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Abstract

Intrinsic motivation, inspired by the psychology of developmental learning in in-
fants, stimulates exploration in agents without relying solely on sparse external
rewards. Existing methods in reinforcement learning like Random Network Distil-
lation (RND) face significant limitations, including (1) relying on raw visual inputs,
leading to a lack of meaningful representations, (2) the inability to build a robust
latent space, (3) poor target network initialization and (4) rapid degradation of intrin-
sic rewards. In this paper, we introduce Pre-trained Network Distillation (PreND),
a novel approach to enhance intrinsic motivation in reinforcement learning (RL) by
improving upon the widely used prediction-based method, RND. PreND addresses
these challenges by incorporating pre-trained representation models into both the
target and predictor networks, resulting in more meaningful and stable intrinsic
rewards, while enhancing the representation learned by the model. We also tried
simple but effective variants of the predictor network optimization by controlling
the learning rate. Through experiments on the Atari domain, we demonstrate that
PreND significantly outperforms RND, offering a more robust intrinsic motivation
signal that leads to better exploration, improving overall performance and sample
efficiency. This research highlights the importance of target and predictor networks
representation in prediction-based intrinsic motivation, setting a new direction for
improving RL agents’ learning efficiency in sparse reward environments.

1 Introduction

Reinforcement Learning (RL) has been acquired to solve many complex problems such as robot
navigation [24], stratospheric balloons navigation [3], playing Go [35]], and instruction-tuning large
language models [28l |6]; however, by definition, it relies on reward signals from the environment
which could be very cumbersome and labor-intensive to specify properly in the real-world tasks
[12]. Many tasks especially in goal-oriented settings [9] involve sparse rewards which provide weak
learning signals for the agent and result in an ambiguous understanding of the environment.

One of the methods proposed in the literature to overcome this challenge is intrinsic motivation
which is mainly inspired by the psychology and developmental learning of skills in babies [[1, [11]].
Intrinsic motivation approaches involve different methods to improve exploration, learn diverse
skills and enhance overall performance in complex environments using internally generated signals
besides the external motivations [1]. To this end, various approaches have been proposed which
could be categorized into two main groups: 1) knowledge acquisition and 2) skill learning. Knowl-
edge acquisition methods involve exploration-oriented methods based on prediction error [, state
novelty such as count-based methods [36} 29], and information gain [[L8]], or other methods based
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on empowerment [§8]] and state representation learning [26]]. On the other hand, the skill learning
category includes skill abstraction [[1534] and curriculum learning methods [33]]. Among all these
categories, prediction-based methods and count-based methods have been mostly adopted throughout
the literature due to their simplicity and promising performance [19]. However, count-based methods
are not scalable in continuous and large state spaces while prediction-based methods handle these
scenarios more efficiently [[1]].

One of the most important methods in prediction-based category is Random Network Distillation
(RND) [3] which counts as the basis of many other studies [37, 17,19} 2]]. This method derives an
intrinsic reward based on the prediction error between a random fixed function of states/observations
and a learnable predictor network with the same input. The predictor network tries to learn the output
of the fixed target network using a mean squared error objective; hence rewards the agent for visiting
unfamiliar states that has seen less during training. Although this approach reduces uncertainty about
the environment and seems suitable for exploring large state spaces, it is sensitive to target network
initialization, produces rewards with low variance, and suffers from catastrophic forgetting throughout
training 30} [19]. Recent studies [30}[19] have emphasized the shortcomings of RND. Specifically in
[30], they propose self-supervised regularization of the target network to enhance representations of
the target network. Target network representation also plays a crucial role as long-term memory keys
in overcoming catastrophic forgetting, and also in specializing ensembles of curiosity modules over
observation subspaces [19]].

In this paper, we emphasize the importance of target and predictor network representations in produc-
ing meaningful intrinsic rewards and improving the overall performance of the agent. Our analyses
reveal the shortcomings of basic RND in generating meaningful and varied intrinsic rewards. We
suggest that by changing design choices in random network distillation, network target initialization
problems and low reward variance could be resolved. We explore using pre-trained models on the
Atari domain from the recent Atari-PB benchmark [20] as part of the target network initialization,
and separate training speed for the overall policy and the predictor network to prevent its early
overfitting to target network and low reward variance. Our experiments in Atari environment suggest
effectiveness of these techniques.
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Figure 1: Effect of predictor’s learning rate on intrinsic trend and oscillation of intrinsic reward

2 Method

In this section, we present the methodology behind our proposed approach, Pre-trained Network
Distillation (PreND). As discussed, RND relies on the difference between the outputs of a target
network and a predictor network to generate intrinsic motivation. However, it has the following
problems:

1. A random target network might not represent the semantics of the input observations/states
in producing the intrinsic reward. This might happen due to poor latent space modeling
in a random network. Similar observations might scatter through the latent space while
different observations could be mapped to closer latent points. This can confuse the predictor
and produce false surprise signals. We calculated the correlation between intrinsic rewards



difference and state embedding distance for RND. The resulting number (= 0.39 on the scale
of [—1, 1]) indicates a weak correlation [14]], leaving room for improvement (See Appendix
Figure [3 for visualizations). Indeed, several parts of the state space might be far apart (high
embedding distance) yet yield similar intrinsic rewards, breaking the correlation. This issue
underscores the objective of using richer representations, which can better distinguish states
in terms of similarity, addressing the limitations of RND’s less structured latent space.

2. The intrinsic reward drops quickly after very few initial iterations, leading to poor reward
variance (Figure [I). Similar rewards make it more difficult for the agent to discriminate
between states while the whole point of prediction-based intrinsic reward is to help the agent
visit under-explored states by giving it relatively considerable rewards. Previous research has
noted that the lack of variance in the predictor’s output leads to a diminished motivational
signal [30]], primarily due to the predictor network’s very fast adaptation to the frozen target
model. This rapid adaptation occurs much faster than the policy can learn, causing the
intrinsic motivation to diminish too quickly, preventing the agent from gathering sufficient
data to effectively train its policy. While Figure[T|shows the batch-average intrinsic reward
rather than direct variance, it serves as a proxy to understand the overall trend in reward
variance across states. A consistently low batch-average reward likely indicates low variance
in intrinsic rewards, indicating that the predictor network quickly converges to mimicking
the target network, thereby reinforcing our conclusion.

To this end, we propose PreND, consisting of the following techniques to improve the abovementioned
weaknesses:

Pre-trained Feature Extractor: Using pre-trained models for the target network, we can improve the
fixed random target network problem. These models can provide a meaningful latent representation
space that captures the underlying structure of observations and induces relatively suitable prediction
errors among observations/states. This approach could also enhance the robustness of networks
against noisy observations and distractor objects by relying on meaningful learned representations.

More specifically, in our experiments on the Atari environment, we propose to use the domain-specific
pre-trained backbone model from the Atari-PB benchmark to extract high-level representations. We
then employed a randomly initialized network, similar to the neck model architecture from Atari-PB
(a transformer-based random fixed network), as the target network, while a similar learnable model
was selected for the predictor. This ensures that the predictor and target are complex enough to
understand meaningful features of the input, and the predictor is capable of modeling the output of
the target network (See Appendix [C|for more information).

Our target network maintains the crucial property of keeping distant frames far apart in latent space
while bringing consecutive frames closer. Unlike RND, where the predictor also had to learn the
spatial and temporal features, PreND ensures that the predictor focuses solely on predicting the
reward, resulting in a more robust motivational signal.

Slower Predictor Optimization: To alleviate the fast degradation of intrinsic reward, we suggest
lowering the optimization speed in the predictor network. Normally, RND uses the same optimizer
for both predictor and value/policy heads. Since fitting RL components are known to be more
sample-inefficient compared to supervised tasks, an equal optimization speed increases the chance of
collapse in intrinsic reward. By changing the pace via learning rate, similar to previous studies [22],
we hope to improve intrinsic reward patterns during training.

To summarize, our experiments demonstrate that PreND outperforms RND by providing a richer
representation of the input throughout the training, leading to better correlation between changes
in input and changes in reward. This alignment is critical for prediction-based intrinsic motivation
methods, and PreND offers an effective solution for addressing the limitations of RND.

3 Experiments

We evaluated our approach on two Atari environments: Boxing, and Riverraid (See Appendix
Figure [d). These environments were chosen because they share several characteristics that are
particularly relevant to our study. Each game contains highly irrelevant features, such as detailed
backgrounds, which our pre-trained representation model should ideally ignore. Moreover, the objects
in these games are relatively large, which provides a more favorable setting for RND to compete



fairly. In contrast, RND’s performance typically suffers in environments with small moving objects,
like the ball in Pong [[19]], as its random target network struggles to capture the subtle movements.
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Figure 2: Game score comparison on Boxing and Riverraid. PreND works better in the low data
regimes, showing its sample efficiency. It is also the best model among the settings at the end of the
training steps.

For each environment, we ran our experiments with two different seeds and eight parallel episodes,
and compared the following three models:

* RND[3]: This was our main competitor, offering a prediction-based intrinsic reward to drive
exploration. RND utilizes CNNs as the predictor and target networks.

* RND + LR: A variant of RND where we adjusted the learning rate to prevent the predictor
network from overcoming the target network. We consider a separate optimization process
for fitting the predictor network and multiply its learning rate by 0.01. In traditional RND,
the learning rate of both the target and predictor networks is the same, which can lead to
the predictor network quickly overpowering the target network and learning it too fast. To
address this issue, reducing the learning rate of the predictor network relative to the target
network was our initial step in modifying the traditional RND.

* PreND: Our proposed method, leverages a pretrained representation model for intrinsic
reward generation. We use the pre-trained ResNet-50 backbone and SiamMAE neck from
Arati-PB [20] as the target and predictor network structure. Backbone (which is pre-trained
on several Atari games) retains its pre-trained weights and acts as a feature encoder for
observations. We randomly initialize the neck for both the target and predictor networks
to prevent game-specific bias of the pre-trained weights. The intrinsic reward in calculated
over the neck’s output with a size of 512, as in RND.

During our experimentation, we also explored several modifications and variants aimed at further im-
proving RND. These included reducing the capacity of the predictor network by removing additional
layers and incorporating techniques such as spectral normalization (commonly used in GAN variants
[25]) to the predictor hoping to make its learning process slower and improve the intrinsic reward
variance. However, none of these modifications led to improvements. The main results have been
shown in Figure 2]

4 Conclusion

In this paper, we introduced Pre-trained Network Distillation, or PreND for short, a novel approach
to improving intrinsic motivation in reinforcement learning by leveraging pre-trained representation
models. Through experiments in Atari games, we demonstrated that PreND performs better than both
Random Network Distillation (RND) and a variant of RND with a modified learning rate. While the
modified RND showed improvements over the baseline by addressing some of the RND’s inherent
issues, PreND’s use of richer input representations and pre-trained models seems even more effective.
The stable and informative reward signal generated by PreND allowed for better exploration and



learning efficiency, confirming that target and predictor network representations play a critical role in
producing meaningful intrinsic rewards.

Our results suggest the probable benefits of PreND in the Atari domain, but future work could extend
it to more complex environments like DMLab or robotics and explore its use with model-based RL
algorithms in more extensive trials. Additionally, experimenting with lighter pre-trained models, such
as ResNet-18 instead of ResNet-50, could offer more computational efficiency while maintaining
effectiveness.

Our approach employs a domain-specific pretrained model to extract high-level representations,
and we acknowledge that this introduces a domain-specific prior. While this may seem to give an
advantage over RND, the primary aim here is to address the intrinsic limitations of RND’s random
latent space and demonstrate the potential of better-structured representations. For future work,
task-agnostic or domain-agnostic pretraining methods (e.g., self-supervised learning) could make the
approach more generalizable.
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(a) Pairwise intrinsic reward difference heatmap (b) Pairwise observation distance heatmap

Figure 3: Heatmaps of pairwise training variables; The correlation between these two is =~ 0.39 on
the scale of [—1,1]. X and Y axes are both the number of training iterations. In both a) and b), the
brighter cells indicate higher values (More distance). While prediction-based methods like RND
aim to generalize state-novelty by associating similar states with lower prediction errors, we observe
that there is no strong relation between the input states RND processes and the intrinsic rewards it
produces. This suggests limitations in how RND models and utilizes state similarities in its latent
space.

A Related Work

Intrinsic motivation aims to improve exploration at every timestep. Exploration in learning agents
helps them acquire various skills required to accomplish diverse tasks [7]]. Intrinsic motivation in



reinforcement learning is inspired by the psychology and developmental learning of skills in babies
and helps tackle several RL challenges such as sparse rewards [3]], representation learning [4],
skill learning [15} [34], and curriculum learning [16]. There are different approaches to improving
exploration using intrinsic motivation which mainly include count-based [36}13]] and prediction-based
auxiliary rewards [3 [19][T7, 2]. Count-based approaches are unsuitable for large or continuous state
spaces. Some studies try using pseudo-counts and neural density modules to alleviate the scalability
problem in count-based methods [27, 21 23]]. On the other hand, prediction-based approaches which
are mainly represented by RND [55] could suffer from inappropriate target network initialization,
high surprise variance, and early degradation of surprise overtime [30]. In [30], the authors propose
improving target network weights using self-supervised regularization techniques. Another approach
might rely on using pre-trained representations in the target network. Such representations are
abundantly available for various real-world tasks employing large pre-trained vision models [31},10].
Also in more narrow environments such as Atari, domain-specific pre-trained models [20] offer a
chance to examine this hypothesis in the context of prediction-based models such as RND. In this
study, we incorporate ResNet-based backbone networks in prediction and target networks to improve
the quality of surprise.

B Experiments Details

We have used the codebase from [[19] to run RND and implemented our method on top of it using the
codebase of [20]. We ran our reported experiments on two Nvidia GeForce RTX 3090 GPUs and
each run took nearly 24 hours.

C Model Architecture

Backbone: The backbone network is a spatial feature extractor, independent of the game, based
on ResNet-50 with group normalization. It processes a (4, 84, 84) input and outputs a (2048, 6, 6)
feature map, encoding essential features as the input of the target and predictor network of PreND.

Neck: The neck transforms the feature map from the backbone into a 512-dimensional vector by
applying spatial pooling, instance normalization, and a 2-layer MLP. It includes game-specific spatial
embedding. In the SiamMAE, the output from the neck is further processed by the transformer
decoder, which uses cross-attention between the current and masked future frames to reconstruct the
image. As [32] said, the transformers maintain the linear property; which is important to ensure that
the model keeps the similar frames close to each other in the latent space and the dissimilar ones far
from each other.
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Figure 4: Atari games
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