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Abstract

Autonomous agents have become increas-001
ingly important for interacting with the real002
world. Android agents, in particular, have003
been recently a frequently-mentioned interac-004
tion method. However, existing studies for005
training and evaluating Android agents lack006
systematic research on both open-source and007
closed-source models. In this work, we propose008
ANDROIDLAB as a systematic Android agent009
framework. It includes an operation environ-010
ment with different modalities, action space,011
and a reproducible benchmark. It supports012
both large language models (LLMs) and mul-013
timodal models (LMMs) in the same action014
space. ANDROIDLAB benchmark includes pre-015
defined Android virtual devices and 138 tasks016
across nine apps built on these devices. By017
using the ANDROIDLAB environment, we de-018
velop an Android Instruction dataset and train019
six open-source LLMs and LMMs, lifting the020
average success rates from 5.07% to 25.60% for021
LLMs and from 1.69% to 14.98% for LMMs.022
ANDROIDLAB is open-sourced and pub-023
licly available at https://anonymous.4open.024
science/r/Android-Lab-Reivew-C93E.025

1 Introduction026

Developing autonomous agents to execute human027

instructions within mobile operating systems has028

long been a goal for researchers (Burns et al., 2021;029

Yang et al., 2023b; Wang et al., 2023; Hong et al.,030

2023; Rawles et al., 2023; Li et al., 2020a; Romao031

et al., 2019; Rai et al., 2019). Recently, a signif-032

icant line of research has focused on using large033

language models (LLMs) (Zeng et al., 2022; Ope-034

nAI, 2023; Anthropic, 2023; Team et al., 2024) and035

large multimodal models (LMMs) (OpenAI, 2023;036

Anthropic, 2023; Hong et al., 2023) as the back-037

bone for these agents (Deng et al., 2023; Rawles038

et al., 2023; Zhou et al., 2023).039

Despite these advancements, the lack of a reason-040

able and fair benchmark to evaluate mobile agents041

presents a critical challenge. Previous bench- 042

marks (Rawles et al., 2023; Sun et al., 2022; Li 043

et al., 2020a) usually provide static environments, 044

requiring agents to predict the next action based on 045

screenshots. For example, Android Env (Toyama 046

et al., 2021) defines the agent’s action space and 047

state for an operable Android operation environ- 048

ment. Following works (Yang et al., 2023b; Xing 049

et al., 2024; Lee et al., 2024) construct bench- 050

marks based on this environment. However, most 051

of them rely on online software, making the tests 052

non-reproducible. In summary, these benchmarks 053

still have the following issues: 054

• Non-reproducibility due to dynamic environ- 055

ments. Existing benchmarks (Toyama et al., 056

2021; Kapoor et al., 2024; Li et al., 2020b) set 057

tasks in dynamic environments, such as those 058

involving real-time information or social media, 059

making these benchmarks non-reproducible. 060

• Inability to simulate multiple completion 061

paths for a task. Existing works (Burns et al., 062

2021; Sun et al., 2022; Rawles et al., 2023; 063

Deng et al., 2023; Xing et al., 2024) provide 064

standard operation sequences or use metrics 065

such as single-step accuracy or similarity of op- 066

eration sequences, but fail to simulate multiple 067

paths to complete a task. 068

These issues have motivated us to develop a 069

new Android agent evaluation and training frame- 070

work. In this paper, we propose ANDROIDLAB, 071

which includes a standard operational environment 072

and a benchmark for agents interacting with An- 073

droid devices. We define basic operation modes 074

across LLMs and LMMs by aligning actions and 075

objects within different observations of the mo- 076

bile system: XML and screenshots, referred to as 077

XML mode and SoM mode, respectively. Addi- 078

tionally, we introduce two modes for each basic 079

mode, ReAct (Yao et al., 2022) and SeeAct (Zheng 080

et al., 2024). Node information is annotated in the 081

XML for screenshots using set-of-mark (Yang et al., 082
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(a) Overview of the environment and benchmark of ANDROIDLAB.
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Figure 1: (a) We design the SoM mode for the multimodal models (LMMs) and the XML mode for the text-only
models (LLMs), ensuring an identical action space. We also implement ReAct and SeeAct frameworks in both
modes. Based on the environment, we propose the ANDROIDLAB benchmark. (b) ANDROIDLAB Success Rates of
closed-source models. In the XML mode, GPT-4-1106-Preview has the highest success rate at 31.16%, matching
GPT-4o’s performance in the SoM mode.

2023a), ensuring identical actions across modes083

for a fair comparison. Based on the environment,084

the ANDROIDLAB benchmark includes 138 tasks085

across nine different apps. By using Android vir-086

tual devices with preloaded app operation histories087

and offline data, ANDROIDLAB benchmark ensures088

reproducibility and eliminates dependencies on ex-089

ternal networks or time.090

Previous benchmarks had limitations in their091

evaluation metrics. In the ANDROIDLAB bench-092

mark, each task is divided into multiple required093

page states as sub-goals. Correct trajectories are094

verified using UI tree structure matching or device095

state validation. This approach allows for precise096

assessments of task completion and progress with-097

out being influenced by the specific paths taken098

to achieve sub-goals, offering flexibility in the se-099

quence of actions. Additionally, we introduce met-100

rics such as reversed redundancy and reasonable101

operation to evaluate the efficiency of actions.102

We have evaluated 17 open-source and closed-103

source models using the ANDROIDLAB benchmark.104

Although the GPT series achieved over 30% suc-105

cess rate in both XML and SoM modes, we ob-106

served that open-source models performed poorly,107

with the best reaching only around 5% success108

rate. Initial attempts to enhance mobile agent per-109

formance through more complex reasoning frame-110

works led to marginal improvements despite signif-111

icantly increased inference times. Therefore, fine-112

tuning small-scale open-source models may bridge113

the gap to closed-source performance, enhancing 114

mobile agent accessibility. 115

By using ANDROIDLAB’s operation modes and 116

action space, we have constructed the Android In- 117

struct dataset. We develop an online annotation 118

tool with the same action space, collecting 10.5k 119

traces and 94.3k steps from annotators. Among 120

these, 6208 steps are derived from the Apps in- 121

cluded in the ANDROIDLAB benchmark, and we 122

use this portion of the data to fine-tune the model. 123

This dataset includes tasks, phone screen states, 124

XML information, and operations, which have been 125

used to fine-tune six text-only and multimodal mod- 126

els. As shown in Figure 3, fine-tuning with our 127

dataset raises average success rates from 5.07% 128

to 25.60% for LLMs and from 1.69% to 14.98% 129

for LMMs. Our further analysis reveals that fine- 130

tuning improves operational accuracy, efficiency, 131

and reduces redundancy in Android agents. 132

The contributions are summarized as follows: 133

• We design the ANDROIDLAB suite, which in- 134

cludes an operational environment and a bench- 135

mark, which unifies the evaluation and develop- 136

ment of Android Agents, as shown in Figure 1. 137

• We develop ANDROIDLAB benchmark, a repro- 138

ducible and challenging benchmark for evaluat- 139

ing mobile agent. It includes a simulated eval- 140

uation environment and 138 tasks, as shown 141

in Figure 2 based on text-only or multimodal 142

inputs. ANDROIDLAB benchmark presents 143

significant challenges, with the leading model 144
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Figure 2: Task examples and the distribution of all apps and subcategories in the BENCHMARK benchmark. We
decomposed each task into sub-goals and evaluated them independently. A task is considered complete only if all
sub-goals are correctly addressed.

GPT-4o, achieving only 31.16% success.145

• We construct an Android Instruct dataset, con-146

taining 94.3k operation records for fine-tuning.147

This dataset supports both text-only and mul-148

timodal training, yielding competitive results149

in LLMs and LMMs, as shown in Table 2.150

We also demonstrate that fine-tuned models151

achieve comparable scores and offer the best152

balance of efficiency and accuracy.153

154

2 Related Work155

Benchmarks for Mobile Agents. Mobile156

benchmarks for Android began with static sys-157

tems like PixelHelp (Li et al., 2020a) and158

MetaGUI (Sun et al., 2022) and later expanded159

through AITW (Rawles et al., 2023), which pro-160

vided over 5 million images. AndroidEnv (Toyama161

et al., 2021) introduced dynamic evaluations, while162

Android Arena (Xing et al., 2024) added cross-app163

evaluations. Although task diversity was limited, 164

B-MOCA (Lee et al., 2024) standardized the An- 165

droid Virtual Device. AndroidWorld (Rawles et al., 166

2024) offers reward signals for 116 tasks across 20 167

real-world apps, but does not support instruction- 168

tuning data construction. Our benchmark provides 169

a challenging and reproducible environment with 170

direct interaction capabilities. Table 1 compares 171

ANDROIDLAB benchmark to other benchmarks. 172

Agents for Interactive System. For Web envi- 173

ronments, WebGPT (Nakano et al., 2021) and We- 174

bGLM (Liu et al., 2023) integrate LLMs for im- 175

proved question-answering. MindAct (Deng et al., 176

2023), WebAgent (Gur et al., 2023), and AutoWe- 177

bGLM (Lai et al., 2024) focus on executing com- 178

plex interactive tasks. In mobile agents, early work 179

on Android systems utilized multiple execution 180

modules (Burns et al., 2021; Venkatesh et al., 2023; 181

Li et al., 2020a; Zhan and Zhang, 2023). Pixel- 182

Help (Li et al., 2020a) mapped actions to images, 183
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Figure 3: (a) We have collected over 726 trajectories containing more than 6208 fully aligned steps of XML and
SoM mode training data. (b) By using ANDROIDINSTRUCT, we trained six open-source text-only and multimodal
models, achieving an average increase of 504% and 885%, respectively, reaching a performance level comparable to
proprietary models.

while Auto-GUI (Zhan and Zhang, 2023) used im-184

age and text encoders with LLMs for CoT (Chain185

of thoughts)outputs. CogAgent (Hong et al., 2023)186

achieved SOTA on AITW (Rawles et al., 2023)187

by combining modules for action prediction. Re-188

cent zero-shot mobile agents using GPT-4V (Ope-189

nAI, 2023) have shown strong results (Yang et al.,190

2023b; Zheng et al., 2024; Yan et al., 2023; Wang191

et al., 2023), but planning complexity limits in-192

ference speed and practical deployability due to193

security restrictions.194

3 ANDROIDLAB195

3.1 The Operation Environment196

ANDROIDLAB defines a set of action space and197

two operation modes, forming the ANDROIDLAB198

environment. We adopt the main action space199

from prior work and add a model return value (fin-200

ish action). The two basic operation modes are201

SoM (Yang et al., 2023a) and XML, differing in202

whether the agent can access a snapshot of the203

phone screen. For comparison, we also implement204

ReAct (Yao et al., 2022) and SeeAct (Zheng et al.,205

2024). This framework supports real and virtual206

Android devices and is compatible with Android-207

like mobile operating systems.208

Table 1: Comparsion of different Android benchmarks.
Virtual

Env
Reprod-
ucibility

Sub-goal
Evaluation

Support
Query Task

Containing
Training Set

Metric

PixelHelp ✓ ✓
Sequence

match

AITW ✓ ✓
Single

step ACC

Android Env ✓
Single

step ACC

Android Arena ✓
Sequences

LCS
B-MOCA ✓ ✓ Device state

ANDROIDLAB benchmark ✓ ✓ ✓ ✓ ✓
Device state&

UI tree

Action Space. Based on the action spaces from 209

AppAgent (Yang et al., 2023b) and Android 210

Env (Toyama et al., 2021), we define four basic 211

phone operations: Tap, Swipe, Type, Long Press, 212

along with two shortcut keys, Home and Back, as 213

the core action space. We add the Finish action as 214

the final step, allowing the agent to return execu- 215

tion results or answers. This action space applies 216

to all modes 217

XML Mode. XML mode is tailored for text- 218

only input models (LLMs). Inspired by Android 219

Arena (Xing et al., 2024), we redesign the XML 220

compression algorithm (Cf. Appendix C) to convey 221

screen information. The LLMs select correspond- 222

ing elements directly for operations. 223

SoM Mode. SoM mode is for multimodal in- 224

put models (LMMs), based on the Set-of-Mark 225

method (Yang et al., 2023a). Each clickable or fo- 226

cusable element is assigned a serial number, and 227

the LMMs select the element by its number. The 228

selected elements in SoM mode align with those in 229

the compressed XML list, allowing both modes to 230

interact with the same action space and objects. 231

These basic operation modes directly require 232

the agent to output operation commands. Based 233

on these two methods, we further test two novel 234

agent frameworks, ReAct (Yao et al., 2022) and 235

SeeAct (Zheng et al., 2024). These two frame- 236

works allow the agent to observe and reflect on the 237

environment or more easily select specific tasks 238

to execute. Please refer to Appendix B for more 239

details about our operation modes. 240

ReAct Modes. Based on the above two modes, we 241

follow (Yao et al., 2022) to prompt the model, al- 242

lowing models to think step by step and output their 243
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thought and reasoning process before outputting244

the action. We name the corresponding two modes245

as XML+ReAct and SoM+ReAct.246

SeeAct Modes. Following (Zheng et al., 2024),247

we separate the reasoning and element grounding248

processes. We instruct models to interact for two249

rounds in a single operation. The models are sup-250

posed to generate a detailed description of the de-251

sired action and output the real action, respectively.252

We name these two modes as XML+SeeAct and253

SoM+SeeAct.254

3.2 The Reproducible Benchmark255

Based on ANDROIDLAB’s environment, AN-256

DROIDLAB benchmark offers a deterministic and257

reproducible evaluation platform, allowing users to258

perform fair and challenging comparisons of An-259

droid agent capabilities. ANDROIDLAB benchmark260

introduces the following designs:261

• We gathered 138 tasks from nine apps, ensur-262

ing reproducibility. These tasks, derived from263

common mobile scenarios, are divided into two264

types: (a) Operation Tasks, where agents must265

complete a series of actions to meet a goal, and266

(b) Query Tasks, where agents answer queries267

based on phone information.268

• Using UI tree structure in the XML file, we iden-269

tify screen information that uniquely defines task270

completion, making task completion our primary271

metric. Therefore, our approach allows us to272

directly evaluate the completion status without273

considering the path to reach them, thus enabling274

the simulation of multiple completion paths. Ad-275

ditionally, we select auxiliary metrics such as the276

proportion of valid actions and the redundancy277

of successful operation sequences.278

3.2.1 Task Formulation279

We formalize each task input as a 4-tuple:280

Task(E, I, F,M). Here, E represents the execu-281

tion environment of the task, which, in the con-282

text of benchmark testing, is the pre-packaged283

AVD (Android virtual device) image. This includes284

a fixed phone screen size, Android version, API285

level, and a fixed app usage state. I denotes the spe-286

cific natural language instruction for the task. To287

avoid confusion during testing, we specify the app288

required to complete the task in natural language.289

F represents the agent testing framework. Finally,290

M denotes the backbone model used to perform291

the task, referring primarily to LLMs or LMMs.292

Thus, we can formally define the two types of 293

tasks included in ANDROIDLAB benchmark: 294

Operation Task. T(E, I, F,M) → (S1, . . . , Sn). 295

The output of this type of task is a sequence of 296

continuous Android virtual machine states. 297

Query Task. T(E, I, F,M) → (S1, . . . , Sn, A). 298

This type of task assesses the agent’s ability to an- 299

swer specific questions based on the state sequence 300

after exploration. The model must explore the envi- 301

ronment to find the answers and output the correct 302

response. 303

Based on the above formulation, we designed 304

138 tasks, including 93 Operation Tasks and 45 305

Query Tasks. Please refer to Appendix A for de- 306

tailed information. 307

3.2.2 Reproducible Designs 308

To ensure our evaluation reflects real-world agent 309

usage scenarios with an appropriate level of diffi- 310

culty and full reproducibility, we design the tasks 311

with the following considerations: 312

• Fixed Evaluation Time and Space: We use 313

ADB (Android debug bridge) commands at the 314

start of each evaluation to set the machine’s time 315

and virtual geolocation to predetermined values. 316

• Offline Testing: All test apps function offline, 317

with preloaded records in the AVD image to en- 318

sure usability without an internet connection. 319

• Predefined Answers: For query tasks, we con- 320

duct operations on the corresponding apps in ad- 321

vance to guarantee uniquely determined correct 322

results. 323

3.2.3 Metrics 324

Previous evaluations with virtual environments 325

have relied on indirect metrics like single-step ac- 326

curacy and operation path matching, leading to im- 327

precise assessments. In response, ANDROIDLAB 328

benchmark introduces a task-completion-based 329

evaluation system that judges directly from device 330

and screen states. We provide an example of an 331

agent completing all sub-goals of a task in Fig 4. 332

Our key metrics are: 333

• Success Rate (SR): Measures the overall task 334

completion rate across all tasks, representing the 335

average success rate. 336

• Sub-Goal Success Rate (Sub-SR): Evaluates the 337

completion of sub-goals within tasks, rewarding 338

models with stronger understanding and opera- 339

tional capabilities. 340

• Reversed Redundancy Ratio (RRR): Assesses 341
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· · · · · · · · ·

Type: John Type: 12345678

XML

Sub-goal 1: Name: John

...
EditText ;click long-click 
; ;;John :
...
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Sub-goal 2: Phone: 12345678

...
EditText ;click long-click 
; ;;1 (234) 567-8 : 
...

XML

Sub-goal 3: Successful finish

...
;; ;;Device • 4 contacts
...
TextView ;; ;;John John
...

· · · · · ·

Task
Add John as a contacts and 
set his mobile phone number 

to be 12345678.

· · ·

Figure 4: An example of an agent completing all sub-
goals of a task, showing only the starting and ending
steps, as well as sub-goal completion points. By focus-
ing solely on these points, our method simulates mul-
tiple completion paths without tracking how the agent
reaches them.

the redundancy of the model’s operation path342

compared to a human operator’s path, indicating343

efficiency.344

• Reasonable Operation Ratio (ROR): Measures345

the proportion of operations that result in a screen346

change, with unchanged screens considered un-347

reasonable.348

Due to the length constraints of the paper, the de-349

tailed definitions of our metrics can be found in the350

Appendix D, where we provide formal definitions351

and relevant examples. By incorporating these met-352

rics, our evaluation system provides a comprehen-353

sive and precise assessment of an agent’s perfor-354

mance in completing specified tasks.355

4 The Android Instruction Data356

Previous work on Android agents focuses on using357

powerful closed-source models to design interac-358

tion logic (Zheng et al., 2024; Yang et al., 2023b;359

Wang et al., 2023), raising concerns about acces-360

sibility and privacy. To address this, we aim to361

build an open-source mobile agent. The main chal-362

lenge lies in generating training data for mobile363

operations to handle open-world tasks in diverse364

environments.365

We propose task derivation and expansion meth-366

ods for task generation, allowing models to gener-367

ate tasks for specific apps controllably. ANDROID-368

LAB connects to devices via ADB, enabling com-369

patibility with various real or virtual devices for370

data generation. Using self-exploration and man-371

ual annotation, we generate example operation tra-372

jectories. Our Android Instruction data is built on373

the T(E, I) → (S1, . . . , Sn, A) framework within374

ANDROIDLAB’s environment, but this does not in- 375

clude evaluation scripts and is annotated by human 376

annotators. 377

4.1 Data Construction 378

The primary challenges in data construction in- 379

clude generating executable Android instructions 380

and annotating operation path data. Our approach 381

involves three steps: 382

• Task Derivation and Expansion: Tasks were 383

generated using academic datasets and language 384

models, with manual checks to ensure realism 385

and executability. 386

• Self-Exploration Reward Model Construction: 387

Advanced LLMs and LMMs autonomously com- 388

pleted tasks, and a reward model was constructed 389

based on combined image inputs, achieving 390

87.64% accuracy. 391

• Manual Annotation: Involved four steps: (1) 392

instruction feasibility check, (2) preliminary app 393

exploration, (3) task execution and documenta- 394

tion, and (4) cross-verification by a second anno- 395

tator and reward model. 396

Please refer to Appendix I for more details of 397

the data construction process. This combination 398

of autonomous and manual processes resulted in 399

10.5k trajectories and 94.3k steps, and we use 726 400

trajectories and 6208 steps derived from the Apps 401

included in the ANDROIDLAB benchmark for train- 402

ing. Each trajectory includes the specific task in- 403

struction, the device state at each step (including 404

screenshots and XML files), and the action for the 405

current step. We provide statistics of the Android 406

Instruct dataset in Fig 20. 407

5 Experiments 408

5.1 Experiment Setup 409

Evaluation Settings. In preliminary tests, agents 410

often failed to complete tasks due to issues with 411

launching the specified apps correctly. To avoid 412

this, we started tasks directly within the specified 413

app during formal experiments and then allowed 414

the agent to proceed. We also set a 25-step limit for 415

each task, with a 3-second interval for the virtual 416

machine to respond to each operation. Tasks were 417

generated by greedy search for each model. 418

Baseline Models. For large language models 419

(LLMs) with text-only input capability, we se- 420

lected the following closed-source models: GPT- 421

4o (OpenAI, 2023), GPT-4-1106-Preview (OpenAI, 422
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Table 2: Main Result of XML and SoM modes. SR, Sub-SR, RRR, and ROR stand for Success Rate, Sub-Goal
Success Rate, Reversed Redundancy Ratio, and Reasonable Operation Ratio, respectively. For all these metrics, a
higher value means better. -ft represents a finetuned model. In each mode, Bold represents the best result. We do
not report RRR score if SR < 5.

Mode Model SR Sub-SR RRR ROR

XML

GPT-4o 25.36 30.56 107.45 86.56
GPT-4-1106-Preview 31.16 38.21 66.34 86.24
Gemini-1.5-Pro 18.84 22.40 57.72 83.99
Gemini-1.0 8.70 10.75 51.80 71.08
GLM-4-PLUS 18.12 22.66 84.83 83.41
LLaMA3.1-8B-Instruct 2.90 4.71 23.73 69.85
Qwen2.5-7B-Instruct 5.07 5.80 22.75 66.96
GLM4-9B-Chat 7.25 9.06 54.43 58.34

XML+SFT
LLaMA3.1-8B-ft 27.54 35.27 77.19 89.86
Qwen2.5-7B-ft 26.09 35.31 81.70 89.50
GLM-4-9B-ft 23.19 29.47 75.99 86.76

SoM

GPT-4o 31.16 35.02 87.32 85.36
GPT-4-Vision-Preview 26.09 29.53 99.22 78.79
Gemini-1.5-Pro 16.67 18.48 105.95 91.52
Gemini-1.0 10.87 12.56 72.52 76.70
Claude-3.5-Sonnet 28.99 32.66 113.41 81.16
Claude-3-Opus 13.04 15.10 81.41 83.89
LLaMA3.2-11B-Vision-Instruct 1.45 1.45 - 50.76
Qwen2-VL-2B-Instruct 0.00 1.09 - 30.25
Qwen2-VL-7B-Instruct 3.62 4.59 - 84.81

SoM+SFT
LLaMA3.2-11B-Vision-ft 11.59 14.01 63.76 86.08
Qwen2-VL-2B-Instruct-ft 14.49 20.53 62.83 92.41
Qwen2-VL-7B-Instruct-ft 18.84 22.58 77.62 92.42

2023), Gemini-1.5-Pro (Team et al., 2024), Gemini-423

1.0 (Team et al., 2024), and GLM-4-PLUS (GLM424

et al., 2024). The open-source models included425

as baselines for testing in the XML mode are426

LLaMA3.1-8B-Instruct (Touvron et al., 2023),427

GLM-4-9B-Chat (GLM et al., 2024), and Qwen2.5-428

7B-Instruct (Bai et al., 2023). For large multimodal429

models (LMMs) with image input capability, we430

selected the following closed-source models: GPT-431

4o (OpenAI, 2023), GPT-4-Vision-Preview (Ope-432

nAI, 2023), Gemini-1.5-Pro (Team et al., 2024),433

Gemini-1.0 (Team et al., 2024), Claude-3.5-Sonnet,434

and Claude-3-Opus. The open-source models435

in this category included LLaMA3.2-11B-Vision-436

Instruct (Touvron et al., 2023), Qwen2-VL-7B-437

Instruct, and Qwen2-VL-2B-Instruct (Wang et al.,438

2024). Fine-tuned versions of all six open-source439

models (denoted with "-ft") were also evaluated440

under the XML or SoM+SFT setting.441

Training Settings. To explore the effectiveness of442

our dataset on lightweight open-source models, we 443

selected all six open-source models above as the 444

training backbones for LLMs and LMMs, respec- 445

tively. Due to our preliminary experiments show- 446

ing that training agents from base models yielded 447

better results, we selected the base versions of all 448

models for fine-tuning, except for Qwen2.5-VL-7B- 449

Instruct (as no open-source base model was avail- 450

able). However, we still reported the instruct ver- 451

sions as baselines because the base models could 452

not follow instructions without further tuning. For 453

all training sessions, we used a batch size of 32 and 454

a maximum sequence length of 4096, training for 455

five epochs. The learning rate was set to 1e-5. 456

5.2 Main Results 457

As shown in Table 2, in the XML mode, GPT-4- 458

1106-Preview outperforms the other models with 459

a Success Rate (SR) of 31.16%, the highest in this 460

mode while also achieving the best Sub-Goal Suc- 461
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cess Rate (Sub-SR) at 38.21%. Although GPT-4o462

exhibits slightly lower SR (25.36%), it achieves463

the highest Reversed Redundancy Ratio (RRR) at464

107.45, indicating its strong ability to reduce unnec-465

essary operations. The ROR metric shows that both466

models in the GPT-4 series perform comparably,467

with around 86% of operations being reasonable,468

though there is room for improvement in efficiency.469

Other models, such as Gemini-1.5-Pro and GLM-470

4-PLUS, show moderate performance, with ROR471

around 84 but lag in SR.472

In the SoM mode, GPT-4o again shows dom-473

inance, reaching an SR of 31.16% and a Sub-474

SR of 35.02%, the highest in both categories.475

GPT-4-Vision-Preview follows closely, but mod-476

els like Claude-3.5-Sonnet exceed GPT-4o in RRR477

(113.41), demonstrating higher efficiency in task478

completion with fewer redundant steps. The Rea-479

sonable Operation Ratio (ROR) in SoM mode indi-480

cates that models such as fine-tuned Llama3.1-8B481

achieve the highest ROR at 89.86%, showing the482

most effectiveness in this mode.483

5.3 Additional Findings484

Influence of Instruction Tuning. Instruction tun-485

ing significantly enhances the performance of mod-486

els in both XML and SoM modes. In XML mode,487

the success rates (SR) of three open-source mod-488

els increase by an average of 440%, demonstrat-489

ing this approach’s substantial impact. Notably,490

LLaMA3.1-8B-ft achieves an SR of 27.54%, dra-491

matically improving from its baseline SR of 2.90%.492

Similarly, Qwen2.5-7B-ft and GLM-4-9B-ft show493

marked increases, reaching SRs of 26.09% and494

23.19%, respectively. In SoM mode, fine-tuning495

leads to significant improvements as well. For in-496

stance, Qwen2-VL-7B-Instruct-ft achieves an SR497

of 18.84%, a substantial rise from its baseline SR498

of 3.62%. Other models, such as Qwen2-VL-2B-499

ft and LLaMA3.2-11B-Vision-ft, also exhibit no-500

table improvements, with SRs increasing to 14.49%501

and 11.59%, respectively. These results show that502

instruction-tuned open-source models achieve per-503

formance levels approaching or surpassing some504

closed-source models, such as GPT-4o and Claude-505

3-Opus, highlighting significant gains in opera-506

tional rationality and efficiency.507

Analysis of Agent Frameworks. We assess Re-508

Act and SeeAct frameworks with GPT-4o and509

Gemini-1.5-Pro in XML and SoM modes. Ta-510

ble 3 shows that ReAct significantly improves per-511

Table 3: The impact of the ReAct and SeeAct frame-
works on SR results. Notably, model performance is
significantly improved in XML+ReAct mode. Full re-
sults of this table are shown in Appendix F.3

Mode Model SR

XML GPT-4o 25.36
Gemini-1.5-Pro 18.84

XML+ReAct GPT-4o 33.33
Gemini-1.5-Pro 31.16

XML+SeeAct GPT-4o 24.64
Gemini-1.5-Pro 21.01

SoM GPT-4o 31.16
Gemini-1.5-Pro 16.67

SoM+ReAct GPT-4o 31.88
Gemini-1.5-Pro 15.94

SoM+SeeAct GPT-4o 30.43
Gemini-1.5-Pro 21.01

Table 4: Average generation tokens of different modes.
We used the LLaMA3 tokenizer for calculation. FT
represents instruction tuning models.

Mode FT XML/SoM ReAct SeeAct

#Avg. Gen. Tokens 4.96 23.56 67.89 129.12

formance only in the XML mode. SeeAct does 512

not enhance performance consistently due to the 513

model’s reasoning limitations with multimodal in- 514

put. ReAct and SeeAct frameworks increase token 515

usage, which harms efficiency. As shown in Ta- 516

ble 4, XML+ReAct settings produce an average of 517

67.89 tokens, while models post-instruction tuning 518

average only 4.96 tokens. 519

6 Conclusion 520

In this work, we introduced ANDROIDLAB, a 521

framework tackling challenges in training and eval- 522

uating Android agents. ANDROIDLAB provides 523

a reproducible environment, unified action spaces, 524

and a benchmark of 138 tasks across nine apps. We 525

defined a method for using the UI tree and device 526

state to identify sub-goals, enabling our metrics to 527

support task completion via any paths and ensuring 528

fair and consistent comparisons. Based on AN- 529

DROIDLAB, we constructed the Android Instruc- 530

tion dataset, using it to fine-tune six open-source 531

models, increasing LLM success rates by 5x and 532

LMMs by nearly 9x. ANDROIDLAB offers a repro- 533

ducible benchmark, open datasets, and tools, ad- 534

vancing research in efficient and privacy-preserving 535

mobile agents. 536
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Limitations537

Limited Expandability of Evaluation Tasks. All538

evaluation tasks in our study are predefined and539

hardcoded. This means that if new evaluation tasks540

need to be added in the future, they must be indi-541

vidually and manually integrated, which is a time-542

consuming and not easily scalable process.543

Fixed Wait Time for Actions. In the action space,544

the model waits for a fixed period after selecting545

each action to allow the device to respond. How-546

ever, this fixed waiting time does not account for547

the variability of response times across Android548

devices. Such variability can be attributed to sev-549

eral factors, including the device model, age, and550

user-specific configurations. Consequently, it is551

challenging to establish a universally applicable552

wait time for responses.553

Lack of Cross-Platform Capability. It is impor-554

tant to note that our evaluation framework is lim-555

ited to the Android operating system and cannot556

be used to evaluate models operating on other sys-557

tems, such as iOS or other device platforms. This558

limitation renders our framework applicable solely559

to a single platform. Although some tools (e.g.,560

XCUITest, WebDriverAgent) can transform iOS561

operations and page information into an XML-like562

format, we have observed that, since these tools are563

third-party software, the page information obtained564

through this transformation process is not entirely565

consistent with the results directly retrieved from566

Android devices. This discrepancy fails to meet567

the requirement for fairness, and the UI tree struc-568

tures are also not completely aligned. Therefore,569

we do not plan to extend ANDROIDLAB to other570

platforms.571

Potential Risks572

Risk Avoidance in Benchmark Design. In the573

design of our benchmark, we have avoided po-574

tentially risky operations such as payments and575

sending messages. Additionally, our benchmark576

is tested on virtual machines without an internet577

connection, further preventing the actual execu-578

tion of these operations. However, in real-world579

scenarios where agents are used, special attention580

should be paid to the correctness of such operations581

when the user provides these kinds of tasks. We582

plan to add sensitive operation protection in future583

systems, meaning these operations require explicit584

user consent before execution.585

Ensuring XML Quality for Apps. The XML qual- 586

ity of certain apps might be poor, possibly loading 587

too much or too little content. In actual deploy- 588

ment, it is essential to carefully inspect the XML 589

quality of each app to ensure accurate usage. 590

Privacy Issues and Solutions. One major ethi- 591

cal concern in applying Android agents involves 592

privacy issues. The evaluation process of models 593

trained with user data could potentially lead to the 594

leakage of private information. To mitigate this, we 595

propose the Android Instruction Dataset, which is 596

annotated by humans and ensures the removal of 597

sensitive private information. This dataset allows 598

models to achieve performance close to proprietary 599

models without compromising user privacy. 600

Existing agent technologies often require exten- 601

sive device information to function correctly, which 602

involves transmitting private data to servers hosting 603

these models. Our framework provides an alterna- 604

tive solution by enabling open-sourced models to 605

achieve competitive performance and allowing for 606

the private deployment of models. This eliminates 607

the need to send data to external servers, enhancing 608

user information security. Future work will focus 609

on advancing on-device model training to further 610

address privacy concerns comprehensively. 611

Preventing Misuse in Sensitive Applications. An- 612

other concern is the potential misuse of Android 613

agents in sensitive applications, such as web scrap- 614

ing, targeted advertising, and monetary transac- 615

tions. The Android Instruction Dataset we provide 616

is generated from predefined seeds, excluding dan- 617

gerous actions to minimize misuse. 618
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A Details of Tasks788

In our experiment, we use various apps to conduct789

various tests (succinctly presented in Table 5). The790

following mobile apps are chosen:791

• Bluecoins: A personal finance management app792

used for tracking expenses and income.793

• Calendar: A calendar app helps in organizing794

schedules and setting reminders.795

• Cantook: An e-book reader for storing, manag- 796

ing, and reading e-books. 797

• Clock: A clock app for displaying the time, set- 798

ting alarms, and using a stopwatch. 799

• Contacts: A contact management app for storing 800

and organizing contact information. 801

• Maps.me: An offline map app for navigation and 802

exploring locations. 803

• PiMusic: A music player app for organizing and 804

playing locally stored music files. 805

• Settings: A settings app for configuring device 806

settings and preferences. 807

• Zoom: A video conferencing app for hosting and 808

joining online meetings. 809

The selection of these apps goes through multiple 810

iterations to ensure their suitability for our evalua- 811

tion purposes. A key criterion for the final selection 812

is that each app functions independently, without 813

requiring an internet connection or user account 814

login. This ensures that the evaluations can be 815

consistently replicated under the same conditions, 816

eliminating external dependencies and reducing the 817

risk of privacy breaches. As a result, this approach 818

maintains the reliability and reproducibility of our 819

results. 820

B Detail of Operation Modes 821

B.1 XML Mode 822

As shown in Figure 5, in this mode, we prompt 823

models with task description, interaction history, 824

and current compressed XML information. The 825

models are supposed to output an action in function- 826

call format. The actions are applied on coordinates 827

shown in XML. 828

B.2 SoM Mode 829

As shown in Figure 6, in this mode, we prompt 830

models with task description, interaction history, 831

and current screenshot with set of marks(Yang 832

et al., 2023a). The models are also supposed to 833

output an action in function-call format. Different 834

from XML mode, the actions are performed on 835

specified elements via marked indices. 836

B.3 ReAct Modes 837

We follow (Yao et al., 2022) for ReAct prompting. 838

In this mode, we perform both text-only and multi- 839

modal testing. As shown in Figure 7 and Figure 8, 840

the text-only and multi-modal prompts are based 841

on Section B.1 and Section B.2 respectively. We 842
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Table 5: List of Android Eval apps used along with corresponding example task, sub-goals, and the number of tasks.

APP Example Task Sub-Goals # tasks

Bluecoins
Record an income of 8000 CNY in
the books, and mark it as "salary".

· type: income
· cash: 8000 CNY
· note: salary

15

Calendar
Edit the event with title "work",
change the time to be 7:00 PM.

· title: work
· state: editing
· date: today
· time: 7 PM

14

Cantook Mark Hamlet as read.
· book: Hamlet
· state: 100% read

12

Clock
I need set an 10:30PM clock every
weekend, and label it as "Watch
Football Games".

· time: 10:30PM
· frequency: every weekend
· label: Watch Football Games

27

Contacts

Add a contacts whose name is Xu,
set the working phone number to be
12345678, and mobile phone num-
ber to be 87654321.

· name: Xu
· working phone number: 12345678
· mobile phone number: 87654321

15

Maps.me
Check the driving distance and time
between Bus stop of 2700 Coast Av-
enue and Bus Stop Route 51.

· driving distance: 7.0km
· driving time: 8 min

15

PiMusic
Sort Pink Floyd’s songs by duration
time in descending order.

· page: ARTISTS
· artist: Pink Floyd
· order: descending by duration

12

Setting
Show battery percentage in status
bar.

· battery percentage: displayed 23

Zoom
I need to join meeting 1234567890
without audio and video.

· meeting ID: 1234567890
· audio: off
· video: off

5
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# Setup
You are a professional android operation agent assistant that can fulfill user's high-level instructions. Given the XML information of the android screenshot at each step, you plan 
operations in python-style pseudo code using provided functions, or customize functions (if necessary) and then provide their implementations. 

# More details about the code
Your code should be readable, simple, and only **ONE-LINE-OF-CODE** at a time. You are not allowed to use `while` statement and `if-else` control. Predefined functions are as follow:

```

def do(action, element=None, **kwargs):
    """
    Perform a single operation on an Android mobile device.

    Args:
        action (str): Specifies the action to be performed. Valid options are:
                      "Tap", "Type", "Swipe", "Long Press", "Home", "Back", "Enter", "Wait".
        element (list, optional): Defines the screen area or starting point for the action.
                                  - For "Tap" and "Long Press", provide coordinates [x1, y1, x2, y2]
                                    to define a rectangle from top-left (x1, y1) to bottom-right (x2, y2).
                                  - For "Swipe", provide coordinates either as [x1, y1, x2, y2] for a defined path
                                    or [x, y] for a starting point. If omitted, defaults to the screen center.

    Keyword Args:
        text (str, optional): The text to type. Required for the "Type" action.
        direction (str, optional): The direction to swipe. Valid directions are "up", "down", "left", "right".
                                   Required if action is "Swipe".
        dist (str, optional): The distance of the swipe, with options "long", "medium", "short".
                              Defaults to "medium". Required if action is "Swipe" and direction is specified.
        
    Returns:
        None. The device state or the foreground application state will be updated after executing the action.
    """

def finish(message=None):
    """
    Terminates the program. Optionally prints a provided message to the standard output before exiting.

    Args:
        message (str, optional): A message to print before exiting. Defaults to None.

    Returns:
        None
    """

# A toy example
<|user|>
# Task Instruction:
Set an alarm for 9:00 a.m. on Monday

** XML **

<|assistant|>
## Round 0
* Analysis: The user wants to set a recurring alarm for 9:00 a.m. on weekdays. First I should open the Clock app, which should contain the alarm clock setting.yaml. But I can't find it in 
current screen, I should swipe up to find the Clock app.
* Operation:

```
do(action="Swipe", element=[680, 2016, 760, 2276], direction="up", dist="long")
```

<|user|>
** XML **

<|assistant|>
## Round 1
* Analysis: Now I can open the Clock app. #[863,390][1021,672]#
* Operation:

```
do(action="Tap", element=[863, 390, 1021, 672])
```

<|user|>
** XML **

<|assistant|>
## Round 2
* Analysis: After opening the Clock app, I need to find where to add an alarm. Therefore, I should tap the Alarm tab #[66,115][228,192]#
* Operation:

```
do(action="Tap", element=[66, 115, 228, 192])
```

<|user|>
** XML **

<|assistant|>
## Round 3
* Analysis: In the alarm page, I should tap the "Add Alarm" button to add a new alarm. #[408,1626][672,1890]#
* Operation:

```
do(action="Tap", element=[408, 1626, 672, 1890])
```

System
Message

User
Message

<|user|>
** XML **

<|assistant|>
## Round 4
* Analysis: I can set the alarm now. Firstly, I should set the alarm to 9 o'clock. #[200,1170][332,1302]#
* Operation:
```
do(action="Tap", element=[200, 1170, 332, 1302])
```

<|user|>
** XML **

<|assistant|>
## Round 5
* Analysis: Then I need to change the clock period toggle to "AM". #[782,543][925,807]#
* Operation:
```
do(action="Tap", element=[782, 543, 925, 807])
```

<|user|>
** XML **

<|assistant|>
## Round 6
* Analysis: The alarm is now set, tap "OK" to confirm. #[793,1660][969,1792]#
* Operation:
```
do(action="Tap", element=[793, 1660, 969, 1792])
```

<|user|>
** XML **

<|assistant|>
## Round 7
* Analysis: Now, this alarm will only go off tomorrow. I need to change it to go off once every Monday. #[209,694][341,826]#
* Operation:
```
do(action="Tap", element=[209, 694, 341, 826])
```

<|user|>
** XML **

<|assistant|>
## Round 8
* Analysis: The alarm has been set to go off once every Monday, which means the task is finished.
* Operation:
```
finish(message="The alarm has been set to go off at 9:00 a.m. once every Monday")
```

REMEMBER: 
- Only **ONE-LINE-OF-CODE** at a time.
- Don't generate an operation element that you do not see in the screenshot.
- You are acting in a real world, try your best not to reject user's demand. Solve all the problem you encounter.
- On a dropdown element (Calendar, Nationality, Language, etc.), first try directly typing in the option you want.
- To accomplish the task, try switching to as many different pages as you can, and don't stay on the same page too often, based on historical conversation information.
- To complete the task, explore the app fully, i.e., tap more on different elements of the app
- Please do not translate proper nouns into English.

Task Instruction: {task}

Response History

Compressed XML of current screen:

{layout_info}
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Figure 5: Prompts of XML Mode for Text-only Testing

add prompts that allow models to think step by step843

before outputting actions.844

B.4 SeeAct Modes845

We follow (Zheng et al., 2024) for SeeAct prompt-846

ing. The raw prompts of SeeAct are designed for847

web browsers. To adopt that in android environ-848

ments, we make some modifications, and the final849

prompts are shown in Figure 9 for multi-modal850

testing and Figure 10 for text-only testing.851

For multi-modal and text-only testing, the infor-852

mation of mobile phones is given by screenshots853

and compressed XML respectively. The models are854

expected to generate a detailed description of the855

action, its corresponding element, and parameters856

in round 1, and the expected function-call format857

in round 2.858
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You are an agent that is trained to complete certain tasks on a smartphone. You will be 
given a screenshot of a smartphone app. The interactive UI elements on the screenshot are labeled with numeric tags 
starting from 1. 

You can call the following functions to interact with those labeled elements to control the smartphone:

1.tap(index: int)

Taps the UI element labeled with the given number.
Example: tap(5)

2.text(input_str: str)

Inserts the given text into an input field. 
Example: text("Hello, world!")
Since we use ADB keyboard, if ADB keyboard ON is displayed on the bottom of the screen, you can use this function.
If you think that the keyboard is displayed after your previous operation, you can try to use this function to input text.

3.long_press(index: int)

Long presses the UI element labeled with the given number.
Example: long_press(5)

4. swipe(index: int, direction: str, dist: str)

Swipes the UI element in the specified direction and distance. "direction" is a string that 
represents one of the four directions: up, down, left, right. "dist" determines the distance of the swipe and can be one
of the three options: short, medium, long.
Example: swipe(21, "up", "medium")

5. back()

Simulates a back button press on the smartphone.

6. home()

Simulates a home button press on the smartphone.

7. wait(interval: int)

Pauses the execution for the given number of seconds. Default is 5 second.

8. finish(message: str)

Ends the task and provides the final output. You can return the final output of the task as a string.
Example: finish("Task completed")

Now, given the following labeled screenshot, you need to think and call the function needed to proceed with the task. 
Your output should include only action part in the given format:

Action: <The function call with the correct parameters to proceed with the task. If you believe the task is completed or 
there is nothing to be done, you should use finish function. You cannot output anything else except a function call
in this field.>

Whenever you think the task is finished, you should use finish function to avoid extra operations.

If you found yourself in a loop or the task is not proceeding as expected, you might consider changing your operation and try other methods.
If you operate same action 5 times, the program will automatically stop.
If tap operation is not working, you can try long press operation.

You can only take one action at a time, so please directly call the function.

Task Instruction: {task}
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Figure 6: Prompts of SoM Mode for Multi-modal Testing
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# Setup
You are a professional android operation agent assistant that can fulfill user's high-level instructions. Given the
XML information of the android screenshot at each step, you plan operations in python-style pseudo code using
provided functions, or customize functions (if necessary) and then provide their implementations.

# More details about the code
Your code should be readable, simple, and only **ONE-LINE-OF-CODE** at a time. You are not allowed to use
`while` statement and `if-else` control. Predefined functions are as follow:

```

def do(action, element=None, **kwargs):
    """
    Perform a single operation on an Android mobile device.

    Args:
        action (str): Specifies the action to be performed. Valid options are:
                      "Tap", "Type", "Swipe", "Long Press", "Home", "Back", "Enter", "Wait".
        element (list, optional): Defines the screen area or starting point for the action.
                                  - For "Tap" and "Long Press", provide coordinates [x1, y1, x2, y2]
                                    to define a rectangle from top-left (x1, y1) to bottom-right (x2, y2).
                                  - For "Swipe", provide coordinates either as [x1, y1, x2, y2] for a defined path
                                    or [x, y] for a starting point. If omitted, defaults to the screen center.

    Keyword Args:
        text (str, optional): The text to type. Required for the "Type" action.
        direction (str, optional): The direction to swipe. Valid directions are "up", "down", "left", "right".
                                   Required if action is "Swipe".
        dist (str, optional): The distance of the swipe, with options "long", "medium", "short".
                              Defaults to "medium". Required if action is "Swipe" and direction is specified.

    Returns:
        None. The device state or the foreground application state will be updated after executing the action.
    """

def finish(message=None):
    """
    Terminates the program. Optionally prints a provided message to the standard output before exiting.

    Args:
        message (str, optional): A message to print before exiting. Defaults to None.

    Returns:
        None
    """

```

Now, given the following XML information, you need to think and call the function needed to proceed with the
task.
Your output should include Obs, Thought and Act in the given format:

Obs
Retrieve the result of executing the instruction from the external environment. This is equivalent to obtaining the
result of the current step’s behavior, preparing for the next step.
Note: In order to reduce the number of function calls, the Obs step executes at the beginning of the next turn.
So if current step is not the first step, you should observe the result of the previous step in the current step.

Thought
Reasoning and textual display of the process. What do I want to do, and what are the prerequisites to achieve
this.

Action
Generate the instruction to interact with the android environment.

Here is an one-shot example:

Obs: The user wants to set an alarm for 9:00 a.m. on weekdays. The XML shows the clock app is open.
Thought: After opening the Clock app, I need to find where to add an alarm. Therefore, I should tap the Alarm tab
#[66,115][228,192]#
Action:
```
do(action="Tap", element=[66,115,228,192])
```

REMEMBER:
- Only Obs, Thought and **ONE-LINE-OF-CODE** at a time.
- Don't generate an operation element that you do not see in the screenshot.
- You are acting in a real world, try your best not to reject user's demand. Solve all the problem you encounter.
- On a dropdown element (Calendar, Nationality, Language, etc.), first try directly typing in the option you want.
- To accomplish the task, try switching to as many different pages as you can, and don't stay on the same page
too often, based on historical conversation information.
- To complete the task, explore the app fully, i.e., tap more on different elements of the app
- Please do not translate proper nouns into English.
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Figure 7: Prompts of XML Mode for ReAct Testing.

You are an agent that is trained to complete certain tasks on a smartphone. You will be
given a screenshot of a smartphone app. The interactive UI elements on the screenshot are labeled with numeric
tags
starting from 1.

You can call the following functions to interact with those labeled elements to control the smartphone:

1.tap(index: int)

Taps the UI element labeled with the given number.
Example: tap(5)

2.text(input_str: str)

Inserts the given text into an input field.
Example: text("Hello, world!")
Since we use ADB keyboard, if ADB keyboard ON is displayed on the bottom of the screen, you can use this
function.
If you think that the keyboard is displayed after your previous operation, you can try to use this function to input
text.

3.long_press(index: int)

Long presses the UI element labeled with the given number.
Example: long_press(5)

4. swipe(index: int, direction: str, dist: str)

Swipes the UI element in the specified direction and distance. "direction" is a string that
represents one of the four directions: up, down, left, right. "dist" determines the distance of the swipe and can be
one
of the three options: short, medium, long.
Example: swipe(21, "up", "medium")

5. back()

Simulates a back button press on the smartphone.

6. home()

Simulates a home button press on the smartphone.

7. wait(interval: int)

Pauses the execution for the given number of seconds. Default is 5 second.

8. finish(message: str)

Ends the task and provides the final output. You can return the final output of the task as a string.
Example: finish("Task completed")

Now, given the following labeled screenshot, you need to think and call the function needed to proceed with the
task.
Your output should include Obs, Thought and Act in the given format:

Obs
Retrieve the result of executing the instruction from the external environment. This is equivalent to obtaining the
result of the current step’s behavior, preparing for the next step.

Note: In order to reduce the number of function calls, the Obs step executes at the beginning of the next turn.
So if current step is not the first step, you should observe the result of the previous step in the current step.

Thought
Reasoning and textual display of the process. What do I want to do, and what are the prerequisites to achieve
this.

Action
Generate the instruction to interact with the android environment.

Here is an one-shot example:

Obs: The user wants to set an alarm for 9:00 a.m. on weekdays. The screenshot shows the clock app is open.
Thought: I need to open the clock app labeled with 5 and find the first alarm listed .
Action:
```
tap(5)
```

Whenever you think the task is finished, you should use finish function to avoid extra operations.

If you found yourself in a loop or the task is not proceeding as expected, you might consider changing your
operation and try other methods.
If you operate same action 5 times, the program will automatically stop.
If tap operation is not working, you can try long press operation.

You can only take one action at a time, so please directly call the function.
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Figure 8: Prompts of SoM Mode for ReAct Testing.
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You are assisting humans doing smartphone navigation tasks step by step. At each stage, you can see the smartphone by a screenshot and know the previous actions before the current 
step decided by yourself that have been executed for this task through recorded history. You need to decide on the first following action to take.

Here are the descriptions of all allowed actions: "Tap", "Type", "Swipe", "Long Press", "Home", "Back", "Enter", "Wait".

You are asked to complete the following task: {task}

Previous Actions:

{previous_actions}

The screenshot below shows the smartphone you see. Think step by step before outlining the next action step at the current stage. Clearly outline which element in 
the smartphone users will operate with as the first next target element, its detailed location, and the corresponding operation.

To be successful, it is important to follow the following rules: 
1. You should only issue a valid action given the current observation. 
2. You should only issue one action at a time.
3. Terminate when you deem the task complete.

(Reiteration)
First, reiterate your next target element, its detailed location, and the corresponding operation.

(Final Answer)
Below is a multi-choice question, where the choices are elements in the smartphone. From the screenshot, find out where and what each one is on the smartphone, taking into account 
both their text content and path details. Then, determine whether one matches your target element if your action involves an element. Choose the best matching one.

{option_prompt}

Conclude your answer using the format below. Ensure your answer is strictly adhering to the format provided below. 

Predefined functions are as follow:

```
def do(action, element=None, **kwargs):
    """
    Perform a single operation on an Android mobile device.

    Args:
        action (str): Specifies the action to be performed. Valid options are:
                      "Tap", "Type", "Swipe", "Long Press", "Home", "Back", "Enter", "Wait".
        element (list, optional): Defines the screen area or starting point for the action.
                                  - For "Tap" and "Long Press", provide coordinates [x1, y1, x2, y2]
                                    to define a rectangle from top-left (x1, y1) to bottom-right (x2, y2).
                                  - For "Swipe", provide coordinates either as [x1, y1, x2, y2] for a defined path
                                    or [x, y] for a starting point. If omitted, defaults to the screen center.

    Keyword Args:
        text (str, optional): The text to type. Required for the "Type" action.
        direction (str, optional): The direction to swipe. Valid directions are "up", "down", "left", "right".
                                   Required if action is "Swipe".
        dist (str, optional): The distance of the swipe, with options "long", "medium", "short".
                              Defaults to "medium". Required if action is "Swipe" and direction is specified.
    Returns:
        None. The device state or the foreground application state will be updated after executing the action.
    """
    ...

def finish(message=None):
    """
    Terminates the program. Optionally prints a provided message to the standard output before exiting.

    Args:
        message (str, optional): A message to print before exiting. Defaults to None.

    Returns:
        None
    """
    ...

```

Your code should be readable, simple, and only **ONE-LINE-OF-CODE** at a time. You are not allowed to use `while` statement and `if-else` control. Please do not leave any explanation 
in your answers of the final standardized format part, and this final part should be clear and certain.

Example if you want to swipe up from an element located at [680,2016][760,2276] with a long distance:
```
do(action="Swipe", element=[680, 2016, 760, 2276], direction="up", dist="long")
```

Example if you deem the task complete and want to finish with a message:
```
finish(message="The alarm on 9:00 AM weekday has been set")
```
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Figure 9: Prompts of SoM Mode for SeeAct Testing.
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You are assisting humans doing smartphone navigation tasks step by step. At each stage, you can see the smartphone by compressed layout information and know the previous actions 
before the current step decided by yourself that have been executed for this task through recorded history. You need to decide on the first following action to take.

Here are the descriptions of all allowed actions: "Tap", "Type", "Swipe", "Long Press", "Home", "Back", "Enter", "Wait".

You are asked to complete the following task: {task}

Previous Actions:

{previous_actions}

The compressed layout information below shows the smartphone you see. 

{layout_info}

Think step by step before outlining the next action step at the current stage. Clearly outline which element in the smartphone users will operate with as the first next target element, its 
detailed location, and the corresponding operation.

To be successful, it is important to follow the following rules: 
1. You should only issue a valid action given the current observation. 
2. You should only issue one action at a time.
3. Terminate when you deem the task complete.

(Reiteration)
First, reiterate your next target element, its detailed location, and the corresponding operation.

(Final Answer)
Below is a multi-choice question, where the choices are elements in the smartphone. From compressed layout information, find out where and what each one is on the smartphone, 
taking into account both their text content and path details. Then, determine whether one matches your target element if your action involves an element. Choose the best matching one.

{option_prompt}

Conclude your answer using the format below. Ensure your answer is strictly adhering to the format provided below. 

Predefined functions are as follow:

```
def do(action, element=None, **kwargs):
    """
    Perform a single operation on an Android mobile device.

    Args:
        action (str): Specifies the action to be performed. Valid options are:
                      "Tap", "Type", "Swipe", "Long Press", "Home", "Back", "Enter", "Wait".
        element (list, optional): Defines the screen area or starting point for the action.
                                  - For "Tap" and "Long Press", provide coordinates [x1, y1, x2, y2]
                                    to define a rectangle from top-left (x1, y1) to bottom-right (x2, y2).
                                  - For "Swipe", provide coordinates either as [x1, y1, x2, y2] for a defined path
                                    or [x, y] for a starting point. If omitted, defaults to the screen center.

    Keyword Args:
        text (str, optional): The text to type. Required for the "Type" action.
        direction (str, optional): The direction to swipe. Valid directions are "up", "down", "left", "right".
                                   Required if action is "Swipe".
        dist (str, optional): The distance of the swipe, with options "long", "medium", "short".
                              Defaults to "medium". Required if action is "Swipe" and direction is specified.
        
    Returns:
        None. The device state or the foreground application state will be updated after executing the action.
    """
    ...

def finish(message=None):
    """
    Terminates the program. Optionally prints a provided message to the standard output before exiting.

    Args:
        message (str, optional): A message to print before exiting. Defaults to None.

    Returns:
        None
    """
    ...

```

Your code should be readable, simple, and only **ONE-LINE-OF-CODE** at a time. You are not allowed to use `while` statement and `if-else` control. Please do not leave any explanation 
in your answers of the final standardized format part, and this final part should be clear and certain.

Example if you want to swipe up from an element located at [680,2016][760,2276] with a long distance:
```
do(action="Swipe", element=[680, 2016, 760, 2276], direction="up", dist="long")
```

Example if you deem the task complete and want to finish with a message:
```
finish(message="The alarm on 9:00 AM weekday has been set")
```
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C Details of XML Compression859

Algorithm860

Currently, the inputs effectively handled by main-861

stream Large Language Models (LLMs) are gener-862

ally within 8k tokens to 16k tokens. Beyond this863

length, the model’s performance significantly de-864

clines. However, the raw XML obtained through865

methods provided by Google Android often re-866

quires tens of thousands of tokens after being con-867

verted into tokens after conversion. Therefore, it868

is necessary to simplify the XML information be-869

fore feeding it to the model. Some existing XML870

simplification algorithms still retain a lot of struc-871

tural information and descriptive representations872

from the original XML. In many complex pages,873

the simplified XML obtained is still far more than874

16k tokens in length.875

Since the original XML is used to define the lay-876

out and elements of the user interface, it includes all877

the components on a page. Thus, the original XML878

contains many nodes that exist only for structural879

and layout purposes. These nodes do not provide880

useful page information, which is the main reason881

for the excessive length of the original XML. Ad-882

ditionally, a page often contains more nodes than883

are displayed on the screen, such as in scrollable884

pages. Thus, the original XML will also include885

many off-screen nodes.886

First, we determine whether to retain off-887

screen nodes, controlled by an input pa-888

rameter remain_nodes (retain nodes when re-889

main_nodes=True). For instance, when it is nec-890

essary to summarize the entire page’s information,891

we can retain off-screen nodes to save operations892

(like scrolling the screen to see the full text) and di-893

rectly obtain the complete page’s text information.894

If the requirement is related to operation simulation,895

such as simulating clicking elements or scrolling,896

we can choose to delete off-screen nodes to prevent897

interference with the model. Specifically, in the898

original XML, the bounds property of all on-screen899

nodes must be within [0,0][Window_Height, Win-900

dow_Width] and must be contained by their par-901

ent node. Therefore, we only need to determine902

whether the current node’s bounds are contained903

by its parent node to identify all the nodes within904

the screen range.905

The original XML also contains many nodes that906

exist only for structural and layout purposes, which907

do not include useful page information. Thus,908

we will delete these redundant nodes. We will909

judge whether a node is redundant based on its at- 910

tributes. If a node has at least one of the following 911

attributes as True: "checkable", "checked", "click- 912

able", "focusable", "scrollable", "long-clickable", 913

"password", "selected", or if the text or content- 914

desc is not empty, we consider this node functional. 915

Nodes that do not meet this criterion are redundant, 916

and we will delete all such nodes. 917

The descriptions of each attribute in the origi- 918

nal XML are overly redundant and consume many 919

tokens. Finally, we will simplify these attribute 920

descriptions. For the functional attributes "check- 921

able", "checked", "clickable", "focusable", "scrol- 922

lable", "long-clickable", "password", "selected", 923

since most cases will be False, we will only display 924

attributes with True values. The "index", "resource- 925

id", and "package" attributes do not help the model 926

understand the page, so we will delete them di- 927

rectly. The "class" attribute, to some extent, indi- 928

cates the main function of a node, so we will retain 929

its last part (the class is always in x.x.x.x format, 930

with varying dot counts, and we will keep only the 931

part after the last dot, e.g., retaining FrameLayout 932

from android.widget.FrameLayout). The "text" and 933

"content-desc" attributes represent the node’s text 934

information, and we will merge and display them 935

separately. The "bounds" attribute indicates the 936

node’s position on the page and is one of the most 937

critical attributes, so we will display it separately. 938

Ultimately, for the following node: 939

<node index="0" text="XXX" resource- 940

id="" class="android.view.View" pack- 941

age="com.autonavi.minimap" content-desc="" 942

checkable="false" checked="false" click- 943

able="false" enabled="true" focusable="false" 944

focused="false" scrollable="false" long- 945

clickable="false" password="false" se- 946

lected="false" bounds="[290,844][346,885]" 947

/> 948

We will simplify it to: 949

[n42] View;;; XXX; [290,844][346,885] 950

In summary, by reducing nodes to remove redun- 951

dant and off-screen nodes and simplifying the node 952

attribute descriptions, we will rewrite the XML 953

into a new, more concise format to obtain a more 954

streamlined XML. 955

D Details of Metrics 956

D.1 Success Rate (SR) 957

For Operation Tasks, we probe task completion via 958

unique Android emulator states. For Query Tasks, 959
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advanced LLMs verify if the model’s predicted re-960

sults match the standard answers, avoiding errors961

from direct string comparisons, achieving an ac-962

curacy rate of over 98% (Cf. Appendix F.5). The963

Success Rate is calculated as the average task com-964

pletion rate across all tasks: SR =
∑N

i=1 Si/N ,965

where N is the total number of tasks, and Si is a bi-966

nary value indicating whether task i is successfully967

completed. We provide an example in Fig 4.968

D.2 Sub-Goal Success Rate (Sub-SR)969

Tasks are decomposed into sub-goals, and com-970

pletion is assessed sequentially. This finer met-971

ric rewards models with stronger understanding972

and operational capabilities. It is common for973

models to only achieve partial goals, as shown974

in Fig 14. This approach allows us to distin-975

guish the model’s capabilities at a finer granu-976

larity. Sub-Goal Success Rate is calculated by977

averaging the success rate of sub-goals within978

a task, followed by averaging across all tasks:979

SubSR =
∑N

i=1

(∑Mi
j=1Gij/Mi

)
/N , where Mi980

is the number of sub-goals in task i, and Gij is a981

binary value indicating whether sub-goal j in task982

i is completed.983

D.3 Reversed Redundancy Ratio (RRR)984

As shown in previous work (Xing et al., 2024), re-985

dundancy is measured by comparing the length986

of the model operation path (L) with a human987

operator’s path length (L̂). We calculate RRR988

by averaging the redundancy score across tasks:989

RRR =
(∑N ′

i=1 L̂i/Li

)
/N ′, where N ′ is the990

number of tasks with SR > 5%, Li is the length991

of the model’s operation path for task i, and L̂i is992

the length of the human benchmark path.993

D.4 Reasonable Operation Ratio (ROR)994

This metric evaluates the proportion of operations995

after which the screen changed. Unchanged screens996

indicate the operation was ineffective and thus997

deemed unreasonable. ROR is calculated by aver-998

aging the reasonable operation ratios across tasks:999

ROR =
(∑N

i=1Or,i/Ot,i

)
/N , where Or,i is the1000

number of operations that resulted in a screen1001

change for task i, and Ot,i is the total number of1002

operations performed in task i.1003

One possible misconception is that ROR is true1004

as long as the model performs an operation. How-1005

ever, we observed multiple situations that can cause1006

ROR to be false.1007

1. Tap Operations: Some positions might be 1008

marked as clickable in the XML interface, but click- 1009

ing them does nothing. For instance, many text 1010

elements are marked as clickable, but their func- 1011

tion only displays information rather than triggers 1012

navigation. While this might be due to errors from 1013

the software developers, the agent needs to learn 1014

through SFT which buttons need to be clicked to 1015

perform tasks accurately. 1016

2. Type Operations: Typing is only effective if 1017

it’s done in an activated input field, usually follow- 1018

ing a prior action that selects that field. 1019

3. Swipe Operations: Swiping in the incorrect 1020

location or direction will not affect the mobile de- 1021

vice. 1022

E Case Study 1023

In the case shown in Fig 11, an agent with GPT-4o 1024

as the base model was asked to find the reason 1025

behind a specific expenditure at a specific date via 1026

the Bluecoins app. It correctly navigated to the 1027

right date, opened the expense section, extracted 1028

the required information, and returned it to the 1029

user without unnecessary actions. This resulted in 1030

a high RRR of 1.25 and a reasonable operation 1031

ratio of 1.0, reflecting efficient and successful task 1032

completion. 1033

As shown in Fig 12, the agent with GPT-4o as the 1034

base model was given the task of changing the 1035

home time zone to Tokyo in the clock. Initially, it 1036

added a new clock for Tokyo, which was irrelevant. 1037

Then it navigated to the settings, correctly updated 1038

the home time zone, and completed the task. 1039

Although the task was successful, the metric 1040

penalized redundant initial steps, assigning an 1041

RRR of 0.5. 1042

In the example shown in Fig 13, the GLM4 agent 1043

operating in SoM mode successfully navigated 1044

from my location to University South by searching 1045

for the destination and displaying the route. 1046

However, it unnecessarily clicked on the WiFi 1047

button, which was redundant. Therefore, the 1048

task was deemed successful, but the RRR score 1049

dropped to 0.875 due to the additional action. 1050

The GPT-4o agent in XML mode, as shown in 1051

Fig 14, was tasked with joining a meeting without 1052

audio and video. It successfully entered the 1053

meeting ID but struggled with the audio and video 1054

settings, ultimately failing to turn off the video. 1055

Two of three sub-goals, including entering the 1056

meeting ID, not connecting to audio, and turning 1057
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Figure 11: User Study: Successful Task of GPT-4o agent with no Redundant Operation under XML Mode

off the video, succeeded. The task was considered1058

unsuccessful overall due to the failure to turn off1059

the video.1060

In the case shown in Fig 15, a GPT-4o agent was1061

tasked with adding a contact and setting a phone1062

number but failed to click the input field before1063

typing, leaving both sub-goals incomplete. The1064

task was deemed unsuccessful.1065

The Llama3 agent in SoM mode, as shown in1066

Fig 16, was tasked with setting the alarm volume1067

to the max but failed to navigate to the correct1068

column. In addition, it repeatedly scrolled up,1069

completely missing the goal. As a result, the1070

task was deemed unsuccessful and the agent was1071

penalized with a low reasonable operation ratio,1072

scoring 0.8.1073

1074

F Additional Results1075

F.1 Detailed results across different APPs1076

Table 6 shows the number of tasks correctly com-1077

pleted by various models across different apps with-1078

out employing the ReAct and SeeAct frameworks.1079

This table shows that GPT-4o and GPT-4-1106-1080

Preview perform relatively well, completing 781081

and 79 tasks, respectively. In the XML mode, GPT-1082

4-1106-Preview stands out as the top performer,1083

with 43 tasks completed. Comparatively, in the1084

SoM mode, GPT-4o excels, achieving a signifi- 1085

cantly higher number of tasks than the other mod- 1086

els. Most models exhibit high success rates in tasks 1087

like "Contacts" and "Setting". Overall, GPT-4o and 1088

GPT-4-1106-Preview outperform the other models 1089

significantly in both XML and SoM modes, while 1090

Gemini-1.5-Pro shows a reasonable number of task 1091

completions across various apps. 1092

Table 7 shows the performance improvements 1093

observed after implementing the ReAct and See- 1094

Act frameworks on different models across various 1095

apps. Notably, GPT-4o shows significant enhance- 1096

ment, with the number of completed tasks increas- 1097

ing from 35 to 46 in XML+ReAct mode and 43 to 1098

44 in SoM+ReAct mode. Gemini-1.5-Pro also ben- 1099

efits, rising from 26 to 43 tasks. The improvements 1100

are evident in specific apps like "Bluecoins", espe- 1101

cially in high-complexity, multi-step tasks. GPT-4o 1102

leads in performance across all frameworks, show- 1103

ing how ReAct and SeeAct improve the model. 1104

F.2 Detailed results across different 1105

multimodal training modes 1106

We compare different multimodal training modes 1107

in Table 8. Under the same training data and base 1108

model settings, BBOX mode removes specified 1109

sets-of-masks from the screen. It is worth men- 1110

tioning that datasets like AITW only provide click 1111

positions rather than bounding boxes (BBOX) and 1112
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Figure 12: User Study: Successful Task of GPT-4o agent with Redundant Operation under XML Mode
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Figure 13: User Study: Successful Task of GLM4 agent with Redundant Operation under SoM Mode

22



Figure 14: User Study: Unsuccessful Task of GPT-4o agent under XML Mode

Figure 15: User Study: Unsuccessful Task of GPT-4o agent under XML Mode
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Figure 16: User Study: Unsuccessful Task of Llama3 agent under SoM Mode

Figure 17: User Study: Unsuccessful Task under XML Mode
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Figure 18: User Study: Unsuccessful Task under XML Mode
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Table 6: The number of tasks completed by all models across all apps in different modes.

Mode Model Bluecoins
15

Calendar
14

Cantook
12

Clock
27

Contacts
15

Maps.me
15

PiMusic
12

Setting
23

Zoom
5

Total
138

XML

GPT-4o 1 0 3 8 5 5 2 10 1 35
GPT-4-1106-Preview 1 4 6 4 6 6 4 9 3 43
Gemini-1.5-Pro 1 1 3 6 3 4 3 4 1 26
Gemini-1.0 0 1 1 4 2 0 1 2 1 12
GLM4-PLUS 2 0 4 9 6 3 2 10 2 38
LLaMA3.1-8B-Instruct 0 0 0 2 0 0 0 1 0 3
Qwen2.5-7B-Instruct 0 1 0 2 0 1 1 1 2 8
GLM4-9B-Chat 0 1 0 2 1 1 0 3 2 10
LLaMA3.1-8B-ft 3 5 6 8 6 5 0 4 1 38
Qwen2.5-7B-ft 3 4 5 6 6 3 1 7 1 36
GLM4-9B-ft 2 4 5 5 8 1 0 7 0 32

SoM

GPT-4o 1 1 5 7 8 2 2 13 4 43
GPT-4-Vision-Preview 1 1 5 8 6 2 2 8 3 36
Gemini-1.5-Pro 0 0 5 2 5 0 1 7 3 23
Gemini-1.0 0 0 2 3 3 0 1 5 1 15
Claude-3-Opus 1 0 1 2 4 0 3 7 0 18
Claude-3.5-Sonnet 4 2 4 9 7 0 3 10 1 40
LLaMA3.2-11B-Vision-Instruct 0 0 0 1 0 0 0 1 0 2
Qwen2-VL-2B-Instruct 0 0 0 0 0 0 0 0 0 0
Qwen2-VL-7B-Instruct 0 0 0 2 1 0 0 1 1 5
LLaMA3.2-11B-Vision-ft 0 2 2 3 1 5 0 3 0 16
Qwen2-VL-2B-Instruct-ft 1 4 1 3 2 3 0 5 1 20
Qwen2-VL-2B-Instruct-ft 0 0 1 7 7 6 0 4 1 26

Table 7: The improvement in model performance after employing the ReAct and SeeAct frameworks, is reflected in
the increased number of successfully completed tasks across various apps.

Mode Model Bluecoins
15

Calender
14

Cantook
12

Clock
27

Contacts
15

Maps.me
15

PiMusic
12

Settings
23

Zoom
5

Total
138

XML
GPT-4o 1 0 3 8 5 5 2 10 1 35
Gemini-1.5-Pro 1 1 3 6 3 4 3 4 1 26

XML+ReAct
GPT-4o 2 0 4 12 7 6 2 11 2 46
Gemini-1.5-Pro 4 0 4 6 6 6 3 11 3 43

XML+SeeAct
GPT-4o 1 2 4 8 5 3 2 7 2 34
Gemini-1.5-Pro 1 0 6 6 5 0 2 8 1 29

SoM
GPT-4o 1 1 5 7 8 2 2 13 4 43
Gemini-1.5-Pro 0 0 5 2 5 0 1 7 3 23

SoM+ReAct
GPT-4o 3 1 5 7 7 3 0 15 3 44
Gemini-1.5-Pro 1 1 3 2 4 1 2 7 1 22

SoM+SeeAct
GPT-4o 6 1 4 11 6 0 2 9 3 42
Gemini-1.5-Pro 1 0 6 6 5 0 2 8 1 29

do not offer a way to reconstruct the click-box1113

from XML. Therefore, data from AITW and simi-1114

lar datasets are more challenging to learn from.1115

F.3 Detailed results of SeeAct and ReAct1116

methods1117

We have provided detailed results on the impact1118

of the SeeAct and ReAct frameworks on model1119

performance in Fig 9, including all four metrics.1120

F.4 Influence of Windows Size.1121

As shown in Figure 19, experiments with three1122

Android VMs of varying sizes in SoM mode show1123

optimal agent performance on screens matching1124

commonly used smartphones (e.g., Pixel 7 Pro,1125

Pixel 8 Pro). Performance drops on smaller (Pixel1126

3a) and larger screens (Pixel Fold). 1127

Most Android phones share screen sizes similar 1128

to the Pixel 7 Pro or Pixel 8 Pro, which may make 1129

such data prevalent in proprietary multimodal 1130

training for closed-source models. As a result, 1131

these models might struggle with devices like the 1132

Pixel Fold, whose screen resembles a tablet. For 1133

example, as is shown in Fig 17, a GPT-4o agent 1134

effectively turned off alarms on Pixel 7 Pro and 1135

Pixel 8 Pro but failed to locate all alarm buttons 1136

on the Pixel Fold, despite their visibility on the 1137

screen. 1138

Performance issues also occur on smaller devices 1139

like the Pixel 3a, despite its slight deviation from 1140

typical phone sizes. For instance, as is shown 1141
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Table 8: Different multi-modal modes of instruction tuning. We use the same set of training data but only add a
set-of-mask index on SoM mode. Note that AITW dataset even could not provide accurate bbox, but only point. We
use CogVLM2 as base model.

Operation Mode SR Sub-SR RRR ROR
BBOX 5.79 6.03 47.95 55.05
SoM 11.59 16.06 57.37 85.58

Table 9: The impact of the ReAct and SeeAct frameworks. Notably, model performance is significantly improved in
XML+ReAct mode.

Mode Model SR Sub-SR RRR ROR

XML GPT-4o 25.36 30.56 107.45 86.56
Gemini-1.5-Pro 18.84 22.40 57.72 83.99

XML+ReAct GPT-4o 33.33 38.22 97.93 90.74
Gemini-1.5-Pro 31.16 34.54 92.08 90.31

XML+SeeAct GPT-4o 24.64 27.31 93.78 79.62
Gemini-1.5-Pro 21.01 25.53 75.97 89.06

SoM GPT-4o 31.16 35.02 87.32 85.36
Gemini-1.5-Pro 16.67 18.48 105.95 91.52

SoM+ReAct GPT-4o 31.88 39.19 104.69 89.80
Gemini-1.5-Pro 15.94 21.38 109.81 84.16

SoM+SeeAct GPT-4o 30.43 36.24 97.45 88.56
Gemini-1.5-Pro 21.01 25.53 75.97 89.06

GPT-4o GPT-4-Vision-Preview Gemini-1.5-Pro Gemini-1.0
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Figure 19: The performance of five models across four
different device types is presented. Among these, the
Pixel 3a is a smaller-sized phone, the Pixel 7 Pro and
Pixel 8 Pro are of sizes comparable to commonly used
phones, and the Pixel Fold is akin to a tablet.

in Fig 18, on Pixel 7 Pro and Pixel 8 Pro, the1142

“Dark Theme” setting is accessible immediately,1143

while on Pixel 3a, it requires swiping or searching.1144

Evaluation setting like GPT-4o in SoM mode,1145

which relies on visible information, struggled1146

there, failing this task on Pixel 3a but succeeding1147

on larger devices.1148

1149

F.5 Evaluation Accuracy of Query Tasks1150

To check the accuracy of the query task evaluation1151

using the LLM-judge method, we randomly sam-1152

pled 50 examples for manual review. We asked1153

the annotators to determine whether the task was1154

completed based on the screenshots, operations in 1155

the completion record, and the finish information. 1156

Then, we compared their judgments with our auto- 1157

mated method. Among these sampled query tasks, 1158

49 were accurately evaluated by the LLM-judge 1159

method, resulting in an accuracy rate of 98%. One 1160

judgment was somewhat controversial. The task 1161

was " Could you tell me how much I spent on May 1162

10, 2024?" The correct answer should have been 1163

"11400CNY," but the finish message only provided 1164

the price without including the unit. The LLM- 1165

judge considered this response incorrect, although 1166

this judgment is debatable. 1167

Here is our LLM-judge prompt: 1168

You need to judge the model answer as True or 1169

False based on the Standard Answer we provided. 1170

You should return either [True] or [False]. 1171

Question: {question} 1172

Model Answer: {model_answer} 1173

Standard Answer: {standard_answer} 1174

F.6 Out-of-domain Evaluation 1175

In this work, we are committed to providing an in- 1176

domain training and test set. However, our data col- 1177

lection method can easily be extended to nearly all 1178

apps. Unfortunately, for most commonly used apps, 1179

we cannot conduct directly reproducible tests. Nev- 1180

ertheless, we chose the AITW web shopping subset 1181
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provided by Digirl (Bai et al., 2024) as our out-of-1182

domain (OOD) test set to evaluate our model’s1183

generalization ability. This test selected 96 tasks1184

from the AITW web shopping subset as the test1185

set, which were executed interactively in the em-1186

ulator and evaluated using the advanced model to1187

determine whether they were correctly executed.1188

We compared all offline methods, and our1189

method achieved higher test results post-SFT with1190

llama-3.1-8b than all previous methods, second1191

only to the online training method proposed by1192

Digirl, as shown in FIg 10.1193

In future work, we will further explore the pos-1194

sibility of extending our existing methods to a1195

broader domain. This includes collecting data from1196

more apps and adopting exploration-based rein-1197

forcement learning methods, among other strate-1198

gies.1199

G Introduction of Android Debug1200

Bridge(ADB) usage in ANDROIDLAB1201

Android Debug Bridge (ADB) is a powerful and1202

widely used command-line tool that serves as a1203

communication bridge between Android devices1204

and host machines. ADB is part of the Android1205

Software Development Kit (SDK) and is crucial in1206

enabling developers and researchers to interact with1207

Android devices for debugging, automation, and1208

data collection. By providing a unified interface,1209

ADB allows users to execute commands, transfer1210

files, manage apps, and retrieve system information,1211

making it an essential tool in Android development1212

and testing.1213

One of ADB’s primary strengths lies in its ver-1214

satility. It supports various operations, such as in-1215

stalling and uninstalling applications, reading sys-1216

tem logs, capturing screenshots, and automating1217

user interactions. ADB is compatible with physical1218

devices, emulators, and virtual machines, which1219

makes it a flexible solution for various experimen-1220

tal and development scenarios. Furthermore, its1221

integration with shell commands gives users gran-1222

ular control over device functionality, including1223

accessing low-level system settings and processes.1224

ADB is widely utilized in Android-related re-1225

search. For example, AndroidEnv (Toyama et al.,1226

2021), a simulation environment for reinforcement1227

learning, uses ADB for tasks such as app launch-1228

ing, querying activities, resetting episodes, and han-1229

dling task extras, serving as a foundation for works1230

like AITW (Rawles et al., 2023). AppAgent (Yang1231

et al., 2023b) employs ADB to define action spaces, 1232

leveraging multimodal methods with GPT-4v for 1233

Android device control. AndroidArena (Xing et al., 1234

2024) addresses challenges in Android evaluation, 1235

using ADB for action operations and XML infor- 1236

mation retrieval in its benchmark implementation. 1237

AITW (Rawles et al., 2023) utilizes ADB to exe- 1238

cute tasks in creating a dataset of over 5 million 1239

Android screenshots. Similarly, Digirl (Bai et al., 1240

2024) applies offline reinforcement learning for An- 1241

droid performance enhancement, employing ADB 1242

for screen data retrieval and device interaction. 1243

G.1 How Our Work Utilizes ADB 1244

G.1.1 Data Collection 1245

ADB is utilized to extract XML-based user inter- 1246

face information and capture screenshots from An- 1247

droid devices. These capabilities enable systematic 1248

analysis of UI layouts and visual feedback, provid- 1249

ing a foundation for evaluating app performance 1250

and user interaction flows. 1251

G.1.2 Device Control 1252

ADB commands allow precise control of Android 1253

devices, facilitating tasks such as launching appli- 1254

cations, simulating user interactions (e.g., clicks, 1255

swipes, and text input), and managing input events. 1256

These functionalities are critical for ensuring re- 1257

producibility in experimental workflows, as they 1258

eliminate human variability and automate complex 1259

interaction sequences. 1260

G.1.3 Performance Overhead 1261

To address potential performance overhead caused 1262

by frequent ADB command executions, we incor- 1263

porate delays ranging from 3 to 5 seconds between 1264

commands. Additionally, we provide adequate ini- 1265

tialization time for each device or virtual instance 1266

to ensure a stable environment. Empirical obser- 1267

vations from our experiments confirm that these 1268

measures mitigate significant performance delays 1269

attributable to ADB, preserving the accuracy and 1270

reliability of our results. 1271

G.1.4 Communication Stability 1272

To improve communication stability, we standard- 1273

ize the use of Android Virtual Devices (AVDs) as 1274

docker in experimental platform. This approach 1275

eliminates common issues such as USB disconnec- 1276

tions or unstable network connections, ensuring a 1277

consistent and reliable testing environment. 1278
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Table 10: AITW Web Shopping Test Accuracy for Different Models

Model Method AITW Web Shopping Test Accuracy (%)
GPT-4V Set of Mark 8.3
Gemini 1.5 Pro Set of Mark 11.5
CogAgent Supervised Training 38.5
AutoUI Supervised Training 17.7
Digirl Filtered Supervised Training 45.8
AndroidLab Supervised Training (llama-3.1-8b) 48.5

G.1.5 Limitations1279

While ADB offers extensive control over Android1280

devices, it has several limitations. For instance,1281

ADB cannot simulate sensor data such as ac-1282

celerometer readings, biometric inputs like finger-1283

prints, or hardware-specific features such as NFC1284

communication. These constraints highlight the1285

need for alternative methods or tools to comple-1286

ment ADB in specialized scenarios. Despite these1287

limitations, ADB remains an invaluable tool for au-1288

tomating and standardizing Android research and1289

testing workflows.1290

H AI Assistants In Writing1291

During the writing of this paper, we used AI to1292

correct grammatical errors and unreasonable de-1293

scriptions.1294

I Details of Android Instruction Dataset1295

I.1 Overview of Data Construction1296

1. Task Derivation and Expansion: We used aca-1297

demic datasets (Rawles et al., 2023; Coucke et al.,1298

2018) and manually wrote instructions to seed task1299

generation. Language models were employed to1300

create additional tasks, which were reviewed and1301

added to the dataset, ensuring realistic and exe-1302

cutable instructions.1303

2. Self-Exploration Reward Model Construc-1304

tion: First, we utilized advanced Large Language1305

Models (LLMs) and Large Multimodal Models1306

(LMMs) to automate the construction of trajec-1307

tories. Using the instructions we had generated,1308

we tasked these models to autonomously complete1309

tasks in AVD, with both humans and models an-1310

notating whether the tasks were successfully com-1311

pleted. We improved upon the method described1312

in (Pan et al., 2024), exploring and determining an1313

approach to build a reward model using combined1314

images as input information (Cf. Appendix I.2).1315

This reward model achieved an accuracy rate of1316

87.641317

3. Manual Annotation: This process involved 1318

four steps: 1319

(1) Instruction Check, where annotators evalu- 1320

ated the feasibility of the given tasks; 1321

(2) Preliminary Familiarization, allowing 1322

them to explore the app interface before performing 1323

tasks; 1324

(3) Task Execution, in which the annotators 1325

executed and documented each task step; 1326

(4) Cross-Verification, where a second anno- 1327

tator reviewed based on direct observation of the 1328

operation sequence, and the reward model scored 1329

the task trace to ensure its accuracy. If either of 1330

the two checks fails, we will ask the annotator to 1331

re-annotate. 1332

I.2 Details of Reward 1333

In order to develop a reward model, a subset of 1334

tasks was selected from the training data. The 1335

model, which had undergone preliminary super- 1336

vised fine-tuning, was tasked with performing mul- 1337

tiple rounds of sampling on these tasks. Subse- 1338

quently, the sampled trajectories were reviewed 1339

by GPT-4, which evaluated their correctness and 1340

provided a rationale for its decisions. These evalua- 1341

tions formed the training data for our reward model. 1342

We constructed 3000 samples for training and 300 1343

samples for evaluation. 1344

When determining the criteria by which the re- 1345

ward model should evaluate the trajectories, three 1346

methods were devised: 1347

1. Using the compressed XML of the final step. 1348

2. Using a screenshot of the final step. 1349

3. Combining screenshots from all steps in the 1350

trajectory into a single large image. 1351

In Table 11, we compare the accuracy on the 1352

test set (relative to human annotations) achieved 1353

using different methods. The results show that the 1354

Combined Image method achieves the best reward 1355

model accuracy. 1356
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Table 11: The accuracy of different reward model construction methods on the human-annotated test set.

base model Final XML Final Image Combined Image

llama3.2-11b-vision / 72.87 69.77
qwen2vl-7b-inst / 81.40 87.64
llama3.1-8b-inst 77.62 / /

We use the following template as the reward1357

model’s instruction:1358

You are an expert in evaluating the performance1359

of an Android navigation agent. The agent is de-1360

signed to help a human user navigate the device to1361

complete a task. Given the user’s instructions and1362

all screenshots of the agent executing the task, your1363

goal is to decide whether the agent has successfully1364

completed the task or not.1365

All screenshots of the task are stitched together1366

in the image. You must go through all the screen-1367

shots one by one.1368

CAREFUL! You need to pay more attention to1369

the image than the agent’s finish message because1370

the agent might hallucinate!1371

*IMPORTANT* Format your response into two1372

lines as shown below:1373

Thoughts: <your thoughts and reasoning pro-1374

cess>" Status: "YES" or "NO"1375

User Instruction: {instruction}1376

Action History: {last_actions}1377

Bot response to the user: {response if response1378

else "N/A"}.1379

I.3 Annotation Tool1380

We designed an annotation tool to record opera-1381

tion trajectories and page information (XML) more1382

accurately and efficiently.1383

Acquisition of Page Information: Android Debug1384

Bridge (ADB) is currently the most widely used1385

tool for obtaining page information (Yang et al.,1386

2023b; Rawles et al., 2024). ADB is a versatile1387

command-line utility that retrieves the XML data1388

of the current page. However, when dealing with a1389

diverse range of mobile applications, ADB some-1390

times fails to acquire the XML for particular pages.1391

Specifically, ADB waits for all UI components on1392

the page to become idle before retrieving compo-1393

nent information. ADB stops the XML acquisition1394

if this process exceeds a predefined time limit. This1395

issue is particularly evident on mobile pages with1396

dynamic components, such as playback bars and1397

animations in audio players, where continuously1398

active elements prevent ADB from obtaining the1399

XML. To address this, we reimplemented the XML 1400

acquisition functionality using the Android Acces- 1401

sibility Service, allowing annotators to determine 1402

the appropriate timing for retrieving page XML. 1403

Recording Operation Trajectories: We mainly 1404

need to record three types of user actions: clicks, 1405

swipes, and text input. For click actions and swipe 1406

actions, annotators complete the actions directly 1407

on the phone, while we use ADB commands to 1408

capture screen events. We determine whether the 1409

action was a click or swipe based on the press, 1410

release positions, and duration of these events. We 1411

utilize the ADB keyboard for text input to complete 1412

the entire input in a single operation, minimizing 1413

the number of annotations required. Before each 1414

action, the user must first use the annotation tool 1415

to record the current page information, ensuring 1416

that the recorded page data matches the context 1417

observed during human interaction. 1418

I.4 Details of Human Annotation 1419

In the process of constructing our data, we utilize 1420

crowdsourced annotations. To ensure that the pri- 1421

vacy information of the annotators is not disclosed, 1422

we adopt the following measures: 1423

1. Before the annotation begins, we explicitly 1424

inform the annotators that the annotated data 1425

will be used to fine-tune models, and part of 1426

the data will be open-sourced. Annotators 1427

who disagree may opt out of the annotation 1428

process. 1429

2. During the annotation process, all annotated 1430

data are first stored locally by the annotators. 1431

If an annotator believes that specific data in- 1432

volves privacy disclosure, they may choose 1433

not to use it or skip the task. 1434

3. After the annotation is completed, we mask 1435

and replace sensitive information such as user- 1436

names and chat logs before using the data for 1437

training. Additionally, such data will not be 1438

open-sourced. 1439
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All annotators sign formal contracts and are com-1440

pensated according to reasonable standards.1441

I.5 Instructions Given To Annotators1442

We provide the instructions given to the annota-1443

tors below. Note that our targets are expanded by1444

hand-written instructions or academic datasets with1445

available licenses.1446

Task Overview1447

For each labeling task, a target task will be given,1448

such as: Navigate to XXX using Amap (Gaode1449

Map).1450

The annotator must complete the task using1451

their phone and follow the labeling process de-1452

scribed below to ensure it is accurately executed1453

and recorded.1454

To perform this annotation task, you must install1455

ADB (Android Device Bridge) on your computer1456

to control the phone and install the corresponding1457

APK. Since the task involves collecting low-level1458

information, we will require the phone to enable1459

multiple permissions. Still, we guarantee that the1460

information will not be transmitted in real-time1461

during collection. The transmitted information in-1462

cludes the operation details, screenshots before and1463

after each operation, and the corresponding XML1464

files (only containing information from the current1465

page). You can review and decide whether to keep1466

the annotation data. If the annotation process in-1467

volves screenshots or other information that you do1468

not want to be used for training, you can:1469

1. Skip the screenshot or specify that parts of the1470

screenshot be hidden.1471

2. Skip the entire target task.1472

3. Skip all tasks involving the currently anno-1473

tated app.1474

Your data will not be used for purposes other1475

than training the model.1476

After completing the annotation, you must up-1477

load all the tasks you were responsible for in one go.1478

We have designed a plugin to store all the content1479

in a unified folder.1480

A complete annotation consists of multiple oper-1481

ations is called a sequence (trace). Each single-step1482

operation is recorded once, and the definition of a1483

single-step operation is detailed in the annotation1484

documentation.1485

Please follow the steps below for plugin usage1486

to install the annotation plugin.1487

Plugin Usage Instructions 1488

Installing ADB and Connecting Phone to Com- 1489

puter 1490

For your Android phone, you need to perform 1491

the following settings: 1492

1. Connect the phone to the computer via a USB 1493

cable. 1494

2. Ensure that the Developer Options and USB 1495

Debugging Mode are enabled on the Android 1496

phone: 1497

• Go to Settings - Developer Options - An- 1498

droid Debugging. Check the box for Al- 1499

low USB debugging. If unavailable, go 1500

to Settings - System Updates - Developer 1501

Options - USB Debugging. 1502

• If you can’t find the developer options, 1503

go to Settings - About Phone and tap the 1504

Build Number seven times. 1505

• If these methods don’t work, search for 1506

how to enable developer options and 1507

USB debugging specific to your phone 1508

model. 1509

• If you still encounter issues, seek help in 1510

the group chat. 1511

3. Reconnect the phone to the computer, and 1512

on the phone, click Allow file transfer/USB 1513

debugging/higher permissions. Also, allow 1514

the connection on the computer (if prompted). 1515

4. After entering Developer Mode, turn off the 1516

following animations under Developer Op- 1517

tions to increase the success rate of retrieving 1518

XML information via ADB commands: 1519

• Window Animation Scale. 1520

• Transition Animation Scale. 1521

• Animator Duration Scale. 1522

Follow the steps above until the following result 1523

is displayed using the command adb devices: 1524

adb devices 1525

List of devices attached 1526

1a0d5d59 device 1527

The number before device is randomly generated. 1528

You should see only one device. If there is more 1529

than one, try disconnecting other devices or closing 1530

virtual machines. 1531

Installing ADB Keyboard 1532

Download the ADB Keyboard APK. 1533

Run: adb install <APK full path> 1534
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Enable permissions on the phone and agree to1535

the installation.1536

Once the installation is complete, set ADB Key-1537

board as the default input method in the phone1538

settings. You can try the following two lines of1539

code:1540

ime enable com.android.adbkeyboard/.AdbIME1541

ime set com.android.adbkeyboard/.AdbIME1542

If successful, when you open any text box, you’ll1543

see the message ADB Keyboard ON at the bottom1544

of the screen. If unsuccessful, manually change the1545

input method in the settings.1546

Running Test Script1547

1. Open the command line, run adb devices, and1548

ensure correct output.1549

2. Run the following commands in adb shell:1550

input keyevent KEYCODE_BACK1551

input keyevent KEYCODE_HOME1552

input keyevent KEYCODE_ENTER1553

1554

If there’s no error or response, it’s fine. If you1555

see Command execution failed, ensure you’re1556

using the correct method sequence, not Press1557

xxx commands like adb shell input keyevent1558

KEYCODE_A.1559

3. Open any text input field and run the following1560

commands in adb shell:1561

input keyevent KEYCODE_A1562

1563

The setup succeeds if the letter "a" appears on1564

the screen.1565

Annotation Plugin Usage Instructions1566

You can perform the following operations on1567

the phone. After completing any one of these op-1568

erations, do not proceed until the command line1569

shows Operation completed. If the phone has not1570

responded yet (such as loading a new page), wait1571

until the page is fully loaded before clicking the1572

next Begin.1573

1. Click or Swipe: Perform this directly on the1574

phone. Click slowly, holding for 0.2 to 0.51575

seconds.1576

2. Text Input: If the ADB Keyboard was suc- 1577

cessfully installed, you can input text. Be- 1578

fore entering text, click on the text box in the 1579

previous step and ensure that the ADB Key- 1580

board ON symbol appears at the bottom of the 1581

screen. Click the Type button on the GUI inter- 1582

face, enter the desired text in the computer’s 1583

input box (Chinese/English), then click OK. 1584

You will observe the input on the phone, and 1585

the command line will display Simulating typ- 1586

ing xxx. 1587

3. Press xxx: Three preset buttons are defined: 1588

Press Home (Home key), Press Back (Back 1589

key), and Press Enter (keyboard Enter key). 1590

The command line will show Simulating press 1591

xxx. 1592

4. Finish Task: If you believe the task is com- 1593

plete, click the Finish button on the GUI. If 1594

the task requires an answer, fill in the response 1595

in the popup text box. If not, click OK. 1596

After finishing a task, you can close the com- 1597

mand line and GUI windows. If there are no issues 1598

with the annotation, you can return to Step 2 to 1599

start the next annotation. Otherwise, follow these 1600

steps: 1601

1. The command line will output the Save Path, 1602

which contains all saved information for the 1603

annotation. You may delete the folder if you 1604

believe an error occurred or sensitive informa- 1605

tion was recorded. 1606

2. Each task has a prefix consisting of the first 32 1607

characters of the task name. Ensure that the 1608

final submission includes one and only one 1609

instance of each non-skipped task. 1610

3. If certain operations were recorded incorrectly 1611

without affecting the phone’s state, you may 1612

delete those steps. The step sequence is stored 1613

in Save Path/traces/trace.jsonl. Record the 1614

steps you need to delete. 1615

4. If a screen contains sensitive information that 1616

can be removed while still being used for train- 1617

ing, record the steps and describe the sensitive 1618

information in detail. 1619

Summary of Key Points 1620

1. Always use adb devices before starting the 1621

annotation to ensure a successful connection. 1622
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Table 12: Actions Counts

Action Count

Tap 58383
Type 13533
finish 10586
Swipe 6600
Launch 5220
Back 52

2. Reopen the app_for_xxx/dist/label(.exe) for1623

each annotation instruction.1624

3. The storage path must not contain Chinese1625

characters.1626

4. Click Begin before each operation and wait for1627

the message Begin your operation... to appear1628

before proceeding. If you proceed without1629

waiting, the operation will be invalid. If the1630

state cannot be recovered, you must restart the1631

task. Make sure to click Begin before finishing1632

as well.1633

5. After each operation is completed, wait until1634

the corresponding success message appears1635

in the command line and you see the output1636

Operation completed before clicking Begin1637

for the next action. Failure to follow these1638

two key rules may result in invalid data. It’s1639

better to proceed slowly and carefully than1640

rush and make mistakes.1641

I.6 Detailed Statistics of Android Instruct1642

dataset1643

We provide statistics of the Android Instruct dataset1644

in Fig 20.1645

I.7 Actions1646

Android Instruction dataset includes a wide variety1647

of user actions, with the frequency of each type1648

of action carefully recorded. These actions are1649

summarized in Table 12.1650

These statistics show the diverse nature of user1651

interactions we captured in our data. They provide1652

essential insights for understanding and modeling1653

user behaviors in detail.1654

I.8 Apps1655

Table 13 presents the number of traces and the aver-1656

age trace length for each app in Android Instruction1657

dataset. This detailed breakdown provides valuable1658

insights into how users interact with different apps, 1659

which is important for improving model perfor- 1660

mance. 1661

These statistics show the volume and complexity 1662

of interaction data across various apps. This infor- 1663

mation is critical for helping models understand 1664

how users interact with these apps. 1665

J Discussion about ANDROIDLAB’s 1666

different from Web Agents 1667

Android agents differ from general web agents, 1668

such as those developed within frameworks like 1669

WebArena, in several key aspects. These distinc- 1670

tions arise from differences in their environments, 1671

action spaces, and reproducibility challenges. 1672

First, the environments in which these agents op- 1673

erate are inherently different. Android agents pri- 1674

marily rely on XML-based information to interact 1675

with mobile applications, reflecting the structural 1676

characteristics of mobile interfaces. In contrast, 1677

web agents depend predominantly on HTML/DOM 1678

data and often incorporate screen screenshots as 1679

part of their observation space, leveraging the struc- 1680

tured nature of web environments. 1681

Second, the action space of Android agents is 1682

specifically tailored to mobile interactions. These 1683

actions include tapping, swiping, typing, and press- 1684

ing hardware buttons such as Home and Back, all 1685

miming typical user behavior on mobile devices. 1686

On the other hand, web agents interact with web 1687

elements through actions like clicking, keypress- 1688

ing, and navigating URLs, with their interactions 1689

rooted in the manipulation of DOM trees and other 1690

web-based structures. 1691

Finally, reproducibility poses unique challenges 1692

for each type of agent. For Android agents, dy- 1693

namic environments and network dependencies of- 1694

ten complicate reproducibility. To address these 1695

issues, we employ preloaded virtual devices and of- 1696

fline setups, ensuring consistent experimental con- 1697

ditions. In the case of web agents, frameworks like 1698

WebArena mitigate reproducibility challenges by 1699

using self-deployed websites, thereby reducing re- 1700

liance on external and potentially inconsistent web 1701

environments. 1702

1703
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(a) Step Distribution Across Tasks (b) Top 20 Words in Instructions. (c) Instruction Length Distribution.

(d) APP Distribution. (e) Actions Distribution. (f) Average Task Length per App

Figure 20: Statistics for Android Instruct dataset. We collect 726 traces and 6208 steps across Apps in ANDROIDLAB
benchmark.

Table 13: Top 10 apps ranked by trace count, along with their Average Trace Length.

App Trace Count Average Trace Length

chrome 3698 9.50
twitter 1388 7.61

google maps 633 7.85
gmail 399 9.37
quora 334 8.57

booking.com 334 12.43
settings 295 6.81

temu 293 8.69
tasks 252 7.32
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