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ABSTRACT

Self-training has gained attraction because of its simplicity and versatility, yet it
is vulnerable to noisy pseudo-labels. Several studies have proposed successful
approaches to tackle this issue, but they have diminished the advantages of self-
training because they require specific modifications in self-training algorithms or
model architectures. Furthermore, most of them are incompatible with gradient
boosting decision trees, which dominate the tabular domain. To address this,
we revisit the cluster assumption, which states that data samples that are close
to each other tend to belong to the same class. Inspired by the assumption, we
propose Cluster-Aware Self-Training (CAST) for tabular data. CAST is a simple
and universally adaptable approach for enhancing existing self-training algorithms
without significant modifications. Concretely, our method regularizes the confi-
dence of the classifier, which represents the value of the pseudo-label, forcing the
pseudo-labels in low-density regions to have lower confidence by leveraging prior
knowledge for each class within the training data. Extensive empirical evalua-
tions on up to 21 real-world datasets confirm not only the superior performance of
CAST but also its robustness in various setups in self-training contexts.

1 INTRODUCTION

Self-training is a simple and versatile semi-supervised learning method as it is easily adaptable
for universal model architectures or training algorithms. It is an iterative algorithm that trains a
classifier using a pseudo-labeling procedure, which assigns pseudo-labels to unlabeled data to use
as labeled data to minimize entropy in each iteration. Contemporary self-training methods consider
the confidence, often referred to as prediction probabilities of the classifier, as the score and generate
a pseudo-label if the confidence score is higher than or equal to a certain threshold (Xie et al., 2020b;
Pham et al., 2021). Therefore, the confidence, which represents the value of the pseudo-label, is a
key component of self-training. However, it may not consistently serve as a reliable metric in real-
world scenarios for various reasons such as biased classifiers or overconfidence in neural networks
(Guo et al., 2017). These erroneous confidence scores can lead to the generation of noisy pseudo-
labels during the self-training iterations, which may introduce confirmation bias that undermines the
final self-training performance (Arazo et al., 2020). Given these potential pitfalls, relying solely on
the confidence may be a precarious choice (Zou et al., 2019; Rizve et al., 2021; Xu et al., 2023).

Various studies have proposed solutions to counteract the noise in pseudo-labels induced by erro-
neous confidence, but they have diminished the simplicity and versatility of self-training. Con-
cretely, they often necessitate modifications to self-training algorithms or alterations in the model
architectures (Li & Zhou, 2005; Tanha et al., 2017; Rizve et al., 2021; Seibold et al., 2022). Fur-
thermore, most of them are not applicable to gradient boosting decision trees (GBDT) as they are
designed for neural networks. These limitations pose a substantial impediment to practitioners who
want to apply reliable self-training on the tabular data where GBDTs have been the dominant archi-
tectures (Kaggle, 2021; Borisov et al., 2022; Shwartz-Ziv & Armon, 2022). Therefore, we conclude
that any enhanced self-training for the tabular domain must maintain simplicity and versatility. Con-
sequently, we study a natural but ignored question: Can we improve self-training for tabular data by
making confidence more reliable, without altering the self-training algorithm or model architecture?

Several studies have been conducted to improve confidence more reliable without modifying existing
algorithms. Specifically, they aim to make the confidence of the classifier reflecting its ground
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truth correctness likelihood for safe decisions by calibrating the confidence using post-processing
techniques (Guo et al., 2017; Wenger et al., 2020; Gupta et al., 2020). However, when applied to
self-training in the tabular domain, an intriguing question arises: Does well-calibrated confidence
denote reliable confidence in the self-training context?

Contemporary pseudo-labeling techniques for self-training approaches are divided into two primary
strategies: fixed-threshold pseudo-labeling and curriculum pseudo-labeling. Within fixed-threshold
pseudo-labeling strategies, pseudo-labels are designated once their confidences meet or exceed a
certain threshold (Tur et al., 2005; Zoph et al., 2020; Xie et al., 2020a). Meanwhile, curricu-
lum pseudo-labeling strategies generate pseudo-labels based on a threshold but operate under the
premise that samples with higher confidence are easier for the classifier to handle. The classifier
initially focuses on these “easier” pseudo-labels and, over time, progressively addresses more com-
plex samples by incrementally lowering the threshold (Cascante-Bonilla et al., 2021; Zhang et al.,
2021a). Considering the tabular domain, where the predominant architecture, GBDTs, necessitates
hard pseudo-labels, the extent to which the confidence exceeds the threshold is meaningless for both
strategies. Hence, given the above premise of curriculum pseudo-labeling and consideration, we
conclude the key components of reliable confidence in the self-training context as follows: (1) low-
ering the confidences of unreliable pseudo-labels below a threshold and (2) reflecting how easy it is
for the classifier.

After dissecting self-training, we argue that the cluster assumption, foundational to semi-supervised
learning (SSL), can guide to trustworthy confidence in self-training. The cluster assumption states
that the data points nearby are likely to belong to the same class. As such, the decision boundary
should avoid high-density regions, favoring low-density regions instead (Chapelle & Zien, 2005;
Wang et al., 2012; Lee et al., 2013). Therefore, by assigning high confidence to pseudo-labels in
high-density regions and low confidence to those in low-density regions, the confidences ensure that
reliable pseudo-labels remain above the threshold and reflect how easy pseudo-labels are for the
classifier.

In this study, we propose CAST: Cluster-Aware Self-Training for tabular data. CAST regularizes
the confidence during the pseudo-labeling procedure by reflecting the cluster assumption utilizing
the local density of the unlabeled sample. Consequently, CAST leads to performance gain with-
out significant modifications to existing self-training algorithms or model architectures. Note that
CAST aims to lower the confidence of the pseudo-labels in low-density regions, while confidence
calibration methods aim to mirror the true likelihood.

Our key contributions are summarized as follows: (1) We propose CAST, a novel cluster-aware self-
training approach for tabular data. To the best of our knowledge, this is the first attempt of enhancing
self-training solely by refining confidence more reliable in the self-training context. (2) Unlike pre-
vious reliable pseudo-labeling techniques that require special requirements, our method seamlessly
integrates with current self-training algorithms and tabular models. (3) Our extensive experiments on
up to 21 real-world classification datasets confirm that regularized confidence of CAST consistently
delivers marked performance enhancements across various setups, while calibrated confidence is
meaningless in self-training contexts.

2 RELATED WORKS

Reliable Pseudo-Labeling for Self-Training. Reliable pseudo-labeling has attracted considerable
interest in self-training contexts. One of the primary approaches to reliability is noise filtering. For
example, Li & Zhou (2005) and Wang et al. (2010) use cut edge weights to eliminate noisy pseudo-
labels to ensure reliable pseudo-labeling. Zhou et al. (2012) create subsets of unlabeled data using
the distance to the decision boundary of each subset to discern and retain useful subsets while dis-
carding those deemed unreliable. Gan et al. (2013) employ clustering analysis to eliminate unreliable
samples. In addition to noise filtering, there are other studies for reliable pseudo-labeling. Tanha
et al. (2017) demonstrate not only distance-based noise filtering, but also enhancements to decision
trees for self-training. Zou et al. (2019) regularize the confidences and use them as soft pseudo-
labels to prevent infinite entropy minimization. Zhang et al. (2021b) suggest online denoising of
pseudo-labels based on their approach to the relative feature distances to a prototype, which means
the feature centroids of classes. Rizve et al. (2021) present an uncertainty-aware pseudo-label selec-
tion framework that improves pseudo-labeling accuracy. Yang et al. (2022) propose a self-training
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framework that performs selective re-training by prioritizing reliable pseudo-labels based on holis-
tic prediction-level stability. Chen et al. (2022) introduce a debiased self-training that avoids the
accumulation of errors during self-training iteration owing to the bias. Seibold et al. (2022) use a
small number of labeled data as reference and selected pseudo-labels that have the semantics of the
best fitting in a reference set. Niu et al. (2022) ensure the reliability of pseudo-labels through the
use of a semantically consistent ratio, while Li et al. (2022) enhance clustering performance by se-
lectively incorporating the most confident predictions from each cluster. Recently, Xu et al. (2023)
adopt a neighborhood-based sample selection approach, which is guided by data representation to
refine pseudo-labels. However, most of their work requires significant modifications to conventional
self-training algorithms or model architectures, with several showing incompatibilities with GBDTs.

Confidence Calibration. Poorly calibrated confidence is one of the most prevalent problems in
various models (Caruana et al., 2004; Guo et al., 2017; Wang et al., 2021). Guo et al. (2017) de-
fine that a classifier is well-calibrated when its confidence estimates are representative of the true
correctness likelihood. This definition has been widely accepted across various studies (Mukhoti
et al., 2020; Gupta et al., 2020; Wenger et al., 2020; Hebbalaguppe et al., 2022; Liu et al., 2022).
One of the most widely used metrics for calibration to measure how well the classifier is calibrated
is Expected Calibration Error (ECE) 1 (Naeini et al., 2015). There are two primary strategies for
achieving a well-calibrated model that produces reliable confidence. The first approach aims to
calibrate the classifier during training (Mukhoti et al., 2020; Hebbalaguppe et al., 2022; Liu et al.,
2022), whereas the second performs post-hoc calibration by transforming the confidence of a given
classifier (Gupta et al., 2020; Wenger et al., 2020). However, it is noteworthy that achieving a well-
calibrated classifier is not without potential trade-offs; some studies suggest that while enhancing
calibration, accuracy might be inadvertently compromised (Wang et al., 2021; Zhu et al., 2022).
Moreover, the inherent value of the calibration applied in self-training remains underexplored2, al-
though certain calibration techniques incidentally improve both the calibration and performance of
self-trained classifiers (Wang et al., 2021; Munir et al., 2022).

3 CAST: CLUSTER-AWARE SELF-TRAINING

Figure 1: F1 score of
pseudo-labels across high-
and low-density regions
over confidence threshold τ
on 6M mortality dataset3

To improve self-training through reliable confidence, we revisit the
cluster assumption, which is a fundamental assumption in semi-
supervised learning. The assumption posits that data samples that are
close to each other tend to belong to the same class, and that decision
boundaries should lie in low-density regions (Chapelle & Zien, 2005;
Wang et al., 2012; Van Engelen & Hoos, 2020). This concept implies
that the pseudo-labels that lie in high-density regions are more reli-
able than those that lie in low-density regions. The empirical results
shown in Figure 1 also support that the cluster assumption should be
considered in pseudo-labeling. Inspired by the assumption, we con-
clude that pseudo-labels in low-density regions should have lower
confidence than those in high-density regions. Therefore, we pro-
pose CAST for tabular data to lower the confidence of pseudo-labels
lying in low-density regions. Concretely, CAST regularizes the confidence during pseudo-labeling
procedure using prior knowledge for each class from the training data. We show the regularized
pseudo-labeling procedure of CAST in Section 3.1 and the full algorithm of CAST in Section 3.2.

3.1 REGULARIZED PSEUDO LABELING

Given ith unlabeled data x(i), pseudo-label ỹ(i) = [ỹ1, ỹ2, ..., ỹN−1, ỹN ] for N -class dataset is
generated based on the confidence c = [c1, c2, ..., cN−1, cN ], which the classifier produces for given
x(i), where

ỹj =

{
1 if j == argmax(c) and max(c) >= τ
0 otherwise

}
(1)

1Expected Calibration Error, refer to Appendix A for more details.
2For a comprehensive discussion on this topic, refer to Appendix B.
3We generate pseudo-labels using XGBoost (Chen & Guestrin, 2016). Then, we estimate the density using

empirical likelihood and split the top 50% as high-density, and the rest as low-density.
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In eq (1), a pseudo-label is generated to be the class with the highest confidence if the confidence
surpasses the specific threshold, τ . As pseudo-labels in low-density regions are unreliable, we have
to reduce the confidence of pseudo-labels that lie in low-density regions. We get the estimated
density for unlabeled samples by extracting the prior knowledge using a density estimator Dt (e.g.
multivariate kernel density estimator or empirical likelihood) which is fitted to the labeled training
data distribution t 4. Here, the prior knowledge γ for each class is defined as follows:

γ(i) ← Dt(x
(i)), where γ(i) = [γ1, γ2, ..., γN−1, γN ] (2)

Then, we normalize γ using a min-max scaler because the scale of γ varies among implementations,
and we need a relative measure to align unlabeled samples. To make pseudo-labels in low-density re-
gions have lower confidence, we have to adjust the magnitude of c according to the prior knowledge.
Element-wise product γ to c can achieve this, such as follows:

γ ◦ c (3)
However, prior knowledge is usually incomplete, particularly in semi-supervised learning settings
where the labeled training data is scarce. To regulate the influence of prior knowledge on pseudo-
label valuation, we adjust the balance between eq (3) and c using the hyperparameter α. The regu-
larized pseudo-labeling procedure of CAST is defined as follows:

ỹj =

{
1 if j = argmax(f(c)) and max(f(c)) >= τ
0 otherwise

}
, where f(c) = α(γ ◦ c) + (1− α)c (4)

In this formulation, f is the scoring function of CAST, which evaluates pseudo-label not only con-
sidering the confidence of the classifier but also prior knowledge. The hyperparameter α delin-
eates the influence of prior knowledge on pseudo-label valuation. If α is close to 0, it leads to the
pseudo-labeling procedure that uses only the confidence to decide whether to generate the pseudo-
label for given x, which is the same pseudo-labeling procedure as the one used in the conventional
self-training. Conversely, a high α value, approaching 1, steers the pseudo-labeling procedure to
prioritize γ ◦ c.

Discussion. Note that the only difference between CAST and the conventional self-training algo-
rithm is whether the use of regularized confidence (eq (4)) or naive confidence (eq (1)) to evaluate
the pseudo-labels. Therefore, CAST retains the simplicity and versatility of self-training and is also
compatible with conventional self-training algorithms, and various models in the tabular domain.

3.2 ALGORITHM OF CAST

Algorithm 1 CAST
Input: Labeled and unlabeled dataset DL and DU ; pseudo-
labeling algorithm Φ which adopt eq (4); target classifier C; per-
formance metric P .
Output: The best classifier during the self-training iterations,
Cbest.

Ccurrent ← trained classifier on DL

Cbest ← Ccurrent

while the termination conditions of Φ are not met do
D̃ ← DL

for x(i) in DU do
c← Ccurrent(x

(i))

ỹ(i) ← Φ(c)

if ỹ(i) ̸= 0⃗ then
D̃ ← D̃ ∪ {(x(i), ỹ(i))}

Ccurrent ← a classifier newly trained on D̃
if P (Ccurrent) > P (Cbest) then

Cbest ← Ccurrent

Return: Cbest

Let DL = {(x(i),y(i))}NL
i=1 denote a la-

beled dataset consisting of NL samples for an
N -class classification task. Here, x(i) rep-
resents the features of the ith sample and
y(i) is its corresponding label. Similarly, let
DU = {(x(i),∅)}NU

i=1 denote an unlabeled
dataset comprising NU samples, each charac-
terized solely by its features x(i). Furthermore,
we represent a subset of DU as D̃U , and the
size of D̃U as ÑU . For every unlabeled sam-
ple, a pseudo-label ỹ(i) is produced by the
pseudo-labeling algorithm Φ after the classi-
fier C generates the confidence, c, for given
x(i). Here, Φ represents the pseudo-labeling
algorithm (such as fixed-threshold or curricu-
lum pseudo-labeling) that employs eq (4) in-
stead of eq (1) typically used in conventional

self-training algorithms. Finally, D̃ = {(x(i),y(i) or ỹ(i))}NL+ÑU
i=1 signifies the combined training

set used for every self-training iteration, encompassing both DL and the pseudo-labeled subset D̃U

containing ÑU samples. Algorithm 1 shows the full algorithm of CAST.
4The natural characteristic of the tabular data is each feature occupies a specific, fixed position within the

table. This allows us to directly extract prior knowledge from the labeled training dataset unlike other domains
(e.g. image or text). The specific choice of density estimator for CAST depends on the implementation.
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(a) (b) (c) (d)

Figure 2: Visualization of the confidence levels of XGBoost on the Blob dataset when generating
pseudo-labels for the third self-training iteration with FPL using (a) naive confidence, (b) calibrated
confidence with HB, (c) regularized confidence with CAST-D, and (d) regularized confidence with
CAST-L. Colored points represent labeled samples in the training set for each class, and the degree
of the color indicates the confidence level in the space where the Blob data exists.

4 EXPERIMENTAL EVALUATION

In this section, we design a suite of experiments to answer the questions that we raised in Section
1 as follows: (1) Can we improve self-training for tabular data by making confidence more reli-
able, without altering the self-training algorithm or model architecture? (2) Does well-calibrated
confidence denote reliable confidence in the self-training context?

The experimental procedure consists of three distinct steps:

1. We visualize and analyze the impact of diverse confidence on self-training using a toy
dataset. This is further elaborated in Section 4.1.

2. We present empirical results in the context of self-training with diverse confidence using
real-world tabular datasets in Section 4.2.

3. We conclude our experiments with additional analyses of CAST, scrutinizing several as-
pects of CAST, as discussed in Section 4.3.

For all the experiments, we establish a baseline using naive confidence-based self-training. Within
our notation, fixed-threshold pseudo-labeling is denoted as FPL, and curriculum pseudo-labeling is
referred to as CPL. Unless otherwise noted, we use the following settings. We empirically adopt a
threshold, τ , of 0.6 for FPL. For CPL, we set the starting threshold to capture the top 20% and in-
crementally increase the percentage by 20%, in line with the recommendations of Cascante-Bonilla
et al. (2021). Self-training iterations are terminated under two conditions: for FPL, when a self-
trained classifier underperforms after self-training iteration, and for CPL when no additional unla-
beled data remain. To mitigate confirmation bias accumulation during self-training iterations, we
reinitialize all classifiers after generating pseudo-labels, as recommended by Cascante-Bonilla et al.
(2021).

Given the prevalence of GBDTs in the tabular domain, we focus on model-agnostic post-hoc calibra-
tion methods. We choose temperature scaling and histogram binning for the confidence calibration
because of their simplicity and widespread use (Guo et al., 2017). We also use spline (Gupta et al.,
2020) and latent Gaussian process (Wenger et al., 2020) calibrations for more sophisticated calibra-
tions. We adopt a multivariate kernel density estimator and empirical likelihood as a density estima-
tor to derive prior knowledge. The implementation details of prior knowledge are in Appendix D.
For clarity, we use the following abbreviations: temperature scaling (TS), histogram binning (HB),
spline calibration (SP), and latent Gaussian process (GP). Our proposed CAST methods, with a
multivariate kernel density estimator and empirical likelihood are denoted as CAST-D and CAST-L,
respectively.

4.1 TOY DATASET

4.1.1 DATASET AND IMPLEMENTATION DETAILS.

To demonstrate the effects of various confidences in self-training, we create a binary classification
toy dataset, Blob, using the scikit-learn package (Pedregosa et al., 2011). This dataset consists
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Figure 3: Pseudo-label quantity, training set accuracy, test ECE, and test accuracy, in sequence, for
each confidence-based self-training over iterations.

of 100 training, 1,000 validation, 10,000 test, and 1,000 unlabeled samples designated for self-
training. We employ the XGBoost classifier (Chen & Guestrin, 2016), and the hyperparameters
are optimized using Optuna (Akiba et al., 2019) over 50 trials. Subsequently, we conduct four
distinct self-training approaches, each with three iterations of FPL. Each approach employs naive
confidence, calibrated confidence with HB, regularized confidence with CAST-D, and regularized
confidence with CAST-L.

4.1.2 RESULTS AND ANALYSIS.

Figure 2 presents an overlay of the training data and confidence levels for each classifier. The
confidences of CAST exhibit reduced confidences for samples that lie in low-density regions as
illustrated in Figure 2 (c) and (d). Contrarily, the naive confidence and calibrated confidence of
HB do not differentiate confidence levels between high and low-density regions (Figure 2 (a) and
(b)). Figure 3 shows a comparison of the pseudo-label quantity, training set accuracy, and ECE
when generating pseudo-labels for each self-training iteration along with the test accuracy across
every self-training iteration. In this figure, it is observed that the baseline is prone to confirmation
bias, leading to diminished performance after three self-training iterations. Although HB records the
lowest ECE over the iterations, a mere reduction in ECE does not guarantee accurate pseudo-labels
or enhanced performance in self-training. However, our CASTs exhibit improved performance with
reliable pseudo-labels by lowering the confidence of unreliable pseudo-labels, although they display
a notably higher ECE.

4.2 EMPIRICAL EVALUATION

4.2.1 DATASETS AND IMPLEMENTATION DETAILS.

To empirically evaluate the different confidences in self-training, we use four tabular datasets with
XGBoost (Chen & Guestrin, 2016), FT-Transformer (Gorishniy et al., 2021), and MLP. First, we
adopt the 6-month mortality prediction post-acute myocardial infarction (in short, 6M mortality)
dataset from the Korea Acute Myocardial Infarction Registry (KAMIR). The scarcity of labels in
the dataset inspired us to study self-training in the tabular domain. The other three datasets (di-
abetes, ozone, and cmc) are sourced from OpenML-CC18—a benchmark suite of meticulously
curated datasets (Vanschoren et al., 2014; Bischl et al., 2017; Feurer et al., 2021). Our choice of
these datasets aims to illustrate the impact of CAST across diverse data domains. We also conduct
extended empirical experiments using an additional seventeen datasets from OpenML-CC18 with
XGBoost to demonstrate the results for broader datasets, which are reported in Appendix I.

We evaluate the performance based on the relative improvement compared with a supervised classi-
fier. This approach is adopted because appropriate metrics can vary across datasets, and the primary
objective of SSL is to measure its advantages over supervised settings (Oliver et al., 2018). Relative
improvement is assessed using the F1-score for both the 6M mortality and ozone datasets, accuracy
for the diabetes dataset, and balanced accuracy for the cmc dataset. Given that the ultimate goal of
SSL is to surpass the performance of well-tuned supervised models (Oliver et al., 2018), we optimize
each model using Optuna (Akiba et al., 2019) for over 100 trials. This optimized model serves dual
purposes: it provides a baseline performance to gauge the relative improvements achieved through
self-training and is used as a base classifier for self-training. As noted by (Oliver et al., 2018; Su
et al., 2021), relying solely on an insufficient validation set can lead to suboptimal hyperparameter
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Table 1: Relative improvement over four tabular datasets. The top results are highlighted in bold,
while the second-best scores are underlined. Abbreviations are as follows: temperature scaling (TS),
histogram binning (HB), spline calibration (SP), and latent Gaussian process (GP).

6M mortality diabetes ozone cmc

XGB FT MLP XGB FT MLP XGB FT MLP XGB FT MLP

FPL

Baseline 4.090 1.123 7.878 0.000 0.333 1.301 0.354 0.336 1.284 0.774 0.251 0.143
TS 4.090 1.123 7.699 0.000 0.333 1.301 0.354 0.336 1.284 0.774 0.251 0.143
HB 4.126 0.000 -0.142 0.032 1.000 0.787 -0.566 2.523 -0.149 0.311 1.032 0.996
SP 4.266 2.315 8.444 -0.098 0.212 0.8778 -0.384 5.017 2.574 -0.214 1.411 0.000
GP 1.087 -1.117 -0.069 0.786 0.788 -0.212 1.091 1.004 -1.426 0.000 0.000 0.000

CAST-D 4.091 5.562 10.542 1.604 1.394 1.725 7.331 8.860 9.055 2.325 0.716 1.612
CAST-L 9.597 8.951 16.981 1.342 0.667 1.967 6.588 6.729 8.056 2.363 1.783 1.046

CPL

Baseline -0.652 6.105 4.852 0.131 0.818 0.787 4.986 -2.276 5.878 0.850 1.922 0.423
TS -0.652 6.105 4.852 0.131 0.818 0.787 4.986 -2.276 5.640 0.850 1.922 0.423
HB 4.843 2.269 6.820 0.131 1.636 0.363 0.579 2.017 0.454 0.718 1.171 0.219
SP -0.777 6.306 8.320 -0.164 1.424 0.393 1.998 1.286 5.713 0.060 1.642 1.874
GP -0.170 5.219 4.182 0.949 0.424 -0.182 5.290 1.658 4.661 0.637 1.448 0.653

CAST-D 0.271 9.335 11.589 1.342 2.636 1.665 5.449 10.800 9.393 3.495 4.742 3.570
CAST-L 7.478 12.698 17.709 0.982 2.727 2.966 11.783 8.607 8.958 3.733 4.251 3.556

selection. Thus, we reserve 20% of the data for the test set and employ 3-fold cross-validation on the
remainder to select the optimal hyperparameters. For the training dataset, 10% is randomly selected
as the labeled data, with the remainder serving as unlabeled data for self-training. We compare the
effect of diverse confidence within the self-training context using two primary self-training strate-
gies: FPL and CPL. To determine the optimal α value for CAST, we execute a grid search in eight
steps over the range [0.2, 0.75]. All experiments are conducted using ten random seeds ranging
from 0 to 9, and the results are averaged across these runs. Further details regarding the datasets and
implementations are provided in Appendix E.

4.2.2 RESULTS AND ANALYSIS.

While calibrated confidences show little to no distinction compared to naive confidence, CAST
significantly enhances confidence for self-training.

Figure 4: Critical difference diagrams of average ranks
from Table 1 for FPL (Top) and for CPL (Bottom). Statis-
tically equivalent methods are connected using horizontal
bars.

Intuitively, reliable confidence in the
self-training context should yield supe-
rior performance compared with naive
confidence. However, as summarized in
Table 1, self-training approaches based
on calibrated confidence often do not
lead to performance improvement, and
at times even diminish the final perfor-
mance compared to self-training with
naive confidence. Contrarily, CAST
consistently delivers notable enhance-
ments in self-training across various
strategies, datasets, and models. In
all conducted experiments, CAST often
outperforms the other approaches, se-
curing the top position in every exper-
iment and ranking second in most. We
further investigate the effects of various
confidences on self-training using a statistical approach, as shown in Figure 4. We employ the criti-
cal difference diagrams using average ranks of each confidence-based self-training for visualization,
a standard visualizing method for statistical tests, as introduced by Demšar (2006). As depicted in
Figure 4, regularized confidences differ substantially from naive confidence in the self-training con-
text, whereas calibrated confidences do not. It verify that calibrating the confidence is meaningless
in the context of self-training. Through our experiments and subsequent statistical analysis, it is
evident that regularizing confidence to lower the confidence of pseudo-labels in low-density regions
leads to performance gains in the self-training contexts. Conversely, confidence calibration does not
yield such benefits. Appendix G provides the details of the statistical analysis.
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Figure 5: Relative improvement of various confidence-based self-training over various proportions
of labeled samples in the training dataset.

CAST demonstrates robustness for various labeled sample proportions. Given that CAST de-
rives prior knowledge from labeled data within the training dataset, we assess its effectiveness across
various labeled sample proportions. We depict the outcomes of self-training using different con-
fidences at labeled training sample proportions of {5%, 10%, 20%, 30%} with XGBoost across
the four datasets in Figure 5. As illustrated in Figure 5, CAST consistently outperforms naive
confidence-based self-training, irrespective of the labeled sample proportion in the training dataset.
These findings underscore the robustness of CAST to variations in the proportion of labeled samples.

CAST is robust to feature corruption. Feature corruption is a common problem in many real-
world scenarios. We investigate the effects of different confidences using XGBoost on datasets with
corrupted features to demonstrate the robustness of CAST for noisy features. We outline the method-
ology for inducing feature corruption as follows. We randomly select a fraction of the features and
replace each chosen feature with a value drawn from the empirical marginal distribution of that fea-
ture. This distribution is defined as a uniform distribution over the values that the feature takes on
across the training dataset. The corruption ratio is fixed at 20% for each training sample. The results
are summarized in Table 2. Clearly, CASTs consistently show notable performance improvements
even in the presence of corrupted features.

Table 2: Relative improvement over four tabular datasets with corrupted features. The top results
are highlighted in bold, while the second-best scores are underlined.

FPL CPL

6M mortality diabetes ozone cmc 6M mortality diabetes ozone cmc

Baseline 6.519 0.000 -3.013 0.680 5.353 0.153 9.181 1.105
TS 5.242 0.031 13.481 0.680 5.858 -0.184 1.573 1.105
HB 6.963 -0.367 10.235 -0.551 6.030 -0.337 1.931 0.509
SP 5.817 -0.122 -4.124 0.492 5.631 0.551 1.946 1.489
GP -1.922 1.836 5.087 -1.437 2.411 0.061 15.127 -0.531
CAST-D 8.280 1.499 12.432 1.188 9.181 1.285 16.634 3.864
CAST-L 12.902 1.714 8.508 1.312 12.152 2.295 24.050 4.188

4.2.3 HYPERPARAMETER α

Figure 6: Plot of the winning values of
the hyperparameter α. The colored re-
gion denotes 90% of the confidence in-
terval.

Here, we analyze the winning value of the hyperparame-
ter α during the grid search for the experiments that are
conducted for Table 1. Figure 6 depicts a plot summariz-
ing the winning values of α. The α is employed to deter-
mine the extent of the influence that prior knowledge on
pseudo-label valuation in eq (4). Given that prior knowl-
edge sourced from the training data distribution and the
confidence of the classifier vary across datasets, models,
and random seeds, a universal optimal value does not ex-
ist. However, we can recommend a search range for tuning
the α. We identify an upper bound of the 90% confidence
interval for α as 0.7. Therefore, we suggest 0.7 or less
when tuning the hyperparameter α.
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4.3 ADDITIONAL ANALYSIS FOR CAST

4.3.1 COMBINATION OF CAST AND NOISE FILTERING

CAST is designed to be seamlessly integrated into existing self-training algorithms without requir-
ing major alterations, making it a versatile add-on. This adaptability allows it to be paired with
noise filtering techniques to achieve more reliable self-training. Table 3 shows the performance im-
provements when combining CAST with a Mahalanobis distance-based noise filtering approach, as
employed by Tanha et al. (2017). Our experimental setup mirrors the one used in Section 4.2, except
for the ozone dataset. This is because of the challenge of computing the Mahalanobis distance using
only 10% of the labeled data of the ozone dataset. From the results in Table 3, it is clear that noise
filtering with CAST provides a greater performance gain.

Table 3: Relative improvement of CAST with Mahalanobis distance-based noise filtering. The top
results are highlighted in bold, while the second-best scores are underlined.

6M mortality diabetes cmc

XGB FT MLP XGB FT MLP XGB FT MLP

FPL
Baseline 6.617 6.829 9.785 0.884 1.000 1.362 2.255 1.021 0.075
CAST-D 5.970 8.741 14.777 3.470 1.970 2.452 3.178 2.895 2.754
CAST-L 12.132 13.618 20.285 3.699 2.182 2.573 3.413 2.315 1.421

CPL
Baseline 4.297 8.449 9.685 1.669 2.030 2.149 4.065 4.787 2.911
CAST-D 4.916 10.634 12.875 3.797 3.606 3.814 5.451 6.731 6.197
CAST-L 12.953 15.080 21.104 3.273 3.636 4.177 5.549 6.905 5.355

4.3.2 CAST CAN CHANGE THE MOST CONFIDENT CLASS

Unlike most previous methods regarding reliable pseudo-labeling (Li & Zhou, 2005; Rizve et al.,
2021; Chen et al., 2022), CAST can change the most confident class. In essence, CAST regularizes
the confidence of each pseudo-label based on class-specific prior knowledge. Consequently, the
most confident class may change because the degree of regularization varies across the classes. We
present results from naive self-training, which strictly determines pseudo-labels based on the most
confident class, irrespective of the confidence magnitude (Lee et al., 2013). The results in Table
4 indicate that CAST can modify the most confident class to generate trustworthy pseudo-labels,
thereby delivering superior performance over naive confidence-based self-training. Moreover, this
capability explains the results in Section 4.3.1, as many noise filtering techniques identify noise
based on the most confident class of unlabeled data.

Table 4: Relative improvement of naive self-training using different confidences. The top results are
highlighted in bold, while the second-best scores are underlined.

6M mortality diabetes ozone cmc

XGB FT MLP XGB FT MLP XGB FT MLP XGB FT MLP

Baseline 4.773 2.176 5.736 0.033 0.424 0.726 3.868 1.694 1.482 0.797 0.339 0.091
CAST-D 4.773 2.379 6.317 0.393 1.212 1.483 9.845 5.664 6.546 1.694 0.446 0.450
CAST-L 9.667 6.179 11.165 0.131 0.758 1.423 11.453 4.233 7.334 2.273 1.388 0.104

5 CONCLUSION

In this paper, we propose a novel self-training enhancing algorithm: CAST, which solely regular-
izes the confidence of the classifier to be aware of the cluster assumption and does not need any
significant modification to the existing self-training algorithms or tabular models. Through exten-
sive experiments across diverse settings, we verify that regularized confidence in CAST consistently
improves self-training regardless of self-training strategies, datasets, and models, while calibrated
confidence does not guarantee performance improvement in self-training. We additionally show
some beneficial attributes of CAST and offer guidance on determining the search range for tuning
hyperparameter α. A current limitation of the CAST is its inapplicability to domains such as im-
ages or text as there are no suitable density estimation methods. For future work, we reserve direct
assessments of confidence in the context of self-training without performing self-training iterations.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

Massih-Reza Amini and Patrick Gallinari. Semi-supervised logistic regression. In ECAI, volume 2,
pp. 11, 2002.

Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’Connor, and Kevin McGuinness. Pseudo-labeling
and confirmation bias in deep semi-supervised learning. In 2020 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8, 2020. doi: 10.1109/IJCNN48605.2020.9207304.

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and
Colin A Raffel. Mixmatch: A holistic approach to semi-supervised learning. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
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A EXPECTED CALIBRATION ERROR (ECE)

The Expected Calibration Error (ECE) (Naeini et al., 2015) quantifies the discrepancy between a
model’s predicted confidence and its true accuracy. To compute the ECE, predictions are grouped
into M bins of equal sizes based on their confidence, and the difference between the average accu-
racy and average confidence for each bin is determined.

Formally, the ECE is given by:

ECE =

M∑
m=1

|Bm|
n

∣∣∣∣acc(Bm)− conf(Bm)

∣∣∣∣, (5)

where Bm is the set of indices of samples whose prediction confidence falls within interval Im =
(m−1M , m

M ], |Bm| represents the number of predictions in the mth bin, n denotes the total number
of samples, and acc and conf denote the average accuracy and average confidence of each bin,
respectively.

B WHY THE INHERENT VALUE OF CALIBRATION IN SELF-TRAINING
REMAINS UNDEREXPLORED

Wang et al. (2021) demonstrate that graph neural networks (GNNs) tend to be under-confident
and argue that the underperformance of existing self-training methods is caused by large num-
bers of high-accuracy predictions distributed in low-confidence intervals. Nevertheless, this under-
confidence may not pose a significant hurdle for self-training strategies that employ a curriculum
pseudo-labeling, which progressively reduces the threshold throughout self-training iterations to use
the pseudo-labels that have low confidence. Furthermore, Munir et al. (2022) show that, although
their calibration techniques effectively mitigate over-confidence issues after self-training for domain
adaptive detectors, they do not consistently enhance average precision.

C WHY CAST IS EFFECTIVE?

Self-training is a version of the entropy minimization algorithm, which minimizes the likelihood
deprived of the entropy of the partition (Amini & Gallinari, 2002). It constructs hard (one-hot) la-
bels from high-confidence predictions on unlabeled data to implicitly achieve entropy minimization
(Berthelot et al., 2019). The entropy minimization techniques assume that the cluster assumption is
ensured in the dataset (Grandvalet & Bengio, 2004), and aim that the classifier learns the low-density
separations in the data. However, unreliable pseudo-labels that lie in low-density regions, stemming
from erroneous confidence, violate the assumption and consequently disrupt the classifier’s ability
to learn the separations among classes. On the other hand, CAST forces the pseudo-labels in low-
density regions to have lower confidence to avoid the violation of the assumption. Therefore, CAST
achieves more reliable pseudo-labels resulting in successful entropy minimization.

D IMPLEMENTATION DETAILS OF PRIOR KNOWLEDGE

In this section, we describe the implementations of our two density estimators to extract prior knowl-
edge, multivariate kernel density estimator, and empirical likelihood.

D.1 MULTIVARIATE KERNEL DENSITY ESTIMATOR

To estimate density to regularize the classifier’s confidence, we employ a multivariate kernel density
estimator provided by the statsmodels package (Seabold & Perktold, 2010). We follow the
default kernel settings of statsmodels, which are the Gaussian kernel for continuous features
and Aitchison-Aitken kernel for categorical features.

D.2 EMPIRICAL LIKELIHOOD

The empirical likelihood does not require any assumption that the data come from a known family
of distributions. Given the potential for many real-world datasets to be incomplete, distorted, or
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subject to sampling bias, traditional density estimators might occasionally fall short in approximat-
ing true densities. Empirical likelihood, with its adaptability, has demonstrated effectiveness in such
scenarios, as evidenced by numerous studies (Owen, 1988; 2001; Chen & Lazar, 2010). Therefore,
we adopt empirical likelihood as another measure of density.

We implement a simplified variant of the empirical likelihood as follows: Let x(i) =[
x
(i)
1 , x

(i)
2 , ..., x

(i)
m−1, x

(i)
m

]
comprising m features. Similarly, y(i) =

[
y
(i)
1 , y

(i)
2 , ..., y

(i)
N−1, y

(i)
N

]
is

a one-hot vector in the N -class dataset. If y(i)j = 1, the ith sample belongs to the jth class. For a

given x(i), the empirical likelihood of its pseudo-label ỹ(i)j is formulated as follows.

P (x(i)|ỹ(i)j = 1) =
P (ỹ

(i)
j = 1, x

(i)
1 , x

(i)
2 , ..., x

(i)
m−1, x

(i)
m )

P (ỹ
(i)
j = 1)

= P (x
(i)
1 |ỹ

(i)
j = 1)× P (x

(i)
2 |ỹ

(i)
j = 1)× ...× P (x(i)

m |ỹ
(i)
j = 1)

(6)

For simplicity, we operate under the premise that features of x are conditional independence, given
the pseudo-label ỹj . While conditional independence of feature is seldom a reality in many datasets,
we are inspired by the assumption used in many successful studies that have used Naive Bayes 5.
Furthermore, we calculated the likelihood of pseudo-labels between selected features to alleviate the
violation of the assumption, regarding the following hypothesis on which the heuristic is based Hall
(2000)’s work: Good feature subsets contain features highly correlated with the class, yet uncorre-
lated with each other and some successful research to improve Naive Bayes using feature selection
(Ratanamahatana & Gunopulos, 2003; Blanquero et al., 2021). Lastly, we use a log-likelihood by
applying logarithms on eq (6) to enhance computational efficiency and prevent numerical errors.

For the categorical features, we determine the likelihood of each distinct value using their empirical
distribution. For continuous features, we transform them into 10 discrete bins and subsequently
calculate their likelihood based on the empirical distribution of these bins.

E EXPERIMENTAL DETAILS

E.1 DATASET DETAILS

Table 5: Overview of datasets. We abbreviate “F1-score” as “F1,” “balanced accuracy” as “b-acc,”
and “accuracy” as “acc”.

name class features n samples metric name class features n samples metric

6M mortality 2 76 15628 F1 jm1 2 22 10855 F1
diabetes 2 9 768 acc bioresponse 2 1777 3751 F1
ozone (ozone-level-8hr) 2 73 2534 F1 kc2 2 22 522 F1
cmc 3 10 1473 b-acc kc1 2 22 2109 F1
kr-vs-kp 2 37 3196 acc blood-transfusion-service-center 2 5 748 acc
credit-g 2 21 1000 b-acc qsar-biodeg 2 42 1055 b-acc
sick 2 30 3772 f1 wall-robot-navigation 4 25 5456 F1
splice 3 62 3190 b-acc churn 2 21 5000 F1
vehicle 4 19 846 acc car 4 7 1728 b-acc
pc4 2 38 1458 F1 steel-plates-fault 7 28 1941 F1
pc3 2 38 1563 F1

Dataset preprocessing. We use label encoding for all categorical features, except for the 6M mor-
tality dataset where certain categorical features necessitate one-hot encoding. We impute missing
data using an iterative imputer in scikit-learn package (Pedregosa et al., 2011). For MLP, we embed
categorical features in high-dimensional spaces and apply batch normalization to the continuous
features.

5For example, even with correlated features, Naive Bayes, which operates under the conditional indepen-
dence assumption, often has produced commendable results on a variety of tabular datasets (Hand & Yu, 2001)
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E.2 IMPLEMENTATION DETAILS OF TABULAR MODELS

We use Pytorch Tabular framework for FT-Transformer and MLP (Joseph, 2021), and the official
Python package for XGBoost.

E.3 DETAILS OF CONFIDENCE CALIBRATION

We use netcal framework (Küppers et al., 2020) for temperature scaling and histogram binning. We
adopt six knots for the spline calibration according to the Gupta et al. (2020)’s work and do not use
any hyperparameters for the latent Gaussian process calibration since it is a nonparametric method.
Then, we fit calibration methods to the validation dataset except for spline calibration which does
not require the fitting procedure.

E.4 DETAILS OF HYPERPARAMETER TUNNING

Table 6: Optuna hyperparameter search space for XGBoost

Hyperparameter Search Method Search Space

max leaves suggest int [300,4000]
n estimators suggest int [10,3000]
learning rate suggest uniform [0,1]
max depth suggest int [3, 20]
scale pos weight suggest int [1, 100]

Table 7: Optuna hyperparameter search space for FT-Transformer

Hyperparameter Search Method Search Space

input embed dim suggest categorical [16,24,32,48]
embedding dropout suggest uniform [0.05,0.3]
share embedding suggest categorical [True, False]
num heads suggest categorical [1,2,4,8]
num attn blocks suggest int [2,10]
transformer activation suggest categorical [GEGLU, ReGLU, SwiGLU]
use batch norm suggest categorical [True, False]
batch norm continuous input suggest categorical [True, False]
learning rate suggest uniform [0.0001, 0.05]
scheduler gamma suggest uniform [0.1, 0.95]
scheduler step size suggest int [10, 100]

Table 8: Optuna hyperparameter search space for MLP

Hyperparameter Search Method Search Space

embedding dropout suggest uniform [0, 0.2]
layers suggest categorical [128-64-32, 256-128-64, 128-64-32-16, 256-128-64-32]
activation suggest categorical [ReLU, LeakyReLU]
learning rate suggest uniform [0.0001, 0.05]
scheduler gamma suggest uniform [0.1, 0.95]
scheduler step size suggest int [10, 100]
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F ADDITIONAL EXPERIMENT WITH TOY DATASET

(a) (b) (c) (d)

Figure 7: Pseudo-label quantity, training set accuracy, test ECE, and test accuracy, in sequence, for
each confidence-based self-training over iterations.

We conduct an additional experiment using a toy dataset to show the results with a high threshold.
Except for the threshold, we use the same setup described in Section 4.1. We set a threshold (τ )
of 0.9 for FPL and limit our comparison to naive confidence and HB, as the high threshold is not
compatible with regularized confidence. In Figure 7, it is evident that although we adopt a high
threshold for FPL, naive confidence, and calibrated confidence-based self-training fail to generate
reliable pseudo-labels and improve performance.

G STATISTICAL ANALYSIS FOR EMPIRICAL RESULTS

Table 9: Statistic Analyze

FPL CPL
statistic p-value statistic p-value

Friedman 40.1455 4.26e-07 45.9213 3.06e-08

Holm’s test with adjusted α’s (0.05)
p-value p-value

TS 1.0000 1.0000
HB 1.0000 1.0000
SP 1.0000 1.0000
GP 0.3760 0.8486
CAST-D 0.0103 0.0103
CAST-L 0.0103 0.0103

We conduct Friedman test and the results in Table 9
show that we can confidently reject the null hypoth-
esis given the considerably small p-value. Therefore,
we conduct a Conover post-hoc test and visualize the
results using the critical difference diagrams shown in
Figure 4. We use a significance level α = 0.05 for our
critical difference diagram. We also conduct Holm’s
test as an additional post-hoc test, and report the re-
sults between naive confidence and the others in Table
9. This also proves that CASTs are significantly dif-
ferent from naive confidence-based self-training.
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H COMPUTATIONAL COST OF CAST

We have presented the computational cost of CAST in Table 10. The results display the mean of
ten self-training experiments using a curriculum-based pseudo-labeling approach. The experiments
were carried out using one CPU core of Ryzen 5975wx and one RTX 4090. As seen in the table, the
computational costs of CAST-D and CAST-L are almost as close as the training time of XGBoost.
In particular, the cost is significantly lower than the training time of neural networks.

Table 10: Additional computational cost of CAST.

Time (s)
6M mortality diabetes ozone cmc

XGB FT MLP XGB FT MLP XGB FT MLP XGB FT MLP

Training 5.25 749.02 96.97 0.10 26.85 9.40 0.51 89.57 14.32 0.19 27.90 16.12

CAST-D 7.13 0.15 0.50 0.25
CAST-L 3.99 0.14 0.48 0.19

Relative additional overhead of CAST compared to training time (%)
6M mortality diabetes ozone cmc

XGB FT MLP XGB FT MLP XGB FT MLP XGB FT MLP

CAST-D 135.84 0.95 7.35 148.15 0.57 1.63 98.72 0.56 3.51 127.70 0.89 1.53
CAST-L 76.08 0.53 4.12 133.65 0.52 1.47 94.99 0.54 3.38 97.35 0.68 1.17

I ADDITIONAL EMPIRICAL RESULTS

Table 11: Relative improvement over seventeen tabular datasets. The top results are highlighted in
bold, while the second-best scores are underlined.

kr-vs-kp credit-g sick splice vehicle pc4 pc3 jm1 bioresponse

FPL

Baseline 0.132 0.034 0.128 1.092 0.413 10.254 5.458 3.087 -0.024
TS 0.022 -0.021 1.785 1.092 0.413 15.913 8.737 0.481 0.052
HB 0.094 -0.481 1.108 1.027 0.550 3.335 1.954 0.000 0.022
SP 0.237 0.021 0.156 1.067 0.309 6.718 1.238 1.755 -0.058
GP 0.584 -0.440 1.198 -0.139 0.000 5.143 1.002 0.802 0.567

CAST-D 0.485 1.745 0.000 0.503 1.788 20.554 11.785 5.134 0.688
CAST-L 0.457 1.759 1.417 1.152 2.475 21.785 11.901 3.785 1.150

CPL

Baseline 0.336 0.900 1.477 0.400 0.584 7.438 7.310 5.113 0.155
TS 0.413 -0.412 -0.073 0.349 0.584 18.044 4.094 3.311 0.290
HB 0.397 -0.124 0.475 0.837 1.719 15.031 2.929 0.497 0.354
SP 0.386 0.323 1.668 0.469 0.069 6.232 6.239 4.222 0.265
GP 0.595 -1.141 1.513 0.544 4.056 5.772 2.498 4.594 0.249

CAST-D 0.689 2.693 2.447 0.605 0.894 25.817 13.426 5.177 2.454
CAST-L 0.782 3.731 1.508 0.626 3.025 22.177 16.176 4.828 1.821

kc2 kc1 blood qsar-biodeg robot churn car steel Avg Rank (std)

FPL

Baseline 1.792 0.870 0.548 -0.045 0.095 3.267 0.731 -0.203 4.38(1.16)
TS 0.359 3.203 0.061 0.414 0.095 0.915 0.731 -0.203 4.44(1.59)
HB 0.283 0.000 0.000 0.937 0.114 1.129 0.066 0.456 5.12(1.49)
SP 1.767 -1.773 1.552 -0.269 0.162 3.407 -0.025 -0.089 5.00(1.37)
GP -0.135 0.298 1.765 -0.155 0.000 0.682 0.020 0.000 5.26(1.83)

CAST-D 5.432 7.470 1.856 1.583 0.355 5.878 4.492 0.000 2.21(1.71)
CAST-L 2.984 6.701 1.826 1.200 0.304 5.929 3.007 1.394 1.59(0.60)

CPL

Baseline 2.662 4.862 1.704 -0.180 0.067 4.673 2.903 0.038 4.76(1.68)
TS 0.648 3.591 -0.061 0.808 0.067 1.264 2.903 0.038 5.47 (1.40)
HB 3.326 2.008 1.339 1.312 0.257 1.657 2.381 0.342 4.53(1.75)
SP 2.557 2.940 1.339 -0.132 0.076 4.017 2.809 0.177 5.00(1.08)
GP 2.473 3.485 1.765 0.244 0.371 5.180 1.379 0.634 4.41(1.94)

CAST-D 9.079 6.714 2.830 1.193 0.377 8.868 5.405 0.076 1.82(1.20)
CAST-L 3.500 4.704 2.161 1.510 0.336 7.982 4.022 1.495 2.00(0.84)
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J ABSOLUTE PERFORMANCE

Table 12: Absolute performance over four tabular datasets. The top results are highlighted in bold,
while the second-best scores are underlined.

6M mortality diabetes ozone cmc

XGB FT MLP XGB FT MLP XGB FT MLP XGB FT MLP

Supervised Learning 0.4055 0.3806 0.3311 0.6613 0.7143 0.7152 0.2803 0.3769 0.3823 0.4638 0.4696 0.4437

FPL

Baseline 0.4221 0.3849 0.3571 0.6613 0.7167 0.7245 0.2813 0.3781 0.3872 0.4674 0.4708 0.4443
TS 0.4221 0.3849 0.3566 0.6613 0.7167 0.7245 0.2813 0.3782 0.3872 0.4674 0.4708 0.4443
HB 0.4222 0.3806 0.3306 0.6615 0.7214 0.7208 0.2787 0.3864 0.3817 0.4652 0.4745 0.4481
SP 0.4228 0.3895 0.3590 0.6606 0.7158 0.7214 0.2793 0.3958 0.3921 0.4628 0.4762 0.4437
GP 0.4099 0.3764 0.3308 0.6665 0.7199 0.7136 0.2834 0.3807 0.3768 0.4638 0.4696 0.4437

CAST-D 0.4221 0.4018 0.3660 0.6719 0.7242 0.7275 0.3009 0.4103 0.4169 0.4746 0.4730 0.4509
CAST-L 0.4444 0.4147 0.3873 0.6701 0.7190 0.7292 0.2988 0.4022 0.4131 0.4747 0.4780 0.4483

CPL

Baseline 0.4029 0.4039 0.3471 0.6621 0.7201 0.7208 0.2943 0.3683 0.4047 0.4677 0.4786 0.4456
TS 0.4029 0.4039 0.3471 0.6621 0.7201 0.7208 0.2943 0.3683 0.4038 0.4677 0.4786 0.4456
HB 0.4252 0.3893 0.3536 0.6621 0.7260 0.7177 0.2820 0.3845 0.3840 0.4671 0.4751 0.4447
SP 0.4024 0.4047 0.3586 0.6602 0.7245 0.7180 0.2859 0.3817 0.4041 0.4641 0.4773 0.4520
GP 0.4048 0.4005 0.3449 0.6675 0.7173 0.7139 0.2952 0.3831 0.4001 0.4667 0.4764 0.4466

CAST-D 0.4066 0.4162 0.3694 0.6701 0.7331 0.7271 0.2956 0.4176 0.4182 0.4800 0.4919 0.4595
CAST-L 0.4359 0.4290 0.3897 0.6677 0.7338 0.7364 0.3133 0.4093 0.4165 0.4811 0.4896 0.4595

Table 13: Absoulte performance over seventeen tabular datasets. The top results are highlighted in
bold, while the second-best scores are underlined.

kr-vs-kp credit-g sick splice vehicle pc4 pc3 jm1 bioresponse

Supervised Learning 0.9453 0.5775 0.7473 0.9077 0.5704 0.2467 0.2512 0.3694 0.7436

FPL

Baseline 0.9466 0.5777 0.7482 0.9176 0.5727 0.2719 0.2649 0.3808 0.7434
TS 0.9455 0.5774 0.7606 0.9176 0.5727 0.2859 0.2731 0.3712 0.7440
HB 0.9462 0.5748 0.7556 0.9170 0.5735 0.2549 0.2561 0.3694 0.7438
SP 0.9476 0.5777 0.7484 0.9174 0.5722 0.2632 0.2543 0.3759 0.7432
GP 0.9508 0.5750 0.7562 0.9064 0.5704 0.2593 0.2537 0.3724 0.7478

CAST-D 0.9499 0.5876 0.7473 0.9122 0.5806 0.2974 0.2808 0.3884 0.7487
CAST-L 0.9496 0.5877 0.7579 0.9181 0.5845 0.3004 0.2811 0.3834 0.7522

CPL

Baseline 0.9485 0.5827 0.7583 0.9113 0.5737 0.2650 0.2695 0.3883 0.7448
TS 0.9492 0.5752 0.7467 0.9108 0.5737 0.2912 0.2615 0.3816 0.7458
HB 0.9491 0.5768 0.7508 0.9153 0.5802 0.2837 0.2585 0.3712 0.7462
SP 0.9490 0.5794 0.7597 0.9119 0.5708 0.2620 0.2668 0.3850 0.7456
GP 0.9509 0.5710 0.7586 0.9126 0.5935 0.2609 0.2574 0.3864 0.7455

CAST-D 0.9518 0.5931 0.7656 0.9132 0.5755 0.3103 0.2849 0.3885 0.7619
CAST-L 0.9527 0.5991 0.7585 0.9133 0.5876 0.3014 0.2918 0.3872 0.7572

kc2 kc1 blood qsar-biodeg robot churn car steel Avg Rank (std)

Supervised Learning 0.5091 0.3844 0.7302 0.7291 0.9624 0.5859 0.5472 0.6762 -

FPL

Baseline 0.5182 0.3877 0.7342 0.7287 0.9633 0.6051 0.5512 0.6748 4.38(1.16)
TS 0.5109 0.3967 0.7307 0.7321 0.9633 0.5913 0.5512 0.6748 4.44(1.59)
HB 0.5105 0.3844 0.7302 0.7359 0.9635 0.5926 0.5476 0.6793 5.12(1.49)
SP 0.5181 0.3776 0.7416 0.7271 0.9639 0.6059 0.5471 0.6756 5.00(1.37)
GP 0.5084 0.3855 0.7431 0.7279 0.9624 0.5899 0.5474 0.6762 5.26(1.83)

CAST-D 0.5367 0.4131 0.7438 0.7406 0.9658 0.6204 0.5718 0.6762 2.21(1.71)
CAST-L 0.5243 0.4102 0.7436 0.7378 0.9653 0.6207 0.5637 0.6856 1.59(0.60)

CPL

Baseline 0.5226 0.4031 0.7427 0.7278 0.9630 0.6133 0.5631 0.6764 4.76(1.68)
TS 0.5124 0.3982 0.7298 0.7350 0.9630 0.5934 0.5631 0.6764 5.47 (1.40)
HB 0.5260 0.3921 0.7400 0.7386 0.9648 0.5957 0.5603 0.6785 4.53(1.75)
SP 0.5221 0.3957 0.7400 0.7281 0.9631 0.6095 0.5626 0.6774 5.00(1.08)
GP 0.5217 0.3978 0.7431 0.7309 0.9659 0.6163 0.5548 0.6805 4.41(1.94)

CAST-D 0.5553 0.4102 0.7509 0.7378 0.9660 0.6379 0.5768 0.6767 1.82(1.20)
CAST-L 0.5269 0.4025 0.7460 0.7401 0.9656 0.6327 0.5693 0.6863 2.00(0.84)
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