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ABSTRACT

We introduce a highly performant 3D object detector for point clouds using the
DETR framework. The prior attempts all end up with suboptimal results because
they fail to learn accurate inductive biases from the limited scale of training data.
In particular, the queries often attend to points that are far away from the target
objects, violating the locality principle in object detection. To address the lim-
itation, we introduce a novel 3D Vertex Relative Position Encoding (3DV-RPE)
method which computes position encoding for each point based on its relative
position to the 3D boxes predicted by the queries in each decoder layer, thus pro-
viding clear information to guide the model to focus on points near the objects,
in accordance with the principle of locality. Furthermore, we have systematically
refined our pipeline, including data normalization, to better align with the task re-
quirements. Our approach demonstrates remarkable performance on the demand-
ing ScanNetV2 benchmark, showcasing substantial enhancements over the prior
state-of-the-art CAGroup3D. Specifically, we achieve an increase in AP25 from
75.1% to 77.8% and in AP50 from 61.3% to 66.0%.

1 INTRODUCTION

Figure 1: The left column shows the 3D scans from the Scan-
NetV2 in the rear/front/top-down view. We display one of the
ground-truth bounding boxes with a green 3D box. The middle col-
umn shows the decoder cross-attention map based on plain DETR.
Attention weights are distributed over many positions even out-
side the ground-truth box. The right column shows the decoder
cross-attention map based on plain DETR + 3DV-RPE. Attention
weights focus on the sparse object boundaries of the object located
in the ground-truth bounding box. The color indicates the attention
values: yellow for high and blue for low.

3D object detection from point clouds
is a challenging task that involves
identifying and localizing the objects
of interest present in a 3D space. This
space is represented using a collec-
tion of data points that have been
gleaned from the surfaces of all ac-
cessible objects and background in
the scene. The task has significant
implications for various industries,
including augmented reality, gaming,
robotics, and autonomous driving.

Transformers have made remarkable
advancement in 2D object detec-
tion, serving as both powerful back-
bones (Vaswani et al., 2017; Liu
et al., 2021a) and detection architec-
tures (Carion et al., 2020). How-
ever, their performance in 3D detec-
tion (Misra et al., 2021) is signifi-
cantly worse than the state-of-the-art
methods. Our in-depth evaluation of
3DETR (Misra et al., 2021) revealed
that the queries often attend to points that are far away from the target objects (Figure 1 (b) shows
three typical visualizations), which violates the principle of locality in object detection. The prin-
ciple of locality dictates that object detection should only consider subregions of data that contain
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the object of interest and not the entire space. Besides, the behavior is also in contrast with the
success that Transformers have achieved in 2D detection, where they have been able to effectively
learn the inductive biases, including locality. We attribute the discrepancy to the limited scale of
training data available for 3D object detection, making it difficult for Transformers to acquire the
correct inductive biases.

In this paper, we present a simple yet highly performant method for 3D object detection using the
transformer architecture DETR (Carion et al., 2020). To improve locality in the cross-attention
mechanism, we introduce a novel 3D Vertex Relative Position Encoding (3DV-RPE) method. It
computes a position encoding for each point based on its relative offsets to the vertices of the pre-
dicted 3D boxes associated with the queries, providing clear positional information such as whether
each point is inside the boxes. This information can be utilized by the model to guide cross-attention
to focus on points inside the box, in accordance with the principle of locality. The prediction of these
boxes is consistently refined as the decoder layers progress, resulting in increasingly accurate posi-
tion encoding.

To mitigate the impact of object rotation, we propose to compute 3DV-RPE in a canonical object
space where all objects are consistently rotated. Particularly, for each query, we predict a rotated
3D box and compute the relative offsets between the 3D points rotated in the same way, and the
eight vertices of the box. This results in consistent position encoding for different instances of the
same object regardless of their positions or orientations in the space, greatly facilitating the learning
of the locality property in cross-attention even from limited training data. Figure 1 (c) visualizes
the attention weights obtained by our method. We can see that the query for detecting the chair
nicely attends to the points on the chair. Our experiment demonstrates that 3DV-RPE boosts the
performance.

We also systematically enhance our pipeline from various aspects such as data normalization and
network architectures based on our understanding of the task. For example, we propose object-
based normalization, instead of the scene-based one used by the DETR series, to parameterize the
3D boxes. This is because the former is more stable for point clouds which differs from 2D detection
where the sizes of the same object in images can be very different depending on the camera param-
eters, impelling them to use image size to coarsely normalize the boxes. Besides, we also evaluate
and adapt some of the recent advancement in 2D DETR.

We conduct thorough experiments to empirically show that our simple DETR-based approach sig-
nificantly outperforms the previous state-of-the-art fully convolutional 3D detection methods, which
helps to accelerate the convergence of the detection head architecture design for 2D and 3D detection
tasks. We report the results of our approach on two challenging indoor 3D object detection bench-
marks including ScanNetV2 and SUN RGB-D. Overall, compared to the DETR baseline (Misra
et al., 2021), our method with 3DV-RPE improves AP25/AP50 from 65.0%/47.0% to 77.8%/66.0%,
respectively, and reduces the training epochs by 50%. Particularly, on ScanNetV2, our approach
outperforms the very recent state-of-the-art CAGroup3D (Wang et al., 2022a) by +2.7%/+4.7%
measured by AP25/AP50, respectively.

2 RELATED WORK

DETR-based Object Detection. DETR (Carion et al., 2020) is a groundbreaking work that applies
transformers (Vaswani et al., 2017) to 2D object detection, eliminating many hand-designed compo-
nents such as non-maximum suppression (Neubeck & Van Gool, 2006) or anchor boxes (Girshick,
2015; Ren et al., 2015; Lin et al., 2017; Liu et al., 2016). Many extensions of DETR have been pro-
posed (Meng et al., 2021; Gao et al., 2021; Dai et al., 2021; Wang et al., 2021; Jia et al., 2022; Zhang
et al., 2022), such as Deformable-DETR (Zhu et al., 2020), which uses multi-scale deformable atten-
tion to focus on key sampling points and improve performance on small objects. DAB-DETR (Liu
et al., 2022) introduces a novel query formulation to enhance detection accuracy. Some recent
works (Li et al., 2022; Zhang et al., 2022; Jia et al., 2022; Chen et al., 2022) achieve state-of-the-
art results on object detection by using query denoising or one-to-many matching schemes, which
addressed the training inefficiency of one-to-one matching. H-DETR (Jia et al., 2022) shows that
one-to-many matching can also speed up convergence on 3D object detection tasks. Following the
DETR-based approach, GroupFree (Liu et al., 2021b) and 3DETR (Misra et al., 2021) built strong
3D object detection systems for indoor scenes. However, they are still inferior to other methods
such as CAGroup3D (Wang et al., 2022a). In this work, we propose several critical modifications
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(a) voxelized sparse input (b) Voting-based method (c) Expansion-based method (d) DETR-based method

Figure 2: (a) A simplified sparse 3D voxel space from a top-down perspective. The curve shows the input
surface and the small cubes show the voxelized input. The gray five-pointed star8shows the object’s center.
(b) The voting scheme estimates offsets for each voxel and we color the voxels (nearer to the object’s center)
with yellow after voting. The dashed small cubes show the empty space after voting. (c) The generative
sparse decoder (GSD) scheme enlarges the voxels around the surfaces, thus creating new voxels both inside
and outside of the object (marked with yellow cubes). (d) The DETR-based approach simply selects a small set
of voxels (marked with yellow cubes) as the initial object query and iteratively predicts the boxes by refining
(marked with the open yellow circles) the object query with multiple Transformer decoder layers. We follow
the DETR-based path in this work.

to improve the DETR-based methods and achieve new records on two indoor 3D object detection
tasks.

3D Indoor Object Detection. We revisit the existing indoor 3D object detection methods that
directly use raw point clouds to detect 3D boxes. We categorize them into three types based on
their strategies: (i) Voting-based methods, such as VoteNet (Qi et al., 2019), MLCVNet (Xie et al.,
2020) and H3DNet (Zhang et al., 2020), use a voting mechanism to shift the surface points toward
the object centers and group them into object candidates. (ii) Expansion-based methods, such as
GSDN(Gwak et al., 2020), FCAF3D(Rukhovich et al., 2022), and CAGroup3D(Wang et al., 2022a),
which generate virtual center features from surface features using a generative sparse decoder and
predict high-quality 3D region proposals. (iii) DETR-based methods, unlike these two types that
require modifying the original geometry structure of the input 3D point cloud, we adopt the DETR-
based approach (Liu et al., 2021b; Misra et al., 2021) for its simplicity and generalization ability.
Our experiments show that DETR has great potential for indoor 3D object detection. We show the
differences between above-mentioned methods in Figure 2.

3D Outdoor Object Detection. We briefly review some methods for outdoor 3D object detec-
tion (Yan et al., 2018; Zhou & Tuzel, 2018; Lang et al., 2019; Yin et al., 2021), which mostly trans-
form 3D points into a bird-eye-view plane and apply 2D object detection techniques. For example,
VoxelNet (Zhou & Tuzel, 2018) is a single-stage and end-to-end network that combines feature
extraction and bounding box prediction. PointPillars (Lang et al., 2019) uses a 2D convolution neu-
ral network to process the flattened pillar features from a Bird’s Eye View (BEV). CenterPoint (Yin
et al., 2021) first detects centers of objects using a keypoint detector and regresses to other attributes,
then refines them using additional point features on the object. However, these methods still suffer
from center feature missing issues, which FSD (Fan et al., 2023b) tries to address. We plan to extend
our approach to outdoor 3D object detection in the future, which could unify indoor and outdoor 3D
detection tasks.

3 OUR APPROACH

3.1 BASELINE SETUP

Pipeline. We build our V-DETR baseline following the previous DETR-based 3D object detection
methods (Misra et al., 2021; Liu et al., 2021b). The detailed steps are as follows: given a 3D point
cloud I∈RN×6 sampled from a 3D scan of an indoor scene, where the RGB values are in the first 3
dimensions and the position XYZ values are in the last 3 dimensions. We first sample about ∼40K
points from the original point cloud that typically has around ∼200K points. Second, we use a
feature encoder to process the raw sampled points and compute the point features F∈RM×C. Third,
we construct a set of 3D object queries Q∈RK×C send them into a plain Transformer decoder to
predict a set of 3D bounding boxes B∈RK×D. We set K = 1024 by default. Figure 3 shows the
overall pipeline. We present more details on the encoder architecture design, the 3D object query
construction, the Hungarian matching, and loss function formulations as follows.

Encoder architecture. We choose two different kinds of encoder architecture for experiments in-
cluding: (i) a PointNet followed by a shallow Transformer encoder adopted by Misra et al. (2021)
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or (ii) a sparse 3D modification of ResNet34 followed by an FPN neck adopted by Rukhovich et al.
(2022), where we replace the expensive generative transposed convolution with a simple transposed
convolution within the FPN neck.

Figure 3: Illustrating the overall framework of V-DETR for 3D ob-
ject detection. We first use an encoder to extract 3D features, and then
we use a plain Transformer decoder to estimate the 3D object queries
from a set of initialized 3D object queries. In the Transformer decoder
multi-head cross-attention layer, we use a 3D vertex relative position en-
coding scheme for both locality and accurate position modeling.

3D object query. We construct
the 3D object query by combin-
ing two kinds of representations
as follows: first, we simply sam-
ple a set of K initial center po-
sitions over the entire encoder
output space and select their rep-
resentations to initialize a set of
3D content query Qc. Then we
use their XYZ coordinates in the
input point cloud space to com-
pute the 3D position query Qp

with a simple MLP consisting
of two linear layers. We build the 3D object query by adding the 3D position query to the 3D
content query.

Hungarian matching and loss function. We choose the weighted combination of six terms in-
cluding the bounding box localization regression loss, angular classification and regression loss,
and semantic classification loss as the final matching cost functions and training loss functions. We
illustrate the mathematical formulations as follows:

LDETR = −λ1GIoU(b̂,b) + λ2Lcenter(ĉ, c) + λ3Lsize(ŝ, s)

−λ4FL(p̂[l]) + λ5Lhuber(âr,ar) + λ6CE(âc,ac),

where we use b̂, ĉ, ŝ, p̂, â (or b, c, s, l, a) to represent the predicted (or ground-truth) bounding
box, box center, box size, classification score, and rotation angle respectively, e.g., l represents the
ground-truth semantic category of b. CE represents angle classification cross entropy loss and Lhuber
represents the residual continuous angle regression loss. FL represents semantic classification focal
loss.

Object-normalized box parameterization. We propose an object-normalized box reparameteri-
zation scheme that differs from the original DETR (Carion et al., 2020), which normalizes the box
predictions by the scene scales. We account for one key discrepancy between object size variation
in 2D images and 3D point clouds, e.g., a chair’s 2D box size may change depending on its distance
to the cameras, but its 3D box size should remain consistent as the point cloud captures the real 3D
world. In the implementation, we simply reparameterize the prediction target of width and height
from the original groud-truth bh and bw to bh/b̂

l−1
h and bw/b̂

l−1
w , where b̂l−1

h and b̂l−1
w represent

the coarsely predicted box height and width.

3.2 3DV-RPE IN CANONICAL OBJECT SPACE

Position Encoding (PE) is crucial for enhancing the ability of transformers to comprehend the spatial
context of the tokens. The appropriate PE strategy depends on tasks. For 3D object detection, where
geometry features are the primary focus, it is essential for PE to encode rich semantic positions for
the points, whether they are on/off the 3D shapes of interest.

To that end, we present 3D Vertex Relative Position Encoding (3DV-RPE), a novel solution specif-
ically tailored for 3D object detection within the DETR framework. We modify the global plain
Transformer decoder multi-head cross-attention maps as follows:

Â = Softmax(QKT + R), (1)
where Q and K represent the sparse query points and dense key-value points, respectively. R rep-
resents the position encoding computed by our 3DV-RPE that carries accurate position information.

3DV-RPE. Our key insight is that, encoding a point by its relative position to the target object,
which is coarsely represented by a box, is sufficient for 3D object detection. It is computed as
follows:

Pi = MLPi(F(∆Pi)), (2)
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where ∆Pi ∈ RK×N×3 denotes the offsets between the N points and the i-th vertex of the K boxes
and Pi ∈ RK×N×h represents the relative position bias term. h is the number of heads. F(·) is
a non-linear function. We will evaluate several alternatives for F(·) in the experiments. MLPi

represents an MLP based transformation that first projects the features to a higher dimension space,
and then to the output features of dimension h. We obtain the final relative position bias term by
adding the bias term of the eight vertices, respectively:

R =

8∑
i=1

Pi, (3)

where R, encodes the relations between the 3D boxes and the points. In the subsequent section, we
will introduce how we compute ∆Pi with the aid of the boxes predicted at current layer.

∆x

∆y
∆
xθ

x

y

xθy θ

∆
yθ

θ

Figure 4: Canonical object space trans-
formation for 3DV-RPE. The rectangle
represents the box of the object, which de-
fines an object coordinate system. The green
line represents the offset from a point to the
box vertex. The offset transformed to the ob-
ject coordinate system is (∆xθ,∆yθ) where
the exact values can be geometrically rea-
soned. Since there is no rotation along the
z-axis on the current datasets, we only show
the changes in the x-y plane.

Canonical Object Spaces. It is worth noting that the
direction of the offsets are dependent on the definition of
the world coordinate system and the object orientation,
which complicates the learning of semantic position en-
coding. To address the limitation, we propose to trans-
form it to an object coordinate system defined by the ro-
tated bounding box. As illustrated in Figure 4, an offset
vector in the world coordinate system can be transformed
to the object coordinate system (xθ, yθ) following:[

∆xθ

∆yθ
∆zθ

]
=

[
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

]T [
∆x
∆y
∆z

]
= RT

θ ∆p, (4)

where ∆p is an element of ∆Pi. We use the other trans-
formations in Equation 2 and Equation 3 to get the final
normalized relative position bias item that models the ro-
tated 3D bounding box position information. We perform
3DV-RPE operations for different Transformer decoder
layers by default.We have observed that the canonical co-
ordinate transformation bears resemblance to our earlier
examination of Point-RCNN (Shi et al., 2019). In both
instances, the bounding box undergoes a transformation
into a canonical object space. However, a significant dif-
ference lies in the objectives of the canonical operation.
In Point-RCNN, the objective is to achieve precise refine-
ment by transforming the points contained within the 3D bounding box proposals. Conversely, our
primary focus is on transforming the offset vectors to align with the object coordinate system.

Efficient implementation. A naive implementation has high GPU memory consumption due to
the large number of combinations between the object queries (each object query predicts a 3D
bounding box) and the key-value points (output by the encoder), which makes it hard to train and
deploy.

To solve this challenge, we use a smaller pre-defined 3DV-RPE table of shape: T ∈ R10×10×10,
which represents a discretized set of possible F(∆Pi) that we interpolate into. Detailed information
about 3DV-RPE table settings can be found in Appendix D. We do volumetric (5-D) grid sample
on the transformed 3DV-RPE table as follows:

Pi = grid sample(MLPi(T), F(∆Pi)). (5)

3.3 DETR WITH 3DV-RPE

Framework. We extend the original plain Transformer decoder, which consists of a stack of decoder
layers and was designed for 2D object detection, to detect 3D bounding boxes from the irregular
3D points. Our approach has two steps: (i) as the first decoder layer has no access to coarse 3D
bounding boxes, we employ a light-weight FFN to predict the initial 3D bounding boxes and feed
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the top confident ones to the first Transformer decoder layer (e.g., {θ0, x0, y0, z0, w0, l0, h0}); and
(ii) we update the bounding box predictions with the output of each Transformer decoder layer and
use them to compute the modulation term in the multi-head cross-attention.

Figure 5: Illustration of the proposed V-DETR
framework. We mark the modifications with
yellow-colored regions and the other components,
that are designed following the plain DETR, with
gray-colored regions.

Figure 5 illustrates more details of the DETR with
3DV-RPE. For instance, we employ only the 3D
content query Qc as the input for the first de-
coder layer and use the decoder output embeddings
Qi−1 from the (i − 1)-th decoder layer as the in-
put for the i-th decoder layer. We also apply MLP
projects to compute the absolute position encod-
ings of the 3D bounding boxes by default. We set
the number of decoder layers as 8 following Misra
et al. (2021). We predict the 3D bounding box
delta target based on the initial prediction such as
{θ0, x0, y0, z0, w0, l0, h0} in all the Transformer de-
coder layers.

Visualization. Figure 6 shows the relative position
attention maps learned with the 3DV-RPE scheme.
We show the attention maps for 8 vertices in the first
4 columns and the merged ones in the last column.
The visualization results show that (i) our 3DV-RPE
can enhance the inner 3D box regions relative to
each vertex position and (ii) combining the eight rel-
ative position attention maps can accurately localize
the regions within the bounding box. We also show
that 3DV-RPE can localize the extremity positions
on the 3D object surface in the experiments.

4 EXPERIMENT

4.1 DATASETS AND METRICS

Datasets. We evaluate our approach on two chal-
lenging 3D indoor object detection benchmarks including:

ScanNetV2 (Dai et al., 2017): ScanNetV2 consists of 3D meshes recovered from RGB-D videos
captured in various indoor scenes. It has about 12K training meshes and 312 validation meshes,
each annotated with semantic and instance segmentation masks for around 18 classes of objects. We
follow Qi et al. (2019) to extract the point clouds from the meshes.

SUN RGB-D (Song et al., 2015): SUN RGB-D is a single-view RGB-D image dataset. It has about
5K images for both training and validation sets. Each image is annotated with oriented 3D bounding
boxes for 37 classes of objects. We follow VoteNet (Qi et al., 2019) to convert the RGB-D image
to the point clouds using the camera parameters and evaluate our approach on the 10 most common
classes of objects.

Metrics. We report the standard mean Average Precision (mAP) under different IoU thresholds,
AP25 for 0.25 IoU threshold and AP50 for 0.5 IoU threshold.

4.2 IMPLEMENTATION DETAILS

Training. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with the base learning rate
7e-4, the batch size 8, and the weight decay 0.1. The learning rate is warmed up for 9 epochs, then
is dropped to 1e-6 using the cosine schedule during the entire training process. We use gradient
clipping to stabilize the training. We train for 360 epochs on ScanNetV2 and 240 epochs on SUN
RGB-D in all experiments except for the system-level comparisons, where we train for 540 epochs
on ScanNetV2. We use the standard data augmentations including random cropping (at least 30K
points), random sampling (100K points), random flipping (p=0.5), random rotation along the z-axis
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Figure 6: Visualizing the learned spatial attention maps based on 3DV-RPE. We use the small red-colored
cube to represent the 3D bounding box of an object, the red five-pointed star to mark the eight vertices, and
the entire colored cube as the input scene for simplicity. We average each Pi along head dimension according
to Equation 2 and visualize eight vertices’ learned spatial cross-attention maps (from column#1 to column#4).
We visualize the merged spatial attention maps in column#5 (from the cutaway view). The color indicates the
attention values: yellow for high and blue for low. We can observe that (i) the learned spatial attention maps of
each vertex can enhance the regions along the internal direction starting from each vertex position, and (ii) the
combined spatial attention maps can accurately enhance the internal regions inside the red-colored cubes.

(-5◦, 5◦), random translation (-0.4, 0.4), random scaling (0.6, 1.4). We also use the one-to-many
matching (Jia et al., 2022) to speed up the convergence speed with more rich and informative positive
samples.

Inference. We process the entire point clouds of each scene and generate the bounding box pro-
posals. We use 3D NMS to suppress the duplicated proposals in the one-to-many matching setting,
which is not needed in the one-to-one matching setting. We also use test-time augmentation, i.e.,
flipping, by default unless specified otherwise.

4.3 ANALYSIS OF PERFORMANCE ENHANCEMENTS BY 3DV-RPE

Table 1: Effect of the position encoding method
choices. Numbers in () represent results without TTA

position encoding method #epochs AP25 AP50

None (Our Baseline) 360 68.8(67.9) 44.5(43.5)

3D box mask 360 74.0(72.9) 59.1(58.3)

3DV-RPE 360 76.7(76.2) 65.0(64.2)

3D box mask + 3DV-RPE 360 76.0(75.3) 62.7(61.5)

None (Our Baseline) 540 71.4(70.6) 47.6(46.7)

3D box mask 540 75.1(74.2) 60.8(59.6)

3DV-RPE 540 77.8(77.4) 66.0(65.0)

3D box mask + 3DV-RPE 540 77.0(76.5) 63.5(62.4)

Table 2: Implementation of 3DV-RPE on 3DETR.

method #epochs AP25 AP50

3DETR 1080 65.0 47.0

3DETR + 3DV-PRE 1080 71.2 60.8

Table 3: Implementation of 3DV-RPE on Group-
Free.

method #epochs AP25 AP50

Group-Free 400 69.1 52.8

Group-Free + 3DV-PRE 400 72.8 62.1

Different position encoding methods. Table 1 compares our 3DV-RPE on ScanNetV2 with another
position encoding method – 3D box mask, which sets the relative position encoding term to −∞
for positions outside the 3D bounding box and 0 otherwise. The first and fourth rows essentially
display the results of our baseline settings, which have been augmented with various additional
enhancements introduced in the section 3.1. The results show that (i) the 3D box mask method
achieves strong results on AP25, and (ii) our 3DV-RPE significantly improves over the 3D box
mask method on AP50. We speculate that our 3DV-RPE performs better because the 3D box mask
method suffers from error accumulation from the previous decoder layers and cannot be optimized
end-to-end. We also report the results of combining the 3D box mask and 3DV-RPE, which performs
better than the 3D box mask scheme but worse than our 3DV-RPE. This verifies that our 3DV-RPE
can learn to (i) exploit more accurate geometric structure information within the 3D bounding box
and (ii) benefit from capturing useful long-range context information outside the box. Moreover, we
report the results with longer training epochs and observe that the gap between the 3D box mask and
3DV-RPE remains, thus further demonstrating the advantages of our approach.
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Table 4: System-level comparison with the state-of-the-art on ScanNetV2 and SUN RGB-D. TTA: test-time
augmentation. * denotes using additional self-supervised pre-training. ** denotes using extra training data.

Method
ScanNetV2 SUN RGB-D

AP25 AP50 AP25 AP50

3DETR (Misra et al., 2021) 65.0 47.0 59.1 32.7

Group-Free (Liu et al., 2021b) 69.1 52.8 63.0 45.2

AShapeFormer (Li et al., 2023) 71.1 56.6 62.2 −
FCAF3D (Rukhovich et al., 2022) 71.5 57.3 64.2 48.9

OctFormer (Wang, 2023) − − 66.2 50.6

Uni3DETR (Wang et al., 2023) 71.7 58.3 67.0 50.3

ConDaFormer (Duan et al., 2023) − − 67.1 49.9

TR3D (Rukhovich et al., 2023) 72.9 59.3 67.1 50.4

Point-GCC* (Fan et al., 2023a) 73.1 59.6 67.7 51.0

CAGroup3D (Wang et al., 2022a) 75.1 61.3 66.8 50.2

SWIN3D + CAGroup3D** (Yang et al., 2023) 76.4 63.2 − −
V-DETR 77.4 65.0 67.5 50.4

V-DETR (TTA) 77.8 66.0 68.0 51.1

Average Results under 25× trials

Group-Free (Liu et al., 2021b) 68.6 51.8 62.6 44.4

FCAF3D (Rukhovich et al., 2022) 70.7 56.0 63.8 48.2

TR3D (Rukhovich et al., 2023) 72.0 57.4 66.3 49.6

CAGroup3D (Wang et al., 2022a) 74.5 60.3 66.4 49.5

ConDaFormer (Duan et al., 2023) − − 66.8 49.5

V-DETR 76.8 64.5 66.8 49.7

V-DETR (TTA) 77.0 65.3 67.5 50.0

Implementation of 3DV-RPE on other baselines. In order to verify the universality and useful-
ness of 3DV-RPE, we implement our method on other baselines, such as 3DETR (Misra et al., 2021)
and Group-Free (Liu et al., 2021b).The comparative analysis, as illustrated in Table 2 and Table 3,
demonstrates the performance impact of integrating 3DV-RPE on the ScanNetV2 benchmark under
equitable conditions. It is evident from the results that the incorporation of our 3DV-RPE signifi-
cantly improves performance, notably in AP50, in different baselines.

More analyses. We offer additional comparative analyses between our 3DV-RPE with absolute
position encoding methods and other advanced attention modulation methods, to substantiate the
superiority of our approach.The detailed results of these comparisons are accessible in Appendix C.

4.4 COMPARISONS WITH PREVIOUS SYSTEMS

In Table 4, we compare our method with the state-of-the-art methods of most recent works at the
system level, and a more detailed comparison with more previous work can be found in Appendix B.
These methods use different techniques, so we cannot compare them in a controlled way. According
to the results, we show that our method performs the best, either measured by the highest perfor-
mance or the average results under multiple trials. For example, on ScanNetV2 val set, our method
achieves AP25=77.8% and AP50=66.0%, which surpasses the latest state-of-the-art SWIN3D + CA-
Group3D (Yang et al., 2023) that reports AP25=76.4% and AP50=63.2% while SWIN3D requires
additional data for pertaining. Notably, on ScanNetV2, we observe more significant gains on AP50

(+2.8%) that requires more accurate localization, i.e., under a higher IoU threshold. We also observe
consistent gains on both AP25 and AP50 on SUN RGB-D.

4.5 3DV-RPE ABLATION EXPERIMENTS

We conduct all the following ablation experiments on ScanNetV2 and trained with 360 epochs for
efficiency, except for the ablation experiments on the coordinate system, where we report the results
on SUN RGB-D.

Number of vertex. Table 5 shows the effect of different numbers of vertices for computing the
relative position bias term. The results show that using 8 vertices performs the best, so we use this
setting by default. We attribute their close performances to the fact that they essentially share the
same minimal and maximal XYZ values when using fewer vertices such as 2 or 4, which is caused
by the zero rotation angles on ScanNetV2.
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Table 5: Effect of the number of vertex within 3DV-
RPE.

# vertex AP25 AP50

1 73.4 54.8

2 76.1 63.1

4 76.3 63.4

8 76.7 65.0

Table 6: Effect of non-linear transform within 3DV-
RPE.

F(·) AP25 AP50

F(x) = x 69.6 48.2

F(x) = x/(1 + |x|) 76.0 62.6

F(x) = tanh(x) 76.3 62.6

F(x) = x/
√
1 + x2 76.6 63.0

F(x) = sign(x) log(1 + |x|) 76.7 65.0

Table 7: Effect of the coordinate system on SUN
RGB-D.

coordinate system AP25 AP50

world coord. 65.8 46.9

object coord. 68.0 51.1

Table 8: Effect of the object-normalized box param-
eterization.

object-normalize AP25 AP50

% 74.9 61.1

! 76.7 65.0

Non-linear transform. Table 6 shows the effect of different non-linear transform functions. The
results show that the signed log function performs the best. The signed log function magnifies small
changes in smaller ranges. Therefore, we choose the signed log function by default.

Coordinate system on SUN RGB-D. We evaluate the effect of the coordinate system on calculating
the relative positions in our 3DV-RPE on SUN RGB-D, which requires predicting the rotation angle
along the z-axis. Table 7 shows the results. We find that transforming the relative offsets from the
world coordinate system to the object coordinate system significantly improves the performance,
e.g., AP25 and AP50 increase by +2.2% and 4.2%, respectively.

Object-normalized box parameterization. In Table 8, we show the effect of using object-
normalized box parameterization. We find using the object-normalized scheme significantly boosts
the AP50 from 61.1 to 65.0.

Qualitative comparisons. We show some examples of V-DETR detection results on SUN RGB-D
in Figure 7 and on ScanNetV2 in Figure 8 in the Appendix E, where the scenes are diverse and
challenging with clutter, partiality, scanning artifacts, etc. Our V-DETR performs well despite these
challenges.

Table 9: Effect of the encoder choice.
encoder AP25 AP50

PointNet + Tran.Enc. 73.6 60.1

ResNet34 + FPN 76.7 65.0

Encoder choice. Table 9 compares the results of
using different encoder architectures. We find that
using a sparse 3D version of ResNet34 with an FPN
neck achieves the best results. Therefore, we use
ResNet34 + FPN as our default encoder.

More ablation experiments. We provide more ablation studies on the effects of using different shapes
for the pre-defined 3DV-RPE table, one-to-many matching, the number of points, and other factors
in the Appendix A.

5 CONCLUSION

In this work, we have shown how to make DETR-based approaches competitive for indoor 3D
object detection tasks. The key contribution is an effective 3D vertex relative position encoding
(3DV-RPE) scheme that can model the accurate position information in the irregular sparse 3D
point cloud directly. We demonstrate the advantages of our approach by achieving strong results
on two challenging 3D detection benchmarks. We also plan to extend our approach to outdoor 3D
object detection tasks, which differ from most existing methods that rely on modern 2D DETR-
based detectors by converting 3D points to a 2D bird-eye-view plane. We hope our approach can
show the potential for unifying the object detection architecture design for indoor and outdoor 3D
detection tasks.
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A MORE ABLATION EXPERIMENTS AND ANALYSIS

Table 10: Effect of light-weight FFN.

Light-weight FFN AP25 AP50

% 76.6 62.8
✓ 76.7 65.0

Table 11: Effect of using more points.

# of points AP25 AP50

20K 73.9 61.6
40K 75.2 62.4
100K 76.7 65.0

Table 12: Effect of the one-to-many matching.

# points #query #repeat number AP25 AP50

40K
256 1 74.3 62.0
512 2 75.6 62.9
1024 4 75.2 62.4

100K
256 1 75.3 63.7
512 2 76.4 64.2
1024 4 76.7 65.0

Table 13: Effect of the pre-defined 3DV-RPE table
shape.

3DV-RPE table shape AP25 AP50

5× 5× 5 76.7 64.7

10× 10× 10 76.7 65.0

25× 25× 25 76.7 64.2

50× 50× 50 76.7 64.3

Table 14: Effect of voxel expansion.

method voxel expansion AP25 AP50

FCAF3D
% 67.5 52.4

! 70.5 54.8

Ours
% 76.7 65.0

! 75.5 62.0

Table 15: Inference cost comparison. We evaluate
all numbers on a Tesla V100 PCIe 16 GB GPU with
batch size as 1 for a fair comparison.

method # Scenes/second Latency/scene GPU Memory

FCAF3D 7.8 128ms 628M
CAGroup3D 2.1 480ms 1138M
Ours (light) 7.7 130ms 489M
Ours 4.2 240ms 642M

Light-weight FFN. Table 10 reports the comparison results on the effect of proposed light FFN. Ac-
cording to the results, we observe that using the light-weight FFN significantly boosts the AP50 from
62.8 to 65.0, thus showing the advantages of using a set of adaptive predicted initial 3D bounding
boxes over a set of pre-defined 3D bounding boxes of the same size.

Number of points during training and evaluation. In Table 11, we report the comparison results
when using different number of points during training. We observe that using 100K points achieves
consistently better performance, thus we choose 100K points.

One-to-many matching. Table 12 shows the comparison results when choosing different hyper-
parameters for a one-to-many matching scheme. For example, we find increasing the number of
queries and the number of ground truth repeating times even hurts the performance when training
with 40K points but improves the performance when training with 100K.

Table shape. In Table 13, we show the effect of different shapes for the pre-defined 3DV-RPE table.
We find that 10×10×10 achieves the best results. Our approach is less sensitive to the shape of the
3DV-RPE table thanks to the signed log function, which improves the interpolation quality to some
degree.

Voxel expansion. Table 14 evaluates the effect of using voxel expansion in the FPN neck when the
encoder is ResNet34 + FPN. We also compare our results with the recent FCAF3D method. The
results show that (i) voxel expansion is crucial for FCAF3D, which relies on building virtual center
features; and (ii) voxel expansion degrades the performance when using DETR, which might lose
the original accurate 3D surface information. Therefore, we demonstrate an important advantage of
using DETR-based approaches, i.e., they do not require complicated voxel expansion operations.

Inference complexity comparison. Table 15 reports the comparison results to FCAF3D and CA-
Group3D. We do not apply the test-time augmentation (TTA) to ensure fair comparisons. Accord-
ingly, our method achieves a better performance-efficiency trade-off than CAGroup3D. We also pro-
vide a light version by decreasing the number of 3D object query from 1024 to 256, which achieves
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AP25=75.6 and AP50=62.7. Notably, the reported latency of CAGroup3D is close to the numbers
in their official logs but different from the numbers reported in the paper (179.3ms tested on RTX
3090 GPU). The authors of CAGroup3D have acknowledged this issue in their GitHub repository.

B MORE DETAILED SYSTEM-LEVEL COMPARISON

Table 16: Full System-level comparison with the state-of-the-art on ScanNetV2 and SUN RGB-D. TTA: test-
time augmentation. * denotes using additional self-supervised pre-training. ** denotes using extra training
data.

Method
ScanNetV2 SUN RGB-D

AP25 AP50 AP25 AP50

VoteNet (Qi et al., 2019) 58.6 33.5 57.7 -

HGNet (Chen et al., 2020) 61.3 34.4 61.6 -

3D-MPA (Engelmann et al., 2020) 64.2 49.2 - -

MLCVNet (Xie et al., 2020) 64.5 41.4 59.8 -

GSDN (Gwak et al., 2020) 62.8 34.8 - -

H3DNet (Zhang et al., 2020) 67.2 48.1 60.1 39.0

BRNet (Cheng et al., 2021) 66.1 50.9 61.1 43.7

3DETR (Misra et al., 2021) 65.0 47.0 59.1 32.7

VENet (Xie et al., 2021) 67.7 - 62.5 39.2

Group-Free (Liu et al., 2021b) 69.1 52.8 63.0 45.2

RBGNet (Wang et al., 2022b) 70.6 55.2 64.1 47.2

HyperDet3D (Zheng et al., 2022) 70.9 57.2 63.5 47.3

AShapeFormer (Li et al., 2023) 71.1 56.6 62.2 −
FCAF3D (Rukhovich et al., 2022) 71.5 57.3 64.2 48.9

OctFormer (Wang, 2023) − − 66.2 50.6

Uni3DETR (Wang et al., 2023) 71.7 58.3 67.0 50.3

ConDaFormer (Duan et al., 2023) − − 67.1 49.9

TR3D (Rukhovich et al., 2023) 72.9 59.3 67.1 50.4

Point-GCC* (Fan et al., 2023a) 73.1 59.6 67.7 51.0

CAGroup3D (Wang et al., 2022a) 75.1 61.3 66.8 50.2

SWIN3D + CAGroup3D** (Yang et al., 2023) 76.4 63.2 − −
V-DETR 77.4 65.0 67.5 50.4

V-DETR (TTA) 77.8 66.0 68.0 51.1

Average Results under 25× trials

Group-Free (Liu et al., 2021b) 68.6 51.8 62.6 44.4

RBGNet (Wang et al., 2022b) 69.9 54.7 63.6 46.3

FCAF3D (Rukhovich et al., 2022) 70.7 56.0 63.8 48.2

TR3D (Rukhovich et al., 2023) 72.0 57.4 66.3 49.6

CAGroup3D (Wang et al., 2022a) 74.5 60.3 66.4 49.5

ConDaFormer (Duan et al., 2023) − − 66.8 49.5

V-DETR 76.8 64.5 66.8 49.7

V-DETR (TTA) 77.0 65.3 67.5 50.0

Table 16 shows a more detailed comparison of our method with the state-of-the-art methods from
previous works at the system level.

C MORE ANALYSIS OF 3DV-RPE ADVANTAGES

Comparison with other attention modulation methods. We summarize the comparison results
with other advanced related methods including contextual relative position encoding (CRPE) (Lai
et al., 2022; Yang et al., 2022), conditional cross-attention (Cond-CA) (Meng et al., 2021), dynamic
anchor box cross-attention (DAB-CA) (Liu et al., 2022) in Table 17. We report the comparison
results under the most strong settings, i.e., 540 training epochs. Accordingly, we see that (i) both
CRPE (Stratified Transformer (Lai et al., 2022)) and CRPE (EQNet (Yang et al., 2022)) consistently
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improve the baseline; (ii) our 3DV-RPE achieves the best performance. The reason is that the CRPE
methods of Stratified-Transformer (Lai et al., 2022) and EQNet (Yang et al., 2022) only consider the
center point of the 3D box, while our 3DV-RPE explicitly considers the 8× vertex points and rotated
angle of the 3D box. Our method encodes the box size and the six faces, thus modeling the accurate
position relations between all other points and the 3D bounding box (supported by the much larger
gains on AP50).

Table 17: Comparison to other attention modulation methods. We only change the decoder cross-attention
scheme and keep all other settings the same for comparison fairness.

method #epochs AP25 AP50

Baseline (w/o RPE) 540 71.4 47.6

Baseline + CRPE (Stratrified Transformer) 540 74.7 58.1

Baseline + CRPE (EQNet) 540 73.1 54.4

Baseline + Cond-CA 540 74.7 55.8

Baseline + DAB-CA 540 75.4 56.0

Baseline + 3DV-RPE 540 77.8 66.0

Comparison with absolute position encoding methods on ScanNetV2. We summarize the com-
parison results with different absolute position encoding(APE) methods, including the sin-cos ab-
solute position encoding (APE w/ Sin-Cos) and the absolute position encoding using a multilayer
perceptron (APE w/ MLP). To minimize the gap between APE and 3DV-RPE for fair compression,
we apply non-linear transformation and predefined table to APE, mirroring their usage in 3DV-RPE.
As depicted in Table 18, our 3DV-RPE significantly outperforms all the APE variants by a large
margin, especially on AP50 which demands greater precision in localization.

Table 18: Comparison to absolute position encoding(APE) methods on ScanNetV2. ”NonLinear” refers to the
application of non-linear transformation, and ”Predefined Table” denotes employing table and grid sampling
techniques to enhance efficiency, which are both applied to 3DV-RPE.

method #epochs AP25 AP50

Baseline (w/o PE) 540 71.4 47.6

Baseline + APE w/ Sin-Cos 540 71.8 47.9

Baseline + APE w/ MLP + NonLinear 540 72.1 48.7

Baseline + APE w/ MLP + NonLinear + Predefined Table 540 72.0 48.5

Baseline + 3DV-RPE 540 77.8 66.0

D DETAILS ABOUT 3DV-RPE EFFICIENT IMPLEMENTATION

The transformation matrix T plays a pivotal role in our proposed method, facilitating the efficient
encoding of spatial relations. The matrix is initialized to encompass a Ntable × Ntable × Ntable grid,
i.e., Ntable = 10, where each grid point (i, j, k) holds a three-dimensional vector. The vector values
are calculated as follows:

T[i, j, k] =

(
M(2i− (Ntable − 1))

Ntable − 1
,
M(2j − (Ntable − 1))

Ntable − 1
,
M(2k − (Ntable − 1))

Ntable − 1

)
, (6)

where [−M,M ] is the range of T values, which avoids F(∆Pi) in Equation 5 beyond the bounds.
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E QUALITATIVE RESULTS AND ANALYSIS

We show some qualitative examples of our V-DETR detection on SUN RGB-D and ScanNetV2 in
Figure 7 and Figure 8, respectively. We can observe that our method can find most of the target
objects in various scenes.

Figure 9 shows the spatial cross-attention maps of our 3DV-RPE on three ScanNetV2 scenes. We
see that (i) our 3DV-RPE can find the 3D bounding boxes accurately and (ii) each vertex’s RPE can
enhance the regions inside the boxes from that vertex.

Figure 7: More qualitative results of 3D object detection on SUN RGB-D. The ground truth is shown in the
first column and our method’s detection results are shown in the second column.
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Figure 8: More qualitative results of 3D object detection on ScanNetV2. The ground-truth is shown in the
first column and our method’s detection results are shown in the second column.
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Figure 9: Illustration of the spatial attention maps learned by our 3DV-RPE on ScanNetV2 scenes. Each
scene consists of two rows. We draw a green cube to mark the detected 3D bounding box and a red star at
its eight vertices. We average the head dimension of each Pi and show the spatial cross-attention maps for
eight vertices (columns 2-5). Column 1 shows the input scene and the merged attention maps. The color shows
the attention values: yellow is high and blue is low. We see that (i) each vertex’s attention map highlights the
regions inside the cube from that vertex, and (ii) the combined attention maps focus on the regions inside the
red cubes.
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F EFFECT OF DATA SCALE ON LEARNING THE LOCALITY INDUCTIVE BIAS
FOR 2D OBJECT DETECTION

We conduct experiments on the 2D detector DETR Carion et al. (2020), using approximately 1% of
the training data (1, 200 images), following your suggestion. We train DETR for the same number
of iterations (2, 217, 881 iterations) as the original DETR, which was trained on the full dataset for
∼300 epochs, while maintaining a batch size of 16. First, we observe that the mAP of the validation
set drops from 44.9% to 10.4%, which closely aligns with the performance reported in Table 4 of
DETReg Bar et al. (2022).

Second, in accordance with Figure 6 of the DETR paper, we visualize the cross-attention maps
for the predicted object in Figure 10. We note that these attention maps fail to focus on local
object regions, especially the object extremities. Therefore, it is evident that the scale of data has a
substantial impact on the model’s ability to effectively learn the locality inductive biases.

(a) full-set (b) 1% sub-set (c) full-set (d) 1% sub-set

Figure 10: Illustrating the effect of training data scale on the 2D cross-attention maps with DETR. When
trained using just a 1% subset, it is observable that these attention maps struggle to concentrate on local object
areas, particularly the object extremities.
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