

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNDERSTANDING THE DYNAMICS OF FORGETTING AND GENERALIZATION IN CONTINUAL LEARNING VIA THE NEURAL TANGENT KERNEL

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Continual learning (CL) enables models to acquire new tasks sequentially while
 014 retaining previously learned knowledge. However, most theoretical analyses focus
 015 on simplified, converged models or restrictive data distributions and therefore fail
 016 to capture how forgetting and generalization evolve during training in more general
 017 settings. Current theory faces two fundamental challenges: (i) analyses confined
 018 to the converged regime cannot characterize intermediate training dynamics; and
 019 (ii) establishing forgetting bounds requires two-sided bounds on the population
 020 risk for each task. To address these challenges, we analyze the training-time dy-
 021 namics of forgetting and generalization in standard CL within the Neural Tangent
 022 Kernel (NTK) regime, showing that decreasing the loss's Lipschitz constant and
 023 minimizing the cross-task kernel jointly reduce forgetting and improve general-
 024 ization. Specifically, we (i) characterize intermediate training stages via kernel
 025 gradient flow and (ii) employ Rademacher complexity to derive both upper and
 026 lower bounds on population risk. Building on these insights, we propose *OGD+*,
 027 which projects the current task's gradient onto the orthogonal complement of the
 028 subspace spanned by gradients of the most recent task evaluated on all prior sam-
 029 ples. We further introduce *Orthogonal Penalized Gradient Descent* (OPGD), which
 030 augments OGD+ with gradient-norm penalization to jointly reduce forgetting and
 031 enhance generalization. Experiments on multiple benchmarks corroborate our
 032 theoretical predictions and demonstrate the effectiveness of OPGD, providing a
 033 principled pathway from theory to algorithm design in CL.

035 1 INTRODUCTION

037 Continual learning (CL) trains models on a sequence of tasks with the objective of maintaining strong
 038 performance across all of them. Unlike conventional training paradigms that operate on a fixed
 039 dataset or a single task, CL typically faces non-stationary data streams and complex task sequences.
 040 A major challenge in this setting is that models often experience a substantial performance drop on
 041 previously learned tasks when adapting to new ones. This phenomenon, known as *catastrophic for-
 042 getting* (McCloskey & Cohen, 1989; McClelland et al., 1995), arises when learning new information
 043 interferes with or overwrites prior knowledge.

044 Despite the considerable empirical success of numerous approaches in CL (Chaudhry et al., 2019a;
 045 Farajtabar et al., 2020; Dohare et al., 2024), rigorous theoretical understanding remains limited.
 046 Recent studies on the theory of forgetting and generalization error in CL have mainly focused on
 047 linear models and often assume restrictive data distributions, such as Gaussian distributions (Evron
 048 et al., 2022; Lin et al., 2023; Banayeeanzade et al., 2024; Li et al., 2025b). While the linear regime
 049 provides explicit characterizations of forgetting and generalization error, it is not suitable for more
 050 general models or the non-stationary data streams typical in CL. In contrast, the Neural Tangent
 051 Kernel (NTK) regime (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019b) enables the analysis of
 052 more general models without being restricted to special distributions. However, existing NTK-based
 053 analyses (Bennani et al., 2020; Doan et al., 2021; Karakida & Akaho, 2022) primarily focus on
 converged models and therefore cannot characterize the behavior at intermediate training stages.

054
 055
 056
Table 1: Comparison of our results with Bennani et al. (2020), Doan et al. (2021) and Karakida & Akaho
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581<br

108

2 PRELIMINARY

109

2.1 PROBLEM SETUP

110 We consider the standard CL setting with T sequential training tasks. For any positive integer
 111 n , we denote $[n] := \{1, \dots, n\}$. For each task $\tau \in [T]$, let \mathcal{D}_τ denote its data distribution, and
 112 let $S_\tau = \{X_\tau, Y_\tau\}$ be the corresponding training dataset drawn i.i.d. from \mathcal{D}_τ . Here, $X_\tau =$
 113 $(x_\tau^1, \dots, x_\tau^{n_\tau})^\top \in \mathbb{R}^{n_\tau \times d}$ is the feature matrix containing n_τ samples of d -dimensional feature
 114 vectors, and $Y_\tau \in \mathbb{R}^{n_\tau}$ is the associated label vector. The model trained on task τ is denoted by f_τ ,
 115 parameterized by θ_τ . Its state at iteration t_τ is written as $f_\tau^{t_\tau}$, and the final model after training is
 116 denoted by f_τ^* , where training stops at iteration $t_\tau = t_\tau^*$. **The model for task $\tau + 1$ is initialized from**
 117 **the final parameter of task τ , that is, $\theta_{\tau+1}^0 = \theta_\tau^*$.**
 118

119 Let $\ell(f(x), y)$ be a loss function that quantifies the discrepancy between the model prediction $f(x)$
 120 and the true label y for a given sample (x, y) . We now introduce two fundamental notions in learning
 121 theory: the population loss and the empirical loss.

122 The population loss with respect to the distribution \mathcal{D}_τ is defined as:

$$124 \quad L_{\mathcal{D}_\tau}(f) = \mathbb{E}_{(x_\tau, y_\tau) \sim \mathcal{D}_\tau} [\ell(f(x_\tau), y_\tau)]. \quad (1)$$

125 The empirical loss over a dataset $S_\tau = \{(x_\tau^i, y_\tau^i)\}_{i=1}^{n_\tau}$ i.i.d. drawn from \mathcal{D}_τ is defined as:

$$126 \quad L_{S_\tau}(f) = \frac{1}{n_\tau} \sum_{i=1}^{n_\tau} \ell(f(x_\tau^i), y_\tau^i). \quad (2)$$

127 As shown in Lopez-Paz & Ranzato (2017); Lin et al. (2023), forgetting and overall generalization
 128 error can be defined in terms of the population loss as follows:

129 (1) *Forgetting*. This metric quantifies the degradation in performance on previously learned tasks
 130 after training on the current task at iteration t_T :

$$131 \quad F_{t_T} = \frac{1}{T-1} \sum_{\tau=1}^{T-1} \left(L_{\mathcal{D}_\tau}(f_T^{t_T}) - L_{\mathcal{D}_\tau}(f_\tau^*) \right). \quad (3)$$

132 (2) *Overall generalization error*. This evaluates the model’s generalization performance at iteration
 133 t_T by averaging its population loss across all tasks:

$$134 \quad G_{t_T} = \frac{1}{T} \sum_{\tau=1}^T L_{\mathcal{D}_\tau}(f_T^{t_T}). \quad (4)$$

135 Notably, Doan et al. (2021) define the forgetting metric on discrete datasets, while the definitions
 136 in Lin et al. (2023) are restricted to linear models. In contrast, our formulation applies to arbitrary
 137 function classes. Specifically, we generalize the commonly used metrics of backward transfer and
 138 average accuracy—widely employed to characterize forgetting and generalization in CL—by defining
 139 them in terms of population loss, thereby capturing model performance at the distributional level.
 140 Moreover, our definitions do not rely on specific model assumptions and evaluate performance over
 141 the entire input space, enabling a more comprehensive theoretical analysis of CL.

142

2.2 KERNEL REGIME FOR CONTINUAL LEARNING

143 We briefly review the basic concepts of the Neural Tangent Kernel (NTK) regime. Throughout this
 144 work, we assume that the model is trained using the mean squared error (MSE) loss. Accordingly,
 145 the empirical loss over task τ can be written as:

$$146 \quad L_{S_\tau}(f) = \frac{1}{2n_\tau} \sum_{i=1}^{n_\tau} (f(x_\tau^i) - y_\tau^i)^2. \quad (5)$$

147 Before introducing the NTK, we define the neural network kernel (NNK) at training time t as:

$$148 \quad \hat{K}_\tau^t(x, x') = \langle \nabla_{\theta_\tau} f_\tau^t(x), \nabla_{\theta_\tau} f_\tau^t(x') \rangle \quad (6)$$

162 Based on this, the gradient flow dynamics of f_τ with respect to the MSE loss can be written as:
 163

$$164 \frac{d}{dt} f_\tau^t(x) = -\frac{1}{n_\tau} \hat{K}_\tau^t(x, X_\tau) (f_\tau^t(X_\tau) - Y_\tau) \quad (7)$$

165

166 NTK theory states that, in the infinite-width limit, NNK \hat{K}_τ^t converges to a time-invariant kernel K_τ ,
 167 known as the NTK (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019b). In particular, if task τ is
 168 initialized from the trained parameters of task $\tau - 1$, i.e., $\theta_\tau^0 = \theta_{\tau-1}^*$, then each kernel entry satisfies

$$169 K_\tau(x, x') = \langle \nabla_{\theta_\tau^0} f_\tau^0(x), \nabla_{\theta_\tau^0} f_\tau^0(x') \rangle = \langle \nabla_{\theta_{\tau-1}^*} f_{\tau-1}^*(x), \nabla_{\theta_{\tau-1}^*} f_{\tau-1}^*(x') \rangle \quad (8)$$

170

171 For any $x \in \mathbb{R}^d$ and $X = (x_1, \dots, x_n)^\top \in \mathbb{R}^{n \times d}$, we denote

$$172 K_\tau(x, X) = (K_\tau(x, x_1), \dots, K_\tau(x, x_n)), \quad K_\tau(X, X) = [K_\tau(x_i, x_j)]_{n \times n} \quad (9)$$

173

174 Under the NTK regime, the training dynamics in Equation (7) reduce to the kernel gradient flow

$$175 \frac{d}{dt} f_\tau^t(x) = -\frac{1}{n_\tau} K_\tau(x, X_\tau) (f_\tau^t(X_\tau) - Y_\tau), \quad (10)$$

176

177 where K_τ remains fixed during training. Hence, Equation (10) defines an ordinary differential
 178 equation (ODE) in the time variable t with an initial condition induced by $\theta_\tau^0 = \theta_{\tau-1}^*$. Furthermore,
 179 Equation (10) admits a closed-form solution:

$$180 f_\tau^t(x) = f_{\tau-1}^*(x) - K_\tau(x, X_\tau) E_{\tau, t} K_\tau(X_\tau, X_\tau)^{-1} (f_{\tau-1}^*(X_\tau) - Y_\tau), \quad (11)$$

181

182 where $E_{\tau, t} := I - \exp\left(-\frac{t}{n_\tau} K_\tau(X_\tau, X_\tau)\right)$, and $f_{\tau-1}^*$ denotes the predictor obtained after completing
 183 the training of task $\tau - 1$. The derivation of Equation (11) follows directly from solving the linear
 184 ODE in Equation (10) and is provided in Appendix D.1. For notational convenience, we define

$$185 \tilde{f}_\tau^t(x) := K_\tau(x, X_\tau) E_{\tau, t} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau, \quad (12)$$

186

187 where $\tilde{Y}_\tau := Y_\tau - f_{\tau-1}^*(X_\tau)$ represents the residual between the ground-truth labels of task τ and
 188 the predictions of the model trained on task $\tau - 1$. By recursively applying Equation (11) across τ
 189 tasks, the model for task τ can be expressed as $f_\tau^t(x) = \sum_{i=1}^{\tau-1} \tilde{f}_i^*(x) + \tilde{f}_\tau^t(x)$.

190

3 THEORETICAL RESULT

192 In this section, we present upper bounds on forgetting and generalization error for vanilla CL under
 193 the NTK regime in Theorem 1. For clarity of presentation, we adopt the notational convention
 194 $t_T^* = t_T$ for the final task T , i.e., the iteration index of task T coincides with its stopping iteration.

195 **Theorem 1.** Consider a sequence of T tasks. For each task $\tau \in [T]$, let \mathcal{D}_τ denote the data
 196 distribution, and let $S_\tau = \{X_\tau, Y_\tau\}$ be the corresponding training dataset drawn i.i.d. from \mathcal{D}_τ .
 197 Suppose the loss function $\ell(\cdot, \cdot)$ takes values in the interval $[0, c]$ and is ρ -Lipschitz in the first
 198 argument. Then, with probability at least $1 - \delta$, the following bounds hold:

199

$$200 F_{t_T} \leq \frac{1}{T-1} \sum_{\tau=1}^{T-1} \left\{ 2\rho \sum_{k=\tau+1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k, t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} \right. \\ 201 \left. + 4\rho \sum_{k=1}^{\tau} \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k, t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 6c\sqrt{\frac{\log(2/\delta)}{2n_\tau}} \right\} \quad (13)$$

202

$$203 + \frac{1}{n_\tau} \sum_{k=\tau+1}^T \|K_k(X_\tau, X_k) E_{k, t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k\|^2 \Big\},$$

204

$$205 G_{t_T} \leq \frac{1}{T} \sum_{\tau=1}^T \left\{ \frac{1}{n_\tau} \sum_{k=\tau+1}^T \|K_k(X_\tau, X_k) E_{k, t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k\|^2 + \frac{1}{n_\tau} \|e^{-\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau) t_\tau^*} \tilde{Y}_\tau\|^2 \right. \\ 206 \left. + 2\rho \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k, t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 3c\sqrt{\frac{\log(2/\delta)}{2n_\tau}} \right\}. \quad (14)$$

207

To the best of our knowledge, Theorem 1 provides the first upper bounds on both forgetting and generalization error at intermediate training stages in vanilla CL. The proof is given in Appendix E. Furthermore, our bounds are explicitly dependent on the number of training iterations, allowing us to characterize the evolution of forgetting and generalization errors throughout the training process.

To facilitate the subsequent analysis of the upper bounds of forgetting and generalization errors, we denote $F_{t_T}^{\text{upper}}$ and $G_{t_T}^{\text{upper}}$ as the respective upper bounds of F_{t_T} and G_{t_T} in Theorem 1. Based on Theorem 1, we will provide insights on the following two aspects.

(1) *Lipschitz constant.* The Lipschitz constant ρ characterizes the maximum rate of change of the loss with respect to the model’s *predictions*. Formally, for any two predictions u, v in the output space, $|L_{S_\tau}(u) - L_{S_\tau}(v)| \leq \rho \|u - v\|$. In general, a smaller prediction-Lipschitz constant implies that the loss varies more smoothly with respect to the model outputs (i.e., a flatter landscape in prediction space), which is often associated with improved generalization.

(2) *Cross-task kernel.* Under the NTK regime, we define the cross-task kernel between any two tasks $\tau < k \in [2, T]$ as $K_k(X_\tau, X_k)$. In traditional machine learning, cross kernels characterize the similarity between two datasets (Akaho, 2006; Schölkopf et al., 1997). In the NTK setting, the cross-task kernel instead captures cross-task interactions by measuring the alignment between the model gradients with respect to different task datasets. A larger norm of this matrix indicates stronger task interference, which in turn increases the risk of forgetting and generalization error.

To gain deeper insight into continual learning, we next analyze the effect of these two critical factors.

3.1 THE IMPACT OF THE LIPSCHITZ CONSTANT

The role of the Lipschitz constant has been extensively studied in non-CL settings, where smaller values are often linked to improved generalization performance (Bartlett et al., 2017; Miyato et al., 2018; Zhao et al., 2022; Khromov & Singh, 2024). One widely used approach to approximately reduce the Lipschitz constant is to penalize the gradient norm (PGN) of the loss function (Zhao et al., 2022). Moreover, Gradient-norm Aware Minimization (GAM) further penalizes the gradient norm within a neighborhood of the parameters (Zhang et al., 2023), thereby promoting flatter solutions. Although reducing the Lipschitz constant has been both theoretically and empirically shown to improve performance in non-CL scenarios, its effectiveness in CL remains largely unexplored.

Q1: Does the role of the Lipschitz constant in non-CL also hold in the context of CL?

To address **Q1**, we examine how the Lipschitz constant ρ affects the forgetting bound $F_{t_T}^{\text{upper}}$ and the generalization error bound $G_{t_T}^{\text{upper}}$ in Theorem 1. In particular, we analyze the evolution of $F_{t_T}^{\text{upper}}$ and $G_{t_T}^{\text{upper}}$ with respect to the training iteration t_T when the Lipschitz constant exceeds a certain threshold. The detailed proof of Lemma 1 is provided in Section G.1.

Lemma 1. *For any fixed t_T , a smaller Lipschitz constant ρ leads to smaller values of both $G_{t_T}^{\text{upper}}$ and $F_{t_T}^{\text{upper}}$. Moreover, there exists a constant $\rho^* > 0$ such that, for all $\rho > \rho^*$, both $G_{t_T}^{\text{upper}}$ and $F_{t_T}^{\text{upper}}$ increase monotonically with respect to t_T .*

Remark 1. *Lemma 1 indicates that reducing the Lipschitz constant ρ consistently mitigates both forgetting and generalization error in CL. In contrast to non-CL settings, where reducing the Lipschitz constant ρ primarily improves generalization, in CL it also alleviates forgetting.*

Remark 2. *Lemma 1 further implies that, once ρ exceeds a threshold ρ^* , the upper bounds $G_{t_T}^{\text{upper}}$ and $F_{t_T}^{\text{upper}}$ increase monotonically with the number of training iterations t_T . In the degenerate limit of skipping updates (i.e., $t_T = 0$), these quantities can be made trivially small, but at the cost of no adaptation to the new task—an undesirable, pathological outcome. Therefore, it is crucial to design mechanisms that explicitly control or reduce ρ for each task to improve CL performance in practice.*

As shown above, reducing the Lipschitz constant ρ is beneficial for mitigating forgetting and improving generalization in CL. To implement this in practice, we adopt a penalized gradient-norm framework that approximately reduces ρ ; further details are provided in Appendix G.2. In the CL setting, the training loss of PGN for any task $\tau \in [T]$ is given by

$$L_{S_\tau}^{\text{PGN}}(\theta_\tau) = L_{S_\tau}(\theta_\tau) + \alpha_\tau \|\nabla_{\theta_\tau} L_{S_\tau}(\theta_\tau)\|_2, \quad (15)$$

270 where $\|\cdot\|_2$ denotes the Euclidean norm and α_τ is the penalty coefficient.
 271

272 In practice, we employ GAM rather than PGN, since GAM encourages flatter solutions. In the CL
 273 setting, the training loss of GAM for task τ is defined as

$$274 \quad L_{S_\tau}^{GAM}(\theta_\tau) = L_{S_\tau}(\theta_\tau) + \alpha_\tau b_\tau \max_{\theta'_\tau \in B(\theta_\tau, b_\tau)} \|\nabla_{\theta'_\tau} L_{S_\tau}(\theta'_\tau)\|_2, \quad (16)$$

275 where the perturbation radius b_τ controls the neighborhood size, and $B(\theta_\tau, b_\tau)$ denotes the open
 276 ball of radius b_τ centered at θ_τ in Euclidean space. Importantly, GAM penalizes the neighborhood
 277 Lipschitz constant, thereby avoiding sharp minima and improving robustness. Furthermore, our
 278 experimental results in Table 2 empirically demonstrate that GAM effectively mitigates forgetting and
 279 enhances generalization compared to vanilla CL (SGD), thereby validating our theoretical analysis.
 280

282 **3.2 THE IMPACT OF CROSS-TASK KERNEL**
 283

284 In this section, we examine the influence of the cross-task kernel between any two tasks $\tau < k \in$
 285 $[2, T]$, i.e., $K_k(X_\tau, X_k)$, on the forgetting bound $F_{t_T}^{\text{upper}}$ and the generalization error bound $G_{t_T}^{\text{upper}}$
 286 in Theorem 1. Each entry of $K_k(X_\tau, X_k)$ is the inner product between the model gradients with
 287 respect to a sample from X_τ and a sample from X_k . Ideally, to eliminate the adverse effect of
 288 $K_k(X_\tau, X_k)$ on $F_{t_T}^{\text{upper}}$ and $G_{t_T}^{\text{upper}}$, all entries should be zero—equivalently, the gradients with respect
 289 to different datasets should be mutually orthogonal. A natural and effective approach to enforce
 290 such orthogonality is Orthogonal Gradient Descent (OGD) (Farajtabar et al., 2020). In the following,
 291 we analyze the behavior of the cross-task kernel to provide a theoretical explanation of how OGD
 292 mitigates forgetting and reduces generalization error.

293 We introduce OGD in the context of CL. For any $\tau \in [T]$, define $v_{\tau,i} := \nabla_\theta f_\tau^*(x_\tau^i)$ and $\mathbb{E}_\tau :=$
 294 $\text{span}\{v_{\tau,i}\}_{i=1}^{n_\tau}$, the subspace spanned by the parameter gradients of the converged model f_τ^* evaluated
 295 on the inputs from task τ . The core idea of OGD is to project the gradient of the current task onto the
 296 orthogonal complement of the subspaces spanned by all previous tasks, i.e., $\mathbb{E}_1 \oplus \dots \oplus \mathbb{E}_{\tau-1}$. Let
 297 $P_{(\mathbb{E}_1 \oplus \dots \oplus \mathbb{E}_{\tau-1})^\perp}$ denote the projection operator onto the orthogonal complement of this space, which
 298 we write simply as P_τ for brevity. Under OGD, the gradient flow dynamics for task τ are given by
 299

$$300 \quad \frac{d}{dt} f_\tau^t(x) = -\frac{1}{n_\tau} \tilde{K}_\tau(x, X_\tau) (f_\tau^t(X_\tau) - Y_\tau), \quad (17)$$

301 where $\tilde{K}_\tau(x, x') = \langle P_\tau \nabla_{\theta_{\tau-1}^*} f_{\tau-1}^*(x), P_\tau \nabla_{\theta_{\tau-1}^*} f_{\tau-1}^*(x') \rangle$. Thus, we obtain a gradient flow analogous
 302 to the standard SGD gradient flow in Equation (10), with the key difference lying in the form of
 303 the kernel. Additional details are provided in Appendix D.2.

304 In the following, we demonstrate that OGD reduces the cross-task kernel between the datasets of two
 305 adjacent tasks to the zero matrix. The proof of Lemma 2 is provided in Appendix G.3.

306 **Lemma 2.** *For any $k \in [2, T]$, under OGD we have $\tilde{K}_k(X_{k-1}, X_k) = 0$.*

307 **Remark 3.** *In Lemma 2, we show that OGD can eliminate the cross-task kernel between two adjacent
 308 tasks, thereby yielding tighter bounds on forgetting and generalization error compared to standard
 309 SGD. Moreover, we observe that the orthogonality constraints in standard OGD are unnecessarily
 310 strong. Specially, if the projector P_k is redefined onto the orthogonal complement of \mathbb{E}_{k-1} , rather than
 311 $\mathbb{E}_1 \oplus \dots \oplus \mathbb{E}_{k-1}$, Lemma 2 still holds while avoiding overly restrictive constraints (see Appendix G.3
 312 for details). Empirically, as shown in Table 2, OGD achieves better performance than SGD.*

313 **4 OGD+ AND OPGD ALGORITHMS**
 314

315 **4.1 REFINED ORTHOGONAL GRADIENT DESCENT (OGD+)**
 316

317 In Lemma 2, we theoretically show that OGD exhibits less forgetting and better generalization than
 318 SGD in CL by proving that the cross-task kernel between two adjacent tasks is the zero matrix under
 319 OGD. Moreover, if this property could be extended so that the cross-task kernel between *any* pair of
 320 tasks were zero, CL performance should improve further. This naturally raises the following question:

324

325

326

327

328 To address **Q2**, for any $k \in [T]$, we redefine the gradient subspace as $\mathbb{E}'_k := \text{span}\{\nabla_{\theta_k} f_k^*(x_l^m) \mid l \in [k], m \in [n_l]\}$ and the projection operator as $P'_k := P_{\mathbb{E}'_{k-1}^\perp}$. We refer to this refined variant of OGD as *OGD+*. As shown in Lemma 3, OGD+ reduces the cross-task kernel between the datasets of any two tasks to the zero matrix. The detailed proof is provided in Appendix G.4.

332 **Lemma 3.** *For any $\tau < k \in [2, T]$, under OGD+ we have $\tilde{K}_k(X_\tau, X_k) = 0$.*

333 **Remark 4.** *Lemma 3 demonstrates that OGD+ can eliminate the cross-task kernel between any pair of tasks, thereby yielding lower forgetting and better generalization compared to standard OGD. In particular, we derive upper bounds on both forgetting and generalization error for OGD and OGD+ (see Appendix G.5), and establish that both bounds for OGD+ are strictly tighter.*

338 **Comparison between OGD and OGD+.** The key difference between OGD and OGD+ lies in
339 how gradient information is stored and released. Specifically, OGD stores the gradients of the model
340 after training on the current task using only the data from that task, and these gradients are retained
341 indefinitely. In contrast, OGD+ stores the gradients of the model after training on the current task
342 using all data from previous tasks, but releases them once training on the subsequent task is completed.
343 As shown in Remark 4, OGD+ provides stronger theoretical guarantees than OGD due to its stricter
344 enforcement of gradient orthogonality. Empirically, Table 2 shows that OGD+ forgets less and
345 generalizes better than OGD on the two MNIST benchmarks, with pronounced improvements in both
346 metrics. However, on Split CIFAR-100, OGD+ slightly underperforms OGD on both metrics, which
347 we attribute to its excessive orthogonality. In particular, overly restrictive orthogonality reduces
348 the feasible gradient subspace, thereby limiting the model’s capacity to adequately fit the current
349 task—especially under large distribution shifts between tasks. We next explore strategies to mitigate
350 the negative impact of excessive orthogonality in OGD+.

351

352

4.2 ORTHOGONAL PENALIZED GRADIENT DESCENT (OPGD)

353

354

355

356

357

358

359

360

361

362

363 In Section 4.1, we theoretically demonstrated that OGD+ achieves lower forgetting and better
364 generalization than OGD. However, while OGD+ enhances gradient orthogonality across tasks, it
365 neglects inter-task performance and thus risks reducing plasticity in practice. A straightforward way
366 to enhance inter-task performance is to reduce the Lipschitz constant of each task. Furthermore, in
367 Section 3.1, we theoretically established that reducing the Lipschitz constant consistently mitigates
368 forgetting and improves generalization. These observations naturally motivate the following question:

369

370

371

372

373

374

375

376

377

378

379 We denote $F_{t_T}^{\text{upper+}}$ and $G_{t_T}^{\text{upper+}}$ as the upper bounds of forgetting and generalization error for OGD+.
380 To address **Q3**, we analyze how these bounds vary as the Lipschitz constant is reduced, and further
381 examine their dependence on t_T when the Lipschitz constant falls below a certain threshold. The
382 formal results are stated in Lemma 4, with proofs provided in Appendix G.6.

383 **Lemma 4.** *For any fixed t_T , reducing the Lipschitz constant ρ leads to strictly smaller values of
384 $G_{t_T}^{\text{upper+}}$ and $F_{t_T}^{\text{upper+}}$ compared to their original values under OGD+. Moreover, there exists a
385 constant $\rho' > 0$ such that, for all $\rho < \rho'$, $G_{t_T}^{\text{upper+}}$ decreases monotonically with respect to t_T , while
386 $F_{t_T}^{\text{upper+}}$ increases monotonically with respect to t_T .*

387 **Remark 5.** *Reducing the Lipschitz constant in OGD+ yields tighter bounds on both forgetting and
388 generalization error than standard OGD+. This indicates that incorporating mechanisms to reduce
389 the Lipschitz constant within OGD+ can further mitigate forgetting while improving generalization.*

390 **Remark 6.** *Lemma 4 further implies that when the Lipschitz constant in OGD+ falls below a certain
391 threshold, it helps avoid the degenerate phenomenon discussed in Remark 1, thereby benefiting
392 generalization as training progresses. At the same time, longer training (larger t_T) increases the
393 risk of catastrophic forgetting because $F_{t_T}^{\text{upper}}$ grows with t_T , consistent with the behavior of large*

Lipschitz constants noted in Remark 1. This highlights a trade-off between mitigating forgetting and improving generalization. Importantly, this observation does not conflict with Remark 5: although extended training may increase forgetting, for any fixed iteration the bounds on both forgetting and generalization remain tighter when the Lipschitz constant is reduced.

OPGD algorithm: Leveraging Remark 5 and Remark 6, we establish a principled pathway from theory to algorithm design: integrating OGD+, which enforces cross-task orthogonality, with GAM, which reduces the Lipschitz constant. This unified approach, termed *Orthogonal Penalized Gradient Descent* (OPGD), jointly mitigates forgetting and enhances generalization. As shown in Table 2, OPGD achieves substantial improvements over OGD+.

Next, we present the details of OPGD. For the first task, we update the model parameters of f_1 by minimizing the GAM loss (Equation (16)), which effectively reduces the Lipschitz constant of the loss and thereby enhances inter-task performance. The corresponding gradients are then stored. For each subsequent task $\tau \in [2, T]$, at each parameter update iteration we first minimize the GAM loss for f_τ , and then apply OGD+ to the resulting (penalized) gradient, ensuring that the gradient for task τ is orthogonal to the stored gradients from task $\tau - 1$. Finally, we release the stored gradients of task $\tau - 1$ and replace them with the gradients of task τ evaluated on samples from all previous tasks. The full procedure of OPGD is summarized in Algorithm 1.

5 EXPERIMENT

In this section, we present extensive experiments to validate our theoretical findings and demonstrate the effectiveness of OGD+ and OPGD. Additional implementation details, further comparisons with baselines, and ablation studies are provided in Appendix C.

Datasets. We evaluate our approach on three widely used CL benchmarks: Permuted MNIST (Kirkpatrick et al., 2017), Rotated MNIST (Farajtabar et al., 2020), and Split CIFAR-100 (Chaudhry et al., 2019a). Permuted MNIST and Rotated MNIST are variants of the original MNIST dataset, where each task is defined by a random pixel permutation or a rotation, respectively. For both benchmarks, we construct 15 sequential tasks using different permutations or rotation angles. Split CIFAR-100 is created by partitioning the 100 classes of CIFAR-100 into 20 disjoint tasks, each containing 5 classes.

Baselines. To align with our theoretical analysis, we compare OGD+ and OPGD with three continual learning methods: vanilla CL with SGD, GAM (Zhang et al., 2023), and OGD (Farajtabar et al., 2020). Additional comparisons with other CL methods are provided in Appendix C.3.

Evaluation metrics. To align with our theoretical analysis, we adopt *average accuracy* (ACC) and *backward transfer* (BWT) as the evaluation metrics (Lopez-Paz & Ranzato, 2017). Formally, they are defined as $ACC = \frac{1}{T} \sum_{i=1}^T A_{T,i}$, $BWT = \frac{1}{T-1} \sum_{i=1}^T A_{T,i} - A_{i,i}$, where $A_{t,i}$ denotes the accuracy of the model on task i after completing training on task t , and T is the total number of tasks.

Performance. As shown in Table 2, OPGD achieves significant improvements in both ACC and BWT over prior methods across all datasets, corroborating our theoretical claim that reducing the Lipschitz constant within OGD+ simultaneously mitigates forgetting and improves generalization.

Algorithm 1: OPGD

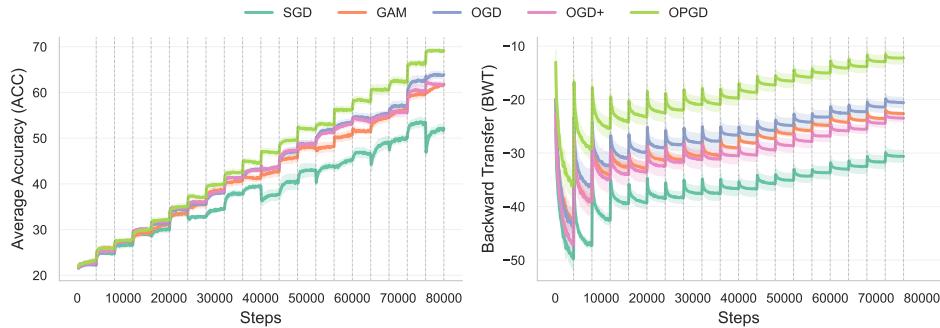
```

Input : Task sequence  $T_1, T_2, \dots$ ; learning rate  $\eta$ ;
    balance coefficient  $\alpha$ ; perturbation radius
     $b$ ; small constant  $\xi$ .
 $S \leftarrow \emptyset, \mathcal{M} \leftarrow \emptyset, \theta \leftarrow \theta_0;$ 
for Task ID  $\tau = 1, 2, \dots$  do
    repeat
        // GAM
         $g_1 \leftarrow \nabla_{\theta} L_{S_{\tau}}(\theta);$ 
         $f \leftarrow \nabla_{\theta}^2 L_{S_{\tau}}(\theta) \frac{\nabla_{\theta} L_{S_{\tau}}(\theta)}{\|\nabla_{\theta} L_{S_{\tau}}(\theta)\| + \xi};$ 
         $\theta' \leftarrow \theta + b \cdot \frac{f}{\|f\| + \xi};$ 
         $g_2 \leftarrow b \cdot \nabla_{\theta'}^2 L_{S_{\tau}}(\theta') \frac{\nabla_{\theta'} L_{S_{\tau}}(\theta')}{\|\nabla_{\theta'} L_{S_{\tau}}(\theta')\| + \xi};$ 
         $g \leftarrow (1 - \alpha) g_1 + \alpha g_2;$ 
        // Orthogonal updates
         $g \leftarrow g - \sum_{v \in S_{\tau}} \text{proj}_v(g);$ 
         $\theta \leftarrow \theta - \eta g;$ 
    until convergence;
     $S \leftarrow S;$ 
    for  $(x, y) \in \mathcal{D}_{\tau} \cup \mathcal{M}$  and  $k \in [1, c]$  with
         $y_k = 1$  do
             $u \leftarrow \nabla_{\theta} f_{\tau}(x) - \sum_{v \in S} \text{proj}_v(\nabla_{\theta} f_{\tau}(x));$ 
             $S \leftarrow S \cup \{u\};$ 
    end
    sample  $D_{\tau} \subset \mathcal{D}_{\tau}, \quad \mathcal{M} \leftarrow \mathcal{M} \cup D_{\tau};$ 
end

```

432 Table 2: Average accuracy (ACC) and backward transfer (BWT) over all tasks on different datasets.
 433 Higher ACC and BWT indicate better generalization and less forgetting. All results are reproduced
 434 by us and averaged over 5 runs. The best continual learning results are highlighted in **bold**.

Dataset	Permuted MNIST (15 tasks)		Rotated MNIST (15 tasks)		Split CIFAR-100 (20 tasks)	
	Method	ACC	BWT	Method	ACC	BWT
SGD	70.29 \pm 1.50	-25.33 \pm 1.57	68.79 \pm 0.43	-28.09 \pm 0.45	52.08 \pm 0.81	-30.63 \pm 1.31
GAM	72.61 \pm 1.44	-22.47 \pm 1.57	72.85 \pm 0.44	-20.60 \pm 0.47	61.70 \pm 1.68	-22.63 \pm 1.60
OGD	82.17 \pm 0.64	-12.38 \pm 0.66	77.52 \pm 0.69	-18.43 \pm 0.76	63.91 \pm 1.62	-20.57 \pm 1.66
OGD+	86.22 \pm 0.62	-8.11 \pm 0.62	86.15 \pm 0.49	-9.02 \pm 0.56	61.84 \pm 2.51	-23.47 \pm 2.48
OPGD	86.27 \pm 0.56	-7.73 \pm 0.61	89.15 \pm 0.22	-3.69 \pm 0.27	68.17 \pm 0.71	-12.58 \pm 1.35



452 Figure 1: Dynamics of average accuracy (ACC) and backward transfer (BWT) for different methods
 453 on Split CIFAR-100. Vertical dotted lines are used to indicate the boundaries between different tasks.
 454 For each task, we record ACC and BWT at evenly spaced intervals, performing 40 evaluations per
 455 task by measuring performance every 100 training iterations.

456 In particular, OPGD yields average relative gains of +4.59% in ACC and +36.73% in BWT across
 457 three benchmarks. Furthermore, OGD+ consistently forgets less and generalizes better than OGD
 458 on Permuted MNIST and Rotated MNIST, with average relative gains of +4.27% in ACC and
 459 +23.82% in BWT across three benchmarks. However, on Split CIFAR-100—whose distribution is
 460 substantially more complex than Permuted MNIST and Rotated MNIST—OGD+ underperforms
 461 OGD. We attribute this to excessive orthogonality in OGD+, which reduces model plasticity and
 462 consequently degrades inter-task performance, as discussed in Section 4.1; similar observations have
 463 been reported by Zhao et al. (2023); Yang et al. (2023). Notably, OPGD mitigates this effect by
 464 reducing the Lipschitz constant within OGD+, thereby enhancing inter-task performance.

465 **Dynamics of forgetting and generalization.** As shown in Figure 1, the ACC of OPGD increases
 466 steadily with the number of iterations, indicating that longer training enhances generalization. This
 467 result is consistent with our theoretical analysis in Lemma 4. In contrast, the ACC of SGD does not
 468 consistently improve and even declines in the final tasks. This phenomenon aligns with Remark 1,
 469 which suggests that without explicit control of the Lipschitz constant, prolonged training may
 470 accumulate instability and hinder generalization. Notably, incorporating GAM to reduce the Lipschitz
 471 constant helps SGD avoid this degradation, enabling more stable generalization. As shown in Figure 1,
 472 the BWT of OPGD decreases within each task interval, indicating that additional iterations increase
 473 forgetting—again consistent with Lemma 4. Taken together, these results highlight a fundamental
 474 trade-off between forgetting and generalization: *while longer training improves generalization, it simultaneously exacerbates forgetting*, in line with Remark 6. Despite this trade-off, OPGD
 475 consistently outperforms competing methods in terms of both ACC and BWT throughout training.
 476

478 6 CONCLUSION

480 We derived upper bounds on forgetting and generalization error at intermediate training stages in
 481 CL under the NTK regime. Our analysis shows that reducing the Lipschitz constant and enforcing
 482 gradient orthogonality both help mitigate forgetting and improve generalization. Building on these
 483 insights, we proposed OGD+ and OPGD, which refine gradient orthogonality and integrate gradient-
 484 norm penalization, respectively. Empirical results on standard benchmarks corroborate our theoretical
 485 predictions, providing a principled pathway from theory to algorithm design in CL. We discuss
 limitations and our use of large language models in Appendix A.

486 REFERENCES
487

488 Shotaro Akaho. A kernel method for canonical correlation analysis. *arXiv preprint cs/0609071*, 2006.

489 Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
490 Memory aware synapses: Learning what (not) to forget. In *Proceedings of the European conference*
491 *on computer vision (ECCV)*, pp. 139–154, 2018.

492 Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
493 and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. *Advances in*
494 *neural information processing systems*, 32, 2019a.

495 Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for
496 online continual learning. *Advances in neural information processing systems*, 32, 2019b.

497 Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
498 optimization and generalization for overparameterized two-layer neural networks. In *International*
499 *conference on machine learning*, pp. 322–332. PMLR, 2019a.

500 Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
501 exact computation with an infinitely wide neural net. *Advances in neural information processing*
502 *systems*, 32, 2019b.

503 Amin Banayeeanzade, Mahdi Soltanolkotabi, and Mohammad Rostami. Theoretical insights into
504 overparameterized models in multi-task and replay-based continual learning. *arXiv preprint*
505 *arXiv:2408.16939*, 2024.

506 Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
507 structural results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.

508 Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
509 neural networks. *Advances in neural information processing systems*, 30, 2017.

510 Mehdi Abbana Bennani, Thang Doan, and Masashi Sugiyama. Generalisation guarantees for continual
511 learning with orthogonal gradient descent. *arXiv preprint arXiv:2006.11942*, 2020.

512 Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning curves in
513 kernel regression and wide neural networks. In *International Conference on Machine Learning*,
514 pp. 1024–1034. PMLR, 2020.

515 Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
516 experience for general continual learning: a strong, simple baseline. *Advances in neural information*
517 *processing systems*, 33:15920–15930, 2020.

518 Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
519 lifelong learning with a-GEM. In *International Conference on Learning Representations*, 2019a.
520 URL https://openreview.net/forum?id=Hkf2_sC5FX.

521 Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet Kumar
522 Dokania, Philip H. S. Torr, and Marc’Aurelio Ranzato. Continual learning with tiny episodic
523 memories. *CoRR*, abs/1902.10486, 2019b. URL <http://arxiv.org/abs/1902.10486>.

524 Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Generalization bounds for learning
525 kernels. In *Proceedings of the 27th International Conference on Machine Learning (ICML-10)*, pp.
526 247–254, 2010.

527 Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa. Learning
528 without memorizing. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
529 *recognition*, pp. 5138–5146, 2019.

530 Thang Doan, Mehdi Abbana Bennani, Bogdan Mazoure, Guillaume Rabusseau, and Pierre Alquier.
531 A theoretical analysis of catastrophic forgetting through the ntk overlap matrix. In *International*
532 *Conference on Artificial Intelligence and Statistics*, pp. 1072–1080. PMLR, 2021.

540 Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
 541 mood, and Richard S Sutton. Loss of plasticity in deep continual learning. *Nature*, 632(8026):
 542 768–774, 2024.

543

544 Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic
 545 can catastrophic forgetting be in linear regression? In *Conference on Learning Theory*, pp.
 546 4028–4079. PMLR, 2022.

547 Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
 548 learning. In *International conference on artificial intelligence and statistics*, pp. 3762–3773.
 549 PMLR, 2020.

550

551 Iordanis Fostinopoulos, Jiaye Zhu, and Laurent Itti. Batch model consolidation: A multi-task model
 552 consolidation framework. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 553 *Pattern Recognition*, pp. 3664–3676, 2023.

554 Reinhart Heckel. Provable continual learning via sketched jacobian approximations. In *International*
 555 *Conference on Artificial Intelligence and Statistics*, pp. 10448–10470. PMLR, 2022.

556

557 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
 558 generalization in neural networks. *Advances in neural information processing systems*, 31, 2018.

559

560 Sham M Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear prediction: Risk
 561 bounds, margin bounds, and regularization. *Advances in neural information processing systems*,
 562 21, 2008.

563 Ryo Karakida and Shotaro Akaho. Learning curves for continual learning in neural networks: Self-
 564 knowledge transfer and forgetting. In *International Conference on Learning Representations*, 2022.
 565 URL <https://openreview.net/forum?id=tFgdrQbbaa>.

566

567 Grigory Khromov and Sidak Pal Singh. Some fundamental aspects about lipschitz continuity of
 568 neural networks. In *The Twelfth International Conference on Learning Representations*, 2024.
 569 URL <https://openreview.net/forum?id=5jWsW08zUh>.

570 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 571 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
 572 catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114
 573 (13):3521–3526, 2017.

574

575 Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
 576 Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
 577 under gradient descent. *Advances in neural information processing systems*, 32, 2019.

578

579 Haoran Li, Jingfeng Wu, and Vladimir Braverman. Fixed design analysis of regularization-based
 580 continual learning. In *Conference on lifelong learning agents*, pp. 513–533. PMLR, 2023.

581

582 Haoran Li, Jingfeng Wu, and Vladimir Braverman. Memory-statistics tradeoff in continual learning
 583 with structural regularization. *arXiv preprint arXiv:2504.04039*, 2025a.

584

585 Hongbo Li, Sen Lin, Lingjie Duan, Yingbin Liang, and Ness Shroff. Theory on mixture-of-experts
 586 in continual learning. In *The Thirteenth International Conference on Learning Representations*,
 587 2025b. URL <https://openreview.net/forum?id=7XgKAabsPp>.

588

589 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis*
 590 and *machine intelligence*, 40(12):2935–2947, 2017.

591

592 Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for
 593 continual learning. In *The Tenth International Conference on Learning Representations*, 2022.

594

595 Sen Lin, Peizhong Ju, Yingbin Liang, and Ness Shroff. Theory on forgetting and generalization of
 596 continual learning. In *International Conference on Machine Learning*, pp. 21078–21100. PMLR,
 597 2023.

594 David Lopez-Paz and Marc' Aurelio Ranzato. Gradient episodic memory for continual learning.
 595 *Advances in neural information processing systems*, 30, 2017.
 596

597 James L McClelland, Bruce L McNaughton, and Randall C O'Reilly. Why there are complementary
 598 learning systems in the hippocampus and neocortex: insights from the successes and failures of
 599 connectionist models of learning and memory. *Psychological review*, 102(3):419, 1995.

600 Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
 601 sequential learning problem. In *Psychology of learning and motivation*, volume 24, pp. 109–165.
 602 Elsevier, 1989.

603 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
 604 generative adversarial networks. *arXiv preprint arXiv:1802.05957*, 2018.

605

606 Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
 607 Learning to learn without forgetting by maximizing transfer and minimizing interference. *arXiv
 608 preprint arXiv:1810.11910*, 2018.

609 Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
 610 Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. *arXiv preprint
 611 arXiv:1606.04671*, 2016.

612

613 Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
 614 *International Conference on Learning Representations*, 2021.

615 Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal component
 616 analysis. In *International conference on artificial neural networks*, pp. 583–588. Springer, 1997.

617

618 Zifeng Wang, Zheng Zhan, Yifan Gong, Geng Yuan, Wei Niu, Tong Jian, Bin Ren, Stratis Ioannidis,
 619 Yanzhi Wang, and Jennifer Dy. Sparcl: Sparse continual learning on the edge. *Advances in Neural
 620 Information Processing Systems*, 35:20366–20380, 2022.

621

622 Enneng Yang, Li Shen, Zhenyi Wang, Shiwei Liu, Guibing Guo, and Xingwei Wang. Data aug-
 623 mented flatness-aware gradient projection for continual learning. In *Proceedings of the IEEE/CVF
 624 international conference on computer vision*, pp. 5630–5639, 2023.

625

626 Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
 627 expandable networks. In *International Conference on Learning Representations*, 2018.

628

629 Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
 630 In *International conference on machine learning*, pp. 3987–3995. PMLR, 2017.

631

632 Xingxuan Zhang, Renzhe Xu, Han Yu, Hao Zou, and Peng Cui. Gradient norm aware minimization
 633 seeks first-order flatness and improves generalization. In *Proceedings of the IEEE/CVF Conference
 634 on Computer Vision and Pattern Recognition*, pp. 20247–20257, 2023.

635

636 Xuyang Zhao, Huiyuan Wang, Weiran Huang, and Wei Lin. A statistical theory of regularization-
 637 based continual learning. In *International Conference on Machine Learning*, pp. 61021–61039.
 638 PMLR, 2024.

639

640 Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving
 641 generalization in deep learning. In *International conference on machine learning*, pp. 26982–
 642 26992. PMLR, 2022.

643

644 Zhen Zhao, Zhizhong Zhang, Xin Tan, Jun Liu, Yanyun Qu, Yuan Xie, and Lizhuang Ma. Rethinking
 645 gradient projection continual learning: Stability/plasticity feature space decoupling. In *Proceedings
 646 of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 3718–3727, 2023.

647

648 **A ADDITIONAL STATEMENT**
649650 **Limitations.** Our theoretical analysis is developed under the NTK regime, which may not fully
651 reflect the behavior of practical deep networks with finite width or more complex architectures.
652 In addition, our empirical evaluation is limited to classification benchmarks; extending both the
653 theoretical framework and the proposed algorithms to other modalities and learning paradigms
654 remains an important direction for future work.655 **The Use of Large Language Models.** In this work, we exclusively employ large language models
656 (LLMs) to refine the writing and presentation of our manuscript.
657658 **B RELATED WORKS**
659660 **Empirical studies in CL.** Continual learning has achieved substantial empirical progress, with
661 existing approaches broadly categorized into three families: (1) *Regularization-based methods*,
662 which introduce explicit penalty terms to restrict updates on parameters important for previous tasks
663 (Kirkpatrick et al., 2017; Zenke et al., 2017), or employ knowledge distillation by aligning the
664 predictions of the current model (student) with those of the previous model (teacher) to mitigate
665 forgetting (Li & Hoiem, 2017; Dhar et al., 2019; Fostiropoulos et al., 2023); (2) *Replay-based*
666 *methods*, which either store and replay data from past tasks during training on new tasks (Chaudhry
667 et al., 2019a; Riemer et al., 2018; Buzzega et al., 2020), or retain gradient information from prior
668 tasks and enforce new updates to be orthogonal to past gradients, thereby avoiding explicit data replay
669 (Farajtabar et al., 2020; Saha et al., 2021; Lin et al., 2022); (3) *Architecture-based methods* (Rusu
670 et al., 2016; Yoon et al., 2018; Wang et al., 2022), which dynamically expand or adapt the network
671 architecture to preserve knowledge from earlier tasks.672 **Theoretical analysis of CL.** Recent works have begun to lay the theoretical foundations of CL by
673 analyzing forgetting and generalization error under simplified settings. Several studies (Evron et al.,
674 2022; Lin et al., 2023; Banayeeanzade et al., 2024; Li et al., 2025b) investigate these phenomena
675 within overparameterized linear models, typically assuming that datasets are drawn from Gaussian
676 distributions. **Recently, there has been growing interest in the theoretical analysis of regularization**
677 **based methods for CL.** Heckel (2022) theoretically characterize how the performance of a model in a
678 contrastive CL framework is controlled by the training losses on previous tasks. Li et al. (2023) derive
679 bounds on the average risk over two tasks for an ℓ_2 -regularized CL algorithm. Zhao et al. (2024)
680 provide a statistical analysis of regularization based CL on a sequence of linear regression tasks and
681 **highlight how different regularization terms affect model performance.** Li et al. (2025a) establish
682 **upper and lower bounds on the joint excess risk for a generalized ℓ_2 -regularized CL algorithm.**
683 Another major line of theoretical work is based on the NTK regime (Bennani et al., 2020; Doan et al.,
684 2021; Karakida & Akaho, 2022). In particular, Bennani et al. (2020) established generalization error
685 bounds for CL via Rademacher complexity; Doan et al. (2021) analyzed forgetting by introducing the
686 NTK overlap matrix as a task-similarity metric; and Karakida & Akaho (2022), leveraging learning-
687 curve analysis between two tasks (Bordelon et al., 2020), studied both forgetting and generalization
688 error under the assumption that datasets from different tasks are drawn from the same distribution.
689 Although these works provide valuable insights, most rely on simplified settings and converged
690 models, thereby overlooking the evolution of models during training in realistic CL scenarios. In
691 contrast, we theoretically characterize the evolution of both forgetting and generalization error in
692 vanilla CL under the NTK regime, without requiring such restrictive assumptions.693 The most relevant works to ours are Bennani et al. (2020); Doan et al. (2021), which theoretically
694 analyze generalization error and forgetting separately under the NTK regime. However, our study
695 differs in several key aspects: (1) Their analyses incorporate a ridge regularization term in the loss
696 function, effectively aligning with regularization-based CL methods. By contrast, our framework
697 makes no such assumption and corresponds to *vanilla* CL, thus serving as a clean theoretical *baseline*
698 against which improved CL methods—e.g., buffer-based and regularization-based approaches—can
699 be directly compared. (2) Their focus lies primarily on the performance of converged models,
700 whereas we characterize the full evolution of forgetting and generalization error throughout the
701 training dynamics. (3) Bennani et al. (2020) study the generalization error of OGD in CL by
702 leveraging the property that model outputs remain consistent between consecutive tasks, while Doan
703 et al. (2021) analyze forgetting in OGD through the NTK overlap matrix. In contrast, we analyze
704 *both* forgetting and generalization error in OGD through the structure of the cross-task kernel.

702 C ADDITIONAL EXPERIMENTAL RESULTS

704 C.1 EXPERIMENTAL SETTING

706 In this section, we provide additional details of our experimental setup, present extended comparisons
 707 with more baselines (Section C.3), and conduct an ablation study of OPGD (Section C.4). All
 708 experiments are conducted using the NVIDIA RTX 4090 with 24GB GPU memory, CUDA v11.8
 709 and cuDNN v8.7.0 in PyTorch v2.4.1.

711 **Architecture.** For Permuted MNIST and Rotated MNIST, we adopt a three-layer multilayer
 712 perceptron (MLP) with two hidden layers of 100 units each and a final layer with 10 output logits. All
 713 layers except the last one use ReLU activation. For Split CIFAR-100, we employ a LeNet architecture
 714 for training. Table 3 summarizes the hyperparameter settings used for OPGD.

716 Table 3: Hyperparameter Settings of OPGD

717 Hyperparameter	718 Permutated MNIST	719 Rotated MNIST	720 Split CIFAR-100
721 Task nums	722 15	723 15	724 20
725 Network	726 MLP	727 MLP	728 LeNet
729 Epochs	730 5	731 5	732 50
733 Learning rate	734 10^{-3}	735 10^{-3}	736 10^{-3}
737 Batch size	738 32	739 32	740 32
741 Hidden dimension	742 100	743 100	744 100
745 Balance coefficient α	746 0.6	747 0.1	748 0.8
749 Perturbation radius b	750 0.02	751 0.2	752 0.05
753 Sampling size m	754 100	755 100	756 100

722 C.2 ADDITIONAL EXPERIMENTS

730 To verify that our methods also apply to other types of tasks, we conduct additional experiments
 731 on online continual learning. In online continual learning, data arrive sequentially in the form of
 732 a stream. Whenever a small batch of data arrives, it is used for a single training iteration (Aljundi
 733 et al., 2019b;a). Following the standard online continual learning protocol, we use a batch size of 10
 734 and train for one epoch. We perform experiments on Permuted MNIST, Rotated MNIST, and Split
 735 CIFAR-100. We adopt the same hyperparameter settings as those listed in Table 3.

737 Table 4: Average accuracy (ACC) and backward transfer (BWT) over all tasks on online CL benchmarks.
 738 All results are reproduced by us and averaged over 5 runs. The best continual learning
 739 performance is highlighted in **bold**.

740 Dataset	741 Permutated MNIST (15 tasks)		742 Rotated MNIST (15 tasks)		743 Split CIFAR-100 (20 tasks)	
	744 Method	745 ACC	746 BWT	747 ACC	748 BWT	749 ACC
751 SGD	752 75.85 ± 0.78	753 -12.24 ± 0.81	754 67.23 ± 0.41	755 -23.62 ± 0.40	756 31.90 ± 1.57	757 -16.21 ± 1.42
758 GAM	759 76.67 ± 1.02	760 -10.95 ± 1.10	761 70.63 ± 0.59	762 -14.86 ± 0.67	763 33.56 ± 1.67	764 -14.29 ± 1.65
765 OGD	766 78.76 ± 0.50	767 -8.65 ± 0.49	768 79.17 ± 0.41	769 -9.53 ± 0.48	770 37.66 ± 1.78	771 -7.92 ± 1.66
772 OGD+	773 81.88 ± 0.33	774 -5.23 ± 0.38	775 86.35 ± 0.17	776 -1.02 ± 0.28	777 37.68 ± 1.77	778 -7.88 ± 1.68
779 OPGD	780 82.62 ± 0.51	781 -4.93 ± 0.49	782 87.14 ± 0.22	783 2.75 ± 0.25	784 39.88 ± 1.49	785 -6.12 ± 1.45

786 To verify that our theoretical findings can benefit other continual learning algorithms, we integrate
 787 GAM or OPGD into both rehearsal based and regularization based methods on the Permuted MNIST
 788 dataset. Concretely, for rehearsal based baselines we adopt a naive rehearsal protocol that randomly
 789 selects 100 samples from each past task. For regularization based baselines we use an ℓ_2 regularizer
 790 so that the optimization problem for task τ takes the form

$$792 \arg \min_{\theta_\tau} \ell(\theta_\tau) + \|\theta_\tau - \theta_{\tau-1}\|_2^2.$$

794 The corresponding results are presented in Table 5. The experimental results show that our theoretical
 795 messages also benefit other continual learning algorithms.

756 Table 5: Average accuracy (ACC) and backward transfer (BWT) over all tasks on Permuted MNIST.
 757 All results are reproduced by us and averaged over 5 runs. The best continual learning results are
 758 highlighted in **bold**.

Method	ACC	BWT
rehearsal	82.82 ± 0.78	-12.60 ± 0.36
rehearsal + GAM	86.40 ± 0.42	-7.64 ± 0.44
rehearsal + OPGD	88.23 ± 0.16	-5.62 ± 0.13
ℓ_2	73.30 ± 1.21	-21.91 ± 1.22
ℓ_2 + GAM	74.15 ± 1.33	-19.19 ± 1.43
ℓ_2 + OPGD	86.45 ± 0.27	-7.42 ± 0.33

C.3 COMPARISON WITH ADDITIONAL BASELINES

769 **Additional baselines.** We additionally compare against two types of CL methods. Regularization-
 770 based methods: EWC (Kirkpatrick et al., 2017), MAS (Aljundi et al., 2018), SI (Zenke et al., 2017).
 771 Memory-based methods: ER (Chaudhry et al., 2019b), A-GEM (Chaudhry et al., 2019a). For fair
 772 comparison, we set the memory buffer size of ER and A-GEM equal to that of OPGD.

774 Table 6: Average accuracy (ACC) and backward transfer (BWT) over all tasks on different datasets.
 775 Higher ACC and BWT indicate better generalization and less forgetting. All results are reproduced
 776 by us and averaged over 5 runs. The best continual learning results are highlighted in **bold**.

Dataset	Permuted MNIST		Rotated MNIST		Split CIFAR100	
	ACC	BWT	ACC	BWT	ACC	BWT
SGD	70.29 ± 1.50	-25.33 ± 1.57	68.79 ± 0.43	-28.09 ± 0.45	52.08 ± 0.81	-30.63 ± 1.31
OGD	82.17 ± 0.64	-12.38 ± 0.66	77.52 ± 0.69	-18.43 ± 0.76	63.91 ± 1.62	-20.57 ± 1.66
EWC	80.11 ± 1.41	-13.66 ± 1.57	79.92 ± 0.75	-2.33 ± 0.14	56.69 ± 2.42	-20.87 ± 2.41
MAS	83.82 ± 0.41	-5.486 ± 0.36	79.50 ± 0.16	1.60 ± 0.48	66.26 ± 1.41	-3.54 ± 1.30
SI	83.30 ± 0.22	-3.364 ± 0.23	77.08 ± 0.37	-13.78 ± 0.48	67.45 ± 2.25	-8.77 ± 2.38
GAM	72.61 ± 1.44	-22.47 ± 1.57	72.85 ± 0.44	-20.60 ± 0.47	61.70 ± 1.68	-22.63 ± 1.60
ER	83.35 ± 0.91	-11.34 ± 0.91	83.05 ± 0.34	-12.75 ± 0.39	66.03 ± 0.34	-16.89 ± 0.40
A-GEM	84.69 ± 0.41	-9.92 ± 0.42	88.30 ± 0.49	-6.63 ± 0.55	63.04 ± 1.59	-18.26 ± 1.78
OGD+	86.22 ± 0.62	-8.11 ± 0.62	86.15 ± 0.49	-9.02 ± 0.56	61.84 ± 2.51	-23.47 ± 2.48
OGD+GAM	83.73 ± 0.65	-10.41 ± 0.75	80.31 ± 0.51	-12.00 ± 0.55	67.43 ± 2.10	-13.05 ± 1.60
OPGD	86.27 ± 0.56	-7.73 ± 0.61	89.15 ± 0.22	-3.69 ± 0.27	68.17 ± 0.71	-12.58 ± 1.35

788 **Discussion.** As shown in Table 6, OPGD achieves the highest ACC across all benchmarks, indicating
 789 that penalizing the gradient norm within OGD/OGD+ is an effective strategy for improving
 790 generalization. Moreover, although OGD+ underperforms OGD on Split CIFAR-100, *combining*
 791 OGD+ with GAM outperforms *combining* OGD with GAM on this dataset. On the other hand, SI
 792 attains the highest BWT on Permuted MNIST, while MAS achieves the highest BWT on Rotated
 793 MNIST and Split CIFAR-100. As highlighted in Remark 6, this pattern reflects an inherent trade-off
 794 in OPGD: while it substantially improves generalization during training, it may also increase the
 795 risk of forgetting as training progresses. Overall, our main contribution is to provide a theoretical
 796 framework for analyzing continual learning and to improve OGD from a theoretical perspective.
 797 Although OPGD may not always yield the best BWT, it consistently delivers substantial gains in
 798 ACC and exhibits large improvements over standard OGD, thereby validating the effectiveness of our
 799 theoretically motivated design.

C.4 ABLATION STUDY

802 In this section, we investigate effectiveness of each component in OPGD: balance coefficient α (Table
 803 7), perturbation radius b (Table 8), and per-task sampling size m (Table 9).

804 **Balance coefficient α .** The balance coefficient α controls the strength of the GAM penalty. We
 805 perform a grid search over $\{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9\}$ using a fixed seed. As shown in
 806 Table 7, OPGD is relatively insensitive to α , with only modest changes across the range.

808 **Perturbation radius b .** The perturbation radius b controls the neighborhood size in which the
 809 GAM penalty is evaluated, thereby governing the magnitude of parameter perturbations. We conduct

Table 7: ACC and BWT of OPGD with different balance coefficients α across datasets.

α	Permuted MNIST		Rotated MNIST		Split CIFAR100	
	ACC	BWT	ACC	BWT	ACC	BWT
0.1	86.52	-7.77	88.79	-4.85	66.90	-15.33
0.2	86.41	-7.80	88.39	-4.70	67.70	-14.37
0.3	86.10	-8.10	88.15	-4.53	67.04	-14.97
0.4	85.27	-8.94	87.62	-4.76	67.23	-14.51
0.5	86.48	-7.35	87.47	-4.56	68.03	-13.84
0.6	86.55	-7.42	87.02	-4.82	67.89	-14.17
0.7	84.76	-9.30	86.15	-5.58	67.98	-14.21
0.8	85.40	-8.62	85.79	-5.78	68.18	-14.03
0.9	86.41	-7.52	85.76	-5.60	67.64	-14.73

Table 8: ACC and BWT of OPGD with different perturbation radii b across datasets.

b	Permuted MNIST		Rotated MNIST		Split CIFAR100	
	ACC	BWT	ACC	BWT	ACC	BWT
0.02	86.41	-7.47	88.47	-5.40	68.48	-13.82
0.05	86.01	-7.60	88.79	-4.85	69.31	-11.03
0.1	84.79	-8.17	89.01	-4.35	66.02	-9.90
0.2	85.79	-5.96	89.09	-3.76	53.13	-9.45
0.5	79.70	-7.08	87.97	-3.59	50.53	-8.78
1.0	72.61	-6.59	87.72	-2.50	48.45	-8.39
2.0	70.36	-8.05	77.18	-2.90	47.45	-9.12

a grid search over $\{0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0\}$ using a fixed seed. We observe that enlarging b is not always beneficial for OPGD, especially when $b > 0.2$. Conceptually, OPGD aims to reduce the *local* Lipschitz constant; GAM does so by penalizing the maximal gradient norm within a ball of radius b , which serves as a proxy upper bound for the local Lipschitz constant. When b becomes too large, the neighborhood is no longer local, the proxy bound becomes loose—impeding optimization and degrading fit—thereby explaining the observed saturation or decline in performance at large b .

Table 9: ACC and BWT of OPGD with different per-task sampling sizes m across datasets.

m	Permuted MNIST		Rotated MNIST		Split CIFAR100	
	ACC	BWT	ACC	BWT	ACC	BWT
20	79.85	-14.73	82.79	-11.05	66.09	-14.50
40	83.89	-10.46	85.21	-8.26	59.60	-21.08
60	83.51	-10.76	87.12	-6.07	62.69	-18.10
60	85.57	-8.44	88.33	-4.69	65.21	-14.79
100	85.53	-8.52	89.09	-3.76	69.25	-11.10
120	86.64	-7.33	89.87	-2.80	66.36	-13.52
140	87.17	-6.71	90.23	-2.29	68.56	-11.67

Per-task sampling size m . In OPGD, we randomly sample m examples from each task to store in the memory buffer. We perform a grid search over $\{20, 40, 60, 80, 100, 120, 140\}$ using a fixed seed. As shown in Table 9, both ACC and BWT exhibit a clear increasing trend as the buffer size grows. Due to GPU memory constraints, we report results up to $m = 140$; nevertheless, the observed trend indicates that larger buffers would likely yield further gains for OPGD.

D KERNEL GRADIENT FLOW

D.1 KERNEL GRADIENT FLOW UNDER SGD

In this section, we derive Equation (11) by solving the linear ODE in Equation (10). We start by evaluating Equation (10) at the training dataset X_τ :

$$\frac{d}{dt} f_\tau^t(X_\tau) = -\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau)(f_\tau^t(X_\tau) - Y_\tau). \quad (18)$$

Let $g(t) = f_\tau^t(X_\tau) - Y_\tau$. Then, Equation (18) can be rewritten in the simplified form:

$$\frac{d}{dt} g(t) = -\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau)g(t), \quad g(0) = f_\tau^0(X_\tau) - Y_\tau. \quad (19)$$

864 Equation (19) is a linear matrix ODE, where $K_\tau(X_\tau, X_\tau)$ is time-invariant and real symmetric.
 865 Therefore, the theory of linear ODE guarantees a unique solution:
 866

$$867 \quad 868 \quad g(t) = \exp\left(-\frac{t}{n_\tau} K_\tau(X_\tau, X_\tau)\right) g(0) = \exp\left(-\frac{t}{n_\tau} K_\tau(X_\tau, X_\tau)\right) (f_\tau^0(X_\tau) - Y_\tau). \quad (20)$$

870 Substituting $g(t) = f_\tau^t(X_\tau) - Y_\tau$ into Equation (20) yields:
 871

$$872 \quad 873 \quad f_\tau^t(X_\tau) = Y_\tau + \exp\left(-\frac{t}{n_\tau} K_\tau(X_\tau, X_\tau)\right) (f_\tau^0(X_\tau) - Y_\tau). \quad (21)$$

874 Therefore, we obtain the explicit form of $f_\tau^t(\cdot)$ on the training dataset X_τ . Next, we fix an arbitrary
 875 test point $x \in \mathbb{R}^d$. For this x , Equation (10) specializes to
 876

$$877 \quad 878 \quad \frac{d}{dt} f_\tau^t(x) = -\frac{1}{n_\tau} K_\tau(x, X_\tau) (f_\tau^t(X_\tau) - Y_\tau). \quad (22)$$

880 Integrating both sides of Equation (22) over the interval $[0, t]$ and applying the initial condition
 881 $f_\tau^0(x) = f_{\tau-1}^*(x)$, we obtain
 882

$$884 \quad 885 \quad f_\tau^t(x) - f_\tau^0(x) = -\frac{1}{n_\tau} K_\tau(x, X_\tau) \int_0^t (f_\tau^s(X_\tau) - Y_\tau) ds. \quad (23)$$

887 Substituting Equation (21) into the integral term of Equation (23), we obtain
 888

$$889 \quad 890 \quad \int_0^t (f_\tau^s(X_\tau) - Y_\tau) ds = \int_0^t \exp\left(-\frac{s}{n_\tau} K_\tau(X_\tau, X_\tau)\right) (f_\tau^0(X_\tau) - Y_\tau) ds \\ 891 \quad 892 \quad = \left(\int_0^t \exp\left(-\frac{s}{n_\tau} K_\tau(X_\tau, X_\tau)\right) ds \right) (f_\tau^0(X_\tau) - Y_\tau). \quad (24)$$

894 The matrix integral in Equation (24) can be evaluated in closed form by applying the standard identity
 895 (valid for any constant matrix A and scalar $\alpha > 0$):
 896

$$897 \quad 898 \quad \int_0^t \exp(-\alpha s A) ds = \alpha^{-1} A^{-1} (I - \exp(-\alpha t A)), \quad (25)$$

900 provided that A is invertible.

901 Applying Equation (25) with $A = K_\tau(X_\tau, X_\tau)$ and $\alpha = 1/n_\tau$ gives
 902

$$904 \quad 905 \quad \int_0^t \exp\left(-\frac{s}{n_\tau} K_\tau(X_\tau, X_\tau)\right) ds = n_\tau K_\tau(X_\tau, X_\tau)^{-1} \left(I - \exp\left(-\frac{t}{n_\tau} K_\tau(X_\tau, X_\tau)\right) \right). \quad (26)$$

907 Plugging Equation (26) into Equation (23), we obtain
 908

$$909 \quad 910 \quad f_\tau^t(x) - f_\tau^0(x) \\ 911 \quad = -\frac{1}{n_\tau} K_\tau(x, X_\tau) \left(n_\tau K_\tau(X_\tau, X_\tau)^{-1} \left(I - \exp\left(-\frac{t}{n_\tau} K_\tau(X_\tau, X_\tau)\right) \right) \right) (f_\tau^0(X_\tau) - Y_\tau) \\ 912 \quad = -K_\tau(x, X_\tau) K_\tau(X_\tau, X_\tau)^{-1} \left(I - \exp\left(-\frac{t}{n_\tau} K_\tau(X_\tau, X_\tau)\right) \right) (f_\tau^0(X_\tau) - Y_\tau). \quad (27)$$

914 Recalling that $f_\tau^0(\cdot) = f_{\tau-1}^*(\cdot)$, we arrive at the closed-form solution for any $x \in \mathbb{R}^d$:
 915

$$916 \quad 917 \quad f_\tau^t(x) = f_{\tau-1}^*(x) - K_\tau(x, X_\tau) \left(I - \exp\left(-\frac{t}{n_\tau} K_\tau(X_\tau, X_\tau)\right) \right) K_\tau(X_\tau, X_\tau)^{-1} (f_{\tau-1}^*(X_\tau) - Y_\tau). \quad (28)$$

918 For notational simplicity, we define
919

$$920 E_{\tau,t} := I - \exp\left(-\frac{t}{n_\tau} K_\tau(X_\tau, X_\tau)\right). \quad (29)$$

921 Thus, the solution can be compactly expressed as
922

$$923 f_\tau^t(x) = f_{\tau-1}^*(x) - K_\tau(x, X_\tau) E_{\tau,t} K_\tau(X_\tau, X_\tau)^{-1} (f_{\tau-1}^*(X_\tau) - Y_\tau). \quad (30)$$

925 We complete the derivation of Equation (11) by solving the linear ODE in Equation (10). Next, we
926 introduce an important lemma that will be used in the subsequent proofs.
927

Lemma 5. For any $\tau \in [T]$, both $e^{-\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau) t_\tau^*}$ and E_{τ,t_τ^*} are symmetric and positive definite.
928

929 *Proof.* Let $\lambda_{k,n_\tau} > 0$ ($k \in [n_\tau]$) be the eigenvalues of $K_\tau(X_\tau, X_\tau)$. Therefore, there exists an
930 orthogonal matrix Q_τ such that
931

$$932 Q_\tau K_\tau(X_\tau, X_\tau) Q_\tau^\top = \text{diag}\{\lambda_{\tau,1}, \dots, \lambda_{\tau,n_\tau}\}, \quad (31)$$

933 where $\lambda_{\tau,1}, \dots, \lambda_{\tau,n_\tau}$ are the eigenvalues of $K_\tau(X_\tau, X_\tau)$.
934

$$\begin{aligned} 935 Q_\tau e^{-\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau) t_\tau^*} Q_\tau^\top &= Q_\tau \sum_{k=0}^{\infty} \frac{1}{k!} \left(-\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau) t_\tau^*\right)^k Q_\tau^\top \\ 936 &= \sum_{k=0}^{\infty} \frac{1}{k!} \left(-\frac{1}{n_\tau} Q_\tau K_\tau(X_\tau, X_\tau) Q_\tau^\top t_\tau^*\right)^k \\ 937 &= \sum_{k=0}^{\infty} \frac{1}{k!} \left(-\frac{1}{n_\tau} \text{diag}\{\lambda_{\tau,1}, \dots, \lambda_{\tau,n_\tau}\} t_\tau^*\right)^k \\ 938 &= \text{diag}\left\{\sum_{k=0}^{\infty} \frac{1}{k!} \left(-\frac{\lambda_{\tau,1} t_\tau^*}{n_\tau}\right)^k, \dots, \sum_{k=0}^{\infty} \frac{1}{k!} \left(-\frac{\lambda_{\tau,n_\tau} t_\tau^*}{n_\tau}\right)^k\right\} \\ 939 &= \text{diag}\{e^{-\frac{\lambda_{\tau,1} t_\tau^*}{n_\tau}}, \dots, e^{-\frac{\lambda_{\tau,n_\tau} t_\tau^*}{n_\tau}}\}. \end{aligned} \quad (32)$$

940 For any $t_\tau^* > 0$ we have $0 < \exp(-\lambda_{k,n_\tau} t_\tau^*/n_\tau) < 1$. Consequently the matrix exponential $\exp(-\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau) t_\tau^*)$ is symmetric positive definite, and thus E_{τ,t_τ^*} is also symmetric positive definite
941 with eigenvalues $1 - \exp(-\lambda_{k,n_\tau} t_\tau^*/n_\tau) \in (0, 1)$. Even if we relax the condition to $K_\tau(\cdot, \cdot)$ being
942 only positive semi-definite, the matrix exponential $\exp(-\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau) t_\tau^*)$ remains symmetric
943 positive definite, since the exponential of any symmetric matrix with nonnegative eigenvalues yields
944 strictly positive eigenvalues.
945

946 \square

947 D.2 KERNEL GRADIENT FLOW UNDER OGD

948 In this section, we derive Equation (17), which characterizes the gradient flow dynamics under OGD.
949 For any task $\tau \in [T]$, the parameter θ_τ evolves according to the differential equation
950

$$951 \frac{d\theta_\tau^t}{dt} = -P_\tau \nabla_{\theta_\tau^t} \ell(\theta_\tau^t) = -P_\tau \frac{1}{n_\tau} \sum_{j=1}^{n_\tau} (f_\tau(x_\tau^j) - y_\tau^j) \nabla_{\theta_\tau^t} f_\tau^t(x_\tau^j), \quad (33)$$

952 where $t \geq 0$ denotes continuous time.
953

954 Based on (33), the evolution of the network output satisfies
955

$$\begin{aligned} 956 \frac{d}{dt} f_\tau^t(x) &= \nabla_{\theta_\tau^t} f_\tau^t(x) \frac{d\theta_\tau^t}{dt} = -\frac{1}{n_\tau} \sum_{j=1}^{n_\tau} (f_\tau^t(x_\tau^j) - y_\tau^j) \langle \nabla_{\theta_\tau^t} f_\tau^t(x), P_\tau \nabla_{\theta_\tau^t} f_\tau^t(x_\tau^j) \rangle \\ 957 &= -\frac{1}{n_\tau} \sum_{j=1}^{n_\tau} (f_\tau^t(x_\tau^j) - y_\tau^j) \langle P_\tau \nabla_{\theta_\tau^t} f_\tau^t(x), P_\tau \nabla_{\theta_\tau^t} f_\tau^t(x_\tau^j) \rangle. \end{aligned} \quad (34)$$

972 Therefore, under the NTK regime, the kernel gradient flow takes the following form:
 973

$$974 \quad \frac{d}{dt} f_\tau^t(x) = -\frac{1}{n_\tau} \tilde{K}_\tau(x, X_\tau) (f_\tau^t(X_\tau) - Y_\tau), \quad (35)$$

976 where $\tilde{K}_\tau(x, x') = \langle P_\tau \nabla_{\theta_{\tau-1}^*} f_{\tau-1}^*(x), P_\tau \nabla_{\theta_{\tau-1}^*} f_{\tau-1}^*(x') \rangle$. Therefore, the resulting kernel coin-
 977 cides with the one derived in Bennani et al. (2020).
 978

979 E PROOF OF THEOREM 1

982 In this section, we provide the proof of Theorem 1, which establishes the upper bounds of forgetting
 983 F_T and generalization error G_T . We first introduce the notion of Rademacher complexity in Subsec-
 984 tion E.1. We then derive the upper bound of the generalization error in Subsection E.2, followed by
 985 the proof of the upper bound of forgetting in Subsection E.3.

986 E.1 GENERALIZATION AND RADEMACHER COMPLEXITY

988 There are several ways to quantify the complexity of a function class \mathcal{F} , one important and widely
 989 used measure is the Rademacher complexity. Following the notation in Arora et al. (2019a), we
 990 define the empirical Rademacher complexity as follows:

991 **Definition 1.** *Given a sample set $S_\tau = \{(x_\tau^i, y_\tau^i)\}_{i=1}^{n_\tau}$, the empirical Rademacher complexity of a
 992 function class \mathcal{F} is defined as:*

$$994 \quad \mathcal{R}_{S_\tau}(\mathcal{F}) = \frac{1}{n} \mathbb{E}_\epsilon \left[\sup_{f \in \mathcal{F}} \sum_{i=1}^{n_\tau} \epsilon_i f(x_\tau^i) \right], \quad (36)$$

997 where $\epsilon = (\epsilon_1, \dots, \epsilon_n)^\top$ is a vector of i.i.d. random variables drawn from the Rademacher distribu-
 998 tion, i.e., $\epsilon_i \sim \text{Unif}(-1, +1)$.

999 Rademacher complexity provides a data-dependent upper bound on the generalization error of a
 1000 learning algorithm (Bartlett & Mendelson, 2002).

1002 **Theorem 2.** *Suppose the loss function $\ell(\cdot, \cdot)$ is bounded in $[0, c]$ and is ρ -Lipschitz in the first
 1003 argument. Then, with probability at least $1 - \delta$, for all $f \in \mathcal{F}$, it holds that*

$$1004 \quad L_D(f) - L_S(f) \leq 2\rho\mathcal{R}_S(\mathcal{F}) + 3c\sqrt{\frac{\log(2/\delta)}{2n}}. \quad (37)$$

1007 Based on Theorem 2, we state the following corollary:

1008 **Corollary 1.** *Suppose the loss function $\ell(\cdot, \cdot)$ is bounded in $[0, c]$ and is ρ -Lipschitz in the first
 1009 argument. Then, with probability at least $1 - \delta$, for all $f \in \mathcal{F}$, it holds that*

$$1011 \quad L_S(f) - L_D(f) \leq 2\rho\mathcal{R}_S(\mathcal{F}) + 3c\sqrt{\frac{\log(2/\delta)}{2n}}. \quad (38)$$

1014 *Proof.* Let $\mathcal{G} := \{g_f(z) = \ell(f(x), y) : f \in \mathcal{F}\}$, where each g_f takes values in $[0, c]$. For any $f \in \mathcal{F}$,
 1015 define the population risk $L_D(f) = \mathbb{E}_D[g_f]$ and the empirical risk $L_S(f) = \mathbb{E}_S[g_f]$.

1016 From the standard Rademacher generalization bound, with probability at least $1 - \delta$, it holds that

$$1018 \quad L_D(f) \leq L_S(f) + 2\mathcal{R}_S(\mathcal{G}) + 3c\sqrt{\frac{\log(2/\delta)}{2n}}. \quad (39)$$

1020 To obtain the reverse direction, consider the shifted function class

$$1022 \quad \mathcal{G}' := \{g'_f(z) = c - g_f(z) : f \in \mathcal{F}\},$$

1023 which also takes values in $[0, c]$ and satisfies $\mathcal{R}_S(\mathcal{G}') = \mathcal{R}_S(\mathcal{G})$. Applying the same bound to \mathcal{G}'
 1024 yields

$$1025 \quad L_S(f) - L_D(f) \leq 2\mathcal{R}_S(\mathcal{G}) + 3c\sqrt{\frac{\log(2/\delta)}{2n}}.$$

1026 Finally, by the contraction lemma, since $\ell(\cdot, y)$ is ρ -Lipschitz in its first argument, we have
 1027

$$\mathcal{R}_S(\mathcal{G}) \leq \rho \mathcal{R}_S(\mathcal{F}).$$

1029 Substituting this completes the proof. \square
 1030

1031 Next, we provide an upper bound on the Rademacher complexity of a specific form of function class,
 1032 as stated in Lemma 6.
 1033

1034 **Lemma 6.** *Let $\{K_t : \mathcal{X}_t \times \mathcal{X}_t \rightarrow \mathbb{R}\}_{t=1}^T$ be a sequence of positive semi-definite kernels such that
 1035 $\sup_{x \in \mathcal{X}} \|K_t(x, x)\| < \infty$ for all $t \in [T]$. For each $t \in [T]$, let \mathcal{H}_t be the reproducing kernel Hilbert
 1036 space (RKHS) associated with K_t , equipped with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}_t}$. Given a sequence of positive
 1037 constants $\{B_t\}_{t=1}^T$, we define the function class \mathcal{F}_T as*

$$1038 \quad \mathcal{F}_T = \left\{ f : \mathcal{X} \rightarrow \mathbb{R} \left| x \rightarrow \sum_{t=1}^T f_t(x), f_t(x) = K_t(x, X_t)^\top \alpha_t, \|f_t\|_{\mathcal{H}_t} \leq B_t, \forall t \in [T] \right. \right\}. \quad (40)$$

1041 Then the empirical Rademacher complexity of \mathcal{F}_T over S_τ satisfies
 1042

$$1043 \quad \mathcal{R}_{S_\tau}(\mathcal{F}_T) \leq \sum_{t=1}^T \frac{B_t}{n_\tau} (\text{Tr}(K_t(X_\tau, X_\tau)))^{1/2}. \quad (41)$$

1047 *Proof.* For any kernel K_t , there exists an associated feature map $\Phi_t : \mathcal{X}_t \rightarrow \mathcal{H}_t$ such that for all
 1048 $x_1, x_2 \in \mathcal{X}_t$, we have $K_t(x_1, x_2) = \langle \Phi_t(x_1), \Phi_t(x_2) \rangle_{\mathcal{H}_t}$. In particular, the kernel vector $K_t(x, X_t)$
 1049 is defined as $K_t(x, X_t) = (K_t(x, x_t^1), \dots, K_t(x, x_t^{n_t}))^\top$ and the coefficient vector is given by
 1050 $\alpha_t = (\alpha_t^1, \dots, \alpha_t^{n_t})^\top$. Consequently, for any $f \in \mathcal{F}_T$, we have

$$\begin{aligned} 1051 \quad f(x) &= \sum_{t=1}^T f_t(x) \\ 1052 &= \sum_{t=1}^T K_t(x, X_t)^\top \alpha_t \\ 1053 &= \sum_{t=1}^T \sum_{i=1}^{n_t} \alpha_t^i K_t(x, x_t^i) \\ 1054 &= \sum_{t=1}^T \sum_{i=1}^{n_t} \alpha_t^i \langle \Phi_t(x), \Phi_t(x_t^i) \rangle_{\mathcal{H}_t} \\ 1055 &= \sum_{t=1}^T \langle \Phi_t(x), \sum_{i=1}^{n_t} \alpha_t^i \Phi_t(x_t^i) \rangle_{\mathcal{H}_t}. \end{aligned} \quad (42)$$

1066 Let $w_t = \sum_{i=1}^{n_t} \alpha_t^i \Phi_t(x_t^i)$. Then the function f can be represented as:
 1067

$$1068 \quad f(x) = \sum_{t=1}^T \langle w_t, \Phi_t(x) \rangle_{\mathcal{H}_t} \quad (43)$$

1071 Moreover, the norm of w_t in \mathcal{H}_t satisfies:
 1072

$$\begin{aligned} 1073 \quad \|w_t\|_{\mathcal{H}_t} &= \sum_{i,j} \alpha_t^i \alpha_t^j \langle \Phi_t(x_t^i), \Phi_t(x_t^j) \rangle_{\mathcal{H}_t} \\ 1074 &= \sum_{i,j} \alpha_t^i \alpha_t^j K_t(x_t^i, x_t^j) \\ 1075 &= \alpha_t^\top K_t(X_t, X_t) \alpha_t \\ 1076 &= \|f_t\|_{\mathcal{H}_t} \end{aligned} \quad (44)$$

1080 We define the function class $\tilde{\mathcal{F}}_T$ as follows:
 1081

$$1082 \tilde{\mathcal{F}}_T = \left\{ f : \mathcal{X} \rightarrow \mathbb{R} \middle| x \rightarrow \sum_{t=1}^T \langle w_t, \Phi_t(x) \rangle_{\mathcal{H}_t}, \|w_t\|_{\mathcal{H}_t} \leq B_t, \forall t \in [T] \right\} \quad (45)$$

1085 By construction, we have $\mathcal{F}_T \subset \tilde{\mathcal{F}}_T$. Consequently, the empirical Rademacher complexity of \mathcal{F}_T
 1086 over S_τ can be upper bounded by that of $\tilde{\mathcal{F}}_T$, i.e.,
 1087

$$\begin{aligned} 1088 \mathcal{R}_{S_\tau}(\mathcal{F}_T) &\leq \mathcal{R}_{S_\tau}(\tilde{\mathcal{F}}_T) = \frac{1}{n_\tau} \mathbb{E}_\epsilon \left[\sup_{\|w_t\|_{\mathcal{H}_t} \leq B_t, \forall t \in [T]} \sum_{i=1}^{n_\tau} \epsilon_i \sum_{t=1}^T \langle w_t, \Phi_t(x_\tau^i) \rangle_{\mathcal{H}_t} \right] \\ 1089 &= \frac{1}{n_\tau} \mathbb{E}_\epsilon \left[\sup_{\|w_t\|_{\mathcal{H}_t} \leq B_t, \forall t \in [T]} \sum_{t=1}^T \langle w_t, \sum_{i=1}^{n_\tau} \epsilon_i \Phi_t(x_\tau^i) \rangle_{\mathcal{H}_t} \right] \\ 1090 &\leq \frac{1}{n_\tau} \sum_{t=1}^T \mathbb{E}_\epsilon \left[\sup_{\|w_t\|_{\mathcal{H}_t} \leq B_t} \langle w_t, \sum_{i=1}^{n_\tau} \epsilon_i \Phi_t(x_\tau^i) \rangle_{\mathcal{H}_t} \right] \\ 1091 &= \sum_{t=1}^T \frac{B_t}{n_\tau} \mathbb{E}_\epsilon \left[\left\| \sum_{i=1}^{n_\tau} \epsilon_i \Phi_t(x_\tau^i) \right\|_{\mathcal{H}_t} \right] \\ 1092 &= \sum_{t=1}^T \frac{B_t}{n_\tau} \mathbb{E}_\epsilon \left[\sqrt{\sum_{i,j} \epsilon_i \epsilon_j K_t(x_\tau^i, x_\tau^j)} \right] \\ 1093 &\leq \sum_{t=1}^T \frac{B_t}{n_\tau} \sqrt{\sum_{i,j} \mathbb{E}_\epsilon [\epsilon_i \epsilon_j K_t(x_\tau^i, x_\tau^j)]} \\ 1094 &= \sum_{t=1}^T \frac{B_t}{n_\tau} \sqrt{\sum_i \mathbb{E}_\epsilon [\epsilon_i^2 K_t(x_\tau^i, x_\tau^i)]} \\ 1095 &= \sum_{t=1}^T \frac{B_t}{n_\tau} \sqrt{\sum_i K_t(x_\tau^i, x_\tau^i)} \\ 1096 &= \sum_{t=1}^T \frac{B_t}{n_\tau} (\text{Tr}(K_t(X_\tau, X_\tau)))^{1/2} \\ 1097 \\ 1098 \\ 1099 \\ 1100 \\ 1101 \\ 1102 \end{aligned} \quad (46)$$

□

1118 E.2 BOUND ON THE GENERALIZATION ERROR G_T

1119 In order to derive an upper bound on the generalization error defined in Equation (4), we utilize the
 1120 inequality provided in Equation (37). To proceed, we will separately bound the empirical loss term
 1121 $L_{S_\tau}(f_T^*)$ and the Rademacher complexity term $\mathcal{R}_{S_\tau}(\mathcal{F}_T)$.
 1122

1123 *Proof.* (1) For the term $L_{S_\tau}(f_T^*)$ for any $\tau \in [T]$, we have:
 1124

$$\begin{aligned} 1125 L_{S_\tau}(f_T^*) &= \frac{1}{2n_\tau} \|f_T^*(X_\tau) - Y_\tau\|^2 \\ 1126 &= \frac{1}{2n_\tau} \|f_\tau^*(X_\tau) + \sum_{k=\tau+1}^T \tilde{f}_k^*(X_\tau) - Y_\tau\|^2. \\ 1127 \\ 1128 \\ 1129 \\ 1130 \end{aligned} \quad (47)$$

1131 Notably, the convention $\sum_{k=T+1}^T \cdot = 0$ always holds, which is known as the empty sum convention.
 1132 Therefore, when $\tau = T$, Equation (47) remains valid.
 1133

Next, we compute the term $\|f_\tau^*(X_\tau) - Y_\tau\|^2$ as follows:

$$\begin{aligned}
1134 \quad \|f_\tau^*(X_\tau) - Y_\tau\|^2 &= \|f_{\tau-1}^*(X_\tau) + \tilde{f}_\tau^*(X_\tau) - Y_\tau\|^2 \\
1135 \quad &= \|\tilde{f}_\tau^*(X_\tau) - \tilde{Y}_\tau\|^2 \\
1136 \quad &= \|K_\tau(X_\tau, X_\tau)E_{\tau, t_\tau^*}K_\tau(X_\tau, X_\tau)^{-1}\tilde{Y}_\tau - \tilde{Y}_\tau\|^2 \\
1137 \quad &= \|\tilde{Y}_\tau - K_\tau(X_\tau, X_\tau)e^{-\frac{1}{n_\tau}K_\tau(X_\tau, X_\tau)t_\tau^*}K_\tau(X_\tau, X_\tau)^{-1}\tilde{Y}_\tau - \tilde{Y}_\tau\|^2 \\
1138 \quad &= \|K_\tau(X_\tau, X_\tau)e^{-\frac{1}{n_\tau}K_\tau(X_\tau, X_\tau)t_\tau^*}K_\tau(X_\tau, X_\tau)^{-1}\tilde{Y}_\tau\|^2
\end{aligned} \tag{48}$$

1142 In order to simplify the result in Equation (92), we use the Taylor expansion of the exponential
1143 function, i.e., $e^X = \sum_k \frac{1}{k!} X^k$. Therefore, we have:

$$\begin{aligned}
1144 \quad \|f_\tau^*(X_\tau) - Y_\tau\|^2 &= \|K_\tau(X_\tau, X_\tau) \sum_k \frac{1}{k!} \left(-\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau)t_\tau^*\right)^k K_\tau(X_\tau, X_\tau)^{-1}\tilde{Y}_\tau\|^2 \\
1145 \quad &= \left\| \sum_k \frac{1}{k!} K_\tau(X_\tau, X_\tau) \left(-\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau)t_\tau^*\right)^k K_\tau(X_\tau, X_\tau)^{-1}\tilde{Y}_\tau \right\|^2 \\
1146 \quad &= \left\| \sum_k \frac{1}{k!} \left(-\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau)t_\tau^*\right)^k \tilde{Y}_\tau \right\|^2 \\
1147 \quad &= \|e^{-\frac{1}{n_\tau}K_\tau(X_\tau, X_\tau)t_\tau^*}\tilde{Y}_\tau\|^2
\end{aligned} \tag{49}$$

1148 Therefore, we obtain the following upper bound:

$$1149 \quad L_{S_\tau}(f_T^*) \leq \frac{1}{n_\tau} \left\| \sum_{k=\tau+1}^T K_k(X_\tau, X_k) E_{k, t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k \right\|^2 + \frac{1}{n_\tau} \|e^{-\frac{1}{n_\tau}K_\tau(X_\tau, X_\tau)t_\tau^*}\tilde{Y}_\tau\|^2 \tag{50}$$

1150 (2) For the term $\mathcal{R}(\mathcal{F}_T)$, we first consider a bound on the reproduced kernel Hilbert space (RKHS)
1151 norm of \tilde{f}_τ^* . Let $(\mathcal{H}_{K_\tau}, \|\cdot\|_{\mathcal{H}_{K_\tau}})$ be the RKHS induced by the kernel K_τ . We define

$$1152 \quad \alpha_\tau := E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau. \tag{51}$$

1153 Then, \tilde{f}_τ^* can be written as:

$$1154 \quad \tilde{f}_\tau^*(x) = K_\tau(x, X_\tau)^\top \alpha_\tau \tag{52}$$

1155 The RKHS norm of \tilde{f}_τ^* is then given by:

$$\begin{aligned}
1156 \quad \|\tilde{f}_\tau^*\|_{\mathcal{H}_{K_\tau}}^2 &= \alpha_\tau^\top K_\tau(X_\tau, X_\tau) \alpha_\tau \\
1157 \quad &= \tilde{Y}_\tau^\top K_\tau(X_\tau, X_\tau)^{-1} E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau) E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau \\
1158 \quad &\leq \tilde{Y}_\tau^\top E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau := B_\tau^2
\end{aligned} \tag{53}$$

1159 The final inequality in Equation (53) is easily verified by the following equation:

$$\begin{aligned}
1160 \quad &\tilde{Y}_\tau^\top K_\tau(X_\tau, X_\tau)^{-1} E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau) E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau - \tilde{Y}_\tau^\top E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau \\
1161 \quad &= \tilde{Y}_\tau^\top [K_\tau(X_\tau, X_\tau)^{-1} E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau) - I] E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau \\
1162 \quad &= \tilde{Y}_\tau^\top [K_\tau(X_\tau, X_\tau)^{-1} E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau) - K_\tau(X_\tau, X_\tau)^{-1} K_\tau(X_\tau, X_\tau)] E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau \\
1163 \quad &= \tilde{Y}_\tau^\top K_\tau(X_\tau, X_\tau)^{-1} (E_{\tau, t_\tau^*} - I) K_\tau(X_\tau, X_\tau) E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau \\
1164 \quad &= -\tilde{Y}_\tau^\top K_\tau(X_\tau, X_\tau)^{-1} e^{-\frac{1}{n_\tau}K_\tau(X_\tau, X_\tau)t_\tau^*} K_\tau(X_\tau, X_\tau) E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau
\end{aligned} \tag{54}$$

1165 Based on Lemma 5, since $K_\tau(X_\tau, X_\tau)$, $K_\tau(X_\tau, X_\tau)^{-1}$, $e^{-\frac{1}{n_\tau}K_\tau(X_\tau, X_\tau)t_\tau^*}$, and E_{τ, t_τ^*} are all positive
1166 semi-definite, it follows that

$$1167 \quad \tilde{Y}_\tau^\top K_\tau(X_\tau, X_\tau)^{-1} E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau) E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau - \tilde{Y}_\tau^\top E_{\tau, t_\tau^*} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau \leq 0 \tag{55}$$

Therefore, we verify that Equation (53) holds, and we obtain an upper bound for $\|\tilde{f}_\tau^*\|_{\mathcal{H}_{K_\tau}}$, which we denote by B_τ . We define the function class \mathcal{F}_T as follows:

$$\mathcal{F}_T = \left\{ f : \mathcal{X} \rightarrow \mathbb{R} \mid x \rightarrow \sum_{\tau=1}^T \tilde{f}_\tau(x), \tilde{f}_\tau(x) = K_\tau(x, X_\tau)^\top \alpha_\tau, \|\tilde{f}_\tau\|_{\mathcal{H}_{K_\tau}} \leq B_\tau, \forall \tau \in [T] \right\}. \quad (56)$$

Based on Lemma 6, we obtain the following bound on the empirical Rademacher complexity of \mathcal{F}_T over S_τ :

$$\begin{aligned} \mathcal{R}_{S_\tau}(\mathcal{F}_T) &\leq \sum_{k=1}^T \frac{B_k}{n_\tau} (\text{Tr}(K_k(X_\tau, X_\tau)))^{1/2} \\ &\leq \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} \end{aligned} \quad (57)$$

Based on Theorem 2, and by combining Equation (93) with Equation (57), we have:

$$\begin{aligned} L_{D_\tau}(f_T^*) &\leq \frac{1}{n_\tau} \left\| \sum_{k=\tau+1}^T K_k(X_\tau, X_k) E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k \right\|^2 + \frac{1}{n_\tau} \|e^{-\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau) t_\tau^*} \tilde{Y}_\tau\|^2 \\ &\quad + 2\rho \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 3c \sqrt{\frac{\log(2/\delta)}{2n_\tau}} \end{aligned} \quad (58)$$

By substituting the bound from Equation (58) into Equation (4), we obtain:

$$\begin{aligned} G_{t_T} &\leq \frac{1}{T} \sum_{\tau=1}^T \left\{ \frac{1}{n_\tau} \left\| \sum_{k=\tau+1}^T K_k(X_\tau, X_k) E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k \right\|^2 + \frac{1}{n_\tau} \|e^{-\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau) t_\tau^*} \tilde{Y}_\tau\|^2 \right. \\ &\quad \left. + 2\rho \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 3c \sqrt{\frac{\log(2/\delta)}{2n_\tau}} \right\} \end{aligned} \quad (59)$$

□

E.3 BOUND ON FORGETTING F_T

In this section, we derive an upper bound on the average forgetting, as presented in Equation (3).

Proof. We decompose each term in Equation (3) as follows:

For any $\tau \in [T-1]$, we have:

$$L_{D_\tau}(f_T^*) - L_{D_\tau}(f_\tau^*) = \underbrace{L_{D_\tau}(f_T^*) - L_{S_\tau}(f_T^*)}_{(a)} + \underbrace{L_{S_\tau}(f_T^*) - L_{S_\tau}(f_\tau^*)}_{(b)} + \underbrace{L_{S_\tau}(f_\tau^*) - L_{D_\tau}(f_\tau^*)}_{(c)} \quad (60)$$

Next, we derive upper bounds for terms (a), (b), and (c), respectively.

For term (a), by applying Theorem 2 together with the bound in Equation (57), we obtain:

$$\begin{aligned} L_{D_\tau}(f_T^*) - L_{S_\tau}(f_T^*) &\leq 2\rho \mathcal{R}_{S_\tau}(\mathcal{F}_T) + 3c \sqrt{\frac{\log(2/\delta)}{2n_\tau}} \\ &\leq 2\rho \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 3c \sqrt{\frac{\log(2/\delta)}{2n_\tau}} \end{aligned} \quad (61)$$

For term (b), we begin by deriving explicit expressions for $L_{S_\tau}(f_T^*)$ and $L_{S_\tau}(f_\tau^*)$, as follows:

1242

1243

$$L_{S_\tau}(f_T^*) \leq \frac{1}{n_\tau} \|f_\tau^*(X_\tau) - Y_\tau\|^2 + \frac{1}{n_\tau} \left\| \sum_{k=\tau+1}^T \tilde{f}_k^*(X_\tau) \right\|^2 \quad (62)$$

1244

1245

1246

$$L_{S_\tau}(f_\tau^*) = \frac{1}{n_\tau} \|f_\tau^*(X_\tau) - Y_\tau\|^2 \quad (63)$$

1247

1248

Subtracting the two expressions, we obtain:

1249

1250

$$\begin{aligned} L_{S_\tau}(f_T^*) - L_{S_\tau}(f_\tau^*) &\leq \frac{1}{n_\tau} \left\| \sum_{k=\tau+1}^T \tilde{f}_k^*(X_\tau) \right\|^2 \\ &\leq \frac{1}{n_\tau} \sum_{k=\tau+1}^T \|K_k(X_\tau, X_k) E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k\|^2 \end{aligned} \quad (64)$$

1251

1252

For term (c), by applying Corollary 1 together with the bound in Equation (57), we obtain:

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

$$\begin{aligned} L_{S_\tau}(f_\tau^*) - L_{D_\tau}(f_\tau^*) &\leq 2\rho \mathcal{R}_{S_\tau}(\mathcal{F}_\tau) + 3c \sqrt{\frac{\log(2/\delta)}{2n_\tau}} \\ &\leq 2\rho \sum_{k=1}^{\tau} \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 3c \sqrt{\frac{\log(2/\delta)}{2n_\tau}} \end{aligned} \quad (65)$$

1263

1264

1265

1266

Then, we have:

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

□

1296 **F FORGETTING AND GENERALIZATION ERROR OF PGN**
1297

1298 We first present the main result in Theorem 3. To help readers quickly understand the proof strategy,
1299 we also provide a proof sketch. The detailed proofs are given in Appendix F.1, Appendix F.2,
1300 Appendix F.3, and Appendix F.4.

1302 **Theorem 3.** *Consider a sequence of T tasks. For each task $\tau \in [T]$, let \mathcal{D}_τ denote the data
1303 distribution, and let $S_\tau = \{X_\tau, Y_\tau\}$ be the corresponding training dataset drawn i.i.d. from \mathcal{D}_τ .
1304 Suppose the loss function $\ell(\cdot, \cdot)$ takes values in the interval $[0, c]$ and is ρ -Lipschitz in the first
1305 argument. Then, with probability at least $1 - \delta$, the following bounds hold:*

$$1307 F_{tr} \leq \frac{1}{T-1} \sum_{\tau=1}^{T-1} \left\{ 2\rho \sum_{k=\tau+1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau))\tilde{Y}_k^\top (E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} \right. \\ 1310 \left. + 4\rho \sum_{k=1}^{\tau} \frac{[\text{Tr}(K_k(X_\tau, X_\tau))\tilde{Y}_k^\top (E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 6c\sqrt{\frac{\log(2/\delta)}{2n_\tau}} \right\} \quad (67)$$

$$1313 \left. + \frac{1}{n_\tau} \sum_{k=\tau+1}^T \|K_k(X_\tau, X_k)E_{k,t_k^*}^{\text{PGN}} K_k(X_k, X_k)^{-1} \tilde{Y}_k\|^2 \right\},$$

$$1316 G_{tr} \leq \frac{1}{T} \sum_{\tau=1}^T \left\{ \frac{1}{n_\tau} \sum_{k=\tau+1}^T \|K_k(X_\tau, X_k)E_{k,t_k^*}^{\text{PGN}} K_k(X_k, X_k)^{-1} \tilde{Y}_k\|^2 \right. \\ 1319 \left. + \frac{1}{n_\tau} \|e^{-\frac{t_\tau^*}{n_\tau} K_\tau(X_\tau, X_\tau) - \frac{\Phi_\tau(t_\tau^*)}{n_\tau} [K_\tau(X_\tau, X_\tau)]^2} \tilde{Y}_\tau\|^2 \right. \\ 1320 \left. + 2\rho \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau))\tilde{Y}_k^\top (E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 3c\sqrt{\frac{\log(2/\delta)}{2n_\tau}} \right\}, \quad (68)$$

1325 where $E_{\tau,t}^{\text{PGN}} = I - \exp\left(-\frac{t}{n_\tau} K_\tau(X_\tau, X_\tau) - \frac{\Phi_\tau(t)}{n_\tau} K_\tau^2(X_\tau, X_\tau)\right)$ and $\Phi_\tau(t)$ satisfy $\Phi_\tau(t) =$
1326 $\int_0^t \frac{\alpha_\tau}{\sqrt{[f_\tau^s(X_\tau) - Y_\tau]^\top K_\tau [f_\tau^s(X_\tau) - Y_\tau]}} ds$.

1329 *proof sketch.* Our proof consists of four main parts.

1331 (1) *Gradient flow of PGN.* We first compute the gradient of the PGN loss in Equation (15) and apply
1332 the chain rule $\frac{d}{dt} f_\tau^t(x) = \nabla_{\theta_\tau^t} f_\tau^t(x) \frac{d\theta_\tau^t}{dt}$ to derive the kernel gradient flow of PGN:

$$1333 \frac{d}{dt} f_\tau^t(x) = -\frac{1}{n_\tau} K_\tau(x, X_\tau) (f_\tau^t(X_\tau) - Y_\tau) - \frac{\alpha_\tau}{n_\tau} \frac{K_\tau(x, X_\tau) K_\tau(X_\tau, X_\tau) (f_\tau^t(X_\tau) - Y_\tau)}{\sqrt{(f_\tau^t(X_\tau) - Y_\tau)^\top K_\tau(X_\tau, X_\tau) (f_\tau^t(X_\tau) - Y_\tau)}}. \quad (69)$$

1337 The detailed derivation is provided in Appendix F.1.

1339 (2) *Solution of the kernel gradient flow for PGN.* We adopt a similar approach to Appendix D.1 to
1340 solve the ODE. We first derive the solution on the training set X_τ :

$$1341 f_\tau^t(X_\tau) = Y_\tau + \exp\left(-\frac{t}{n_\tau} K_\tau(X_\tau, X_\tau) - \frac{\Phi_\tau(t)}{n_\tau} K_\tau^2(X_\tau, X_\tau)\right) (f_\tau^0(X_\tau) - Y_\tau). \quad (70)$$

1343 We then obtain the solution at an arbitrary point x :

$$1344 f_\tau^t(x) = f_{\tau-1}^*(x) - K_\tau(x, X_\tau) E_{\tau,t}^{\text{PGN}} K_\tau^{-1}(X_\tau, X_\tau) (f_{\tau-1}^*(X_\tau) - Y_\tau). \quad (71)$$

1346 The detailed derivation is provided in Appendix F.2.

1347 (3) *Bound on the generalization error.* We use standard techniques from statistical learning theory
1348 to bound the generalization error of the regularization based method via Rademacher complexity
1349 (Kakade et al., 2008; Cortes et al., 2010). According to Theorem 2, we need to control the
empirical loss $L_{S_\tau}(f_T^*)$ and the Rademacher complexity of the function class $\mathcal{R}_{S_\tau}(\mathcal{F}_T)$.

1350 The empirical loss $L_{S_\tau}(f_T^*)$ can be bounded using Equation (71), which yields
 1351

$$1352 \quad L_{S_\tau}(f_T^*) \leq \frac{1}{n_\tau} \left\| \sum_{k=\tau+1}^T K_k(X_\tau, X_k) E_{k,t_k^*}^{\text{PGN}} K_k(X_k, X_k)^{-1} \tilde{Y}_k \right\|^2 \\ 1353 \quad + \frac{1}{n_\tau} \left\| e^{-\frac{t_\tau^*}{n_\tau} K_\tau(X_\tau, X_\tau) - \frac{\Phi_\tau(t)}{n_\tau} [K_\tau(X_\tau, X_\tau)]^2} \tilde{Y}_\tau \right\|^2. \\ 1354 \\ 1355 \\ 1356 \\ 1357$$

1358 We bound the Rademacher complexity through the RKHS norm of \tilde{f}_τ^* and Lemma 6:
 1359

$$1360 \quad \mathcal{R}_{S_\tau}(\mathcal{F}_T) \leq \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top (E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau}. \\ 1361 \\ 1362 \\ 1363$$

1364 By combining Equations (72) and (73) with Theorem 2, we obtain the desired upper bound on the
 1365 generalization error G_{t_T} . The detailed derivation is provided in Appendix F.3.
 1366

1367 (4) *Bound on forgetting.* We decompose each term in the forgetting metric in Equation (3) as
 1368

$$1369 \quad L_{D_\tau}(f_T^*) - L_{D_\tau}(f_\tau^*) = \underbrace{L_{D_\tau}(f_T^*) - L_{S_\tau}(f_T^*)}_{(a)} + \underbrace{L_{S_\tau}(f_T^*) - L_{S_\tau}(f_\tau^*)}_{(b)} + \underbrace{L_{S_\tau}(f_\tau^*) - L_{D_\tau}(f_\tau^*)}_{(c)}, \\ 1370 \\ 1371 \\ 1372$$

for any $\tau \in [T-1]$.

1373 Theorem 2 and Corollary 1 imply that terms (a) and (c) are controlled by the Rademacher complexities $\mathcal{R}_{S_\tau}(\mathcal{F}_T)$ and $\mathcal{R}_{S_\tau}(\mathcal{F}_\tau)$ respectively. The bounds on $\mathcal{R}_{S_\tau}(\mathcal{F}_T)$ and $\mathcal{R}_{S_\tau}(\mathcal{F}_\tau)$ have already been
 1374 obtained in step (3). The second term (b) can be bounded as
 1375

$$1376 \quad L_{S_\tau}(f_T^*) - L_{S_\tau}(f_\tau^*) \leq \frac{1}{n_\tau} \left\| \sum_{k=\tau+1}^T \tilde{f}_k^*(X_\tau) \right\|^2 \\ 1377 \\ 1378 \quad \leq \frac{1}{n_\tau} \sum_{k=\tau+1}^T \left\| K_k(X_\tau, X_k) E_{k,t_k^*}^{\text{PGN}} K_k(X_k, X_k)^{-1} \tilde{Y}_k \right\|^2. \\ 1379 \\ 1380 \\ 1381 \\ 1382$$

1383 Combining these bounds yields the desired upper bound on the average forgetting. The detailed
 1384 derivation is provided in Appendix F.4.
 1385

1386 \square
 1387

1388 F.1 KERNEL GRADIENT FLOW OF PGN 1389

1390 In the CL setting, the training loss of PGN for any task $\tau \in [T]$ is given by
 1391

$$1392 \quad L_{S_\tau}^{\text{PGN}}(\theta_\tau) = L_{S_\tau}(\theta_\tau) + \alpha_\tau \|\nabla_{\theta_\tau} L_{S_\tau}(\theta_\tau)\|, \\ 1393 \\ 1394$$

1395 Therefore, we have
 1396

$$1397 \quad \nabla_{\theta} L_{S_\tau}^{\text{PGN}}(\theta_\tau) = \nabla_{\theta_\tau} L_{S_\tau}(\theta_\tau) + \alpha_\tau \nabla_{\theta_\tau}^2 L_{S_\tau}(\theta_\tau) \frac{\nabla_{\theta_\tau} L_{S_\tau}(\theta_\tau)}{\|\nabla_{\theta_\tau} L_{S_\tau}(\theta_\tau)\|_2}, \\ 1398 \\ 1399$$

1400 Based on Equation (5), we have
 1401

$$1402 \quad \nabla_{\theta_\tau} L_{S_\tau}(\theta_\tau^t) = \frac{1}{n_\tau} [\nabla_{\theta_\tau} f_\tau^t(X_\tau)]^\top (f_\tau^t(X_\tau) - Y_\tau). \\ 1403$$

1404 For any task $\tau \in [T]$, the parameter θ_τ evolves according to the differential equation
 1405

$$\begin{aligned} 1406 \frac{d\theta_\tau^t}{dt} &= -\nabla_{\theta_\tau^t} L_{S_\tau}(\theta_\tau^t) - \alpha_\tau \nabla_{\theta_\tau^t}^2 L_{S_\tau}(\theta_\tau^t) \frac{\nabla_{\theta_\tau^t} L_{S_\tau}(\theta_\tau^t)}{\|\nabla_{\theta_\tau^t} L_{S_\tau}(\theta_\tau^t)\|_2} \\ 1407 &= -\frac{1}{n_\tau} [\nabla_{\theta_\tau^t} f_\tau^t(X_\tau)]^\top (f_\tau^t(X_\tau) - Y_\tau) - \alpha_\tau \nabla_{\theta_\tau^t}^2 L_{S_\tau}(\theta_\tau^t) \frac{\frac{1}{n_\tau} [\nabla_{\theta_\tau^t} f_\tau^t(X_\tau)]^\top (f_\tau^t(X_\tau) - Y_\tau)}{\left\| \frac{1}{n_\tau} [\nabla_{\theta_\tau^t} f_\tau^t(X_\tau)]^\top (f_\tau^t(X_\tau) - Y_\tau) \right\|}, \\ 1408 \\ 1409 \\ 1410 \\ 1411 \end{aligned} \tag{78}$$

1412 where $t \geq 0$ denotes continuous time.
 1413

1414 Under the NTK linearization, we simplify
 1415

$$\nabla_{\theta_\tau^t}^2 L_{S_\tau}(\theta_\tau^t) = [\nabla_{\theta_\tau^t} f_\tau^t(X_\tau)]^\top \frac{1}{n_\tau} I \nabla_{\theta_\tau^t} f_\tau^t(X_\tau) = \frac{1}{n_\tau} [\nabla_{\theta_\tau^t} f_\tau^t(X_\tau)]^\top \nabla_{\theta_\tau^t} f_\tau^t(X_\tau).$$

1416 Therefore, we have
 1417

$$\begin{aligned} 1418 \frac{d\theta_\tau^t}{dt} &= -\frac{1}{n_\tau} [\nabla_{\theta_\tau^t} f_\tau^t(X_\tau)]^\top (f_\tau^t(X_\tau) - Y_\tau) \\ 1419 \\ 1420 &\quad - \frac{\alpha_\tau}{n_\tau} [\nabla_{\theta_\tau^t} f_\tau^t(X_\tau)]^\top \nabla_{\theta_\tau^t} f_\tau^t(X_\tau) \frac{[\nabla_{\theta_\tau^t} f_\tau^t(X_\tau)]^\top (f_\tau^t(X_\tau) - Y_\tau)}{\sqrt{(f_\tau^t(X_\tau) - Y_\tau)^\top K_\tau(X_\tau, X_\tau) (f_\tau^t(X_\tau) - Y_\tau)}}, \\ 1421 \\ 1422 \\ 1423 \\ 1424 \end{aligned} \tag{79}$$

1425 where we used $\|[\nabla_{\theta_\tau^t} f_\tau^t(X_\tau)]^\top (f_\tau^t(X_\tau) - Y_\tau)\| = \sqrt{(f_\tau^t(X_\tau) - Y_\tau)^\top K_\tau(X_\tau, X_\tau) (f_\tau^t(X_\tau) - Y_\tau)}$.
 1426

1427 Based on the chain rule, we have
 1428

$$\begin{aligned} 1429 \frac{d}{dt} f_\tau^t(x) &= \nabla_{\theta_\tau^t} f_\tau^t(x) \frac{d\theta_\tau^t}{dt} \\ 1430 &= -\frac{1}{n_\tau} \nabla_{\theta_\tau^t} f_\tau^t(x) [\nabla_{\theta_\tau^t} f_\tau^t(X_\tau)]^\top (f_\tau^t(X_\tau) - Y_\tau) \\ 1431 \\ 1432 &\quad - \frac{\alpha_\tau}{n_\tau} \frac{\nabla_{\theta_\tau^t} f_\tau^t(x) [\nabla_{\theta_\tau^t} f_\tau^t(X_\tau)]^\top \nabla_{\theta_\tau^t} f_\tau^t(X_\tau) [\nabla_{\theta_\tau^t} f_\tau^t(X_\tau)]^\top (f_\tau^t(X_\tau) - Y_\tau)}{\sqrt{(f_\tau^t(X_\tau) - Y_\tau)^\top K_\tau(X_\tau, X_\tau) (f_\tau^t(X_\tau) - Y_\tau)}}. \\ 1433 \\ 1434 \\ 1435 \\ 1436 \end{aligned} \tag{80}$$

1437 Therefore, under the NTK regime, the kernel gradient flow takes the following form:
 1438

$$\frac{d}{dt} f_\tau^t(x) = -\frac{1}{n_\tau} K_\tau(x, X_\tau) (f_\tau^t(X_\tau) - Y_\tau) - \frac{\alpha_\tau}{n_\tau} \frac{K_\tau(x, X_\tau) K_\tau(X_\tau, X_\tau) (f_\tau^t(X_\tau) - Y_\tau)}{\sqrt{(f_\tau^t(X_\tau) - Y_\tau)^\top K_\tau(X_\tau, X_\tau) (f_\tau^t(X_\tau) - Y_\tau)}}, \tag{81}$$

1439 where $K_\tau(x, x') = \langle \nabla_{\theta_{\tau-1}^*} f_{\tau-1}^*(x), \nabla_{\theta_{\tau-1}^*} f_{\tau-1}^*(x') \rangle$.
 1440

1441 F.2 SOLUTION OF KERNEL GRADIENT FLOW FOR PGN

1442 We follow the approach in Appendix D.1: first derive the solution on the training set X_τ , then extend
 1443 it to an arbitrary input x .
 1444

1445 **(1) Solution on the training set X_τ .** Evaluating Equation (81) at X_τ gives
 1446

$$\frac{d}{dt} f_\tau^t(X_\tau) = -\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau) (f_\tau^t(X_\tau) - Y_\tau) - \frac{\alpha_\tau}{n_\tau} \frac{K_\tau(X_\tau, X_\tau)^2 (f_\tau^t(X_\tau) - Y_\tau)}{\sqrt{(f_\tau^t(X_\tau) - Y_\tau)^\top K_\tau(X_\tau, X_\tau) (f_\tau^t(X_\tau) - Y_\tau)}}. \tag{82}$$

1447 Let $g(t) = f_\tau^t(X_\tau) - Y_\tau$ and abbreviate $K_\tau := K_\tau(X_\tau, X_\tau)$. Then Equation (82) becomes the
 1448 matrix ODE
 1449

$$\frac{d}{dt} g(t) = -\frac{1}{n_\tau} K_\tau g(t) - \frac{\alpha_\tau}{n_\tau} \frac{K_\tau^2 g(t)}{\sqrt{g(t)^\top K_\tau g(t)}}, \quad g(0) = f_\tau^0(X_\tau) - Y_\tau. \tag{83}$$

1458 Since K_τ is real symmetric positive semidefinite and K_τ commutes with K_τ^2 , the theory of linear
 1459 time-varying ODEs with commuting coefficients yields the solution
 1460

$$1461 \quad g(t) = \exp\left(-\frac{t}{n_\tau} K_\tau - \frac{\Phi_\tau(t)}{n_\tau} K_\tau^2\right) g(0), \quad \Phi_\tau(t) = \int_0^t \frac{\alpha_\tau}{\sqrt{g(s)^\top K_\tau g(s)}} ds. \quad (84)$$

1463

1464 Substituting $g(t) = f_\tau^t(X_\tau) - Y_\tau$ into Equation (84) yields
 1465

$$1466 \quad f_\tau^t(X_\tau) = Y_\tau + \exp\left(-\frac{t}{n_\tau} K_\tau - \frac{\Phi_\tau(t)}{n_\tau} K_\tau^2\right) (f_\tau^0(X_\tau) - Y_\tau). \quad (85)$$

1467

1468

1469 **(2) Solution at an arbitrary point x .** For any $x \in \mathbb{R}^d$, Equation (81) can be rewritten as
 1470

$$1471 \quad \frac{d}{dt} f_\tau^t(x) = -\frac{1}{n_\tau} K_\tau(x, X_\tau) g(t) - \frac{\alpha_\tau}{n_\tau} \frac{K_\tau(x, X_\tau) K_\tau g(t)}{\sqrt{g(t)^\top K_\tau g(t)}}. \quad (86)$$

1472

1473

1474 Notably, multiplying $K_\tau(x, X_\tau) K_\tau^{-1}$ on both sides of Equation (83) gives
 1475

$$1476 \quad K_\tau(x, X_\tau) K_\tau^{-1} \frac{d}{dt} g(t) = -\frac{1}{n_\tau} K_\tau(x, X_\tau) g(t) - \frac{\alpha_\tau}{n_\tau} \frac{K_\tau(x, X_\tau) K_\tau g(t)}{\sqrt{g(t)^\top K_\tau g(t)}} = \frac{d}{dt} f_\tau^t(x). \quad (87)$$

1477

1478 Integrating Equation (87) over $[0, t]$ yields
 1479

$$1480 \quad f_\tau^t(x) - f_\tau^0(x) = K_\tau(x, X_\tau) K_\tau^{-1} (g(t) - g(0)). \quad (88)$$

1481

1482

1483 Substituting Equation (84) into Equation (88) and using $f_\tau^0(x) = f_{\tau-1}^*(x)$ gives the closed form
 1484

$$1485 \quad f_\tau^t(x) = f_{\tau-1}^*(x) + K_\tau(x, X_\tau) K_\tau^{-1} \left(\exp\left(-\frac{t}{n_\tau} K_\tau - \frac{\Phi_\tau(t)}{n_\tau} K_\tau^2\right) - I \right) (f_{\tau-1}^*(X_\tau) - Y_\tau) \quad (89)$$

$$1486 \quad = f_{\tau-1}^*(x) - K_\tau(x, X_\tau) E_{\tau,t}^{\text{PGN}} K_\tau^{-1} (f_{\tau-1}^*(X_\tau) - Y_\tau),$$

1487

1488 where $E_{\tau,t}^{\text{PGN}} := I - \exp\left(-\frac{t}{n_\tau} K_\tau - \frac{\Phi_\tau(t)}{n_\tau} K_\tau^2\right)$. Therefore, we obtain a form for PGN that is
 1489 analogous to the SGD solution in Equation (11). The only difference is that PGN uses $E_{\tau,t}^{\text{PGN}}$, whereas
 1490 SGD uses $E_{\tau,t}$. For notational convenience, define

$$1491 \quad \tilde{f}_\tau^t(x) := K_\tau(x, X_\tau) E_{\tau,t}^{\text{PGN}} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau. \quad (90)$$

1492 Therefore, the predictor for task τ can be written as
 1493

$$1494 \quad f_\tau^t(x) = \sum_{i=1}^{\tau-1} \tilde{f}_i^*(x) + \tilde{f}_\tau^t(x).$$

1495

1496

1497

1498

1499

F.3 BOUND ON THE GENERALIZATION ERROR

1500

1501 In this section we derive an upper bound on the generalization error. In particular, we bound the
 1502 population loss $L_{D_\tau}(f_T^*)$ using the Rademacher complexity of the hypothesis class, the empirical
 1503 loss $L_{S_\tau}(f_T^*)$, and appropriate constants as shown in Theorem 2. This approach follows standard
 1504 statistical techniques for regularization based methods as in Kakade et al. (2008); Cortes et al. (2010).
 1505 Specifically, the regularization term affects the bound through its influence on the Rademacher
 1506 complexity of the function class.

1507

1508 (1) For the term $L_{S_\tau}(f_T^*)$ for any $\tau \in [T]$, we have:
 1509

$$1510 \quad L_{S_\tau}(f_T^*) = \frac{1}{2n_\tau} \|f_T^*(X_\tau) - Y_\tau\|^2$$

$$1511 \quad = \frac{1}{2n_\tau} \|f_\tau^*(X_\tau) + \sum_{k=\tau+1}^T \tilde{f}_k^*(X_\tau) - Y_\tau\|^2. \quad (91)$$

1512
 1513
 1514 Next, we compute the term $\|f_\tau^*(X_\tau) - Y_\tau\|^2$ as follows:
 1515
 1516
$$\begin{aligned} & \|f_\tau^*(X_\tau) - Y_\tau\|^2 \\ &= \|f_{\tau-1}^*(X_\tau) + \tilde{f}_\tau^*(X_\tau) - Y_\tau\|^2 \\ &= \|\tilde{f}_\tau^*(X_\tau) - \tilde{Y}_\tau\|^2 \\ &= \|K_\tau(X_\tau, X_\tau) E_{\tau, t_\tau^*}^{\text{PGN}} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau - \tilde{Y}_\tau\|^2 \\ &= \|\tilde{Y}_\tau - K_\tau(X_\tau, X_\tau) e^{-\frac{t_\tau^*}{n_\tau} K_\tau(X_\tau, X_\tau) - \frac{\Phi_\tau(t_\tau^*)}{n_\tau} [K_\tau(X_\tau, X_\tau)]^2} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau - \tilde{Y}_\tau\|^2 \\ &= \|K_\tau(X_\tau, X_\tau) e^{-\frac{t_\tau^*}{n_\tau} K_\tau(X_\tau, X_\tau) - \frac{\Phi_\tau(t_\tau^*)}{n_\tau} [K_\tau(X_\tau, X_\tau)]^2} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau\|^2 \\ &= \|e^{-\frac{t_\tau^*}{n_\tau} K_\tau(X_\tau, X_\tau) - \frac{\Phi_\tau(t_\tau^*)}{n_\tau} [K_\tau(X_\tau, X_\tau)]^2} \tilde{Y}_\tau\|^2 \end{aligned} \tag{92}$$

 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527

1528 Therefore, we obtain the following upper bound:
 1529
 1530
 1531
$$L_{S_\tau}(f_T^*) \leq \frac{1}{n_\tau} \left\| \sum_{k=\tau+1}^T K_k(X_\tau, X_k) E_{k, t_k^*}^{\text{PGN}} K_k(X_k, X_k)^{-1} \tilde{Y}_k \right\|^2$$

 1532
 1533
$$+ \frac{1}{n_\tau} \|e^{-\frac{t_\tau^*}{n_\tau} K_\tau(X_\tau, X_\tau) - \frac{\Phi_\tau(t_\tau^*)}{n_\tau} [K_\tau(X_\tau, X_\tau)]^2} \tilde{Y}_\tau\|^2 \tag{93}$$

 1534
 1535
 1536

1537 (2) For the term $\mathcal{R}(\mathcal{F}_T)$, we first consider a bound on the reproduced kernel Hilbert space (RKHS)
 1538 norm of \tilde{f}_τ^* . Let $(\mathcal{H}_{K_\tau}, \|\cdot\|_{\mathcal{H}_{K_\tau}})$ be the RKHS induced by the kernel K_τ . We define
 1539

$$\hat{\alpha}_\tau := E_{\tau, t_\tau^*}^{\text{PGN}} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau. \tag{94}$$

1541
 1542 Then, \tilde{f}_τ^* can be written as:
 1543

$$\tilde{f}_\tau^*(x) = K_\tau(x, X_\tau)^\top \hat{\alpha}_\tau \tag{95}$$

1544 The RKHS norm of \tilde{f}_τ^* is then given by:
 1545
 1546

$$\begin{aligned} \|\tilde{f}_\tau^*\|_{\mathcal{H}_{K_\tau}}^2 &= \hat{\alpha}_\tau^\top K_\tau(X_\tau, X_\tau) \hat{\alpha}_\tau \\ &= \tilde{Y}_\tau^\top K_\tau(X_\tau, X_\tau)^{-1} E_{\tau, t_\tau^*}^{\text{PGN}} K_\tau(X_\tau, X_\tau) E_{\tau, t_\tau^*}^{\text{PGN}} K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau \\ &= \tilde{Y}_\tau^\top (E_{\tau, t_\tau^*}^{\text{PGN}})^2 K_\tau(X_\tau, X_\tau)^{-1} \tilde{Y}_\tau := \hat{B}_\tau^2 \end{aligned} \tag{96}$$

1552 We define the function class \mathcal{F}_T as follows:
 1553
 1554

$$\mathcal{F}_T = \left\{ f : \mathcal{X} \rightarrow \mathbb{R} \left| x \rightarrow \sum_{\tau=1}^T \tilde{f}_\tau(x), \tilde{f}_\tau(x) = K_\tau(x, X_\tau)^\top \hat{\alpha}_\tau, \|\tilde{f}_\tau\|_{\mathcal{H}_{K_\tau}} \leq \hat{B}_\tau, \forall \tau \in [T] \right. \right\}. \tag{97}$$

1558 Based on Lemma 6, we obtain the following bound on the empirical Rademacher complexity of \mathcal{F}_T
 1559 over S_τ :

$$\begin{aligned} \mathcal{R}_{S_\tau}(\mathcal{F}_T) &\leq \sum_{k=1}^T \frac{\hat{B}_k}{n_\tau} (\text{Tr}(K_k(X_\tau, X_\tau)))^{1/2} \\ &\leq \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top (E_{k, t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} \end{aligned} \tag{98}$$

Based on Theorem 2, we have:

$$\begin{aligned}
1567 \quad & L_{D_\tau}(f_T^*) \leq \frac{1}{n_\tau} \left\| \sum_{k=\tau+1}^T K_k(X_\tau, X_k) E_{k,t_k^*}^{\text{PGN}} K_k(X_k, X_k)^{-1} \tilde{Y}_k \right\|^2 \\
1568 \quad & + \frac{1}{n_\tau} \left\| e^{-\frac{t_\tau^*}{n_\tau} K_\tau(X_\tau, X_\tau) - \frac{\Phi_\tau(t_\tau^*)}{n_\tau}} [K_\tau(X_\tau, X_\tau)]^2 \tilde{Y}_\tau \right\|^2 \\
1569 \quad & + 2\rho \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top (E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 3c\sqrt{\frac{\log(2/\delta)}{2n_\tau}}
\end{aligned} \tag{99}$$

By substituting the bound from Equation (99) into Equation (4), we obtain:

$$\begin{aligned}
1579 \quad G_T &\leq \frac{1}{T} \sum_{\tau=1}^T \left\{ \frac{1}{n_\tau} \left\| \sum_{k=\tau+1}^T K_k(X_\tau, X_k) E_{k,t_k^*}^{\text{PGN}} K_k(X_k, X_k)^{-1} \tilde{Y}_k \right\|^2 \right. \\
1580 \quad &\quad + \frac{1}{n_\tau} \left\| e^{-\frac{t_\tau^*}{n_\tau} K_\tau(X_\tau, X_\tau) - \frac{\Phi_\tau(t_\tau^*)}{n_\tau} [K_\tau(X_\tau, X_\tau)]^2} \tilde{Y}_\tau \right\|^2 \\
1581 \quad &\quad \left. + 2\rho \sum_{k=1}^T \frac{[Tr(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top (E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 3c\sqrt{\frac{\log(2/\delta)}{2n_\tau}} \right\} \\
1582 \quad &\quad + 2\rho \sum_{k=1}^T \frac{[Tr(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top (E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 3c\sqrt{\frac{\log(2/\delta)}{2n_\tau}} \quad (100) \\
1583 \quad &\quad + 2\rho \sum_{k=1}^T \frac{[Tr(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top (E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 3c\sqrt{\frac{\log(2/\delta)}{2n_\tau}} \\
1584 \quad &\quad + 2\rho \sum_{k=1}^T \frac{[Tr(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top (E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 3c\sqrt{\frac{\log(2/\delta)}{2n_\tau}} \\
1585 \quad &\quad + 2\rho \sum_{k=1}^T \frac{[Tr(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top (E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 3c\sqrt{\frac{\log(2/\delta)}{2n_\tau}} \\
1586 \quad &\quad + 2\rho \sum_{k=1}^T \frac{[Tr(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top (E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 3c\sqrt{\frac{\log(2/\delta)}{2n_\tau}} \\
\end{aligned}$$

F.4 BOUND ON FORGETTING

We decompose each term in Equation (3) as follows:

For any $\tau \in [T - 1]$, we have:

$$1593 \quad L_{D_\tau}(f_T^*) - L_{D_\tau}(f_\tau^*) = \underbrace{L_{D_\tau}(f_T^*) - L_{S_\tau}(f_T^*)}_{(a)} + \underbrace{L_{S_\tau}(f_T^*) - L_{S_\tau}(f_\tau^*)}_{(b)} + \underbrace{L_{S_\tau}(f_\tau^*) - L_{D_\tau}(f_\tau^*)}_{(c)} \quad (101)$$

Next, we derive upper bounds for terms (a), (b), and (c), respectively.

For term (a), by applying Theorem 2 together with the bound in Equation (98), we obtain:

$$\begin{aligned}
& L_{D_\tau}(f_T^*) - L_{S_\tau}(f_T^*) \\
& \leq 2\rho\mathcal{R}_{S_\tau}(\mathcal{F}_T) + 3c\sqrt{\frac{\log(2/\delta)}{2n_\tau}} \\
& \leq 2\rho \sum_{k=1}^T \frac{[Tr(K_k(X_\tau, X_\tau))\tilde{Y}_k^\top (E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1}\tilde{Y}_k]^{1/2}}{n_\tau} + 3c\sqrt{\frac{\log(2/\delta)}{2n_\tau}}
\end{aligned} \tag{102}$$

For term (b), we begin by deriving explicit expressions for $L_{S_T}(f_T^*)$ and $L_{S_T}(f_T^{**})$, as follows:

$$1609 \quad L_{S_\tau}(f_T^*) \leq \frac{1}{n_\tau} \|f_\tau^*(X_\tau) - Y_\tau\|^2 + \frac{1}{n_\tau} \left\| \sum_{k=\tau+1}^T \tilde{f}_k^*(X_\tau) \right\|^2 \quad (103)$$

$$L_{S_\tau}(f_\tau^*) = \frac{1}{n} \|f_\tau^*(X_\tau) - Y_\tau\|^2 \quad (104)$$

Subtracting the two expressions, we obtain:

For term (c), by applying Corollary 1 together with the bound in Equation (98), we obtain:

$$\begin{aligned}
& L_{S_\tau}(f_\tau^*) - L_{D_\tau}(f_\tau^*) \\
& \leq 2\rho\mathcal{R}_{S_\tau}(\mathcal{F}_\tau) + 3c\sqrt{\frac{\log(2/\delta)}{2n_\tau}} \\
& \leq 2\rho\sum_{k=1}^{\tau} \frac{[Tr(K_k(X_\tau, X_\tau))\tilde{Y}_k^\top(E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1}\tilde{Y}_k]^{1/2}}{n_\tau} + 3c\sqrt{\frac{\log(2/\delta)}{2n_\tau}}
\end{aligned} \tag{106}$$

Then, we have:

$$\begin{aligned}
F_T \leq & \frac{1}{T-1} \sum_{\tau=1}^{T-1} \left\{ 2\rho \sum_{k=1}^T \frac{[Tr(K_k(X_\tau, X_\tau))\tilde{Y}_k^\top (E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} \right. \\
& + 2\rho \sum_{k=1}^{\tau} \frac{[Tr(K_k(X_\tau, X_\tau))\tilde{Y}_k^\top (E_{k,t_k^*}^{\text{PGN}})^2 K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 6c\sqrt{\frac{\log(2/\delta)}{2n_\tau}} \\
& \left. + \frac{1}{n_\tau} \sum_{k=\tau+1}^T \|K_k(X_\tau, X_k)E_{k,t_k^*}^{\text{PGN}} K_k(X_k, X_k)^{-1} \tilde{Y}_k\|^2 \right\} \quad (107)
\end{aligned}$$

G ADDITIONAL PROOFS

G.1 PROOF OF LEMMA 1

Proof. To better reflect practical training scenarios, we consider a finite number of training iterations, denoted by t_T^{\max} , and restrict t_T to the interval $[1, t_T^{\max}]$. We exclude the trivial case $t_T = 0$, as it corresponds to the stopping point of task $T - 1$. Accordingly, we analyze the evolution of the upper bounds $G_{t_T}^{\text{upper}}$ and $F_{t_T}^{\text{upper}}$ over $[1, t_T^{\max}]$.

(I) We first analyze $G_{t_T}^{\text{upper}}$. Its derivative with respect to t_T can be written as

$$\frac{dG_{t_T}^{\text{upper}}}{dt_T} = g_1(t_T) + \rho g_2(t_T), \quad (108)$$

where the functions g_1 and g_2 are given by

$$g_1(t_T) := \sum_{\tau=1}^T \frac{1}{n_\tau n_T} \tilde{Y}_T^\top e^{-\frac{t_T}{n_T} K_T(X_T, X_T)} K_T(X_T, X_\tau) K_T(X_\tau, X_T) (I - e^{-\frac{t_T}{n_T} K_T(X_T, X_T)}) \\ K_T(X_T, X_T)^{-1} \tilde{Y}_T - \frac{1}{n_T^2} \tilde{Y}_T^\top e^{-\frac{2}{n_T} K_T(X_T, X_T) t_T} K_T(X_T, X_T) \tilde{Y}_T, \quad (109)$$

and

$$g_2(t_T) := \sum_{\tau=1}^{T-1} \frac{\left[\text{Tr}(K_T(X_\tau, X_\tau)) \right]^{1/2}}{2n_\tau n_T} \frac{\tilde{Y}_T^\top e^{-\frac{t_T}{n_T} K_T(X_T, X_T)} \tilde{Y}_T}{[\tilde{Y}_T^\top (I - e^{-\frac{t_T}{n_T} K_T(X_T, X_T)}) K_T(X_T, X_T)^{-1} \tilde{Y}_T]^{1/2}} \quad (110)$$

We first assume that $[\text{Tr}(K_T(X_\tau, X_\tau))]^{1/2} \neq 0$ for any $\tau \in [T]$, and that $\tilde{Y}_T \neq 0$. This assumption is mild, since if either term equals zero, the corresponding component can simply be omitted. From the proof of Lemma 5, we know that $e^{-\frac{t_T}{n^2} K_T(X_T, X_T)}$ is positive definite. Consequently, $g_2(t_T) > 0$ holds for all $t_T \in [1, t_T^{\max}]$.

Moreover, both g_1 and g_2 are continuous with respect to t_T on the interval $[1, t_T^{\max}]$. We therefore define

$$m_1 := \min_{x \in [1, t_{\mathcal{R}}^{\max}]} g_2(x) > 0, \quad M_1 := \max_{x \in [1, t_{\mathcal{R}}^{\max}]} |g_1(x)|.$$

1674 Let $\rho_g := \frac{M_1}{m_1}$. Then, for any $\rho > \rho_g$, we obtain
 1675

$$\begin{aligned} 1676 \frac{dG_{t_T}^{\text{upper}}}{dt_T} &= g_1(t_T) + \rho g_2(t_T) \\ 1677 &> g_1(t_T) + \frac{M_1}{m_1} g_2(t_T) \\ 1678 &\geq g_1(t_T) + M_1 \\ 1679 &\geq 0. \\ 1680 \\ 1681 \\ 1682 \end{aligned} \tag{111}$$

1683 Therefore, for any Lipschitz constants $\rho > \rho_g$, $G_{t_T}^{\text{upper}}$ is monotonically increasing with respect to t_T .
 1684

1685 Since

$$\sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau))\tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} \geq 0, \tag{112}$$

1686 it follows that a smaller Lipschitz constant ρ directly results in smaller values of G_T^{upper} for any fixed
 1687 t_T .
 1688

1689 (II) Then, we analyze $F_{t_T}^{\text{upper}}$ similarly. Its derivative with respect to t_T can be written as
 1690

$$\frac{dF_{t_T}^{\text{upper}}}{dt_T} = f_1(t_T) + \rho f_2(t_T), \tag{113}$$

1691 where the functions f_1 and f_2 are given by
 1692

$$\begin{aligned} 1693 f_1(t_T) &:= \sum_{\tau=1}^{T-1} \frac{1}{n_\tau n_T} \tilde{Y}_T^\top e^{-\frac{t_T}{n_T} K_T(X_T, X_T)} K_T(X_T, X_\tau) K_2(X_\tau, X_T) \cdot \\ 1694 &\quad (I - e^{-\frac{t_T}{n_T} K_T(X_T, X_T)}) K_T(X_T, X_T)^{-1} \tilde{Y}_T, \\ 1695 \end{aligned} \tag{114}$$

1696 and

$$f_2(t_T) := \sum_{\tau=1}^{T-1} \frac{[\text{Tr}(K_T(X_\tau, X_\tau))]^{1/2}}{n_\tau n_T} \frac{\tilde{Y}_T^\top e^{-\frac{t_T}{n_T} K_T(X_T, X_T)} \tilde{Y}_T}{[\tilde{Y}_T^\top (I - e^{-\frac{t_T}{n_T} K_T(X_T, X_T)}) K_T(X_T, X_T)^{-1} \tilde{Y}_T]^{1/2}} \tag{115}$$

1697 We first assume that $[\text{Tr}(K_T(X_\tau, X_\tau))]^{1/2} \neq 0$ for any $\tau \in [T-1]$. If the term equals zero, the
 1698 corresponding component can simply be omitted. Hence, $f_2(t_T) > 0$ holds for all $t_T \in [1, t_T^{\max}]$.
 1699

1700 Moreover, both f_1 and f_2 are continuous with respect to t_T on the interval $[1, t_T^{\max}]$. We therefore
 1701 define

$$m_2 := \min_{x \in [1, t_T^{\max}]} f_2(x) > 0, \quad M_2 := \max_{x \in [1, t_T^{\max}]} |f_1(x)|.$$

1702 Let $\rho_f := \frac{M_2}{m_2}$. Then, for any $\rho > \rho_f$, we obtain
 1703

$$\begin{aligned} 1704 \frac{dF_{t_T}^{\text{upper}}}{dt_T} &= f_1(t_T) + \rho f_2(t_T) \\ 1705 &> f_1(t_T) + \frac{M_2}{m_2} f_2(t_T) \\ 1706 &\geq f_1(t_T) + M_2 \\ 1707 &\geq 0. \\ 1708 \\ 1709 \end{aligned} \tag{116}$$

1710 Therefore, for any Lipschitz constant $\rho > \rho_f$, the bound $F_{t_T}^{\text{upper}}$ is monotonically increasing with
 1711 respect to t_T . Let $\rho^* := \max\{\rho_f, \rho_g\}$. It then follows that both $G_{t_T}^{\text{upper}}$ and $F_{t_T}^{\text{upper}}$ are monotonically
 1712 increasing in t_T whenever $\rho > \rho^*$.
 1713

1714 In addition, since

$$\sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau))\tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} \geq 0, \tag{117}$$

1728 and

$$\sum_{k=1}^{\tau} \frac{[\text{Tr}(K_k(X_{\tau}, X_{\tau})) \tilde{Y}_k^{\top} E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_{\tau}} \geq 0, \quad (118)$$

1729 it follows that a smaller Lipschitz constant ρ directly leads to smaller values of F_T^{upper} for any fixed
1730 t_T . \square

1735 G.2 BRIDGING PREDICTION- AND PARAMETER-LIPSCHITZ CONSTANTS

1737 We first introduce the prediction-Lipschitz constant ρ_f and the parameter-Lipschitz constant ρ_{θ} of
1738 the loss:

$$1739 |L(f(x_1)) - L(f(x_2))| \leq \rho_f \|f(x_1) - f(x_2)\|, \quad \forall x_1, x_2 \in \mathcal{D}, \quad (119)$$

1741 and

$$1742 |L(\theta_1) - L(\theta_2)| \leq \rho_{\theta} \|\theta_1 - \theta_2\|, \quad \forall \theta_1, \theta_2 \in \Omega, \quad (120)$$

1743 where Ω denotes the parameter space.

1744 By the mean-value argument combined with the Cauchy–Schwarz inequality, there exist $f' =$
1745 $c_f f(x_1) + (1 - c_f) f(x_2)$ and $\theta' = c_{\theta} \theta_1 + (1 - c_{\theta}) \theta_2$ with $c_f, c_{\theta} \in [0, 1]$ such that

$$1746 |L(f(x_1)) - L(f(x_2))| \leq \|\nabla_f L(f')\| \|f(x_1) - f(x_2)\|, \quad (121)$$

$$1747 |L(\theta_1) - L(\theta_2)| \leq \|\nabla_{\theta} L(\theta')\| \|\theta_1 - \theta_2\|. \quad (122)$$

1750 As shown by Zhao et al. (2022), adding the regularization term $\|\nabla_{\theta} L(\theta)\|$ approximately reduces
1751 the parameter-Lipschitz constant ρ_{θ} . However, the Lipschitz constant ρ appearing in Theorem 1
1752 is the prediction-Lipschitz constant ρ_f . To justify using a parameter-space penalty to proxy a
1753 prediction-space penalty, we relate $\|\nabla_f L(f)\|$ and $\|\nabla_{\theta} L(\theta)\|$ via the chain rule:

$$1755 \nabla_{\theta} L(\theta) = J_f(\theta)^{\top} \nabla_f L(f(\theta)),$$

1756 where $J_f(\theta)$ is the Jacobian of f with respect to θ . Consequently,

$$1757 \sigma_{\min}(J_f(\theta)) \|\nabla_f L(f(\theta))\| \leq \|\nabla_{\theta} L(\theta)\| \leq \|J_f(\theta)\| \|\nabla_f L(f(\theta))\|.$$

1758 Therefore, in any region where $J_f(\theta)$ is well conditioned (i.e., $\sigma_{\min}(J_f) \geq m > 0$ and $\|J_f\| \leq$
1759 $M < \infty$), penalizing $\|\nabla_{\theta} L(\theta)\|$ also penalizes $\|\nabla_f L(f)\|$, and thus approximately reduces the
1760 prediction-Lipschitz constant ρ_f .

1764 G.3 PROOF OF LEMMA 2 AND DISCUSSION

1766 We first present the proof of Lemma 2 as follows.

1768 *Proof.* Consider any entry $\tilde{K}_k(x_{k-1}^i, x_k^j)$ with $i \in [n_{k-1}]$ and $j \in [n_k]$:

$$1769 \tilde{K}_k(x_{k-1}^i, x_k^j) = \langle P_k \nabla_{\theta_{k-1}^*} f_{k-1}^*(x_{k-1}^i), P_k \nabla_{\theta_k^*} f_{k-1}^*(x_k^j) \rangle. \quad (123)$$

1770 By definition, the subspace $\mathbb{E}_{k-1} = \text{span}\{\nabla_{\theta_{k-1}^*} f_{k-1}^*(x_{k-1}^i)\}_{i=1}^{n_{k-1}}$. Since $\nabla_{\theta_{k-1}^*} f_{k-1}^*(x_{k-1}^i) \in$
1771 \mathbb{E}_{k-1} , applying the projection operator P_k yields $P_k \nabla_{\theta_{k-1}^*} f_{k-1}^*(x_{k-1}^i) = 0$. Therefore, it follows
1772 that

$$1773 \tilde{K}_k(x_{k-1}^i, x_k^j) = \tilde{K}_k(x_{k-1}^i, x_{k-1}^l) = 0, \quad \forall i \in [n_{k-1}], j \in [n_k], l \in [n_{k-1}].$$

1774 \square

1775 **Further discussion of Lemma 2.** If we define the projector P_k as $P_{\mathbb{E}_{k-1}^{\perp}}$, then Lemma 2 still holds,
1776 since $P_k \nabla_{\theta_{k-1}^*} f_{k-1}^*(x_{k-1}^i) = 0$ remains satisfied. This ensures that the gradients of the current task
1777 are orthogonal only to those of the immediately preceding task.

1782 G.4 PROOF OF LEMMA 3
17831784 We present the proof of Lemma 3 as follows.
17851786 *Proof.* Consider any entry $\tilde{K}_k(x_\tau^i, x_k^j)$ with $i \in [n_\tau]$ and $j \in [n_k]$:
1787

1788
$$\tilde{K}_k(x_\tau^i, x_k^j) = \langle P_k \nabla_{\theta_{k-1}^*} f_{k-1}^*(x_\tau^i), P_k \nabla_{\theta_{k-1}^*} f_{k-1}^*(x_k^j) \rangle. \quad (124)$$

1789

1790 By definition, the subspace $\mathbb{E}'_k = \text{span}\{\nabla_{\theta_k} f_k^*(x_l^m) \mid l \in [k], m \in [n_l]\}$. Since $\nabla_{\theta_{k-1}^*} f_{k-1}^*(x_\tau^i) \in$
1791 \mathbb{E}'_{k-1} , applying the projection operator P'_k yields $P'_k \nabla_{\theta_{k-1}^*} f_{k-1}^*(x_\tau^i) = 0$. Therefore, it follows that
1792

1793
$$\tilde{K}_k(x_\tau^i, x_k^j) = \tilde{K}_k(x_\tau^i, x_\tau^l) = 0, \quad \forall i \in [n_\tau], j \in [n_k], l \in [n_\tau].$$

1794

1795 \square
17961797 G.5 FORGETTING AND GENERALIZATION ERROR BOUNDS FOR OGD AND OGD+
17981799 In this section, we derive upper bounds on forgetting and generalization error for both OGD and
1800 OGD+.
18011802 **Theorem 4 (OGD).** Consider a sequence of T tasks. For each task $\tau \in [T]$, let \mathcal{D}_τ denote the
1803 data distribution, and let $S_\tau = \{X_\tau, Y_\tau\}$ be the corresponding training dataset drawn i.i.d. from
1804 \mathcal{D}_τ . Suppose the loss function $\ell(\cdot, \cdot)$ takes values in the interval $[0, c]$ and is ρ -Lipschitz in the first
1805 argument. Then, with probability at least $1 - \delta$, the following bounds hold.
1806

1807
$$F_{t_T} \leq \frac{1}{T-1} \sum_{\tau=1}^{T-1} \left\{ 2\rho \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} \right.$$

1808
$$+ 2\rho \sum_{k=1}^{\tau} \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 6c \sqrt{\frac{\log(2/\delta)}{2n_\tau}} \quad (125)$$

1809
1810
$$\left. + \frac{1}{n_\tau} \sum_{k=\tau+2}^T \|K_k(X_\tau, X_k) E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k\|^2 \right\}$$

1811

1812
$$G_{t_T} \leq \frac{1}{T} \sum_{\tau=1}^T \left\{ \frac{1}{n_\tau} \sum_{k=\tau+2}^T \|K_k(X_\tau, X_k) E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k\|^2 + \frac{1}{n_\tau} \|e^{-\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau) t_\tau^*} \tilde{Y}_\tau\|^2 \right.$$

1813
$$+ 2\rho \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} \left. \right\} + 3c \sqrt{\frac{\log(2/\delta)}{2n_\tau}} \quad (126)$$

1814

1815 **Theorem 5 (OGD+).** Consider a sequence of T tasks. For each task $\tau \in [T]$, let \mathcal{D}_τ denote the
1816 data distribution, and let $S_\tau = \{X_\tau, Y_\tau\}$ be the corresponding training dataset drawn i.i.d. from
1817 \mathcal{D}_τ . Suppose the loss function $\ell(\cdot, \cdot)$ takes values in the interval $[0, c]$ and is ρ -Lipschitz in the first
1818 argument. Then, with probability at least $1 - \delta$, the following bounds hold.
1819

1820
$$F_{t_T} \leq \frac{1}{T-1} \sum_{\tau=1}^{T-1} \left\{ 2\rho \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} \right.$$

1821
$$+ 2\rho \sum_{k=1}^{\tau} \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} + 6c \sqrt{\frac{\log(2/\delta)}{2n_\tau}} \left. \right\} \quad (127)$$

1822

$$\begin{aligned}
1836 \\
1837 \quad G_{t_T} &\leq \frac{1}{T} \sum_{\tau=1}^T \left\{ 2\rho \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} \right. \\
1838 \\
1839 \\
1840 \quad &\left. + \frac{1}{n_\tau} \|e^{-\frac{1}{n_\tau} K_\tau(X_\tau, X_\tau) t_\tau^*} \tilde{Y}_\tau\|^2 + 3c \sqrt{\frac{\log(2/\delta)}{2n_\tau}} \right\} \\
1841 \\
1842
\end{aligned} \tag{128}$$

1843 Therefore, the bounds on both forgetting and generalization error for OGD in CL are tighter than
1844 those for standard SGD. Furthermore, OGD+ achieves even tighter bounds than OGD, providing
1845 stronger theoretical guarantees.

1847 G.6 PROOF OF LEMMA 4

1849 Based on the bounds established in Theorem 5, we characterize the evolution of $F_{t_T}^{\text{upper}}$ and $G_{t_T}^{\text{upper}}$.

1851 *Proof.* Similar to the proof in Appendix G.1, we analyze the evolution of the upper bounds $G_{t_T}^{\text{upper}}$
1852 and $F_{t_T}^{\text{upper}}$ over the interval $[1, t_T^{\max}]$.

1853 (I) We first analyze $G_{t_T}^{\text{upper}}$. Its derivative with respect to t_T can be written as

$$\frac{dG_{t_T}^{\text{upper}}}{dt_T} = g_1(t_T) + \rho g_2(t_T), \tag{129}$$

1854 where the functions g_1 and g_2 are given by

$$g_1(t_T) := -\frac{1}{n_T^2} \tilde{Y}_T^\top e^{-\frac{2}{n_T} K_T(X_T, X_T) t_T} K_T(X_T, X_T) \tilde{Y}_T, \tag{130}$$

1855 and

$$g_2(t_T) := \sum_{\tau=1}^{T-1} \frac{[\text{Tr}(K_T(X_\tau, X_\tau))]^{1/2}}{2n_\tau n_T} \frac{\tilde{Y}_T^\top e^{-\frac{t_T}{n_T} K_T(X_T, X_T)} \tilde{Y}_T}{[\tilde{Y}_T^\top (I - e^{-\frac{t_T}{n_T} K_T(X_T, X_T)}) K_T(X_T, X_T)^{-1} \tilde{Y}_T]^{1/2}} \tag{131}$$

1856 We first assume that $[\text{Tr}(K_T(X_\tau, X_\tau))]^{1/2} \neq 0$ for all $\tau \in [T]$, and that $\tilde{Y}_T \neq 0$. This is a mild
1857 assumption, since if either term is zero, the corresponding component can be disregarded. From the
1858 proof of Lemma 5, we know that $e^{-\frac{t_T}{n_T} K_T(X_T, X_T)}$ is positive definite. Hence, $g_2(t_T) > 0$ for all
1859 $t_T \in [1, t_T^{\max}]$. Moreover, since $e^{-\frac{2t_T}{n_T} K_T(X_T, X_T)} K_T(X_T, X_T)$ is positive definite, it follows that
1860 $g_1(t_T) < 0$ for all $t_T \in [1, t_T^{\max}]$.

1861 Moreover, both g_1 and g_2 are continuous with respect to t_T on the interval $[1, t_T^{\max}]$. We therefore
1862 define

$$M_1 := -\max_{x \in [1, t_T^{\max}]} g_1(x) > 0, \quad M_2 := \max_{x \in [1, t_T^{\max}]} g_2(x) > 0.$$

1863 Let $\rho'_g := \frac{M_1}{M_2}$. Then, for any $\rho < \rho'_g$, we obtain

$$\begin{aligned}
1864 \quad \frac{dG_{t_T}^{\text{upper}}}{dt_T} &= g_1(t_T) + \rho g_2(t_T) \\
1865 \\
1866 \quad &< g_1(t_T) + \frac{M_1}{M_2} g_2(t_T) \\
1867 \\
1868 \quad &\leq g_1(t_T) + M_1 \\
1869 \\
1870 \quad &\leq 0.
\end{aligned} \tag{132}$$

1871 Therefore, for any Lipschitz constants $\rho < \rho'_g$, $G_{t_T}^{\text{upper}}$ is monotonically decreasing with respect to t_T .

1872 Since

$$\sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} \geq 0, \tag{133}$$

1890 it follows that a smaller Lipschitz constant ρ directly results in smaller values of $G_{t_T}^{\text{upper}}$ for any fixed
 1891 t_T .

1892 (II) Then, we analyze $F_{t_T}^{\text{upper}}$ similarly. Its derivative with respect to t_T can be written as
 1893

$$1894 \quad \frac{dF_{t_T}^{\text{upper}}}{dt_T} = \rho f_2(t_T), \quad (134)$$

1895 where the function f_2 is given by
 1896

$$1897 \quad f_2(t_T) := \sum_{\tau=1}^{T-1} \frac{[\text{Tr}(K_T(X_\tau, X_\tau))]^{1/2}}{n_\tau n_T} \frac{\tilde{Y}_T^\top e^{-\frac{t_T}{n_T} K_T(X_T, X_T)} \tilde{Y}_T}{[\tilde{Y}_T^\top (I - e^{-\frac{t_T}{n_T} K_T(X_T, X_T)}) K_T(X_T, X_T)^{-1} \tilde{Y}_T]^{1/2}}. \quad (135)$$

1900 We first assume that $[\text{Tr}(K_T(X_\tau, X_\tau))]^{1/2} \neq 0$ for all $\tau \in [T]$, and that $\tilde{Y}_T \neq 0$. This is a mild
 1901 assumption, since if either term is zero, the corresponding component can be disregarded. From the
 1902 proof of Lemma 5, we know that $e^{-\frac{t_T}{n_T} K_T(X_T, X_T)}$ is positive definite. Hence, $f_2(t_T) > 0$ for all
 1903 $t_T \in [1, t_T^{\max}]$, which leads to $\frac{dF_{t_T}^{\text{upper}}}{dt_T} > 0$. Therefore, $F_{t_T}^{\text{upper}}$ is monotonically increasing with respect
 1904 to t_T .

1905 In addition, since
 1906

$$1907 \quad \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} \geq 0, \quad (136)$$

1908 and
 1909

$$1910 \quad \sum_{k=1}^T \frac{[\text{Tr}(K_k(X_\tau, X_\tau)) \tilde{Y}_k^\top E_{k,t_k^*} K_k(X_k, X_k)^{-1} \tilde{Y}_k]^{1/2}}{n_\tau} \geq 0, \quad (137)$$

1911 it follows that a smaller Lipschitz constant ρ directly leads to smaller values of F_T^{upper} for any fixed
 1912 t_T . \square
 1913