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Abstract

Continual learning (CL) refers to the ability to continually learn and exploit new
knowledge while retaining experiences accumulated from past. Though numer-
ous CL methods have been proposed in recent years, it is not straightforward to
deployed them directly to online or sequential decision making problems due to
the computational burden and the lack of uncertainty quantification. In this paper,
we focus on Instance-incremental classification problems with concept shift, and
propose a online/sequential decision making model based on a novel scalable
Bayesian continual learning framework that provides i) statistically principled and
computationally efficient Bayesian knowledge updating scheme and ii) scalable
and exact posterior inference procedure based on a Mixture of Experts model. In
addition, as an exemplar-free method, our method does not require storing or mod-
elling any previously seen instances, making it appealing to e.g. online decision
making problems in biomedical applications where data privacy is of concern.

1 Introduction

Continual learning (CL) enables an intelligent system to develop and refine itself adaptively in
accordance with real-world dynamics by incrementally accumulating and exploiting knowledge
gained from past experience without the need to train any new model from scratch [Hassabis et al.,
2017]. The main challenge CL has to tackle is known as catastrophic forgetting, which refers to
previously learned knowledge being drastically interfered by new information [McClelland et al.,
1995, McCloskey and Cohen, 1989]. In order to deliver accurate and trustworthy predictions, a
CL model in practice should, on one hand, be able to integrate new knowledge and update existing
knowledge efficiently based on the stream of new inputs from dynamic data distributions (learning
plasticity) and, on the other hand, maximally retain relevant information from the past and prevent
catastrophic forgetting (memory stability). The competition between these two conflicting objectives
is known as the stability-plasticity dilemma, which has been widely studied from both biological and
computational perspectives [Ditzler et al., 2015, Parisi et al., 2019]. See also Wang et al. [2024] for a
comprehensive review. The adaptive and sequential nature of CL makes it appealing for online and
sequential decision making problems, where the decision boundary may vary temporally or spatially,
and one needs to accurately identify and efficiently adapt to such changes. In this paper, we propose
a sequential decision making model based on a novel scalable Bayesian CL framework.

Following the notation in Wang et al. [2024], we denote Dt,b = {Xt,b,Yt,b} the bth batch of samples
of a task t, where t, b ∈ N are the task and batch index respectively, Xt,b is the feature data and Yt,b

is the data labels. Here a task refers to a distinct learning problem. In this paper, we focus on the
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Instance-incremental classification problem under a concept shift [Kurle et al., 2019] scenario: we
assume i) training samples are from a single task t = 1 and come in batches, ii) data labels Yb are
categorical and iii) the distribution of features pt,b(Xt,b) remain constant over all batches b while
the conditional pt,b(Yt,b|Xt,b) could vary with b due to underlying change points. This scenario is
common in practice: For example, in the context of biomedical application, the health risks of a
group of individuals with reasonably stable physical characteristics such as height or weight are still
likely to vary due to external factors such as weather change or pandemic outbreak. The goal of the
proposed CL-based sequential decision making model is to estimate this temporally varying decision
boundary without retaining previously seen data or training a new model from scratch.

Existing state-of-the-art CL approaches such as Chaudhry et al. [2019], Kumari et al. [2022] and
Wu et al. [2018] are computationally intensive, and require either estimating a full generative model
of the input data or storing past examples as part of their memory states, which are infeasible in
many applications due to privacy or storage concerns. Exemplar-free CL [He and Zhu, 2022] and
regularization-based methods such as Kirkpatrick et al. [2017] and Li and Hoiem [2017] avoid
the need of storing or modelling input data, but they are also computational costly and lack a
statistically principled updating scheme or uncerntainty quantification. These undesirable traits
make them unsuitable for problems such as online or sequential decision making. To address these
issues, we propose a sequential decision making model based on a conceptually simple and scalable
Bayesian continual learning framework that combines statistically principled modelling, and flexible
machine learning methods. Our proposed approach utilizes scalable online exact Bayesian update
and ensembles learning. The exact Bayesian updating framework ensures resilience to catastrophic
forgetting, improves robustness of the model, and gives predictions with easy-to-interpret uncertainty
quantification, which is crucial in decision making process. On the other hand, the ensemble
framework provides extra flexibility to cope with non-stationarity: by aggregating individual base
models that are aware of the potential distributional difference in training samples, the model can
adapt to it more efficiently by choosing the best combination of past experiences using both evidence
from data and user’s domain knowledge.

2 Method

Our proposed framework consists of two components: a fixed pre-trained feature-extractor and an
ensemble of base models. We start by introducing the base model.

2.1 Base Gaussian process classifier

Each base model in our proposed framework is an online Gaussian process classifier. To achieve
exact and computationally efficient prediction, we use the Dirichlet-based GP classification [Milios
et al., 2018], a fast and accurate GP-based model that interprets categorical labels as samples from
a Dirichlet distribution, and combine it with WISKI-GP [Stanton et al., 2021], a scalable online
Gaussian process model based on structured kernel interpolation [Wilson and Nickisch, 2015], to
ensure that the base model can be updated tractably and efficiently. This modelling choice ensures
both efficient and exact posterior inference, and scalable sequential update without storing or reusing
any previous samples: Information extracted from past data is represented by and updated through a
interpolating kernel [Wilson and Nickisch, 2015] whose size only depends on the number of inducing
points. Let c be the Dirichlet distribution hyperparameter, ν be the WISKI-GP kernel hyperparameter,
pc,ν(·|Xnew,Xprev,Yprev) be the predictive distribution of label associated with a new data point
Xnew conditioned on historical observations {Xprev,Yprev}. Let pc,ν(Xprev,Yprev) be the marginal
likelihood of {Xprev,Yprev}. In this work, we follow the suggestion in Milios et al. [2018], set the
Dirichlet hyperparameter c = 0.1.

2.2 Feature extractor

Similar to Petit et al. [2023], we incorporate a feature extractor into our learning framework. We train
a feature extractor (e.g. parameteric UMAP [Sainburg et al., 2021] or VAE [Kingma and Welling,
2013]) based on a collection of samples {Xinit,Yinit} prior to the continual learning process. This
{Xinit,Yinit} can either be a historical dataset or simply the first batch {X1,Y1}. Once it has been
trained, the feature extractor is fixed throughout the learning process as in Prabhu et al. [2023], and
the inference and update steps are based on the embedded features generated by the feature extractor.
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Figure 1: (a): Graphical illustration of the prediction and update scheme for a base learner. (b):
A schematic illustration of the ensemble of three base models given three batches using a binary
classification example.

2.3 Ensemble learning for Instance-incremental update

Here we discuss the ensemble learning procedure. We omit the task index subscript t for brevity.
Suppose the feature extractor Pθ parameterized by θ and the WISKI-GP hyperparameter ν have
been chosen, and we denote Zθ,1:b the transformed feature obtained by applying Pθ to X1:b, and
Zθ,new the transformed feature of a generic test point Xnew. Under a static setup where both pb(Xb)
and pb(Yb|Xb) remain constant, updating the posterior predictor pc,ν(·|Zθ,new,Zθ,1:b,Y1:b) w.r.t. b
sequentially using Bayes rule is straightforward and computationally efficient thanks to the caching
strategy given by Stanton et al. [2021]. However, under a non-stationary setup, the standard Bayesian
updating scheme may not be flexible enough to adapt to the potential change points, as Bayes rule
implies that all historical samples have same contribution to the predictor.

We propose an ensemble learning framework to address this issue. Whenever a new batch b ≥ 2
arrives, we first initialise a new base predictor pc,νb

(·|Zθ,new,Zθ,b,Yb) based solely on the bth
batch where νb is the associated WISKI-GP hyperparameter, and then update the b − 1 previous
base predictors pc,νb′ (·|Zθ,new,Zθ,b′:b,Yb′:b), b′ = 1, ..., b− 1 using Bayes rule. Finally the b base
predictors are combined to give the ensemble predictor at step b:

pens,b(·|Zθ,new) =

b∑
b′=1

Wb′pc,νb′ (·|Zθ,new,Zθ,b′:b,Yb′:b) (1)

where the weights Wb′ ∝ pc,νb′ (Zθ,b,Yb|Zθ,b′:b−1,Yb′:b−1) for b′ = 1, ..., b − 1, Wb ∝
pc,νb

(Zθ,b,Yb) and
∑b

b′=1 Wb′ = 1. The marginal likelihoods pc,νb′ (Zθ,b,Yb|Zθ,b′:b−1,Yb′:b−1)
can also be computed efficiently using the caching procedure given by Stanton et al. [2021]. Under
the assumption that test samples and the most recently seen data Dt follow the same distribution,
this weighting strategy allows the model to make predictions on test samples by utilising previous
knowledge in an automatic and adaptive fashion: when Dt aligns well with the previous knowledge,
the ensemble would favour base models that contain more historical experience as those models
provide more informative (i.e. concentrated) priors that are inline with the likelihood of Dt. On
the other hand, when there is a prior-data conflict between the historical experience and the newly
observed data Dt due to e.g. change points, the ensemble would down weight the contribution from
historical experience, and make predictions primarily based on the more recently observed data
batches. See also Fig 1 for a schematic illustration. Thanks to the grid-interpolating kernel used
in WISKI-GP, each base model in the ensemble is essentially characterized by a fix-sized M ×M
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Figure 2: Left: Training data in batch 0, 10, 20 and 30. Right: One-batch-ahead prediction accuracy
through out the learning process. Results are averaged over 10 independent runs. Shaded region
corresponds to the 2σ error band of the averaged accuracy. Grey vertical lines indicate change points.

kernel matrix where M is the number of inducing points. As a result, even though the ensemble
needs to store an increasing number of models as new batches come in, it is manageable in most of
the scenarios.

3 Numerical examples

We demonstrate our method using a modified version of the rotating-boundary example in Kurle
et al. [2019]: Let T = 40, B = 200 be the number of batches and the sample size of each batch.
Let data Dt = {Xt,Yt} for t = 1, ..., T where Xt = {Xt,i}Bi=1, Xt,i ∼ Uniform([−1, 1]2) and
Yt = {Yt,i}Bi=1, Yt,i ∼ Bernoulli(σ(wT

t Xt,i)) for i = 1, ..., B. Here σ(·) is the sigmoid function
and wt = [10 sin(⌊t/10⌋π/4), 10 cos(⌊t/10⌋π/4)] is a time-dependent parameter that rotates the
decision boundary clockwise by π/4 clockwise every 10 batches, altering the conditional distribution
of labels given the feature vector (Fig 2). Since in this example the feature vectors are low-dimensional,
we use the raw features directly.

We compare the prediction accuracy of our proposed ensemble method with 1) a single oracle GP
that has access to all previously seen data and gives prediction based on the full history and 2) a
single oracle GP that has access to at most 5 most recently observed batches (i.e. a memory window
of length 5) and gives prediction conditioned on the observed batches within the memory window.
We stress that unlike the oracle GPs, our ensemble does not require storing or reusing any previous
data. We compare the one-batch-ahead prediction accuracy given by different models and report the
results in Fig 2. We find that our proposed method is able adapt to change points faster than both the
single and windowed oracle GPs without accessing any previously seen data, indicating the efficacy
of our proposed approach.

4 Conclusion

We propose an online/sequential decision making model based on a scalable and conceptually
simple Bayesian continual learning framework under the concept drift setup. Our method combines
scalable online exact Bayesian update and ensembles learning. Comparing with existing CL methods,
our approach is computationally efficient and statistically more principled thanks to the Bayesian
framework, and does not require storing or reusing previously seen samples, making it appealing in
applications where data privacy is of concern. In this work, we only consider the scenario where the
conditional distribution of label changes over batches (temporally varying decision boundary). We
also plan to extend our approach to the scenario where both the conditional distribution of labels and
the feature distribution change over batches using techniques such as indirect discriminant alignment
[Liu et al., 2020].
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bayesian neural networks for non-stationary data. In International Conference on Learning
Representations, 2019.

Z. Li and D. Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935–2947, 2017.

Q. Liu, O. Majumder, A. Achille, A. Ravichandran, R. Bhotika, and S. Soatto. Incremental few-
shot meta-learning via indirect discriminant alignment. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16, pages
685–701. Springer, 2020.

J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly. Why there are complementary learning sys-
tems in the hippocampus and neocortex: insights from the successes and failures of connectionist
models of learning and memory. Psychological review, 102(3):419, 1995.

M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pages 109–165. Elsevier,
1989.

D. Milios, R. Camoriano, P. Michiardi, L. Rosasco, and M. Filippone. Dirichlet-based gaussian
processes for large-scale calibrated classification. Advances in Neural Information Processing
Systems, 31, 2018.

G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual lifelong learning with neural
networks: A review. Neural networks, 113:54–71, 2019.

G. Petit, A. Popescu, H. Schindler, D. Picard, and B. Delezoide. Fetril: Feature translation for
exemplar-free class-incremental learning. In Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pages 3911–3920, 2023.

A. Prabhu, Z. Cai, P. Dokania, P. Torr, V. Koltun, and O. Sener. Online continual learning without the
storage constraint. arXiv preprint arXiv:2305.09253, 2023.

T. Sainburg, L. McInnes, and T. Q. Gentner. Parametric umap embeddings for representation and
semisupervised learning. Neural Computation, 33(11):2881–2907, 2021.

S. Stanton, W. Maddox, I. Delbridge, and A. G. Wilson. Kernel interpolation for scalable online
gaussian processes. In International Conference on Artificial Intelligence and Statistics, pages
3133–3141. PMLR, 2021.

5



L. Wang, X. Zhang, H. Su, and J. Zhu. A comprehensive survey of continual learning: theory, method
and application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

A. Wilson and H. Nickisch. Kernel interpolation for scalable structured gaussian processes (kiss-gp).
In International conference on machine learning, pages 1775–1784. PMLR, 2015.

C. Wu, L. Herranz, X. Liu, J. Van De Weijer, B. Raducanu, et al. Memory replay gans: Learning to
generate new categories without forgetting. Advances in neural information processing systems,
31, 2018.

6


	Introduction
	Method
	Base Gaussian process classifier
	Feature extractor
	Ensemble learning for Instance-incremental update

	Numerical examples
	Conclusion

