawn from a certain function distribution pdata. The challenge
of directly fitting the distribution pdata is often complex and computationally demanding. Fourier
frequency decomposition, however, offers a powerful technique to address this challenge by trans-
forming ϕ into the Fourier space or Fourier domain. In what follows, we will use the terms ‘space’
and ‘domain’ interchangeably.

By applying Fourier frequency decomposition, we express ϕ as a sum of its frequency components.
This transformation can potentially unveil the hidden structure within the distribution pdata, which is
not apparent in the spatial or time domain, and it is thus beneficial for understanding the underlying pat-
terns in the data manifold. To illustrate, the continuous Fourier transform F of data ϕ(x, y, z) : R3 →
R is expressed as: F{ϕ}(kx, ky, kz) =

∫∞
−∞

∫∞
−∞

∫∞
−∞ ϕ(x, y, z) e−2πi(kxx+kyy+kzz) dx dy dz.

After this transformation, the spatial variables (x, y, z) are converted into frequency variables
(kx, ky, kz), thereby representing the data in the frequency domain.

Note that the Fourier frequency is characterized by the high-dimensional vector representation
(kx, ky, kz). For our purposes, our aim is to distill the notion of frequency into a one-dimensional
scaling parameter. Namely, we define the scaling parameter k as the diameter of the expanding ball
in Fourier space: k =

√
k2x + k2y + k2z . This definition of k provides a simple index that captures

the overall scaling of the frequency components in all directions. Moreover, we can decompose the
Fourier transform F{ϕ} into groups indexed by the scaling index k:

F{ϕ}(k) =
⋃

√
k2
x+k2

y+k2
z=k

F{ϕ}(kx, ky, kz). (2)

Intuitively, F{ϕ}(k) represents the set of all frequency components that share the same scaling k.
This grouping allows us to examine the contributions of various spatial frequencies of ϕ when viewed
through the lens of frequency k. Furthermore, ϕk is just the summation of F{ϕ}(k).
On the other hand, we can recover ϕ from F{ϕ}, because the Fourier transform is an invertible
operation: ϕ = F−1F{ϕ}. Such an invertibility establishes the Fourier transform as a valid example
of K-amplitude decomposition. For discrete data, which inherently possess a highest resolution,
the variables (kx, ky, kz) are situated on a discrete lattice rather than spanning the entire continuous
space. Consequently, the scaling parameter k is itself discrete and bounded.

2.3 FLOW MATCHING

In this work, we primarily focus on the flow matching (FM) generative models and their families [3,
36, 40]. In FM, the flow Ψt is defined by solutions of an ordinary differential equation (ODE) system
with a time-dependent vector field v: d

dt
Ψt(x) = vt(Ψt(x)), (3)

and we focus on the probability transport aspects of Ψt. In particular„ the flow provides a means of
interpolating between probability densities within the sample space. Suppose Ψt follows an initial
probability p0, then for t > 0, Ψt induces a probability measure pt: pt(B) = p0(Ψ

−1
t (B)), where

B is a measurable set. Assume that Ψt is differentiable, and define a surrogate velocity at time t
as vt(xt, θ) using a deep neural network with parameter θ. Then the vector field matching loss is
defined as:

LFM :=

∫ ∫ 1

0

dx0 dt

∥∥∥∥dΨt

dt
(xt)− vt(xt, θ)

∥∥∥∥2 . (4)

By aligning the learned vector field with the true gradient field of the frequency decomposition,
this loss function ensures robust approximation and reconstruction of the data. Additionally, every
interpolation π(x0, x1) with a time-continuous interpolating function ft(x0, x1) between probabilities
p0 and p1 induces a vector field vt through the continuity equation:

∂pt(xt)

∂t
= −∇x (pt(xt)vt(xt)) , (5)

and vt is explicitly expressed as: vt = 1
pt

Eπ(x0,x1)[
∂ft(x0,x1)

∂t]. Although explicit matching of vt via
the continuity equation is intractable, flow matching permits a conditional version:

LCFM = Eπ(x0,x1)

∫ t

0

dt

∥∥∥∥∂ft(x0, x1)∂t
− vt(xt, θ)

∥∥∥∥2 + constant. (6)

As detailed in Section 3, our framework reinterprets the time variable t as scaling k.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a DeLTa Workshop Paper at ICLR 2025

Figure 2: Pipeline of K-Flow.

3 METHODOLOGY: K-FLOW

3.1 K-AMPLITUDE INTERPOLANTS

According to the concept of stochastic interpolants [4], all flow models can be viewed as constructing
stochastic paths that interpolate between a known tractable prior distribution and an unknown
target distribution, including flow matching [36], rectified flow [40], and denoising diffusion [24].
By incorporating the scaling parameter k for K-amplitude decompositions, we can formulate a
stochastic interpolant that gradually emerges each amplitude component from white noise. Given
that k traverses monotonically from zero to a maximum value kmax, this process draws a natural
analogy to continuous normalizing flows. Since we require F to be invertible, we can reconstruct
the data once the complete spectrum in the K-amplitude space is generated.

To build a continuous flow Ψk out of Equation (1), we explore two paradigms in designing the
interpolants: (1) We generalize the original discrete-valued k to continuous values; (2) We ensure
that the generation flow, which maps the white noise to the real data, remains invertible such that no
information is lost throughout the process. Still taking the three-dimensional signal ϕ(x, y, z) and
the Fourier transform F{ϕ} as an example, we realize the second ingredient by introducing noise
padding ϵ for each k and define the discrete flow φk as follows:

φk = F−1
(
I√k2

x+k2
y+k2

z≤k · F{ϕ}(kx, ky, kz) +
(
1− I√k2

x+k2
y+k2

z≤k

)
· ϵ
)
, (7)

where I is the indicator function that selects K-amplitude components up to the scaling step k.
This formulation ensures that for each step k, the reconstruction incorporates the relevant K-Flow
components of data ϕ and pads the rest with noise ϵ. Here, the noise ϵ is independently drawn
from a known distribution (e.g., uniform or Gaussian) for each coordinate (kx, ky, kz). Through this
construction, ϕk serves as a stochastic interpolant for the data ϕ, ensuring that: limk→kmax φk = ϕ,
where kmax represents the maximum scaling parameter of data. This limit condition guarantees that
as k approaches its maximum value, the reconstructed φk converges to the original data ϕ. This
behavior is pivotal for the accuracy and fidelity of the generative process. Conversely, ϕ0 simply
follows the law of a tractable distribution.

Inter-scaling Interpolant. Since most of the data we aim to generate is discrete in nature, the
(kx, ky, kz) values in the K-amplitude decomposition are inherently defined on a lattice. Conse-
quently, the derived scaling parameter k also takes discrete values. This discreteness implies that φk

is originally defined only for discrete values of k. However, this discrete flow imposes a limitation:
we cannot leverage the powerful flow-matching objective as the optimization framework, which
requires taking derivatives with respect to continuous scaling step k.

To handle this issue, a straightforward approach is to extend φk to continuous k by intra-scaling
interpolation. That is, we want a continuous flow Ψk, where k ∈ [0,K] and satisfy Ψk = φk for
integer values of k. Let t := k − ⌊k⌋ represent the continuous scaling step, where ⌊k⌋ denotes the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a DeLTa Workshop Paper at ICLR 2025

integer part of k. Then, the differentiable interpolation of Ψk is:

Ψk = Ψ⌊k⌋+t =F−1

(
I√k2

x+k2
y+k2

z<⌊k⌋ · F{ϕ}(kx, ky, kz) +
(
1− I√k2

x+k2
y+k2

z≥⌊k⌋+1

)
· ϵ

+ I√k2
x+k2

y+k2
z∈[⌊k⌋,⌊k⌋+1) · (µ(t) · F{ϕ}(kx, ky, kz) + (1− µ(t)) · ϵ)

)
, (8)

where µ(t) is a bump function such that µ(0) = µ(1) = 1 and µ′(0) = −µ′(1). The antisym-
metric property of µ′(t) ensures that Ψk is differentiable from k for all R+, allowing the flow
matching loss and other gradient-based optimization techniques. In Equation (8), we have three
components: (1) I√k2

x+k2
y+k2

z<⌊k⌋ applies to the amplitude components up to the integer part
of k; (2) I√k2

x+k2
y+k2

z≥⌊k⌋+1 applies noise padding to components beyond the next integer; (3)
I√k2

x+k2
y+k2

z∈[⌊k⌋,⌊k⌋+1) performs linear interpolation of the intermediate amplitude components
based on the current t.

Localized Vector Fields. Instead of directly modeling Ψk, we pivot our focus to its conditional
gradient field, dΨk

dk . By concentrating on the gradient field, we facilitate a dynamic view of how
ϕk evolves with respect to k. To derive an analytical expression of dΨk

dk conditioned on a given
instance pair of data and noise: (ϕ, ϵ), in what follows, we assume that F is a linear transform. Then,
following Equation (8), we have the conditional vector field:

dΨk

dk
(ϕ, ϵ) = F−1

(
I√k2

x+k2
y+k2

z∈[[k],[k]+1) · µ
′(t) · (ϵ−F{ϕ}(kx, ky, kz))

)
, (9)

for k ∈ [⌊k⌋, ⌊k⌋ + 1) and t = k − ⌊k⌋. Then, following Equation (6), the training objective of
K-Flow is to learn the unconditional vector field in Equation (3) by the conditional flow matching:

LK-Flow := Eϕ0

∫ K

0

dϕ0 dk

∥∥∥∥dΨk

dk
− vk(Ψk, θ)

∥∥∥∥2 . (10)

By examining Equation (8) closely, we observe that the vector field is naturally localized around
a subset of points in the K-amplitude space that satisfy

√
k2x + k2y + k2z ∈ [⌊k⌋, ⌊k⌋ + 1). This

localization means that the reconstruction at any given k primarily involves K-amplitude components
within a narrow frequency band around k. Compared with the flow scheme in the pixel space, the
K-amplitude in K-Flow reduces the optimization complexity by restricting the conditional vector field
to be within a sub-manifold for each k. This sub-manifold may potentially be of low dimensionality,
allowing for more focused updates and reducing the optimization space’s dimensionality at each step.
We will check how this localized conditional vector field affects the generation path in Appendix B.

We can further generalize the interpolation interval from (⌊k⌋, ⌊k⌋+1) to (km, kn), where km and kn
are two integers such that km < kn. This adjustment broadens the range for intermediate amplitude
components from

√
k2x + k2y + k2z ∈ [⌊k⌋, ⌊k⌋ + 1) to

√
k2x + k2y + k2z ∈ [km, kn). For example,

for our experiments, we partition the K-amplitude into two or three parts. See Appendix C.2 and
Appendix C.3 for detailed implementations of these partitioning strategies.

3.2 EXAMPLES OF K-AMPLITUDE TRANSFORMATION

As we can see from Equation (1), all K-amplitude decompositions are achieved through expansion
across a complete set of basis functions. However, the behavior of a K-amplitude decomposi-
tion (transform) can vary significantly depending on the choice of basis functions. Besides the
Fourier transform introduced in Section 2, we provide two additional examples of K-amplitude
decomposition: Wavelet transformation and PCA transformation. More details are in Appendix C.

Wavelet Transform. Wavelet decomposition (transform) deals with data that are not only scaling-
localized but also spatially localized. The scaling parameter of wavelet transform is closely related
to the notion of multi-resolution analysis [41], which provides a systematic way to decompose a
signal into approximations and details at successively finer scales. This hierarchical decomposition
is achieved through a set of scaling functions ω(x), and wavelet functions ψ(x), which together
serve as basis functions for the wavelet transformation. More precisely, in the wavelet transform, a

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a DeLTa Workshop Paper at ICLR 2025

signal f(t) is expressed as a sum of scaled and translated versions of these basis functions times the
corresponding coefficients c and d:f(t) =

∑
j

ck0,jωk0,j(t) +
∑
k≥k0

∑
j

dk,jψk,j(t), (11)
where ωk0,j(t) and ψk,j(t) are the scaled and translated scaling and wavelet functions, respectively.
The index j, which originally denotes the translation parameter, groups the basis within each fixed
scaling parameter k naturally. Let ϕk :=

∑
j dk,jψk,j for k > k0 and ϕk :=

∑
j ck0,jωk0,j for

k = k0, then eq. 11 is just one realization of K-amplitude decomposition. Concrete formulas for
different families of wavelet bases, such as Daubechies (db), Meyer, and Haar, are in Appendix C.

In this article, we employ the discrete version of wavelet transform (DWT) as our K-amplitude
transformation F , which shares the linearity property with the Fourier transform with a bounded
scaling parameter k, providing a structured yet flexible means of decomposing discrete data.

Date-dependent PCA Transform. Note that Fourier and wavelet decompositions are nonparametric
k-amplitude decompositions that are independent of data. While these transformation methods are
powerful, we also aim to find data-dependent decompositions that can capture common characteristic
features specific to a given dataset. This motivation leads to principal component analysis (PCA),
a technique widely used for the low-dimensional approximation of the data manifold [25]. Please
consult appendix C for the K-amplitude realization of PCA transform.

K-amplitude Decomposition As A good Inductive Bias. From a data modeling perspective, it
is valuable to study the statistics of data distribution across scalings, as defined by the specific
K-amplitude decomposition we utilize. If the data distribution does not exhibit K-Flow scaling
inhomogeneity, then all scalings should be treated equally, providing no justification for using a
scaling-split generation path. As to latent data modeling, such as the latent space of an autoencoder,
which is our main focus, we statistically analyze the mean norm of each scaling band across images in
Figure 6. Obviously, we find that even in the compressed latent space, the mean norm of each scaling
band decreases from low to high scalings. From the perspective of approximation error and model
complexity, it is advantageous to allocate more refined sampling steps (or more model parameters) to
lower scalings, as they contain more energy. On the other hand, pathological medical imaging data
[10] may place more emphasis on the reconstruction of high-frequency components. In such cases,
we need to allocate more computational resources to the high-scaling part of the K-Flow. Overall,
our method can better capture significant features and maintain fidelity in the generated outputs.

3.3 PRACTICAL IMPLEMENTATION AND DISCUSSION

The overall structure of K-Flow is agnostic to the neural network architecture (for training the vector
field), meaning that classical model architectures, such as U-net [55] and vision transformers [46],
which are commonly used for training ordinary continuous normalizing flows or diffusion models,
can be directly applied to K-Flow. This adaptability ensures that existing computational investments
in these architectures can be effectively leveraged, providing a seamless transition to incorporating
K-amplitude-based methods.

A Flexible Plug-In Version. To integrate our method into these existing models, we only introduce
one targeted modification: replacing the time-embedding module with a K-amplitude-embedding
module. Specifically, the time input of the time-embedding module in the diffusion transformer (or U-
net) is substituted by the scaling parameter k. This substitution enables the K-Flow to leverage scaling
information directly (especially the bump function), aligning with the principles of K-amplitude
decomposition while preserving the original architecture’s overall structure.

In addition to modifying this embedding module, to fully realize Equation (9), we provide several
replaceable implementations of the bump functions in Appendix C for exploring the design space
of our proposed K-Flow. Finally, we present the complete algorithm in Algorithm 1. For additional
insights on the K-amplitude localization property and its implications for designing more efficient
models, please refer to Appendix C.4.

4 EXPERIMENTS

We evaluate our K-Flow in multiple tasks, including unconditional image generation, class-
conditioned image generation, and three ablation studies. The training algorithm is illustrated
in Algorithm 1, and the implementation and hyperparameters are detailed in Appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a DeLTa Workshop Paper at ICLR 2025

(a) Controllable class-conditional generation. (b) Scaling-controllable generation (low scaling).
Figure 3: Pipelines of ablation study.

Table 1: Unconditional generation on CelebA-HQ.

Model FID↓ Recall↑
CelebA-HQ 256

K-Flow, Fourier-DiT L/2 (Ours) 5.11 0.47
K-Flow, Wave-DiT L/2 (Ours) 4.99 0.46
K-Flow, PCA-DiT L/2 (Ours) 5.19 0.48
LFM (ADM) [11] 5.82 0.42
LFM (DiT L/2) [11] 5.28 0.48
FM [36] 7.34 -

LDM [50] 5.11 0.49
LSGM [58] 7.22 -
WaveDiff [47] 5.94 0.37
DDGAN [61] 7.64 0.36
Score SDE [55] 7.23 -

Table 2: Class-conditional generation on ImageNet.
Model FID↓ CDR↓ Recall↑
K-Flow, Wave-DiT L/2 (Ours) 17.8 - 0.56
+ cfg=1.5 4.49 - 0.44
K-Flow, Fourier-DiT L/2 (Ours) 13.5 - 0.57
+ cfg=1.5 2.77 1.49 0.45
LFM (DiT L/2) 14.0 - 0.56
+ cfg=1.5 2.78 3.25 0.42

LDM-8 [50] 15.51 - 0.63
LDM-8-G 7.76 - 0.35
DiT-B/2 [46] 43.47 - -

4.1 IMAGE UNCONDITIONAL GENERATION

The first task is to generate random samples after fitting a target data distribution, which is typically
concentrated around a low-dimensional sub-manifold within the ambient space.

Dataset and Metrics. We conduct experiments on the CelebA-HQ [27] dataset with a resolution of
256×256. To evaluate the performance of our proposed method, we employ two metrics: the Fréchet
Inception Distance (FID) [22], which evaluates the quality by measuring the statistical similarity
between generated and real images, and Recall [30], which measures the generation diversity.

Results. Table 1 summarizes the comparison between our proposed K-Flow model and other
generative models. For a fair comparison, both the baseline ordinary flow matching [11] and our
K-Flow flow utilize the same VAE’s latent from [50] and the Diffusion Transformer with the same
size (e.g., DIT L/2 [46]) as the backbone model. We can observe that (1) K-Flow achieves the
best performance in FID, especially w/ the db6-based wavelet K-Flow. (2) Although the latent
diffusion model [50] gets the highest score in Recall (diversity), the Fourier and PCA-based K-Flow
is comparable with the ordinary latent flow matching.

4.2 IMAGE CLASS-CONDITIONAL GENERATION

In this section, we explore how K-amplitude decomposition behaves when the generation path is
conditioned on class labels, where the class label (e.g., dog, cat, fish, etc) delegates the low-scaling
information of each image. This investigation could potentially pave the way for multi-modal scaling
control, where different scaling components are influenced by specific caption information. We list
the detailed class-conditional generation algorithm in Appendix D.

Dataset and Metric. We use ImageNet as the middle-size conditional generation dataset [12].
Beyond evaluating the unconditional FID for the ImageNet dataset, we are interested in studying how
the class control interacts with scaling generation in a quantitative manner. Details in Appendix E.

Results. The results are presented in Table 2. Our primary focus for the FID metric is the classifier-free
guidance inference method applied to flow matching models. The data indicates that K-Flow achieves
results comparable to LFM. In terms of the recall metric, which assesses the diversity of the generated
distribution, our model outperforms the standard LFM. This improvement may be attributed to the
fact that the inference path of K-Flow includes a greater number of dimensions during the low-scaling

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a DeLTa Workshop Paper at ICLR 2025

(a) Low scaling. (b) High scaling.
Figure 4: Results of scaling-controllable generation.

period, as discussed in Appendix B.1. Given that the inference path of K-Flow accommodates the
K-amplitude scalings, we anticipate that omitting the class label (a low-scaling caption) in the high-
scaling segments will not substantially impact FID. Our observations confirm this expectation: the
conditional discrimination ratio (CDR, defined in appendix E) of our model is close to one, indicating
a balanced performance. In contrast, the CDR of the conventional LFM is significantly higher, suggest-
ing a discrepancy in performance under these conditions. For the qualitative analysis, see Section 4.3.
This preliminary exploration suggests that our proposed K-Flow has the potential to allocate com-
putational resources more efficiently by leveraging the correlation between K scaling and captions.

4.3 CONTROLLABLE CLASS-CONDITIONAL GENERATION

Figure 5: Results of controllable class generation.

The latent flow matching model can implicitly learn
low- and high-resolution features [11], but the bound-
ary between each resolution is vague, and we cannot
explicitly determine which timestep in the inference
process corresponds to a specific resolution or fre-
quency. In comparison, our proposed wavelet-based
K-Flow enables finer-grained controllable generation.
As shown in Figures 3a and 5, when we drop the class
conditions during the last 70% scaling steps of the
inference process, K-Flow can effectively preserve
high-frequency details, whereas the ordinary latent
flow tends to blur the entire image.

4.4 SCALING-CONTROLLABLE GENERATION

Preserving High Scaling, Modifying Low Scaling. This scaling-controllable generation pipeline
is illustrated in Figure 3b. It involves sampling multiple images while ensuring that the noise in
the high-scaling components remains consistent across all samples. In scaling-controllable image
generation, the goal is to maintain consistency in the high-scaling details while allowing variations in
the low-scaling context among the generated images, thus this allows K-Flow to achieve unsupervised
steerability in a finetuning-free manner. The algorithm is in Appendix D.

The results on CelebA are presented in Figure 4a, where we apply a pretrained Daubechies wavelet
(db6-based) K-Flow. It can be observed that facial details, such as eyes, smiles, noses, and eyebrows,
remain consistent within each group of images. In contrast, the low-scaling components, including
background, gender, age, and hairstyle, vary across the images within the same group.

Preserving Low Scaling, Modifying High Scaling. We need to highlight that in K-Flow, when
modeling the flow from lower to higher scales, the noise at higher scales is used to predict the
velocity at the lower scale. This is determined by the nature of ODE flow. To this end, we conduct an
ablation study by reversing the scaling direction in the Daubechies wavelet K-Flow, and the pipeline
is illustrated in Figure 14 (Appendix E). In such a reversed setup, we keep the low-scaling part the
same noise, while gradually denoising the high-scaling part.

The results are listed in Figure 4b. According to the six pairs of results, we can observe that the
low-scaling part like the background of the image and the gender and color of the people stay the
same, while the high-resolution details of facial expressions and outlook vary within each pair.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a DeLTa Workshop Paper at ICLR 2025

REFERENCES

[1] Patrice Abry, Paulo Gonçalvès, and Patrick Flandrin. Wavelets, spectrum analysis and
1/f processes, pp. 15–29. Springer New York, New York, NY, 1995. ISBN 978-1-4612-
2544-7. doi: 10.1007/978-1-4612-2544-7_2. URL https://doi.org/10.1007/
978-1-4612-2544-7_2. 2

[2] Ali Naci Akansu and Richard A. Haddad. Multiresolution signal decomposition: Trans-
forms, subbands, and wavelets. 1992. URL https://api.semanticscholar.org/
CorpusID:60630002. 21

[3] Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. arXiv preprint arXiv:2209.15571, 2022. 1, 3

[4] Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A
unifying framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023. 4

[5] Yuval Atzmon, Maciej Bala, Yogesh Balaji, Tiffany Cai, Yin Cui, Jiaojiao Fan, Yunhao Ge,
Siddharth Gururani, Jacob Huffman, Ronald Isaac, et al. Edify image: High-quality image
generation with pixel space laplacian diffusion models. arXiv preprint arXiv:2411.07126, 2024.
13, 16, 18

[6] Peter J Burt and Edward H Adelson. The laplacian pyramid as a compact image code. In
Readings in computer vision, pp. 671–679. Elsevier, 1987. 13, 18

[7] Miguel A Carreira-Perpinan and Geoffrey Hinton. On contrastive divergence learning. In
International workshop on artificial intelligence and statistics, pp. 33–40. PMLR, 2005. 1

[8] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018. 16

[9] Xinlei Chen, Zhuang Liu, Saining Xie, and Kaiming He. Deconstructing denoising diffusion
models for self-supervised learning. arXiv preprint arXiv:2401.14404, 2024. 17

[10] Yuetan Chu, Yilan Zhang, Zhongyi Han, Changchun Yang, Longxi Zhou, Gongning Luo, and
Xin Gao. Improving representation of high-frequency components for medical foundation
models. arXiv preprint arXiv:2407.14651, 2024. 6

[11] Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv
preprint arXiv:2307.08698, 2023. 7, 8

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009. 7

[13] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a
laplacian pyramid of adversarial networks. Advances in neural information processing systems,
28, 2015. 13

[14] Weitao Du, He Zhang, Tao Yang, and Yuanqi Du. A flexible diffusion model. In International
Conference on Machine Learning, pp. 8678–8696. PMLR, 2023. 17

[15] Weinan Ee. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 5:1–11, 02 2017. doi: 10.1007/s40304-017-0103-z. 17

[16] Carlos Esteves, Mohammed Suhail, and Ameesh Makadia. Spectral image tokenizer. arXiv
preprint arXiv:2412.09607, 2024. 14

[17] David J. Field. Relations between the statistics of natural images and the response prop-
erties of cortical cells. J. Opt. Soc. Am. A, 4(12):2379–2394, 12 1987. doi: 10.1364/
JOSAA.4.002379. URL https://opg.optica.org/josaa/abstract.cfm?URI=
josaa-4-12-2379. 2

9

https://doi.org/10.1007/978-1-4612-2544-7_2
https://doi.org/10.1007/978-1-4612-2544-7_2
https://api.semanticscholar.org/CorpusID:60630002
https://api.semanticscholar.org/CorpusID:60630002
https://opg.optica.org/josaa/abstract.cfm?URI=josaa-4-12-2379
https://opg.optica.org/josaa/abstract.cfm?URI=josaa-4-12-2379

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a DeLTa Workshop Paper at ICLR 2025

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014. 1, 13, 16

[19] Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Miguel Angel Bautista, and Josh Susskind. f-
dm: A multi-stage diffusion model via progressive signal transformation. arXiv preprint
arXiv:2210.04955, 2022. 13

[20] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pp. 297–304. JMLR Workshop and Conference
Proceedings, 2010. 1

[21] Alfred Haar. Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen, 71(1):
38–53, 1911. 26

[22] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017. 7

[23] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002. 1

[24] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020. 1, 4, 13

[25] Alan Julian Izenman. Introduction to manifold learning. Wiley Interdisciplinary Reviews:
Computational Statistics, 4(5):439–446, 2012. 6

[26] Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang
Song, Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video generative
modeling. arXiv preprint arXiv:2410.05954, 2024. 17

[27] Tero Karras. Progressive growing of gans for improved quality, stability, and variation. arXiv
preprint arXiv:1710.10196, 2017. 7

[28] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models.
Advances in neural information processing systems, 34:21696–21707, 2021. 18

[29] Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
1, 13, 16

[30] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019. 7

[31] Hugo Lavenant and Filippo Santambrogio. The flow map of the fokker–planck equation does
not provide optimal transport. Applied Mathematics Letters, 133:108225, 2022. 16

[32] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on
energy-based learning. Predicting structured data, 1(0), 2006. 1

[33] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive
image generation using residual quantization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11523–11532, 2022. 13

[34] Jiarui Lei, Xiaobo Hu, Yue Wang, and Dong Liu. Pyramidflow: High-resolution defect
contrastive localization using pyramid normalizing flow. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 14143–14152, 2023. 16

[35] Zhengqi Li, Richard Tucker, Noah Snavely, and Aleksander Holynski. Generative image
dynamics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24142–24153, 2024. 16

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a DeLTa Workshop Paper at ICLR 2025

[36] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022. 1, 3, 4, 7, 14

[37] Shengchao Liu, Hongyu Guo, and Jian Tang. Molecular geometry pretraining with se (3)-
invariant denoising distance matching. arXiv preprint arXiv:2206.13602, 2022. 17

[38] Shengchao Liu, Yanjing Li, Zhuoxinran Li, Zhiling Zheng, Chenru Duan, Zhi-Ming Ma, Omar
Yaghi, Animashree Anandkumar, Christian Borgs, Jennifer Chayes, et al. Symmetry-informed
geometric representation for molecules, proteins, and crystalline materials. Advances in neural
information processing systems, 36, 2024. 17

[39] Sifei Liu, Shalini De Mello, and Jan Kautz. Cosae: Learnable fourier series for image restoration.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems. 17

[40] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022. 1, 3, 4

[41] Stephane G Mallat. Multiresolution approximations and wavelet orthonormal bases of l2(r).
Transactions of the American Mathematical Society, 315(1):69–87, 1989. 5

[42] Wael Mattar, Idan Levy, Nir Sharon, and Shai Dekel. Wavelets are all you need for autoregressive
image generation. arXiv preprint arXiv:2406.19997, 2024. 17

[43] Yves Meyer. Ondelettes et opérateurs. I: Ondelettes, 1990. 26

[44] Yves Meyer. Wavelets and operators: volume 1. Number 37. Cambridge university press, 1992.
20

[45] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1–64, 2021. 16

[46] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023. 6, 7, 22

[47] Hao Phung, Quan Dao, and Anh Tran. Wavelet diffusion models are fast and scalable image
generators. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10199–10208, 2023. 7, 14, 17

[48] Alec Radford. Improving language understanding by generative pre-training. 2018. 1

[49] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images
with vq-vae-2. Advances in neural information processing systems, 32, 2019. 13

[50] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10684–10695, 2022. 7, 22

[51] Dohoon Ryu and Jong Chul Ye. Pyramidal denoising diffusion probabilistic models. arXiv
preprint arXiv:2208.01864, 2022. 13

[52] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. IEEE transactions on pattern analysis
and machine intelligence, 45(4):4713–4726, 2022. 13

[53] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019. 1, 13

[54] Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021. 1

[55] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020. 6, 7

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a DeLTa Workshop Paper at ICLR 2025

[56] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive mod-
eling: Scalable image generation via next-scale prediction. arXiv preprint arXiv:2404.02905,
2024. 13, 17, 18

[57] Hoai-Chau Tran, Duy MH Nguyen, Duy M Nguyen, Trung-Tin Nguyen, Ngan Le, Pengtao Xie,
Daniel Sonntag, James Y Zou, Binh T Nguyen, and Mathias Niepert. Accelerating transformers
with spectrum-preserving token merging. arXiv preprint arXiv:2405.16148, 2024. 14

[58] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
In Neural Information Processing Systems (NeurIPS), 2021. 7

[59] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011. 1, 13, 16

[60] Yair Weiss and William T Freeman. What makes a good model of natural images? In 2007
IEEE conference on computer vision and pattern recognition, pp. 1–8. IEEE, 2007. 19

[61] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma
with denoising diffusion gans. arXiv preprint arXiv:2112.07804, 2021. 7

[62] Qinqing Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky TQ Chen.
Guided flows for generative modeling and decision making. arXiv preprint arXiv:2311.13443,
2023. 14

[63] Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion
models in around 5 steps. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7777–7786, 2024. 15, 16

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a DeLTa Workshop Paper at ICLR 2025

A RELATED WORK

There have been multiple research lines on studying generative modeling, especially in terms of
multi-scale modeling. In this work, we would like to summarize them as the following three venues.

A.1 MULTI-SCALE IN PIXEL RESOLUTION, FLOW AND DIFFUSION

Laplacian Pyramid and Laplacian Operator. In mathematics, the Laplacian operator computes
the second derivative of a function, emphasizing regions with significant intensity changes, such as
edges or high-frequency details. Similarly, the Laplacian Pyramid [6] decomposes an image into
multiple scales, extracting the low-frequency components (smooth regions) through downsampling.
The high-frequency details, such as edges and textures, are modeled as the residuals between adjacent
resolution layers. The primary objective of the Laplacian Pyramid is to represent these residuals
across scales in a hierarchical fashion.

LAPGAN (Laplacian Generative Adversarial Networks) [13] adopts the Laplacian pyramid idea
into the generative adversarial network (GAN) framework [18]. By focusing on learning residuals
between successive levels of resolution, it effectively generates high-quality super-resolution images.

SR3 (Super-Resolution via Repeated Refinement) [52] leverages DDPM (Denoising Diffusion
Probabilistic Models) [24] and DSM (Denoising Score Matching) [53, 59] for high-resolution image
generation. Specifically, SR3 enhances low-resolution images to high-resolution by utilizing multiple
cascaded conditional diffusion models. In this framework, the low-resolution images serve as
conditions, and the model’s aim is to predict the corresponding high-resolution images as outputs.

PDDPM (Pyramidal Denoising Diffusion Probabilistic Models) [51] is a follow-up work of SR3,
and it improves the model by only modeling one score network. The key attribute to enable this is
by adding the fractional position of each pixel to the score network, and such fractional position
information can be naturally generalized to different resolutions.

f-DM [19] is developed concurrently with PDDPM and shares the approach of utilizing only one
diffusion model. It distinguishes itself by explicitly applying a sequence of transformations to the
data and emphasizing a resolution-agnostic signal-to-noise ratio for noise scaling within its diffusion
model design.

Edify Image [5] is a state-of-the-art model capable of generating photorealistic, high-resolution
images from textual prompts [5]. It operates as a cascaded pixel-space diffusion model. To enhance its
functionality, Edify Image employs a downsampling process that extracts low-frequency components
and creates three distinct resolution levels, ranging from low to high frequency, with the original image
representing the highest frequency level. Another key innovation of Edify Image is its meticulously
crafted training and sampling strategies at different resolutions, utilizing attenuated noise schedules.

A.2 MULTI-SCALE IN PIXEL RESOLUTION, VAE AND AR

VQ-VAE2 (Vector Quantized VAE 2) [49] enforces a two-layer hierarchical structure, where
the top layer captures global features such as object shapes and geometry, while the bottom layer
focuses on local details like texture. It models data density within the variational autoencoder (VAE)
framework[29] and incorporates an autoregressive (AR) module to enhance the prior for improved
generative performance.

RQ-VAE (Residual-Quantized VAE) [33] integrates recursive quantization into the VAE framework.
It constructs a representation by aggregating information across D layers, where the first layer
provides a code embedding closely aligned with the encoded representation, and each subsequent
layer refines this by reducing the quantization error from the previous layer. By stacking D layers,
the accumulated quantization error is minimized, enabling RQ-VAE to offer a coarse-to-fine-grained
approach to modeling. For modeling, the general pipeline follows the VAE framework, while each
latent code is decomposed into D layers and is predicted in an autoregressive manner.

VAR (Visual AutoRegressive) [56] introduces a novel paradigm for density estimation by decom-
posing images into multiple resolutions across various scales. This approach is inspired by the
hierarchical nature of human perception, where images are interpreted progressively from global

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a DeLTa Workshop Paper at ICLR 2025

structures to finer details. Leveraging this concept, VAR models the entire image in a coarse-to-fine
manner, adhering to the principles of multi-scale hierarchical representation.

A.3 MULTI-SCALE IN FREQUENCY, AR AND DIFFUSION

WaveDiff (Wavelet Diffusion) [47] leverages the discrete wavelet transform to shift the entire
diffusion process into the wavelet spectrum. Its primary objective is to reduce model complexity by
operating in the transformed spectrum space instead of the pixel domain.

PiToMe (Protect Informative Tokens before Merging) [57] is a token merging method designed to
balance efficiency and information retention. PiToMe identifies large clusters of similar tokens as
high-energy regions, making them suitable candidates for merging, while smaller, more unique, and
isolated clusters are treated as low-energy and preserved. By interpreting attention over sequences as
a fully connected graph of tokens, PiToMe leverages spectral graph theory to demonstrate its ability
to preserve critical information.

SIT (Spectral Image Tokenizer) [16] is a parallel work to ours that processes the spectral coefficients
of input patches (image tokens) obtained through a discrete wavelet transform. Motivated by
the spectral properties of natural images, SIT focuses on effectively capturing the high-frequency
components of images. Furthermore, it introduces a scale-wise attention mechanism, referred to as
scale-causal self-attention, which is designed to improve the model’s expressiveness across multiple
scales.

B DISCUSSION

B.1 FROM CONDITIONAL TO UNCONDITIONAL PATH IN K-FLOW

In Section 3, our frequency-localized path is defined at the conditional level (dΨk

dk (ϕ, ϵ)) , and it
is only related to the unconditional vector field (vk(Ψk, θ) in eq. (10)) through the equivalence of
conditional flow matching and unconditional flow matching at the loss level [36]. In this section, we
try to study the splitting property of the unconditional K-amplitude vector field.

By the K-amplitude decomposition, the transformed data probability pdata satisfies the telescoping
property:

pdata = p(k0)p(k1|k0) . . . p(kmax|kmax − 1, . . . , k0), (12)

with k0 and kmax denoting the lowest and highest scaling. Then, according to the definition of our
proposed K-amplitude flow Ψk, the interpolated probability at scaling step t is also localized:

pt(·) = p(k0) · · · pt(·|⌊k⌋, . . . , k0)pϵ(⌊k⌋+ 1) · · · pϵ(kmax|kmax − 1, . . . , k0), (13)

where pϵ denotes the distribution of the initial noise and t ∈ [⌊k⌋, ⌊k⌋+1). Combining Equation (13),
the localization property of the bump function and Lemma 1 of [62], the unconditional vector field
has an explicit form: vt(Ψk) = at · Ψk + bt∇ log pt(Ψk), where at and bt are hyper-parameters
determined by the bump function we choose.

Noise Splitting A key characteristic of flow models is their deterministic nature after the initial
noise sampling. Specifically, once the initial noise is sampled, the flow follows a fixed path to
generate the final data sample. According to Equation (13), during scaling step t: (1) the scaling
components below ⌊k⌋ remain unchanged; (2) the scaling components above ⌊k⌋ remain unchanged;
(3) The distribution of higher scaling components maintains the same characteristics as their initial
noise distribution.

By these observations, we now investigate how segmented initial noise in the K-Flow space influences
the final output of the K-Flow flow. Suppose we discretize scaling parameter k into two parts:
F{Ψk} = {ϕlow(k), ϕhigh(k)}. When flowing along the low-scaling component, the vector field vk
can be re-expressed in a conditional form:

vk(Ψk) = vk(ϕlow(k), c) (14)

where constant c represents the (static) initial noise for the high-scaling part. This noise-conditioned
property in the k-amplitude domain leads us to explore whether fixing the high-scaling noise and

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a DeLTa Workshop Paper at ICLR 2025

Figure 6: On the low-scaling hypothesis. The graph illustrates the relative norm distribution for each scaling
component as defined by the wavelet decomposition in the latent space. It can be observed that the low-scaling
component exhibits a significantly higher norm (energy), nearly twice that of the high-scaling component.

Figure 7: Projection Error Comparison with Different Models. The graph illustrates the PCA projection
errors of two models throughout the entire flow process, with distinct segments marked by dashed lines. The red
and blue lines represent the original flow and the k-Amplitude flow with two amplitude components, respectively.
The projection error is quantified by the reconstruction error for each generation step from the PCA compression,
using the first two principal components. Owing to the scaling-aware nature of our flow, the low-amplitude
portion (the initial part of the curve) resides in a relatively high-dimensional space, resulting in higher projection
errors for the two-dimensional PCA projection.

altering the low-scaling noise allows for unsupervised editing of relative low-scaling semantics in an
image. Indeed, we observed this phenomenon, the qualitative results will be discussed in section 4.4.

From Figure 4a, we observe that a targeted common high-scaling initial noise guides our K-Flow flow
toward generating human faces with similar detail but varying low-level content. See the experiment
section for a more detailed analysis.

B.2 THE EFFECT OF SCALING STEP k FOR IMAGE RECONSTRUCTION

K-Flow’s ability to leverage the low-dimensional structure of data is primarily enabled by its K-
Flow localization property. This enables a strategic path through low-dimensional spaces, which
can be directly compared with the generation path of conventional flow models. In our model,
this path incorporates an explicit frequency hierarchy, which hypothesizes that the low-frequency
components - concentrated in the earlier stages of the model - may share more dimensions in common,
particularly from a semantic perspective, than the high-frequency components positioned later in the
generative process. Conversely, an ordinary flow model may exhibit a more uniform distribution of
dimensionality across the entire generative path.

Motivated by this hypothesis, we conduct a case study using PCA to approximate the dimension of the
generation trajectory {Ψk}kmax

k=k0
. As illustrated in Figure 7, we measure how closely the dimension

of the generation path aligns with a two-dimensional subspace spanned by the first two components
of the model’s PCA decomposition, denoted by {Ψ̃k}kmax

k=k0
. Inspired by [63], the reconstruction ratio

is defined by 1 − ∥Ψk − Ψ̃k∥2/∥Ψk∥2. In other words, a higher value of the reconstruction ratio

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a DeLTa Workshop Paper at ICLR 2025

Figure 8: Comparison of multi-scale modeling: pixel data space and K-Amplitude space.

indicates that the model’s dimension is closer to two. Therefore, the trend of the error curve with
respect to the scaling parameter k reveals a distinct separation in the effective dimension between low-
and high-scaling components. Evidently, the low-scaling segments display more semantic consistency
and thus, occupy a larger dimensional space, whereas the high-scaling segments converge to a more
confined or lower-dimensional structure.

It is important to note that this exploration into the dimensionality of generative paths is practically
meaningful. Previous study [63] has shown that the effectiveness of distilling a generative model with
fewer steps from a pre-trained diffusion model theoretically depends on the model’s dimensionality
at each step, as informed by the high-dimensional Mean Value Theorem. The observations from
Figure 7 provide empirical support for this concept. Specifically, the ability of K-Flow to maintain
a lower-dimensional structure in high-scaling components suggests a promising approach for fast
sampling distillation methods.

B.3 RELATED WORK DISCUSSION

The field of generative modeling has seen significant advancements in recent years, driven by a
variety of frameworks, including adversarial generative networks (GAN) [18], variable autoencoders
(VAE) [29], and normalizing flows [45]. In this work, we focus on continuous normalizing flow
generative models [8], with particular emphasis on the conditional flow matching training scheme,
which originates from the denoising score matching training framework [59].

Both diffusion models and continuous flow matching models aim to lower the complexity of directly
optimizing the log-likelihood of data by introducing an additional stochastic path. However, as proved
in [31], the canonical path for diffusion models and rectified flows is not optimal. This realization
motivates our introduction of frequency decomposition as a key design element in generative models.

By breaking down the formula of our K-Flow vector field with respect to the scaling parameter k, we
can summarize three successful factors as general principles for (frequency) scaling modeling.

• A good K-amplitude decomposition can leverage the problem’s inherent biases towards
certain scaling bands. For generative tasks, it is crucial that all K-Flow bands are effectively
modeled to ensure the generation of high-quality, controllable outputs. In addition, the
computational resources required may vary between different scales, thus necessitating
careful consideration of resource allocation.

• Modeling within each scaling component, which is formulated in our K-Flow-localized
vector fields.

• Modeling bridges along different scalings, which is achieved through our flow ODE and the
(time) K-Flow embedding block for the U-Net or DIT architecture.

This approach to inter- and intra-modeling for K-amplitude is also applicable to scenarios emphasiz-
ing certain frequencies or scalings. For instance, [35] enhanced oscillatory motion control in video
generation by discarding the high-frequency component of the Fourier decomposition. As discussed
in Section 3, the scaling parameter of spatially localized wavelet (multi-resolution) decomposition is
closely linked to image resolution. Notable contributions in this domain include [5] and [34], which

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a DeLTa Workshop Paper at ICLR 2025

introduced a multi-stage resolution for fine-grained editing, and [26], which concentrated on efficient
video generation.

In related research on auto-regressive modeling, [42] presented wavelets as an effective auto-regressive
unit, while [56] focused on the scale as a key element for image auto-regression. A significant example
is [47], which transitioned the latent space from pixel to wavelet space for generative models using
wavelet diffusion. However, their method employed the same conditional noising schedule for
score matching as traditional diffusion models. In contrast to their approach, our proposed K-Flow
integrates wavelet decomposition as a multi-channel module within the neural network architecture
for training diffusion models. Additionally, our work extends the notion of wavelet space to the more
general K-amplitude space.

We also want to highlight another research line that has recently caught the attention is the auto-
regressive over the pixel space for image generation. One classic work is VAR [56]. It introduces
a hierarchical density estimation paradigm that models images in a coarse-to-fine manner across
multiple resolutions and models the data distribution in an auto-regressive manner. In contrast, our
proposed K-Flow integrates the flow paradigm for density estimation and leverages the K-amplitude
space as a stronger inductive bias, as illustrated in Figure 8.

Summary. In summary, K-Flow is a more general framework, with its three key factors potentially
benefiting generation-related tasks like super-resolution and multi-resolution editing. For example,
[39] utilized a learnable Fourier transform to construct a harmonic module in the bottleneck layer of
an autoencoder. We provide a comprehensive list of related works in Appendix A.

B.4 CONNECTING K-FLOW WITH SSL REPRESENTATION AND GENERATION

From the above discussion, we have seen how pretrained vision models leverage the sparsity and
locality of natural data in various K-amplitude domains for perception and generation-based tasks.
In the realm of unsupervised learning, [9, 37, 38] explore whether generative-based representations,
particularly those derived from denoising diffusion models, can achieve parity with contrastive-based
representation learning methods for downstream tasks. A key observation from their findings [9],
which aligns with our approach of employing K-amplitude decomposition (the PCA instance), is
the revelation that the most powerful representations are obtained through denoising within a latent
space, such as the compressed PCA space. Another merit of PCA is that denoising along the PCA
directions can achieve faster convergence for denoising, which is revealed in [14].

To transition from unsupervised representation learning to real data generation, incorporating all
K-amplitude scalings is essential. Rather than compressing or amplifying specific scaling bandwidths,
generative tasks require novel organization or ordering of all frequencies. Besides our flow-based
frequency generation approach, [56] connects different scales (which can be interpreted as the wavelet
K-amplitudes) using residual connections, with an auto-regressive training objective. Residual
connections, as a discretization of ordinary differential equations (ODEs) proposed in [15], suggest
that [56]’s approach can be seen as a special discretization of our K-Flow with a flexible flow matching
training objective.

Table 3: Comparison among PCA, contrastive, and generative SSL.

Basis Learning Reconstruction Learning

PCA SSL Non-parameterized, Determined By Data Parameterized
Contrastive SSL Parameterized N/A
Generative SSL Parameterized Parameterized

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a DeLTa Workshop Paper at ICLR 2025

C METHOD DETAILS

C.1 SIX PROPERTIES OF K-FLOW

(a) K-Flow provides a first-principle way to organize the scaling k. Unlike perception-based
computer vision tasks, which often favor certain scaling (frequency) bands, a K-amplitude based
generative model strives for an optimal organization of all scalings to ensure that the final generated
sample is of high fidelity. By constructing K-amplitude scaling-based vector fields, the integrated
flow naturally incorporates all scaling information, and the conditional flow matching training
objective provides a perfect trade-off of accuracy-efficiency inside localized scalings. We will also
demonstrate how different discretizations of K-Flow with related works, highlighting the connections
and integrations with existing methods in the field.

(b) K-Flow enables multi-scale modeling in the K-amplitude space. Compared to the original data
space, such as the pixel space in images, the K-amplitude space provides a more natural perspective
for defining and analyzing multi-scale information, namely, K-amplitude decomposition empowers
K-Flow for effective multi-scale modeling. By decomposing the feature representation into multiple
scaling components in the K-amplitude space, K-Flow associates each scaling with an amplitude.
Higher values of K-amplitude correspond to higher-frequency information, capturing fine-grained
details, while lower values encode lower-frequency information, representing more coarse-grained
features. Let us take the image for illustration. Images inherently exhibit a hierarchical structure,
with information distributed across various resolution levels. Low-resolution components capture
global shapes and background information, while high-resolution components encode fine details
like textures, often sparse and localized. By projecting these components into the K-amplitude space,
K-Flow captures such hierarchical information effectively and naturally, enabling precise modeling
of the interplay between scales.

(c) K-Flow supports a well-defined scale along with energy. The amplitude is also used to reflect
the energy level at each scale of the data. In physics, it is proportional to the square of the amplitude.
In comparison, for the modeling on the original data space, though we can inject application-specific
inductive bias, such as multiple pixel resolutions for images, they do not possess a natural energy
concept.

(d) K-Flow interprets scaling as time. From elucidating the design space of the traditional flow
matching perspective, K-Flow re-defines the artificial time variable (or the signal-to-noise ratio
variable proposed in [28]) as the ordering index of frequency space. In this context, the artificial time
variable effectively controls the traversal through different levels of a general notion of frequency
decompositions, scaling each frequency component appropriately. This perspective aligns with the
concept of renormalization in physical systems, where behavior across scales is systematically related.

(e) K-Flow supports the fusion of intra-scaling and inter-scaling modeling. K-Flow flows across
scaling as time, and namely, K-Flow naturally merges the intra- and inter-scaling during the flow
process. Thus the key module turns to the smooth interpolant, as will be introduced in Section 3. This
is in comparison with existing works on multi-modal modeling [5, 6, 56], where the special design of
the intra-scaling and inter-scaling is required.

(f) K-Flow supports explicit steerability. The flow process across scales enables K-Flow to control
the information learned at various hierarchical levels. This, in turn, allows finer-grained control of
the generative modeling, facilitating more precise and customizable outputs. By understanding and
leveraging K-Flow’s steerability, its utility can be significantly enhanced across diverse domains,
including Artificial Intelligence-Generated Content (AIGC), AI-driven scientific discovery, and the
safe, responsible development of AI technologies.

C.2 METHOD DETAILS

C.2.1 REMARK ON K-AMPLITUDE DECOMPOSITION

Fourier transform We have shown how to build the K-Amplitude scaling through the Fourier
space in Section 2.2. In the discrete setting, the Fourier transform is realized by basis functions of
the form W kn

N = e−j 2π
N kn, where N is the length of the sequential data. An effective K-amplitude

decomposition exploits this structure by aligning with the inherent hierarchical structure of the data

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a DeLTa Workshop Paper at ICLR 2025

manifold. For example, if most of the energy or amplitudes are concentrated in the low-scaling range,
the generative capability of the flow can be enhanced by allocating more steps or resources to these
low frequencies. Conversely, fewer steps can be allocated to high frequencies that carry minimal mass
or information. For the Fourier transform, this tendency is evident in the analysis of natural images,
which often exhibit the celebrated 1/f spectrum phenomenon [60]. This phenomenon suggests that
energy diminishes with increasing scaling, meaning that low-scaling components hold the majority
of the signal’s information content.

PCA transform as a K-amplitude decomposition From the K-amplitude perspective, PCA is an
eigen-decomposition obtained by the data covariance matrix. The covariance matrix is given by:

C =
1

n
X⊤

centeredXcentered,

where Xcentered = X − X is the centered data matrix. In this context, the principal components
reveal the relative importance of each transformed direction. To translate PCA into a K-amplitude
decomposition, we define the k scaling parameter as the relative order of the principal components.
For implementation, we utilize the eigenvalue decomposition of C for PCA, and the eigenvalues in
their descending ordering define the k scaling parameter.

C.2.2 IMPLEMENTATION DETAILS OF K-FLOW VECTOR FIELD

Scaling Discretization In the main text, we assume, by default, that the scaling parameter k takes
integer values: k ∈ {0, 1, 2, . . . , kmax}. Thus, the differentiable vector field vk for continuous k is
defined by interpolating between ⌊k⌋ and ⌊k⌋+ 1.

We now extend this concept to a more general setting where k may take a limited set of integer values
within the range from 0 to kmax. Suppose km and kn represent two specific integer values for k. We
demonstrate how to extend k continuously within the connected interval [km, kn). Let t := k − km.
The differentiable version of ϕk is then expressed as:

Ψkm+t =F−1

(
I√k2

x+k2
y+k2

z<km
· F{ϕ}(kx, ky, kz) +

(
1− I√k2

x+k2
y+k2

z≥kn

)
· ϵ

+ I√k2
x+k2

y+k2
z∈[km,kn)

· (µ(t) · F{ϕ}(kx, ky, kz) + (1− µ(t)) · ϵ)

)
, (15)

where µ(t) is a bump function fulfilling µ(0) = µ(kn − km) = 1 and µ′(0) = −µ′(kn − km).

Replacing the Fourier transform with the general K-amplitude decomposition, the K-amplitude flow
is expressed in its general form as follows:

Ψkm+t =F−1

(
Ik<km

· F{ϕ}(k) +
(
1− I√k≥kn

)
· ϵ

+ Ik∈[km,kn) · (µ(t) · F({ϕ}k) + (1− µ(t)) · ϵ)

)
, (16)

where F{ϕ}(k) is defined in the main text.

Experimental Implementation In this paper’s experiments, particularly in the Fourier and PCA ver-
sions of the K-Flow flow, we restrict the discrete values of k to {0, kmax

2 , kmax}, with kmax determined
by resolution. We then extend k continuously using Equation 15.

Bump Function We propose two types of bump functions: 1. Hard bump; 2. Soft bump. The hard
bump function µ : [0, 1]→ R+ satisfies the specific endpoint properties:

µ(0) = µ(1) = 1 and µ′(0) = −µ′(1). (17)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a DeLTa Workshop Paper at ICLR 2025

Inspired by spline functions, such bump functions can be constructed using polynomials. For example,
a quartic form used in our experiments is given by:

µ(t) = 1− 3t2 + 2t3. (18)

For more examples, readers can explore modifications of the connection functions used in Meyer
wavelets [44].

In this paper, we utilize hard bump functions for constructing K-Flow flows with scaling discretization
exceeding one components.

Soft Localization with Soft Bump Function Consider that the scaling parameter is discretized to
take values in an increasing sequence {ki}ni=0. Consequently, the continuous k lies in the interval
k ∈ [k0, kn]. Define

ψi := I√k2
x+k2

y+k2
z∈[ki,ki+1)

.

These ψi form a partition of unity for the K-Amplitude basis. The derivative of the soft bump function
µ′
i is defined for each scaling band ψi, expressed as:

µ′
i(k; ai, b) =

{
c ·
(
1−

(
k−ai

b

)2)n
, if |k − ai| < b,

0, if |k − ai| ≥ b,
(19)

where ai =
ki+ki+1

2 and c is the normalization constant ensuring that the integral of the function
over its compact support is 1. Note that hyper-parameter b ≤ kn − k0 dictates the width or support
region of the bump, while the degree n measures the sharpness of the bump. We retain b and n as
hyperparameters. The bump function µi(k) is then obtained by integrating µ′

i(k), which is also a
polynomial function.

It is evident that µi(k) satisfies:

µi(k0) = 0 and µi(kn) = 1.

Finally, conditioned on a sampled noise ϵ, the modified soft K-Flow flow at time t ∈ [0, kn − k0] is
expressed as:

Ψk0+t = F−1

(∑
i

ψi(kx, ky, kz) · µi(k0 + t) · F{ϕ}(kx, ky, kz) +
∑
i

ψi(kx, ky, kz) · (1− µi(k0 + t)) · ϵ

)
.

(20)

Through the application of this formula and a family of soft bump functions {µi}, we can also
implement algorithm 1. In comparison to the hard bump functions, a K-Flow constructed with soft
bump functions assigns varying weights to each scale according to the scaling step k. Unlike hard
bump functions which strictly set other scales to zero for each stage of k, soft bump functions provide
a more gradual transition, allowing for multiple frequencies to flow concurrently, and the relative
weights are determined by the current scaling parameter k.

Comments on Haar and Meyer wavelet K-amplitude One type of wavelet that offers both
frequency and spatial localization is the Meyer wavelet. The Meyer wavelet is originally defined in
the Fourier frequency domain, making it ideal for smooth frequency transitions.

The 1D Meyer wavelet ψ(t) and its scaling function ϕ(t) are defined via their Fourier transforms,
ψ̂(ω) and ϕ̂(ω), respectively. The Meyer wavelet is constructed to ensure that the wavelet transform
will partition the frequency domain into octave bands.

The Fourier transform of the scaling function ϕ̂(ω) is defined as:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a DeLTa Workshop Paper at ICLR 2025

ϕ̂(ω) =


1 if |ω| ≤ 2π

3 ,

cos
(

π
2 ν
(

3|ω|
2π − 1

))
if 2π

3 < |ω| ≤ 4π
3 ,

0 if |ω| > 4π
3 ,

(21)

where ν(t) is a smooth function defined as:

ν(t) =


0 if t ≤ 0,

t if 0 < t < 1,

1 if t ≥ 1.

(22)

The Fourier transform of the Meyer wavelet ψ̂(ω) is then defined as:

ψ̂(ω) =

{
sin
(

π
2 ν
(

3|ω|
2π − 1

))
if 2π

3 < |ω| ≤ 4π
3 ,

0 otherwise.
(23)

In other words, Meyer transformation can be seen as the Fourier transform with a spatial cutoff
window. Note that the scaling function and the wavelet function play different roles, where the
low-frequency content of data are obtained by convolving the signal with the scaling function.

In the ablation section, we will employ a specific discretization of the Meyer wavelet to generate
our data. Additionally, we will explore the Haar wavelet method, which is implemented solely
through spatial convolution kernels and scaling operations. The Haar wavelet, being the simplest
form of wavelet, is particularly interesting because it uses piecewise constant functions to capture
local features at varying scales, providing a contrast to the smoother Meyer wavelet.

C.3 DWT TRANSFORM AS A K-FLOW DECOMPOSITION

The Discrete Wavelet Transform (DWT) [2] is utilized to decompose a signal at multiple scales,
capturing both time and frequency characteristics. It involves scaling and translating wavelets.

The DWT decomposes the input signal into approximation and detail coefficients:

- Given a discrete signal x[n] (expressed by a finite-dimensional vector), use the scaling function ϕ(t)
and wavelet function ψ(t) to generate coefficients:

ck[j] =
∑
n

x[n] · ϕk,j [n]

dk[j] =
∑
n

x[n] · ψk,j [n]

Here, ck[j] are the approximation coefficients at scale k, and dk[j] are the detail coefficients at scale
k. Comparing with our definition of K-Flow decomposition, k is just a discrete scaling parameter.

The inverse transform then reconstructs the original signal from the coefficients:

x[n] =
∑
k

cj [k]ϕj,k[n] +
∑
k

dj [k]ψj,k[n]

Recursive Relationship between different Scales (k) Different levels of decomposition are
recursively related:

1. k = 1: A single level decomposition results in approximation coefficients c1 and detail
coefficients d1;

2. k = 2: A two-level decomposition first produces coefficients c1 and d1. Then, the ap-
proximation coefficients c1 are further decomposed into a second level of approximation
coefficients c2 and detail coefficients d2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a DeLTa Workshop Paper at ICLR 2025

For k = 2, the decomposition looks like: x[n]→ (c2, d2, d1), where d1 represents the high-frequency
components (level 1 detail coefficients) and c1 is the low-frequency component (level 1 approximation
coefficients). Further decomposing c1 yields c2 (level 2 approximation coefficients) and d2 (level
2 detail coefficients). This recursive relationship illustrates why we can effectively take a finite
maximum scaling kmax and still own an inverse transform.

Experiment implementation In this paper’s experiments, especially the Wavelet version of K-Flow
flow, we take the kmax to be one or two. One means decomposing the data into two scales, and two
means decomposing the data into three scales.

C.4 IMPLEMENTATION DETAILS

Model design Despite this model-agnostic nature, the unique K-amplitdue localization property of
Equation (9) offers an opportunity to design more efficient models. For instance, consider points that
lie outside the support of function I√k2

x+k2
y+k2

z∈[⌊k⌋,⌊k⌋+1). In these regions, their derivative remains
zero, indicating that they do not contribute to the optimization process for the corresponding scaling
band. This selective activation allows us to focus computational efforts solely on the values within
the support of the indicator function, I√k2

x+k2
y+k2

z∈[⌊k⌋,⌊k⌋+1). By doing so, the values outside this
region can be treated as static conditions. , providing a fixed context.

Training hyper-parameters In our experiments, we use the pretrained VAE from Stable Diffusion
[50]. The VAE encoder has a downsampling factor of 8 given an RGB pixel-based image x ∈
Rh×w×3, z = E(x) has shape h

8 ×
w
8 × 4. All experiments are operated in the fixed latent space.

In Table 4, we provide training hyperparameters for the image generation tasks on the two datasets.
For implementing training algorithm Algorithm 1, the bump function is provided in eq. (18). For the
classifier-free sampling on the conditional generation task, the cfg-scale is set to be 1.5.

Table 4: Hyper-parameters of DiT network.

CelebA 256 IMNET
Model DiT-L/2 [46] DiT-L/2 [46]
lr 2e-4 1e-4
AdamW optimizer (β1 & β2) 0.9, 0.999 0.9, 0.999
Batch size 32 240
of epochs 500 900
of GPUs 2 16

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a DeLTa Workshop Paper at ICLR 2025

D ALGORITHMS

In this section, we list three key algorithms.

Algorithm 1 Training of K-Flow.

Require: scaling parameter k with maximum kmax, K-Flow transform F , inverse transform F−1,
noise distribution p, target distribution q
Normalize k to be in [0, 1]: k ← k/kmax

Initialize parameters θ of vk
while not converged do

sample scaling k ∼ U(0, 1)
sample training example ϕ ∼ q, sample noise ϵ ∼ p
Calculate current flow position Ψk according to K-Flow transform F , F−1 and Equation (8)
Calculate the conditional vector field Ψ̇k according to F , F−1 and Equation (9)
Calculate the objective ℓ(θ) = ∥vk(Ψk; θ)− Ψ̇k∥2g , following Equation (10)
θ = optimizer_step(ℓ(θ))

end while

Algorithm 2 Scaling-Controllable Generation of K-Flow.

Require: Scaling parameter k, K-amplitude transform F , inverse transform F−1, noise distribution
p in the K-amplitude space, target distribution q
Initialize pre-trained vk(θ)
Sample one high-scaling noise ϵhigh ∼ p, sample two independent low-scaling noise ϵlow ∼ p,
ϵ̃low ∼ p
Ψ0 = F−1{ϵlow, ϵhigh}
Ψ̃0 = F−1{ϵ̃low, ϵhigh}
for k ∈ [0, 1] do
Ψk ← ODEstep(vk(·, θ),Ψ0)

Ψ̃k ← ODEstep(vk(·, θ), Ψ̃0)
end for

return Ψ1, Ψ̃1

Algorithm 3 Class-conditional Generation of K-Flow with dropping.

Require: Pre-trained vk(θ), conditioning class c, dropping time τ , noise distribution p, guidance
parameter ω

1: Ψ0 ∼ p
2: for k ∈ [0, τ] do
3: ṽk(·)← (1− ω)vθk(·, θ) + ωuk(·, c, θ) {guided velocity}
4: Ψτ ← ODEstep(ṽk(·),Ψ0)
5: end for
6: for k ∈ [τ, 1] do
7: Ψ1 ← ODEstep(vk(·, θ),Ψτ)
8: end for
9:

10: return Ψ1

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a DeLTa Workshop Paper at ICLR 2025

E MORE RESULTS

E.1 MORE RESULTS ON UNCONDITIONAL GENERATION

We provide more results on the class-conditional generation in Figure 9.

Figure 9: Non-curated samples of our reversing scaling variant on ImageNet (cfg = 1.5).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a DeLTa Workshop Paper at ICLR 2025

E.2 ABLATION STUDIES ON CONTROLLABLE CLASS-CONDITIONAL GENERATION

In Section 4, we provide brief results on the controllable class-conditional generation over ImageNet.
Here in Figure 10, we would like to give a more qualitative comparison between our model K-Flow
and LFM.

Figure 10: Results of controllable class-conditional generation, with hyperparameter cfg=1.5.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a DeLTa Workshop Paper at ICLR 2025

Figure 11: Classifier-free guidance sampling of our Fourier-based K-Flow with a hyperparameter
setting of cfg = 3. In the right columns, the class condition is omitted for the last 50% of the
scaling steps during inference, using the same initial noise. It can be observed that as the cfg value
increases and the duration of omitting the class condition decreases, the generated results appear
nearly identical.

Figure 12: Classifier-free guidance sampling of our wavelet-based K-Flow with a hyperparameter
setting of cfg = 2. In the right columns, the class condition is drooped for the last 70% of the scaling
steps during inference, using the same initial noise. It can be observed that after dropping, K-Flow
still preserves the high-scaling contents.

E.3 ABLATION STUDY ON WAVELET BASE

From Table 5, we tested two additional wavelet base, the discrete Haar basis [21] and the discrete
Myer basis [43] as a supplement of the Daubechies wavelet (db6) used in the main text. All three
wavelets demonstrated comparable performance in terms of both the FID and Recall metrics.

E.4 ABLATION STUDY ON SCALING PARTITIONS

Although the quality of face generation appears similar to the naked eye, the model with three
K-amplitude bands (the last row of Table 5) performed worse in terms of FID and Recall metrics. We
provide the generated samples for qualitative evaluation in Figure 13. Reversing the K-amplitude
scaling In Table 6, we also tested a counterintuitive scaling order: from high to low. This means
generating high-frequency details first and then filling in the low-frequency components during the
generation process. We find that the model can still produce images normally (Figure 9), with a better
diversity (Recall) but lower quality (FID) compared to the low-to-high scaling approach.

E.5 PIPELINE OF SCALING-CONTROLLABLE GENERATION

We first demonstrate the pipeline of scaling-controllable generation in Figure 14. In contrast to Fig-
ure 3b, here K-Flow flows from high-scaling to low-scaling, thus we can keep the noise corresponding
to the low-scaling fixed while changing the high-scaling part.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a DeLTa Workshop Paper at ICLR 2025

Table 5: CelebA-HQ 256

Model FID↓ Recall↑
CelebA-HQ 256

K-Flow, Meyer-DiT L/2 5.01 0.47
K-Flow, Haar-DiT L/2 5.01 0.46
K-Flow, Db-DiT L/2 (three scales) 5.77 0.42

Table 6: Conditional ImageNet (256)

Model FID↓ KSR↓ Recall↑
K-Flow, Wave (reverse) 23.06 - 0.58
+ cfg=1.5 5.1 - 0.46
K-Flow, Wave-DiT L/2 (Ours) 17.8 - 0.56
+ cfg=1.5 4.49 - 0.44
LFM (DiT L/2) 14.0 - 0.56
+ cfg=1.5 2.78 - 0.45

Figure 13: Daubechies wavelet K-amplitude with more components trained on CelebA-256

Remarks on the steerable experiment. Although the overall results are generally optimistic, some
unexpected changes have been observed in the high-scaling parts. This may be attributed to two
factors:

1. The compressed latent space may mix high and low content present in the original pixel
space.

2. The loss Equation (10) may not be perfectly optimized, meaning that K-Flow localized
vector field might not be perfectly confined to the low-scaling part. The second factor might
be mitigated by training on larger datasets. Furthermore, by training a reversed K-Flow
flow (from high to low), we observe that fixing the low-scaling noise enables unsupervised
editing of detailed high-scaling content.

In Figure 4b, we’ve tested the wavelet-based K-Flow and observed similar results with the Fourier-
based K-Flow. However, for PCA, we couldn’t identify obvious semantic edits that are interpretable
to human eyes (see Figure 15). This might be because PCA scaling doesn’t align well with multi-
resolution inductive biases.

This insight further supports our model’s capacity to decompose the generative process into distinct
frequency bands, where specific frequency bands can be independently controlled. This separation
aids in achieving more detailed and deliberate modifications to generated data, adding a layer of
precision and flexibility to the generative framework.

Figure 14: Pipeline of scaling-controllable generation (high scaling).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a DeLTa Workshop Paper at ICLR 2025

Figure 15: PCA editing by Algorithm 2.

E.6 CLASS-CONDITIONAL FID

We propose using the class-aware FID metric, defined as follows:

FIDclass-conditional = Ec∼p(c) [FID(c)] (24)

where for each class c, the FID is calculated by:

FID(c) := FID(Xc
r , X

c
g) = ∥µc

r − µc
g∥2 + Tr(Σc

r +Σc
g − 2(Σc

rΣ
c
g)

1/2). (25)

Here, Xc
r and Xc

g denote the real and generated data subsets for class c, respectively. Based on
FID(c), the Class-Dropping-Ratio (CDR) is defined by

CDR := Ec∼p(c)

[
FIDbef(c)

FIDaft(c)

]
,

where FIDbef denotes the FID calculated for the flow model carried with the class condition for
the whole process, and FIDaft denotes the FID calculated for the flow model carried with the class
condition for only a subprocess (we keep the initial 30% of the inference time for the experiment). In
practice, instead of computing the expectation over the entire class distribution p(c), we randomly
select 5 classes out of the total 1000 classes for evaluation.

28

