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Abstract
The transformer architecture has catalyzed revo-
lutionary advances in language modeling. How-
ever, recent architectural recipes, such as state-
space models, have bridged the performance gap.
Motivated by this, we examine the benefits of
Convolution-Augmented Transformer (CAT) for
recall, copying, and length generalization tasks.
CAT incorporates convolutional filters in the
K/Q/V embeddings of an attention layer. Through
CAT, we show that the locality of the convolution
synergizes with the global view of the attention.
Unlike comparable architectures, such as Mamba
or transformer, CAT can provably solve the as-
sociative recall (AR) and copying tasks using a
single layer while also enjoying guaranteed length
generalization. We also establish computational
tradeoffs between convolution and attention by
characterizing how convolution can mitigate the
need for full attention by summarizing the context
window and creating salient summary tokens to
attend. Evaluations on real datasets corroborate
our findings and demonstrate that CAT and its
variations indeed enhance the language modeling
performance.

1. Introduction
The attention mechanism, central to the transformer architec-
ture (Vaswani et al., 2017), facilitates comprehensive token
interactions across the context window in contemporary
large language models. Nevertheless, devoid of positional
encoding (PE), attention mechanism lacks inherent locality,
rendering the self-attention layer permutation-equivariant
with no bias towards proximal versus distant token inter-
actions. The convolution operator, traditionally success-
ful in vision applications, aggregates local features based
on relative positions and recently has been adopted in lan-
guage modeling (Dauphin et al., 2017), including innovative
frameworks such as state-space models (Gu et al., 2021)
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Figure 1. Evaluations on synthetic and real data. The models are
trained on 2,048 and 128 context length (vertical dashed lines)
and tested on varying context lengths respectively. Left figure:
Evaluations on language modeling where we train CAT models
by equipping Pythia with short convolutions (window size 21).
Convolution allows the model to pretrain without positional encod-
ing and further improves perplexity when combined with RoPE.
Importantly, it also generalizes to longer context lengths more
robustly with or without RoPE. For length generalization, we used
YaRN (Peng et al., 2023) which incorporates position interpola-
tion (Chen et al., 2023) (for RoPE only) and temperature scaling
(see Sec. D.2). Right figure: We conduct synthetic experiments
on the Associative Recall task and contrast 1-layer CAT with 2-
layers of alternative architectures. The embedding dimension is
128. We find that CAT is the only model that solves AR with length
generalization in line with our theory (also see Fig. 4).

and linear RNNs (Orvieto et al., 2023) designed for efficient
long-range sequence modeling. These models, however,
traditionally struggle with global context processing, a limi-
tation that spurred the development of hybrid architectures
that synergistically integrate both convolutional and atten-
tional dynamics (De et al., 2024; Arora et al., 2024; Park
et al., 2024; Arora et al., 2023).

In this work, we explore the synergy between attention and
convolution which reveals new theoretical principles that
inform hybrid architecture design. Specifically, we intro-
duce an intuitive hybrid architecture called Convolution-
Augmented Transformer (CAT)1. CAT incorporates convolu-
tional filters to the K/Q/V embeddings of the attention layer
as depicted on the left hand side of Figure 2. We explore
the capabilities of the CAT layer through mechanistic tasks
including associative recall (AR), selective copying (Gu &
Dao, 2023; Jing et al., 2019), and length generalization. For

1The transformer architecture consists of attention and MLP
layers. For theoretical analysis and synthetic experiments, we will
entirely focus on the Convolution Augmented Attention layer de-
scribed in Fig. 2. For this reason, we will use the CAT acronym to
refer to both Convolution-Augmented Transformer and Attention.
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Figure 2. Left: Illustration of the Convolution-Augmentated Attention (CAT) block, where separate filters are applied to the K/Q/V
embeddings, before self-attention (see Sec. 2.1 for details). Right: Performance of 1-layer CAT models trained on multi-query AR
(MQAR, see Sec. C.3 for details) tasks with model embedding dimension 64 and varying sequence length. The LinCAT replaces the
standard attention in CAT with linear attention. We observe that the CAT model outperforms the baseline models across all sequence
lengths with only 1 layer compared to 2 layers baselines.

instance, AR is a fundamental task motivated from the asso-
ciative memory in cognitive science (Ba et al., 2016). This
task underpins critical applications such as bigram retrieval,
where a specific sequence, such as ‘Rings’ following ‘The
Lord of the’, must be correctly retrieved. Such tasks are
known to be crucial for LLM functionality and mechanistic
understanding (Olsson et al., 2022; Fu et al., 2022; Arora
et al., 2024; Nichani et al., 2024; Poli et al., 2024).

We theoretically and empirically show that, within the CAT
layer, attention and convolution exhibit strong synergy and
complementarity to solve these mechanistic tasks while
enjoying length generalization benefits. As a concrete exam-
ple, the left side of Figure 1 displays the AR performance for
various test-time sequence lengths. As the sequence length
grows, we observe two distinct failure modes: Mamba’s
accuracy degrades due to its finite state dimension whereas
attention-only models degrade due to the length extension
bottlenecks of PE. In contrast, CAT maintains perfect accu-
racy and length generalization because attention and convo-
lution patch these failure modes in a complementary fashion.
Overall, we make the following contributions:

•We propose the convolution-augmented attention layer and
prove that it can solve the N-gram AR (NAR) and Selective
Copying tasks using a single layer (Theorems 1 and 4).
Comparison to alternatives (Mamba, Based, attention, linear
attention) reveals that CAT can uniquely solve NAR with
length generalization.

• To explain this, we establish a length generalization result
on the loss landscape (Theorem 2): Under mild assumptions,
all CAT models that solve AR for a particular context length
provably generalize to all other context lengths.

•We evaluate CAT on real data and demonstrate that even
CAT noticeably aids language modeling: In line with theory,
convolution enables the model to train stably without PE
and achieve length generalization. (see Sec. D.2, Table 2).

Additionally, we present the detailed discussion on related
works in Sec. A.

2. Problem Setup
2.1. Convolutional-Augmented Attention

Notation. Let us first introduce helpful notation. Id is the
identity matrix of size d. Di denotes the causal delay filter
that shifts a signal x i-timesteps forward i.e. (x∗ Di) j = x j−i.
For an integer n ≥ 1, we denote the set {0, . . . , n − 1} by [n].
We use lower-case and upper-case bold letters (e.g., m,M)
to represent vectors and matrices, respectively. mi denotes
the i-th entry of a vector m.

Below, we introduce the Convolution-Augmented Attention
layer, which incorporates learnable filters into the K/Q/V
embeddings. Let X = [x0 . . . xL−1]⊤ ∈ RL×d denote the
input to the layer containing L tokens with embedding di-
mension d. Let F ∈ RW denote the convolutional filter
with temporal length W. We examine two convolution types
which handle multi-head attention in different ways:

1D per-head convolution: For each attention head, we have
a distinct 1D filter F ∈ RW . F is applied temporally to each
of the d embedding dimensions. This results in F ∗ X where
(F ∗ X)i =

∑
j∈[W] F jxi− j, with F j being the j-th entry of F.

Multi-head convolution: Suppose we have H sequences
X̄ = [X1, . . . , XH] ∈ RL×d×H each corresponding to one of
the H attention heads. We use a filter F̄ = [F1, . . . , FH] ∈
RW×H×H . Each Fi is convolved with X̄ to obtain the i-th
head’s output of size L × d.
Definition 1 (Convolution-Augmented Attention (CAT)). A
CAT layer incorporates learnable convolutional filters to
the key/query/value embeddings. For a single-head CAT, the
key embeddings are given by K = (X ∗ Fk)Wk with weights
Fk,Wk (same for query and value embeddings).

2.2. Mechanistic Tasks for Language Modeling
In this section, we will explore the efficacy of a single CAT
layer in solving tasks such as AR and Selective Copying,
inspired by recent works in sequence modeling literature
(Gu & Dao, 2023; Arora et al., 2023). To this end, let us
introduce and examine the N-gram AR task, which is a
generalization of the AR task where the model needs to
identify the copy of the last N tokens in the context window
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and return the associated value.

Definition 2 (Associative Recall Problem). Consider a dis-
crete input sequence X = [x0, x1, . . . , xL−1], with tokens
drawn from a vocabularyV of size |V|. The AR problem is
defined as follows: Suppose that there is a unique index i
(0 ≤ i < L − 1) such that xi = xL−1. A model f successfully
solves the AR problem if f (X) = xi+1 for all inputs X. In this
problem, xi becomes the key, xi+1 is the associated value,
and the last token xL−1 is the query.

Definition 3 (N-gram AR Problem). Consider a discrete in-
put sequence X = [x0, x1, . . . , xL−1], with tokens drawn from
a vocabularyV of size |V|. Let X{i, j} = [xi, xi+1, . . . , x j] de-
note the subsequence of X from index i to j. The N-gram as-
sociative recall (NAR) problem is formulated as follows: for
X{L−N,L−1} (which are the last N tokens), there exists a unique
index i (0 ≤ i < L − N) such that X{i,i+N−1} = X{L−N,L−1}. A
model f solves NAR if f (X) = xi+N for all inputs X.

Selective copying (SC) task is originally introduced by (Jing
et al., 2019) and it is utilized by the recent Mamba (Gu &
Dao, 2023) and Griffin (De et al., 2024) papers to assess
their model’s approximation capabilities. In SC, given an
input sequence X containing noisy tokens, the model should
denoise X and return the signal tokens within.

Definition 4 (Selective Copying). Consider a vocabulary
V composed of a set of signal tokens S, a set of noise
tokens N , and special token ⊥ i.e.V = S ∪ N ∪ {⊥}. Let
X be a sequence whose tokens are drawn from S ∪N and
let XS be the sub-sequence of X that includes all signal
tokens in order. f solves selective copying over S if it
autoregressively outputs XS following the prompt [X ⊥] for
all inputs X. f solves unique selective copying if it outputs
all unique tokens of XS in order for all X.
Table 1 provides examples of the synthetic tasks we consider
in this work. Specifically, we conduct AR and NAR experi-
ment on their multi-queiry variants to evaluate the model’s
ability to recall multiple queries (detailed in Sec. C.3).

3. Provable Benefits of
Convolution-Augmented Attention

Before diving into the theoretical results, we make a few
clarifying remarks. We assume that all token embeddings
have unit ℓ2 norm. Secondly, a CAT layer maps each query
to a vector-valued output f (X) ∈ Rd. To sample the discrete
output token, we will simply return the nearest neighbor
in the vocabulary of token embeddings. For associative
recall problems, we will use a single head attention layer
with weights Wq,Wk are chosen as suitably scaled identity
matrices. With this choice, attention essentially implements
a nearest neighbor retrieval. It suffices for the theory thanks
to the simple nature of the AR problem where we wish to
identify the replica of a query within the context window.
In general, we can easily contrive natural generalizations

of AR and Selective Copy problems that necessitate a more
sophisticated attention mechanism (see (Poli et al., 2024)).
One such generalization is, given query q, we wish to re-
trieve a general key k (possibly k , q) and return the value
associated with k.

N-gram AR. Our first result shows that a single CAT layer
can solve the NAR problem under fairly general conditions.

Theorem 1 (Solving NAR). Let F ∈ RN be a causal 1-D
convolutional filter of length N and norm(X) normalize the
rows of a matrix to unit ℓ2 norm. Consider a single CAT
layer f (X) = (XvWv)⊤S(XkWkW⊤

q q) where q is the final
token of Xq and Xq = norm(X ∗ Fq) ∈ RL×d (same for Xk,).
Set Fq = F and Wk =Wq =

√
cId. Use either

• Value delay: Fk = Fq, Fv = D−1 and Wv = 2Id or,

• Key delay: Fk = D1 ∗ Fq, Fv = D0 and Wv = Id

Let ε > 0 be the minimum ℓ2 distance between two distinct
tokens embeddings. For almost all choices of F, there is
a scalar c0 > 0 depending on F such that, setting c =
c0 log(4L/ε), CAT layer solves the NAR problem of Def. 3
for all input sequences up to length L.
Corollary 1 (1-D CAT solves AR). Consider a CAT layer
employing 1-D convolution on key embeddings with the
delay filter Fk = D1 = [0 1 0 . . . 0] and Fq = Fv = D0.
This model solves AR.

Length generalization. The next theorem shows that global
minima of CAT provably exhibit length generalization. That
is, even if we train CAT for a fixed context length, it will
work well for all other context lengths. This result is distinct
from Theorem 1 because it establishes length generaliza-
tion for all CAT models that approximately solve the AR
problem for a context length, rather than constructing one
such solution.

Theorem 2 (Length generalization). Let Fv ∈ R
2W+1
+ be

a convolutional filter from time t = −W to t = W where
W ≤ L − 1. Consider a CAT layer of the form f (X) =
X⊤v S(XWxL−1) where X ∈ RL×d, Xv = X ∗ Fv ∈ R

L×d and
xL−1 is the last token of X and W = WkW⊤

q . Suppose that
token embeddings have unit norm. Consider any model
f = (W, Fv) that can solve the AR problem defined in Def. 2
up to ε-accuracy on all sequences of length L ≥ 3. That is,
for all (X, y) where query xL−1 repeats twice and y being the
associated value token, we have ∥y − f (X)∥ℓ2 ≤ ε. Define
the minimum embedding distance within vocabularyV as
∆ = (1−maxa,b∈V(a⊤b)2)1/2 and assume that ∆ > 0. There
are absolute constants R0,R > 0 such that, if ε0 := ε/∆ ≤
R0/L, we have that

• The filter obeys ∥F − D−1∥ℓ1 ≤ Lε0, which is in line with
Theorem 1.

• Let X be an input sequence of length L′ following Def. 2.
Let s⋆(X) ∈ RL′ be the “golden attention map” with en-
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tries equal to 1/2 at the positions of the query xL′−1 and
0 otherwise. For all such X, the attention map of f obeys
∥S(XWxL′−1) − s⋆(X)∥ℓ1 ≤ L′ε0.

• For all X of length L′ following Def. 2, we have that
∥y − f (X)∥ℓ2 ≤ RL′ε0.

Selective Copy. Our next result shows that, 1-layer CAT
model can solve the unique selective copy problem. That
is, it can provably generate all signal tokens in the correct
order as long as the input contains each distinct signal token
at most once. Corroborating this, our experiments demon-
strate that 1-layer CAT performs on par with or better than
alternative architectural choices. The proof is deferred to
Section E.4.

Theorem 3 (Selective Copy). Consider the setting of Def. 4.
There is a 1-layer CAT using exponential-decay query-
convolution (i.e. Fq,i = ρ

i) and d = |S| + 3 dimensional
token embeddings such that, it outputs all signal tokens in
order for all inputs where signal tokens appear uniquely.

Additionally, we show that long convolutions bring the bene-
fit of context summarization and mitigate need for attention:
We describe Landmark CAT (following Landmark Atten-
tion (Mohtashami & Jaggi, 2023)) which first attends on
landmark tokens to locate the salient block within the subse-
quence and then applies full attention within that block. For
the AR task, we establish fundamental theoretical tradeoffs
between the embedding dimension (amount of memory),
convolution/block length, and the sparsity of attention (re-
call capability), which shows that long convolutions can
provably enable the success of sparse attention (Sec.B).

4. Experiments
In this section, we conduct synthetic experiments on N-gram
AR and length generalization to evaluate the capability of
CAT. We utilize convolution kernels with a width of W = 3
and explore model embedding sizes of d = 32, 64, and 128
across MQAR and MQNAR problems to assess the impact
of model dimension on performance. In addition to the
standard attention mechanism, we introduce a perturbation
strategy by implementing linear attention on the convoluted
Q, K, and V embeddings, referred to as LinCAT. We adhere
strictly to the parameters set by (Arora et al., 2023). More
detailed information on the training setup can be found in
Section C. Additionally, Sec. 2 provides 370M-parameter
models pretrain experiments on SlimPajama (Soboleva et al.,
2023) with 15B tokens, which demonstrate the effectiveness
of CAT in real-world language modeling tasks.

As illustrated in Fig. 3, the CAT model consistently out-
performs all baseline models across a range of sequence
lengths and model dimensions. Notably, both Mamba and
Based models exhibit improved performance as the model
dimension increases, particularly with shorter sequence
lengths. This improvement is due to the memory-recall
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Figure 3. Evaluation of models on MQAR and MQNAR tasks
with varying model dimensions and sequence lengths. Model
dimensions are 32, 64, 128 for each column of the figures, from
left to right. Top: Models trained on the MQAR setup. Bottom:
Models trained on the MQNAR setup. Note that CAT models
employ a single-layer architecture, whereas all other models utilize
two layers. Refer to Section C for detailed setup descriptions.
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Figure 4. Evaluation of models on length generalization. Model
dimensions are 32, 64, 128 for each column of the figures, from
left to right. The models are trained with sequence length 128
(vertical red dashed lines) and tested on varying test length. Top:
Models trained on the MQAR. Bottom: Models trained on the
MQNAR. Note that CAT models establish length generalization
aligned with Theorem 2 .

tradeoff (Arora et al., 2024) where models store and recall
sequence information more as their dimensionalities expand.
In contrast, thanks to the short convolution, the single-layer
CAT model maintains 100% accuracy across all experi-
mental settings, aligned with our theorem 1. Interestingly,
aside from CAT, Mamba is the only model demonstrating
the potential to effectively address the MQAR task within
a single-layer network architecture. We will discuss this
observation in further detail in Section D.

Evaluation of Length Generalization. In Fig. 4, we train
models with 128 sequence length (the vertical red dashed
line) and evaluate on varying sequence lengths from 32 to
1,024. Fig. 4 shows the results of length generalization,
which is aligned with our Theorem 2: CAT models maintain
100% accuracy while all other models exhibit a sharp de-
cline in performance as the sequence length increases. This
decrease is due to the increased demand of recall which
requires the model to store and retrieve more information
as the sequence length grows. The CAT model, however, is
able to maintain its performance by leveraging the convolu-
tional filters to shift the context and retrieve the information.
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5. Conclusion and Limitations
In this work, we have examined the synergy between
the attention and convolution mechanisms by introducing
Convolution-Augmented Attention where K/Q/V embed-
dings are equipped with convolution. We have shown that
CAT enjoys strong theoretical guarantees when it comes to
AR and copying tasks and also reveal insightful tradeoffs
between attention and convolution. Importantly, real experi-
ments confirm the benefit of CAT both in accuracy and in
length generalization. Ultimately, we believe this work as
well as the related recent literature (Gu & Dao, 2023; Arora
et al., 2024; Poli et al., 2024) contributes to stronger design
principles for the next generation of (hybrid) architectures.

Limitations and future work. This work has a few short-
comings. We have only focused on pretraining. However,
Fig. 1 shows the potential of CAT in finetuning as a future
direction. While K/Q convolution helps in theoretical con-
structions for N-gram AR, in real experiments, they don’t
provide noticeable performance benefits. We suspect that
K/Q convolution might be diluting the attention scores and
incorporating normalization or better parameterization can
address this issue. An important parameterization to explore
is replacing the short convolutions within CAT with SSMs.
Finally, Section B introduced Landmark CAT as a sparse
attention strategy. It would be interesting to evaluate this
proposal on real language modeling tasks.
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A. Related Works
Convolution-like sequence models. Gated-convolutions (Dauphin et al., 2017) and state-space models, such as S4 (Gu et al.,
2021), utilize long convolutions to reduce the computational demands associated with attention mechanisms. Performance
enhancements have also been achieved through novel filter parametrization techniques (Gupta et al., 2022; Gu et al., 2022).
Despite these innovations, challenges in Multi-query Associative Recall (MQAR) prompted the development of input-
dependent convolution techniques. Notable developments in this area include, Liquid S4 (Hasani et al., 2022), Mamba (Gu &
Dao, 2023; Dao & Gu, 2024) and (Yang et al., 2019; Kosma et al., 2023) where convolution filters are directly parametrized
by inputs and include correlation terms between input tokens to enhance state mixing. (Li et al., 2022) empirically explores
the reason underlying the success of convolutional models.

Expressivity, recall, length generalization. Recent works (Arora et al., 2024; Jelassi et al., 2024; Arora et al., 2023;
Fu et al., 2022) explore the limitations of purely convolutional models, including Mamba, and demonstrate that, these
models inherently lack the capability to solve recall problems unless they have large state dimensions (i.e. memory). (Jelassi
et al., 2024) also provides a construction for 2-layer self-attention to solve AR with length generalization. Interestingly,
this construction uses Hard Alibi, which is a variation of Alibi PE (Press et al., 2021) that utilize explicit linear biases in
attention. Their Hard Alibi restricts the attention layer to focus on and aggregate only the recent N tokens. In this regard,
this construction is related to our short convolution. On the other hand, while this work is constructive, we also prove that
CAT has good loss landscape and all CAT solutions to AR provably length generalize. It has also been observed that PE can
hurt length generalization and reasoning. In fact, (Kazemnejad et al., 2024) has found NoPE to be viable. On the other hand,
in our real data evaluations, we have found pure NoPE to be highly brittle as it either fails to converge or optimization is
unreasonably slow. Our AR experiments also corroborate that NoPE by itself is indeed not a viable strategy.

Hybrid architectures. There is a growing interest in integrating different language modeling primitives to obtain best-
of-all-world designs. To this end, mechanistic tasks such as AR, copying, induction head, and in-context learning have
been important to demystify the functionalities of language models (Olsson et al., 2022; Park et al., 2024) and have been
utilized to guide architecture design (Arora et al., 2023; Poli et al., 2024). Gating mechanisms have been integrated within
convolutional frameworks to enhance the model’s selectivity. Models employing gating functions, have shown substantial
improvements in AR tasks (Fu et al., 2022; Poli et al., 2023). Additionally, recent innovations on hybrid architecture, such as
BaseConv (Arora et al., 2023; 2024), GLA (Yang et al., 2023), MambaFormer (Park et al., 2024), and (Ma et al., 2024; 2022;
Ren et al., 2024) have provided more effective solutions to AR tasks. This comprehensive foundation of hybrid architectures
informs our exploration into the convolution-attention synergy.

B. Benefits of Long Convolution for Enabling Sparse-Attention
So far we have discussed the benefits of short convolutions to equip transformer with local context to solve AR and its
variations. During this discussion, we have used dense attention which has exact recall capabilities thanks to its ability to
scan the full context window. In this section, we ask the following: Can convolution also help mitigate the need for dense
attention? Intuitively, we should be able to tradeoff the accuracy of attention computation with computation. Here, we
describe how long convolutions can enable this by effectively summarizing the context window so that we can identify
where to attend in (extremely) long-context settings.

Specifically, we will prove that, long convolutions (such as SSMs) allow us to utilize sparse attention while retaining
(high-probability) recall guarantees. These findings complement the recent research that establish the recall limitations of
purely recurrent models (Arora et al., 2024; 2023). Our theory will also shed light on the mechanics of landmark attention
(Mohtashami & Jaggi, 2023). While (Mohtashami & Jaggi, 2023) does not rely on convolution, we will describe how
convolution can generate landmark tokens by summarizing/hashing the chunks of the context window, and attention can
efficiently solve recall by attending only to these summary tokens.

Landmark Convolutional Attention (LCAT): Figure 5 describes the LCAT block that apply on input sequence X. Let
Fk ∈ R

L be the convolutional filter on keys, B be the sampling rate, and L̄ = ⌈L/B⌉. Setting K = (X ∗ Fk)Wk ∈ R
L×d, we

obtain Kss ∈ RL̄×d by sampling K at every B tokens. Additionally, define Xi to be the ith block of X of size B spanning
tokens (i − 1)B + 1 to iB. Let V = (Fv ∗ X)Wv denote the value embeddings. For a query qi for i ∈ [L], the LCAT layer
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outputs:

(1) Hard Attention: b = arg max
j,⌈i/B⌉

Kssqi (LCAT)

(2) Local Attention: y = S(Klocqi)Vl where Kloc = concat(K⌈i/B⌉, Kb).

Above, hard attention phase aims to retrieve the correct block associated to the query. This block is merged with the local
block ⌈i/B⌉ that contains the query itself similar to sliding window attention. We then apply dense local attention on the
concatenated blocks Kloc.

𝑋 = {𝑥!, 𝑥", 𝑥#, 𝑥$, 𝑥%, … , 𝑥&}

𝑊'

𝐾 = (𝑋 ∗ 𝐹')𝑊'

𝐹'
Convolution
Augmentation

Landmark
Attention

𝐾 = {𝑘!, 𝑘", 𝑘#, 𝑘$, 𝑘%, … , 𝑘&}

Sample Rate B=2

Hard Attention

𝐾!! = {𝑘", 𝑘#, 𝑘$, 𝑘%}

𝑞&

0.1 0.5 1.2 0.2

𝑏 = argmax𝐾!!𝑞&

Sample Rate B=2
Retrieved Block b=2

Local Attention

𝑦& = Softmax 𝑲'()𝑞& 𝑽

Retrieved 
block

𝐾'() = {𝑘*, 𝑘$, 𝑘+}

Long Convolution

Figure 5. Illustration of the Landmark CAT. We first apply long convolution
on the input sequence and subsample it to obtain landmark tokens represent-
ing individual blocks. Hard Attention computes the similarity between the
query and landmarks to retrieve the most relevant block. Local Attention
concatenates the retrieved block with the final block containing the query
and computes the output token.

Computational complexity of LCAT: For a fixed
query, (LCAT) requires O(d(L/B + B)) computa-
tions. This is in contrast to O(dL) computations of
vanilla attention. Choosing a suitable block size
(e.g. B = O(

√
L)), this model should save up to

×
√

L in computational savings. Importantly, our
theory will highlight the interplay between the em-
bedding dimension d and the allowable acceleration
by characterizing the exact performance of (LCAT)
under a random context model.

Definition 5 (Random Context Model). The query
token xL occurs twice in the sequence and has unit
ℓ2 norm. All other tokens of X are IID and drawn
with IID N(0, σ2/d) entries.

The following proposition shows that, (LCAT) will
solve AR if and only if d

2B log L̄ ≥ 1 + o(1).

Proposition 1. Recall L̄ = ⌈L/B⌉ is the number of
blocks. Let Wv = 2Id, Fv = D−1, and Wk = Wq =√

c · Id with c→ ∞. Set key convolution as Fk,i = 1
for 0 ≤ i < B and zero otherwise.
(A) If d ≥ 2σ2B(

√
log L̄ + t)2, then (LCAT) solves

AR for fixed xL with probability at least 1 − 3e−t2/4.
(B) Conversely, for any ε > 0 there is Cε > 0 as
follows: If L̄ ≥ Cε and d ≤ 2σ2B(

√
(1 − ε) log L̄ −

t)2, then (LCAT) fails to solve AR with the same
probability.
(C) Finally, suppose we wish to solve AR uniformly for all queries xL over a subspace S . This succeeds with the same
probability whenever d ≥ 2σ2B(

√
log L̄ +

√
dim(S ) + t)2.

Figure 6 corroborates the predictive accuracy of Proposition 1: As the block size increases, the embedding dimension
to maintain success of AR grows approximately linearly. One can expand on this proposition in two directions. Firstly,
a fundamental bottleneck in (LCAT) is the requirement d ≳ B log L̄. This arises from a memory-recall tradeoff (Arora
et al., 2024; Jelassi et al., 2024) as we are summarizing the information of block Xi of length B through its landmark token.
However, once this requirement is satisfied, the model can identify the correct block in O(L̄) cost. To avoid paying the
additional O(B) cost of local attention, we could apply the LCAT approach hierarchically within the selected block to
reduce the compute cost to d(L̄ + log B) per token. The dominant term dL̄ captures the recall capacity of the LCAT model:
Consistent with our theorem and lower bounds of (Arora et al., 2024), for AR to succeed, we need

recall_capacity = dL̄ ≥ L = required_memory

Secondly, Proposition (1) chooses a particular long convolution where landmarks become the mean of the input tokens
within the block. In practice, we can use a state-space model (Gu et al., 2022) to parameterize convolution efficiently. A
particular SSM choice of state dimension 1 is simply using exponential smoothing. This yields the following SSM variant of
Proposition 1.
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Proposition 2. Consider the setting of Proposition 1 with the exponential smoothing filter Fi = ρ
i for i ≥ 0. Set ρ = e−1/B

so that ρB = e−1. Suppose d ≥ 50B(
√

log L̄ + t)2. Then, (LCAT) solves AR with probability at least 1 − 3e−t2/4.
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Figure 6. Behavior of the embedding dimension as a function of
block size for context length L = 220 ≈ 1 million (noise level σ2 =

1). Shaded region highlights te range of d that exhibits 10%-50%
empirical success. Proposition 1 accurately captures the empirical
behavior. For the success of uniform AR, we need larger d as the
dimension of the query space S grows.

Above, we fixed the decay rate ρ for exposition purposes.
More generally, any ρ choice with an effective context
size of O(B) would result in similar guarantee.

C. Detailed Experiment Setup
C.1. Associative Recall Experiments

We first introduce the training setup for the synthetic
experiments. In our MQAR and MQNAR experiments,
we create a dataset with a vocabulary size of 8,092 to
ensure that the vocabulary replicates the scope of real
language data. The dataset is constructed as described in
Sec. C.3, with varying sequence lengths L of 64, 128, and
256, and 512. Specifically, we formulate the dataset in the
form of key-value pairs accompanied by multiple queries
where the keys are unique within each sequence. For each
example, we initially select k keys from the vocabulary
without replacement and subsequently draw the values
from the remaining vocabulary. We then randomly shuffle
the keys and associated values to form the input sequence.
The number of queries is set to match k, ensuring each
key in the sequence is queried. It should be noted that
while the keys are unique within a single example, they may be repeated across different examples. For sequence lengths of
L = 64, 128, 256, and 512, we set k = 16, 32, 64, and 128 respectively, indicating that the number of keys and queries scales
with the sequence length, thus increasing the task complexity. We generate 100,000 training examples and 3,000 testing
examples for each of the sequence lengths. For NAR experiment, we primarily focus on N = 2 to evaluate the performance.
We construct the dataset similarly to the MQAR task with sequence lengths of 64, 128, and 256. Consequently, the number
of keys and queries is reduced to k = 10, 20, 40 respectively, to accommodate the larger N. We generate 200,000 training
examples and 3,000 testing examples for each sequence length.

For the training, we adhere strictly to the parameters set by (Arora et al., 2023), and their experimental setup and code, using
learning rate sweep among 0.001, 0.01, 0.1 and train the model for 64 epoches. The maximum accuracy achieved across
these learning rate is reported.

We remark that for the length generalization experiments, we sweep the learning rate among 0.001, 0.003, 0.01, 0.03, 0.1 and
report the maximum accuracy over 5 runs to ensure the robustness and reproducibility of the results.

C.2. Language Modeling Experiments

For the language modeling experiments, we exactly follow the setup from (Yang et al., 2023). For the length generalization
experiment, we train the model on sequences of length 2,048 and assess its zero-shot performance on the Wikitext dataset
across varying test sequence lengths.

C.3. Multi-Query Synthetic Tasks

In this section, we introduce the multi-query versions of the AR and NAR tasks, denoted as MQAR and MQNAR,
respectively. In the multi-query (MQ) scenario, a model receives multiple queries simultaneously and must generate
corresponding outputs for each query. This approach was first introduced in (Arora et al., 2023), which demonstrated that
while the Mamba model successfully addresses single-query AR tasks, it struggles with MQAR when operating with a
limited model dimension. This highlights the increased complexity of multi-query tasks.

Definition 6 (Multi-Query Associative Recall (MQAR)). Consider a discrete input sequence X = [x0, x1, . . . , xL−1] with
tokens drawn from a vocabularyV. Let X{i, j} = [xi, . . . , x j] denote a subsequence of X from index i to j. The multi-query
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Table 1. Illustrative examples of synthetic tasks. In all AR-based tasks, keys and queries are highlighted in red and the values in green.
For NAR tasks, parentheses denote N-gram queries; note that the parentheses are not part of the input. In SC tasks, signal tokens are in
green and noise tokens in gray, and the model begins output when ⊥ appears in the sequence.

Input Query Output

Single Query
AR a 2 c 1 a 2

NAR (a b) 2 (b a) q (a a) 4 b a q
SC a [n] [n] c [n] k ⊥ a c k

Multi Query
AR a 2 c 1 c a 1 2

NAR (a b) 2 (b a) q (a a) 4 (b a) (a a) q 4
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Figure 7. Performance of 1-layer models on MQAR tasks with varying model dimension and sequence length. Noted that all models are
trained using 1-layer architecture.

N-gram associative recall (MQNAR) problem is defined as follows: for every N-gram query Qk = Xk−N+1...k, N ≤ k < L,
determine if there exists a N ≤ j < k such that X{ j−N+1, j} = Qk. If so, output the value x j+1 as the result, else output a special
token to indicate no match is found. A model f solves MQNAR if it outputs the correct values for all N-gram queries and all
inputs X. The standard MQAR problem (Arora et al., 2023) is a special instance of MQNAR by setting N = 1.

D. Additional Experiments
D.1. Extended Synthetic Experiments

We conduct additional Experiments, Fig. 7 and 8 shows the result of 1-layer models on 1-gram and 2-gram MQNAR tasks
with varying hidden sizes and sequence lengths. The model dimension is set to 32, 64, and 128 for each column of the
figures, from left to right. All other models perform much worse compare to their 2-layer counterparts. Fig. 9 and 10 show
the length generalization results of 1-layer models on 1-gram and 2-gram MQNAR tasks. The results are consistent with the
2-layer models.

D.2. Evaluations on Language Modeling

Based on the outcomes from the synthetic experiments, we further explore the efficacy of the CAT model in real-world
NLP tasks by integrating a 1D CAT structure into the Pythia (Biderman et al., 2023) framework. We pretrain the modified
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Figure 8. Performance of 1-layer CAT models on 2-gram MQNAR tasks with varying hidden sizes and sequence length. All models are
trained using 1-layer architecture.
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Figure 9. 1-gram Length generalization
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Figure 10. 2-gram Length generalization

370M-parameter model on the SlimPajama (Soboleva et al., 2023) dataset, involving 15 billion tokens. We then assess
the model on a variety of downstream zero-shot tasks, including Wikitext, Lambada, Piqa, Hella, Winogrande, Arc-E, and
Arc-C, a methodology commonly used in the field to evaluate generalization capabilities across diverse tasks (Biderman
et al., 2023; Gu & Dao, 2023; Arora et al., 2023; 2024). The findings are compiled in Table 2.

In this series of experiments, the CAT model is trained in two variants: one incorporating rotary positional embedding (Su
et al., 2024) (PE) and another without positional embedding (noPE). We observe that the CAT model with PE not only
consistently outperforms the Pythia model but also achieves performance better than state-of-the-art models, including
Mamba (Gu & Dao, 2023), TF++ (Touvron et al., 2023), and GLA (Yang et al., 2023). Notably, the CAT model secures a
superior perplexity gain compared to the standard model while maintaining a similar level of parameters.

Regarding the noPE variant, training a Pythia model without positional encoding leads directly to divergence and extremely
large losses during training, affirming the critical role of positional encoding in enabling standard transformer models to
learn and converge. Intriguingly, despite the absence of positional encoding, the CAT model still performs competitively
with the leading models. This suggests that the convolutional structure in the CAT model effectively captures positional
information within the data. We conjecture that the short convolutions provide positional information for neighboring tokens,
while the deep multi-layer network structure hierarchically aggregates this information to establish long-range positional
information.

This observation aligns with our synthetic experiment results, where the CAT model demonstrated the capability to handle
the AR task without positional encoding. These insights indicate that the convolutional structure could potentially replace
positional encoding, which might benefit length extrapolation and generalization in the model. This offers a promising
direction for further model design and optimization in the field of NLP.

•Length Generalization Figure 1 presents the results from a length generalization experiment with the CAT model, in
which we trained the model on sequences of length 2,048 and assessed its zero-shot performance on the Wikitext dataset
across varying test sequence lengths. As a baseline in our analysis, we implemented position interpolation (PI) (Chen et al.,
2023) and YaRN (Peng et al., 2023) tempreture scaling on RoPE models, including CAT/MH-CAT RoPE, to facilitate length
generalization. The results indicate that among the three RoPE models examined, the CAT model consistently demonstrates
excellent performance across all test sequence lengths. In contrast, the Pythia model exhibits a sharp decline in performance
as the sequence length increases. We suggest that is due to the additional positional embeddings introduced by PI that
was absent during the training phase. Despite this, CAT models proficiently manage the relative positioning of tokens
(especially overcome the new positional embeddings by leveraging convolution information), which significantly boosts
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Table 2. Experiment results for model pretraining. ∗ are results from (Yang et al., 2023), which uses a same dataset and training procedure
as ours. We use the same hyperparameters as (Yang et al., 2023) for fair comparison. For perplexity, lower is better, and for accuracy,
higher is better. The average accuracy in last column is calculated by averaging the accuracy across all tasks but excluding the perplexity
tasks. The best and second best results are highlighted in boldface and underline, respectively.

Model Wikitext
ppl↓

Lambada_std
ppl↓

Lambada_openai
ppl↓

Lambada_std
acc↑

Lambada_openai
acc↑

Piqa
acc↑

Hella
acc_norm↑

Winogrande
acc↑

Arc-E
acc↑

Arc-C
acc_norm↑

Avg
Acc↑

Pythia 27.410 74.663 34.023 0.281 0.343 0.651 0.355 0.529 0.443 0.235 0.405
CAT, no PE 29.216 86.318 42.260 0.266 0.321 0.640 0.339 0.515 0.436 0.237 0.393
CAT, RoPE 26.776 65.423 38.557 0.288 0.341 0.654 0.362 0.507 0.461 0.239 0.407
MH-CAT, no PE 27.417 58.959 32.822 0.296 0.355 0.644 0.352 0.531 0.460 0.240 0.411
MH-CAT, RoPE 25.858 47.593 28.273 0.330 0.377 0.662 0.376 0.512 0.466 0.231 0.422
TF++ (Touvron et al., 2023)∗ 28.390 NA 42.690 NA 0.310 0.633 0.340 0.504 0.445 0.242 NA
Mamba (Gu & Dao, 2023)∗ 28.390 NA 39.660 NA 0.306 0.650 0.354 0.501 0.463 0.236 NA
GLA (Yang et al., 2023)∗ 28.650 NA 43.350 NA 0.303 0.648 0.345 0.514 0.451 0.227 NA
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Figure 11. Evaluation of models on selective copying tasks with varying model dimensions and sequence lengths. Model dimensions are
32, 64, 128 for each column of the figures, from left to right. Top: Models trained on 1-layer architectures. Bottom: Models trained on
2-layer architectures. Note on 1-layer experiment, CAT and Mamba achieve nearly 100% and their curves are overlapped.

its ability for length generalization. Additionally, the CAT model without PE is superior to the Pythia model with RoPE,
suggesting the effectiveness of the convolutional structure within the CAT model in capturing essential positional data in
length extrapolation.

D.3. Model Evaluation on Selective Copying

Fig. 11 displays the selective copying results for 1-layer and 2-layer models. We train these models across a variety of model
dimensions and sequence lengths. The models are required to copy 16 signal tokens from the input sequence and output
them in the correct order. We observe that all 2-layer models perform well and show overlapping results, except for LinCAT.
Among the 1-layer models, CAT and Mamba achieve nearly 100% accuracy, while the performance of other models is lower.
These results are consistent with Theorem 4 and demonstrate that the 1-layer CAT model can solve the selective copying
problem without repetitions.

E. Proofs on Associative Recall and Selective Copying
E.1. Proof of Theorem 1

Proof. Given an N-gram Z ∈ RN×d, let us define s(Z) = norm(
∑

i∈[N] FN−i zi) to be its signature. We will first show that for
almost all F, each N-gram admits a unique signature. To see this, let A, Z ∈ RN×d be two distinct N-grams. Let us write
the difference between their signatures as a correlation coefficient. Set s′(Z) =

∑
i∈[N] FN−i zi. Note that if s(A) = s(Z), we
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would have the following function of F that arises from correlation coefficient as zero:

gA,Z(F) = (s′(Z)⊤s′(A))2 − ∥s′(Z)∥2ℓ2∥s
′(A)∥2ℓ2 .

Now, observe that g is a fourth-order polynomial of the entries of F ∈ RN and we can expand g(F) further as follows

g(F) = (
∑
i∈[N]

∑
j∈[N]

FN−iFN− ja⊤i z j)2 − ∥
∑
i∈[N]

FN−iai∥
2
ℓ2
∥
∑
i∈[N]

FN−i zi∥
2
ℓ2
. (1)

Above, let ci be the coefficient of the fourth moment term F4
N−i. Note that

ci = (a⊤i zi)2 − ∥ai∥
2
ℓ2
∥zi∥

2
ℓ2
.

Since A , Z, there exists i ∈ [N] such that ai , zi. This implies that ci , 0 and g(F) is a nonzero polynomial. As a result,
g(F) , 0 almost everywhere implying the same for s(Z) , s(A). Since there are finitely many N-grams, repeating the same
argument for all N-gram pairs, we find that all N-gram signatures are unique for almost all F.

Next, suppose we have an F resulting in unique signatures. We will prove the ability of CAT layer to solve the N-AR
problem. Consider an arbitrary sequence X and denote the last N tokens by Z. Let X∗ = norm(X ∗ F) be the convolved
sequence and let q be the final token of X∗. By assumption, q repeats exactly twice in the sequence. Let α be the position of
the q in the sequence. By definition, the target token v = xα+1. Let Ii ∈ R

L be the indicator function that has 1 at position i
and 0 everywhere else. Since all N-grams are unique and their signatures have unit norm, we have that

lim
c→∞
S(cX∗q) = s∗(X) :=

IL + Iα

2
. (2)

Above we use the standard fact that softmax will saturate at the top entry as the inverse-temperature goes to infinity. For the
purposes of length generalization, we provide the precise temperature requirement. Let a, b be two vectors in the normalized
N-gram token set SN (the set of tokens obtained after convolving with F). Over all such a, b, define the minimum cosine
distance to be

∆ = 1 − max
a,b∈SN

a⊤b.

Given sequence X∗, using the worst case likelihood ratios of e−∆ between the two q-tokens vs the remaining L − 2 non-q
N-grams tokens, for any X, we have that

∥map(X, c) − s∗(X)∥ℓ1 = ∥S(cX∗q) − s∗(X)∥ℓ1 ≤
2(L − 2)e−c∆

2 + (L − 2)e−c∆ . (3)

To make the right hand side ≤ ε/2 for all (admissible) sequences X of length at most L, we need 2(L − 2)e−c∆ ≤ ε which
implies c ≥ ∆−1 log( 2(L−2)

ε
).

Value delay. For value delay, we will use (3) as key and query embeddings use the same filter. Let Xv = 2 · X ∗ D−1. Using
the fact that rows of Xv are unit norm, for c ≥ ∆−1 log( 2(L−2)

ε
)

∥X⊤v map(X, c) − X⊤v s∗(X)∥ℓ2 ≤ 2∥S(cX∗q) − s∗(X)∥ℓ1 ≤ ε.

Next, note that

X⊤v s∗(X) = X⊤v (
IL + Iα

2
) =

vα + vL

2
.

Now observe that, thanks to −1 delay, vα = 2xα+1 and vL = 2xL+1 = 0 resulting in limc→∞ X⊤v map(X, c) = xα+1. Combining
the above results, we find that ∥V⊤map(X, c) − v∥ℓ2 ≤ ε for all X.

Key delay. In this scenario, we are delaying X∗ forward by one. Because of this, we have Xk = X∗ ∗ D1 and, within
Xk, q appears in positions α + 1 and L + 1. Since the latter is out of bounds, repeating the argument (3) and defining
map(X, c) := S(cXk q), for any sequence X, we find that

∥S(cXk q) − Iα+1∥ℓ1 ≤
2(L − 1)e−c∆

1 + (L − 1)e−c∆ .

13
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Similarly, the right hand side is upper bounded by ε, whenever c ≥ ∆−1 log( 2(L−1)
ε

).

To conclude, using the fact that tokens are unit norm and the target value vector is v = xα+1, for any X, we obtain

∥X⊤map(X, c) − v∥ℓ2 ≤ ∥S(cX∗q) − Iα+1∥ℓ1 ≤ ε,

completing the proof that ∥X⊤map(X, c) − v∥ℓ2 for all X of length at most L.

Concluding the proof of the theorem statement. So far, we have concluded that, for all input sequences X, CAT
layer output guarantees ∥ f (X) − v∥ℓ2 < ε0 where v is the target value token and ε0 is under our control by choosing
c = ∆−1 log(2L/ε0). Since we assume the minimum distance between distinct token embeddings are ε, to accurately and
uniquely decode the target v, we choose ε0 = ε/2 and apply nearest neighbor on f (X) to conclude. □

E.2. Proof of Theorem 2

In this section, we will use the shorthand F to denote the value filter Fv for notational simplicity. Recall that R0 > 0 is an
absolute constant throughout the proof. Finally, the constant R used in Theorem 2’s statement will be subsumed within the
O(·) notation below.

Lemma 1. Consider the same setting in Theorem 2. For any f = (W, F) that can solve the AR problem defined in Def. 2 up
to ε-accuracy on all sequences of length L ≥ 3, if ε0 := ε/∆ ≤ 1/8, we have that

∥F − D−1∥ℓ1 ≤ O(Wε0(1 + Lε0) + Lε0) ≤ O(Lε0(1 +Wε0)) (4)

∥F≥0∥ℓ1 =

W∑
i=0

Fi ≤ O(ε0(1 + Lε0)) (5)

where we use O(·) notation to denote an upper bound up to a constant i.e. for some absolute r > 0, O(x) ≤ r · x.
Moreover, let q be a token within vocabularyV and v be the top query not equal to q that maximizes the similarity v⊤Wq
i.e. v = arg maxx∈V,x,q x⊤Wq, we have

oq = sv/sq ≤ Γ =
ε0

1 − 4ε0
= O(ε0) (6)

where sq and sv are the softmax values for q and v.

Proof. Throughout, we assume ε ≤ ∆
8 and ∆ > 0 where ∆ is the minimum embedding distance, i.e., ∆ = (1 −

maxa,b∈V(a⊤b)2)1/2. Before proceeding, we first note that, without losing generality, we can assume L ≥ W + 1. The reason
is that, if L ≤ W, left or right end of the convolutional filter will never interact with features. Thus, we simply set them to
zero, truncating the filter. Define sequence Xi ∈ RL×d where xi

L−1 = q, xi
i = q and xi

j = v for all j , i. Let Zi = F ∗ Xi.
Let si = S(XiWq) and sq = si

L−1 and sv = (1 − 2sq)/(L − 2). Here sq and sv are the softmax values for q and v respectively.
Additionally, observe that

sv/sq = exp((v − q)⊤Wq).

Finally, let I = [L] − {L − 1, i} and recalling value sequence Zi, note that

f (Xi) = sv

∑
j∈I

zi
j + sq(zi

i + zi
L).

By assumption, we also have that

∥v − f (Xi)∥ℓ2 ≤ ε for i < L − 2, ∥q − f (XL−2)∥ℓ2 ≤ ε. (7)

We will leverage these inequalities to prove the statement of the theorem. Let ρ = ρ(q, v) = q⊤v be the correlation between
q, v. Define v⊥ = q−ρv

∥q−ρv∥ℓ2
. Observe that convolution output has the form f (Xi) = αv + βq for some α = αi, β = βi > 0. For

i < L − 2, we have that

ε ≥ ∥v − f (Xi)∥ℓ2 ≥ |(v
⊥)⊤(v − f (Xi))| ≥ β|(v⊥)⊤q| ≥ β

√
1 − ρ2.

14
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Recalling that the minimum embedding distance is defined as ∆ =
√

1 −maxq,v ρ2(q, v) ≤ 1 and setting ε0 = ε/∆, this
implies that

βi ≤ ε0 := ε/∆ for i < L − 2, αL−2 ≤ ε0 := ε/∆. (8)

Additionally, writing ε ≥ |v⊤(v − f (Xi))| = |1 − αi − βiv⊤q| for i < L − 2 and using |v⊤q| ≤ 1, we can deduce

αi ≥ 1 − (1 + 1/∆)ε ≥ 1 − 2ε0 for i < L − 2, βL−2 ≥ 1 − (1 + 1/∆)ε ≥ 1 − 2ε0 (9)
αi ≤ 1 + (1 + 1/∆)ε ≤ 1 + 2ε0 for i < L − 2, βL−2 ≤ 1 + (1 + 1/∆)ε ≤ 1 + 2ε0. (10)

We note that when L = W + 1, the problem only has a subtle difference, which we discuss at the end.

Case 1: L ≥ W + 2. For i = 0 and i = L − 2, the coefficients αi, βi can be written in terms of convolution as

β0 = 2sqF0 + sv

∑
i,0

Fi (11)

βL−2 = sq(2F0 + F−1 + F1) + sv[2
∑
i<0

Fi − (F−1 + F−W )]. (12)

Let F̄1 = F−1 + F1. Observing 2
∑

i<0 Fi − (F−1 + F−W ) ≤ 2(
∑

i,0 Fi), we can write

1 − (1 + 1/∆)ε ≤ βL−2 ≤ sqF̄1 + 2β0 ≤ sqF̄1 + 2ε/∆. (13)

Combining these implies sqF̄1 ≥ 1 − 4ε0. Also, we know the trivial bound sqF̄1 ≤ βL−2 ≤ 1 + 2ε0. Thus, we obtain

1 + 2ε0 ≥ sqF̄1 ≥ 1 − 4ε0.

To proceed, we wish to prove that sv is small. From (11), we have that svF̄1 ≤ ε0. Consequently, we have that

sv

sq
≤ Γ =

ε0

1 − 4ε0
.

Using 2sq + (L − 2)sv = 1, we get

1 = 2sq + (L − 2)sv ≤ (2 + (L − 2)Γ)sq =⇒ sq ≥
1

2 + (L − 2)Γ
=

1 − 4ε0

2 + (L − 10)ε0
.

Since sq ≤ 1/2 (due to query repeating twice), this also implies that

2
(1 + Lε0)(1 + 2ε0)

1 − 4ε0
≥ 2

(1 + 2ε0)(1 + (L/2 − 5)ε0)
1 − 4ε0

≥ F̄1 ≥ 2(1 − 4ε0).

Using above, in essence, so far we have established that |F̄1−2| ≤ O(Lε0) and sv/sq ≤ O(ε0). Both statements hold whenever
ε0 ≤ 1/8 (e.g. so that 1/(1 − 4ε0) ≤ 1 + O(ε0)). The primary remaining item in the proof is establishing |Fi| ≤ O(ε0) for all
i , −1.

To prove this, we utilize the following observations: First, by keeping track of the contributions of the last two q vectors on
αL−2, we observe that

sq

W∑
i=1

Fi ≤ αL−2 ≤ ε0.

This implies
∑W

i=1 Fi ≤ ε0/sq ≤ ε0
2+(L−10)ε0

1−4ε0
= O(ε0(1 + Lε0)). We similarly find F0 ≤ ε0/2sq through (11). Finally, since

F1 ≤ O(ε0(1 + Lε0)) ≤ O(Lε0), we also find the critical bound

|F−1 − 2| ≤ O(Lε0).

Finally, we wish to bound
∑

i≤−2 Fi. To do so, we can bound the contribution of the first q vector on βi as follows. For any
W ≥ j ≥ 2, letting i = L − 1 − j, we have that

ε0 ≥ βi ≥ sqF− j =⇒ F− j ≤ ε0
2 + (L − 10)ε0

1 − 4ε0
= O(ε0(1 + Lε0)).
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Aggregating these, we have found the advertised bounds:

∥F − D−1∥ℓ1 ≤ O(Wε0(1 + Lε0) + Lε0) ≤ O(Lε0(1 +Wε0)) (14)

∥F≥0∥ℓ1 =

W∑
i=0

Fi ≤ O(ε0(1 + Lε0)) (15)

oq = sv/sq ≤ Γ =
ε0

1 − 4ε0
= O(ε0) (16)

where v is chosen to be the most similar token in terms of attention probabilities. Note that, the bound on left entries of F
that retrieves the past values is tighter than the right entries.

Case 2: L = W + 1. In this scenario, the main difference is we have the following estimates rather than (11)

β0 = sq(2F0 + FW + F−W ) + sv

∑
i,0,|i|<W

Fi (17)

βL−2 = sq(2F0 + F̄1) + sv[2
∑
i<0

Fi − (F−1 + F−W )]. (18)

So we can’t immediately use the estimate provided right below (13) because of the missing F−W sv term. On the other hand,
considering X1 and contribution of the first v token on β1, we have that svF−W ≤ β1 ≤ ε0. As a result, we can instead use the
fact that β0 + β1 ≤ O(ε0) and the fact that

2sqF0 + sv(2
∑
i<0

Fi − (F−1 + F−W )) ≤ 2(β0 + β1)

so that we have again established |1 − sqF̄1| ≤ O(ε0) and can proceed similarly. □

Now that we have established the fine-grained control of the filter and attention map with Lemma 1, we can conclude with
length generalization.

Proof of Theorem 1. Given a query q and a sequence of length L′, let us define sq similarly (i.e. attention probability that
falls on the q token) and study the attention output. Let q appear at i for the first time, v be the token following q, and
I = [L′] − {i, L′ − 1}. Let a = S(XWq) ∈ RL′ be softmax scores with ai = aL′−1 = sq. We write

f (X) =
∑
j∈I

a j z j + sq(zi + zL′−1).

where z j =
∑W

i=−W Fix j−i To proceed, let R be a universal constant and Ξ = RLε0(1 + Wε0) so that ∥F∥ℓ1 ≤ 2 + Ξ from
(14) in Lemma 1. Then we get ∥z j∥ℓ2 ≤ ∥F∥ℓ1 ≤ 2 + Ξ for all j ∈ [L′]. Secondly, due to right-clipped convolution we have
∥zL′−1∥ℓ2 ≤ ∥

∑W
i=0 Fi∥ℓ1 ≤ Ξ and thanks to value retrieval at i’th position, we get

∥zi − 2v∥ℓ2 ≤ |F−1 − 2|∥v∥ℓ2 + |
∑
j,−1

F j| ≤ Ξ (19)

Next, observe that a j/sq ≤ sv/sq ≤ Γ =
ε0

1−4ε0
for all j ∈ I and that 2sq +

∑
j∈I a j = 1, consequently, for some constant

R0 > 0,
1
2
≥ sq ≥

1
2 + (L′ − 2)Γ

=
1 − 4ε0

2 + (L′ − 10)ε0
=⇒ |2sq − 1| ≤ R0L′ε0.

and ∑
j∈I

a j = 1 − 2sq ≤ R0L′ε0.
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Aggregating these, we find that

∥ f (X) − v∥ℓ2
(a)
≤ ∥
∑
j∈I

a j z j∥ℓ2 + ∥sq(zi + zL′−1) − 2sqv∥ℓ2 + |2sq − 1|∥v∥ℓ2 (20)

(b)
≤ |
∑
j∈I

a j|(2 + Ξ) + ∥sq(zi + zL′−1) − 2sqv∥ℓ2 + |2sq − 1| (21)

≤ R0(2 + Ξ)L′ε0 + Ξ + R0L′ε0 (22)
≤ 3R0L′ε0 + Ξ + R0ΞL′ε0 (23)
≤ 3ε0

(
R0L′ + RL(1 +Wε0)(1 + R0L′ε0)

)
(24)

where (a) follows triangle inequality and (b) follows Cauchy-Schwarz inequality. Let c0, c1 be absolute constants to be
determined. Assuming Wε0 ≤ O(1) (i.e. bounded by constant), we have that

∥ f (X) − v∥ℓ2 ≤ c0ε0(L′ + L + LL′ε0)

where c0 ≥ 3 max{R0,R(1 +Wε0),R0R(1 +Wε0)}. Assuming the stronger bound Lε0 ≤ O(1) and c1 ≥ c0(1 + L/L′ + Lε0),
we have that

∥ f (X) − v∥ℓ2 ≤ c1ε0L′

This concludes the advertised proof. □

E.3. Proving Length Generalization for N-gram AR (Proposition 3)

In this section we use Fv = F for the filter applied on value token and Fq = Fk = F̄ for filters on query and keys.
Assumption 1. Recall thatV is the vocabulary from which the token embeddings are drawn. We have the following two
assumptions to make the output f (X) more tractable:

a) The filter weights are bounded and obey ∥F∥ℓ1 ≤ 1. Besides, assuming that ∆ = 1 −maxa,b∈V,a,b b⊤a > 0

b) Any subset of 2N tokens within the vocabularyV is linearly independent.

Note that Assumption 1.b is essentially a restricted isometry property condition on the embedding matrix induced by the
vocabularyV. Specifically, if embeddings are randomly chosen, as soon as the embedding dimension obeys d ≳ O(N log |V|N ),
this assumption will hold with high probability (Candes, 2008; Candes & Tao, 2006). In the following analysis, we will
leverage either one of the assumptions to establish the length generalization result.
Lemma 2. Suppose Assumption 1.b holds. Let B be any subset of 2N tokens within V and U := {u j| j ∈ [|U|]} be
the orthonormal tokens obtained after applying the Gram-Schmidt process on B where b j =

∑ j
l=0 β j,lul. Then we have

0 < δ = min j∈[|B|] |β j, j| ≤ 1.

Proof. First note that β j,l = b⊤j ul ≤ 1 for any j, l ∈ [|B|] and β0,0 = 1. Then δ = min j∈[|B|] |β j, j| ≤ 1. Moreover, we can prove
δ > 0 by contradiction. Assuming there exists j ≥ 1 such that β j, j = 0. This indicates that b j can represented as a linear
combination of the previously orthogonalized vectors {u0, . . . ,u j−1}. In other words, b j lies entirely in the span of these
previous vectors. This contradicts the fact that tokens in B are linearly independent. As a result we have δ > 0. □

Proposition 3. Let F̄ ∈ RN be a 1-D causal convolutional filter and F ∈ R2W+1
+ be a 1-D convolutional filter from time

t = −W to t = W where W ≤ L − N. Suppose that token embeddings have unit norm. Consider the same CAT Layer
f (X) = (XvWv)⊤S(XkWkW⊤

q q) defined in Theorem 1 where q is the final token of Xq and Xq = norm(X ∗ Fq) ∈ RL×d (same
for Xk, Xv). We set Fq = Fk = F̄, W =WkW⊤

q , and Wv = 2Id Consider any f = (W, F) that can solve the N-AR problem up
to ε-accuracy on all sequences of length L ≥ O(N). That is, for all (X, y) where N-gram Z occurs within X exactly twice
and y being the associated value token that follows the first occurrence of Z, we have ∥y − f (X)∥ℓ2 ≤ ε. Let B is any subset
of 2N tokens within vocabularyV and β j, j be the corresponding projection coefficients defined in Lemma 2. Assume either
Assumption 1.a or 1.b holds and define

ε0 =

ε/∆, ∆ = 1 −maxa,b∈V,a,b b⊤a under Assumption 1.a
ε e2N/δ

δ
, δ = min j∈[|B|] |β j, j| under Assumption 1.b
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For almost all choices of F̄, there are absolute constants R0,R > 0 such that, if ε0 ≤ R0/L, we have that

• ∥F − D−1∥ℓ1 ≤ Lε0

• Let s⋆ ∈ RL′ be a vector with entries equal to 1/2 at the positions of query q in Xq and 0 otherwise. For all inputs X of
arbitrary length L′, attention map obeys ∥S(XkWq) − s⋆∥ℓ1 ≤ L′ε0.

• For all N-AR sequences X of arbitrary length L′, we have that ∥y − f (X)∥ℓ2 ≤ RL′ε0.

Lemma 3. Consider the same setting in Prop. 3, for any f = (W, F) that can solve the N-AR problem defined in Def. 3 up to
ε-accuracy on all sequences of length L ≥ O(N). There are absolute constants R0 > 0 such that, if ε0 ≤ R0/N, we have that

∥F − D−1∥ℓ1 ≤ O(Nε0(1 + Lε0) + Nε0) ≤ O(Lε0(1 + Nε0)) (25)

∥F≥0∥ℓ1 =

W∑
i=0

Fi ≤ O(Nε0(1 + Lε0)) (26)

where we use O(·) notation to denote an upper bound up to a constant i.e. for some absolute r > 0, O(x) ≤ r · x.
Moreover, we consider N-gram Zq ∈ R

N×d that ends with a token q′, which can be any token from the vocabulary BN .
Let q be the final token of norm(Zq ∗ F̄) and v be the top query not equal to q that maximizes the similarity v⊤Wq.
i.e. v = arg maxx∈BN ,x,q x⊤Wq, we have

oq =
sv

sq
≤ Γ =

O(ε0)
1 − O(Nε0)

≤ O(Nε0) (27)

where sq and sv are the softmax values for q and v.

Proof. Following the proof of Thoerem 1, suppose that we have an F̄ that results in unique signatures. We argue that the
length generalization fails when W > L − N, which is explained at the end. Throughout, we assume that W = L − N. When
W < L − N, it is equivalent to the setting where W = L − N and F j = 0 for W + 1 ≤ | j| ≤ L − N. Denote the corresponding
N-gram that results in q and v after convolving with F̄ be Zq = [q0, q1, . . . , qN−1] ∈ RN×d and Zv = [v0, v1, . . . , vN−1] ∈ RN×d

respectively, i.e., q = norm(Zq ∗ F̄) and v = norm(Zv ∗ F̄). Zq and Zv are unique due to the assumption on F̄. For brevity,
let q′ = qN−1, v′ = vN−1 and Zk

v′ = [v′, v′, . . . , v′] ∈ Rk×d, Z′q = [q1, . . . , qN−1] ∈ R(N−1)×d, where q0 is removed from Zq.

Xi,k =
[
ZN−1+i

v′ Zv Zq ZN−1+k
v′ Z′q q0 ZN−1

v′ Zni,k
v′ Zv Zq

]
∈ RL×d (28)

X̄i,k =
[
ZN−1+i

v′ Zv Zq q0 ZN−1+k
v′ Z′q ZN−1

v′ Zni,k
v′ Zv Zq

]
∈ RL×d (29)

where ni,k = L − 8N + 3 − i − k ≥ 0, and this naturally introduces a lower bound for L, i.e., L ≥ O(N) and upper bounds for
both i and k. Note that Xi,k and X̄i,k have different labels. By assumption, we have that

∥v′ − f (Xi,k)∥ℓ2 ≤ ε, ∥q0 − f (X̄i,k)∥ℓ2 ≤ ε. (30)

Let si,k = S(Xi,kWq), s̄i,k = S(X̄i,kWq). Define the probability of selecting the j-th entry of Xi,k and X̄i,k as si,k
j and s̄i,k

j and
selecting the token q and v as sq, sv. Here we omit i, k for sq and sv since it’s invariant to the values of i, k. Additionally,
observe that

sv/sq = exp((v − q)⊤Wq) and (L − 2)sv + 2sq ≥ 1

where the inequality comes from the fact that v = arg maxx∈BN ,x,q x⊤Wq. We will leverage these inequalities to prove
the statement of the theorem. Define the vocabulary set B = {v0, v1, . . . , vN−1, q0, q1, . . . , qN−1} which includes all tokens
in Xi,k and X̄i,k. Note that the vocabulary B is a subset of tokens chosen from V, i.e., B ⊆ V and the vocabulary size
|B| is at most 2N, i.e., |B| := K ≤ 2N. Observe that convolution output has the form f (Xi,k) =

∑
j∈[|B|] mi,k

j b j and
f (X̄i,k) =

∑
j∈[|B|] m̄i,k

j b j where {mi,k
j , m̄

i,k
j } j∈[|B|] are non-negative coefficients due to the assumption that entries in F̄ and

softmax probabilities si,k and s̄i,k are non-negative. In particular, we are interested in mi,k
q , m̄

i,k
q and mi,k

v , m̄
i,k
v , which correspond

to the coefficients of token q0 and v′. To proceed, we leverage Assumption 1 to bound the coefficients:
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When Assumption 1.a holds. By expanding the coefficients, we get∑
j∈[|B|]

mi,k
j =

∑
j∈[|B|]

∑
t∈[L]

Fvt − jsi,k
t ≤ ∥F∥ℓ1

∑
t∈[L]

si,k
t ≤ 1 (31)

Combining this with the fact that

ε ≥ ∥v′ − f (Xi,k)∥ℓ2 ≥ |v
′⊤(v′ − f (Xi,k))| ≥ |

∑
j∈[|B|],b j,v′

v′⊤b jm
i,k
j + mi,k

v − 1| (32)

, we have

ε ≥
∑

j∈[|B|],b j,v′
(1 − v′⊤b j)mi,k

j ≥ (1 − v′⊤b j)mi,k
j for any j ∈ { j | j ∈ [|B|], b j , v′} (33)

→ mi,k
j ≤ ε/∆ := ε0 for any j ∈ { j | j ∈ [|B|], b j , v′} (34)

where ∆ = 1 −maxa,b∈B,a,b b⊤a > 0. In terms of mi,k
v , we apply Triangle Inequality on (32) and (34):

|1 − mi,k
v | ≤ |

∑
j∈[|B|],b j,v′

v′⊤b jm
i,k
j + mi,k

v − 1| + |
∑

j∈[|B|],b j,v′
v′⊤b jm

i,k
j | (35)

≤ ε + 2Nε0 ≤ (2N + 1)ε0 (36)

Similarly for X̄i,k we have

m̄i,k
j ≤ ε0 for any j ∈ { j | j ∈ [|B|], b j , q0}, |1 − m̄i,k

q | ≤ O(Nε0) (37)

When Assumption 1.b holds. Based on the linear independence property, we can apply the Gram–Schmidt process to
transform the tokens in B to orthonormal tokens U = {u j| j ∈ [|U|]} where b j =

∑ j
l=0 β j,lul where β j,l = b⊤j ul. Since the

order of tokens in U does not matter, we can set u0 = v′. Then for any j ≥ 1, u j is orthogonal to v′ and bi for all i < j.
Consider the case of Xi,k whose label is v′, utilizing the orthogonality we get

ε ≥ ∥v′ − f (Xi,k)∥ℓ2 ≥ |u
⊤
j (v′ − f (Xi,k))| ≥ |

|B|−1∑
l= j

mi,k
l u⊤j bl| (38)

Using backward induction, we can then bound mi,k
j for 1 ≤ j ≤ K − 1. First consider j = |B| − 1 = K − 1. Then we have:

ε ≥ |mK−1u⊤K−1bK−1| = |mK−1βK−1,K−1| ≥ |mK−1δ| (39)

where δ = min j∈[|B|] |β j, j| = min j∈[|B|] |b⊤j u j|. Following Lemma 2 we have 0 < δ ≤ 1. As a result we get mK−1 ≤ ε/δ. Next

we prove that if j ≥ 1 and mi,k
l ≤ ε

(1+1/δ)K−l−1

δ
for j < l ≤ K − 1, m j ≤ ε

(1+1/δ)K− j−1

δ
. When 1 ≤ j ≤ K − 2, from equation (38)

we can derive

ε ≥ |

K−1∑
l= j

mi,k
l u⊤j bl| = |

K−1∑
l= j+1

mi,k
l u⊤j bl + m ju⊤j b j| (40)

For the first term we have

|

K−1∑
i= j+1

miu⊤j bi| ≤

K−1∑
i= j+1

mi ≤

K− j−2∑
i=0

ε
(1 + 1/δ)i

δ
= ε
(
(1 + 1/δ)K− j−1 − 1

)
Using Triangle Inequality we get

|m ju⊤j b j| ≤ ε(1 + 1/δ)K− j−1 → m j ≤ ε
(1 + 1/δ)K− j−1

δ
≤ ε

e
K− j−1
δ

δ
≤ ε

e2N/δ

δ
(41)
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We can hereby bound mi,k
j for any j ∈ { j | b j ∈ B, b j , v′}. Let ε1 := ε e2N/δ

δ
, we have

mi,k
j ≤ ε1 for any j ∈ [|B|], b j , v′ (42)

Additionally, writing ε ≥ |v′⊤(v′ − f (Xi,k))| = |1 −mi,k
v − v′⊤

∑
j∈[|B|],b j,v′ mi,k

j b j| and using |v′⊤b j| ≤ 1 for any b j ∈ B, we can
deduce

|1 − mi,k
v | ≤ ε +

K−1∑
i=1

mi (43)

≤ ε +

K−2∑
i=0

ε
(1 + 1/δ)i

δ
(44)

≤ ε(1 + 1/δ)K−1 ≤ ε1 (45)

Similarly for X̄i,k, we have

m̄i,k
j ≤ ε1 for any j ∈ [|B|], b j , q0, |1 − m̄i,k

q | ≤ ε1 (46)

To summarize, using Assumption 1, we can have an upper bound on {mi,k
j , m̄

i,k
j } j∈[|B|]:

mi,k
j ≤ ε0 for any j ∈ { j | j ∈ [|B|], b j , v′}, |1 − mi,k

v | ≤ O(Nε0) (47)

m̄i,k
j ≤ ε0 for any j ∈ { j | j ∈ [|B|], b j , q0}, |1 − m̄i,k

q | ≤ O(Nε0) (48)

where

ε0 :=

ε/∆, ∆ = 1 −maxa,b∈B,a,b b⊤a > 0 under Assumption 1.a
ε e2N/δ

δ
, δ = min j∈[|B|] |β j, j| under Assumption 1.b

(49)

We proceed by comparing mi,k
q and m̄i,k

q :

mi,k
q = 2sq

(
F−L+4N+i−2 + F−2N+1−k + 2FN−1 + FL−5N−i−k + FL−2N−i

)
(50)

+ 2
∑

j∈[L]−{3N−2+i,L−1}

si,k
j (F−L+N+ j + F−5N−i−k+ j+3 + F−2N−i+ j+1) (51)

m̄i,k
q = 2sq

(
F−L+4N+i−2 + F−1 + 2FN−1 + FL−3N−i + FL−2N−i

)
(52)

+ 2
∑

j∈[L]−{3N−2+i,L−1}

s̄i,k
j (F−L+N+ j + F−3N−i+ j+1 + F−2N−i+ j+1) (53)

Observing that

• si,k
j = s̄i,k

j for j ∈ [3N − 1 + i] and 6N − 3 + i + k ≤ j ≤ L − 1

• si,k
j+1 = s̄i,k

j for 4N − 1 + i + k ≤ j ≤ 5N − 3 + i + k

• si,k
j+(2N−1) = s̄i,k

j for 5N − 2 + i + k1 ≤ j ≤ 6N − 4 + i + k

• si1,k1
j+2N−2+k1+i1−i2

= s̄i2,k2
j for 3N − 1 + i2 ≤ j ≤ 4N − 2 + i2
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Utilizing these observations, we have∑
j∈[3N−1+i]

2s̄i,k
j (F−L+N+ j + F−3N−i+ j+1 + F−2N−i+ j+1) ≤ mi,k

q + mi+N,k
q∑

j∈[6N−3+i+k,L−1]

2s̄i,k
j (F−L+N+ j + F−3N−i+ j+1 + F−2N−i+ j+1) ≤ mi,k

q + mi,k−N
q∑

4N−1+i+k≤ j≤5N−3+i+k

2s̄i,k
j (F−L+N+ j + F−3N−i+ j+1 + F−2N−i+ j+1) ≤ mi+1,k

q + mi−N+1,k
q + mi,k+1

q∑
5N−2+i+k≤ j≤6N−4+i+k

2s̄i,k
j (F−L+N+ j + F−3N−i+ j+1 + F−2N−i+ j+1) ≤ mi+(N−1),k

q + mi+(2N−1),k
q + mi,k+(2N−1)

q∑
3N−1+i≤ j≤4N−2+i

2s̄i,k
j (F−L+N+ j + F−3N−i+ j+1 + F−2N−i+ j+1) ≤ mi−(2N−2),k

q +
∑

3N−1+i≤ j≤4N−2+i

s̄i,k
j (F−3N−i+ j+1 + F−2N−i+ j+1)

(a)
≤ mi−(2N−2),k

q + sv

∑
l∈[2N]

Fl

(b)
≤ mi−(2N−2),k

q +
∑

j∈{ j | b j=x̄i,k
l ,l∈[2N]}

m̄1,k
j

where (a) comes from v = arg maxx∈BN ,x,q x⊤Wq and (b) comes from the attention from the first v to itself and its previous
2N − 1 terms. Let i = 2N − 2, k = N, combining the inequalities above, we get

1 − O(Nε0) ≤ m̄2N−2,N
q ≤ 2sq(F−1 + FL−5N+2) + m2N−2,N

q + m3N−2,N
q + ... + m0,N

q +
∑

j∈{ j | b j=x̄i,k
l ,l∈[2N]}

m̄1,N
j (54)

≤ 2sq(F−1 + FL−5N+2) + O(Nε0) (55)

Combining these we get sq(F−1 + FL−5N+2) ≥ 1/2 − O(Nε0). Moreover, from (52), we have sq(F−1 + FL−5N+2) ≤ m̄i,k
q /2 ≤

1/2 + O(Nε0), which results in

|sq(F−1 + FL−5N+2) − 1/2| ≤ O(Nε0) (56)

Based on this, we wish to show that sv is small. Substituting l ∈ {4N − 4, L − N} into (51), we have sv(F−1 + FL−5N+2) ≤
m2N−2,N

q ≤ ε0, which implies that

sv

sq
≤ Γ =

O(ε0)
1/2 − O(Nε0)

(57)

Using 2sq + (L − 2)sv ≥ 1, we have

1 ≤ 2sq + (L − 2)sv ≤ (2 + (L − 2)Γ)sq =⇒ sq ≥
1

2 + (L − 2)Γ
≥

1 − O(Nε0)
2 + (L − 2N − 2)O(ε0)

(58)

Combining this with 2sq ≤ 1, we get

(1 + LO(ε0))(1 + O(Nε0))
1 − O(Nε0)

≥
(1 + O(Nε0))(1 + (L/2 − N − 1)O(ε0))

1 − O(Nε0)
(59)

≥ F−1 + FL−5N+2 ≥ 1 − O(Nε0) (60)

At this stage, we have already proved that when Nε0 ≤ O(1), |F−1 + FL−5N+2 − 1| ≤ O(Lε0) and sv/sq ≤ O(ε0). The primary
remaining proof is to prove |Fl| < O(ε0) for all l , −1. Since m̄i,k

j ≤ ε0 for b j , q0, by tracking the contribution of the last q
on m̄i,k

j , we have

sq

∑
0≤l≤L−N,l<{N−1,L−2N,L−3N}

Fl ≤
∑

j∈{ j | b j∈B,b j,q0}

m̄0,0
j ≤ O(Nε0) (61)

sq

∑
l∈{L−2N,L−3N}

Fl ≤
∑

j∈{ j | b j∈{q′,v′}}

m̄1,0
j ≤ ε0 (62)

sqFN−1 ≤ m0,0
q ≤ ε0 (63)
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Combining these three inequalities and W = L−N, we get
∑W

l=0 Fl ≤ O(Nε0)/sq ≤ O(Nε0) 2+(L−2N−2)O(ε0)
1−O(Nε0) ≤ O(Nε0(1+Lε0)).

Additionally, since FL−5N+2 ≤ O(Nε0(1 + Lε0)) ≤ O(NLε0), we get

|F−1 − 1| < O(NLε0) (64)

Finally, we want to bound
∑
−L+N≤ j≤−2 F j. By tracking the contribution of the first q to m̄0,0

j for any j ∈ { j | b j ∈ B, b j , q0},
we have sqFl ≤ m̄0,0

j where b j = xi,k
−l+3N−2 for any −L + 3N − 1 ≤ l ≤ −2. Summing over l we get,

sq

∑
−L+3N−1≤l≤−2,l,W−4N+3

Fl ≤
∑

j∈{ j | b j∈B,b j,q0}

m̄0,0
j ≤ O(Nε0) (65)

Note that F−L+4N−2 touches q0 for X̄0,0 so we need to handle it separately. We can consider m̄1,0
j instead and get

sqF−L+4N−2 ≤ m̄1,0
L−N+1 ≤ ε0 (66)

For
∑
−L+N≤ j≤−L+3N−2 F j, we consider the following example:

X̂i,k =
[
Zq v0 ZN−1+i

v′ Zv ZN−1+k
v′ Z′q ZN−1

v′ Zni,k
v′ Zq

]
∈ RL×d (67)

Similarly we define ŝi,k = S(X̂i,kWq) and the probability that selects q and v as ŝq and ŝv. Note that ŝv/ŝq = sv/sq ≤ O(ε0)
and (L − 2)ŝv + ŝq ≥ 1. We can then obtain the exact lower bound as sq for ŝq, i.e., ŝq ≥

1−O(Nε0)
2+(L−2N−2)O(ε0) . Note that the

output of f (X̂i,k) can also be written as f (X̂i,k) =
∑

b j∈B
m̂i,k

j b j where {m̂i,k
j }b j∈B is the corresponding coefficients. Moving

forward, by tracking the attendance of the first q to the last 2N − 1 terms, we have ŝqFl ≤ m̂0,0
j where b j = x̂i,k

−l+i+N−1

for any −L + N ≤ j ≤ −L + 3N − 2. Repeating the same argument based on Assumption 1, we get m̂0,0
j ≤ ε0 for any

j ∈ { j | b j ∈ B, b j , v0}, which leads to

ŝq

∑
−L+N≤l≤−L+3N−2

Fl ≤ ŝq

∑
j∈{ j | b j∈B,b j,v0}

m̂0,0
j ≤ O(Nε0) (68)

Combining (65), (66) and (68), we have∑
−L+N≤l≤−2

Fl ≤ O(Nε0)(1/ŝq + 1/sq) ≤ O(Nε0)
2 + (L − 2N − 2)O(ε0)

1 − O(Nε0)
≤ O(Nε0(1 + Lε0)) (69)

In summary, we get

∥F − D−1∥ℓ1 ≤ O(Nε0(1 + Lε0) + Nε0) ≤ O(Lε0(1 + Nε0)) (70)

∥F≥0∥ℓ1 =

W∑
i=0

Fi ≤ O(Nε0(1 + Lε0)) (71)

oq =
sv

sq
≤ Γ =

O(ε0)
1 − O(Nε0)

≤ O(Nε0) (72)

where v is chosen to be the most similar tokens to q in terms of attention probabilities. Now we discuss the scenario where
W > L − N. First note that the output f (X) can be written as f (X) = 2

∑
l∈[L] sl

∑W
j=−W F jxl− j where sl is the softmax value

at l-th position. We are interested in sq in particular, which is proven to converge to 1/2 when ε diminishes. Also, note that
the smallest possible index of q is N − 1 since it’s the last token of an N-gram. Then, when W > L − N, the left end of the
convolutional filter never interacts with sq since the index of xi− j is out of bound, i.e., i − j = N − 1 +W > L − 1 □

Using the results from Lemma 3, we can establish the length generalization on N-AR task.

Proof of Proposition 3. Given a sequence X of length L′, let q be the last token of Xq = Xk = norm(X ∗ F̄) and we define
sq as the attention probability that selects q. Assume the first occurrence of q in Xk is i and q′ = xi. By definition, the target
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vector v is the token following q′ in X, i.e., v = xi+1. Let I = [L′] − {i, L′ − 1}. Let a = S(XkWq) ∈ RL′ be the softmax
probabilities where ai = aL′−1 = sq

f (X) =
∑
j∈I

a j z j + sq(zi + zL′−1) (73)

where z j = 2
∑W

i=−W Fix j−i. We define R as a universal constant and Ξ = RLε0(1 + Nε0) such that ∥F∥ℓ1 ≤ 1 + Ξ from
Lemma 3. Then we get ∥z j∥ℓ2 ≤ 2∥F∥ℓ1 ≤ 2(1 + Ξ) for all j ∈ [L′]. Note that a j/sq ≤ sv/sq = Γ =

O(ε0)
1−O(Nε0) for all j ∈ I and

that 2sq +
∑

j∈I a j = 1. As a result, there exists some constant R0 > 0 such that

1
2
≥ sq ≥

1
2 + (L′ − 2)Γ

=
1 − O(Nε0)

2 + (L′ − 2N − 2)O(ε0)
=⇒ |2sq − 1| ≤ R0L′ε0 (74)

and ∑
j∈I

a j = 1 − 2sq ≤ R0L′ε0 (75)

Moreover, due to right-clipped convolution, we have ∥zL′−1∥ℓ2 = 2∥
∑W

i=0 Fi∥ℓ1 ≤ 2Ξ. Next, according to the value retrieval at
i-th position, we have

∥zi − 2v∥ℓ2 ≤ |2F−1 − 2|∥v∥ℓ2 + 2|
∑
j,−1

F j| ≤ 2Ξ (76)

Utilizing these findings above, we get

∥ f (X) − v∥ℓ2 ≤ ∥
∑
j∈I

a j z j∥ℓ2 + ∥sq(zi + zL′−1) − 2sqv∥ℓ2 + |2sq − 1|∥v∥ℓ2 (77)

≤ |
∑
j∈I

a j|max
j
∥z j∥ℓ2 + sq(∥zi − 2v∥ℓ2 + ∥zL′−1∥ℓ2 ) + |2sq − 1| (78)

≤ 2R0L′ε0(1 + Ξ) + 2Ξ + R0L′ε0 (79)
≤ 3R0L′ε0 + 2Ξ + 2R0ΞL′ε0 (80)
≤ 3ε0(R0L′ + 2RL(1 + Nε0)(1 + R0L′ε0)) (81)

Let c0, c1 be absolute constants to be determined. Assuming Nε0 ≤ O(1) (i.e. bounded by constant), we have that

∥ f (X) − v∥ℓ2 ≤ c0ε0(L′ + L + LL′ε0)

where c0 ≥ 3 max{R0, 2R(1 + Nε0), 2R0R(1 + Nε0)}. Assuming the stronger bound Lε0 ≤ O(1) and c1 ≥ c0(1 + L/L′ + Lε0),
we have that

∥ f (X) − v∥ℓ2 ≤ c1ε0L′

This concludes the advertised results. □

E.4. Proof of Theorem 4

Below we state a generalization of Theorem 4 which distinguishes two scenarios: Short convolution with PE and Long
convolutions with no PE.

Theorem 4 (Selective Copy). Consider the setting of Def. 4. There is a 1-layer CAT f using exponential-decay query-
convolution Fq as follows:

• Suppose Fq is infinitely long (namely parameterized as an SSM with state matrix A = ρ for some decay parameter
ρ < 1). Then, using d = |S| + 3 dimensional token embeddings, f solves unique selective copying.

• Suppose Fq ∈ R
N and input sequences contain at most N signal tokens. Using d = |S|+4 and 1-D positional encodings,

f solves unique selective copying.
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Proof. Let T be the maximum context length the model encounters. Specifically, T = L + N + 1 where L is the maximum
length of the input sequence X that precedes the special token ⊥ and N is the maximum number of signal tokens in X. Recall
that the cardinality of the signal vocabulary S is allowed to be larger than N and we resume generation until outputting all
signal tokens. Let Z = [X ⊥ zL+2 . . . zt] denote the current input sequence where [X ⊥] is the initial input that kickstarts
decoding. Denote boldface Z, X to be the embedded sequences of Z, X. We use query convolution thus the CAT model is
given by f (Z) = nearest_token_embedding(Z⊤S(ZW z∗t )) where Z∗ = Fq ∗ Z is the convolved sequence and z∗t is the last
token of the convolved query sequence for L + 1 ≤ t ≤ T . We set convolution to be Fq,i = ρ

i for 0 ≤ i < W for a suitable
ρ ≤ 1 to be determined where W is the window size of the convolution. This choice aggregates the current token and the
W − 1 most recent tokens and allows for all all-ones filter as a special case. For the first statement of the theorem W = ∞
whereas for the second statement W = N.

The choice of token embeddings. We construct the token embeddings as follows:

• Token embedding of the ith token has the form xi = [x′i , si, pi]. Here

– Base embedding. x′i is the base embedding vector associated to the discrete token value xi. We choose these x′i
embeddings to have unit Euclidean norm.

– Signal indicator. si ∈ R is an indicator of whether the token is a signal token or not. We set si = 1 for signal
tokens and the ⊥ token and si = 0 for noise tokens.

– Position encoding. pi ∈ R is the positional encoding of the i’th token. We simply set pi = i/T where T = L+N+1.
pi is only required for short convolution i.e. when W = N.

• The base embeddings of noise tokens N are orthogonal to that of signal tokens and ⊥ token.

• The base embeddings of signal tokens S and ⊥ are also orthogonal to each other.

Let Dnoisy be the dimension of the subspace spanned by the base embeddings of noise tokens. We can choose Dnoisy = 1 by
setting all base embeddings for the noise tokens to be identical. The signal tokens and ⊥ token occupies an orthogonal |S|+ 1
dimensional subspace. Together, this recovers the embedding dimensions advertised in the theorem statement, namely

• With positional encoding and W = N: We need an embedding dimension of d = |S| + Dnoisy + 3 ≥ |S| + 4 where two
additional dimension is due to si and pi.

• Without positional encoding and W = ∞: We need an embedding dimension of d = |S| + Dnoisy + 2 ≥ |S| + 3 where
the additional dimension is due to si.

• Construction of the CAT model. We construct a one layer CAT model with the following criteria in the order of priority:

1. The model should always select signal tokens.

2. The model should select a signal token not previously selected.

3. The model should select the farthest signal token from the current/last token (i.e. generates signal tokens that are closer
to the start of the sequence).

To satisfy the three criteria above, we pick the attention weights W as follows when W = N:

W =

−αIN+1+Dnoisy 0 0
0 β 0
0 0 −θ

 . (82)

The choice for W = ∞ is same except that we do not have the positional encoding coefficient θ. Recall that we also choose
the convolutional filter as Fq,i = ρ

i for 0 ≤ i < W for ρ < 1. Specifically, we choose ρ = 2−1/T so that ρT = 1/2. This choice
guarantees that ρi − ρi+1 ≥ c/T for all 0 ≤ i < T for some absolute constant c > 0.

We will accomplish the proof inductively. Suppose that X contains N′ unique signal tokens and that until time t for some
L + 1 ≤ t ≤ L + N′ + 1, the model outputs the correct sequence of t′ = t − L − 1 unique signal tokens. We will prove that it
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will accurately output the next signal token in line with suitable choice of α, β, θ. To this end, we state the following lemma
regarding the output of the query-convolution z∗t .

Note that z∗t =
∑t

i=1 ρ
i zt−i. Recall that zL+1 to zt are unique correctly-ordered signal tokens where we set z0 = ⊥. Denote the

rest of the N′ − t′ signal tokens with correct order by q1 to qN′−t′ . Here q1 is the left most such token in X and the token we
wish to output next. We can write z∗t in terms of signal tokens and noise tokens as follows:

z∗t =
t′+1∑
i=1

bi zt−i + n+
N′−t′∑

j=1

a jq j, (83)

where we set bi := ρi. Here the first term
∑t′+1

i=1 bi zt−i is due to last t′ + 1 tokens (including ⊥) that are already generated. The
n term denotes the aggregated contribution of the noise tokens to the convolution.

∑N′−t′
j=1 a jq j is the contributions of the

signal tokens that are yet to be generated. Crucially note that,

• If W = ∞, ai is strictly increasing because convolution coefficients Fq, j are strictly decreasing (with a gap lower
bounded by c/T ).

• Whether W = N or W = ∞, bi = ρ
i is strictly decreasing and bt′+1 ≥ aN′−t′ + c/T . That is, the contribution of any token

already generated is larger than any token that is yet to be generated.

Let us write z∗t = [z′∗t s p]. Note that s ≥ 1/2 because ⊥ token is involved in the convolution and ρT = 1/2. Similarly, if we
employ PE, we have that p ≥ (L+ 1)/2T ≥ 1/4 for the same reason. Given a token xi = [x′i si pi], through (82), we have that

scorei = x⊤i W z∗t = −α
〈
z′∗t , x

′
i
〉
+ βssi − θppi. (84)

We now proceed with the proof which relies on choosing α, β, θ > 0 in a suitable fashion. Specifically, we will choose their
relative ratios β/α, α/θ suitably to ensure the desired token q1 receives the highest score. After ensuring this, we can suitably
scale up α, β, θ in a proportional fashion, which will also scale up the scores of each token. Thanks to softmax attention, this
will ensure that the model precisely retrieves the token with the highest score.

Scenario 1: W = ∞. In this scenario, we don’t use PE, thus, effectively θ = 0. We need to satisfy aforementioned criteria:
First, we want the highest score to be a signal token. We will guarantee this by observing si = 0 for noise tokens, s > 0 and
by setting β/α ≫ 1. Second, we want the highest score to be q1, the left most signal token that has not been output yet. Now,
since W = ∞, q1 receives the lowest coefficient of a1 in (83). Using orthogonality and unit Euclidean norm, this implies
that
〈
z′∗t , q′1

〉
= a1. In contrast, any other signal token has a larger inner product by at least c/T . Choosing α = 1 (and then

suitably scaling it up together with β), this implies that, q1 is indeed the token with the highest score that will be generated
next.

Scenario 2: W = N and we employ PE. We again follow the score decomposition (84). Observe that
〈
z′∗t , x′i

〉
, ssi, ppi are

all bounded by 1 in absolute value. Thus, by controlling the relative ratios of the scalar knobs β > α > θ = 1, we can enforce
the three criteria listed above. Recall that q1 denotes the next signal token we wish to output next. We will prove that q1
achieves the strictly highest score amoung the tokens of Z. To proceed, set β/α ≫ 1 and α/θ ≫ 1.

• Since β dominates α and θ, following the same argument in Scenario 1, noise tokens will have strictly lower scores
than signal tokens, thus cannot be generated next.

• Following (84), the signal tokens have a score contribution of −α · bi or −α · a j from the inner product term
〈
z′∗t , x′i

〉
.

Here bi denoted the coefficient of a generated signal token whereas a j denoted the coefficient of a missing signal token.
Next recall from (83) that bi ≥ c/T > 0 and bi ≥ a j + c/T thanks to the Fq choice. Since α dominates θ, this implies
that the generated signal tokens have strictly less score than the missing signal tokens.

• Finally, we wish to show that q1 has the highest score among missing signal tokens. First, recall from (83) that a1
is the smallest coefficient among the missing signal tokens. As a result, it achieves the largest inner product score
−α ·
〈
z′∗t , x′i

〉
. To complete the proof, we use positional encoding to break any score ties. Since q1 is the left most

missing signal token, any other missing signal token will achieve a strictly worse position encoding score −θppi as
p ≥ 1/4, θ = 1, and pi = i/T is strictly increasing. This guarantees that q1 achieves the strictly highest score as desired.

To summarize, by choosing suitable β ≫ α ≫ θ = 1 and proportionally scaling up α, β, θ sufficiently, we conclude with the
proof. □
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F. Proofs for Section B – Convolution-Attention Tradeoff
F.1. Proof of Proposition 1

The key to the proof is establishing the detection threshold of the correct block ID β in (LCAT) i.e. we wish to guarantee
b = β. Once correct block is retrieved, the rest of the argument is identical to AR over dense attention as we retrieve the
correct blocks. Observe that, we have L̄− 1 blocks in total (not counting the local/final block). Note that zi ∼ N(0, σ2BId/d)
for i , β and zβ ∼ N(xL, σ

2(B − 1)Id/d).

Set gi = z⊤i xL ·
√

d/B for i < L̄ and gβ. Observe that gi’s and gβ are independent random variables. Additionally,
gi,β ∼ N(0, σ2), gβ ∼ N(

√
d/B, (1 − 1/B)σ2). Let gmax = maxi,β gi. We have the following gaussian concentration

inequalities

P(gmax ≥ σ(
√

2 log L′ + t)) ≤ e−t2/2 (85)

P(gβ ≤
√

d/B − σt) ≤ e−t2/2. (86)

Combining these three, we find that, with probability 1 − 2e−t2/2, whenever
√

d/B ≥ σ(
√

2 log L′ + 2t), we have that

gβ > gmax = max
i,b

gi.

This condition is implied by d ≥ σ2B(
√

2 log L̄ + 2t)2. Applying change of variable on t, we conclude with the result.

Retrieving the value token. Once the correct block is identified, (query, value) pair is retrieved by applying full softmax
attention with W = cI with c→ ∞ within the selected two blocks. Recall that local attention retrieves the query and the
choice of convolutional filter will return the value ahead of the query. To guarantee this, we only need to prove that xL also
has the largest correlation to itself within the two selected blocks we apply local attention. To this aim, we similarly use the
fact that correlations between xL and the other tokens in the selected blocks are IID N(0, σ2/d) variables. There are at most
2B−2 such other tokens. Consequently, the maximum local correlation gloc

max obeys P(gloc
max ≥ σ(

√
2 log(2B)+t)/

√
d) ≤ e−t2/2.

We wish to guarantee that gloc
max < 1. This holds with 1 − e−t2/2 probability whenever d ≥ σ2(

√
2 log(2B) + t)2. This latter

condition is implied by the original condition because
√

B(
√

2 log L̄ + 2t) ≥
√

2B log 2 + 2t ≥
√

2 log(2B) + t. Union
bounding, we end up with a success probability of at least 1 − 3e−t2/4.

Next, we wish to show the converse result. We recall that as the expectation of supremum of K IID N(0, 1) become
(1 ± o(1))

√
2 log K as K grows to infinity. Thus, for sufficiently large L̄ ≥ Cε, we have that E[gmax] ≥

√
(2 − ε) log L̄.

Consequently, we can write the reversed inequalities

P(gmax ≤ σ(
√

(2 − ε) log L̄ − t)) ≤ e−t2/2 (87)

P(gβ ≥
√

d/B + σt) ≤ e−t2/2. (88)

Combining these, we conclude with the advertised reverse inequality. As a result, with the same probability, we fail to
identify the block containing the target query/value pair.

The next subsection proves the uniform AR guarantees via an application of Slepian’s lemma.

F.2. Proof of Uniform Associative Recall via Slepian’s Lemma (Proposition 1 continued)

Slepian’s Lemma (Slepian, 1962) is an important gaussian comparison inequality. A specific variation is the following result
that holds for a random gaussian matrix. We first introduce the Gaussian width definition that is important for assessing the
complexity of a geometric set in a high-dimensional space.

Definition 7 (Gaussian width). Let S ∈ Rd and g ∼ N(0, Id). Gaussian width of S is defined as ω(S ) = E[supx∈S x⊤ g]

Proposition 4 (Slepian’s Lemma). Let X ∈ Rn×d be a matrix with IID N(0, 1) entries. Let g ∼ N(0, In) and h ∼ N(0, Id).
Given sets A ∈ Rn, B ∈ Rd, we have that

E[supa∈A,b∈Ba⊤X⊤b] ≤ E[supa∈A,b∈Ba⊤g∥b∥ℓ2 + b⊤h∥a∥ℓ2 ].

We have the following application of Slepian’s lemma.
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Lemma 4. Let X ∈ RL×d be a matrix with IID N(0, 1) entries. Let g ∼ N(0, Id) be an independent vector. Fix a subset of
unit sphere S ∈ Rd. With probability 1 − e−t2/2, we have that

sup
β∈S
∥Xβ∥ℓ∞ ≤

√
2(
√

log L + ω(S ) + t).

Proof. Define the augmented matrix X′ =
[

X
−g

]
. Define the set A ∈ RL+1 such that a ∈ A has the following form. a has

two nonzero entries both of which are equal to 1. Additionally, last entry is nonzero i.e. aL+1 = 1. Using ∥a∥ℓ2 =
√

2 and
∥β∥ℓ2 = 1, we now apply Slepian’s lemma as follows

E[supa∈A,β∈S a⊤X⊤β] ≤ E[supa∈A,b∈Ba⊤ g∥β∥ℓ2 + β
⊤h∥a∥ℓ2 ] (89)

≤ E[∥g∥ℓ∞ +
√

2 sup
β∈S
β⊤h] (90)

≤
√

2(
√

log L + ω(S )). (91)

To proceed, observe that a⊤X⊤β is a
√

2-Lipschitz function of X. This implies the statement of the lemma. □

Proposition 5. Consider the setting of Proposition 1. Suppose we wish to solve AR for the worst query drawn from a set S
which is subset of the unit sphere. If d ≥ 2σ2B(

√
log L̄ + ω(S ) + t)2, (LCAT) solves AR with probability at least 1 − 2e−t2/2

for all xL ∈ S .

Proof. The proof follows the steps of Section F.1 with the following distinction. Note that, to determine the correct block,

we now need to do a worst case analysis. Namely, let z′β = xL − zβ, z′i = zi for i , β, and set Z′ =


z′1
...

zL̄−1

. Also let

Z = [z1 . . . zβ−1 zβ+1 . . . zL̄−1]. The accurate detection of the block β coincides with the following event

inf
xL∈S
∥ZxL∥ℓ∞ − z⊤β xL > 0.

Using z⊤xL = 1 − z′⊤xL and defining the set A to be the set of all vectors with exactly two 1s with one of the 1 appearing at
position β, the above event can alternatively be written as

sup
a∈A,xL∈S

a⊤Z′xL < 1.

Now applying Lemma 4 on the left hand side, we find that, with probability 1 − e−t2/4,

sup
a∈A,xL∈S

a⊤Z′xL ≤

√
2B
d
σ(
√

log L + ω(S ) + t)

Consequently, whenever d > 2σ2B(log L + ω(S ) + t)2, we conclude with the result. Note that, when S is an r-dimensional
subspace, we plug in the well-known bound ω(S ) ≤

√
r. Finally, we need to union bound this event with the event that the

query token can be identified through local attention by letting Wk =Wq =
√

cI and c→ ∞. To do so, we apply Lemma 4
over the 2B− 2 non-query tokens. Denoting these tokens by Xloc ∈ Rd×(2B−2), we have that P(Xlocq ≥

√
2σ2/d · (

√
log(2B)+

ω(S ) + t)) ≤ e−t2/2. Consequently, Xlocq < q⊤q = 1 as soon as the same condition d ≥ 2σ2B(
√

log L̄ + ω(S ) + t)2 holds.
This introduces an additional e−t2/4 probability of failure. □

F.3. Proof of Proposition 2

We essentially follow the proof of Proposition (1). The only differences are that, the variance calculations, comparison of
block correlations, and signal-to-noise ratio bounds will all slightly change due to exponential smoothing impacting the full
context window. To proceed, let us observe the following scenarios for a block ID 1 ≤ i < L̄:
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• Scenario 1: i < β. In this scenario, zi is exponentially-smoothed sum of IID vectors with N(0, 1) entries. Recalling
ρ = e−1/B, the variance σ2

z of entries of zi is upper bounded by

σ2
z =

∞∑
i=0

ρ2i =
σ2

1 − ρ2 ≤ 1.2B. (92)

Here, we used the fact that for B = 1, the bound holds and for B ≥ 2, we have that ρ2 = e−2/B ≤ 1 − 1
B . The latter

implies 1 − ρ2 ≥ 1/B and 1/(1 − ρ2) ≤ B.

The above bound on σ2
z implies that, setting gi = z⊤i xL ·

√
d/B, we have that gi ∼ N(0, σ2

i ) with σ2
i ≤ 1.2σ2.

• Scenario 2: i = β. In this scenario, the variance upper bound σ2
i above is still applicable. The key is to estimate and

lower bound the mean component similar to the proof of Proposition (1). Let the query token appear in the kth position
of block β for k ∈ [B]. Define p = (k − 1)/B. Observe that

E[gβ] = E[z⊤β xL ·
√

d/B] = e−p
√

d/B.

• Scenario 3: i > β. This is essentially same as Scenario 2, because, thanks to the exponential smoothing, the signal
token from block β will propagate to future zi’s. The coefficient of the propagation satisfies

E[gi] = E[z⊤i xL ·
√

d/B] = e−(p+i−β)
√

d/B.

Now that we have gathered these three scenarios, we can define gmax = maxi,β gi − E[gi]) similar to above. gmax is a
supremum of independent Gaussians of bounded variance controlled by (92). Through this, we have that

P(gmax ≥ 1.6σ(
√

log L̄ + t)) ≤ e−t2
(93)

P(gβ − E[gβ] ≤ 1.6σt) ≤ e−t2
. (94)

Secondly, for i , β, using p ≤ 1, we have that

E[gβ] − E[gi] ≥ (e−p − e−(p+i−β))
√

d/B ≥ (e−1 − e−2)
√

d/B ≥ 0.23
√

d/B.

Consequently, we require 0.23
√

d/B > 1.6σ(
√

log L̄ + 2t). Using τ = t/2, this is guaranteed by d ≥ 50Bσ2(
√

log L̄ + τ)2

with probability at least 1 − 2e−τ
2/4. Once the correct block is identified, (query, value) pair is retrieved by applying dense

softmax attention with W = cI with c → ∞ over the selected blocks thanks to the choice of convolutional filter. This
argument is identical to “Retrieving the value token” proof in Section F.1 and introduces an additional e−τ

2/2 probability of
failure in the union bound.
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