
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNDERSTANDING THE DYNAMICS OF FORGETTING
AND GENERALIZATION IN CONTINUAL LEARNING VIA
THE NEURAL TANGENT KERNEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning (CL) enables models to acquire new tasks sequentially while
retaining previously learned knowledge. However, most theoretical analyses focus
on simplified, converged models or restrictive data distributions and therefore fail
to capture how forgetting and generalization evolve during training in more general
settings. Current theory faces two fundamental challenges: (i) analyses confined
to the converged regime cannot characterize intermediate training dynamics; and
(ii) establishing forgetting bounds requires two-sided bounds on the population
risk for each task. To address these challenges, we analyze the training-time dy-
namics of forgetting and generalization in standard CL within the Neural Tangent
Kernel (NTK) regime, showing that decreasing the loss’s Lipschitz constant and
minimizing the cross-task kernel jointly reduce forgetting and improve general-
ization. Specifically, we (i) characterize intermediate training stages via kernel
gradient flow and (ii) employ Rademacher complexity to derive both upper and
lower bounds on population risk. Building on these insights, we propose OGD+,
which projects the current task’s gradient onto the orthogonal complement of the
subspace spanned by gradients of the most recent task evaluated on all prior sam-
ples. We further introduce Orthogonal Penalized Gradient Descent (OPGD), which
augments OGD+ with gradient-norm penalization to jointly reduce forgetting and
enhance generalization. Experiments on multiple benchmarks corroborate our
theoretical predictions and demonstrate the effectiveness of OPGD, providing a
principled pathway from theory to algorithm design in CL.

1 INTRODUCTION

Continual learning (CL) trains models on a sequence of tasks with the objective of maintaining strong
performance across all of them. Unlike conventional training paradigms that operate on a fixed
dataset or a single task, CL typically faces non-stationary data streams and complex task sequences.
A major challenge in this setting is that models often experience a substantial performance drop on
previously learned tasks when adapting to new ones. This phenomenon, known as catastrophic for-
getting (McCloskey & Cohen, 1989; McClelland et al., 1995), arises when learning new information
interferes with or overwrites prior knowledge.

Despite the considerable empirical success of numerous approaches in CL (Chaudhry et al., 2019a;
Farajtabar et al., 2020; Dohare et al., 2024), rigorous theoretical understanding remains limited.
Recent studies on the theory of forgetting and generalization error in CL have mainly focused on
linear models and often assume restrictive data distributions, such as Gaussian distributions (Evron
et al., 2022; Lin et al., 2023; Banayeeanzade et al., 2024; Li et al., 2025b). While the linear regime
provides explicit characterizations of forgetting and generalization error, it is not suitable for more
general models or the non-stationary data streams typical in CL. In contrast, the Neural Tangent
Kernel (NTK) regime (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019b) enables the analysis of
more general models without being restricted to special distributions. However, existing NTK-based
analyses (Bennani et al., 2020; Doan et al., 2021; Karakida & Akaho, 2022) primarily focus on
converged models and therefore cannot characterize the behavior at intermediate training stages.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of our results with Bennani et al. (2020), Doan et al. (2021) and Karakida & Akaho
(2022). We summarize whether each work provides theoretical bounds on forgetting and generalization error,
and whether it analyzes training dynamics or includes ridge regularization.

METHOD FORGETTING BOUND GENERALIZATION ERROR TRAINING DYNAMICS RIDGE REGULARIZATION

BENNANI ET AL. (2020) # ! # !

DOAN ET AL. (2021) ! # # !

KARAKIDA & AKAHO (2022) ! # # #

OURS ! ! ! #

The main challenges in the theoretical analysis of both forgetting and generalization error are twofold:
(1) existing analytical approaches primarily focus on the converged regime, either by obtaining
explicit solutions from the loss function or by assuming asymptotic convergence as the number of
iterations approaches infinity. However, the dynamics of forgetting and generalization error during
training remain underexplored from a theoretical perspective. (2) bounding forgetting requires
establishing both upper and lower bounds on the population loss for each task. In particular, while
generalization bounds typically provide only an upper bound on the population loss, the forgetting
metric involves averaging the discrepancy between the performance of the final model on previous
tasks and that of the models trained directly on those tasks. Consequently, deriving two-sided bounds
on the population loss in CL remains a significant challenge.

In this work, we theoretically analyze forgetting and generalization in vanilla CL under the NTK
regime. We derive bounds at intermediate stages of training, revealing two key insights: (1) both
forgetting and generalization error increase with iterations when the Lipschitz constant of the loss
with respect to predictions exceeds a threshold, while reducing it consistently mitigates these effects;
and (2) decreasing the magnitude of the cross-task kernel similarly alleviates forgetting and improves
generalization. To support this analysis, we characterize model dynamics via kernel gradient flow
and define forgetting in terms of population loss, deriving upper and lower bounds using Rademacher
complexity. These tools allow us to rigorously study the evolution of forgetting and generalization at
intermediate training stages. Building on these theoretical findings, we propose OGD+, which projects
the current task’s gradient onto the orthogonal complement of the subspace spanned by gradients
from last task evaluated on all previous samples, reducing forgetting and improving generalization
compared to standard OGD. We further show that controlling the Lipschitz constant in OGD+
enhances these benefits. Inspired by this, we introduce Orthogonal Penalized Gradient Descent
(OPGD), which integrates gradient-norm penalization into OGD+ to jointly reduce forgetting and
improve generalization. Finally, we empirically validate our theoretical predictions and demonstrate
the effectiveness of OGD+ and OPGD on Permuted MNIST, Rotated MNIST, and Split CIFAR-100,
providing a principled pathway from theory to algorithm design in CL.

Our main contributions can be summarized as follows:

• We derive bounds on forgetting and generalization error at intermediate stages of vanilla
CL under the NTK regime, showing that both can be mitigated by reducing the Lipschitz
constant or driving the cross-task kernel toward zero.

• We define forgetting and generalization error in terms of population loss, and provide upper
and lower bounds via Rademacher complexity under the NTK regime. Furthermore, we
leverage kernel gradient flow to analyze model dynamics at intermediate training stages.

• Building on these insights, we propose OGD+, which projects the current task’s gradient
onto directions orthogonal to the subspace formed by the last task’s gradients on all previous
samples. We further introduce Orthogonal Penalized Gradient Descent (OPGD), which
adds gradient-norm penalization to OGD+ for tighter theoretical bounds.

• We empirically validate our theoretical predictions and demonstrate the effectiveness of
OGD+ and OPGD on Permuted MNIST, Rotated MNIST, and Split CIFAR-100.

Related Work. Due to space constraints, a comprehensive literature review is provided in Ap-
pendix B. In particular, Table 1 presents a detailed comparison between our theoretical results and
prior studies (Bennani et al., 2020; Doan et al., 2021; Karakida & Akaho, 2022).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARY

2.1 PROBLEM SETUP

We consider the standard CL setting with T sequential training tasks. For any positive integer
n, we denote [n] := {1, . . . , n}. For each task τ ∈ [T], let Dτ denote its data distribution, and
let Sτ = {Xτ , Yτ} be the corresponding training dataset drawn i.i.d. from Dτ . Here, Xτ =
(x1

τ , . . . , x
nτ
τ)⊤ ∈ Rnτ×d is the feature matrix containing nτ samples of d-dimensional feature

vectors, and Yτ ∈ Rnτ is the associated label vector. The model trained on task τ is denoted by fτ ,
parameterized by θτ . Its state at iteration tτ is written as f tτ

τ , and the final model after training is
denoted by f∗

τ , where training stops at iteration tτ = t∗τ . The model for task τ + 1 is initialized from
the final parameter of task τ , that is, θ0τ+1 = θ∗τ .

Let ℓ(f(x), y) be a loss function that quantifies the discrepancy between the model prediction f(x)
and the true label y for a given sample (x, y). We now introduce two fundamental notions in learning
theory: the population loss and the empirical loss.

The population loss with respect to the distribution Dτ is defined as:

LDτ
(f) = E(xτ ,yτ)∼Dτ

[ℓ(f(xτ), yτ)]. (1)

The empirical loss over a dataset Sτ = {(xi
τ , y

i
τ)}

nτ
i=1 i.i.d. drawn from Dτ is defined as:

LSτ
(f) =

1

nτ

nτ∑
i=1

ℓ(f(xi
τ), y

i
τ). (2)

As shown in Lopez-Paz & Ranzato (2017); Lin et al. (2023), forgetting and overall generalization
error can be defined in terms of the population loss as follows:

(1) Forgetting. This metric quantifies the degradation in performance on previously learned tasks
after training on the current task at iteration tT :

FtT =
1

T − 1

T−1∑
τ=1

(
LDτ

(f tT
T)− LDτ

(f∗
τ)
)
. (3)

(2) Overall generalization error. This evaluates the model’s generalization performance at iteration
tT by averaging its population loss across all tasks:

GtT =
1

T

T∑
τ=1

LDτ
(f tT

T). (4)

Notably, Doan et al. (2021) define the forgetting metric on discrete datasets, while the definitions
in Lin et al. (2023) are restricted to linear models. In contrast, our formulation applies to arbitrary
function classes. Specifically, we generalize the commonly used metrics of backward transfer and
average accuracy —widely employed to characterize forgetting and generalization in CL—by defining
them in terms of population loss, thereby capturing model performance at the distributional level.
Moreover, our definitions do not rely on specific model assumptions and evaluate performance over
the entire input space, enabling a more comprehensive theoretical analysis of CL.

2.2 KERNEL REGIME FOR CONTINUAL LEARNING

We briefly review the basic concepts of the Neural Tangent Kernel (NTK) regime. Throughout this
work, we assume that the model is trained using the mean squared error (MSE) loss. Accordingly,
the empirical loss over task τ can be written as:

LSτ
(f) =

1

2nτ

nτ∑
i=1

(f(xi
τ)− yiτ)

2. (5)

Before introducing the NTK, we define the neural network kernel (NNK) at training time t as:

K̂t
τ (x, x

′) = ⟨∇θτ f
t
τ (x),∇θτ f

t
τ (x

′)⟩ (6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Based on this, the gradient flow dynamics of fτ with respect to the MSE loss can be written as:
d

dt
f t
τ (x) = − 1

nτ
K̂t

τ (x,Xτ)(f
t
τ (Xτ)− Yτ) (7)

NTK theory states that, in the infinite-width limit, NNK K̂t
τ converges to a time-invariant kernel Kτ ,

known as the NTK (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019b). In particular, if task τ is
initialized from the trained parameters of task τ − 1, i.e., θ0τ = θ∗τ−1, then each kernel entry satisfies

Kτ (x, x
′) = ⟨∇θ0

τ
f0
τ (x),∇θ0

τ
f0
τ (x

′)⟩ = ⟨∇θ∗
τ−1

f∗
τ−1(x),∇θ∗

τ−1
f∗
τ−1(x

′)⟩ (8)

For any x ∈ Rd and X = (x1, . . . , xn)
⊤ ∈ Rn×d, we denote

Kτ (x,X) = (Kτ (x, x1), . . . ,Kτ (x, xn)), Kτ (X,X) = [Kτ (xi, xj)]n×n (9)

Under the NTK regime, the training dynamics in Equation (7) reduce to the kernel gradient flow
d

dt
f t
τ (x) = − 1

nτ
Kτ (x,Xτ)

(
f t
τ (Xτ)− Yτ

)
, (10)

where Kτ remains fixed during training. Hence, Equation (10) defines an ordinary differential
equation (ODE) in the time variable t with an initial condition induced by θ0τ = θ∗τ−1. Furthermore,
Equation (10) admits a closed-form solution:

f t
τ (x) = f∗

τ−1(x)−Kτ (x,Xτ)Eτ,tKτ (Xτ , Xτ)
−1

(
f∗
τ−1(Xτ)− Yτ

)
, (11)

where Eτ,t := I−exp
(
− t

nτ
Kτ (Xτ , Xτ)

)
, and f∗

τ−1 denotes the predictor obtained after completing
the training of task τ − 1. The derivation of Equation (11) follows directly from solving the linear
ODE in Equation (10) and is provided in Appendix D.1. For notational convenience, we define

f̃ t
τ (x) := Kτ (x,Xτ)Eτ,tKτ (Xτ , Xτ)

−1Ỹτ , (12)

where Ỹτ := Yτ − f∗
τ−1(Xτ) represents the residual between the ground-truth labels of task τ and

the predictions of the model trained on task τ − 1. By recursively applying Equation (11) across τ
tasks, the model for task τ can be expressed as f t

τ (x) =
∑τ−1

i=1 f̃∗
i (x) + f̃ t

τ (x).

3 THEORETICAL RESULT

In this section, we present upper bounds on forgetting and generalization error for vanilla CL under
the NTK regime in Theorem 1. For clarity of presentation, we adopt the notational convention
t∗T = tT for the final task T , i.e., the iteration index of task T coincides with its stopping iteration.
Theorem 1. Consider a sequence of T tasks. For each task τ ∈ [T], let Dτ denote the data
distribution, and let Sτ = {Xτ , Yτ} be the corresponding training dataset drawn i.i.d. from Dτ .
Suppose the loss function ℓ(·, ·) takes values in the interval [0, c] and is ρ-Lipschitz in the first
argument. Then, with probability at least 1− δ, the following bounds hold:

FtT ≤ 1

T − 1

T−1∑
τ=1

{
2ρ

T∑
k=τ+1

[
Tr(Kk(Xτ , Xτ))Ỹ

⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk

]1/2
nτ

+ 4ρ

τ∑
k=1

[
Tr(Kk(Xτ , Xτ))Ỹ

⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk

]1/2
nτ

+ 6c

√
log(2/δ)

2nτ

+
1

nτ

T∑
k=τ+1

∥Kk(Xτ , Xk)Ek,t∗k
Kk(Xk, Xk)

−1Ỹk∥2
}
,

(13)

GtT ≤ 1

T

T∑
τ=1

{
1

nτ

T∑
k=τ+1

∥Kk(Xτ , Xk)Ek,t∗k
Kk(Xk, Xk)

−1Ỹk∥2 +
1

nτ
∥e−

1
nτ

Kτ (Xτ ,Xτ)t
∗
τ Ỹτ∥2

+ 2ρ

T∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk]

1/2

nτ
+ 3c

√
log(2/δ)

2nτ

}
.

(14)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To the best of our knowledge, Theorem 1 provides the first upper bounds on both forgetting and
generalization error at intermediate training stages in vanilla CL. The proof is given in Appendix E.
Furthermore, our bounds are explicitly dependent on the number of training iterations, allowing us to
characterize the evolution of forgetting and generalization errors throughout the training process.

To facilitate the subsequent analysis of the upper bounds of forgetting and generalization errors, we
denote F upper

tT and Gupper
tT as the respective upper bounds of FtT and GtT in Theorem 1. Based on

Theorem 1, we will provide insights on the following two aspects.

(1) Lipschitz constant. The Lipschitz constant ρ characterizes the maximum rate of change of the loss
with respect to the model’s predictions. Formally, for any two predictions u, v in the output space,
|LSτ (u)− LSτ (v)| ≤ ρ ∥u− v∥. In general, a smaller prediction-Lipschitz constant implies that the
loss varies more smoothly with respect to the model outputs (i.e., a flatter landscape in prediction
space), which is often associated with improved generalization.

(2) Cross-task kernel. Under the NTK regime, we define the cross-task kernel between any two
tasks τ < k ∈ [2, T] as Kk(Xτ , Xk). In traditional machine learning, cross kernels characterize
the similarity between two datasets (Akaho, 2006; Schölkopf et al., 1997). In the NTK setting, the
cross-task kernel instead captures cross-task interactions by measuring the alignment between the
model gradients with respect to different task datasets. A larger norm of this matrix indicates stronger
task interference, which in turn increases the risk of forgetting and generalization error.

To gain deeper insight into continual learning, we next analyze the effect of these two critical factors.

3.1 THE IMPACT OF THE LIPSCHITZ CONSTANT

The role of the Lipschitz constant has been extensively studied in non-CL settings, where smaller
values are often linked to improved generalization performance (Bartlett et al., 2017; Miyato et al.,
2018; Zhao et al., 2022; Khromov & Singh, 2024). One widely used approach to approximately
reduce the Lipschitz constant is to penalize the gradient norm (PGN) of the loss function (Zhao et al.,
2022). Moreover, Gradient-norm Aware Minimization (GAM) further penalizes the gradient norm
within a neighborhood of the parameters (Zhang et al., 2023), thereby promoting flatter solutions.
Although reducing the Lipschitz constant has been both theoretically and empirically shown to
improve performance in non-CL scenarios, its effectiveness in CL remains largely unexplored.

Q1: Does the role of the Lipschitz constant in non-CL also hold in the context of CL?

To address Q1, we examine how the Lipschitz constant ρ affects the forgetting bound F upper
tT and the

generalization error bound Gupper
tT in Theorem 1. In particular, we analyze the evolution of F upper

tT

and Gupper
tT with respect to the training iteration tT when the Lipschitz constant exceeds a certain

threshold. The detailed proof of Lemma 1 is provided in Section G.1.
Lemma 1. For any fixed tT , a smaller Lipschitz constant ρ leads to smaller values of both Gupper

tT

and F upper
tT . Moreover, there exists a constant ρ∗ > 0 such that, for all ρ > ρ∗, both Gupper

tT and F upper
tT

increase monotonically with respect to tT .
Remark 1. Lemma 1 indicates that reducing the Lipschitz constant ρ consistently mitigates both
forgetting and generalization error in CL. In contrast to non-CL settings, where reducing the Lipschitz
constant ρ primarily improves generalization, in CL it also alleviates forgetting.
Remark 2. Lemma 1 further implies that, once ρ exceeds a threshold ρ∗, the upper bounds Gupper

tT

and F upper
tT increase monotonically with the number of training iterations tT . In the degenerate limit

of skipping updates (i.e., tT = 0), these quantities can be made trivially small, but at the cost of no
adaptation to the new task—an undesirable, pathological outcome. Therefore, it is crucial to design
mechanisms that explicitly control or reduce ρ for each task to improve CL performance in practice.

As shown above, reducing the Lipschitz constant ρ is beneficial for mitigating forgetting and im-
proving generalization in CL. To implement this in practice, we adopt a penalized gradient-norm
framework that approximately reduces ρ; further details are provided in Appendix G.2. In the CL
setting, the training loss of PGN for any task τ ∈ [T] is given by

LPGN
Sτ

(θτ) = LSτ (θτ) + ατ∥∇θτLSτ (θτ)∥2, (15)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where ∥ · ∥2 denotes the Euclidean norm and ατ is the penalty coefficient.

In practice, we employ GAM rather than PGN, since GAM encourages flatter solutions. In the CL
setting, the training loss of GAM for task τ is defined as

LGAM
Sτ

(θτ) = LSτ
(θτ) + ατ bτ max

θ′
τ∈B(θτ ,bτ)

∥∇θ′
τ
LSτ

(θ′τ)∥2, (16)

where the perturbation radius bτ controls the neighborhood size, and B(θτ , bτ) denotes the open
ball of radius bτ centered at θτ in Euclidean space. Importantly, GAM penalizes the neighborhood
Lipschitz constant, thereby avoiding sharp minima and improving robustness. Furthermore, our
experimental results in Table 2 empirically demonstrate that GAM effectively mitigates forgetting and
enhances generalization compared to vanilla CL (SGD), thereby validating our theoretical analysis.

3.2 THE IMPACT OF CROSS-TASK KERNEL

In this section, we examine the influence of the cross-task kernel between any two tasks τ < k ∈
[2, T], i.e., Kk(Xτ , Xk), on the forgetting bound F upper

tT and the generalization error bound Gupper
tT

in Theorem 1. Each entry of Kk(Xτ , Xk) is the inner product between the model gradients with
respect to a sample from Xτ and a sample from Xk. Ideally, to eliminate the adverse effect of
Kk(Xτ , Xk) on F upper

tT and Gupper
tT , all entries should be zero—equivalently, the gradients with respect

to different datasets should be mutually orthogonal. A natural and effective approach to enforce
such orthogonality is Orthogonal Gradient Descent (OGD) (Farajtabar et al., 2020). In the following,
we analyze the behavior of the cross-task kernel to provide a theoretical explanation of how OGD
mitigates forgetting and reduces generalization error.

We introduce OGD in the context of CL. For any τ ∈ [T], define vτ,i := ∇θf
∗
τ (x

i
τ) and Eτ :=

span{vτ,i}nτ
i=1, the subspace spanned by the parameter gradients of the converged model f∗

τ evaluated
on the inputs from task τ . The core idea of OGD is to project the gradient of the current task onto the
orthogonal complement of the subspaces spanned by all previous tasks, i.e., E1 ⊕ · · · ⊕ Eτ−1. Let
P(E1⊕···⊕Eτ−1)⊥ denote the projection operator onto the orthogonal complement of this space, which
we write simply as Pτ for brevity. Under OGD, the gradient flow dynamics for task τ are given by

d

dt
f t
τ (x) = − 1

nτ
K̃τ (x,Xτ)

(
f t
τ (Xτ)− Yτ

)
, (17)

where K̃τ (x, x
′) = ⟨Pτ∇θ∗

τ−1
f∗
τ−1(x), Pτ∇θ∗

τ−1
f∗
τ−1(x

′)⟩. Thus, we obtain a gradient flow analo-
gous to the standard SGD gradient flow in Equation (10), with the key difference lying in the form of
the kernel. Additional details are provided in Appendix D.2.

In the following, we demonstrate that OGD reduces the cross-task kernel between the datasets of two
adjacent tasks to the zero matrix. The proof of Lemma 2 is provided in Appendix G.3.

Lemma 2. For any k ∈ [2, T], under OGD we have K̃k(Xk−1, Xk) = 0.

Remark 3. In Lemma 2, we show that OGD can eliminate the cross-task kernel between two adjacent
tasks, thereby yielding tighter bounds on forgetting and generalization error compared to standard
SGD. Moreover, we observe that the orthogonality constraints in standard OGD are unnecessarily
strong. Specially, if the projector Pk is redefined onto the orthogonal complement of Ek−1, rather than
E1 ⊕ · · · ⊕Ek−1, Lemma 2 still holds while avoiding overly restrictive constraints (see Appendix G.3
for details). Empirically, as shown in Table 2, OGD achieves better performance than SGD.

4 OGD+ AND OPGD ALGORITHMS

4.1 REFINED ORTHOGONAL GRADIENT DESCENT (OGD+)

In Lemma 2, we theoretically show that OGD exhibits less forgetting and better generalization than
SGD in CL by proving that the cross-task kernel between two adjacent tasks is the zero matrix under
OGD. Moreover, if this property could be extended so that the cross-task kernel between any pair of
tasks were zero, CL performance should improve further. This naturally raises the following question:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Q2: How can OGD be improved to eliminate the cross-task kernel between arbitrary task
pairs, thereby further reducing forgetting and enhancing generalization?

To address Q2, for any k ∈ [T], we redefine the gradient subspace as E′
k := span{∇θkf

∗
k (x

m
l) | l ∈

[k], m ∈ [nl]} and the projection operator as P ′
k := PE′

k−1
⊥ . We refer to this refined variant of OGD

as OGD+. As shown in Lemma 3, OGD+ reduces the cross-task kernel between the datasets of any
two tasks to the zero matrix. The detailed proof is provided in Appendix G.4.

Lemma 3. For any τ < k ∈ [2, T], under OGD+ we have K̃k(Xτ , Xk) = 0.

Remark 4. Lemma 3 demonstrates that OGD+ can eliminate the cross-task kernel between any pair
of tasks, thereby yielding lower forgetting and better generalization compared to standard OGD. In
particular, we derive upper bounds on both forgetting and generalization error for OGD and OGD+
(see Appendix G.5), and establish that both bounds for OGD+ are strictly tighter.

Comparison between OGD and OGD+. The key difference between OGD and OGD+ lies in
how gradient information is stored and released. Specifically, OGD stores the gradients of the model
after training on the current task using only the data from that task, and these gradients are retained
indefinitely. In contrast, OGD+ stores the gradients of the model after training on the current task
using all data from previous tasks, but releases them once training on the subsequent task is completed.
As shown in Remark 4, OGD+ provides stronger theoretical guarantees than OGD due to its stricter
enforcement of gradient orthogonality. Empirically, Table 2 shows that OGD+ forgets less and
generalizes better than OGD on the two MNIST benchmarks, with pronounced improvements in both
metrics. However, on Split CIFAR-100, OGD+ slightly underperforms OGD on both metrics, which
we attribute to its excessive orthogonality. In particular, overly restrictive orthogonality reduces
the feasible gradient subspace, thereby limiting the model’s capacity to adequately fit the current
task—especially under large distribution shifts between tasks. We next explore strategies to mitigate
the negative impact of excessive orthogonality in OGD+.

4.2 ORTHOGONAL PENALIZED GRADIENT DESCENT (OPGD)

In Section 4.1, we theoretically demonstrated that OGD+ achieves lower forgetting and better
generalization than OGD. However, while OGD+ enhances gradient orthogonality across tasks, it
neglects inter-task performance and thus risks reducing plasticity in practice. A straightforward way
to enhance inter-task performance is to reduce the Lipschitz constant of each task. Furthermore, in
Section 3.1, we theoretically established that reducing the Lipschitz constant consistently mitigates
forgetting and improves generalization. These observations naturally motivate the following question:

Q3: Can reducing the Lipschitz constant in OGD+ further mitigate forgetting and enhance
generalization compared to standard OGD+?

We denote F upper+
tT and Gupper+

tT as the upper bounds of forgetting and generalization error for OGD+.
To address Q3, we analyze how these bounds vary as the Lipschitz constant is reduced, and further
examine their dependence on tT when the Lipschitz constant falls below a certain threshold. The
formal results are stated in Lemma 4, with proofs provided in Appendix G.6.

Lemma 4. For any fixed tT , reducing the Lipschitz constant ρ leads to strictly smaller values of
Gupper+

tT and F upper+
tT compared to their original values under OGD+. Moreover, there exists a

constant ρ′ > 0 such that, for all ρ < ρ′, Gupper+
tT decreases monotonically with respect to tT , while

F upper+
tT increases monotonically with respect to tT .

Remark 5. Reducing the Lipschitz constant in OGD+ yields tighter bounds on both forgetting and
generalization error than standard OGD+. This indicates that incorporating mechanisms to reduce
the Lipschitz constant within OGD+ can further mitigate forgetting while improving generalization.

Remark 6. Lemma 4 further implies that when the Lipschitz constant in OGD+ falls below a certain
threshold, it helps avoid the degenerate phenomenon discussed in Remark 1, thereby benefiting
generalization as training progresses. At the same time, longer training (larger tT) increases the
risk of catastrophic forgetting because F upper

tT grows with tT , consistent with the behavior of large

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Lipschitz constants noted in Remark 1. This highlights a trade-off between mitigating forgetting and
improving generalization. Importantly, this observation does not conflict with Remark 5: although
extended training may increase forgetting, for any fixed iteration the bounds on both forgetting and
generalization remain tighter when the Lipschitz constant is reduced.

Algorithm 1: OPGD
Input :Task sequence T1, T2, . . . ; learning rate η;

balance coefficient α; perturbation radius
b; small constant ξ.

S ← ∅,M← ∅, θ ← θ0;
for Task ID τ = 1, 2, . . . do

repeat
// GAM
g1 ← ∇θLSτ (θ);

f ← ∇2
θLSτ (θ)

∇θLSτ (θ)

∥∇θLSτ (θ)∥+ξ
;

θ′ ← θ + b · f
∥f∥+ξ

;

g2 ← b · ∇2
θ′LSτ (θ

′)
∇θ′LSτ (θ′)

∥∇θ′LSτ (θ′)∥+ξ
;

g ← (1− α) g1 + αg2;
// Orthogonal updates
g ← g −

∑
v∈Sτ

projv(g);
θ ← θ − η g;

until convergence;
S ← ∅;
for (x, y) ∈ Dτ ∪M and k ∈ [1, c] with
yk = 1 do

u← ∇θfτ (x)−
∑

v∈S projv(∇θfτ (x));

S ← S ∪ {u};
end
sample Dτ ⊂ Dτ , M←M∪Dτ ;

end

OPGD algorithm: Leveraging Remark 5 and
Remark 6, we establish a principled pathway
from theory to algorithm design: integrating
OGD+, which enforces cross-task orthogonal-
ity, with GAM, which reduces the Lipschitz con-
stant. This unified approach, termed Orthogonal
Penalized Gradient Descent (OPGD), jointly mit-
igates forgetting and enhances generalization. As
shown in Table 2, OPGD achieves substantial
improvements over OGD+.

Next, we present the details of OPGD. For the
first task, we update the model parameters of f1
by minimizing the GAM loss (Equation (16)),
which effectively reduces the Lipschitz constant
of the loss and thereby enhances inter-task per-
formance. The corresponding gradients are then
stored. For each subsequent task τ ∈ [2, T], at
each parameter update iteration we first minimize
the GAM loss for fτ , and then apply OGD+ to
the resulting (penalized) gradient, ensuring that
the gradient for task τ is orthogonal to the stored
gradients from task τ−1. Finally, we release the
stored gradients of task τ−1 and replace them
with the gradients of task τ evaluated on samples
from all previous tasks. The full procedure of
OPGD is summarized in Algorithm 1.

5 EXPERIMENT

In this section, we present extensive experiments to validate our theoretical findings and demonstrate
the effectiveness of OGD+ and OPGD. Additional implementation details, further comparisons with
baselines, and ablation studies are provided in Appendix C.

Datasets. We evaluate our approach on three widely used CL benchmarks: Permuted MNIST (Kirk-
patrick et al., 2017), Rotated MNIST (Farajtabar et al., 2020), and Split CIFAR-100 (Chaudhry et al.,
2019a). Permuted MNIST and Rotated MNIST are variants of the original MNIST dataset, where
each task is defined by a random pixel permutation or a rotation, respectively. For both benchmarks,
we construct 15 sequential tasks using different permutations or rotation angles. Split CIFAR-100 is
created by partitioning the 100 classes of CIFAR-100 into 20 disjoint tasks, each containing 5 classes.

Baselines. To align with our theoretical analysis, we compare OGD+ and OPGD with three
continual learning methods: vanilla CL with SGD, GAM (Zhang et al., 2023), and OGD (Farajtabar
et al., 2020). Additional comparisons with other CL methods are provided in Appendix C.3.

Evaluation metrics. To align with our theoretical analysis, we adopt average accuracy (ACC)
and backward transfer (BWT) as the evaluation metrics (Lopez-Paz & Ranzato, 2017). Formally,
they are defined as ACC = 1

T

∑T
i=1 AT,i, BWT = 1

T−1

∑T
i=1 AT,i −Ai,i, where At,i denotes the

accuracy of the model on task i after completing training on task t, and T is the total number of tasks.

Performance. As shown in Table 2, OPGD achieves significant improvements in both ACC and
BWT over prior methods across all datasets, corroborating our theoretical claim that reducing the
Lipschitz constant within OGD+ simultaneously mitigates forgetting and improves generalization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Average accuracy (ACC) and backward transfer (BWT) over all tasks on different datasets.
Higher ACC and BWT indicate better generalization and less forgetting. All results are reproduced
by us and averaged over 5 runs. The best continual learning results are highlighted in bold.

Method

Dataset Permuted MNIST (15 tasks) Rotated MNIST (15 tasks) Split CIFAR-100 (20 tasks)

ACC BWT ACC BWT ACC BWT

SGD 70.29± 1.50 −25.33± 1.57 68.79± 0.43 −28.09± 0.45 52.08± 0.81 −30.63± 1.31

GAM 72.61± 1.44 −22.47± 1.57 72.85± 0.44 −20.60± 0.47 61.70± 1.68 −22.63± 1.60
OGD 82.17± 0.64 −12.38± 0.66 77.52± 0.69 −18.43± 0.76 63.91± 1.62 −20.57± 1.66

OGD+ 86.22± 0.62 −8.11± 0.62 86.15± 0.49 −9.02± 0.56 61.84± 2.51 −23.47± 2.48

OPGD 86.27± 0.56 −7.73± 0.61 89.15± 0.22 −3.69± 0.27 68.17± 0.71 −12.58± 1.35

0 10000 20000 30000 40000 50000 60000 70000 80000
Steps

20

30

40

50

60

70

Av
er

ag
e

A
cc

ur
ac

y
(A

C
C

)

0 10000 20000 30000 40000 50000 60000 70000 80000
Steps

50

40

30

20

10

B
ac

kw
ar

d
Tr

an
sf

er
 (B

W
T)

SGD GAM OGD OGD+ OPGD

Figure 1: Dynamics of average accuracy (ACC) and backward transfer (BWT) for different methods
on Split CIFAR-100. Vertical dotted lines are used to indicate the boundaries between different tasks.
For each task, we record ACC and BWT at evenly spaced intervals, performing 40 evaluations per
task by measuring performance every 100 training iterations.

In particular, OPGD yields average relative gains of +4.59% in ACC and +36.73% in BWT across
three benchmarks. Furthermore, OGD+ consistently forgets less and generalizes better than OGD
on Permuted MNIST and Rotated MNIST, with average relative gains of +4.27% in ACC and
+23.82% in BWT across three benchmarks. However, on Split CIFAR-100—whose distribution is
substantially more complex than Permuted MNIST and Rotated MNIST—OGD+ underperforms
OGD. We attribute this to excessive orthogonality in OGD+, which reduces model plasticity and
consequently degrades inter-task performance, as discussed in Section 4.1; similar observations have
been reported by Zhao et al. (2023); Yang et al. (2023). Notably, OPGD mitigates this effect by
reducing the Lipschitz constant within OGD+, thereby enhancing inter-task performance.

Dynamics of forgetting and generalization. As shown in Figure 1, the ACC of OPGD increases
steadily with the number of iterations, indicating that longer training enhances generalization. This
result is consistent with our theoretical analysis in Lemma 4. In contrast, the ACC of SGD does not
consistently improve and even declines in the final tasks. This phenomenon aligns with Remark 1,
which suggests that without explicit control of the Lipschitz constant, prolonged training may
accumulate instability and hinder generalization. Notably, incorporating GAM to reduce the Lipschitz
constant helps SGD avoid this degradation, enabling more stable generalization. As shown in Figure 1,
the BWT of OPGD decreases within each task interval, indicating that additional iterations increase
forgetting—again consistent with Lemma 4. Taken together, these results highlight a fundamental
trade-off between forgetting and generalization: while longer training improves generalization,
it simultaneously exacerbates forgetting, in line with Remark 6. Despite this trade-off, OPGD
consistently outperforms competing methods in terms of both ACC and BWT throughout training.

6 CONCLUSION

We derived upper bounds on forgetting and generalization error at intermediate training stages in
CL under the NTK regime. Our analysis shows that reducing the Lipschitz constant and enforcing
gradient orthogonality both help mitigate forgetting and improve generalization. Building on these
insights, we proposed OGD+ and OPGD, which refine gradient orthogonality and integrate gradient-
norm penalization, respectively. Empirical results on standard benchmarks corroborate our theoretical
predictions, providing a principled pathway from theory to algorithm design in CL. We discuss
limitations and our use of large language models in Appendix A.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shotaro Akaho. A kernel method for canonical correlation analysis. arXiv preprint cs/0609071, 2006.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139–154, 2018.

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. Advances in
neural information processing systems, 32, 2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for
online continual learning. Advances in neural information processing systems, 32, 2019b.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
conference on machine learning, pp. 322–332. PMLR, 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in neural information processing
systems, 32, 2019b.

Amin Banayeeanzade, Mahdi Soltanolkotabi, and Mohammad Rostami. Theoretical insights into
overparameterized models in multi-task and replay-based continual learning. arXiv preprint
arXiv:2408.16939, 2024.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. Advances in neural information processing systems, 30, 2017.

Mehdi Abbana Bennani, Thang Doan, and Masashi Sugiyama. Generalisation guarantees for continual
learning with orthogonal gradient descent. arXiv preprint arXiv:2006.11942, 2020.

Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning curves in
kernel regression and wide neural networks. In International Conference on Machine Learning,
pp. 1024–1034. PMLR, 2020.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-GEM. In International Conference on Learning Representations, 2019a.
URL https://openreview.net/forum?id=Hkf2_sC5FX.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet Kumar
Dokania, Philip H. S. Torr, and Marc’Aurelio Ranzato. Continual learning with tiny episodic
memories. CoRR, abs/1902.10486, 2019b. URL http://arxiv.org/abs/1902.10486.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Generalization bounds for learning
kernels. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp.
247–254, 2010.

Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa. Learning
without memorizing. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 5138–5146, 2019.

Thang Doan, Mehdi Abbana Bennani, Bogdan Mazoure, Guillaume Rabusseau, and Pierre Alquier.
A theoretical analysis of catastrophic forgetting through the ntk overlap matrix. In International
Conference on Artificial Intelligence and Statistics, pp. 1072–1080. PMLR, 2021.

10

https://openreview.net/forum?id=Hkf2_sC5FX
http://arxiv.org/abs/1902.10486

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
mood, and Richard S Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768–774, 2024.

Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic
can catastrophic forgetting be in linear regression? In Conference on Learning Theory, pp.
4028–4079. PMLR, 2022.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International conference on artificial intelligence and statistics, pp. 3762–3773.
PMLR, 2020.

Iordanis Fostiropoulos, Jiaye Zhu, and Laurent Itti. Batch model consolidation: A multi-task model
consolidation framework. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3664–3676, 2023.

Reinhard Heckel. Provable continual learning via sketched jacobian approximations. In International
Conference on Artificial Intelligence and Statistics, pp. 10448–10470. PMLR, 2022.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Sham M Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear prediction: Risk
bounds, margin bounds, and regularization. Advances in neural information processing systems,
21, 2008.

Ryo Karakida and Shotaro Akaho. Learning curves for continual learning in neural networks: Self-
knowledge transfer and forgetting. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=tFgdrQbbaa.

Grigory Khromov and Sidak Pal Singh. Some fundamental aspects about lipschitz continuity of
neural networks. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=5jWsW08zUh.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

Haoran Li, Jingfeng Wu, and Vladimir Braverman. Fixed design analysis of regularization-based
continual learning. In Conference on lifelong learning agents, pp. 513–533. PMLR, 2023.

Haoran Li, Jingfeng Wu, and Vladimir Braverman. Memory-statistics tradeoff in continual learning
with structural regularization. arXiv preprint arXiv:2504.04039, 2025a.

Hongbo Li, Sen Lin, Lingjie Duan, Yingbin Liang, and Ness Shroff. Theory on mixture-of-experts
in continual learning. In The Thirteenth International Conference on Learning Representations,
2025b. URL https://openreview.net/forum?id=7XgKAabsPp.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for
continual learning. In The Tenth International Conference on Learning Representations, 2022.

Sen Lin, Peizhong Ju, Yingbin Liang, and Ness Shroff. Theory on forgetting and generalization of
continual learning. In International Conference on Machine Learning, pp. 21078–21100. PMLR,
2023.

11

https://openreview.net/forum?id=tFgdrQbbaa
https://openreview.net/forum?id=5jWsW08zUh
https://openreview.net/forum?id=7XgKAabsPp

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological review, 102(3):419, 1995.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv
preprint arXiv:1810.11910, 2018.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
International Conference on Learning Representations, 2021.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal component
analysis. In International conference on artificial neural networks, pp. 583–588. Springer, 1997.

Zifeng Wang, Zheng Zhan, Yifan Gong, Geng Yuan, Wei Niu, Tong Jian, Bin Ren, Stratis Ioannidis,
Yanzhi Wang, and Jennifer Dy. Sparcl: Sparse continual learning on the edge. Advances in Neural
Information Processing Systems, 35:20366–20380, 2022.

Enneng Yang, Li Shen, Zhenyi Wang, Shiwei Liu, Guibing Guo, and Xingwei Wang. Data aug-
mented flatness-aware gradient projection for continual learning. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 5630–5639, 2023.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In International Conference on Learning Representations, 2018.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International conference on machine learning, pp. 3987–3995. PMLR, 2017.

Xingxuan Zhang, Renzhe Xu, Han Yu, Hao Zou, and Peng Cui. Gradient norm aware minimization
seeks first-order flatness and improves generalization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20247–20257, 2023.

Xuyang Zhao, Huiyuan Wang, Weiran Huang, and Wei Lin. A statistical theory of regularization-
based continual learning. In International Conference on Machine Learning, pp. 61021–61039.
PMLR, 2024.

Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving
generalization in deep learning. In International conference on machine learning, pp. 26982–
26992. PMLR, 2022.

Zhen Zhao, Zhizhong Zhang, Xin Tan, Jun Liu, Yanyun Qu, Yuan Xie, and Lizhuang Ma. Rethinking
gradient projection continual learning: Stability/plasticity feature space decoupling. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3718–3727, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL STATEMENT

Limitations. Our theoretical analysis is developed under the NTK regime, which may not fully
reflect the behavior of practical deep networks with finite width or more complex architectures.
In addition, our empirical evaluation is limited to classification benchmarks; extending both the
theoretical framework and the proposed algorithms to other modalities and learning paradigms
remains an important direction for future work.
The Use of Large Language Models. In this work, we exclusively employ large language models
(LLMs) to refine the writing and presentation of our manuscript.

B RELATED WORKS

Empirical studies in CL. Continual learning has achieved substantial empirical progress, with
existing approaches broadly categorized into three families: (1) Regularization-based methods,
which introduce explicit penalty terms to restrict updates on parameters important for previous tasks
(Kirkpatrick et al., 2017; Zenke et al., 2017), or employ knowledge distillation by aligning the
predictions of the current model (student) with those of the previous model (teacher) to mitigate
forgetting (Li & Hoiem, 2017; Dhar et al., 2019; Fostiropoulos et al., 2023); (2) Replay-based
methods, which either store and replay data from past tasks during training on new tasks (Chaudhry
et al., 2019a; Riemer et al., 2018; Buzzega et al., 2020), or retain gradient information from prior
tasks and enforce new updates to be orthogonal to past gradients, thereby avoiding explicit data replay
(Farajtabar et al., 2020; Saha et al., 2021; Lin et al., 2022); (3) Architecture-based methods (Rusu
et al., 2016; Yoon et al., 2018; Wang et al., 2022), which dynamically expand or adapt the network
architecture to preserve knowledge from earlier tasks.

Theoretical analysis of CL. Recent works have begun to lay the theoretical foundations of CL by
analyzing forgetting and generalization error under simplified settings. Several studies (Evron et al.,
2022; Lin et al., 2023; Banayeeanzade et al., 2024; Li et al., 2025b) investigate these phenomena
within overparameterized linear models, typically assuming that datasets are drawn from Gaussian
distributions. Recently, there has been growing interest in the theoretical analysis of regularization
based methods for CL. Heckel (2022) theoretically characterize how the performance of a model in a
contrastive CL framework is controlled by the training losses on previous tasks. Li et al. (2023) derive
bounds on the average risk over two tasks for an ℓ2-regularized CL algorithm. Zhao et al. (2024)
provide a statistical analysis of regularization based CL on a sequence of linear regression tasks and
highlight how different regularization terms affect model performance. Li et al. (2025a) establish
upper and lower bounds on the joint excess risk for a generalized ℓ2-regularized CL algorithm.
Another major line of theoretical work is based on the NTK regime (Bennani et al., 2020; Doan et al.,
2021; Karakida & Akaho, 2022). In particular, Bennani et al. (2020) established generalization error
bounds for CL via Rademacher complexity; Doan et al. (2021) analyzed forgetting by introducing the
NTK overlap matrix as a task-similarity metric; and Karakida & Akaho (2022), leveraging learning-
curve analysis between two tasks (Bordelon et al., 2020), studied both forgetting and generalization
error under the assumption that datasets from different tasks are drawn from the same distribution.
Although these works provide valuable insights, most rely on simplified settings and converged
models, thereby overlooking the evolution of models during training in realistic CL scenarios. In
contrast, we theoretically characterize the evolution of both forgetting and generalization error in
vanilla CL under the NTK regime, without requiring such restrictive assumptions.

The most relevant works to ours are Bennani et al. (2020); Doan et al. (2021), which theoretically
analyze generalization error and forgetting separately under the NTK regime. However, our study
differs in several key aspects: (1) Their analyses incorporate a ridge regularization term in the loss
function, effectively aligning with regularization-based CL methods. By contrast, our framework
makes no such assumption and corresponds to vanilla CL, thus serving as a clean theoretical baseline
against which improved CL methods—e.g., buffer-based and regularization-based approaches—can
be directly compared. (2) Their focus lies primarily on the performance of converged models,
whereas we characterize the full evolution of forgetting and generalization error throughout the
training dynamics. (3) Bennani et al. (2020) study the generalization error of OGD in CL by
leveraging the property that model outputs remain consistent between consecutive tasks, while Doan
et al. (2021) analyze forgetting in OGD through the NTK overlap matrix. In contrast, we analyze
both forgetting and generalization error in OGD through the structure of the cross-task kernel.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXPERIMENTAL SETTING

In this section, we provide additional details of our experimental setup, present extended comparisons
with more baselines (Section C.3), and conduct an ablation study of OPGD (Section C.4). All
experiments are conducted using the NVIDIA RTX 4090 with 24GB GPU memory, CUDA v11.8
and cuDNN v8.7.0 in PyTorch v2.4.1.

Architecture. For Permuted MNIST and Rotated MNIST, we adopt a three-layer multilayer
perceptron (MLP) with two hidden layers of 100 units each and a final layer with 10 output logits. All
layers except the last one use ReLU activation. For Split CIFAR-100, we employ a LeNet architecture
for training. Table 3 summarizes the hyperparameter settings used for OPGD.

Table 3: Hyperparameter Settings of OPGD
Hyperparameter Permuted MNIST Rotated MNIST Split CIFAR-100

Task nums 15 15 20
Network MLP MLP LeNet
Epochs 5 5 50
Learning rate 10−3 10−3 10−3

Batch size 32 32 32
Hidden dimension 100 100 100
Balance coefficient α 0.6 0.1 0.8
Perturbation radius b 0.02 0.2 0.05
Sampling size m 100 100 100

C.2 ADDITIONAL EXPERIMENTS

To verify that our methods also apply to other types of tasks, we conduct additional experiments
on online continual learning. In online continual learning, data arrive sequentially in the form of
a stream. Whenever a small batch of data arrives, it is used for a single training iteration (Aljundi
et al., 2019b;a). Following the standard online continual learning protocol, we use a batch size of 10
and train for one epoch. We perform experiments on Permuted MNIST, Rotated MNIST, and Split
CIFAR-100. We adopt the same hyperparameter settings as those listed in Table 3.

Table 4: Average accuracy (ACC) and backward transfer (BWT) over all tasks on online CL bench-
marks. All results are reproduced by us and averaged over 5 runs. The best continual learning
performance is highlighted in bold.

Method

Dataset Permuted MNIST (15 tasks) Rotated MNIST (15 tasks) Split CIFAR-100 (20 tasks)

ACC BWT ACC BWT ACC BWT

SGD 75.85± 0.78 −12.24± 0.81 67.23± 0.41 −23.62± 0.40 31.90± 1.57 −16.21± 1.42

GAM 76.67± 1.02 −10.95± 1.10 70.63± 0.59 −14.86± 0.67 33.56± 1.67 −14.29± 1.65
OGD 78.76± 0.50 −8.65± 0.49 79.17± 0.41 −9.53± 0.48 37.66± 1.78 −7.92± 1.66

OGD+ 81.88± 0.33 −5.23± 0.38 86.35± 0.17 −1.02± 0.28 37.68± 1.77 −7.88± 1.68

OPGD 82.62± 0.51 −4.93± 0.49 87.14± 0.22 2.75± 0.25 39.88± 1.49 −6.12± 1.45

To verify that our theoretical findings can benefit other continual learning algorithms, we integrate
GAM or OPGD into both rehearsal based and regularization based methods on the Permuted MNIST
dataset. Concretely, for rehearsal based baselines we adopt a naive rehearsal protocol that randomly
selects 100 samples from each past task. For regularization based baselines we use an ℓ2 regularizer
so that the optimization problem for task τ takes the form

argmin
θτ

ℓ(θτ) + ∥θτ − θτ−1∥22.

The corresponding results are presented in Table 5. The experimental results show that our theoretical
messages also benefit other continual learning algorithms.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Average accuracy (ACC) and backward transfer (BWT) over all tasks on Permuted MNIST.
All results are reproduced by us and averaged over 5 runs. The best continual learning results are
highlighted in bold.

Method ACC BWT

rehearsal 82.82± 0.78 −12.60± 0.36
rehearsal + GAM 86.40± 0.42 −7.64± 0.44
rehearsal + OPGD 88.23± 0.16 −5.62± 0.13

ℓ2 73.30± 1.21 −21.91± 1.22
ℓ2 + GAM 74.15± 1.33 −19.19± 1.43
ℓ2 + OPGD 86.45± 0.27 −7.42± 0.33

C.3 COMPARISON WITH ADDITIONAL BASELINES

Additional baselines. We additionally compare against two types of CL methods. Regularization-
based methods: EWC (Kirkpatrick et al., 2017), MAS (Aljundi et al., 2018), SI (Zenke et al., 2017).
Memory-based methods: ER (Chaudhry et al., 2019b), A-GEM (Chaudhry et al., 2019a). For fair
comparison, we set the memory buffer size of ER and A-GEM equal to that of OPGD.

Table 6: Average accuracy (ACC) and backward transfer (BWT) over all tasks on different datasets.
Higher ACC and BWT indicate better generalization and less forgetting. All results are reproduced
by us and averaged over 5 runs. The best continual learning results are highlighted in bold.

Method

Dataset Permuted MNIST Rotated MNIST Split CIFAR100
ACC BWT ACC BWT ACC BWT

SGD 70.29± 1.50 −25.33± 1.57 68.79± 0.43 −28.09± 0.45 52.08± 0.81 −30.63± 1.31

OGD 82.17± 0.64 −12.38± 0.66 77.52± 0.69 −18.43± 0.76 63.91± 1.62 −20.57± 1.66
EWC 80.11± 1.41 −13.66± 1.57 79.92± 0.75 −2.33± 0.14 56.69± 2.42 −20.87± 2.41
MAS 83.82± 0.41 −5.486± 0.36 79.50± 0.16 1.60± 0.48 66.26± 1.41 −3.54± 1.30

SI 83.30± 0.22 −3.364± 0.23 77.08± 0.37 −13.78± 0.48 67.45± 2.25 −8.77± 2.38
GAM 72.61± 1.44 −22.47± 1.57 72.85± 0.44 −20.60± 0.47 61.70± 1.68 −22.63± 1.60

ER 83.35± 0.91 −11.34± 0.91 83.05± 0.34 −12.75± 0.39 66.03± 0.34 −16.89± 0.40
A-GEM 84.69± 0.41 −9.92± 0.42 88.30± 0.49 −6.63± 0.55 63.04± 1.59 −18.26± 1.78

OGD+ 86.22± 0.62 −8.11± 0.62 86.15± 0.49 −9.02± 0.56 61.84± 2.51 −23.47± 2.48

OGD+GAM 83.73± 0.65 −10.41± 0.75 80.31± 0.51 −12.00± 0.55 67.43± 2.10 −13.05± 1.60
OPGD 86.27± 0.56 −7.73± 0.61 89.15± 0.22 −3.69± 0.27 68.17± 0.71 −12.58± 1.35

Discussion. As shown in Table 6, OPGD achieves the highest ACC across all benchmarks, indi-
cating that penalizing the gradient norm within OGD/OGD+ is an effective strategy for improving
generalization. Moreover, although OGD+ underperforms OGD on Split CIFAR-100, combining
OGD+ with GAM outperforms combining OGD with GAM on this dataset. On the other hand, SI
attains the highest BWT on Permuted MNIST, while MAS achieves the highest BWT on Rotated
MNIST and Split CIFAR-100. As highlighted in Remark 6, this pattern reflects an inherent trade-off
in OPGD: while it substantially improves generalization during training, it may also increase the
risk of forgetting as training progresses. Overall, our main contribution is to provide a theoretical
framework for analyzing continual learning and to improve OGD from a theoretical perspective.
Although OPGD may not always yield the best BWT, it consistently delivers substantial gains in
ACC and exhibits large improvements over standard OGD, thereby validating the effectiveness of our
theoretically motivated design.

C.4 ABLATION STUDY

In this section, we investigate effectiveness of each component in OPGD: balance coefficient α (Table
7), perturbation radius b (Table 8), and per-task sampling size m (Table 9).

Balance coefficient α. The balance coefficient α controls the strength of the GAM penalty. We
perform a grid search over {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} using a fixed seed. As shown in
Table 7, OPGD is relatively insensitive to α, with only modest changes across the range.

Perturbation radius b. The perturbation radius b controls the neighborhood size in which the
GAM penalty is evaluated, thereby governing the magnitude of parameter perturbations. We conduct

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: ACC and BWT of OPGD with different balance coefficients α across datasets.

α
Permuted MNIST Rotated MNIST Split CIFAR100

ACC BWT ACC BWT ACC BWT

0.1 86.52 −7.77 88.79 −4.85 66.90 −15.33
0.2 86.41 −7.80 88.39 −4.70 67.70 −14.37
0.3 86.10 −8.10 88.15 −4.53 67.04 −14.97
0.4 85.27 −8.94 87.62 −4.76 67.23 −14.51
0.5 86.48 −7.35 87.47 −4.56 68.03 −13.84
0.6 86.55 −7.42 87.02 −4.82 67.89 −14.17
0.7 84.76 −9.30 86.15 −5.58 67.98 −14.21
0.8 85.40 −8.62 85.79 −5.78 68.18 −14.03
0.9 86.41 −7.52 85.76 −5.60 67.64 −14.73

Table 8: ACC and BWT of OPGD with different perturbation radii b across datasets.

b
Permuted MNIST Rotated MNIST Split CIFAR100

ACC BWT ACC BWT ACC BWT

0.02 86.41 −7.47 88.47 −5.40 68.48 −13.82
0.05 86.01 −7.60 88.79 −4.85 69.31 −11.03
0.1 84.79 −8.17 89.01 −4.35 66.02 −9.90
0.2 85.79 −5.96 89.09 −3.76 53.13 −9.45
0.5 79.70 −7.08 87.97 −3.59 50.53 −8.78
1.0 72.61 −6.59 87.72 −2.50 48.45 −8.39
2.0 70.36 −8.05 77.18 −2.90 47.45 −9.12

a grid search over {0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0} using a fixed seed. We observe that enlarging b
is not always beneficial for OPGD, especially when b > 0.2. Conceptually, OPGD aims to reduce the
local Lipschitz constant; GAM does so by penalizing the maximal gradient norm within a ball of
radius b, which serves as a proxy upper bound for the local Lipschitz constant. When b becomes too
large, the neighborhood is no longer local, the proxy bound becomes loose—impeding optimization
and degrading fit—thereby explaining the observed saturation or decline in performance at large b.

Table 9: ACC and BWT of OPGD with different per-task sampling sizes m across datasets.

m
Permuted MNIST Rotated MNIST Split CIFAR100

ACC BWT ACC BWT ACC BWT

20 79.85 −14.73 82.79 −11.05 66.09 −14.50
40 83.89 −10.46 85.21 −8.26 59.60 −21.08
60 83.51 −10.76 87.12 −6.07 62.69 −18.10
60 85.57 −8.44 88.33 −4.69 65.21 −14.79
100 85.53 −8.52 89.09 −3.76 69.25 −11.10
120 86.64 −7.33 89.87 −2.80 66.36 −13.52
140 87.17 −6.71 90.23 −2.29 68.56 −11.67

Per-task sampling size m. In OPGD, we randomly sample m examples from each task to store in
the memory buffer. We perform a grid search over {20, 40, 60, 80, 100, 120, 140} using a fixed seed.
As shown in Table 9, both ACC and BWT exhibit a clear increasing trend as the buffer size grows.
Due to GPU memory constraints, we report results up to m = 140; nevertheless, the observed trend
indicates that larger buffers would likely yield further gains for OPGD.

D KERNEL GRADIENT FLOW

D.1 KERNEL GRADIENT FLOW UNDER SGD

In this section, we derive Equation (11) by solving the linear ODE in Equation (10). We start by
evaluating Equation (10) at the training dataset Xτ :

d

dt
f t
τ (Xτ) = − 1

nτ
Kτ (Xτ , Xτ)

(
f t
τ (Xτ)− Yτ

)
. (18)

Let g(t) = f t
τ (Xτ)− Yτ . Then, Equation (18) can be rewritten in the simplified form:

d

dt
g(t) = − 1

nτ
Kτ (Xτ , Xτ)g(t), g(0) = f0

τ (Xτ)− Yτ . (19)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Equation (19) is a linear matrix ODE, where Kτ (Xτ , Xτ) is time-invariant and real symmetric.
Therefore, the theory of linear ODE guarantees a unique solution:

g(t) = exp
(
− t

nτ
Kτ (Xτ , Xτ)

)
g(0) = exp

(
− t

nτ
Kτ (Xτ , Xτ)

)(
f0
τ (Xτ)− Yτ

)
. (20)

Substituting g(t) = f t
τ (Xτ)− Yτ into Equation (20) yields:

f t
τ (Xτ) = Yτ + exp

(
− t

nτ
Kτ (Xτ , Xτ)

)(
f0
τ (Xτ)− Yτ

)
. (21)

Therefore, we obtain the explicit form of f t
τ (·) on the training dataset Xτ . Next, we fix an arbitrary

test point x ∈ Rd. For this x, Equation (10) specializes to

d

dt
f t
τ (x) = − 1

nτ
Kτ (x,Xτ)

(
f t
τ (Xτ)− Yτ

)
. (22)

Integrating both sides of Equation (22) over the interval [0, t] and applying the initial condition
f0
τ (x) = f∗

τ−1(x), we obtain

f t
τ (x)− f0

τ (x) = − 1

nτ
Kτ (x,Xτ)

∫ t

0

(
fs
τ (Xτ)− Yτ

)
ds. (23)

Substituting Equation (21) into the integral term of Equation (23), we obtain

∫ t

0

(
fs
τ (Xτ)− Yτ

)
ds =

∫ t

0

exp
(
− s

nτ
Kτ (Xτ , Xτ)

)(
f0
τ (Xτ)− Yτ

)
ds

=
(∫ t

0

exp
(
− s

nτ
Kτ (Xτ , Xτ)

)
ds
)(

f0
τ (Xτ)− Yτ

)
.

(24)

The matrix integral in Equation (24) can be evaluated in closed form by applying the standard identity
(valid for any constant matrix A and scalar α > 0):∫ t

0

exp(−αsA) ds = α−1A−1
(
I − exp(−αtA)

)
, (25)

provided that A is invertible.

Applying Equation (25) with A = Kτ (Xτ , Xτ) and α = 1/nτ gives

∫ t

0

exp
(
− s

nτ
Kτ (Xτ , Xτ)

)
ds = nτKτ (Xτ , Xτ)

−1
(
I − exp

(
− t

nτ
Kτ (Xτ , Xτ)

))
. (26)

Plugging Equation (26) into Equation (23), we obtain

f t
τ (x)− f0

τ (x)

=− 1

nτ
Kτ (x,Xτ)

(
nτKτ (Xτ , Xτ)

−1
(
I − exp(− t

nτ
Kτ (Xτ , Xτ))

))(
f0
τ (Xτ)− Yτ

)
=−Kτ (x,Xτ)Kτ (Xτ , Xτ)

−1
(
I − exp(− t

nτ
Kτ (Xτ , Xτ))

)(
f0
τ (Xτ)− Yτ

)
.

(27)

Recalling that f0
τ (·) = f∗

τ−1(·), we arrive at the closed-form solution for any x ∈ Rd:

f t
τ (x) = f∗

τ−1(x)−Kτ (x,Xτ)
(
I − exp

(
− t

nτ
Kτ (Xτ , Xτ)

))
Kτ (Xτ , Xτ)

−1
(
f∗
τ−1(Xτ)− Yτ

)
.

(28)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For notational simplicity, we define

Eτ,t := I − exp
(
− t

nτ
Kτ (Xτ , Xτ)

)
. (29)

Thus, the solution can be compactly expressed as

f t
τ (x) = f∗

τ−1(x)−Kτ (x,Xτ)Eτ,tKτ (Xτ , Xτ)
−1

(
f∗
τ−1(Xτ)− Yτ

)
. (30)

We complete the derivation of Equation (11) by solving the linear ODE in Equation (10). Next, we
introduce an important lemma that will be used in the subsequent proofs.

Lemma 5. For any τ ∈ [T], both e−
1

nτ
Kτ (Xτ ,Xτ)t

∗
τ and Eτ,t∗τ

are symmetric and positive definite.

Proof. Let λk,nτ > 0 (k ∈ [nτ]) be the eigenvalues of Kτ (Xτ , Xτ). Therefore, there exists an
orthogonal matrix Qτ such that

QτKτ (Xτ , Xτ)Q
⊤
τ = diag{λτ,1, . . . , λτ,nτ

}, (31)

where λτ,1, . . . , λτ,nτ
are the eigenvalues of Kτ (Xτ , Xτ).

Qτe
− 1

nτ
Kτ (Xτ ,Xτ)t

∗
τQ⊤

τ =Qτ

∞∑
k=0

1

k!
(− 1

nτ
Kτ (Xτ , Xτ)t

∗
τ)

kQ⊤
τ

=

∞∑
k=0

1

k!
(− 1

nτ
QτKτ (Xτ , Xτ)Q

⊤
τ t

∗
τ)

k

=

∞∑
k=0

1

k!
(− 1

nτ
diag{λτ,1, . . . , λτ,nτ

}t∗τ)k

=diag{
∞∑
k=0

1

k!
(−λτ,1t

∗
τ

nτ
)k, . . . ,

∞∑
k=0

1

k!
(−λτ,nτ t

∗
τ

nτ
)k}

=diag{e−
λτ,1t∗τ

nτ , . . . , e−
λτ,nτ t∗τ

nτ }.

(32)

For any t∗τ > 0 we have 0 < exp(−λk,nτ
t∗τ/nτ) < 1. Consequently the matrix exponential exp

(
−

1
nτ

Kτ (Xτ , Xτ) t
∗
τ

)
is symmetric positive definite, and thus Eτ,t∗τ

is also symmetric positive definite
with eigenvalues 1− exp(−λk,nτ t

∗
τ/nτ) ∈ (0, 1). Even if we relax the condition to Kτ (·, ·) being

only positive semi-definite, the matrix exponential exp
(
− 1

nτ
Kτ (Xτ , Xτ) t

∗
τ

)
remains symmetric

positive definite, since the exponential of any symmetric matrix with nonnegative eigenvalues yields
strictly positive eigenvalues.

D.2 KERNEL GRADIENT FLOW UNDER OGD

In this section, we derive Equation (17), which characterizes the gradient flow dynamics under OGD.
For any task τ ∈ [T], the parameter θτ evolves according to the differential equation

dθtτ
dt

= −Pτ∇θt
τ
ℓ(θtτ) = −Pτ

1

nτ

nτ∑
j=1

(
fτ (x

j
τ)− yjτ

)
∇θt

τ
f t
τ (x

j
τ), (33)

where t ≥ 0 denotes continuous time.

Based on (33), the evolution of the network output satisfies

d

dt
f t
τ (x) = ∇θt

τ
f t
τ (x)

dθτ
dt

= − 1

nτ

nτ∑
j=1

(
f t
τ (x

j
τ)− yjτ

) 〈
∇θt

τ
f t
τ (x), Pτ∇θt

τ
f t
τ (x

j
τ)
〉

= − 1

nτ

nτ∑
j=1

(
f t
τ (x

j
τ)− yjτ

) 〈
Pτ∇θt

τ
f t
τ (x), Pτ∇θt

τ
f t
τ (x

j
τ)
〉
.

(34)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Therefore, under the NTK regime, the kernel gradient flow takes the following form:

d

dt
f t
τ (x) = − 1

nτ
K̃τ (x,Xτ)

(
f t
τ (Xτ)− Yτ

)
, (35)

where K̃τ (x, x
′) = ⟨Pτ∇θ∗

τ−1
f∗
τ−1(x), Pτ∇θ∗

τ−1
f∗
τ−1(x

′)⟩. Therefore, the resulting kernel coin-
cides with the one derived in Bennani et al. (2020).

E PROOF OF THEOREM 1

In this section, we provide the proof of Theorem 1, which establishes the upper bounds of forgetting
FT and generalization error GT . We first introduce the notion of Rademacher complexity in Subsec-
tion E.1. We then derive the upper bound of the generalization error in Subsection E.2, followed by
the proof of the upper bound of forgetting in Subsection E.3.

E.1 GENERALIZATION AND RADEMACHER COMPLEXITY

There are several ways to quantify the complexity of a function class F , one important and widely
used measure is the Rademacher complexity. Following the notation in Arora et al. (2019a), we
define the empirical Rademacher complexity as follows:
Definition 1. Given a sample set Sτ = {(xi

τ , y
i
τ)}

nt
i=1, the empirical Rademacher complexity of a

function class F is defined as:

RSτ
(F) =

1

n
Eϵ

[
sup
f∈F

nt∑
i=1

ϵif(x
i
τ)

]
, (36)

where ϵ = (ϵ1, . . . , ϵn)
⊤ is a vector of i.i.d. random variables drawn from the Rademacher distribu-

tion, i.e., ϵi ∼ Unif(−1,+1).

Rademacher complexity provides a data-dependent upper bound on the generalization error of a
learning algorithm (Bartlett & Mendelson, 2002).
Theorem 2. Suppose the loss function ℓ(·, ·) is bounded in [0,c] and is ρ−Lipschitz in the first
argument. Then, with probability at least 1− δ, for all f ∈ F , it holds that

LD(f)− LS(f) ≤ 2ρRS(F) + 3c

√
log(2/δ)

2n
. (37)

Based on Theorem 2, we state the following corollary:
Corollary 1. Suppose the loss function ℓ(·, ·) is bounded in [0,c] and is ρ−Lipschitz in the first
argument. Then, with probability at least 1− δ, for all f ∈ F , it holds that

LS(f)− LD(f) ≤ 2ρRS(F) + 3c

√
log(2/δ)

2n
. (38)

Proof. Let G := {gf (z) = ℓ(f(x), y) : f ∈ F}, where each gf takes values in [0, c]. For any f ∈ F ,
define the population risk LD(f) = ED[gf] and the empirical risk LS(f) = ES [gf].

From the standard Rademacher generalization bound, with probability at least 1− δ, it holds that

LD(f) ≤ LS(f) + 2RS(G) + 3c

√
log(2/δ)

2n . (39)

To obtain the reverse direction, consider the shifted function class

G′ := {g′f (z) = c− gf (z) : f ∈ F},

which also takes values in [0, c] and satisfies RS(G′) = RS(G). Applying the same bound to G′

yields

LS(f)− LD(f) ≤ 2RS(G) + 3c

√
log(2/δ)

2n .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Finally, by the contraction lemma, since ℓ(·, y) is ρ-Lipschitz in its first argument, we have

RS(G) ≤ ρRS(F).

Substituting this completes the proof.

Next, we provide an upper bound on the Rademacher complexity of a specific form of function class,
as stated in Lemma 6.

Lemma 6. Let {Kt : Xt × Xt → R}Tt=1 be a sequence of positive semi-definite kernels such that
supx∈X ∥Kt(x, x)∥ < ∞ for all t ∈ [T]. For each t ∈ [T], let Ht be the reproducing kernel Hilbert
space (RKHS) associated with Kt, equipped with inner product ⟨·, ·⟩Ht . Given a sequence of positive
constants {Bt}Tt=1, we define the function class FT as

FT =

{
f : X → R

∣∣∣∣∣x →
T∑

t=1

ft(x), ft(x) = Kt(x,Xt)
⊤αt, ∥ft∥Ht

≤ Bt,∀t ∈ [T]

}
. (40)

Then the empirical Rademacher complexity of FT over Sτ satisfies

RSτ
(FT) ≤

T∑
t=1

Bt

nτ
(Tr(Kt(Xτ , Xτ)))

1/2. (41)

Proof. For any kernel Kt, there exists an associated feature map Φt : Xt → Ht such that for all
x1, x2 ∈ Xt, we have Kt(x1, x2) = ⟨Φt(x1),Φt(x2)⟩Ht

. In particular, the kernel vector Kt(x,Xt)
is defined as Kt(x,Xt) = (Kt(x, x

1
t), . . . ,Kt(x, x

nt
t))⊤ and the coefficient vector is given by

αt = (α1
t , . . . , α

nt
t)⊤. Consequently, for any f ∈ FT , we have

f(x) =

T∑
t=1

ft(x)

=

T∑
t=1

Kt(x,Xt)
⊤αt

=

T∑
t=1

nt∑
i=1

αi
tKt(x, x

i
t)

=

T∑
t=1

nt∑
i=1

αi
t⟨Φt(x),Φt(x

i
t)⟩Ht

=

T∑
t=1

⟨Φt(x),

nt∑
i=1

αi
tΦt(x

i
t)⟩Ht

.

(42)

Let wt =
∑nt

i=1 α
i
tΦt(x

i
t). Then the function f can be represented as:

f(x) =

T∑
t=1

⟨wt,Φt(x)⟩Ht
(43)

Moreover, the norm of wt in Ht satisfies:

∥wt∥Ht =

nt∑
i,j

αi
tα

j
t ⟨Φt(x

i
t),Φt(x

j
t)⟩Ht

=

nt∑
i,j

αi
tα

j
tKt(x

i
t, x

j
t)

=α⊤
t Kt(Xt, Xt)αt

=∥ft∥Ht

(44)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We define the function class F̃T as follows:

F̃T =

{
f : X → R

∣∣∣∣∣x →
T∑

t=1

⟨wt,Φt(x)⟩Ht
, ∥wt∥Ht

≤ Bt,∀t ∈ [T]

}
(45)

By construction, we have FT ⊂ F̃T . Consequently, the empirical Rademacher complexity of FT

over Sτ can be upper bounded by that of F̃T , i.e.,

RSτ
(FT) ≤ RSτ

(F̃T) =
1

nτ
Eϵ[sup

∥wt∥Ht≤Bt,∀t∈[T]

nτ∑
i=1

ϵi

T∑
t=1

⟨wt,Φt(x
i
τ)⟩Ht

]

=
1

nτ
Eϵ[sup

∥wt∥Ht≤Bt,∀t∈[T]

T∑
t=1

⟨wt,

nτ∑
i=1

ϵiΦt(x
i
τ)⟩Ht

]

≤ 1

nτ

T∑
t=1

Eϵ[sup
∥wt∥Ht≤Bt

⟨wt,

nτ∑
i=1

ϵiΦt(x
i
τ)⟩Ht

]

=

T∑
t=1

Bt

nτ
Eϵ[∥

nτ∑
i=1

ϵiΦt(x
i
τ)∥Ht

]

=

T∑
t=1

Bt

nτ
Eϵ[

√∑
i,j

ϵiϵjKt(xi
τ , x

j
τ)]

≤
T∑

t=1

Bt

nτ

√∑
i,j

Eϵ[ϵiϵjKt(xi
τ , x

j
τ)]

=

T∑
t=1

Bt

nτ

√∑
i

Eϵ[ϵ2iKt(xi
τ , x

i
τ)]

=

T∑
t=1

Bt

nτ

√∑
i

Kt(xi
τ , x

i
τ)

=

T∑
t=1

Bt

nτ
(Tr(Kt(Xτ , Xτ)))

1/2

(46)

E.2 BOUND ON THE GENERALIZATION ERROR GT

In order to derive an upper bound on the generalization error defined in Equation (4), we utilize the
inequality provided in Equation (37). To proceed, we will separately bound the empirical loss term
LSτ

(f∗
T) and the Rademacher complexity term RSτ

(FT).

Proof. (1) For the term LSτ
(f∗

T) for any τ ∈ [T], we have:

LSτ (f
∗
T) =

1

2nτ
∥f∗

T (Xτ)− Yτ∥2

=
1

2nτ
∥f∗

τ (Xτ) +

T∑
k=τ+1

f̃∗
k (Xτ)− Yτ∥2.

(47)

Notably, the convention
∑T

k=T+1 · = 0 always holds, which is known as the empty sum convention.
Therefore, when τ = T , Equation (47) remains valid.

Next, we compute the term ∥f∗
τ (Xτ)− Yτ∥2 as follows:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

∥f∗
τ (Xτ)− Yτ∥2 =∥f∗

τ−1(Xτ) + f̃∗
τ (Xτ)− Yτ∥2

=∥f̃∗
τ (Xτ)− Ỹτ∥2

=∥Kτ (Xτ , Xτ)Eτ,t∗τ
Kτ (Xτ , Xτ)

−1Ỹτ − Ỹτ∥2

=∥Ỹτ −Kτ (Xτ , Xτ)e
− 1

nτ
Kτ (Xτ ,Xτ)t

∗
τKτ (Xτ , Xτ)

−1Ỹτ − Ỹτ∥2

=∥Kτ (Xτ , Xτ)e
− 1

nτ
Kτ (Xτ ,Xτ)t

∗
τKτ (Xτ , Xτ)

−1Ỹτ∥2

(48)

In order to simplify the result in Equation (92), we use the Taylor expansion of the exponential
function, i.e., eX =

∑∞
k

1
k!X

k. Therefore, we have:

∥f∗
τ (Xτ)− Yτ∥2 =∥Kτ (Xτ , Xτ)

∞∑
k

1

k!
(− 1

nτ
Kτ (Xτ , Xτ)t

∗
τ)

kKτ (Xτ , Xτ)
−1Ỹτ∥2

=∥
∞∑
k

1

k!
Kτ (Xτ , Xτ)(−

1

nτ
Kτ (Xτ , Xτ)t

∗
τ)

kKτ (Xτ , Xτ)
−1Ỹτ∥2

=∥
∞∑
k

1

k!
(− 1

nτ
Kτ (Xτ , Xτ)t

∗
τ)

kỸτ∥2

=∥e−
1

nτ
Kτ (Xτ ,Xτ)t

∗
τ Ỹτ∥2

(49)

Therefore, we obtain the following upper bound:

LSτ
(f∗

T) ≤
1

nτ
∥

T∑
k=τ+1

Kk(Xτ , Xk)Ek,t∗k
Kk(Xk, Xk)

−1Ỹk∥2 +
1

nτ
∥e−

1
nτ

Kτ (Xτ ,Xτ)t
∗
τ Ỹτ∥2

(50)

(2) For the term R(FT), we first consider a bound on the reproduced kernel Hilbert space (RKHS)
norm of f̃∗

τ . Let (HKτ , ∥ · ∥HKτ
) be the RKHS induced by the kernel Kτ . We define

ατ := Eτ,t∗τ
Kτ (Xτ , Xτ)

−1Ỹτ . (51)

Then, f̃∗
τ can be written as:

f̃∗
τ (x) = Kτ (x,Xτ)

⊤ατ (52)

The RKHS norm of f̃∗
τ is then given by:

∥f̃∗
τ ∥2HKτ

= α⊤
τ Kτ (Xτ , Xτ)ατ

= Ỹ ⊤
τ Kτ (Xτ , Xτ)

−1Eτ,t∗τ
Kτ (Xτ , Xτ)Eτ,t∗τ

Kτ (Xτ , Xτ)
−1Ỹτ

≤ Ỹ ⊤
τ Eτ,t∗τ

Kτ (Xτ , Xτ)
−1Ỹτ := B2

τ

(53)

The final inequality in Equation (53) is easily verified by the following equation:

Ỹ ⊤
τ Kτ (Xτ , Xτ)

−1Eτ,t∗τ
Kτ (Xτ , Xτ)Eτ,t∗τ

Kτ (Xτ , Xτ)
−1Ỹτ − Ỹ ⊤

τ Eτ,t∗τ
Kτ (Xτ , Xτ)

−1Ỹτ

=Ỹ ⊤
τ [Kτ (Xτ , Xτ)

−1Eτ,t∗τ
Kτ (Xτ , Xτ)− I]Eτ,t∗τ

Kτ (Xτ , Xτ)
−1Ỹτ

=Ỹ ⊤
τ [Kτ (Xτ , Xτ)

−1Eτ,t∗τ
Kτ (Xτ , Xτ)−Kτ (Xτ , Xτ)

−1Kτ (Xτ , Xτ)]Eτ,t∗τ
Kτ (Xτ , Xτ)

−1Ỹτ

=Ỹ ⊤
τ Kτ (Xτ , Xτ)

−1(Eτ,t∗τ
− I)Kτ (Xτ , Xτ)Eτ,t∗τ

Kτ (Xτ , Xτ)
−1Ỹτ

=− Ỹ ⊤
τ Kτ (Xτ , Xτ)

−1e−
1

nτ
Kτ (Xτ ,Xτ)t

∗
τKτ (Xτ , Xτ)Eτ,t∗τ

Kτ (Xτ , Xτ)
−1Ỹτ

(54)
Based on Lemma 5, since Kτ (Xτ , Xτ), Kτ (Xτ , Xτ)

−1, e−
1

nτ
Kτ (Xτ ,Xτ)t

∗
τ , and Eτ,t∗τ

are all posi-
tive semi-definite, it follows that

Ỹ ⊤
τ Kτ (Xτ , Xτ)

−1Eτ,t∗τ
Kτ (Xτ , Xτ)Eτ,t∗τ

Kτ (Xτ , Xτ)
−1Ỹτ − Ỹ ⊤

τ Eτ,t∗τ
Kτ (Xτ , Xτ)

−1Ỹτ ≤ 0
(55)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Therefore, we verify that Equation (53) holds, and we obtain an upper bound for ∥f̃∗
τ ∥HKτ

, which
we denote by Bτ . We define the function class FT as follows:

FT =

{
f : X → R

∣∣∣∣∣x →
T∑

τ=1

f̃τ (x), f̃τ (x) = Kτ (x,Xτ)
⊤ατ , ∥f̃τ∥HKτ

≤ Bτ ,∀τ ∈ [T]

}
. (56)

Based on Lemma 6, we obtain the following bound on the empirical Rademacher complexity of FT

over Sτ :

RSτ
(FT) ≤

T∑
k=1

Bk

nτ
(Tr(Kk(Xτ , Xτ)))

1/2

≤
T∑

k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk]

1/2

nτ

(57)

Based on Theorem 2, and by combining Equation (93) with Equation (57), we have:

LDτ
(f∗

T) ≤
1

nτ
∥

T∑
k=τ+1

Kk(Xτ , Xk)Ek,t∗k
Kk(Xk, Xk)

−1Ỹk∥2 +
1

nτ
∥e−

1
nτ

Kτ (Xτ ,Xτ)t
∗
τ Ỹτ∥2

+ 2ρ

T∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk]

1/2

nτ
+ 3c

√
log(2/δ)

2nτ

(58)

By substituting the bound from Equation (58) into Equation (4), we obtain:

GtT ≤ 1

T

T∑
τ=1

{
1

nτ
∥

T∑
k=τ+1

Kk(Xτ , Xk)Ek,t∗k
Kk(Xk, Xk)

−1Ỹk∥2 +
1

nτ
∥e−

1
nτ

Kτ (Xτ ,Xτ)t
∗
τ Ỹτ∥2

+ 2ρ

T∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk]

1/2

nτ
+ 3c

√
log(2/δ)

2nτ

}
(59)

E.3 BOUND ON FORGETTING FT

In this section, we derive an upper bound on the average forgetting, as presented in Equation (3).

Proof. We decompose each term in Equation (3) as follows:

For any τ ∈ [T − 1], we have:

LDτ (f
∗
T)− LDτ (f

∗
τ) = LDτ

(f∗
T)− LSτ

(f∗
T)︸ ︷︷ ︸

(a)

+LSτ (f
∗
T)− LSτ (f

∗
τ)︸ ︷︷ ︸

(b)

+LSτ (f
∗
τ)− LDτ (f

∗
τ)︸ ︷︷ ︸

(c)

(60)

Next, we derive upper bounds for terms (a), (b), and (c), respectively.

For term (a), by applying Theorem 2 together with the bound in Equation (57), we obtain:

LDτ (f
∗
T)− LSτ (f

∗
T) ≤ 2ρRSτ (FT) + 3c

√
log(2/δ)

2nτ

≤ 2ρ

T∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk]

1/2

nτ
+ 3c

√
log(2/δ)

2nτ

(61)

For term (b), we begin by deriving explicit expressions for LSτ (f
∗
T) and LSτ (f

∗
τ), as follows:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

LSτ (f
∗
T) ≤

1

nτ
∥f∗

τ (Xτ)− Yτ∥2 +
1

nτ
∥

T∑
k=τ+1

f̃∗
k (Xτ)∥2 (62)

LSτ
(f∗

τ) =
1

nτ
∥f∗

τ (Xτ)− Yτ∥2 (63)

Subtracting the two expressions, we obtain:

LSτ
(f∗

T)− LSτ
(f∗

τ) ≤
1

nτ
∥

T∑
k=τ+1

f̃∗
k (Xτ)∥2

≤ 1

nτ

T∑
k=τ+1

∥Kk(Xτ , Xk)Ek,t∗k
Kk(Xk, Xk)

−1Ỹk∥2
(64)

For term (c), by applying Corollary 1 together with the bound in Equation (57), we obtain:

LSτ (f
∗
τ)− LDτ (f

∗
τ) ≤ 2ρRSτ (Fτ) + 3c

√
log(2/δ)

2nτ

≤ 2ρ

τ∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk]

1/2

nτ
+ 3c

√
log(2/δ)

2nτ

(65)

Then, we have:

FtT ≤ 1

T − 1

T−1∑
τ=1

{
2ρ

T∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk]

1/2

nτ

+ 2ρ

τ∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk]

1/2

nτ
+ 6c

√
log(2/δ)

2nτ

+
1

nτ

T∑
k=τ+1

∥Kk(Xτ , Xk)Ek,t∗k
Kk(Xk, Xk)

−1Ỹk∥2
} (66)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F FORGETTING AND GENERALIZATION ERROR OF PGN

We first present the main result in Theorem 3. To help readers quickly understand the proof strategy,
we also provide a proof sketch. The detailed proofs are given in Appendix F.1, Appendix F.2,
Appendix F.3, and Appendix F.4.

Theorem 3. Consider a sequence of T tasks. For each task τ ∈ [T], let Dτ denote the data
distribution, and let Sτ = {Xτ , Yτ} be the corresponding training dataset drawn i.i.d. from Dτ .
Suppose the loss function ℓ(·, ·) takes values in the interval [0, c] and is ρ-Lipschitz in the first
argument. Then, with probability at least 1− δ, the following bounds hold:

FtT ≤ 1

T − 1

T−1∑
τ=1

{
2ρ

T∑
k=τ+1

[
Tr(Kk(Xτ , Xτ))Ỹ

⊤
k (EPGN

k,t∗k
)2Kk(Xk, Xk)

−1Ỹk

]1/2
nτ

+ 4ρ

τ∑
k=1

[
Tr(Kk(Xτ , Xτ))Ỹ

⊤
k (EPGN

k,t∗k
)2Kk(Xk, Xk)

−1Ỹk

]1/2
nτ

+ 6c

√
log(2/δ)

2nτ

+
1

nτ

T∑
k=τ+1

∥Kk(Xτ , Xk)E
PGN
k,t∗k

Kk(Xk, Xk)
−1Ỹk∥2

}
,

(67)

GtT ≤ 1

T

T∑
τ=1

{
1

nτ

T∑
k=τ+1

∥Kk(Xτ , Xk)E
PGN
k,t∗k

Kk(Xk, Xk)
−1Ỹk∥2

+
1

nτ
∥e−

t∗τ
nτ

Kτ (Xτ ,Xτ)−
Φτ (t

∗
τ)

nτ
[Kτ (Xτ ,Xτ)]

2

Ỹτ∥2

+ 2ρ

T∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k (EPGN

k,t∗k
)2Kk(Xk, Xk)

−1Ỹk]
1/2

nτ
+ 3c

√
log(2/δ)

2nτ

}
,

(68)

where EPGN
τ,t = I − exp

(
− t

nτ
Kτ (Xτ , Xτ) − Φτ (t)

nτ
K2

τ (Xτ , Xτ)
)

and Φτ (t) satisfy Φτ (t) =∫ t

0
ατ√

[fs
τ t(Xτ)−Yτ]⊤Kτ [fs

τ (Xτ)−Yτ]
ds.

proof sketch. Our proof consists of four main parts.

(1) Gradient flow of PGN. We first compute the gradient of the PGN loss in Equation (15) and apply
the chain rule d

dtf
t
τ (x) = ∇θt

τ
f t
τ (x)

dθt
τ

dt to derive the kernel gradient flow of PGN:

d

dt
f t
τ (x) = − 1

nτ
Kτ (x,Xτ)

(
f t
τ (Xτ)−Yτ

)
−ατ

nτ

Kτ (x,Xτ)Kτ (Xτ , Xτ)
(
f t
τ (Xτ)− Yτ

)√(
f t
τ (Xτ)− Yτ

)⊤
Kτ (Xτ , Xτ)

(
f t
τ (Xτ)− Yτ

) .
(69)

The detailed derivation is provided in Appendix F.1.

(2) Solution of the kernel gradient flow for PGN. We adopt a similar approach to Appendix D.1 to
solve the ODE. We first derive the solution on the training set Xτ :

f t
τ (Xτ) = Yτ + exp

(
− t

nτ
Kτ (Xτ , Xτ)− Φτ (t)

nτ
K2

τ (Xτ , Xτ)
)(

f0
τ (Xτ)− Yτ

)
. (70)

We then obtain the solution at an arbitrary point x:

f t
τ (x) = f∗

τ−1(x)−Kτ (x,Xτ)E
PGN
τ,t K−1

τ (Xτ , Xτ)
(
f∗
τ−1(Xτ)− Yτ

)
. (71)

The detailed derivation is provided in Appendix F.2.

(3) Bound on the generalization error. We use standard techniques from statistical learning theory
to bound the generalization error of the regularization based method via Rademacher complex-
ity (Kakade et al., 2008; Cortes et al., 2010). According to Theorem 2, we need to control the
empirical loss LSτ (f

∗
T) and the Rademacher complexity of the function class RSτ (FT).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

The empirical loss LSτ
(f∗

T) can be bounded using Equation (71), which yields

LSτ (f
∗
T) ≤

1

nτ

∥∥∥ T∑
k=τ+1

Kk(Xτ , Xk)E
PGN
k,t∗k

Kk(Xk, Xk)
−1Ỹk

∥∥∥2
+

1

nτ

∥∥∥e− t∗τ
nτ

Kτ (Xτ ,Xτ)−
Φτ (t)
nτ

[Kτ (Xτ ,Xτ)]
2

Ỹτ

∥∥∥2.
(72)

We bound the Rademacher complexity through the RKHS norm of f̃∗
τ and Lemma 6:

RSτ
(FT) ≤

T∑
k=1

[
Tr

(
Kk(Xτ , Xτ)

)
Ỹ ⊤
k (EPGN

k,t∗k
)2Kk(Xk, Xk)

−1Ỹk

]1/2
nτ

. (73)

By combining Equations (72)and (73) with Theorem 2, we obtain the desired upper bound on the
generalization error GtT . The detailed derivation is provided in Appendix F.3.

(4) Bound on forgetting. We decompose each term in the forgetting metric in Equation (3) as

LDτ
(f∗

T)− LDτ
(f∗

τ) = LDτ
(f∗

T)− LSτ
(f∗

T)︸ ︷︷ ︸
(a)

+LSτ
(f∗

T)− LSτ
(f∗

τ)︸ ︷︷ ︸
(b)

+LSτ
(f∗

τ)− LDτ
(f∗

τ)︸ ︷︷ ︸
(c)

,

(74)
for any τ ∈ [T − 1].

Theorem 2 and Corollary 1 imply that terms (a) and (c) are controlled by the Rademacher complexi-
ties RSτ (FT) and RSτ (Fτ) respectively. The bounds on RSτ (FT) and RSτ (Fτ) have already been
obtained in step (3). The second term (b) can be bounded as

LSτ (f
∗
T)− LSτ (f

∗
τ) ≤

1

nτ

∥∥∥ T∑
k=τ+1

f̃∗
k (Xτ)

∥∥∥2
≤ 1

nτ

T∑
k=τ+1

∥∥Kk(Xτ , Xk)E
PGN
k,t∗k

Kk(Xk, Xk)
−1Ỹk

∥∥2. (75)

Combining these bounds yields the desired upper bound on the average forgetting. The detailed
derivation is provided in Appendix F.4.

F.1 KERNEL GRADIENT FLOW OF PGN

In the CL setting, the training loss of PGN for any task τ ∈ [T] is given by

LPGN
Sτ

(θτ) = LSτ (θτ) + ατ∥∇θτLSτ (θτ)∥, (76)

Therefore, we have

∇θL
PGN
Sτ

(θτ) = ∇θτLSτ (θτ) + ατ∇2
θτLSτ (θτ)

∇θτLSτ
(θτ)

∥∇θτLSτ
(θτ)∥2

, (77)

Based on Equation (5), we have

∇θτLSτ
(θtτ) =

1

nτ
[∇θτ f

t
τ (Xτ)]

⊤(f t
τ (Xτ)− Yτ

)
.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

For any task τ ∈ [T], the parameter θτ evolves according to the differential equation

dθtτ
dt

=−∇θt
τ
LSτ (θ

t
τ)− ατ∇2

θt
τ
LSτ (θ

t
τ)

∇θt
τ
LSτ

(θtτ)

∥∇θt
τ
LSτ (θ

t
τ)∥2

=− 1

nτ
[∇θt

τ
f t
τ (Xτ)]

⊤(f t
τ (Xτ)− Yτ

)
− ατ ∇2

θt
τ
LSτ

(θtτ)
1
nτ

[∇θt
τ
f t
τ (Xτ)]

⊤(f t
τ (Xτ)− Yτ

)∥∥∥ 1
nτ

[∇θt
τ
f t
τ (Xτ)]⊤

(
f t
τ (Xτ)− Yτ

)∥∥∥,
(78)

where t ≥ 0 denotes continuous time.

Under the NTK linearization, we simplify

∇2
θτLSτ (θτ) = [∇θτ f

t
τ (Xτ)]

⊤ 1

nτ
I ∇θτ f

t
τ (Xτ) =

1

nτ
[∇θτ f

t
τ (Xτ)]

⊤∇θτ f
t
τ (Xτ).

Therefore, we have

dθtτ
dt

=− 1

nτ
[∇θt

τ
f t
τ (Xτ)]

⊤(f t
τ (Xτ)− Yτ

)
− ατ

nτ
[∇θt

τ
f t
τ (Xτ)]

⊤∇θt
τ
f t
τ (Xτ)

[∇θt
τ
f t
τ (Xτ)]

⊤(f t
τ (Xτ)− Yτ

)√(
f t
τ (Xτ)− Yτ

)⊤
Kτ (Xτ , Xτ)

(
f t
τ (Xτ)− Yτ

) , (79)

where we used
∥∥[∇θt

τ
f t
τ (Xτ)]

⊤(f t
τ (Xτ)− Yτ

)∥∥ =

√(
f t
τ (Xτ)− Yτ

)⊤
Kτ (Xτ , Xτ)

(
f t
τ (Xτ)− Yτ

)
.

Based on the chain rule, we have

d

dt
f t
τ (x) =∇θt

τ
f t
τ (x)

dθtτ
dt

=− 1

nτ
∇θt

τ
f t
τ (x) [∇θt

τ
f t
τ (Xτ)]

⊤(f t
τ (Xτ)− Yτ

)
− ατ

nτ

∇θt
τ
f t
τ (x) [∇θt

τ
f t
τ (Xτ)]

⊤∇θt
τ
f t
τ (Xτ) [∇θt

τ
f t
τ (Xτ)]

⊤(f t
τ (Xτ)− Yτ

)√(
f t
τ (Xτ)− Yτ

)⊤
Kτ (Xτ , Xτ)

(
f t
τ (Xτ)− Yτ

) .

(80)

Therefore, under the NTK regime, the kernel gradient flow takes the following form:

d

dt
f t
τ (x) = − 1

nτ
Kτ (x,Xτ)

(
f t
τ (Xτ)−Yτ

)
−ατ

nτ

Kτ (x,Xτ)Kτ (Xτ , Xτ)
(
f t
τ (Xτ)− Yτ

)√(
f t
τ (Xτ)− Yτ

)⊤
Kτ (Xτ , Xτ)

(
f t
τ (Xτ)− Yτ

) ,
(81)

where Kτ (x, x
′) = ⟨∇θ∗

τ−1
f∗
τ−1(x), ∇θ∗

τ−1
f∗
τ−1(x

′)⟩.

F.2 SOLUTION OF KERNEL GRADIENT FLOW FOR PGN

We follow the approach in Appendix D.1: first derive the solution on the training set Xτ , then extend
it to an arbitrary input x.

(1) Solution on the training set Xτ . Evaluating Equation (81) at Xτ gives

d

dt
f t
τ (Xτ) = − 1

nτ
Kτ (Xτ , Xτ)

(
f t
τ (Xτ)−Yτ

)
−ατ

nτ

Kτ (Xτ , Xτ)
2
(
f t
τ (Xτ)− Yτ

)√(
f t
τ (Xτ)− Yτ

)⊤
Kτ (Xτ , Xτ)

(
f t
τ (Xτ)− Yτ

) .
(82)

Let g(t) = f t
τ (Xτ) − Yτ and abbreviate Kτ := Kτ (Xτ , Xτ). Then Equation (82) becomes the

matrix ODE

d

dt
g(t) = − 1

nτ
Kτ g(t)−

ατ

nτ

K2
τ g(t)√

g(t)⊤Kτg(t)
, g(0) = f0

τ (Xτ)− Yτ . (83)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Since Kτ is real symmetric positive semidefinite and Kτ commutes with K2
τ , the theory of linear

time-varying ODEs with commuting coefficients yields the solution

g(t) = exp
(
− t

nτ
Kτ − Φτ (t)

nτ
K2

τ

)
g(0), Φτ (t) =

∫ t

0

ατ√
g(s)⊤Kτg(s)

ds. (84)

Substituting g(t) = f t
τ (Xτ)− Yτ into Equation (84) yields

f t
τ (Xτ) = Yτ + exp

(
− t

nτ
Kτ − Φτ (t)

nτ
K2

τ

)(
f0
τ (Xτ)− Yτ

)
. (85)

(2) Solution at an arbitrary point x. For any x ∈ Rd, Equation (81) can be rewritten as

d

dt
f t
τ (x) = − 1

nτ
Kτ (x,Xτ) g(t)−

ατ

nτ

Kτ (x,Xτ)Kτ g(t)√
g(t)⊤Kτg(t)

. (86)

Notably, multiplying Kτ (x,Xτ)K
−1
τ on both sides of Equation (83) gives

Kτ (x,Xτ)K
−1
τ

d

dt
g(t) = − 1

nτ
Kτ (x,Xτ) g(t)−

ατ

nτ

Kτ (x,Xτ)Kτ g(t)√
g(t)⊤Kτg(t)

=
d

dt
f t
τ (x). (87)

Integrating Equation (87) over [0, t] yields

f t
τ (x)− f0

τ (x) = Kτ (x,Xτ)K
−1
τ

(
g(t)− g(0)

)
. (88)

Substituting Equation (84) into Equation (88) and using f0
τ (x) = f∗

τ−1(x) gives the closed form

f t
τ (x) = f∗

τ−1(x) +Kτ (x,Xτ)K
−1
τ

(
exp

(
− t

nτ
Kτ − Φτ (t)

nτ
K2

τ

)
− I

)(
f∗
τ−1(Xτ)− Yτ

)
= f∗

τ−1(x)−Kτ (x,Xτ)E
PGN
τ,t K−1

τ

(
f∗
τ−1(Xτ)− Yτ

)
,

(89)

where EPGN
τ,t := I − exp

(
− t

nτ
Kτ − Φτ (t)

nτ
K2

τ

)
. Therefore, we obtain a form for PGN that is

analogous to the SGD solution in Equation (11). The only difference is that PGN uses EPGN
τ,t , whereas

SGD uses Eτ,t. For notational convenience, define

f̃ t
τ (x) := Kτ (x,Xτ)E

PGN
τ,t Kτ (Xτ , Xτ)

−1 Ỹτ . (90)

Therefore, the predictor for task τ can be written as

f t
τ (x) =

τ−1∑
i=1

f̃ ∗
i (x) + f̃ t

τ (x).

F.3 BOUND ON THE GENERALIZATION ERROR

In this section we derive an upper bound on the generalization error. In particular, we bound the
population loss LDτ

(f∗
T) using the Rademacher complexity of the hypothesis class, the empirical

loss LSτ
(f∗

T), and appropriate constants as shown in Theorem 2. This approach follows standard
statistical techniques for regularization based methods as in Kakade et al. (2008); Cortes et al. (2010).
Specifically, the regularization term affects the bound through its influence on the Rademacher
complexity of the function class.

(1) For the term LSτ
(f∗

T) for any τ ∈ [T], we have:

LSτ
(f∗

T) =
1

2nτ
∥f∗

T (Xτ)− Yτ∥2

=
1

2nτ
∥f∗

τ (Xτ) +

T∑
k=τ+1

f̃∗
k (Xτ)− Yτ∥2.

(91)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Next, we compute the term ∥f∗
τ (Xτ)− Yτ∥2 as follows:

∥f∗
τ (Xτ)− Yτ∥2

=∥f∗
τ−1(Xτ) + f̃∗

τ (Xτ)− Yτ∥2

=∥f̃∗
τ (Xτ)− Ỹτ∥2

=∥Kτ (Xτ , Xτ)E
PGN
τ,t∗τ

Kτ (Xτ , Xτ)
−1Ỹτ − Ỹτ∥2

=∥Ỹτ −Kτ (Xτ , Xτ)e
− t∗τ

nτ
Kτ (Xτ ,Xτ)−

Φτ (t
∗
τ)

nτ
[Kτ (Xτ ,Xτ)]

2

Kτ (Xτ , Xτ)
−1Ỹτ − Ỹτ∥2

=∥Kτ (Xτ , Xτ)e
− t∗τ

nτ
Kτ (Xτ ,Xτ)−

Φτ (t
∗
τ)

nτ
[Kτ (Xτ ,Xτ)]

2

Kτ (Xτ , Xτ)
−1Ỹτ∥2

=∥e−
t∗τ
nτ

Kτ (Xτ ,Xτ)−
Φτ (t

∗
τ)

nτ
[Kτ (Xτ ,Xτ)]

2

Ỹτ∥2

(92)

Therefore, we obtain the following upper bound:

LSτ
(f∗

T) ≤
1

nτ
∥

T∑
k=τ+1

Kk(Xτ , Xk)E
PGN
k,t∗k

Kk(Xk, Xk)
−1Ỹk∥2

+
1

nτ
∥e−

t∗τ
nτ

Kτ (Xτ ,Xτ)−
Φτ (t

∗
τ)

nτ
[Kτ (Xτ ,Xτ)]

2

Ỹτ∥2
(93)

(2) For the term R(FT), we first consider a bound on the reproduced kernel Hilbert space (RKHS)
norm of f̃∗

τ . Let (HKτ , ∥ · ∥HKτ
) be the RKHS induced by the kernel Kτ . We define

α̂τ := EPGN
τ,t∗τ

Kτ (Xτ , Xτ)
−1Ỹτ . (94)

Then, f̃∗
τ can be written as:

f̃∗
τ (x) = Kτ (x,Xτ)

⊤α̂τ (95)

The RKHS norm of f̃∗
τ is then given by:

∥f̃∗
τ ∥2HKτ

= α̂⊤
τ Kτ (Xτ , Xτ)α̂τ

= Ỹ ⊤
τ Kτ (Xτ , Xτ)

−1EPGN
τ,t∗τ

Kτ (Xτ , Xτ)E
PGN
τ,t∗τ

Kτ (Xτ , Xτ)
−1Ỹτ

= Ỹ ⊤
τ (EPGN

τ,t∗τ
)2Kτ (Xτ , Xτ)

−1Ỹτ := B̂2
τ

(96)

We define the function class FT as follows:

FT =

{
f : X → R

∣∣∣∣∣x →
T∑

τ=1

f̃τ (x), f̃τ (x) = Kτ (x,Xτ)
⊤α̂τ , ∥f̃τ∥HKτ

≤ B̂τ ,∀τ ∈ [T]

}
. (97)

Based on Lemma 6, we obtain the following bound on the empirical Rademacher complexity of FT

over Sτ :

RSτ
(FT) ≤

T∑
k=1

B̂k

nτ
(Tr(Kk(Xτ , Xτ)))

1/2

≤
T∑

k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k (EPGN

k,t∗k
)2Kk(Xk, Xk)

−1Ỹk]
1/2

nτ

(98)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Based on Theorem 2, we have:

LDτ
(f∗

T) ≤
1

nτ
∥

T∑
k=τ+1

Kk(Xτ , Xk)E
PGN
k,t∗k

Kk(Xk, Xk)
−1Ỹk∥2

+
1

nτ
∥e−

t∗τ
nτ

Kτ (Xτ ,Xτ)−
Φτ (t

∗
τ)

nτ
[Kτ (Xτ ,Xτ)]

2

Ỹτ∥2

+ 2ρ

T∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k (EPGN

k,t∗k
)2Kk(Xk, Xk)

−1Ỹk]
1/2

nτ
+ 3c

√
log(2/δ)

2nτ

(99)

By substituting the bound from Equation (99) into Equation (4), we obtain:

GT ≤ 1

T

T∑
τ=1

{
1

nτ
∥

T∑
k=τ+1

Kk(Xτ , Xk)E
PGN
k,t∗k

Kk(Xk, Xk)
−1Ỹk∥2

+
1

nτ
∥e−

t∗τ
nτ

Kτ (Xτ ,Xτ)−
Φτ (t

∗
τ)

nτ
[Kτ (Xτ ,Xτ)]

2

Ỹτ∥2

+ 2ρ

T∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k (EPGN

k,t∗k
)2Kk(Xk, Xk)

−1Ỹk]
1/2

nτ
+ 3c

√
log(2/δ)

2nτ

} (100)

F.4 BOUND ON FORGETTING

We decompose each term in Equation (3) as follows:

For any τ ∈ [T − 1], we have:
LDτ

(f∗
T)− LDτ

(f∗
τ) = LDτ

(f∗
T)− LSτ

(f∗
T)︸ ︷︷ ︸

(a)

+LSτ
(f∗

T)− LSτ
(f∗

τ)︸ ︷︷ ︸
(b)

+LSτ
(f∗

τ)− LDτ
(f∗

τ)︸ ︷︷ ︸
(c)

(101)

Next, we derive upper bounds for terms (a), (b), and (c), respectively.

For term (a), by applying Theorem 2 together with the bound in Equation (98), we obtain:
LDτ

(f∗
T)− LSτ

(f∗
T)

≤2ρRSτ
(FT) + 3c

√
log(2/δ)

2nτ

≤2ρ

T∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k (EPGN

k,t∗k
)2Kk(Xk, Xk)

−1Ỹk]
1/2

nτ
+ 3c

√
log(2/δ)

2nτ

(102)

For term (b), we begin by deriving explicit expressions for LSτ (f
∗
T) and LSτ (f

∗
τ), as follows:

LSτ
(f∗

T) ≤
1

nτ
∥f∗

τ (Xτ)− Yτ∥2 +
1

nτ
∥

T∑
k=τ+1

f̃∗
k (Xτ)∥2 (103)

LSτ
(f∗

τ) =
1

nτ
∥f∗

τ (Xτ)− Yτ∥2 (104)

Subtracting the two expressions, we obtain:

LSτ
(f∗

T)− LSτ
(f∗

τ) ≤
1

nτ
∥

T∑
k=τ+1

f̃∗
k (Xτ)∥2

≤ 1

nτ

T∑
k=τ+1

∥Kk(Xτ , Xk)E
PGN
k,t∗k

Kk(Xk, Xk)
−1Ỹk∥2

(105)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

For term (c), by applying Corollary 1 together with the bound in Equation (98), we obtain:

LSτ (f
∗
τ)− LDτ (f

∗
τ)

≤2ρRSτ (Fτ) + 3c

√
log(2/δ)

2nτ

≤2ρ

τ∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k (EPGN

k,t∗k
)2Kk(Xk, Xk)

−1Ỹk]
1/2

nτ
+ 3c

√
log(2/δ)

2nτ

(106)

Then, we have:

FT ≤ 1

T − 1

T−1∑
τ=1

{
2ρ

T∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k (EPGN

k,t∗k
)2Kk(Xk, Xk)

−1Ỹk]
1/2

nτ

+ 2ρ

τ∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k (EPGN

k,t∗k
)2Kk(Xk, Xk)

−1Ỹk]
1/2

nτ
+ 6c

√
log(2/δ)

2nτ

+
1

nτ

T∑
k=τ+1

∥Kk(Xτ , Xk)E
PGN
k,t∗k

Kk(Xk, Xk)
−1Ỹk∥2

} (107)

G ADDITIONAL PROOFS

G.1 PROOF OF LEMMA 1

Proof. To better reflect practical training scenarios, we consider a finite number of training iterations,
denoted by tmax

T , and restrict tT to the interval [1, tmax
T]. We exclude the trivial case tT = 0, as it

corresponds to the stopping point of task T − 1. Accordingly, we analyze the evolution of the upper
bounds Gupper

tT and F upper
tT over [1, tmax

T].

(I) We first analyze Gupper
tT . Its derivative with respect to tT can be written as

dGupper
tT

dtT
= g1(tT) + ρg2(tT), (108)

where the functions g1 and g2 are given by

g1(tT) :=

T∑
τ=1

1

nτnT
Ỹ ⊤
T e

− tT
nT

KT (XT ,XT)
KT (XT , Xτ)KT (Xτ , XT)(I − e

− tT
nT

KT (XT ,XT)
)

KT (XT , XT)
−1ỸT − 1

n2
T

Ỹ ⊤
T e

− 2
nT

KT (XT ,XT)tTKT (XT , XT)ỸT ,

(109)
and

g2(tT) :=

T−1∑
τ=1

[
Tr(KT (Xτ , Xτ))

]1/2
2nτnT

Ỹ ⊤
T e

− tT
nT

KT (XT ,XT)
ỸT

[Ỹ ⊤
T (I − e

− tT
nT

KT (XT ,XT)
)KT (XT , XT)−1ỸT]1/2

(110)

We first assume that
[
Tr(KT (Xτ , Xτ))

]1/2 ̸= 0 for any τ ∈ [T], and that ỸT ̸= 0. This assumption
is mild, since if either term equals zero, the corresponding component can simply be omitted. From

the proof of Lemma 5, we know that e−
tT
nT

KT (XT ,XT) is positive definite. Consequently, g2(tT) > 0
holds for all tT ∈ [1, tmax

T].

Moreover, both g1 and g2 are continuous with respect to tT on the interval [1, tmax
T]. We therefore

define
m1 := min

x∈[1,tmax
T]

g2(x) > 0, M1 := max
x∈[1,tmax

T]
|g1(x)|.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Let ρg := M1

m1
. Then, for any ρ > ρg , we obtain

dGupper
tT

dtT
= g1(tT) + ρg2(tT)

> g1(tT) +
M1

m1
g2(tT)

≥ g1(tT) +M1

≥ 0.

(111)

Therefore, for any Lipschitz constants ρ > ρg , Gupper
tT is monotonically increasing with respect to tT .

Since
T∑

k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk]

1/2

nτ
≥ 0, (112)

it follows that a smaller Lipschitz constant ρ directly results in smaller values of Gupper
T for any fixed

tT .

(II) Then, we analyze F upper
tT similarly. Its derivative with respect to tT can be written as

dF upper
tT

dtT
= f1(tT) + ρf2(tT), (113)

where the functions f1 and f2 are given by

f1(tT) :=

T−1∑
τ=1

1

nτnT
Ỹ ⊤
T e

− tT
nT

KT (XT ,XT)
KT (XT , Xτ)K2(Xτ , XT)·

(I − e
− tT

nT
KT (XT ,XT)

)KT (XT , XT)
−1ỸT ,

(114)

and

f2(tT) :=

T−1∑
τ=1

[
Tr(KT (Xτ , Xτ))

]1/2
nτnT

Ỹ ⊤
T e

− tT
nT

KT (XT ,XT)
ỸT

[Ỹ ⊤
T (I − e

− tT
nT

KT (XT ,XT)
)KT (XT , XT)−1ỸT]1/2

(115)

We first assume that
[
Tr(KT (Xτ , Xτ))

]1/2 ̸= 0 for any τ ∈ [T − 1]. If the term equals zero, the
corresponding component can simply be omitted. Hence, f2(tT) > 0 holds for all tT ∈ [1, tmax

T].

Moreover, both f1 and f2 are continuous with respect to tT on the interval [1, tmax
T]. We therefore

define
m2 := min

x∈[1,tmax
T]

f2(x) > 0, M2 := max
x∈[1,tmax

T]
|f1(x)|.

Let ρf := M2

m2
. Then, for any ρ > ρf , we obtain

dF upper
tT

dtT
= f1(tT) + ρf2(tT)

> f1(tT) +
M2

m2
f2(tT)

≥ f1(tT) +M2

≥ 0.

(116)

Therefore, for any Lipschitz constant ρ > ρf , the bound F upper
tT is monotonically increasing with

respect to tT . Let ρ∗ := max{ρf , ρg}. It then follows that both Gupper
tT and F upper

tT are monotonically
increasing in tT whenever ρ > ρ∗.

In addition, since
T∑

k=1

[
Tr(Kk(Xτ , Xτ))Ỹ

⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk

]1/2
nτ

≥ 0, (117)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

and
τ∑

k=1

[
Tr(Kk(Xτ , Xτ))Ỹ

⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk

]1/2
nτ

≥ 0, (118)

it follows that a smaller Lipschitz constant ρ directly leads to smaller values of F upper
T for any fixed

tT .

G.2 BRIDGING PREDICTION- AND PARAMETER-LIPSCHITZ CONSTANTS

We first introduce the prediction-Lipschitz constant ρf and the parameter-Lipschitz constant ρθ of
the loss:

|L(f(x1))− L(f(x2))| ≤ ρf ∥f(x1)− f(x2)∥, ∀x1, x2 ∈ D, (119)

and
|L(θ1)− L(θ2)| ≤ ρθ ∥θ1 − θ2∥, ∀ θ1, θ2 ∈ Ω, (120)

where Ω denotes the parameter space.

By the mean-value argument combined with the Cauchy–Schwarz inequality, there exist f ′ =
cff(x1) + (1− cf)f(x2) and θ′ = cθθ1 + (1− cθ)θ2 with cf , cθ ∈ [0, 1] such that

|L(f(x1))− L(f(x2))| ≤ ∥∇fL(f
′)∥ ∥f(x1)− f(x2)∥, (121)

|L(θ1)− L(θ2)| ≤ ∥∇θL(θ
′)∥ ∥θ1 − θ2∥. (122)

As shown by Zhao et al. (2022), adding the regularization term ∥∇θL(θ)∥ approximately reduces
the parameter-Lipschitz constant ρθ. However, the Lipschitz constant ρ appearing in Theorem 1
is the prediction-Lipschitz constant ρf . To justify using a parameter-space penalty to proxy a
prediction-space penalty, we relate ∥∇fL(f)∥ and ∥∇θL(θ)∥ via the chain rule:

∇θL(θ) = Jf (θ)
⊤∇fL

(
f(θ)

)
,

where Jf (θ) is the Jacobian of f with respect to θ. Consequently,

σmin

(
Jf (θ)

) ∥∥∇fL
(
f(θ)

)∥∥ ≤
∥∥∇θL(θ)

∥∥ ≤ ∥Jf (θ)∥
∥∥∇fL

(
f(θ)

)∥∥.
Therefore, in any region where Jf (θ) is well conditioned (i.e., σmin(Jf) ≥ m > 0 and ∥Jf∥ ≤
M < ∞), penalizing ∥∇θL(θ)∥ also penalizes ∥∇fL(f)∥, and thus approximately reduces the
prediction-Lipschitz constant ρf .

G.3 PROOF OF LEMMA 2 AND DISCUSSION

We first present the proof of Lemma 2 as follows.

Proof. Consider any entry K̃k(x
i
k−1, x

j
k) with i ∈ [nk−1] and j ∈ [nk]:

K̃k(x
i
k−1, x

j
k) = ⟨Pk∇θ∗

k−1
f∗
k−1(x

i
k−1), Pk∇θ∗

k−1
f∗
k−1(x

j
k)⟩. (123)

By definition, the subspace Ek−1 = span{∇θ∗
k−1

f∗
k−1(x

i
k−1)}

nk−1

i=1 . Since ∇θ∗
k−1

f∗
k−1(x

i
k−1) ∈

Ek−1, applying the projection operator Pk yields Pk∇θ∗
k−1

f∗
k−1(x

i
k−1) = 0. Therefore, it follows

that
K̃k(x

i
k−1, x

j
k) = K̃k(x

i
k−1, x

l
k−1) = 0, ∀i ∈ [nk−1], j ∈ [nk], l ∈ [nk−1].

Further discussion of Lemma 2. If we define the projector Pk as PE⊥
k−1

, then Lemma 2 still holds,
since Pk∇θ∗

k−1
f∗
k−1(x

i
k−1) = 0 remains satisfied. This ensures that the gradients of the current task

are orthogonal only to those of the immediately preceding task.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

G.4 PROOF OF LEMMA 3

We present the proof of Lemma 3 as follows.

Proof. Consider any entry K̃k(x
i
τ , x

j
k) with i ∈ [nτ] and j ∈ [nk]:

K̃k(x
i
τ , x

j
k) = ⟨Pk∇θ∗

k−1
f∗
k−1(x

i
τ), Pk∇θ∗

k−1
f∗
k−1(x

i
k)⟩. (124)

By definition, the subspace E′
k = span{∇θkf

∗
k (x

m
l) | l ∈ [k], m ∈ [nl]}. Since ∇θ∗

k−1
f∗
k−1(x

i
τ) ∈

E′
k−1, applying the projection operator P ′

k yields P ′
k∇θ∗

k−1
f∗
k−1(x

i
τ) = 0. Therefore, it follows that

K̃k(x
i
τ , x

j
k) = K̃k(x

i
τ , x

l
τ) = 0, ∀i ∈ [nτ], j ∈ [nk], l ∈ [nτ].

G.5 FORGETTING AND GENERALIZATION ERROR BOUNDS FOR OGD AND OGD+

In this section, we derive upper bounds on forgetting and generalization error for both OGD and
OGD+.

Theorem 4 (OGD). Consider a sequence of T tasks. For each task τ ∈ [T], let Dτ denote the
data distribution, and let Sτ = {Xτ , Yτ} be the corresponding training dataset drawn i.i.d. from
Dτ . Suppose the loss function ℓ(·, ·) takes values in the interval [0, c] and is ρ-Lipschitz in the first
argument. Then, with probability at least 1− δ, the following bounds hold.

FtT ≤ 1

T − 1

T−1∑
τ=1

{
2ρ

T∑
k=1

[
Tr(Kk(Xτ , Xτ))Ỹ

⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk

]1/2
nτ

+ 2ρ

τ∑
k=1

[
Tr(Kk(Xτ , Xτ))Ỹ

⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk

]1/2
nτ

+ 6c

√
log(2/δ)

2nτ

+
1

nτ

T∑
k=τ+2

∥Kk(Xτ , Xk)Ek,t∗k
Kk(Xk, Xk)

−1Ỹk∥2
}

(125)

GtT ≤ 1

T

T∑
τ=1

{
1

nτ

T∑
k=τ+2

∥Kk(Xτ , Xk)Ek,t∗k
Kk(Xk, Xk)

−1Ỹk∥2 +
1

nτ
∥e−

1
nτ

Kτ (Xτ ,Xτ)t
∗
τ Ỹτ∥2

+ 2ρ

T∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk]

1/2

nτ

}
+ 3c

√
log(2/δ)

2nτ

(126)

Theorem 5 (OGD+). Consider a sequence of T tasks. For each task τ ∈ [T], let Dτ denote the
data distribution, and let Sτ = {Xτ , Yτ} be the corresponding training dataset drawn i.i.d. from
Dτ . Suppose the loss function ℓ(·, ·) takes values in the interval [0, c] and is ρ-Lipschitz in the first
argument. Then, with probability at least 1− δ, the following bounds hold.

FtT ≤ 1

T − 1

T−1∑
τ=1

{
2ρ

T∑
k=1

[
Tr(Kk(Xτ , Xτ))Ỹ

⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk

]1/2
nτ

+ 2ρ

τ∑
k=1

[
Tr(Kk(Xτ , Xτ))Ỹ

⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk

]1/2
nτ

+ 6c

√
log(2/δ)

2nτ

} (127)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

GtT ≤ 1

T

T∑
τ=1

{
2ρ

T∑
k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk]

1/2

nτ

+
1

nτ
∥e−

1
nτ

Kτ (Xτ ,Xτ)t
∗
τ Ỹτ∥2 + 3c

√
log(2/δ)

2nτ

} (128)

Therefore, the bounds on both forgetting and generalization error for OGD in CL are tighter than
those for standard SGD. Furthermore, OGD+ achieves even tighter bounds than OGD, providing
stronger theoretical guarantees.

G.6 PROOF OF LEMMA 4

Based on the bounds established in Theorem 5, we characterize the evolution of F upper
tT and Gupper

tT .

Proof. Similar to the proof in Appendix G.1, we analyze the evolution of the upper bounds Gupper
tT

and F upper
tT over the interval [1, tmax

T].

(I) We first analyze Gupper
tT . Its derivative with respect to tT can be written as

dGupper
tT

dtT
= g1(tT) + ρg2(tT), (129)

where the functions g1 and g2 are given by

g1(tT) := − 1

n2
T

Ỹ ⊤
T e

− 2
nT

KT (XT ,XT)tTKT (XT , XT)ỸT , (130)

and

g2(tT) :=

T−1∑
τ=1

[
Tr(KT (Xτ , Xτ))

]1/2
2nτnT

Ỹ ⊤
T e

− tT
nT

KT (XT ,XT)
ỸT

[Ỹ ⊤
T (I − e

− tT
nT

KT (XT ,XT)
)KT (XT , XT)−1ỸT]1/2

(131)

We first assume that
[
Tr(KT (Xτ , Xτ))

]1/2 ̸= 0 for all τ ∈ [T], and that ỸT ̸= 0. This is a mild
assumption, since if either term is zero, the corresponding component can be disregarded. From the

proof of Lemma 5, we know that e−
tT
nT

KT (XT ,XT) is positive definite. Hence, g2(tT) > 0 for all

tT ∈ [1, tmax
T]. Moreover, since e

− 2tT
nT

KT (XT ,XT)
KT (XT , XT) is positive definite, it follows that

g1(tT) < 0 for all tT ∈ [1, tmax
T].

Moreover, both g1 and g2 are continuous with respect to tT on the interval [1, tmax
T]. We therefore

define
M1 := − max

x∈[1,tmax
T]

g1(x) > 0, M2 := max
x∈[1,tmax

T]
g2(x) > 0.

Let ρ′g := M1

M2
. Then, for any ρ < ρ′g , we obtain

dGupper
tT

dtT
= g1(tT) + ρg2(tT)

< g1(tT) +
M1

M2
g2(tT)

≤ g1(tT) +M1

≤ 0.

(132)

Therefore, for any Lipschitz constants ρ < ρ′g , Gupper
tT is monotonically decreasing with respect to tT .

Since
T∑

k=1

[Tr(Kk(Xτ , Xτ))Ỹ
⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk]

1/2

nτ
≥ 0, (133)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

it follows that a smaller Lipschitz constant ρ directly results in smaller values of Gupper
tT for any fixed

tT .

(II) Then, we analyze F upper
tT similarly. Its derivative with respect to tT can be written as

dF upper
tT

dtT
= ρf2(tT), (134)

where the function f2 is given by

f2(tT) :=

T−1∑
τ=1

[
Tr(KT (Xτ , Xτ))

]1/2
nτnT

Ỹ ⊤
T e

− tT
nT

KT (XT ,XT)
ỸT

[Ỹ ⊤
T (I − e

− tT
nT

KT (XT ,XT)
)KT (XT , XT)−1ỸT]1/2

.

(135)

We first assume that
[
Tr(KT (Xτ , Xτ))

]1/2 ̸= 0 for all τ ∈ [T], and that ỸT ̸= 0. This is a mild
assumption, since if either term is zero, the corresponding component can be disregarded. From the

proof of Lemma 5, we know that e−
tT
nT

KT (XT ,XT) is positive definite. Hence, f2(tT) > 0 for all

tT ∈ [1, tmax
T], which leads to

dF upper
tT

dtT
> 0. Therefore, F upper

tT is monotonically increasing with respect
to tT .

In addition, since

T∑
k=1

[
Tr(Kk(Xτ , Xτ))Ỹ

⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk

]1/2
nτ

≥ 0, (136)

and
τ∑

k=1

[
Tr(Kk(Xτ , Xτ))Ỹ

⊤
k Ek,t∗k

Kk(Xk, Xk)
−1Ỹk

]1/2
nτ

≥ 0, (137)

it follows that a smaller Lipschitz constant ρ directly leads to smaller values of F upper
T for any fixed

tT .

36

	Introduction
	Preliminary
	Problem Setup
	Kernel Regime for Continual Learning

	Theoretical result
	The Impact of the Lipschitz Constant
	The Impact of cross-task kernel

	OGD+ and OPGD Algorithms
	Refined Orthogonal Gradient Descent (OGD+)
	Orthogonal Penalized Gradient Descent (OPGD)

	Experiment
	Conclusion
	Additional Statement
	Related works
	Additional Experimental Results
	Experimental Setting
	Additional experiments
	Comparison with Additional Baselines
	Ablation study

	Kernel gradient flow
	Kernel Gradient Flow under SGD
	Kernel Gradient Flow under OGD

	Proof of Theorem 1
	Generalization and Rademacher Complexity
	Bound on the Generalization Error GT
	Bound on Forgetting FT

	Forgetting and Generalization error of PGN
	Kernel Gradient flow of PGN
	Solution of Kernel Gradient Flow for PGN
	Bound on the generalization error
	Bound on forgetting

	Additional Proofs
	Proof of Lemma 1
	Bridging prediction- and parameter-Lipschitz constants
	Proof of Lemma 2 and Discussion
	Proof of Lemma 3
	Forgetting and Generalization Error Bounds for OGD and OGD+
	Proof of Lemma 4

