AndroidLab: Developing and Evaluating Android Agents in A
Reproducible Environment

Anonymous ACL submission

Abstract

Autonomous agents have become increas-
ingly important for interacting with the real
world. Android agents, in particular, have
been recently a frequently-mentioned interac-
tion method. However, existing studies for
training and evaluating Android agents lack
systematic research on both open-source and
closed-source models. In this work, we propose
ANDROIDLAB as a systematic Android agent
framework. It includes an operation environ-
ment with different modalities, action space,
and a reproducible benchmark. It supports
both large language models (LLMs) and mul-
timodal models (LMMs) in the same action
space. ANDROIDLAB benchmark includes pre-
defined Android virtual devices and 138 tasks
across nine apps built on these devices. By
using the ANDROIDLAB environment, we de-
velop an Android Instruction dataset and train
six open-source LLMs and LMMs, lifting the
average success rates from 5.07% to 25.60% for
LLMs and from 1.69% to 14.98% for LMMs.
ANDROIDLAB is open-sourced and pub-
licly available at https://anonymous.4open.
science/r/Android-Lab-Reivew-C93E.

1 Introduction

Developing autonomous agents to execute human
instructions within mobile operating systems has
long been a goal for researchers (Burns et al., 2021;
Yang et al., 2023b; Wang et al., 2023; Hong et al.,
2023; Rawles et al., 2023; Li et al., 2020a; Romao
et al., 2019; Rai et al., 2019). Recently, a signif-
icant line of research has focused on using large
language models (LLMs) (Zeng et al., 2022; Ope-
nAl, 2023; Anthropic, 2023; Team et al., 2024) and
large multimodal models (LMMs) (OpenAl, 2023;
Anthropic, 2023; Hong et al., 2023) as the back-
bone for these agents (Deng et al., 2023; Rawles
et al., 2023; Zhou et al., 2023).

Despite these advancements, the lack of a reason-
able and fair benchmark to evaluate mobile agents

presents a critical challenge. Previous bench-
marks (Rawles et al., 2023; Sun et al., 2022; Li
et al., 2020a) usually provide static environments,
requiring agents to predict the next action based on
screenshots. For example, Android Env (Toyama
et al., 2021) defines the agent’s action space and
state for an operable Android operation environ-
ment. Following works (Yang et al., 2023b; Xing
et al., 2024; Lee et al., 2024) construct bench-
marks based on this environment. However, most
of them rely on online software, making the tests
non-reproducible. In summary, these benchmarks
still have the following issues:

e Non-reproducibility due to dynamic environ-
ments. Existing benchmarks (Toyama et al.,
2021; Kapoor et al., 2024; Li et al., 2020b) set
tasks in dynamic environments, such as those
involving real-time information or social media,
making these benchmarks non-reproducible.

o Inability to simulate multiple completion
paths for a task. Existing works (Burns et al.,
2021; Sun et al., 2022; Rawles et al., 2023;
Deng et al., 2023; Xing et al., 2024) provide
standard operation sequences or use metrics
such as single-step accuracy or similarity of op-
eration sequences, but fail to simulate multiple
paths to complete a task.

These issues have motivated us to develop a
new Android agent evaluation and training frame-
work. In this paper, we propose ANDROIDLAB,
which includes a standard operational environment
and a benchmark for agents interacting with An-
droid devices. We define basic operation modes
across LLMs and LMMs by aligning actions and
objects within different observations of the mo-
bile system: XML and screenshots, referred to as
XML mode and SoM mode, respectively. Addi-
tionally, we introduce two modes for each basic
mode, ReAct (Yao et al., 2022) and SeeAct (Zheng
et al., 2024). Node information is annotated in the
XML for screenshots using set-of-mark (Yang et al.,

https://anonymous.4open.science/r/Android-Lab-Reivew-C93E
https://anonymous.4open.science/r/Android-Lab-Reivew-C93E
https://anonymous.4open.science/r/Android-Lab-Reivew-C93E

l— ------- Environment -—-—-—- - |— ---------- Benchmark -—-—-—-—- -
| Operation Modes Actions | 9 APPs
Multimodal Text-only ‘ Ta ‘ ‘ ‘ ‘ a
a2 99 s
XML Ton p - —
TextView ;; ;;Alarm : P 9 A“ e e ‘
bounds: ress | MAPSME | | Contacts | | PiMusic
84,209](289,303] \ /==
L L ‘Swme‘ @ ci Device state
long-click ; 5) Zoom Cantook | | Calendar | Ul tree
bounds: [1300,172] A a
[1440,340] ‘ Type ‘
— 138 Tasks Metrics
)) ress . |
| SoM+ReAct || XML+ReAct | K ‘ D Set an alarm for 3PM with the | | . gyccess Rate
: - ey | label "meeting" using Clock. |
)) Sub-goal 1: time: 3PM | * Sub-Goal Success Rate |
| SoM+SeeAct | | XML+SeeAct | ‘Finish‘ (V] Sub-goal 2: label: meeting | | * Reversed Redundancy |
R Sub-goal 3: alarm set | « Reasonable Operation

| Gemini-1.5-Pro

GPT-40

Claude-3.5-
Sonnet

GPT-4-
Vision-Preview

Gemini-1.5-Pro
Claude-3-Opus

Gemini-1.0

GPT-4-
1106-Preview

GLM4-PLUS

GPT-40

Gemini-1.0

LLMs
. LMMs

0

(a) Overview of the environment and benchmark of ANDROIDLAB.

10 20
Success Rate (%)

(b) Results of Close Models.

Figure 1: (a) We design the SoM mode for the multimodal models (LMMs) and the XML mode for the text-only
models (LLMs), ensuring an identical action space. We also implement ReAct and SeeAct frameworks in both
modes. Based on the environment, we propose the ANDROIDLAB benchmark. (b) ANDROIDLAB Success Rates of
closed-source models. In the XML mode, GPT-4-1106-Preview has the highest success rate at 31.16%, matching

GPT-40’s performance in the SoM mode.

2023a), ensuring identical actions across modes
for a fair comparison. Based on the environment,
the ANDROIDLAB benchmark includes 138 tasks
across nine different apps. By using Android vir-
tual devices with preloaded app operation histories
and offline data, ANDROIDLAB benchmark ensures
reproducibility and eliminates dependencies on ex-
ternal networks or time.

Previous benchmarks had limitations in their
evaluation metrics. In the ANDROIDLAB bench-
mark, each task is divided into multiple required
page states as sub-goals. Correct trajectories are
verified using Ul tree structure matching or device
state validation. This approach allows for precise
assessments of task completion and progress with-
out being influenced by the specific paths taken
to achieve sub-goals, offering flexibility in the se-
quence of actions. Additionally, we introduce met-
rics such as reversed redundancy and reasonable
operation to evaluate the efficiency of actions.

We have evaluated 17 open-source and closed-
source models using the ANDROIDLAB benchmark.
Although the GPT series achieved over 30% suc-
cess rate in both XML and SoM modes, we ob-
served that open-source models performed poorly,
with the best reaching only around 5% success
rate. Initial attempts to enhance mobile agent per-
formance through more complex reasoning frame-
works led to marginal improvements despite signif-
icantly increased inference times. Therefore, fine-
tuning small-scale open-source models may bridge

the gap to closed-source performance, enhancing
mobile agent accessibility.

By using ANDROIDLAB’s operation modes and
action space, we have constructed the Android In-
struct dataset. We develop an online annotation
tool with the same action space, collecting 10.5k
traces and 94.3k steps from annotators. Among
these, 6208 steps are derived from the Apps in-
cluded in the ANDROIDLAB benchmark, and we
use this portion of the data to fine-tune the model.
This dataset includes tasks, phone screen states,
XML information, and operations, which have been
used to fine-tune six text-only and multimodal mod-
els. As shown in Figure 3, fine-tuning with our
dataset raises average success rates from 5.07%
to 25.60% for LLMs and from 1.69% to 14.98%
for LMMs. Our further analysis reveals that fine-
tuning improves operational accuracy, efficiency,
and reduces redundancy in Android agents.

The contributions are summarized as follows:

e We design the ANDROIDLAB suite, which in-
cludes an operational environment and a bench-
mark, which unifies the evaluation and develop-
ment of Android Agents, as shown in Figure 1.

e We develop ANDROIDLAB benchmark, a repro-
ducible and challenging benchmark for evaluat-
ing mobile agent. It includes a simulated eval-
uation environment and 138 tasks, as shown
in Figure 2 based on text-only or multimodal
inputs. ANDROIDLAB benchmark presents
significant challenges, with the leading model

(]

4541 P Y [402 64

X Create contact ; Rl ncorme @ 1 v
@ Name of income @
[
s000© €1
Add photo
ink Floy Pulse Live
[June 5,2024 © 3:45PM Pink Floyd
& | Firstname v The Wall
B others > Others
[—
2y W cash>Wallet Dark Side Of The Moon
B © scheduled bly N
ompany
lo L R W Labels
Ra | 123a5678 X
L = Stats
~ Labo
Work - B salary -
L Route
(~Phone & 8min
87654321 x
tebel © 2700 Coast Avenue
Mobile -
F Bus Stop Route 51 +
Phone EXPENSE INCOME TRANSFER
> Start from my location
'ADE Keyboard {ON} ADB Keyboard {ON)

ﬁTask: Record an income
of 8000 CNY in the
books, and mark it as...

Task: Add a contacts
whose name is Xu, set
the working phone...

Task: Check the driving
distance and time
between Bus stop of...

~

Task: Sort Pink Floyd's
songs by duration time in
descending order.

é Task: | need set an
1 10:30PM clock every
i weekend, and label it...

)
|
]
]
|
|
|
]
|
|
]
|
|
i
]
]
|
|
]
]

Sub-Goals: Sub-Goals: Sub-Goals: Sub-Goals: | Sub-Goals:
- Name: Xu - Enter: New income - Driving distance - Page: ARTISTS i - Time: 10:30PM
- Working phone number | - Cash: 8000 - Driving time - Artist: Pink Floyd | - Frequency: Weekend
- Mobile phone number - Note: ... - Order: Descending i - Label: ...
Settings Others Bluecoins (accounts) Maps.me PiMusic
sound app query book add query edit query navigation explore query music
3.62% 3.62% 3.62% accounts accounts accounts |ocation 362% around 435%
362% 3.62% 3.62% 4.35% 2.90%
edit book add
2.90% meeting
network language 217% Contacts Calendar - :
edit music
2.90% - : 2179
display = edit add query editevent editcalendar 217%
open book edi tact contact contact o o i
others 21479, meetng ~CONtaC 5.07% 5.07% play music

Figure 2: Task examples and the distribution of all apps and subcategories in the BENCHMARK benchmark. We
decomposed each task into sub-goals and evaluated them independently. A task is considered complete only if all

sub-goals are correctly addressed.

GPT-40, achieving only 31.16% success.

e We construct an Android Instruct dataset, con-
taining 94.3k operation records for fine-tuning.
This dataset supports both text-only and mul-
timodal training, yielding competitive results
in LLMs and LMMs, as shown in Table 2.
We also demonstrate that fine-tuned models
achieve comparable scores and offer the best
balance of efficiency and accuracy.

2 Related Work

Benchmarks for Mobile Agents. Mobile
benchmarks for Android began with static sys-
tems like PixelHelp (Li et al., 2020a) and
MetaGUI (Sun et al., 2022) and later expanded
through AITW (Rawles et al., 2023), which pro-
vided over 5 million images. AndroidEnv (Toyama
et al., 2021) introduced dynamic evaluations, while
Android Arena (Xing et al., 2024) added cross-app

evaluations. Although task diversity was limited,
B-MOCA (Lee et al., 2024) standardized the An-
droid Virtual Device. AndroidWorld (Rawles et al.,
2024) offers reward signals for 116 tasks across 20
real-world apps, but does not support instruction-
tuning data construction. Our benchmark provides
a challenging and reproducible environment with
direct interaction capabilities. Table 1 compares
ANDROIDLAB benchmark to other benchmarks.

Agents for Interactive System. For Web envi-
ronments, WebGPT (Nakano et al., 2021) and We-
bGLM (Liu et al., 2023) integrate LLMs for im-
proved question-answering. MindAct (Deng et al.,
2023), WebAgent (Gur et al., 2023), and AutoWe-
bGLM (Lai et al., 2024) focus on executing com-
plex interactive tasks. In mobile agents, early work
on Android systems utilized multiple execution
modules (Burns et al., 2021; Venkatesh et al., 2023;
Li et al., 2020a; Zhan and Zhang, 2023). Pixel-
Help (Li et al., 2020a) mapped actions to images,

,,,

Task Derivation & Expansion @ 820
[
©

[Self-Exploration & Human-Annotated J T15
()

Cross-Verification g10

w

* Both XML and SoM format

LLM-before-SFT
mm LLM-after-SFT

LMM-before-SFT
LMM-after-SFT

Androidinstruct Dataset

+ 726 traces, 6208 actions

Llama-3.1-
8B-ft 9B-ft 7B-ft

GLM-4- Qwen2.5- Qwen2-VL- Qwen2-VL- Llama-3.2-

7B-Instruct-f2B-Instruct-ftl 1B-Vision-ft

(a) Overview of ANDROIDINSTRUCT data collection. (b) Success Rates of before and after fine-tuned by ANDROIDINSTRUCT.

Figure 3: (a) We have collected over 726 trajectories containing more than 6208 fully aligned steps of XML and
SoM mode training data. (b) By using ANDROIDINSTRUCT, we trained six open-source text-only and multimodal
models, achieving an average increase of 504% and 885%, respectively, reaching a performance level comparable to

proprietary models.

while Auto-GUI (Zhan and Zhang, 2023) used im-
age and text encoders with LLMs for CoT (Chain
of thoughts)outputs. CogAgent (Hong et al., 2023)
achieved SOTA on AITW (Rawles et al., 2023)
by combining modules for action prediction. Re-
cent zero-shot mobile agents using GPT-4V (Ope-
nAl, 2023) have shown strong results (Yang et al.,
2023b; Zheng et al., 2024; Yan et al., 2023; Wang
et al., 2023), but planning complexity limits in-
ference speed and practical deployability due to
security restrictions.

3 ANDROIDLAB

3.1 The Operation Environment

ANDROIDLAB defines a set of action space and
two operation modes, forming the ANDROIDLAB
environment. We adopt the main action space
from prior work and add a model return value (fin-
ish action). The two basic operation modes are
SoM (Yang et al., 2023a) and XML, differing in
whether the agent can access a snapshot of the
phone screen. For comparison, we also implement
ReAct (Yao et al., 2022) and SeeAct (Zheng et al.,
2024). This framework supports real and virtual
Android devices and is compatible with Android-
like mobile operating systems.

Table 1: Comparsion of different Android benchmarks.

Virtual Reprod- Sub-goal Support Containing

Env ucibility Evaluation Query Task Training Set Metric

Sequence

PixelHelp v v o
AW v O pace
Android Env v u:a"i]éc
Android Arena v S“{'é?“
B-MOCA v v Device state

Device state&

ANDROIDLAB benchmark v v v v v
UI tree

Action Space. Based on the action spaces from
AppAgent (Yang et al., 2023b) and Android
Env (Toyama et al., 2021), we define four basic
phone operations: Tap, Swipe, Type, Long Press,
along with two shortcut keys, Home and Back, as
the core action space. We add the Finish action as
the final step, allowing the agent to return execu-
tion results or answers. This action space applies
to all modes

XML Mode. XML mode is tailored for text-
only input models (LLMs). Inspired by Android
Arena (Xing et al., 2024), we redesign the XML
compression algorithm (Cf. Appendix C) to convey
screen information. The LLMs select correspond-
ing elements directly for operations.

SoM Mode. SoM mode is for multimodal in-
put models (LMMs), based on the Set-of-Mark
method (Yang et al., 2023a). Each clickable or fo-
cusable element is assigned a serial number, and
the LMMs select the element by its number. The
selected elements in SoM mode align with those in
the compressed XML list, allowing both modes to
interact with the same action space and objects.

These basic operation modes directly require
the agent to output operation commands. Based
on these two methods, we further test two novel
agent frameworks, ReAct (Yao et al., 2022) and
SeeAct (Zheng et al., 2024). These two frame-
works allow the agent to observe and reflect on the
environment or more easily select specific tasks
to execute. Please refer to Appendix B for more
details about our operation modes.

ReAct Modes. Based on the above two modes, we
follow (Yao et al., 2022) to prompt the model, al-
lowing models to think step by step and output their

thought and reasoning process before outputting
the action. We name the corresponding two modes
as XML+ReAct and SoM+ReAct.

SeeAct Modes. Following (Zheng et al., 2024),
we separate the reasoning and element grounding
processes. We instruct models to interact for two
rounds in a single operation. The models are sup-
posed to generate a detailed description of the de-
sired action and output the real action, respectively.
We name these two modes as XML+SeeAct and
SoM+SeeAct.

3.2 The Reproducible Benchmark

Based on ANDROIDLAB’s environment, AN-
DROIDLAB benchmark offers a deterministic and
reproducible evaluation platform, allowing users to
perform fair and challenging comparisons of An-
droid agent capabilities. ANDROIDLAB benchmark
introduces the following designs:

* We gathered 138 tasks from nine apps, ensur-
ing reproducibility. These tasks, derived from
common mobile scenarios, are divided into two
types: (a) Operation Tasks, where agents must
complete a series of actions to meet a goal, and
(b) Query Tasks, where agents answer queries
based on phone information.

 Using UI tree structure in the XML file, we iden-
tify screen information that uniquely defines task
completion, making task completion our primary
metric. Therefore, our approach allows us to
directly evaluate the completion status without
considering the path to reach them, thus enabling
the simulation of multiple completion paths. Ad-
ditionally, we select auxiliary metrics such as the
proportion of valid actions and the redundancy
of successful operation sequences.

3.2.1 Task Formulation

We formalize each task input as a 4-tuple:
Task(E, I, F, M). Here, E represents the execu-
tion environment of the task, which, in the con-
text of benchmark testing, is the pre-packaged
AVD (Android virtual device) image. This includes
a fixed phone screen size, Android version, API
level, and a fixed app usage state. I denotes the spe-
cific natural language instruction for the task. To
avoid confusion during testing, we specify the app
required to complete the task in natural language.
F represents the agent testing framework. Finally,
M denotes the backbone model used to perform
the task, referring primarily to LLMs or LMMs.

Thus, we can formally define the two types of
tasks included in ANDROIDLAB benchmark:
Operation Task. T(E, I, F, M) — (S1,...,Sn).
The output of this type of task is a sequence of
continuous Android virtual machine states.
Query Task. T(E,I,F,M) — (S1,...,5nh,A).
This type of task assesses the agent’s ability to an-
swer specific questions based on the state sequence
after exploration. The model must explore the envi-
ronment to find the answers and output the correct
response.

Based on the above formulation, we designed
138 tasks, including 93 Operation Tasks and 45
Query Tasks. Please refer to Appendix A for de-
tailed information.

3.2.2 Reproducible Designs

To ensure our evaluation reflects real-world agent
usage scenarios with an appropriate level of diffi-
culty and full reproducibility, we design the tasks
with the following considerations:

* Fixed Evaluation Time and Space: We use
ADB (Android debug bridge) commands at the
start of each evaluation to set the machine’s time
and virtual geolocation to predetermined values.

* Offline Testing: All test apps function offline,
with preloaded records in the AVD image to en-
sure usability without an internet connection.

* Predefined Answers: For query tasks, we con-
duct operations on the corresponding apps in ad-
vance to guarantee uniquely determined correct
results.

3.2.3 Maetrics

Previous evaluations with virtual environments
have relied on indirect metrics like single-step ac-
curacy and operation path matching, leading to im-
precise assessments. In response, ANDROIDLAB
benchmark introduces a task-completion-based
evaluation system that judges directly from device
and screen states. We provide an example of an
agent completing all sub-goals of a task in Fig 4.
Our key metrics are:

¢ Success Rate (SR): Measures the overall task
completion rate across all tasks, representing the
average success rate.

¢ Sub-Goal Success Rate (Sub-SR): Evaluates the
completion of sub-goals within tasks, rewarding
models with stronger understanding and opera-
tional capabilities.

* Reversed Redundancy Ratio (RRR): Assesses

® =

Figure 4: An example of an agent completing all sub-
goals of a task, showing only the starting and ending
steps, as well as sub-goal completion points. By focus-
ing solely on these points, our method simulates mul-
tiple completion paths without tracking how the agent
reaches them.

the redundancy of the model’s operation path
compared to a human operator’s path, indicating
efficiency.

* Reasonable Operation Ratio (ROR): Measures
the proportion of operations that result in a screen
change, with unchanged screens considered un-
reasonable.

Due to the length constraints of the paper, the de-
tailed definitions of our metrics can be found in the
Appendix D, where we provide formal definitions
and relevant examples. By incorporating these met-
rics, our evaluation system provides a comprehen-
sive and precise assessment of an agent’s perfor-
mance in completing specified tasks.

4 The Android Instruction Data

Previous work on Android agents focuses on using
powerful closed-source models to design interac-
tion logic (Zheng et al., 2024; Yang et al., 2023b;
Wang et al., 2023), raising concerns about acces-
sibility and privacy. To address this, we aim to
build an open-source mobile agent. The main chal-
lenge lies in generating training data for mobile
operations to handle open-world tasks in diverse
environments.

We propose task derivation and expansion meth-
ods for task generation, allowing models to gener-
ate tasks for specific apps controllably. ANDROID-
LAB connects to devices via ADB, enabling com-
patibility with various real or virtual devices for
data generation. Using self-exploration and man-
ual annotation, we generate example operation tra-
jectories. Our Android Instruction data is built on
the T(E,I) — (S1,..., Sy, A) framework within

ANDROIDLAB’s environment, but this does not in-
clude evaluation scripts and is annotated by human
annotators.

4.1 Data Construction

The primary challenges in data construction in-
clude generating executable Android instructions
and annotating operation path data. Our approach
involves three steps:

» Task Derivation and Expansion: Tasks were
generated using academic datasets and language
models, with manual checks to ensure realism
and executability.

¢ Self-Exploration Reward Model Construction:
Advanced LLMs and LMMs autonomously com-
pleted tasks, and a reward model was constructed
based on combined image inputs, achieving
87.64% accuracy.

e Manual Annotation: Involved four steps: (1)
instruction feasibility check, (2) preliminary app
exploration, (3) task execution and documenta-
tion, and (4) cross-verification by a second anno-
tator and reward model.

Please refer to Appendix I for more details of
the data construction process. This combination
of autonomous and manual processes resulted in
10.5k trajectories and 94.3k steps, and we use 726
trajectories and 6208 steps derived from the Apps
included in the ANDROIDLAB benchmark for train-
ing. Each trajectory includes the specific task in-
struction, the device state at each step (including
screenshots and XML files), and the action for the
current step. We provide statistics of the Android
Instruct dataset in Fig 20.

S Experiments

5.1 Experiment Setup

Evaluation Settings. In preliminary tests, agents
often failed to complete tasks due to issues with
launching the specified apps correctly. To avoid
this, we started tasks directly within the specified
app during formal experiments and then allowed
the agent to proceed. We also set a 25-step limit for
each task, with a 3-second interval for the virtual
machine to respond to each operation. Tasks were
generated by greedy search for each model.

Baseline Models. For large language models
(LLMs) with text-only input capability, we se-
lected the following closed-source models: GPT-
40 (OpenAl, 2023), GPT-4-1106-Preview (OpenAl,

Table 2: Main Result of XML and SoM modes. SR, Sub-SR, RRR, and ROR stand for Success Rate, Sub-Goal
Success Rate, Reversed Redundancy Ratio, and Reasonable Operation Ratio, respectively. For all these metrics, a
higher value means better. -ft represents a finetuned model. In each mode, Bold represents the best result. We do

not report RRR score if SR < 5.

Mode Model SR Sub-SR RRR ROR
GPT-4o0 25.36 30.56 107.45 86.56
GPT-4-1106-Preview 31.16 38.21 66.34 86.24
Gemini-1.5-Pro 18.84 22.40 57.72 83.99

XML Gemini-1.0 8.70 10.75 51.80 71.08
GLM-4-PLUS 18.12 22.66 84.83 83.41
LLaMA3.1-8B-Instruct 2.90 4.71 23.73 69.85
Qwen2.5-7B-Instruct 5.07 5.80 22.75 66.96
GLM4-9B-Chat 7.25 9.06 54.43 58.34
LLaMA3.1-8B-ft 27.54 35.27 77.19 89.86

XML+SFT Qwen2.5-7B-ft 26.09 35.31 81.70 89.50
GLM-4-9B-ft 23.19 29.47 75.99 86.76

GPT-40 31.16 35.02 87.32 85.36
GPT-4-Vision-Preview 26.09 29.53 99.22 78.79

Gemini-1.5-Pro 16.67 18.48 105.95 91.52

Gemini-1.0 10.87 12.56 72.52 76.70

SoM Claude-3.5-Sonnet 28.99 32.66 113.41 81.16
Claude-3-Opus 13.04 15.10 81.41 83.89
LLaMA3.2-11B-Vision-Instruct 1.45 1.45 - 50.76
Qwen2-VL-2B-Instruct 0.00 1.09 - 30.25
Qwen2-VL-7B-Instruct 3.62 4.59 - 84.81
LLaMA3.2-11B-Vision-ft 11.59 14.01 63.76 86.08

SoM+SFT Qwen2-VL-2B-Instruct-ft 14.49 20.53 62.83 9241
Qwen2-VL-7B-Instruct-ft 18.84 22.58 77.62 92.42

2023), Gemini-1.5-Pro (Team et al., 2024), Gemini-
1.0 (Team et al., 2024), and GLM-4-PLUS (GLM
et al., 2024). The open-source models included
as baselines for testing in the XML mode are
LLaMA3.1-8B-Instruct (Touvron et al., 2023),
GLM-4-9B-Chat (GLM et al., 2024), and Qwen2.5-
7B-Instruct (Bai et al., 2023). For large multimodal
models (LMMs) with image input capability, we
selected the following closed-source models: GPT-
40 (OpenAl, 2023), GPT-4-Vision-Preview (Ope-
nAl, 2023), Gemini-1.5-Pro (Team et al., 2024),
Gemini-1.0 (Team et al., 2024), Claude-3.5-Sonnet,
and Claude-3-Opus. The open-source models
in this category included LLaMA3.2-11B-Vision-
Instruct (Touvron et al., 2023), Qwen2-VL-7B-
Instruct, and Qwen2-VL-2B-Instruct (Wang et al.,
2024). Fine-tuned versions of all six open-source
models (denoted with "-ft") were also evaluated
under the XML or SoM+SFT setting.

Training Settings. To explore the effectiveness of

our dataset on lightweight open-source models, we
selected all six open-source models above as the
training backbones for LLMs and LMMs, respec-
tively. Due to our preliminary experiments show-
ing that training agents from base models yielded
better results, we selected the base versions of all
models for fine-tuning, except for Qwen2.5-VL-7B-
Instruct (as no open-source base model was avail-
able). However, we still reported the instruct ver-
sions as baselines because the base models could
not follow instructions without further tuning. For
all training sessions, we used a batch size of 32 and
a maximum sequence length of 4096, training for
five epochs. The learning rate was set to le-5.

5.2 Main Results

As shown in Table 2, in the XML mode, GPT-4-
1106-Preview outperforms the other models with
a Success Rate (SR) of 31.16%, the highest in this
mode while also achieving the best Sub-Goal Suc-

cess Rate (Sub-SR) at 38.21%. Although GPT-40
exhibits slightly lower SR (25.36%), it achieves
the highest Reversed Redundancy Ratio (RRR) at
107.45, indicating its strong ability to reduce unnec-
essary operations. The ROR metric shows that both
models in the GPT-4 series perform comparably,
with around 86% of operations being reasonable,
though there is room for improvement in efficiency.
Other models, such as Gemini-1.5-Pro and GLM-
4-PLUS, show moderate performance, with ROR
around 84 but lag in SR.

In the SoM mode, GPT-40 again shows dom-
inance, reaching an SR of 31.16% and a Sub-
SR of 35.02%, the highest in both categories.
GPT-4-Vision-Preview follows closely, but mod-
els like Claude-3.5-Sonnet exceed GPT-40 in RRR
(113.41), demonstrating higher efficiency in task
completion with fewer redundant steps. The Rea-
sonable Operation Ratio (ROR) in SoM mode indi-
cates that models such as fine-tuned Llama3.1-8B
achieve the highest ROR at 89.86%, showing the
most effectiveness in this mode.

5.3 Additional Findings

Influence of Instruction Tuning. Instruction tun-
ing significantly enhances the performance of mod-
els in both XML and SoM modes. In XML mode,
the success rates (SR) of three open-source mod-
els increase by an average of 440%, demonstrat-
ing this approach’s substantial impact. Notably,
LLaMA3.1-8B-ft achieves an SR of 27.54%, dra-
matically improving from its baseline SR of 2.90%.
Similarly, Qwen2.5-7B-ft and GLM-4-9B-ft show
marked increases, reaching SRs of 26.09% and
23.19%, respectively. In SoM mode, fine-tuning
leads to significant improvements as well. For in-
stance, Qwen2-VL-7B-Instruct-ft achieves an SR
of 18.84%, a substantial rise from its baseline SR
of 3.62%. Other models, such as Qwen2-VL-2B-
ft and LLaMA3.2-11B-Vision-ft, also exhibit no-
table improvements, with SRs increasing to 14.49%
and 11.59%, respectively. These results show that
instruction-tuned open-source models achieve per-
formance levels approaching or surpassing some
closed-source models, such as GPT-40 and Claude-
3-Opus, highlighting significant gains in opera-
tional rationality and efficiency.

Analysis of Agent Frameworks. We assess Re-
Act and SeeAct frameworks with GPT-40 and
Gemini-1.5-Pro in XML and SoM modes. Ta-
ble 3 shows that ReAct significantly improves per-

Table 3: The impact of the ReAct and SeeAct frame-
works on SR results. Notably, model performance is
significantly improved in XML+ReAct mode. Full re-
sults of this table are shown in Appendix F.3

Mode Model SR
XML ot 15-Pro 1384
XMLAREACt Gemint 1 5pro 3116
XMLASeeACt Geming 15-pro 2101
SoM (G}Er?lfrll(l)— 1.5-Pro ?éég
SoM+ReAct 85;{1?1?_ 1.5-Pro % 32
SoM+SeeAct GPT-d0 Vo

Gemini-1.5-Pro 21.01

Table 4: Average generation tokens of different modes.
We used the LLaMA3 tokenizer for calculation. FT
represents instruction tuning models.

Mode FT XML/SoM ReAct
#Avg. Gen. Tokens 4.96 23.56 67.89

SeeAct
129.12

formance only in the XML mode. SeeAct does
not enhance performance consistently due to the
model’s reasoning limitations with multimodal in-
put. ReAct and SeeAct frameworks increase token
usage, which harms efficiency. As shown in Ta-
ble 4, XML+ReAct settings produce an average of
67.89 tokens, while models post-instruction tuning
average only 4.96 tokens.

6 Conclusion

In this work, we introduced ANDROIDLAB, a
framework tackling challenges in training and eval-
uating Android agents. ANDROIDLAB provides
a reproducible environment, unified action spaces,
and a benchmark of 138 tasks across nine apps. We
defined a method for using the Ul tree and device
state to identify sub-goals, enabling our metrics to
support task completion via any paths and ensuring
fair and consistent comparisons. Based on AN-
DROIDLAB, we constructed the Android Instruc-
tion dataset, using it to fine-tune six open-source
models, increasing LLM success rates by 5x and
LMMs by nearly 9x. ANDROIDLAB offers a repro-
ducible benchmark, open datasets, and tools, ad-
vancing research in efficient and privacy-preserving
mobile agents.

Limitations

Limited Expandability of Evaluation Tasks. All
evaluation tasks in our study are predefined and
hardcoded. This means that if new evaluation tasks
need to be added in the future, they must be indi-
vidually and manually integrated, which is a time-
consuming and not easily scalable process.

Fixed Wait Time for Actions. In the action space,
the model waits for a fixed period after selecting
each action to allow the device to respond. How-
ever, this fixed waiting time does not account for
the variability of response times across Android
devices. Such variability can be attributed to sev-
eral factors, including the device model, age, and
user-specific configurations. Consequently, it is
challenging to establish a universally applicable
wait time for responses.

Lack of Cross-Platform Capability. It is impor-
tant to note that our evaluation framework is lim-
ited to the Android operating system and cannot
be used to evaluate models operating on other sys-
tems, such as iOS or other device platforms. This
limitation renders our framework applicable solely
to a single platform. Although some tools (e.g.,
XCUITest, WebDriverAgent) can transform iOS
operations and page information into an XML-like
format, we have observed that, since these tools are
third-party software, the page information obtained
through this transformation process is not entirely
consistent with the results directly retrieved from
Android devices. This discrepancy fails to meet
the requirement for fairness, and the Ul tree struc-
tures are also not completely aligned. Therefore,
we do not plan to extend ANDROIDLAB to other
platforms.

Potential Risks

Risk Avoidance in Benchmark Design. In the
design of our benchmark, we have avoided po-
tentially risky operations such as payments and
sending messages. Additionally, our benchmark
is tested on virtual machines without an internet
connection, further preventing the actual execu-
tion of these operations. However, in real-world
scenarios where agents are used, special attention
should be paid to the correctness of such operations
when the user provides these kinds of tasks. We
plan to add sensitive operation protection in future
systems, meaning these operations require explicit
user consent before execution.

Ensuring XML Quality for Apps. The XML qual-
ity of certain apps might be poor, possibly loading
too much or too little content. In actual deploy-
ment, it is essential to carefully inspect the XML
quality of each app to ensure accurate usage.
Privacy Issues and Solutions. One major ethi-
cal concern in applying Android agents involves
privacy issues. The evaluation process of models
trained with user data could potentially lead to the
leakage of private information. To mitigate this, we
propose the Android Instruction Dataset, which is
annotated by humans and ensures the removal of
sensitive private information. This dataset allows
models to achieve performance close to proprietary
models without compromising user privacy.

Existing agent technologies often require exten-
sive device information to function correctly, which
involves transmitting private data to servers hosting
these models. Our framework provides an alterna-
tive solution by enabling open-sourced models to
achieve competitive performance and allowing for
the private deployment of models. This eliminates
the need to send data to external servers, enhancing
user information security. Future work will focus
on advancing on-device model training to further
address privacy concerns comprehensively.
Preventing Misuse in Sensitive Applications. An-
other concern is the potential misuse of Android
agents in sensitive applications, such as web scrap-
ing, targeted advertising, and monetary transac-
tions. The Android Instruction Dataset we provide
is generated from predefined seeds, excluding dan-
gerous actions to minimize misuse.

References

Anthropic. 2023. Introducing claude.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane
Suhr, Sergey Levine, and Aviral Kumar. 2024. Di-
girl: Training in-the-wild device-control agents with
autonomous reinforcement learning. arXiv preprint
arXiv:2406.11896.

Jinze Bai, Shuai Bai, et al. 2023. Qwen technical report.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha
Kumar, Kate Saenko, and Bryan A Plummer. 2021.
Mobile app tasks with iterative feedback (motif): Ad-
dressing task feasibility in interactive visual environ-
ments. arXiv preprint arXiv:2104.08560.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maé&l Primet, and Joseph

https://www.anthropic.com/index/introducing-claude
http://arxiv.org/abs/2309.16609

Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-
by-design voice interfaces.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023. Mind2web: Towards a generalist agent for the
web. arXiv preprint arXiv:2306.06070.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Han-
lin Zhao, Hanyu Lai, et al. 2024. Chatglm: A family
of large language models from glm-130b to glm-4 all
tools. arXiv preprint arXiv:2406.12793.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa
Safdari, Yutaka Matsuo, Douglas Eck, and Aleksan-
dra Faust. 2023. A real-world webagent with plan-
ning, long context understanding, and program syn-
thesis. arXiv preprint arXiv:2307.12856.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, and Jie Tang. 2023. Coga-
gent: A visual language model for gui agents.

Raghav Kapoor, Yash Parag Butala, Melisa Russak,
Jing Yu Koh, Kiran Kamble, Waseem Alshikh, and
Ruslan Salakhutdinov. 2024. Omniact: A dataset and
benchmark for enabling multimodal generalist au-
tonomous agents for desktop and web. arXiv preprint
arXiv:2402.17553.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yux-
uan Chen, Pengbo Shen, Hao Yu, Hanchen Zhang,
Xiaohan Zhang, Yuxiao Dong, et al. 2024. Au-
towebglm: Bootstrap and reinforce a large language
model-based web navigating agent. arXiv preprint
arXiv:2404.03648.

Juyong Lee, Taywon Min, Minyong An, Changyeon
Kim, and Kimin Lee. 2024. Benchmarking mobile
device control agents across diverse configurations.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason
Baldridge. 2020a. Mapping natural language instruc-
tions to mobile UI action sequences. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8198-8210, On-
line. Association for Computational Linguistics.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason
Baldridge. 2020b. Mapping natural language instruc-
tions to mobile Ul action sequences. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8198-8210, On-
line. Association for Computational Linguistics.

Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng,
Zhengxiao Du, Peng Zhang, Yuxiao Dong, and Jie
Tang. 2023. Webglm: Towards an efficient web-
enhanced question answering system with human
preferences. arXiv preprint arXiv:2306.07906.

10

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

OpenAl. 2023. Gpt-4 technical report.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou,
Sergey Levine, and Alane Suhr. 2024. Autonomous
evaluation and refinement of digital agents.

Divyanshu Rai, Sumbul Siddiqui, Mahesh Pawar,
and Sachin Goyal. 2019. Robotic process au-
tomation: the virtual workforce. International
Journal on Future Revolution in Computer Science
& Communication Engineering, 5(2):28-32.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang,
Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice
Li, William Bishop, Wei Li, Folawiyo Campbell-
Ajala, Daniel Toyama, Robert Berry, Divya Tyam-
agundlu, Timothy Lillicrap, and Oriana Riva. 2024.
Androidworld: A dynamic benchmarking environ-
ment for autonomous agents.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana
Riva, and Timothy Lillicrap. 2023. Android in the
wild: A large-scale dataset for android device control.
arXiv preprint arXiv:2307.10088.

Mario Romao, Joao Costa, and Carlos J Costa. 2019.
Robotic process automation: A case study in the
banking industry. In 2019 14th Iberian Conference
on information systems and technologies (CISTI),
pages 1-6. IEEE.

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai,
Zichen Zhu, and Kai Yu. 2022. Meta-gui: Towards
multi-modal conversational agents on mobile gui.

Gemini Team, Machel Reid, Nikolay Savinov, and De-
nis Teplyashin et al. 2024. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens
of context.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Daniel Toyama, Philippe Hamel, Anita Gergely, Ghe-
orghe Comanici, Amelia Glaese, Zafarali Ahmed,
Tyler Jackson, Shibl Mourad, and Doina Precup.
2021. Androidenv: A reinforcement learning plat-
form for android. arXiv preprint arXiv:2105.13231.

Sagar Gubbi Venkatesh, Partha Talukdar, and Srini
Narayanan. 2023. Ugif: Ui grounded instruction
following.

Bryan Wang, Gang Li, and Yang Li. 2023. Enabling
conversational interaction with mobile ui using large
language models.

http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/2312.08914
http://arxiv.org/abs/2312.08914
http://arxiv.org/abs/2312.08914
http://arxiv.org/abs/2404.16660
http://arxiv.org/abs/2404.16660
http://arxiv.org/abs/2404.16660
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.18653/v1/2020.acl-main.729
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2404.06474
http://arxiv.org/abs/2404.06474
http://arxiv.org/abs/2404.06474
http://arxiv.org/abs/2405.14573
http://arxiv.org/abs/2405.14573
http://arxiv.org/abs/2405.14573
http://arxiv.org/abs/2205.11029
http://arxiv.org/abs/2205.11029
http://arxiv.org/abs/2205.11029
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2211.07615
http://arxiv.org/abs/2211.07615
http://arxiv.org/abs/2211.07615
http://arxiv.org/abs/2209.08655
http://arxiv.org/abs/2209.08655
http://arxiv.org/abs/2209.08655
http://arxiv.org/abs/2209.08655
http://arxiv.org/abs/2209.08655

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. 2024. Qwen2-vl: Enhanc-
ing vision-language model’s perception of the world
at any resolution. arXiv preprint arXiv:2409.12191.

Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen,
Fan Yang, and Zhen Xiao. 2024. Understanding
the weakness of large language model agents within
a complex android environment. arXiv preprint
arXiv:2402.06596.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin,
Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,
Julian McAuley, Jianfeng Gao, Zicheng Liu, and
Lijuan Wang. 2023. Gpt-4v in wonderland: Large
multimodal models for zero-shot smartphone gui nav-
igation.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chun-
yuan Li, and Jianfeng Gao. 2023a. Set-of-mark
prompting unleashes extraordinary visual grounding
in gpt-4v.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Ze-
biao Huang, Bin Fu, and Gang Yu. 2023b. Appa-
gent: Multimodal agents as smartphone users. arXiv
preprint arXiv:2312.13771.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. GIm-130b:
An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414.

Zhuosheng Zhan and Aston Zhang. 2023. You only
look at screens: Multimodal chain-of-action agents.
arXiv preprint arXiv:2309.11436.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. 2024. Gpt-4v (ision) is a generalist web agent,
if grounded. arXiv preprint arXiv:2401.01614.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, et al. 2023. Webarena:
A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854.

A Details of Tasks

In our experiment, we use various apps to conduct
various tests (succinctly presented in Table 5). The
following mobile apps are chosen:

* Bluecoins: A personal finance management app
used for tracking expenses and income.

* Calendar: A calendar app helps in organizing
schedules and setting reminders.

11

* Cantook: An e-book reader for storing, manag-
ing, and reading e-books.

* Clock: A clock app for displaying the time, set-
ting alarms, and using a stopwatch.

* Contacts: A contact management app for storing
and organizing contact information.

* Maps.me: An offline map app for navigation and
exploring locations.

* PiMusic: A music player app for organizing and
playing locally stored music files.

* Settings: A settings app for configuring device
settings and preferences.

* Zoom: A video conferencing app for hosting and
joining online meetings.

The selection of these apps goes through multiple

iterations to ensure their suitability for our evalua-

tion purposes. A key criterion for the final selection

is that each app functions independently, without

requiring an internet connection or user account

login. This ensures that the evaluations can be

consistently replicated under the same conditions,

eliminating external dependencies and reducing the

risk of privacy breaches. As a result, this approach

maintains the reliability and reproducibility of our

results.

B Detail of Operation Modes
B.1 XML Mode

As shown in Figure 5, in this mode, we prompt
models with task description, interaction history,
and current compressed XML information. The
models are supposed to output an action in function-
call format. The actions are applied on coordinates
shown in XML.

B.2 SoM Mode

As shown in Figure 6, in this mode, we prompt
models with task description, interaction history,
and current screenshot with set of marks(Yang
et al., 2023a). The models are also supposed to
output an action in function-call format. Different
from XML mode, the actions are performed on
specified elements via marked indices.

B.3 ReAct Modes

We follow (Yao et al., 2022) for ReAct prompting.
In this mode, we perform both text-only and multi-
modal testing. As shown in Figure 7 and Figure 8,
the text-only and multi-modal prompts are based
on Section B.1 and Section B.2 respectively. We

http://arxiv.org/abs/2311.07562
http://arxiv.org/abs/2311.07562
http://arxiv.org/abs/2311.07562
http://arxiv.org/abs/2311.07562
http://arxiv.org/abs/2311.07562
http://arxiv.org/abs/2310.11441
http://arxiv.org/abs/2310.11441
http://arxiv.org/abs/2310.11441
http://arxiv.org/abs/2310.11441
http://arxiv.org/abs/2310.11441
https://webarena.dev
https://webarena.dev
https://webarena.dev
https://webarena.dev
https://webarena.dev

Table 5: List of Android Eval apps used along with corresponding example task, sub-goals, and the number of tasks.

APP Example Task Sub-Goals # tasks
. . - type: income
Bluccoins L cc0rd an income of 8000 CNY in %4 00 oy 15
the books, and mark it as "salary".
- note: salary
- title: work
Calendar Edit the event with title "work", - state: editing 14
change the time to be 7:00 PM. - date: today
- time: 7 PM
- book: Hamlet
Cantook Mark Hamlet as read. - state: 100% read 12
I'need set an 10:30PM clock every - time: 10:30PM
Clock weekend, and label it as "Watch - frequency: every weekend 27
Football Games". - label: Watch Football Games
Add a contacts whose name is Xu,
set the working phone number to be - name: Xu
Contacts . - working phone number: 12345678 15
12345678, and mobile phone num- - mobile phone number: 87654321
ber to be 87654321. P '
Check the driving distance and time .. .)
Maps.me between Bus stop of 2700 Coast Av- gEzizg glmstznger.n;Okm 15
enue and Bus Stop Route 51. £ '
. , . - page: ARTISTS
PiMusic Sprt I.)mk Floyd' s songs by duration artist: Pink Floyd 12
time in descending order. ; .
- order: descending by duration
Setting E:row battery percentage in status - battery percentage: displayed 23
I need to join meeting 1234567890 ' mee'tlng ID: 1234567890
Zoom . . . - audio: off 5
without audio and video. .
- video: off

12

and only - atatime ‘whie’statomen

14 51 up 1o the Clock app.

wipe?, loment=[680, 2016, 760, 276), dection="ugr, dist="ong’)

1 can open the Cock app. #(863.390]1021 67214

ment=863, 390, 1021, 672)

Add Aarm®

dolaction="Tap?, slement-{408, 1626, 672, 1690)

Figure 5: Prompts of XML Mode for Text-only Testing

add prompts that allow models to think step by step
before outputting actions.

B.4 SeeAct Modes

We follow (Zheng et al., 2024) for SeeAct prompt-
ing. The raw prompts of SeeAct are designed for
web browsers. To adopt that in android environ-
ments, we make some modifications, and the final
prompts are shown in Figure 9 for multi-modal
testing and Figure 10 for text-only testing.

For multi-modal and text-only testing, the infor-
mation of mobile phones is given by screenshots
and compressed XML respectively. The models are
expected to generate a detailed description of the
action, its corresponding element, and parameters
in round 1, and the expected function-call format
in round 2.

loment={200, 1170, 332, 1302)

cloments[782, 543,525, 807)

1 now st tap “OK" to confirm, #793, 16601960, 1 79214

clomont-[793, 1660, 969, 1792)

System
lessage
s g2
Top",eloment-[209, 694,341, 826)
fnish{essage="Tho alam has been set 10 go off at 900 a.m. once every Monday”)
REMEMBER
‘Only “ONE LINE-OF-CODE" at a ime,

- Please do not ransiate proper nouns into Engish,

Omitec 1AL User
Message,

13

Model
Message

History
Record

User
Message
Model
Message

Usor
Message

History
Record

System
Message

User
Message

Model
Message
User
Message

Model
Message

User
Message

Model
Message

You are an agent that is trained to complete certain tasks on a smartphone. You will be

given a screenshot of a

starting from 1.

app. The Ul elements on the screenshot are labeled with numeric tags

YYou can call the following functions to interact with those labeled elements to control the smartphone:

1.tap(index: int)

Taps the Ul element labeled with the given number.

Example: tap(5)

2.text(input_str: str)

Inserts the given text into an input field.
Example: text(*Hello, world!")

Since we use ADB keyboard, if ADB keyboard ON is displayed on the bottom of the screen, you can use this function.
If you think that the keyboard is displayed after your previous operation, you can try to use this function to input text.

3.long_press(index: int)

Long presses the Ul element labeled with the given number.

Example: long_press(5)

4. swipe(index: int, direction: str, dist: str)

Swipes the Ul element in the specified direction and distance. "direction” is a string that

represents one of the four directions: up, down, left, right. "dist" determines the distance of the swipe and can be one
of the three options: short, medium, long.

Example: swipe(21, "up", "medium")

5. back()

Simulates a back button press on the smartphone.

6. home()

Simulates a home button press on the smartphone.

7. wait(interval: int)

Pauses the execution for the given number of seconds. Default is 5 second.

8. finish(message: str)

Ends the task and provides the final output. You can return the final output of the task as a string.
Example: finish("Task completed")

Now, given the following labeled screenshot, you need to think and call the function needed to proceed with the task.
Your output should include only action part in the given format:

Action: <The function call with the correct parameters to proceed with the task. If you believe the task is completed or
there i nothing to be done, you should use finish function. You cannot output anything else except a function call

in this field.>

Whenever you think the task is finished, you should use finish function to avoid extra operations.

If you found yourself in a loop or the task is not proceeding as expected, you might consider changing your operation and try other methods.
If you operate same action 5 times, the program will automatically stop.
If tap operation is not working, you can try long press operation.

‘You can only take one action at a time, so please directly call the function.

Task Instruction: {task}

Omitted Screenshot

Response History

Omitted Screenshot

Response History

Omitted Screenshot

Response History

Screenshot with set of marks

Figure 6: Prompts of SoM Mode for Multi-modal Testing

14

User
Message

System
Message

System
Message

Setup

You are a professional android operation agent assistant that can fulfill user's high-level instructions. Given the
XML information of the android screenshot at each step, you plan operations in python-style pseudo code using
provided functions, or customize functions (if necessary) and then provide their implementations.

More details about the code
Your code should be readable, simple, and only **ONE-LINE-OF-CODE** at a time. You are not allowed to use
“while’ statement and ‘if-else’ control. Predefined functions are as follow:

def dofaction, element=None, **kwargs)

Perform a single operation on an Android mobile device.

Args:
action (str): Specmes lhe a(llor\ to be performed. Valid options are:
Ty “Long Press", "Home", "Back’, “Enter", “Wait".
element (list, cptlcna\) Deﬁnes the screen area or starting point for the action.
- For "Tap" and "Long Press’, provide coordinates [x1, y1, 2, y2]
to define a rectangle from top-left (x1, y1) to bottom-right (x2, y:
- For "Swipe®, provide coordinates either as [x1, y1, x2, y2] for a defined path
or [x,y] for a starting point. If omitted, defaults to the screen center.

Keyword Args:
text (str, optional): The text to type. Required for the "Type" action.
direction (st optional): The direction to swipe. Valid directions are "up", "down’ "left", right"
Required if action is "Swipe".
dist (str, optional): The distance of the swipe, with options ‘long", “medium®, *short".
Defaults to *medium’. Required if action is *Swipe and direction is specified.

Returns:
None. The device state or the foreground application state will be updated after executing the action.

def finish(message=None):
Terminates the program. Optionally prints a provided message to the standard output before exiting.

Args:
message (str, optional): A message to print before exiting. Defaults to None.

Returns:

Now, given the following XML information, you need to think and call the function needed to proceed with the
task.
Your output should include Obs, Thought and Act in the given format:

Obs

Thought
Reasoning and textual display of the process. What do | want to do, and what are the prerequisites to achieve
this.

Action
Generate the instruction to interact with the android environment.
Here is an one-shot example:

Obs: The user wants to set an alarm for 9:00 a.m. on weekdays. The XML shows the clock app is open.

Thought: After opening the Clock app, | need to find where to add an alarm. Therefore, | should tap the Alarm tab
#[66,115](228,192]#

Action:

do(action="Tap", element=[66,115,228,192])

REMEMBER:

- Only Obs, Thought and **ONE-LINE-OF-CODE** at a time.

- Don't generate an operation element that you do not see in the screenshot.

- You are acting in a real world, try your best not to reject user's demand. Solve all the problem you encounter.

- On a dropdown element (Calendar, Nationality, Language, etc), first try directly typing in the option you want.
- To accomplish the task, try switching to as many different pages as you can, and don't stay on the same page
t00 often, based on historical conversation information.

- To complete the task, explore the app full, ie., tap more on different elements of the app

- Please do not translate proper nouns into English.

Task Instruction: {task}
Omitted XML
Response History
Omitted XML

Response History

Omitted XML

Response History

Retrieve the result of executing the instruction from the external environment. This is equivalent to obtaining the

result of the current step’ s behavior, preparing for the next step.
Note: In order to reduce the number of function calls, the Obs step executes at the beginning of the next tum.
So if current step is not the first step, you should observe the result of the previous step in the current step.

Compressed XML of current screen:

{layout info}

Figure 7: Prompts of XML Mode for ReAct Testing.

You are an agent that is trained to complete certain tasks on a smartphone. You will be

given a screenshot of a smartphone app. The interactive Ul elements on the screenshot are labeled with numeric

gs
starting from 1.
You can call the following functions to interact with those labeled elements to control the smartphone:
1.tap(index: int)

Taps the Ul element labeled with the given number.
Example: tap(5)

2 text(input_str: str)

Inserts the given text into an input field

Example: text("Hello, world!")

Since we use ADB keyboard, if ADB keyboard ON is displayed on the bottom of the screen, you can use thi:
functior

n
If you think that the keyboard is displayed after your previous operation, you can try to use this function to input
text.

3Jong_press(index: int)

Long presses the Ul element labeled with the given number.
Example: long_press(5)

4. swipe(index: int, direction: str, dist: str)

Swipes the Ul element in the specified direction and distance. *direction” is a string that
b of the four directions: up, down, left, right. *dist" determines the distance of the swipe and

e e e
Example: swipe(21, *up’, "medium’)

5. back()

Simulates a back button press on the smartphone.

6. home()

Simulates a home button press on the smartphone.

7. wait(interval: int)

Pauses the execution for the given number of seconds. Default is 5 second.
8. finish(message: str)

Ends the task and provides the final output. You can return the final output of the task as a string.
Example: finish(*Task completed)

Now, given the following labeled screenshot, you need to think and call the function needed to proceed with the
task.

Your output should include Obs, Thought and Act in the given format:

Obs
Retrieve the result of executing the instruction from the external environment. This is equivalent to obtaining the

result of the current step’ s behavior, preparing for the next step.

System
Message

User
Message

odel
Message

User
Message

Model
Message

User
Message

odel
Message

User
Message

Note: In order to reduce the number of function calls, the Obs step executes at the beginning of the next turn.

So if current step is not the first step, you should observe the result of the previous step in the current step.

Thou

Action
Generate the instruction to interact with the android environment.

Here is an one-shot example:

ght
Reasoning and textual display of the process. What do | want to do, and what are the prerequisites to achieve
this.

Obs: The user wants to set an alarm for 9:00 a.m. on weekdays. The screenshot shows the clock app is open.

Thought: | need to open the clock app labeled with 5 and find the first alarm listed .
Action:

5

tap(5)

Whenever you think the task is finished, you should use finish function to avoid extra operations.

If you found yourself in a loop or the task is not proceeding as expected, you might consider changing your

operation and try other methods.
If you operate same action 5 times, the program will automatically stop.
If tap operation is not working, you can try long press operation.

You can only take one action at a time, so please directly call the function.

can be
Task Instruction: {task}
History
Record M;f;’ge Omitted Screenshot
Model "
Message | Response History
User
Message | Omitted Screenshot
Model .
Message | Response History
.
:
:
User
Message | Ormitted Screenshot
Model "
Message | Response History Screenshot with set of marks

Figure 8: Prompts of SoM Mode for ReAct Testing.

15

History
Record

System
Message

User
Message

You are assisting humans doing smartphone navigation tasks step by step. At each stage, you can see the smartphone by a screenshot and know the previous actions before the current
System step decided by yourself that have been executed for this task through recorded history. You need to decide on the first following action to take.
Message

Here are the descriptions of all allowed actions: "Tap", "Type", "Swipe", "Long Press", "Home", "Back", "Enter", "Wait".

You are asked to complete the following task: {task}

{previous_actions}

User

Message The screenshot below shows the smartphone you see. Think step by step before outlining the next action step at the current stage. Clearly outline which element in bz (5

the smartphone users will operate with as the first next target element, its detailed location, and the corresponding operation.

To be successful, it is important to follow the following rules: Screenshot
1. You should only issue a valid action given the current observation.
2. You should only issue one action at a time.
3. Terminate when you deem the task complete.

Previous Actions: ‘

Model o
Round 1 Generation Action Generation

(Reiteration)
First, reiterate your next target element, its detailed location, and the corresponding operation.

(Final Answer)
Below is a multi-choice question, where the choices are elements in the smartphone. From the screenshot, find out where and what each one is on the smartphone, taking into account
both their text content and path details. Then, determine whether one matches your target element if your action involves an element. Choose the best matching one.

{option_prompt}
Conclude your answer using the format below. Ensure your answer is strictly adhering to the format provided below.

Predefined functions are as follow:

def do(action, element=None, “*kwargs):

Perform a single operation on an Android mobile device.

Args:
action (str): Specifies the action to be performed. Valid options are:
"Tap", "Type", "Swipe", "Long Press", "Home", "Back", "Enter", "Wait".
element (list, optional): Defines the screen area or starting point for the action.
- For "Tap" and "Long Press", provide coordinates [x1, y1, x2, y2]
to define a rectangle from top-left (x1, y1) to bottom-right (x2, y2).
- For "Swipe", provide coordinates either as [x1, y1, x2, y2] for a defined path
or [x, y] for a starting point. If omitted, defaults to the screen center.

Keyword Args:
text (str, optional): The text to type. Required for the “Type" action.
direction (str, optional): The direction to swipe. Valid directions are "up", "down", "left", "right".
Required if action is "Swipe".
dist (str, optional): The distance of the swipe, with options "long", "medium", "short".
User Defaults to "medium"”. Required if action is "Swipe" and direction is specified.

Message Returns:
None. The device state or the foreground application state will be updated after executing the action.

def finish(message=None):

Terminates the program. Optionally prints a provided message to the standard output before exiting.

Args:
message (str, optional): A message to print before exiting. Defaults to None.

Returns:

Your code should be readable, simple, and only **ONE-LINE-OF-CODE** at a time. You are not allowed to use 'while’ statement and "if-else’ control. Please do not leave any explanation
in your answers of the final standardized format part, and this final part should be clear and certain.

Example if you want to swipe up from an element located at [680,2016][760,2276] with a long distance:

dofaction="Swipe", element=[680, 2016, 760, 2276], direction="up", dist="long")

Example if you deem the task complete and want to finish with a message:

finish(message="The alarm on 9:00 AM weekday has been set")

Model

Round 2 Generation

Action Grounding

Figure 9: Prompts of SoM Mode for SeeAct Testing.

16

Round 1

Round 2

System
Message

User
Message

Model
Generation

User
Message

Model
Generation

You are assisting humans doing smartphone navigation tasks step by step. At each stage, you can see the smartphone by compressed layout information and know the previous actions
before the current step decided by yourself that have been executed for this task through recorded history. You need to decide on the first following action to take.

Here are the descriptions of all allowed actions: "Tap", "Type", "Swipe", "Long Press", "Home", "Back", "Enter", "Wait".

You are asked to complete the following task: {task}

Previous Actions:

{previous_actions}

The compressed layout information below shows the smartphone you see.
{layout_info}

Think step by step before outlining the next action step at the current stage. Clearly outline which element in the smartphone users will operate with as the first next target element, its
detailed location, and the corresponding operation.

To be successful, it is important to follow the following rules:

1. You should only issue a valid action given the current observation.
2. You should only issue one action at a time.

3. Terminate when you deem the task complete.

Action Generation

(Reiteration)
First, reiterate your next target element, its detailed location, and the corresponding operation.

(Final Answer)
Below is a multi-choice question, where the choices are elements in the smartphone. From compressed layout information, find out where and what each one is on the smartphone,
taking into account both their text content and path details. Then, determine whether one matches your target element if your action involves an element. Choose the best matching one.

{option_prompt}
Conclude your answer using the format below. Ensure your answer is strictly adhering to the format provided below.

Predefined functions are as follow:

def do(action, element=None, **kwargs):
Perform a single operation on an Android mobile device.

Args:
action (str): Specifies the action to be performed. Valid options are:
"Tap", "Type", "Swipe", "Long Press", "Home", "Back", "Enter", "Wait".
element (list, optional): Defines the screen area or starting point for the action.
- For "Tap" and "Long Press", provide coordinates [x1, y1, x2, y2]
to define a rectangle from top-left (x1, y1) to bottom-right (x2, y2).
- For "Swipe", provide coordinates either as [x1, y1, x2, y2] for a defined path
or [x, y] for a starting point. If omitted, defaults to the screen center.
Keyword Args:
text (str, optional): The text to type. Required for the "Type" action.
direction (str, optional): The direction to swipe. Valid directions are "up", "down", "left", "right".
Required if action is "Swipe".
dist (str, optional): The distance of the swipe, with options *long", “medium", "short".
Defaults to "medium"”. Required if action is "Swipe" and direction is specified.

Returns:
None. The device state or the foreground application state will be updated after executing the action.

def finish(message=None):
Terminates the program. Optionally prints a provided message to the standard output before exiting.

Args:
message (str, optional): A message to print before exiting. Defaults to None.

Returns:

Your code should be readable, simple, and only **ONE-LINE-OF-CODE** at a time. You are not allowed to use ‘while’ statement and 'if-else’ control. Please do not leave any explanation
in your answers of the final standardized format part, and this final part should be clear and certain.

Example if you want to swipe up from an element located at [680,2016][760,2276] with a long distance:

dofaction="Swipe", element=[680, 2016, 760, 2276], direction="up", dist="long")

Example if you deem the task complete and want to finish with a message:

finish(message="The alarm on 9:00 AM weekday has been set")

Action Grounding

Figure 10: Prompts of XML Mode for SeeAct Testing.

17

C Details of XML Compression
Algorithm

Currently, the inputs effectively handled by main-
stream Large Language Models (LLMs) are gener-
ally within 8k tokens to 16k tokens. Beyond this
length, the model’s performance significantly de-
clines. However, the raw XML obtained through
methods provided by Google Android often re-
quires tens of thousands of tokens after being con-
verted into tokens after conversion. Therefore, it
is necessary to simplify the XML information be-
fore feeding it to the model. Some existing XML
simplification algorithms still retain a lot of struc-
tural information and descriptive representations
from the original XML. In many complex pages,
the simplified XML obtained is still far more than
16k tokens in length.

Since the original XML is used to define the lay-
out and elements of the user interface, it includes all
the components on a page. Thus, the original XML
contains many nodes that exist only for structural
and layout purposes. These nodes do not provide
useful page information, which is the main reason
for the excessive length of the original XML. Ad-
ditionally, a page often contains more nodes than
are displayed on the screen, such as in scrollable
pages. Thus, the original XML will also include
many off-screen nodes.

First, we determine whether to retain off-
screen nodes, controlled by an input pa-
rameter remain_nodes (retain nodes when re-
main_nodes=True). For instance, when it is nec-
essary to summarize the entire page’s information,
we can retain off-screen nodes to save operations
(like scrolling the screen to see the full text) and di-
rectly obtain the complete page’s text information.
If the requirement is related to operation simulation,
such as simulating clicking elements or scrolling,
we can choose to delete off-screen nodes to prevent
interference with the model. Specifically, in the
original XML, the bounds property of all on-screen
nodes must be within [0,0][Window_Height, Win-
dow_Width] and must be contained by their par-
ent node. Therefore, we only need to determine
whether the current node’s bounds are contained
by its parent node to identify all the nodes within
the screen range.

The original XML also contains many nodes that
exist only for structural and layout purposes, which
do not include useful page information. Thus,
we will delete these redundant nodes. We will

18

judge whether a node is redundant based on its at-
tributes. If a node has at least one of the following
attributes as True: "checkable", "checked", "click-
able", "focusable", "scrollable", "long-clickable",
"password", "selected", or if the text or content-
desc is not empty, we consider this node functional.
Nodes that do not meet this criterion are redundant,
and we will delete all such nodes.

The descriptions of each attribute in the origi-
nal XML are overly redundant and consume many
tokens. Finally, we will simplify these attribute
descriptions. For the functional attributes "check-
able", "checked", "clickable", "focusable", "scrol-
lable", "long-clickable", "password", "selected",
since most cases will be False, we will only display
attributes with True values. The "index", "resource-
id", and "package" attributes do not help the model
understand the page, so we will delete them di-
rectly. The "class" attribute, to some extent, indi-
cates the main function of a node, so we will retain
its last part (the class is always in x.x.x.x format,
with varying dot counts, and we will keep only the
part after the last dot, e.g., retaining FrameLayout
from android.widget.FrameLayout). The "text" and
"content-desc" attributes represent the node’s text
information, and we will merge and display them
separately. The "bounds" attribute indicates the
node’s position on the page and is one of the most
critical attributes, so we will display it separately.

Ultimately, for the following node:

<node index="0" text="XXX"
id="" class="android.view.View"
age="com.autonavi.minimap" content-desc=
checkable="false" checked="false" click-
able="false" enabled="true" focusable="false"
focused="false" scrollable="false" long-
clickable="false" password="false" se-
lected="false" bounds="[290,844][346,885]"
/>

We will simplify it to:

[n42] View;;; XXX; [290,844][346,885]

In summary, by reducing nodes to remove redun-
dant and off-screen nodes and simplifying the node
attribute descriptions, we will rewrite the XML
into a new, more concise format to obtain a more
streamlined XML.

resource-
pack-

nn

D Details of Metrics
D.1 Success Rate (SR)

For Operation Tasks, we probe task completion via
unique Android emulator states. For Query Tasks,

advanced LLMs verify if the model’s predicted re-
sults match the standard answers, avoiding errors
from direct string comparisons, achieving an ac-
curacy rate of over 98% (Cf. Appendix F.5). The
Success Rate is calculated as the average task com-
pletion rate across all tasks: SR = Y~ | S;/N,
where NN is the total number of tasks, and .5; is a bi-
nary value indicating whether task ¢ is successfully
completed. We provide an example in Fig 4.

D.2 Sub-Goal Success Rate (Sub-SR)

Tasks are decomposed into sub-goals, and com-
pletion is assessed sequentially. This finer met-
ric rewards models with stronger understanding
and operational capabilities. It is common for
models to only achieve partial goals, as shown
in Fig 14. This approach allows us to distin-
guish the model’s capabilities at a finer granu-
larity. Sub-Goal Success Rate is calculated by
averaging the success rate of sub-goals within
a task, followed by averaging across all tasks:

SubSR = Zf\il (Zj\/lzzl sz/Mz) /N, where Mi
is the number of sub-goals in task 4, and Gj; is a

binary value indicating whether sub-goal j in task
1 is completed.

D.3 Reversed Redundancy Ratio (RRR)

As shown in previous work (Xing et al., 2024), re-
dundancy is measured by comparing the length
of the model operation path (L) with a human
operator’s path length (L). We calculate RRR
by averaging the redundancy score across tasks:
RRR (Zf\il ﬁl/LZ> /N', where N’ is the
number of tasks with SR > 5%, L; is the length
of the model’s operation path for task ¢, and L;is
the length of the human benchmark path.

D.4 Reasonable Operation Ratio (ROR)

This metric evaluates the proportion of operations
after which the screen changed. Unchanged screens
indicate the operation was ineffective and thus
deemed unreasonable. ROR is calculated by aver-
aging the reasonable operation ratios across tasks:
ROR = (zfvz Oy /om) /N, where O, is the
number of operations that resulted in a screen
change for task ¢, and O, ; is the total number of
operations performed in task .

One possible misconception is that ROR is true
as long as the model performs an operation. How-
ever, we observed multiple situations that can cause
ROR to be false.

19

1. Tap Operations: Some positions might be
marked as clickable in the XML interface, but click-
ing them does nothing. For instance, many text
elements are marked as clickable, but their func-
tion only displays information rather than triggers
navigation. While this might be due to errors from
the software developers, the agent needs to learn
through SFT which buttons need to be clicked to
perform tasks accurately.

2. Type Operations: Typing is only effective if
it’s done in an activated input field, usually follow-
ing a prior action that selects that field.

3. Swipe Operations: Swiping in the incorrect
location or direction will not affect the mobile de-
vice.

E Case Study

In the case shown in Fig 11, an agent with GPT-40
as the base model was asked to find the reason
behind a specific expenditure at a specific date via
the Bluecoins app. It correctly navigated to the
right date, opened the expense section, extracted
the required information, and returned it to the
user without unnecessary actions. This resulted in
a high RRR of 1.25 and a reasonable operation
ratio of 1.0, reflecting efficient and successful task
completion.

As shown in Fig 12, the agent with GPT-40 as the
base model was given the task of changing the
home time zone to Tokyo in the clock. Initially, it
added a new clock for Tokyo, which was irrelevant.
Then it navigated to the settings, correctly updated
the home time zone, and completed the task.
Although the task was successful, the metric
penalized redundant initial steps, assigning an
RRR of 0.5.

In the example shown in Fig 13, the GLM4 agent
operating in SoM mode successfully navigated
from my location to University South by searching
for the destination and displaying the route.
However, it unnecessarily clicked on the WiFi
button, which was redundant. Therefore, the
task was deemed successful, but the RRR score
dropped to 0.875 due to the additional action.

The GPT-40 agent in XML mode, as shown in
Fig 14, was tasked with joining a meeting without
audio and video. It successfully entered the
meeting ID but struggled with the audio and video
settings, ultimately failing to turn off the video.
Two of three sub-goals, including entering the
meeting ID, not connecting to audio, and turning

Task: What was the reason behind the 388.88 CNY I spent on May 3, 2024?

12:00 © LTE4i R 12:00 © LTE4 B

+

»

= Main Dashboard = Calendar

= < May 2024

Daily Summary

11,400
By v I
Tue Wed T F

-¥1,685.69
-¥406.29

CATEGORIES ACC
INCOME ¥18,504.1

@ otrers 100 18,504.1
EXPENSE g

@© others 100

NET EARNINGS ¥4 1

Cryptocoins
by Bluecoins

P> Google Play

A

+

May 2024

Calendar

:::::

19 20 21

CATEGORIES

12:00 © LTEL R

12:00 G

“

o

= Calendar Expense

4 May 2024

2

ACCOUNTS TRANSACTIONS

4=

REMINDERS

EXPENSE ¥

@© others 1o

NET EARNINGS

Figure 11: User Study: Successful Task of GPT-40 agent with no Redundant Operation under XML Mode

off the video, succeeded. The task was considered
unsuccessful overall due to the failure to turn off
the video.

In the case shown in Fig 15, a GPT-40 agent was
tasked with adding a contact and setting a phone
number but failed to click the input field before
typing, leaving both sub-goals incomplete. The
task was deemed unsuccessful.

The Llama3 agent in SoM mode, as shown in
Fig 16, was tasked with setting the alarm volume
to the max but failed to navigate to the correct
column. In addition, it repeatedly scrolled up,
completely missing the goal. As a result, the
task was deemed unsuccessful and the agent was
penalized with a low reasonable operation ratio,
scoring 0.8.

F Additional Results

F.1 Detailed results across different APPs

Table 6 shows the number of tasks correctly com-
pleted by various models across different apps with-
out employing the ReAct and SeeAct frameworks.
This table shows that GPT-40 and GPT-4-1106-
Preview perform relatively well, completing 78
and 79 tasks, respectively. In the XML mode, GPT-
4-1106-Preview stands out as the top performer,
with 43 tasks completed. Comparatively, in the

20

SoM mode, GPT-40 excels, achieving a signifi-
cantly higher number of tasks than the other mod-
els. Most models exhibit high success rates in tasks
like "Contacts" and "Setting". Overall, GPT-40 and
GPT-4-1106-Preview outperform the other models
significantly in both XML and SoM modes, while
Gemini-1.5-Pro shows a reasonable number of task
completions across various apps.

Table 7 shows the performance improvements
observed after implementing the ReAct and See-
Act frameworks on different models across various
apps. Notably, GPT-40 shows significant enhance-
ment, with the number of completed tasks increas-
ing from 35 to 46 in XML+ReAct mode and 43 to
44 in SoM+ReAct mode. Gemini-1.5-Pro also ben-
efits, rising from 26 to 43 tasks. The improvements
are evident in specific apps like "Bluecoins", espe-
cially in high-complexity, multi-step tasks. GPT-40
leads in performance across all frameworks, show-
ing how ReAct and SeeAct improve the model.

F.2 Detailed results across different
multimodal training modes

We compare different multimodal training modes
in Table 8. Under the same training data and base
model settings, BBOX mode removes specified
sets-of-masks from the screen. It is worth men-
tioning that datasets like AITW only provide click
positions rather than bounding boxes (BBOX) and

Task: Change home time zone to Tokyo in clock

1200 © 1200 © 0 1200 ©

Alarm H Clock ch for a city < be

1:00..

Today

o, Japan

Fri, May 10 ® Fri 1:00 AM

Barcelona 6 . OO
. PM

ADB Keyboard (ON} ADB Keyboard {ON} ADB Keyboard {ON}

1200 © 1201 ©

Clock Clock o
Home time zone

Screen saver

12:00.m 1 2:0(s

, May 10 © Fri 1:00 AM Fri, May 10 © Fri1:00 Send feedback

(GMT+8:00) Beijing
(GMT+8:00) Hong Kong
(GMT+8:00) Irkutsk

Help

Barcelona Barcelona b: Oo
-6h Yesterda 6t rday PM Display time

Automatic h

(GMT+8:00) Kuala Lumpur
(GMT+8:00) Perth
(GMT+8:00) Taipei
(GMT+9:00) Seoul

1:00.

(GMT+9:00; ‘ckyo, Osaka
Home time zone

< J (GMT+9:00) Yakutsk
Chang (GMT+9:30) Adelaide
a (GMT+9:30) Darwin

Silence after

(GMT+10:00) Hobart
ngth

O O OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0o0OO®

(GMT+10:00) Sydney, Canberra

Alarm volume Alarm volume

®

Figure 12: User Study: Successful Task of GPT-40 agent with Redundant Operation under XML Mode

21

[T N P)
G o Rl aF AR
. oo, Hertage Park o o o e
NN S AN IR
e e, (0 scobak’, & el
N 0, 7
aeTonds et g
e . N DN
@, L Py, W B T o
v Nt L
e o
PRI
e, o7 Mg, o
e & % Oy
s 08B, g -
dstes i e Yo,
a3 o L
o i o
eraerons pepana
s gy L% e —
o Gy 501
® e e pg
A 2 N
B\ P\ e
E)
o)
*, e
%, S
Gaena 5 o
ﬁe‘“ Bicaminosiea o
10 RN v)
P) W/
o
a.n = @ vhereoeat | @
8520 @ 0364
L &)
Search
Wnereto. Hotel Groceries Sights WiFi
D)
Clear search history
L
© éState Universitys & Close

Task: Navigate from my location to University South

P — v
FIOO Y0 are wpﬁn‘g‘ 8%vo @ \e 3640
L. Type: University:South. % g

e

< Ofscent Park
Search > o oo,
MenloPark “Sniisies Lo
m e 6 o o oy, e
=Palo Alto
Whereto. Hotel Groceres Sights WiFi S SRR
g e
" oD\
Search history is empty - iy »s\.ﬂua 2
This is where your search history will be A
stored. sepmad
Statord TN
@ /
Lo
®Search
Wnereto. Hotel Groceries Sights WiFi
Search history is empty
This is where your search history will be
stored.
o] () Close
O University South C & Close

*fhfsh: The task has béen
inished. \

l
£ @ vetreroasstoas

Campbetl \ s e

®wiFi
WA Wi Ko Goore Sos

Clear search history

© éState UniversityS 1 & Map Close

EastPalo Alto

8% O Sus

o
W
S S
o

S~

Route
San José State University South 2 | 4+ » @ =
Campus g
N <« My location

1 Route from n o [san José State University South Ca... +

Figure 13: User Study: Successful Task of GLM4 agent with Redundant Operation under SoM Mode

22

Welcome
Get started with your account

signup
Signin
12:00 © LTEL R
< Join
Meeting Event
123 456 7890

Join with a personal lisk name

Google sdk_gphone64_arme4

By clicking "Join, you agree to our Terms of Service and Privacy
Statement

1f you received an invitation link,tap on the ink to join the meeing

Join options

Don't Connect To Audio

Turn Off My Video

ADB Keyboard {ON)

L @)
@

Task: I need to join meeting 1234567890 without audio and video. (You should not click join button, and leave it to user)

1200 ® LTELN
< Join

Meeting Event

0

Join with a personal link name

Google sdk_gphone64_arm64.

By clicking “Join', you agree to our Terms of Service and Privacy

Join

link,tap on the link to 9
Join options.
Don't Connect To Audio

‘Turn Off My Video

120fimish: Meeting ID entered, audion
and video turned off. Ready to

Meeting Event

123 456 7890
Join with a personal ik name

Google sdk_gphone6d_arméd

By clicking "Join', ou agree 1o our Terms of Service and Privacy
Statement

°

Join options

link,tap o the ink 1o

©

Don't Connect To Audio

Turn Off My Video

ADB Keyboard (ON}

1200 © TELR

Type: 1234567890
Join

Meeting Event

Meet|ng ID
Join with a personal lisk name

Google sdk_gphone64_arm64.

By clicking "Joir, you agree to our Terms of Service and Privacy
Statement

Join

f you received an invtation link,tap on the link to join the meeting

Join options

Don't Connect To Audio

Turn Off My Video

jboard (ON)

1200 © LTELN
< Join

Meeting Event

123 456 7890]
Join with a personal link name

Google sdk_gphone64_armé4

By clicking “Join',you agree to our Terms of Service and Privacy
ment

1f you received an invitation link, tap on the link to join the meeting

Join options.

+

Don't Connect To Audio

Turn Off My Video

ADB Keyboard {ON)

1200 © LTEZ N
< Join

Meeting Event

123 456 7890
Join with a personal ik name

Google sdk_gphone64_arm64.

By clicking “Join, you agree to our Termes of Service and Privacy

1f you received an invitation link, tap on the link to join the meeting

Join options

©

Don't Connect To Audio

+

Turn Off My Video

Figure 14: User Study: Unsuccessful Task of GPT-40 agent under XML Mode

1200 © LELN
= Search contacts i |

[0 Orvioe - 3contacts

A °AAA
L @

-

2 2
Contacts Fix & manage

Figure 15: User Study:

Task: Add John as a contacts and set his mobile phone number to be 12345678

12:00 ©
Type: John
X Create contact

Add photo

& | First name e

Last name

B | company

i

abel

Mobile

iD

Label

Home

i

More fields

1200 © TELiN
Type: 12345678

X Create contact

save

& | Firstname

Last name

B3 | company

®
Ra | Phone

L

abel
Mobile

iD

Label
Home

|

More fields

23

Add photo

Take photo

Choose photo

12.00fni ohn has been added wsai 0

Pta]
contact with the mobile phone
x Create"éaﬂbsét123“5"@

& | Firstname

Last name

B | company

°
Ra | Phone

i

abel

Mobile

iD

Label

Hom

3
J

More fields

Unsuccessful Task of GPT-40 agent under XML Mode

Settings
Q Search settings

Network & internet
Mobile, Wi-Fi, hotspot

D))

Connected devices
Bluetooth, pairing

G

Apps

Assistant,recent apps, default apps

@ Notifications

Notification history, conversations

Battery
Lo
= Storage

59% used - 3.26 GB free

4 Sound &vibration

Volume, haptics, Do Not Disturb

G40

®

1200 @

Q Search settings

<

Qo

Location

On- 4 apps have access to location

Safety & emergency
Emergency SOS, medical info, alerts

Passwords & accounts

Saved passwords, autofil, synced accounts

Digital Wellbeing & parental
controls
Screen time, app imers, bediime schedules

Google

Services & preferences

Languages, gestures, time, backup

About emulated device

sdk_gphone_x86.64

Tips & support

Help articles, phone & chat

G40

System

® Languages & input
ADB Keyboard

C Gestures

@ Date&time
GMT+00:00 Greenwich Mean Time

® & Backup

System update
Updated to Android 13

o Multiple usersf

Signed in as Owner

£ Reset options

Task: Set my alarm volume to max

G40 1200 @ 3640

“fiflish: The task has b&&if
< < finished.

System System

Languages & input

Languages & input
® L s

ADB Keyboard

C Gestures E Gestures

@© Date&time

Date & time
GMT+00:00 Gree ©

GMT+00:00 Greenwich Mean Time

ich Mean Time

® & Backup Backup

o] System update
Updated to Android 13

System update
Updated to Android 13

2o Multiple users 2o Multiple users
Signed in as Owner Signed in as Owner
£ Reset options f 4D Reset options

Figure 16: User Study: Unsuccessful Task of Llama3 agent under SoM Mode

Task: Turn off all alarms

Figure 17: User Study: Unsuccessful Task under XML Mode

24

12:00 © + 8100%

®

Settings

Q. searchfettings

= Network & internet
" Mobile, Wi-Fi, hotspot

Connected devices
Bluetooth, pairing

°
&l

Apps

Assistant, recent apps, default apps

@ Notifications

Notification history, conversations

[Battery

100%

Storage
72% used - 4.46 GB free

1201 ©

+ Search settings

RECENT SEARCH RESULTS

+ 8100

4 Airplane mode

Network & internet

X Clear history

'ADB Keyboard {ON)

°
&l

1200 ©

+ [earch settings

RECENT SEARCH RESULTS

4 Airplane mode
Network & internet

X Clear history

ADB Keyboard {ON}

1202 ©

Settings

Q Search settings

= Network & internet
Mobile, WkFi, hotspot

Connected devices
Bluetooth, paifing

o Notifications

Notification history, conversations.

Battery
LI
= Storage

g
72% used - 4.45 GB free

Assistant, recent apps, default apps

Task: Turn my phone to Dark theme

+ 8100% 1200 © + B100% 1201 ©

+ Search settings
() [P

4 Airplane mode
Network & internet

+ B100%

Settings

4= search settings

Network & internet
Mobile, Wi-Fi, hotspot

X Clear history

)

Go Connected devices
Bluetooth, pairing

Apps

Assistant, recent apps, default apps

@ Notifications

Notification history, conversations
1 Battery
100%

Storage
72% used - 4.45 GB free

'ADB Keyboard {ON)

1202 ©

100%

< Press Back

Apps

All apps

34 apps installed

Default apps

Firefox, Phone, and M

Screen time
2 minutes today

o000
Unused apps

0 unused apps.

App battery usage

Set battery usage for apps

Special app access
1 app can use unrestricted data

Figure 18: User Study: Unsuccessful Task under XML Mode

25

1201 © + 8100%

Settings
4= search settings

= Network & internet
" Mobile, Wi-Fi, hotspot

o (@ Connected devices
Bluetooth, pairing

ai

Apps

Assistant,recent apps, defautt apps

o Notifications

Notification history, conversations.

'} Battery

100%

Storage
72% used - 4.45 GB free

1209 © 4 100°

Settings

Q Search'emngs

= Network & internet
Mobile, Wi, hotspot

o @ Connected devices
Bluetooth, pairing

Apps

Assistant, recent apps, default apps

o Notifications

Notification history, conversations.

Battery
. 100%

= Storage

Table 6: The number of tasks completed by all models across all apps in different modes.

Mode Model Bluecoins Calendar Cantook Clock Contacts Maps.me PiMusic Setting Zoom Total
15 14 12 27 15 15 12 23 5 138
GPT-40 1 0 3 8 5 5 2 10 1 35
GPT-4-1106-Preview 1 4 6 4 6 6 4 9 3 43
Gemini-1.5-Pro 1 1 3 6 3 4 3 4 1 26
Gemini-1.0 0 1 1 4 2 0 1 2 1 12
XML GLM4-PLUS 2 0 4 9 6 3 2 10 2 38
LLaMA3.1-8B-Instruct 0 0 0 2 0 0 0 1 0 3
Qwen2.5-7B-Instruct 0 1 0 2 0 1 1 1 2 8
GLM4-9B-Chat 0 1 0 2 1 1 0 3 2 10
LLaMA3.1-8B-ft 3 5 6 8 6 5 0 4 1 38
Qwen2.5-7B-ft 3 4 5 6 6 3 1 7 1 36
GLM4-9B-ft 2 4 5 5 8 1 0 7 0 32
GPT-40 1 1 5 7 8 2 2 13 4 43
GPT-4-Vision-Preview 1 1 5 8 6 2 2 8 3 36
Gemini-1.5-Pro 0 0 5 2 5 0 1 7 3 23
Gemini-1.0 0 0 2 3 3 0 1 5 1 15
Claude-3-Opus 1 0 1 2 4 0 3 7 0 18
SoM Claude-3.5-Sonnet 4 2 4 9 7 0 3 10 1 40
LLaMA3.2-11B-Vision-Instruct 0 0 0 1 0 0 0 1 0 2
Qwen2-VL-2B-Instruct 0 0 0 0 0 0 0 0 0 0
Qwen2-VL-7B-Instruct 0 0 0 2 1 0 0 1 1 5
LLaMA3.2-11B-Vision-ft 0 2 2 3 1 5 0 3 0 16
Qwen2-VL-2B-Instruct-ft 1 4 1 3 2 3 0 5 1 20
Qwen2-VL-2B-Instruct-ft 0 0 1 7 7 6 0 4 1 26

Table 7: The improvement in model performance after employing the ReAct and SeeAct frameworks, is reflected in
the increased number of successfully completed tasks across various apps.

Mode Model Bluecoins Calender Cantook Clock Contacts Maps.me PiMusic Settings Zoom Total
15 14 12 27 15 15 12 23 5 138

GPT-40 1 0 3 8 5 5 2 10 1 35

XML Gemini-1.5-Pro 1 1 3 6 3 4 3 4 1 26
GPT-40 2 0 4 12 7 6 2 1 2 46

XMLAReACt 5 inic1.5-Pro 4 0 4 6 6 6 3 T 3 43
GPT-4o 1 2 4 8 5 3 2 7 2 34
XMLASeeAct o hini-1.5-Pro 1 0 6 6 5 0 2 8 1 29
oM GPT-40 1 1 5 7 8 2 2 13 4 43
Gemini-1.5-Pro 0 0 5 2 5 0 1 7 3 23

GPT-4o 3 1 5 7 7 3 0 15 3 44

SoM#ReAct 4 hini-1.5-Pro 1 1 3 2 4 1 2 7 1 2
GPT-40 6 1 4 11 6 0 2 9 3 42

SoM#SeeAct o hini-1.5-Pro 1 0 6 6 5 0 2 8 1 29

do not offer a way to reconstruct the click-box
from XML. Therefore, data from AITW and simi-
lar datasets are more challenging to learn from.

F.3 Detailed results of SeeAct and ReAct
methods

We have provided detailed results on the impact
of the SeeAct and ReAct frameworks on model
performance in Fig 9, including all four metrics.

F.4 Influence of Windows Size.

As shown in Figure 19, experiments with three
Android VMs of varying sizes in SoM mode show
optimal agent performance on screens matching
commonly used smartphones (e.g., Pixel 7 Pro,
Pixel 8 Pro). Performance drops on smaller (Pixel

26

3a) and larger screens (Pixel Fold).

Most Android phones share screen sizes similar
to the Pixel 7 Pro or Pixel 8 Pro, which may make
such data prevalent in proprietary multimodal
training for closed-source models. As a result,
these models might struggle with devices like the
Pixel Fold, whose screen resembles a tablet. For
example, as is shown in Fig 17, a GPT-40 agent
effectively turned off alarms on Pixel 7 Pro and
Pixel 8 Pro but failed to locate all alarm buttons
on the Pixel Fold, despite their visibility on the
screen.

Performance issues also occur on smaller devices
like the Pixel 3a, despite its slight deviation from
typical phone sizes. For instance, as is shown

Table 8: Different multi-modal modes of instruction tuning. We use the same set of training data but only add a
set-of-mask index on SoM mode. Note that AITW dataset even could not provide accurate bbox, but only point. We

use CogVLM?2 as base model.

Operation Mode SR Sub-SR RRR ROR
BBOX 579 603 4795 5505
SoM 1159 1606 5737 85.58
Table 9: The impact of the ReAct and SeeAct frameworks. Notably, model performance is significantly improved in
XML+ReAct mode.
Mode Model SR Sub-SR RRR ROR
ML GPT-40 2536 3056 107.45 86.56
Gemini-1.5-Pro 18.84 2240 57.72 83.99
GPT-40 3333 3822 97.93 90.74
XMLAReAct Gemini-15-Pro 31.16 3454 92.08 90.31
GPT-40 2464 2731 9378 79.62
XMLA+SeeAct Gemini-1.5-Pro 21.01 2553 7597 89.06
SoM GPT-40 31.16 3502 8732 85.36
Gemini-1.5-Pro 16.67 1848 10595 91.52
GPT-40 31.88 39.19 10469 89.80
SoM+ReAct Gemini-1.5-Pro 1594 2138 109.81 8416
GPT-40 3043 3624 9745 88.56
SoM+SeeAct Gemini-1.5-Pro 21.01 2553 7597 89.06

(1080x2220)Pixel 3a
(1440%3120)Pixel 7 Pro
(1344%2992)Pixel 8 Pro
(2208x1840)Pixel Fold

N w
s 8
B N

N
o
X

,_.
3
X

,_.
3
X

Success Rate (%)

3
B

0%

GPT-40 GPT-4-Vision-Preview Gemini-1.5-Pro Gemini-1.0

Figure 19: The performance of five models across four
different device types is presented. Among these, the
Pixel 3a is a smaller-sized phone, the Pixel 7 Pro and
Pixel 8 Pro are of sizes comparable to commonly used
phones, and the Pixel Fold is akin to a tablet.

in Fig 18, on Pixel 7 Pro and Pixel 8 Pro, the
“Dark Theme” setting is accessible immediately,
while on Pixel 3a, it requires swiping or searching.
Evaluation setting like GPT-40 in SoM mode,
which relies on visible information, struggled
there, failing this task on Pixel 3a but succeeding
on larger devices.

F.5 Evaluation Accuracy of Query Tasks

To check the accuracy of the query task evaluation
using the LLM-judge method, we randomly sam-
pled 50 examples for manual review. We asked
the annotators to determine whether the task was

27

completed based on the screenshots, operations in
the completion record, and the finish information.
Then, we compared their judgments with our auto-
mated method. Among these sampled query tasks,
49 were accurately evaluated by the LLM-judge
method, resulting in an accuracy rate of 98%. One
judgment was somewhat controversial. The task
was " Could you tell me how much I spent on May
10, 2024?" The correct answer should have been
"11400CNY," but the finish message only provided
the price without including the unit. The LLM-
judge considered this response incorrect, although
this judgment is debatable.

Here is our LLM-judge prompt:

You need to judge the model answer as True or
False based on the Standard Answer we provided.
You should return either [True] or [False].

Question: {question}

Model Answer: {model_answer}

Standard Answer: {standard_answer}

F.6 Out-of-domain Evaluation

In this work, we are committed to providing an in-
domain training and test set. However, our data col-
lection method can easily be extended to nearly all
apps. Unfortunately, for most commonly used apps,
we cannot conduct directly reproducible tests. Nev-
ertheless, we chose the AITW web shopping subset

provided by Digirl (Bai et al., 2024) as our out-of-
domain (OOD) test set to evaluate our model’s
generalization ability. This test selected 96 tasks
from the AITW web shopping subset as the test
set, which were executed interactively in the em-
ulator and evaluated using the advanced model to
determine whether they were correctly executed.

We compared all offline methods, and our
method achieved higher test results post-SFT with
llama-3.1-8b than all previous methods, second
only to the online training method proposed by
Digirl, as shown in FIg 10.

In future work, we will further explore the pos-
sibility of extending our existing methods to a
broader domain. This includes collecting data from
more apps and adopting exploration-based rein-
forcement learning methods, among other strate-
gies.

G Introduction of Android Debug
Bridge(ADB) usage in ANDROIDLAB

Android Debug Bridge (ADB) is a powerful and
widely used command-line tool that serves as a
communication bridge between Android devices
and host machines. ADB is part of the Android
Software Development Kit (SDK) and is crucial in
enabling developers and researchers to interact with
Android devices for debugging, automation, and
data collection. By providing a unified interface,
ADB allows users to execute commands, transfer
files, manage apps, and retrieve system information,
making it an essential tool in Android development
and testing.

One of ADB’s primary strengths lies in its ver-
satility. It supports various operations, such as in-
stalling and uninstalling applications, reading sys-
tem logs, capturing screenshots, and automating
user interactions. ADB is compatible with physical
devices, emulators, and virtual machines, which
makes it a flexible solution for various experimen-
tal and development scenarios. Furthermore, its
integration with shell commands gives users gran-
ular control over device functionality, including
accessing low-level system settings and processes.

ADB is widely utilized in Android-related re-
search. For example, AndroidEnv (Toyama et al.,
2021), a simulation environment for reinforcement
learning, uses ADB for tasks such as app launch-
ing, querying activities, resetting episodes, and han-
dling task extras, serving as a foundation for works
like AITW (Rawles et al., 2023). AppAgent (Yang

28

et al., 2023b) employs ADB to define action spaces,
leveraging multimodal methods with GPT-4v for
Android device control. AndroidArena (Xing et al.,
2024) addresses challenges in Android evaluation,
using ADB for action operations and XML infor-
mation retrieval in its benchmark implementation.
AITW (Rawles et al., 2023) utilizes ADB to exe-
cute tasks in creating a dataset of over 5 million
Android screenshots. Similarly, Digirl (Bai et al.,
2024) applies offline reinforcement learning for An-
droid performance enhancement, employing ADB
for screen data retrieval and device interaction.

G.1 How Our Work Utilizes ADB

G.1.1 Data Collection

ADRB is utilized to extract XML-based user inter-
face information and capture screenshots from An-
droid devices. These capabilities enable systematic
analysis of UI layouts and visual feedback, provid-
ing a foundation for evaluating app performance
and user interaction flows.

G.1.2 Device Control

ADB commands allow precise control of Android
devices, facilitating tasks such as launching appli-
cations, simulating user interactions (e.g., clicks,
swipes, and text input), and managing input events.
These functionalities are critical for ensuring re-
producibility in experimental workflows, as they
eliminate human variability and automate complex
interaction sequences.

G.1.3 Performance Overhead

To address potential performance overhead caused
by frequent ADB command executions, we incor-
porate delays ranging from 3 to 5 seconds between
commands. Additionally, we provide adequate ini-
tialization time for each device or virtual instance
to ensure a stable environment. Empirical obser-
vations from our experiments confirm that these
measures mitigate significant performance delays
attributable to ADB, preserving the accuracy and
reliability of our results.

G.1.4 Communication Stability

To improve communication stability, we standard-
ize the use of Android Virtual Devices (AVDs) as
docker in experimental platform. This approach
eliminates common issues such as USB disconnec-
tions or unstable network connections, ensuring a
consistent and reliable testing environment.

Table 10: AITW Web Shopping Test Accuracy for Different Models

Model Method AITW Web Shopping Test Accuracy (%)
GPT-4V Set of Mark 8.3
Gemini 1.5 Pro Set of Mark 11.5
CogAgent Supervised Training 38.5
AutoUI Supervised Training 17.7
Digirl Filtered Supervised Training 45.8
AndroidLab Supervised Training (llama-3.1-8b) 48.5

G.1.5 Limitations

While ADB offers extensive control over Android
devices, it has several limitations. For instance,
ADB cannot simulate sensor data such as ac-
celerometer readings, biometric inputs like finger-
prints, or hardware-specific features such as NFC
communication. These constraints highlight the
need for alternative methods or tools to comple-
ment ADB in specialized scenarios. Despite these
limitations, ADB remains an invaluable tool for au-
tomating and standardizing Android research and
testing workflows.

H AI Assistants In Writing

During the writing of this paper, we used Al to
correct grammatical errors and unreasonable de-
scriptions.

I Details of Android Instruction Dataset

I.1 Overview of Data Construction

1. Task Derivation and Expansion: We used aca-
demic datasets (Rawles et al., 2023; Coucke et al.,
2018) and manually wrote instructions to seed task
generation. Language models were employed to
create additional tasks, which were reviewed and
added to the dataset, ensuring realistic and exe-
cutable instructions.

2. Self-Exploration Reward Model Construc-
tion: First, we utilized advanced Large Language
Models (LLMs) and Large Multimodal Models
(LMMs) to automate the construction of trajec-
tories. Using the instructions we had generated,
we tasked these models to autonomously complete
tasks in AVD, with both humans and models an-
notating whether the tasks were successfully com-
pleted. We improved upon the method described
in (Pan et al., 2024), exploring and determining an
approach to build a reward model using combined
images as input information (Cf. Appendix 1.2).
This reward model achieved an accuracy rate of
87.64

29

3. Manual Annotation: This process involved
four steps:

(1) Instruction Check, where annotators evalu-
ated the feasibility of the given tasks;

(2) Preliminary Familiarization, allowing
them to explore the app interface before performing
tasks;

(3) Task Execution, in which the annotators
executed and documented each task step;

(4) Cross-Verification, where a second anno-
tator reviewed based on direct observation of the
operation sequence, and the reward model scored
the task trace to ensure its accuracy. If either of
the two checks fails, we will ask the annotator to
re-annotate.

1.2 Details of Reward

In order to develop a reward model, a subset of
tasks was selected from the training data. The
model, which had undergone preliminary super-
vised fine-tuning, was tasked with performing mul-
tiple rounds of sampling on these tasks. Subse-
quently, the sampled trajectories were reviewed
by GPT-4, which evaluated their correctness and
provided a rationale for its decisions. These evalua-
tions formed the training data for our reward model.
We constructed 3000 samples for training and 300
samples for evaluation.

When determining the criteria by which the re-
ward model should evaluate the trajectories, three
methods were devised:

1. Using the compressed XML of the final step.
2. Using a screenshot of the final step.

3. Combining screenshots from all steps in the
trajectory into a single large image.

In Table 11, we compare the accuracy on the
test set (relative to human annotations) achieved
using different methods. The results show that the
Combined Image method achieves the best reward
model accuracy.

Table 11: The accuracy of different reward model construction methods on the human-annotated test set.

Final XML Final Image

Combined Image

base model
llama3.2-11b-vision /
gwen2vl-7b-inst /
Ilama3.1-8b-inst 77.62

72.87
81.40
/

69.77
87.64
/

We use the following template as the reward
model’s instruction:

You are an expert in evaluating the performance
of an Android navigation agent. The agent is de-
signed to help a human user navigate the device to
complete a task. Given the user’s instructions and
all screenshots of the agent executing the task, your
goal is to decide whether the agent has successfully
completed the task or not.

All screenshots of the task are stitched together
in the image. You must go through all the screen-
shots one by one.

CAREFUL! You need to pay more attention to
the image than the agent’s finish message because
the agent might hallucinate!

IMPORTANT? Format your response into two
lines as shown below:

Thoughts: <your thoughts and reasoning pro-
cess>" Status: "YES" or "NO"

User Instruction: {instruction}

Action History: {last_actions}

Bot response to the user: {response if response
else "N/A"}.

1.3 Annotation Tool

We designed an annotation tool to record opera-
tion trajectories and page information (XML) more
accurately and efficiently.

Acquisition of Page Information: Android Debug
Bridge (ADB) is currently the most widely used
tool for obtaining page information (Yang et al.,
2023b; Rawles et al., 2024). ADB is a versatile
command-line utility that retrieves the XML data
of the current page. However, when dealing with a
diverse range of mobile applications, ADB some-
times fails to acquire the XML for particular pages.
Specifically, ADB waits for all Ul components on
the page to become idle before retrieving compo-
nent information. ADB stops the XML acquisition
if this process exceeds a predefined time limit. This
issue is particularly evident on mobile pages with
dynamic components, such as playback bars and
animations in audio players, where continuously
active elements prevent ADB from obtaining the

30

XML. To address this, we reimplemented the XML
acquisition functionality using the Android Acces-
sibility Service, allowing annotators to determine
the appropriate timing for retrieving page XML.
Recording Operation Trajectories: We mainly
need to record three types of user actions: clicks,
swipes, and text input. For click actions and swipe
actions, annotators complete the actions directly
on the phone, while we use ADB commands to
capture screen events. We determine whether the
action was a click or swipe based on the press,
release positions, and duration of these events. We
utilize the ADB keyboard for text input to complete
the entire input in a single operation, minimizing
the number of annotations required. Before each
action, the user must first use the annotation tool
to record the current page information, ensuring
that the recorded page data matches the context
observed during human interaction.

I.4 Details of Human Annotation

In the process of constructing our data, we utilize
crowdsourced annotations. To ensure that the pri-
vacy information of the annotators is not disclosed,
we adopt the following measures:

1. Before the annotation begins, we explicitly
inform the annotators that the annotated data
will be used to fine-tune models, and part of
the data will be open-sourced. Annotators
who disagree may opt out of the annotation
process.

During the annotation process, all annotated
data are first stored locally by the annotators.
If an annotator believes that specific data in-
volves privacy disclosure, they may choose
not to use it or skip the task.

. After the annotation is completed, we mask
and replace sensitive information such as user-
names and chat logs before using the data for
training. Additionally, such data will not be
open-sourced.

All annotators sign formal contracts and are com-
pensated according to reasonable standards.

1.5 Instructions Given To Annotators

We provide the instructions given to the annota-
tors below. Note that our targets are expanded by
hand-written instructions or academic datasets with
available licenses.

Task Overview

For each labeling task, a target task will be given,
such as: Navigate to XXX using Amap (Gaode
Map).

The annotator must complete the task using
their phone and follow the labeling process de-
scribed below to ensure it is accurately executed
and recorded.

To perform this annotation task, you must install
ADB (Android Device Bridge) on your computer
to control the phone and install the corresponding
APK. Since the task involves collecting low-level
information, we will require the phone to enable
multiple permissions. Still, we guarantee that the
information will not be transmitted in real-time
during collection. The transmitted information in-
cludes the operation details, screenshots before and
after each operation, and the corresponding XML
files (only containing information from the current
page). You can review and decide whether to keep
the annotation data. If the annotation process in-
volves screenshots or other information that you do
not want to be used for training, you can:

1. Skip the screenshot or specify that parts of the

screenshot be hidden.
Skip the entire target task.

Skip all tasks involving the currently anno-
tated app.

Your data will not be used for purposes other
than training the model.

After completing the annotation, you must up-
load all the tasks you were responsible for in one go.
We have designed a plugin to store all the content
in a unified folder.

A complete annotation consists of multiple oper-
ations is called a sequence (trace). Each single-step
operation is recorded once, and the definition of a
single-step operation is detailed in the annotation
documentation.

Please follow the steps below for plugin usage
to install the annotation plugin.

31

Plugin Usage Instructions

Installing ADB and Connecting Phone to Com-
puter

For your Android phone, you need to perform
the following settings:

1. Connect the phone to the computer via a USB
cable.

2. Ensure that the Developer Options and USB
Debugging Mode are enabled on the Android
phone:

* Go to Settings - Developer Options - An-
droid Debugging. Check the box for Al-
low USB debugging. 1f unavailable, go
to Settings - System Updates - Developer
Options - USB Debugging.

* If you can’t find the developer options,
go to Settings - About Phone and tap the
Build Number seven times.

e [f these methods don’t work, search for
how to enable developer options and
USB debugging specific to your phone
model.

* If you still encounter issues, seek help in
the group chat.

3. Reconnect the phone to the computer, and
on the phone, click Allow file transfer/USB
debugging/higher permissions. Also, allow
the connection on the computer (if prompted).

. After entering Developer Mode, turn off the
following animations under Developer Op-
tions to increase the success rate of retrieving
XML information via ADB commands:

e Window Animation Scale.
e Transition Animation Scale.
e Animator Duration Scale.

Follow the steps above until the following result
is displayed using the command adb devices:

adb devices

List of devices attached

1a0d5d59 device

The number before device is randomly generated.
You should see only one device. If there is more
than one, try disconnecting other devices or closing
virtual machines.

Installing ADB Keyboard

Download the ADB Keyboard APK.

Run: adb install <APK full path>

Enable permissions on the phone and agree to
the installation.

Once the installation is complete, set ADB Key-
board as the default input method in the phone
settings. You can try the following two lines of
code:

ime enable com.android.adbkeyboard/.AdbIME
ime set com.android.adbkeyboard/.AdbIME

If successful, when you open any text box, you’ll
see the message ADB Keyboard ON at the bottom
of the screen. If unsuccessful, manually change the
input method in the settings.

Running Test Script

1. Open the command line, run adb devices, and
ensure correct output.

2. Run the following commands in adb shell:

input keyevent KEYCODE_BACK
input keyevent KEYCODE_HOME
input keyevent KEYCODE_ENTER

If there’s no error or response, it’s fine. If you
see Command execution failed, ensure you're
using the correct method sequence, not Press
xxx commands like adb shell input keyevent
KEYCODE_A.

3. Open any text input field and run the following
commands in adb shell:

input keyevent KEYCODE_A

non

The setup succeeds if the letter "a" appears on

the screen.

Annotation Plugin Usage Instructions

You can perform the following operations on
the phone. After completing any one of these op-
erations, do not proceed until the command line
shows Operation completed. If the phone has not
responded yet (such as loading a new page), wait
until the page is fully loaded before clicking the
next Begin.

1. Click or Swipe: Perform this directly on the
phone. Click slowly, holding for 0.2 to 0.5
seconds.

32

2. Text Input: If the ADB Keyboard was suc-
cessfully installed, you can input text. Be-
fore entering text, click on the text box in the
previous step and ensure that the ADB Key-
board ON symbol appears at the bottom of the
screen. Click the Type button on the GUI inter-
face, enter the desired text in the computer’s
input box (Chinese/English), then click OK.
You will observe the input on the phone, and
the command line will display Simulating typ-
ing xxx.

3. Press xxx: Three preset buttons are defined:
Press Home (Home key), Press Back (Back
key), and Press Enter (keyboard Enter key).
The command line will show Simulating press
XXX.

4. Finish Task: If you believe the task is com-
plete, click the Finish button on the GUI. If
the task requires an answer, fill in the response
in the popup text box. If not, click OK.

After finishing a task, you can close the com-
mand line and GUI windows. If there are no issues
with the annotation, you can return to Step 2 to
start the next annotation. Otherwise, follow these
steps:

1. The command line will output the Save Path,
which contains all saved information for the
annotation. You may delete the folder if you
believe an error occurred or sensitive informa-
tion was recorded.

2. Each task has a prefix consisting of the first 32
characters of the task name. Ensure that the
final submission includes one and only one
instance of each non-skipped task.

3. If certain operations were recorded incorrectly
without affecting the phone’s state, you may
delete those steps. The step sequence is stored
in Save Path/traces/trace.jsonl. Record the
steps you need to delete.

4. If a screen contains sensitive information that
can be removed while still being used for train-
ing, record the steps and describe the sensitive
information in detail.

Summary of Key Points

1. Always use adb devices before starting the
annotation to ensure a successful connection.

Table 12: Actions Counts

Action Count
Tap 58383
Type 13533
finish 10586
Swipe 6600
Launch 5220
Back 52

Reopen the app_for_xxx/dist/label(.exe) for
each annotation instruction.

The storage path must not contain Chinese
characters.

Click Begin before each operation and wait for
the message Begin your operation... to appear
before proceeding. If you proceed without
waiting, the operation will be invalid. If the
state cannot be recovered, you must restart the
task. Make sure to click Begin before finishing
as well.

After each operation is completed, wait until
the corresponding success message appears
in the command line and you see the output
Operation completed before clicking Begin
for the next action. Failure to follow these
two key rules may result in invalid data. It’s
better to proceed slowly and carefully than
rush and make mistakes.

1.6 Detailed Statistics of Android Instruct
dataset

We provide statistics of the Android Instruct dataset
in Fig 20.

1.7 Actions

Android Instruction dataset includes a wide variety
of user actions, with the frequency of each type
of action carefully recorded. These actions are
summarized in Table 12.

These statistics show the diverse nature of user
interactions we captured in our data. They provide
essential insights for understanding and modeling
user behaviors in detail.

L8 Apps

Table 13 presents the number of traces and the aver-
age trace length for each app in Android Instruction
dataset. This detailed breakdown provides valuable

33

insights into how users interact with different apps,
which is important for improving model perfor-
mance.

These statistics show the volume and complexity
of interaction data across various apps. This infor-
mation is critical for helping models understand
how users interact with these apps.

J Discussion about ANDROIDLAB’s
different from Web Agents

Android agents differ from general web agents,
such as those developed within frameworks like
WebArena, in several key aspects. These distinc-
tions arise from differences in their environments,
action spaces, and reproducibility challenges.

First, the environments in which these agents op-
erate are inherently different. Android agents pri-
marily rely on XML-based information to interact
with mobile applications, reflecting the structural
characteristics of mobile interfaces. In contrast,
web agents depend predominantly on HTML/DOM
data and often incorporate screen screenshots as
part of their observation space, leveraging the struc-
tured nature of web environments.

Second, the action space of Android agents is
specifically tailored to mobile interactions. These
actions include tapping, swiping, typing, and press-
ing hardware buttons such as Home and Back, all
miming typical user behavior on mobile devices.
On the other hand, web agents interact with web
elements through actions like clicking, keypress-
ing, and navigating URLSs, with their interactions
rooted in the manipulation of DOM trees and other
web-based structures.

Finally, reproducibility poses unique challenges
for each type of agent. For Android agents, dy-
namic environments and network dependencies of-
ten complicate reproducibility. To address these
issues, we employ preloaded virtual devices and of-
fline setups, ensuring consistent experimental con-
ditions. In the case of web agents, frameworks like
WebArena mitigate reproducibility challenges by
using self-deployed websites, thereby reducing re-
liance on external and potentially inconsistent web
environments.

125 Create
B
100 K 600
monthly
a " rem\n(;gr 3
s T e @ 400
S <} Blugc%mst. g_
g so = W g
=
= i 200
25 device
op8
0 book 0
0 5 10 15 20 25 30 0 200 400 600 5 10 15 20 25
#Steps of Task Count Instruction Length (words)
(a) Step Distribution Across Tasks (b) Top 20 Words in Instructions. (c) Instruction Length Distribution.
clock:
clock{ 4000 !
settings
contacts{
N contacts
plmusmplayer{ >3000
o o maps.me
a maps.me | o B pimusicplayer
< cantook 22000
R o cantook
bluecolns{ = calendar
calendar| 1000)
X bluecoins
settings | . . .
o S o S Q 5
0 500 1000 1500 0 Tap finish Type Swipe Launch Back o 2 o - A0 b
Frequency Action Type Average #Steps of Task
(d) APP Distribution. (e) Actions Distribution. (f) Average Task Length per App

Figure 20: Statistics for Android Instruct dataset. We collect 726 traces and 6208 steps across Apps in ANDROIDLAB
benchmark.

Table 13: Top 10 apps ranked by trace count, along with their Average Trace Length.

App Trace Count Average Trace Length
chrome 3698 9.50
twitter 1388 7.61
google maps 633 7.85
gmail 399 9.37
quora 334 8.57
booking.com 334 12.43
settings 295 6.81
temu 293 8.69
tasks 252 7.32

34

