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Open the fridge, 
find what you need.

Open the microwave, 
press start to heat.

Close the laptop 
screen gently.

Open the tea cabinet and 
pick your favorite blend.

RGB Rendering
✗ TRUMANS
✗ ZeroHSI
✓ Ours

Articulation
✗ TRUMANS
✗ ZeroHSI
✓ Ours

Physical Constraint
TRUMANS ✓

ZeroHSI ✗
Ours ✓

Zero-shot
TRUMANS ✗

ZeroHSI ✓
Ours ✓

Figure 1: ArtHOI enables zero-shot synthesis of realistic articulated human-object interactions from
text prompts. Unlike prior works (e.g., TRUMANS, ZeroHSI), our method achieves all four capa-
bilities simultaneously: RGB rendering, articulated object modeling, physical constraint modeling,
and zero-shot generalization, notably without using 3D supervision.

ABSTRACT

Synthesizing realistic articulated human-object interactions is challenging, espe-
cially when explicit 3D/4D supervision is unavailable. Recent zero-shot methods
distill dynamics priors from pretrained video diffusion models, but this setting in-
herently provides only monocular evidence. That makes articulated part motion
highly ambiguous and tightly coupled with human actions, so prior work falls back
to rigid-object assumptions and fails on everyday articulated scenes (e.g., contain-
ing doors, fridges, cabinets). We introduce ArtHOI, the first zero-shot framework
for synthesizing articulated human-object interactions via dynamics distillation
from monocular video priors. We make two critical designs: 1) Flow-based part
segmentation: we use optical-flow cues to separate dynamic from static regions,
because motion is the most reliable signal when multi-view information is absent.
2) Decoupled dynamics distillation: joint optimization of human motion and ob-
ject articulation is unstable under monocular ambiguity, so we first recover object
articulation, then synthesize human motion conditioned on the reconstructed ob-
ject states. ArtHOI distills dynamics from monocular 2D video priors without any
3D/4D ground truth. Across diverse scenes, ArtHOI yields physically plausible
articulated interactions, improving contact quality and reducing penetration while
enabling behaviors beyond rigid-only baselines. This extends zero-shot HOI syn-
thesis from rigid manipulation to articulated dynamics. Code will be available.

1 INTRODUCTION

Synthesizing realistic human motions that interact with 3D environments is fundamental to computer
graphics, VR/AR, embodied AI, and robotics applications (Li et al., 2024b; Kulkarni et al., 2024;
Jiang et al., 2024a;b; Gao et al., 2020; Diller & Dai, 2024; Li et al., 2024c; Xu et al., 2023; Fan
et al., 2025b). These interactions encompass both static scenarios (e.g., sitting, lying) and dynamic
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Table 1: Comparison of capabilities across different approaches. HOI: Human-object interaction;
RGB: RGB rendering; Art: Articulated objects; Phy: Physical constraints; ZS: Zero-shot.

Method HOI RGB Art Phy ZS Method HOI RGB Art Phy ZS

CHOIS Nifty
LINGO TRUMANS
GenZi ZeroHSI
InterDreamer Chao et al.
Song et al. Ours

scenarios involving articulated objects (e.g., opening doors, fridges, or cabinets). Such interactions
are remarkably diverse and pervasive in daily life, involving numerous articulated objects and vari-
ous interaction scenarios (Zhang & Lee, 2025; Zhang et al., 2025c). Despite significant advances in
human or object motion synthesis (Zhu et al., 2023; Li et al., 2023; Lin et al., 2023; Petrovich et al.,
2021; Xie et al., 2021; Xiao et al., 2025; Zhang et al., 2024; Fan et al., 2025a), synthesizing this
broad spectrum of articulated human-object interactions remains a fundamental challenge due to the
complex kinematic constraints and part-wise motion dependencies inherent in articulated objects.

This challenge stems from the prohibitive cost of collecting 3D/4D ground truth data, particularly for
articulated human-object interactions. Prior work in human interaction synthesis primarily relies on
datasets containing paired 3D scene and Mocap data (Jiang et al., 2024b; Hassan et al., 2021). While
these methods can generate realistic motions for everyday activities such as navigation and sitting,
they exhibit limited generalization across environments and interaction types due to the high cost and
limited diversity of the Mocap collection. The acquisition of 3D/4D supervision for articulated inter-
actions is particularly challenging, requiring precise tracking of both human motion and object part
movements, specialized capture setups, and extensive manual annotation. Recent approaches have
sought to circumvent this dependency by leveraging video generation models as motion priors (Li
et al., 2024a; Xu et al., 2024; Li & Dai, 2024). For example, ZeroHSI (Li et al., 2024a) demonstrates
that video diffusion models can be utilized to generate plausible 4D interactions through differen-
tiable rendering, without requiring 3D/4D data. However, this zero-shot setting inherently operates
on monocular evidence, which creates fundamental challenges for articulated object understanding.

However, these methods are inherently constrained to rigid object manipulation, treating dynamic
objects as single entities undergoing global 6D transformations (Li et al., 2024b; Jiang et al., 2024a).
They are incapable of modeling articulated objects where parts exhibit relative motion under kine-
matic constraints. This limitation stems from two fundamental challenges: 1) the difficulty of seg-
menting movable parts from monocular video; and 2) the tight coupling between human action and
object articulation, which renders joint optimization unstable and prone to failure. As summarized in
Table 1, no existing zero-shot method can generate interactions involving articulated object motion.

To address these limitations, we propose a novel framework that enables zero-shot synthesis of hu-
man interactions with articulated objects. Our key technique is to decouple the estimation of object
articulation from human motion synthesis, avoiding the instability of joint optimization. Our ap-
proach introduces a structure-aware dynamics distillation pipeline that extracts articulated object
dynamics from 2D video generation priors (KLING AI Team, 2024) without requiring 3D supervi-
sion. This eliminates the need for expensive 3D/4D data collection while leveraging the rich motion
priors embedded in pretrained video diffusion models. Specifically, we first estimate part-wise ar-
ticulated object motion using flow-based segmentation (Karaev et al., 2024; Teed & Deng, 2020)
and articulation-aware regularization (Igarashi et al., 2005). Then, we refine human motion condi-
tioned on the reconstructed articulated object states. This two-stage decoupled optimization strategy
enables stable and physically plausible articulated interaction generation by separating object artic-
ulation from human motion synthesis. We demonstrate our approach on diverse scenes, generating
plausible articulated human-object interactions that are beyond the reach of prior art.

Our main contributions can be summarized as follows: First, we present the first zero-shot frame-
work for human interactions with articulated objects, extending video-prior-driven HOI beyond rigid
manipulation. Second, we introduce a two-stage structure-aware dynamics distillation pipeline that
recovers articulated object dynamics from 2D video priors without 3D supervision. Third, we
demonstrate a decoupled optimization strategy that enables stable and physically plausible articu-
lated interaction generation by separating object articulation from human motion synthesis.
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2 RELATED WORK

Human-Object Interaction Synthesis. Synthesizing plausible human motions while manipulating
objects has long been studied in computer animation, robotics, and embodied AI (Gao et al., 2020;
Diller & Dai, 2024; Xu et al., 2023; Fan et al., 2025b). Traditional approaches rely on motion
capture datasets paired with object trajectories (Kulkarni et al., 2024; Jiang et al., 2024b), enabling
data-driven synthesis of interactions. Recent methods generate interactions from language prompts
and sparse object waypoints, but require training on interaction-specific data (Li et al., 2024b; Jiang
et al., 2024a; Zhang et al., 2025b) or assume known object kinematics (Huang et al., 2025; Li et al.,
2025a; Jiang et al., 2023). These models exhibit limited generalization due to their dependence on
curated motion sequences. In contrast, zero-shot methods circumvent this dependency by leveraging
external priors. GenZi (Li & Dai, 2024) generates static human poses using 2D diffusion models,
while ZeroHSI (Li et al., 2024a) synthesizes dynamic 3D human-object interactions from image-to-
video models. However, existing zero-shot approaches assume only 6D rigid object manipulation.

Articulated Object Modeling. Modeling articulated objects requires understanding object kine-
matics. A significant line of work focuses on reconstructing articulated object structure and motion
from visual inputs (Chao et al., 2025; Song et al., 2024; Zhai et al., 2025; Yao et al., 2025; Guo
et al., 2025; Lin et al., 2025). While these methods can estimate part segmentation and trajectories,
they often rely on category-level templates or known part hierarchies, limiting their applicability to
novel objects. More recent approaches adopt unsupervised paradigms to discover articulated parts
from motion cues alone (Deng et al., 2024; Peng et al., 2025; Liu et al., 2023; Xu, 2021; Goyal et al.,
2025; Zhang et al., 2025d). However, these methods operate purely on object-centric motion and
ignore the rich semantic and physical signals provided by human-object interaction.

Video Distillation for 3D Reconstruction. Recent zero-shot 3D methods leverage video diffu-
sion models (VDMs) as powerful priors to generate 4D human-scene interactions without 3D su-
pervision. Methods like Zero4D (Park et al., 2025) and Free4D (Liu et al., 2025a) show that a
single input video can be extended into coherent 4D sequences by sampling from VDMs, while
VideoScene (Wang et al., 2025) distills these outputs directly into 3D Gaussian representations in a
single forward pass. Li et al. (Li et al., 2025b) specifically addresses articulated object kinematics
by distilling motion patterns from video diffusion models, demonstrating the potential of VDMs for
understanding articulated dynamics. Recent work has also explored diffusion-based generation of
articulated objects (Zhang et al., 2025a; Kreber & Stueckler, 2025; Su et al., 2025; Gao et al., 2025).
However, these methods model objects as monolithic entities with a single global transformation,
failing to capture the part-wise articulation essential for human-object interaction.

3 METHODOLOGY

We address the problem of synthesizing realistic, articulated human-object interaction dynamics
without any 3D supervision. Given a text prompt T , our method outputs a temporally coherent 3D
motion sequence involving a human (represented via SMPL-X (Pavlakos et al., 2019; Loper et al.,
2015)) and an articulated object, both modeled using 3D Gaussians. Specifically, the human is pa-
rameterized by shape β ∈ R10, pose ψ(t) ∈ RJ×3, and translation τ (t) ∈ R3, while the object
parts are governed by SE(3) transformations Td(t). As illustrated in Fig. 2, we first generate a
monocular video V = {I(t)}Tt=1 from T using video diffusion models. Then, we distill 3D dy-
namics from this 2D video through a decoupled two-stage framework: (1) In Stage I (Sec. 3.1),
we identify articulated object parts using optical flow and SAM-guided segmentation, and recover
their 3D articulation via differentiable rendering; (2) In Stage II (Sec. 3.2), we refine human motion
conditioned on the reconstructed object dynamics, ensuring physically plausible contact and tempo-
ral coherence. This monocular-aware decoupling effectively resolves the ambiguity between human
and object dynamics, enabling realistic interaction synthesis from monocular priors alone.

3.1 FLOW-BASED PART SEGMENTATION

We present a flow-based segmentation approach that leverages optical flow tracking and SAM-
guided segmentation to identify articulated object components from the generated monocular video
(Fig. 2 left). Given the monocular video sequence V = {I(t)}Tt=1 generated from a pre-trained
video diffusion model based on the text prompt T , we generate segmentation masks Mh(t) for hu-
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Figure 2: ArtHOI synthesizes articulated human-object interactions from monocular video priors.
Given only synthesized 2D video V (no 3D supervision), we first recover object articulation using
optical flow and differentiable rendering (Stage I), then synthesize human motion conditioned on the
reconstructed object (Stage II). This monocular-aware decoupling resolves the ambiguity between
human action and object dynamics, enabling realistic interactions with articulated objects.

man and Mo(t) for object from each frame I(t). To identify articulated parts, we leverage optical
flow to provide crucial temporal motion cues that naturally distinguish between static and dynamic
object components, as traditional segmentation methods struggle with the complex part-wise motion
patterns of articulated objects under monocular observation. We use SAM-guided (Kirillov et al.,
2023) segmentation with optical flow tracking (Karaev et al., 2024) and back projection (see Fig. 3
(a)) for robust articulated part identification.

Optical Flow Tracking. The segmentation process begins with optical flow tracking to identify
dynamic and static regions (Fig. 2 middle top). For each frame pair [I(t), I(t + 1)], we compute
optical flow Ft→t+1 using a pre-trained flow estimation network (Karaev et al., 2024). We recognize
dynamic and static points by a threshold τf :

Pd = {p ∈ Mo(t) | ∥Ft→t+1(p)∥2 > τf}, Ps = {p ∈ Mo(t) | ∥Ft→t+1(p)∥2 ≤ τf}. (1)

SAM-guided Segmentation. We then employ Segment Anything (SAM) (Kirillov et al., 2023; Ravi
et al., 2024) to generate precise segmentation masks (Fig. 2 middle). Given the dynamic and static
2d point prompts, SAM produces a binary mask Md(t) that separates the articulated object parts:

Md(t) = SAM(I(t),Pd,Ps) (2)
Back Projection. To refine the segmentation and ensure 3D consistency, we project the SAM mask
back to the 3D Gaussian space through back projection (Stearns et al., 2024) (see Fig. 3 (a)). This
yields articulation weights wd

i and ws
i for the i-th Gaussian, indicating its dynamic and static con-

tributions. We then define the dynamic and static Gaussian sets as Gd = {gi ∈ Go | wd
i > ws

i } and
Gs = {gi ∈ Go | ws

i ≥ wd
i }.

To establish kinematic constraints between dynamic and static parts, we identify quasi-static pairs
that represent potential articulation points (see Fig. 3 (b)). We identify quasi-static regions Pqs =
{p ∈ Pd | ∥F0→T (p)∥2 ≤ τs · F̄0→T } from the dynamic regions where motion magnitude is
relatively low, where F̄ is the average motion magnitude across the entire sequence. We establish
binding pairs E by connecting quasi-static Gaussians to their near static Gaussians within radius r:

E = {[gqd,gqs] | gqs ∈ Gd,Π(gqs) ∈ Pqs,gqd ∈ Gs, ∥gqd − gqs∥2 ≤ r}, (3)
where gqs/gqd represents the corresponding quasi-static/quasi-dynamic Gaussians, respectively.

3.2 DECOUPLED DYNAMICS DISTILLATION FRAMEWORK

Our framework employs a novel two-stage optimization strategy that decouples object articulation
estimation from human motion synthesis to address the inherent ambiguity of monocular obser-
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(a) Back Projection (b) Quasi-static Point Pairs (c) Human-object Contact Loss

𝑔!"
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𝑤!> 𝑤" 𝑤! < 𝑤" 𝐾(𝑡)

𝐾(𝑡)

Figure 3: Key components for articulated interaction under monocular supervision. (a) Back pro-
jection maps masks to 3D to identify moving parts. (b) Quasi-static point pairs link dynamic/static
regions for kinematic stability. (c) Contact loss projects 2D keypoints into 3D using object depth,
guiding human motion without multi-view cues. Ablations in Fig. 5 (middle: (b), right: (c)).

vations. This separation avoids the instability of joint optimization, while preserving the intricate
coupling between human actions and object articulations, leading to more stable and accurate results.

Stage I: Object Articulation. We first focus on estimating the articulations of the segmented
object parts, leveraging the flow-based segmentation to guide articulation estimation through opti-
mization (Fig. 2 right top). We first focus on object articulation as it provides a more constrained
optimization problem with clear kinematic constraints, making it easier to converge to physically
plausible solutions and creating a stable reference frame for subsequent human motion synthesis.

We represent the articulated object motion using rotation matrix Rd(t) ∈ SO(3) and translation
td(t) ∈ R3, with transformation Td(t) =

[
Rd(t), td(t)

]
. We also introduce articulation weights

Wo ∈ RV×J for each part, determined from the flow-based segmentation results and fixed during
optimization. The object Gaussians are driven by articulation parameters:

µo
i (t) = wd

iT
d(t)µo

i (0) + ws
iµ

o
i (0) (4)

where wd
i and ws

i are object articulation weights for the articulated part and static components,
respectively. The optimization objective integrates multiple complementary constraints to ensure
accurate and physically plausible articulation:

min
{Rd,td}

Lo
r + λaLa + λsLs + λtrLtr. (5)

The reconstruction loss Lo
r measures the alignment between the rendered object and the SAM masks:

Lo
r = ∥R(Go(t))− I(t)∥22 + βo∥S(Go(t))−Mo(t)∥22. (6)

The articulated loss La enforces kinematic constraints by maintaining the relative distances between
quasi-static pairs, while the tracking loss Ltr aligns 3D Gaussian motion with 2D optical flow:

La =
∑

(gd,gs)∈E

∥d(gd(t),gs(t))− d(gd(0),gs(0))∥22, (7)

Ltr =
∑

gd∈Gd

∥Π(gd(t))− Ft→t+1(Π(gd(t)))∥22, (8)

where d(·, ·) denotes the Euclidean distance, gd(t) and gs(t) are 3D positions of dynamic and static
Gaussians at time t, and gd(0)/gs(0) are their canonical positions. The tracking loss Ltr ensures
that the 2D projection of 3D Gaussian points matches the corresponding 2D optical flow tracking,
where Π(gd(t)) are 2D projections of 3D Gaussians and Ft→t+1(Π(gd(t))) are 2D tracked points
from optical flow. The smoothness loss Ls regulates temporal consistency across the sequence.

Stage II: Aligned Human Motion. We then refine the human motion from the off-the-shelf human
mesh reconstruction (HMR) (Shen et al., 2024) to align with the reconstructed object articulation
from Stage I, leveraging the object articulation as constraints for human motion optimization (Fig. 2
right bottom). In this stage, we optimize the human motion parameters θ(t) to drive the human
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Gaussians Gh(t), while maintaining consistency with the object articulation estimated in Stage I.
The optimization objective integrates multiple complementary constraints:

min
θ

Lh
r + λpLp + λfsLfs + λsLs + λkLk. (9)

The reconstruction loss Lh
r ensures visual alignment with the input video:

Lh
r =

T∑
t=1

∥R(Gh(t))− I(t)∥22 + βh
T∑

t=1

∥S(Gh(t))−Mh(t)∥22, (10)

where R(·) and S(·) denote rendering and silhouette extraction respectively. The kinematic loss Lk

leverages 3D contact keypoints derived from the object articulation (see Fig. 3 (c)):

Lk =

T∑
t=1

∑
j∈Kt

∥Jj(θ(t))−Kj(t)∥22, (11)

where Kt is the set of confident contact keypoints at time t, Jj(θ(t)) is the j-th joint position from
SMPL-X, and Kj(t) is the corresponding 3D contact keypoint for the j-th joint.

Additionally, we incorporate the prior loss Lp to maintain natural human motion from the video dif-
fusion model, and the foot sliding loss Lfs to prevent unrealistic foot movement during interactions:

Lp =

T∑
t=1

∥θ(t)−θv(t)∥22+η

T∑
t=1

∥ψ(t)−ψv(t)∥22, Lfs =

T∑
t=1

∑
v∈Vfoot

∥v(t)−v(t−1)∥22, (12)

where θv(t) and ψv(t) are the VDM-estimated parameters, and Vfoot represents the foot vertices.
The foot sliding loss leverages the foot contact estimation from GVHMR (Shen et al., 2024).

The final rendering combines all three Gaussian sets: G(t) = Gh(t) ∪ Go(t) ∪ Gs. Detailed imple-
mentations are provided in the supplementary material (see Sec. A).

4 EXPERIMENTS

We conduct comprehensive experiments to evaluate our ArtHOI performance on zero-shot artic-
ulated human-object interaction synthesis. Our evaluation covers two main aspects: interaction
quality and articulated object dynamics. We compare our approach against several state-of-the-art
baselines and demonstrate significant improvements across multiple metrics.

Baselines. We compare our method against four representative approaches: TRUMANS (Jiang
et al., 2024b), a mocap-based method requiring paired 3D scene and motion capture data;
LINGO (Jiang et al., 2024a), a language-guided human motion synthesis approach; CHOIS (Li et al.,
2024b), a contact-aware human-object interaction synthesis method; and ZeroHSI (Li et al., 2024a),
a zero-shot method leveraging video diffusion models for rigid object interactions. Additionally,
for articulated object dynamics, we compare against D3D-HOI (Xu et al., 2021) and 3DADN (Qian
et al., 2022), which are designed explicitly for monocular articulated object estimation, providing a
direct comparison of our monocular-aware approach.

Datasets and Metrics. 1) For articulated object dynamics, we use single-view videos rendered
from scenes in the ArtGS dataset (Liu et al., 2025b) with ground truth annotations. 2) For human-
object interaction, we follow ZeroHSI (Li et al., 2024a) where each scene is annotated with natural
language descriptions of human-scene interactions and corresponding initial positions. The scenes
are from Replicate (Straub et al., 2019), with humans from XHumans (Shen et al., 2023) and ob-
jects generated by Trellis (Xiang et al., 2024). We employ two categories of metrics: interaction
quality and articulated object dynamics. The interaction quality metrics include X-CLIP (Ni et al.,
2022) for semantic alignment, Smoothness for motion temporal consistency, Foot Sliding for foot
sliding detection, Contact% for contact percentage, and penetration errors (Penetration%) for physi-
cal plausibility. The articulated object dynamics metrics include rotation errors (Rot) for joint angle
accuracy. Details of all evaluation metrics are provided in the supplementary material (see Sec. C).

Implementation Details. We implement our framework using PyTorch (Paszke et al., 2019) on
NVIDIA A100 GPUs. The video diffusion model is based on KLing (KLING AI Team, 2024), and
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Table 2: Comparison of interaction quality. Smoothness (↓) is best interpreted among zero-shot
methods. Non-zero-shot high smoothness stems from minimal contact, not motion instability.

Method Zero-shot X-CLIP ↑ Smoothness ↓ Foot Sliding ↓ Contact% ↑ Penetration% ↓

TRUMANS 0.169 0.84 1.10 29.07 0.12
LINGO 0.205 0.30 0.43 30.12 0.36
CHOIS 0.111 0.64 1.17 39.72 0.09

ZeroHSI 0.204 1.74 0.44 61.95 1.49
Ours 0.244 0.87 0.31 75.64 0.08
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Open the fridge, find what you need. Open the microwave. Close the laptop screen gently.

Figure 4: Qualitative comparison of our method with baselines. Our method synthesizes more
realistic articulated human-object interactions with proper contact and natural motion coordination.
Better inspected in our supplementary video.

we employ the Adam (Kingma & Ba, 2014) optimizer for training. We use 3D Gaussian splatting
for differentiable rendering, enabling end-to-end optimization of both articulated object and human
motions. Training typically takes approximately 30 minutes on a single NVIDIA A100 GPU.

4.1 INTERACTION QUALITY RESULTS

Quantitative Comparison. Table 2 presents the quantitative comparison of interaction quality met-
rics. Our method demonstrates superior performance across multiple key areas. We achieve the
highest X-CLIP score (0.244), indicating superior semantic alignment between synthesized inter-
actions and textual descriptions. In terms of foot sliding, our method achieves the lowest score
(0.31), demonstrating more realistic foot contact during interactions. Most notably, we achieve the
highest contact percentage (75.64%), showing that our method maintains more consistent human-
object contact throughout the interaction sequence. While non-zero-shot methods (TRUMANS:
0.84, LINGO: 0.30, CHOIS: 0.64) achieve lower smoothness scores, these results should be in-
terpreted with caution as false positives. The low smoothness scores of non-zero-shot methods
stem from their minimal contact with articulated objects (Contact%: TRUMANS 29.07%, LINGO
30.12%, CHOIS 39.72%), rather than genuine motion stability. When human motion has limited
interaction with objects, the smoothness metric can be artificially low due to the absence of com-
plex contact dynamics that naturally introduce motion variations. In contrast, our method maintains
competitive smoothness (0.87) while achieving significantly higher contact rates (75.64%), demon-
strating our approach’s ability to balance motion smoothness with realistic interaction complexity.

Our method achieves the lowest penetration errors (0.08), demonstrating superior physical plausi-
bility compared to all baselines. This pattern correlates with the contact percentage results: our
method achieves the highest contact percentage (75.64%), while baselines show lower contact rates
(ZeroHSI: 61.95%, CHOIS: 39.72%). The superior penetration performance of our method demon-
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strates the effectiveness of our flow-based segmentation and two-stage optimization in maintaining
physically plausible interactions with articulated objects.

Qualitative Comparisons. Fig. 4 shows that our method generates realistic human interactions with
diverse articulated objects. Data-driven baselines fail under complex prompts due to their lack of
explicit articulated kinematics, while ZeroHSI treats objects as rigid and cannot model articulation.
While ZeroHSI can generate human motion, it is fundamentally limited by its design and cannot
achieve articulated object motion generation, treating all objects as rigid entities. In contrast, our
method successfully handles complex articulated interactions by explicitly modeling object articu-
lation through flow-based segmentation and two-stage optimization.

4.2 ARTICULATED OBJECT DYNAMICS RESULTS

Table 3: Articulated object dynamics metrics under
monocular setting (without multi-view input).

Method Rot (mean) ↓ Rot (max) ↓ Rot (min) ↓

D3D-HOI 25.13 57.29 8.21
3DADN 21.17 55.21 5.62

Ours 6.71 21.41 0.58

Table 3 presents the comprehensive results
for articulated object dynamics estimation.
Our method demonstrates dramatically supe-
rior performance across all metrics compared
to specialized methods. Our method achieves
a mean rotation error of 6.71, representing
a 73.3% reduction compared to D3D-HOI
(25.13) and a 68.3% reduction compared to
3DADN (21.17). Additionally, we achieve the lowest maximum rotation error (21.41 vs. 57.29 /
55.21) and minimum rotation error (0.58 vs. 8.21 / 5.62). These results validate our core contri-
bution: the ability to accurately estimate articulated object dynamics from 2D video priors without
requiring 3D supervision. The significant improvements in rotation estimation directly translate to
more realistic and physically plausible articulated object motion during human interactions.

4.3 USER STUDY

To further validate the perceptual quality of our synthesized interactions, we conduct a compre-
hensive user study comparing our method with baseline approaches. We recruit 51 evaluators with
diverse backgrounds to assess the quality of synthesized human-articulated object interactions. Par-
ticipants rate results across four criteria: 1) Realism (naturalness and physical plausibility), 2) Con-
tact Quality (accuracy of human-object contact), 3) Motion Smoothness (temporal coherence), and
4) Overall Preference. Full study details are in the supplementary material (Sec. B).

Results. Table 4 presents the comprehensive user study results across all evaluation dimensions. Our
method demonstrates superior performance compared to all baseline approaches, with participants
consistently preferring our synthesized interactions. Specifically, our method achieves the highest
preference rates against TRUMANS (98.04% overall), CHOIS (95.28% overall), LINGO (91.51%
overall), and ZeroHSI (89.42% overall). The results particularly highlight our method’s strength in
Contact Quality and Motion Smoothness, where we achieve 98.00% and 92.16% preference rates
against TRUMANS, respectively. This validates that our flow-based segmentation and two-stage
optimization effectively capture the complex dynamics of articulated human-object interactions,
producing more realistic and temporally consistent results than existing approaches.

4.4 ABLATION STUDIES

We conduct extensive ablation studies to analyze the contribution of different components in our
framework. Table 5 presents the quantitative results of removing individual components.

Two-Stage Dynamics Distillation is crucial for stable performance. The joint optimization shows
intermediate performance compared to the full model, validating our decoupled strategy that sepa-
rates object articulation estimation from human motion synthesis. As shown in Fig. 5 (a), the joint
optimization approach (Joint Opt.) fails to learn reasonable interactions, as the coupled optimization
of human motion and object articulation leads to unstable training dynamics and poor convergence.

Articulation-aware regularization significantly improves articulated object dynamics. Com-
paring rows 2 and 5, without articulation regularization (La), the rotation errors increase dramati-
cally (Rot (mean): 6.71 → 15.67), indicating that kinematic constraints are essential for maintaining

8
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Figure 5: Comparing our full model with variants. Better inspected in our supplementary video.

Table 4: User study results showing the percentage of participants who preferred our method over
each baseline across four evaluation dimensions.

Method Realism ↑ Contact Quality ↑ Motion Smoothness ↑ Overall Preference ↑

Ours vs. TRUMANS 96.08% 98.00% 92.16% 98.04%
Ours vs. CHOIS 95.20% 89.08% 94.83% 95.28%
Ours vs. LINGO 90.20% 87.13% 92.00% 91.51%
Ours vs. ZeroHSI 91.18% 85.41% 84.21% 89.42%

Table 5: Ablation study results. We systematically remove individual components and evaluate their
impact on both interaction quality and articulation accuracy.

Method Interaction Articulation
X-CLIP ↑ Foot Sliding ↓ Contact% ↑ Rot (mean) ↓ Rot (max) ↓ Rot (min) ↓

Joint Opt. 0.187 0.67 61.45 12.34 35.89 2.01
w/o La 0.223 0.42 68.75 15.67 42.18 4.56
w/o Lk 0.201 0.58 59.82 6.71 21.41 0.58
w/o Ls 0.218 0.49 65.43 8.23 25.45 0.79

Full Model 0.244 0.31 75.64 6.71 21.41 0.58

physically plausible articulated object motion. The kinematic loss (Lk) in row 3 and smoothness loss
(Ls) in row 4 further contribute to stable and coherent articulated motion generation. Fig. 5 (b) and
(c) provide visual evidence: without articulation regularization (La), the articulated parts of objects
tend to separate from the main body, violating physical constraints and resulting in unrealistic object
configurations. Most critically, removing kinematic loss (Lk) severely degrades the quality of 3D
hand-object interactions, as the model cannot maintain proper spatial relationships between human
hands and articulated object parts during complex manipulation tasks.

5 CONCLUSION

This work introduces the first zero-shot framework for articulated human-object interaction syn-
thesis via dynamics distillation from monocular video priors, addressing the limitation of existing
methods that are inherently constrained to rigid object manipulation. Our key insight is to decou-
ple object articulation estimation from human motion synthesis through flow-based segmentation
and two-stage optimization, enabling stable reconstruction from monocular 2D video priors without
requiring 3D supervision. Through comprehensive evaluation on diverse interaction scenarios, our
approach achieves significant improvements over existing methods, generating realistic interactions
with articulated objects that were previously out of reach. Our work extends the scope of zero-shot
interaction synthesis beyond rigid manipulation to kinematically constrained environments, opening
new possibilities for more realistic and scalable interaction synthesis in virtual reality and robotics.

9
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ETHICS STATEMENT

This work does not directly involve human subjects. However, some publicly available datasets used
in this study (e.g., XHumans) may contain motion data derived initially from real humans, though
fully anonymized and widely adopted in the research community. No personally identifiable infor-
mation is used. All experiments were conducted using standard computational resources without
environmental or societal harm. The methodology does not introduce discriminatory biases, and the
model’s potential applications are aligned with responsible AI principles. The authors have reviewed
the ICLR Code of Ethics and confirm that this submission adheres to its guidelines.

REPRODUCIBILITY STATEMENT

To support reproducibility, we provide a complete description of our model architecture, training
procedures, hyperparameters, and evaluation protocols in the main paper. Additional implementa-
tion details, including data preprocessing steps, optimization settings, and environment specifica-
tions, are included in the Appendix. We have strived to document all necessary components with
sufficient clarity and precision to enable independent replication of our results.

REFERENCES

Jun-Jee Chao, Qingyuan Jiang, and Volkan Isler. Part segmentation and motion estimation for artic-
ulated objects with dynamic 3d gaussians. arXiv preprint arXiv:2506.22718, 2025.

Jianning Deng, Kartic Subr, and Hakan Bilen. Articulate your nerf: Unsupervised articulated object
modeling via conditional view synthesis. Advances in Neural Information Processing Systems,
37:119717–119741, 2024.

Christian Diller and Angela Dai. Cg-hoi: Contact-guided 3d human-object interaction generation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
19888–19901, 2024.

Ke Fan, Shunlin Lu, Minyue Dai, Runyi Yu, Lixing Xiao, Zhiyang Dou, Junting Dong, Lizhuang
Ma, and Jingbo Wang. Go to zero: Towards zero-shot motion generation with million-scale data.
arXiv preprint arXiv:2507.07095, 2025a.

Siyuan Fan, Wenke Huang, Xiantao Cai, and Bo Du. 3d human interaction generation: A survey.
arXiv preprint arXiv:2503.13120, 2025b.

Chen Gao, Si Liu, Defa Zhu, Quan Liu, Jie Cao, Haoqian He, Ran He, and Shuicheng Yan. Inter-
actgan: Learning to generate human-object interaction. In Proceedings of the 28th ACM Interna-
tional Conference on Multimedia, pp. 165–173, 2020.

Daoyi Gao, Yawar Siddiqui, Lei Li, and Angela Dai. Meshart: Generating articulated meshes with
structure-guided transformers. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 618–627, 2025.

Pradyumn Goyal, Dmitry Petrov, Sheldon Andrews, Yizhak Ben-Shabat, Hsueh-Ti Derek Liu, and
Evangelos Kalogerakis. Geopard: Geometric pretraining for articulation prediction in 3d shapes.
arXiv preprint arXiv:2504.02747, 2025.

Junfu Guo, Yu Xin, Gaoyi Liu, Kai Xu, Ligang Liu, and Ruizhen Hu. Articulatedgs: Self-supervised
digital twin modeling of articulated objects using 3d gaussian splatting. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 27144–27153, 2025.

Mohamed Hassan, Partha Ghosh, Joachim Tesch, Dimitrios Tzionas, and Michael J Black. Populat-
ing 3d scenes by learning human-scene interaction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14708–14718, 2021.

Ziyao Huang, Zixiang Zhou, Juan Cao, Yifeng Ma, Yi Chen, Zejing Rao, Zhiyong Xu, Hongmei
Wang, Qin Lin, Yuan Zhou, et al. Hunyuanvideo-homa: Generic human-object interaction in
multimodal driven human animation. arXiv preprint arXiv:2506.08797, 2025.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Takeo Igarashi, Tomer Moscovich, and John F Hughes. As-rigid-as-possible shape manipulation.
ACM transactions on Graphics (TOG), 24(3):1134–1141, 2005.

Nan Jiang, Tengyu Liu, Zhexuan Cao, Jieming Cui, Zhiyuan Zhang, Yixin Chen, He Wang, Yixin
Zhu, and Siyuan Huang. Full-body articulated human-object interaction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 9365–9376, 2023.

Nan Jiang, Zimo He, Zi Wang, Hongjie Li, Yixin Chen, Siyuan Huang, and Yixin Zhu. Autonomous
character-scene interaction synthesis from text instruction. In SIGGRAPH Asia 2024 Conference
Papers, pp. 1–11, 2024a.

Nan Jiang, Zhiyuan Zhang, Hongjie Li, Xiaoxuan Ma, Zan Wang, Yixin Chen, Tengyu Liu, Yixin
Zhu, and Siyuan Huang. Scaling up dynamic human-scene interaction modeling. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1737–1747,
2024b.

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker: It is better to track together. In European conference on computer vision,
pp. 18–35. Springer, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. Int. Conf.
Learn. Repr., 2014.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

KLING AI Team. KLING image-to-video model. https://klingai.com/
image-to-video/, 2024.

Jens U Kreber and Joerg Stueckler. Guiding diffusion-based articulated object generation by partial
point cloud alignment and physical plausibility constraints. arXiv preprint arXiv:2508.00558,
2025.

Nilesh Kulkarni, Davis Rempe, Kyle Genova, Abhijit Kundu, Justin Johnson, David Fouhey, and
Leonidas Guibas. Nifty: Neural object interaction fields for guided human motion synthesis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
947–957, 2024.

Hongjie Li, Hong-Xing Yu, Jiaman Li, and Jiajun Wu. Zerohsi: Zero-shot 4d human-scene interac-
tion by video generation. arXiv preprint arXiv:2412.18600, 2024a.

Jiaman Li, Jiajun Wu, and C Karen Liu. Object motion guided human motion synthesis. ACM
Transactions on Graphics (TOG), 42(6):1–11, 2023.

Jiaman Li, Alexander Clegg, Roozbeh Mottaghi, Jiajun Wu, Xavier Puig, and C Karen Liu. Con-
trollable human-object interaction synthesis. In European Conference on Computer Vision, pp.
54–72. Springer, 2024b.

Lei Li and Angela Dai. Genzi: Zero-shot 3d human-scene interaction generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20465–20474, 2024.

Quanzhou Li, Jingbo Wang, Chen Change Loy, and Bo Dai. Task-oriented human-object interac-
tions generation with implicit neural representations. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 3035–3044, 2024c.

Shujia Li, Haiyu Zhang, Xinyuan Chen, Yaohui Wang, and Yutong Ban. Genhoi: General-
izing text-driven 4d human-object interaction synthesis for unseen objects. arXiv preprint
arXiv:2506.15483, 2025a.

11

https://klingai.com/image-to-video/
https://klingai.com/image-to-video/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xuan Li, Qianli Ma, Tsung-Yi Lin, Yongxin Chen, Chenfanfu Jiang, Ming-Yu Liu, and Donglai
Xiang. Articulated kinematics distillation from video diffusion models. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 17571–17581, 2025b.

Jing Lin, Ailing Zeng, Shunlin Lu, Yuanhao Cai, Ruimao Zhang, Haoqian Wang, and Lei Zhang.
IMoS: interactive motion synthesis. In Advances in Neural Information Processing Systems, 2023.
URL https://arxiv.org/abs/2310.15275.

Shengjie Lin, Jiading Fang, Muhammad Zubair Irshad, Vitor Campagnolo Guizilini, Rares Andrei
Ambrus, Greg Shakhnarovich, and Matthew R Walter. Splart: Articulation estimation and part-
level reconstruction with 3d gaussian splatting. arXiv preprint arXiv:2506.03594, 2025.

Jiayi Liu, Ali Mahdavi-Amiri, and Manolis Savva. Paris: Part-level reconstruction and motion
analysis for articulated objects. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 352–363, 2023.

Tianqi Liu, Zihao Huang, Zhaoxi Chen, Guangcong Wang, Shoukang Hu, Liao Shen, Huiqiang
Sun, Zhiguo Cao, Wei Li, and Ziwei Liu. Free4d: Tuning-free 4d scene generation with spatial-
temporal consistency. arXiv preprint arXiv:2503.20785, 2025a.

Yu Liu, Baoxiong Jia, Ruijie Lu, Junfeng Ni, Song-Chun Zhu, and Siyuan Huang. Building inter-
actable replicas of complex articulated objects via gaussian splatting. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025b.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
SMPL: a skinned multi-person linear model. ACM Trans. Graph., 34(6):248:1–248:16, 2015. doi:
10.1145/2816795.2818013. URL https://doi.org/10.1145/2816795.2818013.

Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming
Xiang, and Haibin Ling. Expanding language-image pretrained models for general video recog-
nition. In European conference on computer vision, pp. 1–18. Springer, 2022.

Jangho Park, Taesung Kwon, and Jong Chul Ye. Zero4d: Training-free 4d video generation from
single video using off-the-shelf video diffusion model. arXiv e-prints, pp. arXiv–2503, 2025.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Proc. Adv. Neural Inf. Process. Syst., volume 32, 2019.

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman,
Dimitrios Tzionas, and Michael J. Black. Expressive body capture: 3d hands, face, and
body from a single image. In Proc. IEEE Conf. Comput. Vis. Patt. Recogn., pp. 10975–
10985. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.01123. URL
http://openaccess.thecvf.com/content_CVPR_2019/html/Pavlakos_
Expressive_Body_Capture_3D_Hands_Face_and_Body_From_a_CVPR_2019_
paper.html.

Weikun Peng, Jun Lv, Cewu Lu, and Manolis Savva. Generalizable articulated object reconstruction
from casually captured rgbd videos. arXiv preprint arXiv:2506.08334, 2025.

Mathis Petrovich, Michael J Black, and Gül Varol. Action-conditioned 3d human motion synthesis
with transformer vae. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 10985–10995, 2021.

Shengyi Qian, Linyi Jin, Chris Rockwell, Siyi Chen, and David F Fouhey. Understanding 3d object
articulation in internet videos. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1599–1609, 2022.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
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LLMS USAGE

We acknowledge large language models (LLMs) in the preparation of this manuscript. Specifically,
we utilized LLMs for text polishing, grammar correction, and improving the clarity. The core ex-
perimental results and scientific contributions remain entirely our own work.

A MORE IMPLEMENTATION DETAILS

Flow-based Segmentation. Our flow-based segmentation approach leverages optical flow tracking
and SAM-guided segmentation to identify articulated object parts from monocular video sequences.
We use CoTracker (Karaev et al., 2024) for robust optical flow estimation, which provides temporal
consistency across frames. The flow magnitude thresholds are set to 5 pixels for dynamic regions and
2 pixels for static areas to distinguish between moving and stationary parts. For SAM segmentation,
we utilize the ViT-H model (Kirillov et al., 2023; Ravi et al., 2024) with default parameters, which
provides precise boundary detection for articulated parts.

The quasi-static point identification uses a dynamic threshold based on the 10th percentile of motion
magnitudes, with a minimum threshold of 1.0 pixels to identify regions with minimal motion within
dynamic areas. The binding radius r is set to 0.05 meters in 3D space, ensuring the proper kinematic
constraint between connected parts.

Two-Stage Optimization. Our two-stage optimization framework employs different learning rates
and optimization strategies for each stage. In Stage I (Object Articulation), we use Adam opti-
mizer (Kingma & Ba, 2014) with learning rate 1.0 × 10−4 for transformation parameters Td(t).
The loss weights are set as: λr = 1.0, λtr = 2.0, λa = 0.05, and λs = 1.0. The optimization runs
for 200 iterations per frame with early stopping based on reconstruction loss convergence.

In Stage II (Human Motion), we use Adam optimizer (Kingma & Ba, 2014) with learning rate
1.0× 10−3 for body pose parameters and 1.0× 10−4 for camera parameters. The loss weights are:
λs = 1.0 × 104, λk = 1.0 × 104 (kinematic loss), λp = 1.0, λfs = 10, and λc = 1.0 × 105. The
optimization runs for 1000 iterations, with contact loss being the primary driving force for realistic
human-object interactions.

3D Gaussian Splatting Integration. We employ 3D Gaussian splatting (Kerbl et al., 2023) for
differentiable rendering, enabling end-to-end optimization. The canonical Gaussians are initialized
using the first frame of the input video sequence. For human representation, we use canonical
3D Gaussians Gh(0) distributed across the SMPL-X (Pavlakos et al., 2019; Loper et al., 2015) mesh
surface. For articulated objects, we use canonical Gaussians Go(0) per part, with articulation weights
computed from the flow-based segmentation results.

Training Setup. All experiments are conducted on NVIDIA A100 (40GB) GPUs. The video diffu-
sion model is based on KLing (KLING AI Team, 2024) with default parameters. The total training
time is approximately 30 minutes per scene, including both stages of optimization. The batch size is
set to 1 for memory efficiency, and we use gradient clipping with a maximum norm of 1.0 to ensure
training stability. The default number of iterations is set to 200 per frame for Stage I, with Stage II
running for 1000 iterations total.

B DETAILS OF USER STUDY

We conducted a comprehensive user study to evaluate the perceptual quality of our synthesized
articulated human-object interactions. The study involved 51 participants with diverse backgrounds
in computer graphics, robotics, and general technology. Each participant evaluated 20 interaction
sequences across different types of articulated objects (doors, cabinets, and fridges).

Evaluation Protocol. Participants were presented with side-by-side comparisons of our method
against baseline approaches (TRUMANS, CHOIS, LINGO, and ZeroHSI). For each comparison,
they were asked to evaluate four criteria: 1) Realism. How natural and physically plausible the
human-object interactions appear, considering both human motion and object articulation. 2) Con-
tact Quality. The accuracy and consistency of contact between human body parts and articulated
objects, including proper hand-object grasping and body-object support. 3) Motion Smoothness.
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The temporal consistency and fluidity of both human and object motion, without abrupt changes
or unrealistic movements. 4) Overall Preference. General preference ranking among different
methods, considering all aspects of the interaction quality.

C DETAILS OF EVALUATION METRICS

X-CLIP Score measures semantic alignment between synthesized interactions and textual descrip-
tions using cross-modal similarity (Ni et al., 2022). We use the X-CLIP to compute similarity scores
between video frames and text prompts. The model processes 8 sampled frames per video sequence
with a frame sample rate of 1.0, and we report the softmax probability corresponding to the correct
scene description. Higher scores indicate improved text-to-motion correspondence.

Motion Smoothness evaluates temporal consistency by computing velocity stability and accelera-
tion magnitude across human joint trajectories. We calculate joint velocities (first-order derivatives)
and accelerations (second-order derivatives) for all SMPL-X (Pavlakos et al., 2019; Loper et al.,
2015) joints at 30 FPS. The smoothness score is computed as the standard deviation of joint speeds
across all frames, with lower values indicating smoother motion. We also report velocity stability
and acceleration magnitude for comprehensive motion analysis.

Foot Sliding detects unrealistic foot movement during interactions using an advanced mesh-based
algorithm. We analyze four foot joints (left/right ankles and toes) from SMPL-X (Pavlakos et al.,
2019; Loper et al., 2015), computing their distances to the ground mesh and projecting displace-
ments onto horizontal planes perpendicular to ground normals. The sliding threshold is set to 0.001
m/frame, and we report the sliding score as the ratio of sliding frames to contact frames multiplied
by average sliding distance. Lower values indicate more realistic foot contact.

Contact Percentage measures the percentage of frames where human body parts maintain proper
contact with articulated objects. We compute distances between hand joints (left/right wrists) and
object vertices. The metric reports both contact percentage and average contact distance, with higher
contact percentages indicating more consistent interaction.

Penetration Errors quantifies physical plausibility using a mesh-based penetration detection al-
gorithm. We compute distances between human vertices and scene/object meshes, using vertex
normals to determine penetration direction. The penetration threshold is set to 0.3 m, and we report
penetration percentage (Penetration%).

Rotation Errors measures the angular difference between estimated and ground truth joint rotations
using two evaluation protocols: (1) ART3D evaluation for 3D articulated object tracking, and (2)
RT evaluation for rotation-translation estimation. We report mean, standard deviation, maximum,
minimum, and median rotation errors across all joints and frames in degrees.

D DISCUSSION

Runtime Analysis. Our total runtime is composed of four main steps: video generation with KLing
(5 min), flow-based segmentation (2 min), Stage I object articulation optimization (15 min), and
Stage II human motion synthesis (8 min). The total runtime of 30 minutes on a single NVIDIA A100
GPU. This efficiency is achieved through our two-stage optimization strategy, where Stage I focuses
on object articulation while Stage II synthesizes human motion, allowing for parallel processing
opportunities in future implementations.

Clarification on Zero-shot. Our “zero-shot” approach means no fine-tuning is applied to foundation
models (e.g., KLing video diffusion model) during interaction synthesis. This efficient design avoids
the expensive cost of model adaptation while maintaining high-quality results. The optimization
is scene-specific and runs on a single GPU within 30 minutes, making it practical for real-world
applications.

Practical Applications. The practical implications of our work extend to multiple domains. In
robotics, our method can generate training data for manipulation tasks involving articulated objects.
In virtual reality and gaming, it enables the creation of realistic human-object interactions without
extensive motion capture. The efficiency of our approach makes it suitable for real-time applications
and rapid prototyping of interaction scenarios.
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Failure Cases. We identify several failure cases in our current approach:

RGB

40-54 (+30)
26-46

2D Flow Results

Figure A: Co-tracker struggles with low-texture or
reflective regions, leading to distortions that prop-
agate into our articulation prediction results.

1) Optical Flow Tracking Failures: Co-
tracker struggles with low-texture or reflective
regions, leading to distortions that propagate
into our articulation prediction results. When
the articulated object surfaces lack sufficient vi-
sual features or contain specular reflections, the
optical flow estimation becomes unreliable, re-
sulting in incorrect motion tracking and subse-
quent failures in flow-based segmentation and
Stage I (see Fig. A). 2) Complex Articulated
Structures: Our method struggles with objects
having multiple degrees of freedom or non-
rigid articulations (e.g., soft-body joints, elastic
connections). The current kinematic constraints are designed for simple rotational and translational
motions. 3) Long-term Temporal Consistency: As video sequences become longer, cumulative
errors in articulated object motion extraction can lead to gradual deviation from physical plausibility.
The contact states between humans and objects may become unstable over extended interactions.

E LIMITATIONS AND FUTURE WORK

Limitations. Despite significant improvements demonstrated in our experiments, our method has
several limitations that warrant discussion: 1) Optical Flow Tracking Failures: Co-tracker strug-
gles with low-texture or reflective regions, leading to distortions that propagate into our articulation
prediction results. When the articulated object surfaces lack sufficient visual features or contain
specular reflections, the optical flow estimation becomes unreliable, resulting in incorrect motion
tracking and subsequent failures in flow-based segmentation and Stage I (see Fig. A). This issue
is particularly pronounced with metallic surfaces, glass objects, or uniform-colored surfaces where
optical flow cannot establish reliable correspondences. 2) Complex Articulated Structures: Our
method struggles with objects having multiple degrees of freedom or non-rigid articulations (e.g.,
soft-body joints, elastic connections). The current kinematic constraints are designed for simple
rotational and translational motions, limiting our ability to handle sophisticated mechanical sys-
tems. Objects with multiple interconnected joints (such as robotic arms with 6+ DOF) or flexible
components (like cables, hoses, or deformable materials) cannot be accurately modeled with our
current rigid-body assumptions. 3) Long-term Temporal Consistency: As video sequences be-
come longer, cumulative errors in articulated object motion extraction can lead to gradual deviation
from physical plausibility. The contact states between humans and objects may become unstable
over extended interactions. Minor errors in early frames compound over time, causing objects to
appear to “float” or penetrate through surfaces in sequences longer than 10− 15 seconds.

Future Work. We identify several promising directions for future research:

1) Multi-DOF Articulation Modeling. Extending our framework to handle complex articulated
structures with multiple degrees of freedom, including soft-body dynamics, elastic connections,
and non-rigid articulations. This would involve developing more sophisticated kinematic constraint
models and optimization strategies that can handle objects with 6+ DOF, such as robotic arms and
complex mechanical systems.

2) Multi-object Interactions. Extending the framework to handle complex scenarios involving
multiple articulated objects and human interactions, including developing multi-object optimization
strategies and interaction modeling techniques. This includes scenarios where humans interact with
multiple objects simultaneously (e.g., opening a cabinet while holding a tool) or where objects
interact with each other through human manipulation.

3) Dataset and Benchmark Development. Creating comprehensive datasets and standardized
benchmarks for articulated human-object interaction synthesis to facilitate reproducible research
and systematic method comparison. This would encompass diverse interaction scenarios across a
wide range of articulated object categories (e.g., doors, drawers, and tools), varied human actions
(e.g., opening, closing, pulling, and fine manipulation), and multiple environmental conditions.
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