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ABSTRACT

Continual learning (CL) enables models to acquire new tasks sequentially while
retaining previously learned knowledge. However, most theoretical analyses focus
on simplified, converged models or restrictive data distributions and therefore fail
to capture how forgetting and generalization evolve during training in more general
settings. Current theory faces two fundamental challenges: (i) analyses confined
to the converged regime cannot characterize intermediate training dynamics; and
(i) establishing forgetting bounds requires two-sided bounds on the population
risk for each task. To address these challenges, we analyze the training-time dy-
namics of forgetting and generalization in standard CL within the Neural Tangent
Kernel (NTK) regime, showing that decreasing the loss’s Lipschitz constant and
minimizing the cross-task kernel jointly reduce forgetting and improve general-
ization. Specifically, we (i) characterize intermediate training stages via kernel
gradient flow and (ii) employ Rademacher complexity to derive both upper and
lower bounds on population risk. Building on these insights, we propose OGD+,
which projects the current task’s gradient onto the orthogonal complement of the
subspace spanned by gradients of the most recent task evaluated on all prior sam-
ples. We further introduce Orthogonal Penalized Gradient Descent (OPGD), which
augments OGD+ with gradient-norm penalization to jointly reduce forgetting and
enhance generalization. Experiments on multiple benchmarks corroborate our
theoretical predictions and demonstrate the effectiveness of OPGD, providing a
principled pathway from theory to algorithm design in CL.

1 INTRODUCTION

Continual learning (CL) trains models on a sequence of tasks with the objective of maintaining strong
performance across all of them. Unlike conventional training paradigms that operate on a fixed
dataset or a single task, CL typically faces non-stationary data streams and complex task sequences.
A major challenge in this setting is that models often experience a substantial performance drop on
previously learned tasks when adapting to new ones. This phenomenon, known as catastrophic for-
getting (McCloskey & Cohen, |1989; McClelland et al.,|{1995), arises when learning new information
interferes with or overwrites prior knowledge.

Despite the considerable empirical success of numerous approaches in CL (Chaudhry et al.;|2019aj;
Farajtabar et al.| 2020; [Dohare et al., [2024), rigorous theoretical understanding remains limited.
Recent studies on the theory of forgetting and generalization error in CL have mainly focused on
linear models and often assume restrictive data distributions, such as Gaussian distributions (Evron
et al.,|2022; |Lin et al., 2023} |Banayeeanzade et al.| 2024; |Li et al., 2025b). While the linear regime
provides explicit characterizations of forgetting and generalization error, it is not suitable for more
general models or the non-stationary data streams typical in CL. In contrast, the Neural Tangent
Kernel (NTK) regime (Jacot et al.| 2018} |Lee et al.,2019; |Arora et al.,[2019b)) enables the analysis of
more general models without being restricted to special distributions. However, existing NTK-based
analyses (Bennani et al., 2020} [Doan et al.l 2021}, [Karakida & Akaho, 2022) primarily focus on
converged models and therefore cannot characterize the behavior at intermediate training stages.
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Table 1: Comparison of our results with |[Bennani et al.| (2020), [Doan et al.| (2021) and Karakida & Akaho
(2022). We summarize whether each work provides theoretical bounds on forgetting and generalization error,
and whether it analyzes training dynamics or includes ridge regularization.

METHOD FORGETTING BOUND  GENERALIZATION ERROR ~ TRAINING DYNAMICS  RIDGE REGULARIZATION

BENNANI ET AL.|(2020)
DOAN ET AL.|(2021)
KARAKIDA & AKAHO|(2022)
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The main challenges in the theoretical analysis of both forgetting and generalization error are twofold:
(1) existing analytical approaches primarily focus on the converged regime, either by obtaining
explicit solutions from the loss function or by assuming asymptotic convergence as the number of
iterations approaches infinity. However, the dynamics of forgetting and generalization error during
training remain underexplored from a theoretical perspective. (2) bounding forgetting requires
establishing both upper and lower bounds on the population loss for each task. In particular, while
generalization bounds typically provide only an upper bound on the population loss, the forgetting
metric involves averaging the discrepancy between the performance of the final model on previous
tasks and that of the models trained directly on those tasks. Consequently, deriving two-sided bounds
on the population loss in CL remains a significant challenge.

In this work, we theoretically analyze forgetting and generalization in vanilla CL under the NTK
regime. We derive bounds at intermediate stages of training, revealing two key insights: (1) both
forgetting and generalization error increase with iterations when the Lipschitz constant of the loss
with respect to predictions exceeds a threshold, while reducing it consistently mitigates these effects;
and (2) decreasing the magnitude of the cross-task kernel similarly alleviates forgetting and improves
generalization. To support this analysis, we characterize model dynamics via kernel gradient flow
and define forgetting in terms of population loss, deriving upper and lower bounds using Rademacher
complexity. These tools allow us to rigorously study the evolution of forgetting and generalization at
intermediate training stages. Building on these theoretical findings, we propose OGD+, which projects
the current task’s gradient onto the orthogonal complement of the subspace spanned by gradients
from last task evaluated on all previous samples, reducing forgetting and improving generalization
compared to standard OGD. We further show that controlling the Lipschitz constant in OGD+
enhances these benefits. Inspired by this, we introduce Orthogonal Penalized Gradient Descent
(OPGD), which integrates gradient-norm penalization into OGD+ to jointly reduce forgetting and
improve generalization. Finally, we empirically validate our theoretical predictions and demonstrate
the effectiveness of OGD+ and OPGD on Permuted MNIST, Rotated MNIST, and Split CIFAR-100,
providing a principled pathway from theory to algorithm design in CL.

Our main contributions can be summarized as follows:

* We derive bounds on forgetting and generalization error at intermediate stages of vanilla
CL under the NTK regime, showing that both can be mitigated by reducing the Lipschitz
constant or driving the cross-task kernel toward zero.

* We define forgetting and generalization error in terms of population loss, and provide upper
and lower bounds via Rademacher complexity under the NTK regime. Furthermore, we
leverage kernel gradient flow to analyze model dynamics at intermediate training stages.

* Building on these insights, we propose OGD+, which projects the current task’s gradient
onto directions orthogonal to the subspace formed by the last task’s gradients on all previous
samples. We further introduce Orthogonal Penalized Gradient Descent (OPGD), which
adds gradient-norm penalization to OGD+ for tighter theoretical bounds.

* We empirically validate our theoretical predictions and demonstrate the effectiveness of
OGD+ and OPGD on Permuted MNIST, Rotated MNIST, and Split CIFAR-100.

Related Work. Due to space constraints, a comprehensive literature review is provided in Ap-
pendix B} In particular, Table[T| presents a detailed comparison between our theoretical results and
prior studies (Bennani et al.}|2020; |Doan et al., 2021} |Karakida & Akaho, [2022).
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2 PRELIMINARY

2.1 PROBLEM SETUP

We consider the standard CL setting with 7' sequential training tasks. For any positive integer
n, we denote [n] := {1,...,n}. For each task 7 € [T, let D, denote its data distribution, and
let S; = {X,,Y;} be the corresponding training dataset drawn i.i.d. from D,.. Here, X, =
(xk,...,27)T € R"*4 ig the feature matrix containing n, samples of d-dimensional feature
vectors, and Y. € R™ is the associated label vector. The model trained on task 7 is denoted by f,
parameterized by 6. Its state at iteration ¢, is written as f7, and the final model after training is
denoted by f*, where training stops at iteration ¢, = t*. The model for task 7 + 1 is initialized from

the final parameter of task 7, that is, 02, | = 6%.

Let ¢(f(z),y) be a loss function that quantifies the discrepancy between the model prediction f(x)
and the true label y for a given sample (x, y). We now introduce two fundamental notions in learning
theory: the population loss and the empirical loss.

The population loss with respect to the distribution D, is defined as:
Lp, (f) = E(mT,yT)NDT [@(f(xr), y'r)} (D
The empirical loss over a dataset S, = {(«%,y%)}!'7, i.i.d. drawn from D, is defined as:
1 {- iy
T =1
As shown in|Lopez-Paz & Ranzato (2017); |Lin et al.|(2023)), forgetting and overall generalization
error can be defined in terms of the population loss as follows:

(1) Forgetting. This metric quantifies the degradation in performance on previously learned tasks
after training on the current task at iteration t7:

T-1
Fip = s > (Lo, (145) = Lo (£)). ©

(2) Overall generalization error. This evaluates the model’s generalization performance at iteration
tr by averaging its population loss across all tasks:

T
1 tr
Ger = 7 2 Lo U17). “)

Notably, Doan et al.|(2021) define the forgetting metric on discrete datasets, while the definitions
in Lin et al.| (2023) are restricted to linear models. In contrast, our formulation applies to arbitrary
function classes. Specifically, we generalize the commonly used metrics of backward transfer and
average accuracy —widely employed to characterize forgetting and generalization in CL—by defining
them in terms of population loss, thereby capturing model performance at the distributional level.
Moreover, our definitions do not rely on specific model assumptions and evaluate performance over
the entire input space, enabling a more comprehensive theoretical analysis of CL.

2.2 KERNEL REGIME FOR CONTINUAL LEARNING

We briefly review the basic concepts of the Neural Tangent Kernel (NTK) regime. Throughout this
work, we assume that the model is trained using the mean squared error (MSE) loss. Accordingly,
the empirical loss over task 7 can be written as:

Ls, () = 5 D () — 92, ©
Ti=1

Before introducing the NTK, we define the neural network kernel (NNK) at training time ¢ as:
Ki(w,a") = (Vo, f1(x), Vo, f1(a")) ©6)



Under review as a conference paper at ICLR 2026

Based on this, the gradient flow dynamics of f. with respect to the MSE loss can be written as:

S =~ KL X (X ~ ) 9

NTK theory states that, in the infinite-width limit, NNK K i converges to a time-invariant kernel K,
known as the NTK (Jacot et al.,[2018} |Lee et al.,|2019; |Arora et al.,|2019b)). In particular, if task 7 is

initialized from the trained parameters of task 7 — 1, i.e., 0¥ = 0*_, then each kernel entry satisfies

Ko (z,3") = (Voo (), Voo L (2")) = (Ve f7 1(x),Ve:_ fr 1(z)) ®)
Forany v € RYand X = (21,...,2,)" € R"*%, we denote
KT(Z‘,X) = (K—,—(J?,Jfl), .- '7KT($?xn))7 KT(X7X) = [KT(xi7xj)]TLXn (9)

Under the NTK regime, the training dynamics in Equation (7)) reduce to the kernel gradient flow
d 1
*ft(x) = _7K‘r<x7X’r)(ft(X‘r) —Y-,—), (10)

where K remains fixed during training. Hence Equation (I0) defines an ordinary differential
equation (ODE) in the time variable ¢ with an initial condition induced by 90 = ¢7_,. Furthermore,
Equation (I0) admits a closed-form solution:

fﬂt'(x) = f;kfl(x) _K‘r(‘raXT)ET,tK (X-,—,X ) (fr I(X‘r) _Y‘r)7 (11)
where E- ; := I —exp (— % K, (X, X T)) ,and f*_, denotes the predictor obtained after completing
the training of task 7 — 1. The derivation of Equation follows directly from solving the linear
ODE in Equation (I0) and is provided in Appendix For notational convenience, we define

Fr(@) = Ke(o, Xo) Br o (X, X)) 1Y (12)
where Y, := — f*_,(X;) represents the residual between the ground-truth labels of task 7 and

the predlctlons of the model trained on task 7 — 1. By recursively applying Equation (IT)) across 7
tasks, the model for task 7 can be expressed as f£(z) = 27—} f(z) + fi().

3 THEORETICAL RESULT

In this section, we present upper bounds on forgetting and generalization error for vanilla CL under
the NTK regime in Theorem [I] For clarity of presentation, we adopt the notational convention
t7 = tr for the final task T', i.e., the iteration index of task T coincides with its stopping iteration.
Theorem 1. Consider a sequence of T tasks. For each task T € [T, let D, denote the data
distribution, and let S; = {X,,Y;} be the corresponding training dataset drawn i.i.d. from D,.
Suppose the loss function ((-,-) takes values in the interval [0, c| and is p-Lipschitz in the first
argument. Then, with probability at least 1 — 0, the following bounds hold:

T-1 T T —1y 11/2
1 Tr(Kp(Xr, X7))Y, Ep e K (Xpe, Xi) ™'Y
FtT Sﬁ E {2p § [ k iy }
I k=7+1 r
[Te(Ki(Xr, X))V, Ep g Ki(Xp, Xi) 193] 2
+4PZ r( Kk (X7, X7))Y), :,tk K (X, Xi) 1Y) +6e 1092(5/5) (13)

T

1 -

+— > |Kk(Xr,Xk)Ek,t,:Kk(Xkan)IYkz},
nr k=71+1

T
Gip < Z{ Z K3 (X X3) Bty K (X, Xi) ™ V3”4 - ||6 nr XDy, )2
=1 T k=141 T

iy Z [Te (K (Xr, X)), Brer Kie (X, Xi) 1Y) Y2 e log(2/6)
Nr 2n,

(14)



Under review as a conference paper at ICLR 2026

To the best of our knowledge, Theorem [I] provides the first upper bounds on both forgetting and
generalization error at intermediate training stages in vanilla CL. The proof is given in Appendix [E]
Furthermore, our bounds are explicitly dependent on the number of training iterations, allowing us to
characterize the evolution of forgetting and generalization errors throughout the training process.

To facilitate the subsequent analysis of the upper bounds of forgetting and generalization errors, we
denote F,**" and G™™" as the respective upper bounds of F},. and Gy,. in Theorem Based on
Theorem[ﬁ we will provide insights on the following two aspects.

(1) Lipschitz constant. The Lipschitz constant p characterizes the maximum rate of change of the loss
with respect to the model’s predictions. Formally, for any two predictions u, v in the output space,
|Ls. (u) — Lg, (v)] < pllu — v]||. In general, a smaller prediction-Lipschitz constant implies that the
loss varies more smoothly with respect to the model outputs (i.e., a flatter landscape in prediction
space), which is often associated with improved generalization.

(2) Cross-task kernel. Under the NTK regime, we define the cross-task kernel between any two
tasks 7 < k € [2,T] as Ki(X,, X}). In traditional machine learning, cross kernels characterize
the similarity between two datasets (Akaho, [2006} Scholkopf et al.,{1997)). In the NTK setting, the
cross-task kernel instead captures cross-task interactions by measuring the alignment between the
model gradients with respect to different task datasets. A larger norm of this matrix indicates stronger
task interference, which in turn increases the risk of forgetting and generalization error.

To gain deeper insight into continual learning, we next analyze the effect of these two critical factors.

3.1 THE IMPACT OF THE LIPSCHITZ CONSTANT

The role of the Lipschitz constant has been extensively studied in non-CL settings, where smaller
values are often linked to improved generalization performance (Bartlett et al.,[2017; Miyato et al.,
2018} |Zhao et al., 2022} [Khromov & Singh| 2024). One widely used approach to approximately
reduce the Lipschitz constant is to penalize the gradient norm (PGN) of the loss function (Zhao et al.|
2022). Moreover, Gradient-norm Aware Minimization (GAM) further penalizes the gradient norm
within a neighborhood of the parameters (Zhang et al.,2023), thereby promoting flatter solutions.
Although reducing the Lipschitz constant has been both theoretically and empirically shown to
improve performance in non-CL scenarios, its effectiveness in CL remains largely unexplored.

[ Q1: Does the role of the Lipschitz constant in non-CL also hold in the context of CL?

To address Q1, we examine how the Lipschitz constant p affects the forgetting bound F,**" and the
generalization error bound G;™™" in Theorem |[I| In particular, we analyze the evolution of F,"**"
and G with respect to the training iteration ¢7 when the Lipschitz constant exceeds a certain

threshold. The detailed proof of Lemma [I]is provided in Section[G.I}
upper

Lemma 1. For any fixed tr, a smaller Lipschitz constant p leads to smaller values of both G,
and Fy™". Moreover, there exists a constant p* > 0 such that, for all p > p*, both G{**" and F{*"*"
increase monotonically with respect to tr.

Remark 1. Lemmall|indicates that reducing the Lipschitz constant p consistently mitigates both
forgetting and generalization error in CL. In contrast to non-CL settings, where reducing the Lipschitz
constant p primarily improves generalization, in CL it also alleviates forgetting.

Remark 2. Lemmall|further implies that, once p exceeds a threshold p*, the upper bounds G/Y**"
and F{°P*" increase monotonically with the number of training iterations tp. In the degenerate limit
of skipping updates (i.e., t7 = 0), these quantities can be made trivially small, but at the cost of no
adaptation to the new task—an undesirable, pathological outcome. Therefore, it is crucial to design
mechanisms that explicitly control or reduce p for each task to improve CL performance in practice.

As shown above, reducing the Lipschitz constant p is beneficial for mitigating forgetting and im-
proving generalization in CL. To implement this in practice, we adopt a penalized gradient-norm
framework that approximately reduces p; further details are provided in Appendix [G.2] In the CL
setting, the training loss of PGN for any task 7 € [T] is given by

LEN(0;) = Ls, (6-) + ar[| Vo, Ls, (67) 2, (15)
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where || - ||2 denotes the Euclidean norm and «, is the penalty coefficient.

In practice, we employ GAM rather than PGN, since GAM encourages flatter solutions. In the CL
setting, the training loss of GAM for task 7 is defined as

LGAM (9. ) = Lg (6, b, . Ls (0 16
g(0r) = Ls, (0-) + « 9;e?$f,br>”v9f 5. (07125 (16)

where the perturbation radius b, controls the neighborhood size, and B(6,,b,) denotes the open
ball of radius b, centered at €, in Euclidean space. Importantly, GAM penalizes the neighborhood
Lipschitz constant, thereby avoiding sharp minima and improving robustness. Furthermore, our
experimental results in Table 2]empirically demonstrate that GAM effectively mitigates forgetting and
enhances generalization compared to vanilla CL (SGD), thereby validating our theoretical analysis.

3.2 THE IMPACT OF CROSS-TASK KERNEL

In this section, we examine the influence of the cross-task kernel between any two tasks 7 < k €
2,T], i.e., Kp(X-, Xi), on the forgetting bound F;** and the generalization error bound G}
in Theorem |1} Each entry of K (X, X)) is the inner product between the model gradients with
respect to a sample from X, and a sample from Xj. Ideally, to eliminate the adverse effect of
Ki(X7, X)) on F{P and G™, all entries should be zero—equivalently, the gradients with respect
to different datasets should be mutually orthogonal. A natural and effective approach to enforce
such orthogonality is Orthogonal Gradient Descent (OGD) (Farajtabar et al., [2020). In the following,
we analyze the behavior of the cross-task kernel to provide a theoretical explanation of how OGD

mitigates forgetting and reduces generalization error.

We introduce OGD in the context of CL. For any 7 € [T}, define v, ; := Vpf#(2l) and E, :=
span{v, ;}.7,, the subspace spanned by the parameter gradients of the converged model f* evaluated
on the inputs from task 7. The core idea of OGD is to project the gradient of the current task onto the
orthogonal complement of the subspaces spanned by all previous tasks, i.e., E; & --- & E,_;. Let
P, g...qE,_,)+ denote the projection operator onto the orthogonal complement of this space, which
we write simply as P, for brevity. Under OGD, the gradient flow dynamics for task 7 are given by

d 1 -
d*fi(x) = _7KT(anT)(f$(XT) _Y‘r)v (17)
14 Ny
where K, (z,2') = (PrVex_ fr 1(x), P-Ve+_ ff i(x)). Thus, we obtain a gradient flow analo-
gous to the standard SGD gradient flow in Equation (I0), with the key difference lying in the form of
the kernel. Additional details are provided in Appendix [D.2]

In the following, we demonstrate that OGD reduces the cross-task kernel between the datasets of two
adjacent tasks to the zero matrix. The proof of Lemma [2)is provided in Appendix[G.3]

Lemma 2. For any k € [2,T), under OGD we have Kj,(Xj_1,X},) = 0.

Remark 3. In Lemma[2] we show that OGD can eliminate the cross-task kernel between two adjacent
tasks, thereby yielding tighter bounds on forgetting and generalization error compared to standard
SGD. Moreover, we observe that the orthogonality constraints in standard OGD are unnecessarily
strong. Specially, if the projector Py, is redefined onto the orthogonal complement of Ei._1, rather than
Eq & - - ®Eg_1, Lemma]still holds while avoiding overly restrictive constraints (see Appendix|G.3)|
for details). Empirically, as shown in Table[2} OGD achieves better performance than SGD.

4 OGD+ AND OPGD ALGORITHMS

4.1 REFINED ORTHOGONAL GRADIENT DESCENT (OGD+)

In Lemma 2] we theoretically show that OGD exhibits less forgetting and better generalization than
SGD in CL by proving that the cross-task kernel between two adjacent tasks is the zero matrix under
OGD. Moreover, if this property could be extended so that the cross-task kernel between any pair of
tasks were zero, CL performance should improve further. This naturally raises the following question:
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Q2: How can OGD be improved to eliminate the cross-task kernel between arbitrary task
pairs, thereby further reducing forgetting and enhancing generalization?

To address Q2, for any k € [T'], we redefine the gradient subspace as E} := span{Vy, f(z]*) |l €
[k], m € [n;]} and the projection operator as P}, := Py, 1. We refer to this refined variant of OGD

as OGD+. As shown in Lemma [3] OGD+ reduces the cross-task kernel between the datasets of any
two tasks to the zero matrix. The detailed proof is provided in Appendix[G.4]

Lemma 3. For any T < k € [2,T], under OGD+ we have Ki(X,, X},) = 0.

Remark 4. Lemma 3| demonstrates that OGD+ can eliminate the cross-task kernel between any pair
of tasks, thereby yielding lower forgetting and better generalization compared to standard OGD. In
particular, we derive upper bounds on both forgetting and generalization error for OGD and OGD+
(see Appendix|G.3)), and establish that both bounds for OGD+ are strictly tighter.

Comparison between OGD and OGD+. The key difference between OGD and OGD+ lies in
how gradient information is stored and released. Specifically, OGD stores the gradients of the model
after training on the current task using only the data from that task, and these gradients are retained
indefinitely. In contrast, OGD+ stores the gradients of the model after training on the current task
using all data from previous tasks, but releases them once training on the subsequent task is completed.
As shown in Remark [d] OGD+ provides stronger theoretical guarantees than OGD due to its stricter
enforcement of gradient orthogonality. Empirically, Table |2 shows that OGD+ forgets less and
generalizes better than OGD on the two MNIST benchmarks, with pronounced improvements in both
metrics. However, on Split CIFAR-100, OGD+ slightly underperforms OGD on both metrics, which
we attribute to its excessive orthogonality. In particular, overly restrictive orthogonality reduces
the feasible gradient subspace, thereby limiting the model’s capacity to adequately fit the current
task—especially under large distribution shifts between tasks. We next explore strategies to mitigate
the negative impact of excessive orthogonality in OGD+.

4.2 ORTHOGONAL PENALIZED GRADIENT DESCENT (OPGD)

In Section [4.1] we theoretically demonstrated that OGD+ achieves lower forgetting and better
generalization than OGD. However, while OGD+ enhances gradient orthogonality across tasks, it
neglects inter-task performance and thus risks reducing plasticity in practice. A straightforward way
to enhance inter-task performance is to reduce the Lipschitz constant of each task. Furthermore, in
Section we theoretically established that reducing the Lipschitz constant consistently mitigates
forgetting and improves generalization. These observations naturally motivate the following question:

Q3: Can reducing the Lipschitz constant in OGD+ further mitigate forgetting and enhance
generalization compared to standard OGD+?

We denote F;PP" and GyP™" as the upper bounds of forgetting and generalization error for OGD+.
To address Q3, we analyze how these bounds vary as the Lipschitz constant is reduced, and further
examine their dependence on ¢ when the Lipschitz constant falls below a certain threshold. The
formal results are stated in Lemma[4] with proofs provided in Appendix [G.6]

Lemma 4. For any fixed tr, reducing the Lipschitz constant p leads to strictly smaller values of

GyPPF and FPP°" compared to their original values under OGD+. Moreover; there exists a
constant p' > 0 such that, for all p < p/, G?fpeH decreases monotonically with respect to tr, while
Ftqupcr+ increases monotonically with respect to tr.

Remark 5. Reducing the Lipschitz constant in OGD+ yields tighter bounds on both forgetting and
generalization error than standard OGD+. This indicates that incorporating mechanisms to reduce
the Lipschitz constant within OGD+ can further mitigate forgetting while improving generalization.

Remark 6. Lemmal|further implies that when the Lipschitz constant in OGD+ falls below a certain
threshold, it helps avoid the degenerate phenomenon discussed in Remark [I| thereby benefiting
generalization as training progresses. At the same time, longer training (larger tr) increases the
risk of catastrophic forgetting because F,"*" grows with ty, consistent with the behavior of large
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Lipschitz constants noted in Remark|[I] This highlights a trade-off between mitigating forgetting and
improving generalization. Importantly, this observation does not conflict with Remark[3} although
extended training may increase forgetting, for any fixed iteration the bounds on both forgetting and
generalization remain tighter when the Lipschitz constant is reduced.

OPGD algorithm: Leveraging Remark [5]and Algorithm 1: OPGD
Remark [6] we establish a principled pathway
from theory to algorithm design: integrating bal ficient a: perturbati di
OGD+, which enforces cross-task orthogonal- bésamnzﬁ izistgrlinf.a’ pertirbation racius
ity, with GAM, which reduces the Lipschitz con- ¢ . M 2.0 — bo:

stant. This unified approach, termed Orthogonal  for Tusk ID 7 = 1,2, ... do

Input :Task sequence 771, 7%, . . .; learning rate n;

Penalized Gradient Descent (OPGD), jointly mit- repeat

igates forgetting and enhances generalization. As // GAM

shown in Table 2} OPGD achieves substantial g1 < VoLs, (0);

improvements over OGD+. f+ V2Ls_ (6) %;

Next, we present the details of OPGD. For the 0 —0+b-

first task, we update the model parameters of VorLs, (0) .
p p fl g2 < b vglLSr(el) ”VB/QLS;S(QIHH’&’

by minimizing the GAM loss (Equation (I6)),
which effectively reduces the Lipschitz constant
of the loss and thereby enhances inter-task per-
formance. The corresponding gradients are then

g (1—a)g+ag
// Orthogonal updates
94 9= Xyes, Proj,(9):

stored. For each subsequent task 7 € [2,T], at b0 "9
. . R until convergence;
each parameter update iteration we first minimize S o
the GAM loss for f,, and then apply OGD+ to for (z, ?;) €D, UMandk € [1,c] with
the resulting (penalized) gradient, ensuring that vk = 1do
the gradient for task 7 is orthogonal to the stored u = Vo fr(x) =3, cs Proj, (Vo fr(z));
gradients from task 7— 1. Finally, we release the
stored gradients of task 7—1 and replace them S+ Su{u};
with the gradients of task 7 evaluated on samples end
from all previous tasks. The full procedure of sample D C D;, M <+ MU D-;
OPGD is summarized in Algorithm|[I] end

5 EXPERIMENT

In this section, we present extensive experiments to validate our theoretical findings and demonstrate
the effectiveness of OGD+ and OPGD. Additional implementation details, further comparisons with
baselines, and ablation studies are provided in Appendix

Datasets. We evaluate our approach on three widely used CL benchmarks: Permuted MNIST (Kirk-
patrick et al., [2017), Rotated MNIST (Farajtabar et al., 2020), and Split CIFAR-100 (Chaudhry et al.|
2019a). Permuted MNIST and Rotated MNIST are variants of the original MNIST dataset, where
each task is defined by a random pixel permutation or a rotation, respectively. For both benchmarks,
we construct 15 sequential tasks using different permutations or rotation angles. Split CIFAR-100 is
created by partitioning the 100 classes of CIFAR-100 into 20 disjoint tasks, each containing 5 classes.

Baselines. To align with our theoretical analysis, we compare OGD+ and OPGD with three
continual learning methods: vanilla CL with SGD, GAM (Zhang et al.}[2023)), and OGD (Farajtabar
et al.,[2020). Additional comparisons with other CL methods are provided in Appendix

Evaluation metrics. To align with our theoretical analysis, we adopt average accuracy (ACC)
and backward transfer (BWT) as the evaluation metrics (Lopez-Paz & Ranzato, [2017). Formally,
they are defined as ACC = £ Zz;l Arg, BWT = 7= ZiT:1 Ag; — A;;, where A, ; denotes the
accuracy of the model on task ¢ after completing training on task ¢, and 7" is the total number of tasks.

Performance. As shown in Table 2] OPGD achieves significant improvements in both ACC and
BWT over prior methods across all datasets, corroborating our theoretical claim that reducing the
Lipschitz constant within OGD+ simultaneously mitigates forgetting and improves generalization.
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Table 2: Average accuracy (ACC) and backward transfer (BWT) over all tasks on different datasets.
Higher ACC and BWT indicate better generalization and less forgetting. All results are reproduced
by us and averaged over 5 runs. The best continual learning results are highlighted in bold.

Dataset Permuted MNIST (15 tasks) Rotated MNIST (15 tasks) Split CIFAR-100 (20 tasks)
Metho ACC ‘ BWT ACC ‘ BWT ACC ‘ BWT
SGD 70.29 + 1.50 —25.33 + 1.57 68.79 + 0.43 —28.09 + 0.45 52.08 + 0.81 —30.63 + 1.31
GAM 72.61 +1.44 —22.47 +1.57 72.85 4 0.44 —20.60 & 0.47 61.70 = 1.68 —22.63 + 1.60
0OGD 82.17 + 0.64 —12.38 + 0.66 77.52 4 0.69 —18.43 +0.76 63.91 4+ 1.62 —20.57 + 1.66
OGD+ 86.22 £ 0.62 —8.11£0.62 86.15 £ 0.49 —9.02 £0.56 61.84 £2.51 —23.47 £ 2.48
OPGD 86.27 + 0.56 —7.73 4+ 0.61 89.15 + 0.22 —3.69+£0.27 | 68.174+0.71 | —12.58+1.35
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Figure 1: Dynamics of average accuracy (ACC) and backward transfer (BWT) for different methods
on Split CIFAR-100. Vertical dotted lines are used to indicate the boundaries between different tasks.
For each task, we record ACC and BWT at evenly spaced intervals, performing 40 evaluations per
task by measuring performance every 100 training iterations.

In particular, OPGD yields average relative gains of +4.59% in ACC and +36.73% in BWT across
three benchmarks. Furthermore, OGD+ consistently forgets less and generalizes better than OGD
on Permuted MNIST and Rotated MNIST, with average relative gains of +4.27% in ACC and
+23.82% in BWT across three benchmarks. However, on Split CIFAR-100—whose distribution is
substantially more complex than Permuted MNIST and Rotated MNIST—OGD+ underperforms
OGD. We attribute this to excessive orthogonality in OGD+, which reduces model plasticity and
consequently degrades inter-task performance, as discussed in Section similar observations have
been reported by [Zhao et al.| (2023); |Yang et al.|(2023). Notably, OPGD mitigates this effect by
reducing the Lipschitz constant within OGD+, thereby enhancing inter-task performance.

Dynamics of forgetting and generalization. As shown in Figure|I] the ACC of OPGD increases
steadily with the number of iterations, indicating that longer training enhances generalization. This
result is consistent with our theoretical analysis in Lemma In contrast, the ACC of SGD does not
consistently improve and even declines in the final tasks. This phenomenon aligns with Remark [T}
which suggests that without explicit control of the Lipschitz constant, prolonged training may
accumulate instability and hinder generalization. Notably, incorporating GAM to reduce the Lipschitz
constant helps SGD avoid this degradation, enabling more stable generalization. As shown in Figure[T}
the BWT of OPGD decreases within each task interval, indicating that additional iterations increase
forgetting—again consistent with Lemma[d] Taken together, these results highlight a fundamental
trade-off between forgetting and generalization: while longer training improves generalization,
it simultaneously exacerbates forgetting, in line with Remark [6] Despite this trade-off, OPGD
consistently outperforms competing methods in terms of both ACC and BWT throughout training.

6 CONCLUSION

We derived upper bounds on forgetting and generalization error at intermediate training stages in
CL under the NTK regime. Our analysis shows that reducing the Lipschitz constant and enforcing
gradient orthogonality both help mitigate forgetting and improve generalization. Building on these
insights, we proposed OGD+ and OPGD, which refine gradient orthogonality and integrate gradient-
norm penalization, respectively. Empirical results on standard benchmarks corroborate our theoretical
predictions, providing a principled pathway from theory to algorithm design in CL. We discuss
limitations and our use of large language models in Appendix [A]
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A ADDITIONAL STATEMENT

Limitations. Our theoretical analysis is developed under the NTK regime, which may not fully
reflect the behavior of practical deep networks with finite width or more complex architectures.
In addition, our empirical evaluation is limited to classification benchmarks; extending both the
theoretical framework and the proposed algorithms to other modalities and learning paradigms
remains an important direction for future work.

The Use of Large Language Models. In this work, we exclusively employ large language models
(LLMs) to refine the writing and presentation of our manuscript.

B RELATED WORKS

Empirical studies in CL. Continual learning has achieved substantial empirical progress, with
existing approaches broadly categorized into three families: (1) Regularization-based methods,
which introduce explicit penalty terms to restrict updates on parameters important for previous tasks
(Kirkpatrick et al. 2017; Zenke et al., |2017), or employ knowledge distillation by aligning the
predictions of the current model (student) with those of the previous model (teacher) to mitigate
forgetting (L1 & Hoiem, 2017; Dhar et al.l 2019; Fostiropoulos et al., [2023)); (2) Replay-based
methods, which either store and replay data from past tasks during training on new tasks (Chaudhry’
et al.,[2019a} [Riemer et al., 2018} Buzzega et al., [2020)), or retain gradient information from prior
tasks and enforce new updates to be orthogonal to past gradients, thereby avoiding explicit data replay
(Farajtabar et al., 2020; [Saha et al.| 2021} |Lin et al.} 2022); (3) Architecture-based methods (Rusu
et al., 2016;|Yoon et al.,2018; Wang et al.|,[2022)), which dynamically expand or adapt the network
architecture to preserve knowledge from earlier tasks.

Theoretical analysis of CL. Recent works have begun to lay the theoretical foundations of CL by
analyzing forgetting and generalization error under simplified settings. Several studies (Evron et al.,
2022} |Lin et al., [2023; Banayeeanzade et al., [2024; |L1 et al., [2025b)) investigate these phenomena
within overparameterized linear models, typically assuming that datasets are drawn from Gaussian
distributions. Recently, there has been growing interest in the theoretical analysis of regularization
based methods for CL. |Heckel (2022) theoretically characterize how the performance of a model in a
contrastive CL framework is controlled by the training losses on previous tasks. |Li et al.| (2023)) derive
bounds on the average risk over two tasks for an ¢s-regularized CL algorithm. [Zhao et al.|(2024)
provide a statistical analysis of regularization based CL on a sequence of linear regression tasks and
highlight how different regularization terms affect model performance. |Li et al.| (2025a) establish
upper and lower bounds on the joint excess risk for a generalized ¢5-regularized CL algorithm.
Another major line of theoretical work is based on the NTK regime (Bennani et al., 2020; |Doan et al.}
2021; Karakida & Akahol 2022). In particular, |Bennanti et al.| (2020)) established generalization error
bounds for CL via Rademacher complexity; Doan et al.|(2021)) analyzed forgetting by introducing the
NTK overlap matrix as a task-similarity metric; and |Karakida & Akaho|(2022), leveraging learning-
curve analysis between two tasks (Bordelon et al.,|2020), studied both forgetting and generalization
error under the assumption that datasets from different tasks are drawn from the same distribution.
Although these works provide valuable insights, most rely on simplified settings and converged
models, thereby overlooking the evolution of models during training in realistic CL scenarios. In
contrast, we theoretically characterize the evolution of both forgetting and generalization error in
vanilla CL under the NTK regime, without requiring such restrictive assumptions.

The most relevant works to ours are |Bennani et al.[(2020); [Doan et al.|(2021), which theoretically
analyze generalization error and forgetting separately under the NTK regime. However, our study
differs in several key aspects: (1) Their analyses incorporate a ridge regularization term in the loss
function, effectively aligning with regularization-based CL methods. By contrast, our framework
makes no such assumption and corresponds to vanilla CL, thus serving as a clean theoretical baseline
against which improved CL methods—e.g., buffer-based and regularization-based approaches—can
be directly compared. (2) Their focus lies primarily on the performance of converged models,
whereas we characterize the full evolution of forgetting and generalization error throughout the
training dynamics. (3) [Bennani et al. (2020) study the generalization error of OGD in CL by
leveraging the property that model outputs remain consistent between consecutive tasks, while [Doan
et al.| (2021)) analyze forgetting in OGD through the NTK overlap matrix. In contrast, we analyze
both forgetting and generalization error in OGD through the structure of the cross-task kernel.
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C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXPERIMENTAL SETTING

In this section, we provide additional details of our experimental setup, present extended comparisons
with more baselines (Section [C.3), and conduct an ablation study of OPGD (Section [C.4). All
experiments are conducted using the NVIDIA RTX 4090 with 24GB GPU memory, CUDA v11.8
and cuDNN v8.7.0 in PyTorch v2.4.1.

Architecture. For Permuted MNIST and Rotated MNIST, we adopt a three-layer multilayer
perceptron (MLP) with two hidden layers of 100 units each and a final layer with 10 output logits. All
layers except the last one use ReLU activation. For Split CIFAR-100, we employ a LeNet architecture
for training. Table[3]summarizes the hyperparameter settings used for OPGD.

Table 3: Hyperparameter Settings of OPGD

Hyperparameter Permuted MNIST Rotated MNIST Split CIFAR-100
Task nums 15 15 20
Network MLP MLP LeNet
Epochs 5 5 50
Learning rate 1073 1073 1073
Batch size 32 32 32
Hidden dimension 100 100 100
Balance coefficient 0.6 0.1 0.8
Perturbation radius b 0.02 0.2 0.05
Sampling size m 100 100 100

C.2 ADDITIONAL EXPERIMENTS

To verify that our methods also apply to other types of tasks, we conduct additional experiments
on online continual learning. In online continual learning, data arrive sequentially in the form of
a stream. Whenever a small batch of data arrives, it is used for a single training iteration (Aljundi
et al.; 2019bja)). Following the standard online continual learning protocol, we use a batch size of 10
and train for one epoch. We perform experiments on Permuted MNIST, Rotated MNIST, and Split
CIFAR-100. We adopt the same hyperparameter settings as those listed in Table 3]

Table 4: Average accuracy (ACC) and backward transfer (BWT) over all tasks on online CL bench-
marks. All results are reproduced by us and averaged over 5 runs. The best continual learning
performance is highlighted in bold.

Dataset Permuted MNIST (15 tasks) Rotated MNIST (15 tasks) Split CIFAR-100 (20 tasks)

Metho ACC \ BWT ACC \ BWT ACC \ BWT
SGD 75.85 + 0.78 —12.24 4 0.81 67.23 + 0.41 —23.62 + 0.40 31.90 + 1.57 —16.21 + 1.42
GAM 76.67 + 1.02 —10.95 + 1.10 70.63 £ 0.59 —14.86 £ 0.67 33.56 + 1.67 —14.29 + 1.65
OGD 78.76 £ 0.50 —8.65 & 0.49 79.17 4 0.41 —9.53 +0.48 37.66 &+ 1.78 —7.92 + 1.66
OGD+ 81.88 £ 0.33 —5.23£0.38 86.35 £ 0.17 —1.02+0.28 37.68 £ 1.77 —7.83 £ 1.68
OPGD 82.62 4+ 0.51 —4.93 +0.49 87.14 4 0.22 2.75 +0.25 39.88 4+ 1.49 —6.12+1.45

To verify that our theoretical findings can benefit other continual learning algorithms, we integrate
GAM or OPGD into both rehearsal based and regularization based methods on the Permuted MNIST
dataset. Concretely, for rehearsal based baselines we adopt a naive rehearsal protocol that randomly
selects 100 samples from each past task. For regularization based baselines we use an /o regularizer
so that the optimization problem for task 7 takes the form

arg nelin 00.)+ 110, — 01|35

The corresponding results are presented in Table[5] The experimental results show that our theoretical
messages also benefit other continual learning algorithms.
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Table 5: Average accuracy (ACC) and backward transfer (BWT) over all tasks on Permuted MNIST.
All results are reproduced by us and averaged over 5 runs. The best continual learning results are
highlighted in bold.

Method ACC BWT
rehearsal 82.82 £ 0.78 —12.60 £ 0.36
rehearsal + GAM 86.40 + 0.42 —7.644+0.44
rehearsal + OPGD 88.23 +£0.16 —5.6240.13
U 73.30 = 1.21 —21.91 +£1.22
/> + GAM 74.15 +1.33 —19.19£1.43
{2 + OPGD 86.45 + 0.27 —7.42+40.33

C.3 COMPARISON WITH ADDITIONAL BASELINES

Additional baselines. We additionally compare against two types of CL methods. Regularization-
based methods: EWC (Kirkpatrick et al.,2017), MAS (Aljundi et al., |2018)), SI (Zenke et al., 2017).
Memory-based methods: ER (Chaudhry et al.l 2019b)), A-GEM (Chaudhry et al.| 2019a). For fair
comparison, we set the memory buffer size of ER and A-GEM equal to that of OPGD.

Table 6: Average accuracy (ACC) and backward transfer (BWT) over all tasks on different datasets.
Higher ACC and BWT indicate better generalization and less forgetting. All results are reproduced
by us and averaged over 5 runs. The best continual learning results are highlighted in bold.

Dataset Permuted MNIST Rotated MNIST Split CIFAR100
Metho ACC BWT ACC ‘ BWT ACC ‘ BWT

SGD 70.29 + 1.50 —25.33 4+ 1.57 68.79 + 0.43 —28.09 + 0.45 52.08 4 0.81 —30.63 + 1.31
0GD 82.17 + 0.64 —~12.38 + 0.66 77.52 4 0.69 —~18.43 +0.76 63.91 4+ 1.62 —20.57 + 1.66
EWC 80.11 + 1.41 —13.66 + 1.57 79.92 4+ 0.75 —2.3340.14 56.69 4 2.42 —20.87 + 2.41
MAS 83.82 4+ 0.41 —5.486 + 0.36 79.50 4+ 0.16 1.60 £ 0.48 66.26 4 1.41 —3.54+1.30
SI 83.30 + 0.22 —3.364 + 0.23 77.08 4+ 0.37 —13.78 +£0.48 67.45 4+ 2.25 —8.77+2.38
GAM 72.61 4 1.44 —22.47 + 1.57 72.85 4 0.44 —20.60 4 0.47 61.70 4 1.68 —22.63 + 1.60
ER 83.35 + 0.91 —11.34 + 0.91 83.05 + 0.34 —12.75 + 0.39 66.03 4 0.34 —16.89 + 0.40
A-GEM 84.69 + 0.41 —9.92 4 0.42 88.30 + 0.49 —6.63 4 0.55 63.04 + 1.59 —18.26 + 1.78
OGD+ 86.22 £ 0.62 —811£0.62 86.15 £ 0.49 —9.02 £ 0.56 61.84 £ 2.51 —23.47 £ 2.48
OGD+GAM 83.73 + 0.65 —10.41 £ 0.75 80.31 4+ 0.51 —12.00 + 0.55 67.43 +2.10 —13.05 + 1.60
OPGD 86.27 + 0.56 —7.734+0.61 89.15 + 0.22 —3.69 4 0.27 68.17 £+ 0.71 —12.58 + 1.35

Discussion. As shown in Table[6] OPGD achieves the highest ACC across all benchmarks, indi-
cating that penalizing the gradient norm within OGD/OGD+ is an effective strategy for improving
generalization. Moreover, although OGD+ underperforms OGD on Split CIFAR-100, combining
OGD+ with GAM outperforms combining OGD with GAM on this dataset. On the other hand, SI
attains the highest BWT on Permuted MNIST, while MAS achieves the highest BWT on Rotated
MNIST and Split CIFAR-100. As highlighted in Remark[6} this pattern reflects an inherent trade-off
in OPGD: while it substantially improves generalization during training, it may also increase the
risk of forgetting as training progresses. Overall, our main contribution is to provide a theoretical
framework for analyzing continual learning and to improve OGD from a theoretical perspective.
Although OPGD may not always yield the best BWT, it consistently delivers substantial gains in
ACC and exhibits large improvements over standard OGD, thereby validating the effectiveness of our
theoretically motivated design.

C.4 ABLATION STUDY

In this section, we investigate effectiveness of each component in OPGD: balance coefficient « (Table
[7), perturbation radius b (Table[8), and per-task sampling size m (Table ).

Balance coefficient «. The balance coefficient a controls the strength of the GAM penalty. We
perform a grid search over {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} using a fixed seed. As shown in
Table[7, OPGD is relatively insensitive to c, with only modest changes across the range.

Perturbation radius . The perturbation radius b controls the neighborhood size in which the
GAM penalty is evaluated, thereby governing the magnitude of parameter perturbations. We conduct
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Table 7: ACC and BWT of OPGD with different balance coefficients « across datasets.

Permuted MNIST Rotated MNIST Split CIFAR100
@ ACC \ BWT ACC \ BWT ACC \ BWT

0.1 86.52 777 88.79 ~4.85 66.90 “15.33
0.2 86.41 ~7.80 88.39 —4.70 67.70 ~14.37
0.3 86.10 ~8.10 88.15 —4.53 67.04 ~14.97
0.4 85.27 ~8.94 87.62 ~4.76 67.23 ~14.51
0.5 86.48 —7.35 87.47 —4.56 68.03 —13.84
0.6 86.55 742 87.02 482 67.89 ~14.17
0.7 84.76 ~9.30 86.15 ~5.58 67.98 1421
0.8 85.40 ~8.62 85.79 5.8 68.18 ~14.03
0.9 86.41 —7.52 85.76 ~5.60 67.64 1473

Table 8: ACC and BWT of OPGD with different perturbation radii b across datasets.

) Permuted MNIST Rotated MNIST Split CIFAR100
ACC \ BWT ACC \ BWT ACC \ BWT

0.02 86.41 —7.47 88.47 —5.40 68.48 ~13.82
0.05 86.01 —17.60 88.79 —4.85 69.31 ~11.03
0.1 84.79 —8.17 89.01 —4.35 66.02 ~9.90
0.2 85.79 —5.96 89.09 —3.76 53.13 —9.45
0.5 79.70 —17.08 87.97 —3.59 50.53 -8.78
1.0 72.61 —6.59 87.72 —2.50 48.45 —8.39
2.0 70.36 —8.05 77.18 —2.90 47.45 —9.12

a grid search over {0.02,0.05,0.1,0.2,0.5, 1.0, 2.0} using a fixed seed. We observe that enlarging b
is not always beneficial for OPGD, especially when b > 0.2. Conceptually, OPGD aims to reduce the
local Lipschitz constant; GAM does so by penalizing the maximal gradient norm within a ball of
radius b, which serves as a proxy upper bound for the local Lipschitz constant. When b becomes too
large, the neighborhood is no longer local, the proxy bound becomes loose—impeding optimization
and degrading fit—thereby explaining the observed saturation or decline in performance at large b.

Table 9: ACC and BWT of OPGD with different per-task sampling sizes m across datasets.

Permuted MNIST Rotated MNIST Split CIFAR100

m ACC \ BWT ACC \ BWT ACC \ BWT

20 79.85 1473 82.79 ~11.05 66.00 1450
40 83.89 ~10.46 85.21 ~8.26 59.60 ~21.08
60 83.51 ~10.76 87.12 —6.07 62.69 ~18.10
60 85.57 —8.44 88.33 —4.69 65.21 ~14.79
100 85.53 ~8.52 89.09 ~3.76 69.25 —~11.10
120 86.64 —7.33 89.87 —2.80 66.36 ~13.52
140 87.17 —6.71 90.23 —2.29 68.56 ~11.67

Per-task sampling size m. In OPGD, we randomly sample m examples from each task to store in
the memory buffer. We perform a grid search over {20, 40, 60, 80, 100, 120, 140} using a fixed seed.
As shown in Table[9] both ACC and BWT exhibit a clear increasing trend as the buffer size grows.
Due to GPU memory constraints, we report results up to m = 140; nevertheless, the observed trend
indicates that larger buffers would likely yield further gains for OPGD.

D KERNEL GRADIENT FLOW

D.1 KERNEL GRADIENT FLOW UNDER SGD
In this section, we derive Equation by solving the linear ODE in Equation (I0). We start by
evaluating Equation (I0) at the training dataset X :

d t __i t _
% T(XT) - nTKT(XT7XT)<fT(XT) Y.,_). (18)

Let g(t) = fL(X,) — Y;. Then, Equation can be rewritten in the simplified form:

d 1

90 = == Ko (Xr, Xp)g(t),  9(0) = f2(X7) = V7. (19)
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Equation (19) is a linear matrix ODE, where K, (X, X,) is time-invariant and real symmetric.
Therefore, the theory of linear ODE guarantees a unique solution:

g(t) = exp ( - niTKT(XTw‘XT))g(O) = exp ( - %KT(XT7XT)) (f‘?(X‘r) - Y‘r) (20)
Substituting g(t) = fL(X,) — Y, into Equation yields:

fi(XT) =Y, +exp ( - nthT(XTaXT)) (fS(XT) - YT)' 21

Therefore, we obtain the explicit form of fI(-) on the training dataset X,. Next, we fix an arbitrary
test point z € R?. For this z, Equation (10)) specializes to

d 1
&fi(x) = *7Kr(anT)(fi(X‘r) 7Y‘r)' (22)
nr
Integrating both sides of Equation (22) over the interval [0,¢] and applying the initial condition
f2(x) = fr_,(z), we obtain
1 t
fﬁ(m)—ff(m) = _;KT(x7XT)/ (f:(XT)_YT) ds. (23)
™ 0

Substituting Equation (21)) into the integral term of Equation (23)), we obtain

[ 000 = v2)as = [ oxp (B X)) (2060) - ¥ N

= (/Ot exp ( — iKT<XT7XT))dS) (fg(XT) - Y.,-),

The matrix integral in Equation (24) can be evaluated in closed form by applying the standard identity
(valid for any constant matrix A and scalar o > 0):

t
/ exp(—asA)ds = a ' A7 (I — exp(—atd)), (25)
0

provided that A is invertible.
Applying Equation with A = K, (X, X;) and o = 1/n, gives

/texp(—,;i F (X, Xr) )ds = n Ko (X7, X) 7 (1= exp (= (2K (X, X0)) ). 26)
0

Plugging Equation (26)) into Equation (Z3), we obtain
fi(@) = f2(x)
1 _
= ?KT(I7XT)(nTKT(XT7XT) 1(I - eXP(*%KT(XﬂXT)))) (fq(')(XT) - Y’T) (27)

n

= KT(J"7 XT)KT(XT7 XT)il (I - eXp(_iKT(XT7 XT))) (fS(XT) - YT)'

Recalling that f0(-) = f*_,(-), we arrive at the closed-form solution for any € R%:

Ji@) = Fioy(@) = Ko, Xp) (T = exp (= 2K (Xr, X0) ) ) Ko (X, X0) 7 (720 (X)) = Y5,
(28)

17
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For notational simplicity, we define
Ery=1—exp (—niKT(XT, XT)) . (29)
Thus, the solution can be compactly expressed as

fi(x) = froi(x) — Ko(2, X7 ) Er Ko (X, X)) (f-r 1(Xr) = Y‘r)- (30)

We complete the derivation of Equation (TT]) by solving the linear ODE in Equation (I0). Next, we
introduce an important lemma that will be used in the subsequent proofs.
Lemma 5. For any T € [T, both e~ Kr (X X0t g E 1+ are symmetric and positive definite.

Proof. Let A\, . > 0 (k € [n;]) be the eigenvalues of K.(X,, X.). Therefore, there exists an
orthogonal matrix ), such that

Q- K- (X7, X-)Q! = diag{Ar1,..., Arn, }, 31)
where A;1,...,A; ., are the eigenvalues of K, (X , X;).

Qre™ FHTNIIEQT Q) 3 (K (X X)) QT

k' on,
k=0
- 1 1 Tax\k
:Zﬁ(_EQTKT(XT7XT)QTtT)
k=0
=1, 1 32
:Zﬂ(_,r:dzag{/\‘rlv ‘rnT}t) (32)
k=0
1 Aatt 1 A tt
—diagly (- An 3 Aty
k=0 k=0
Arats Ar,npts
=diag{e” v ,e  nr

For any ¢ > 0 we have 0 < exp(—A,n, t%/n,) < 1. Consequently the matrix exponential exp( —
iK (X X)) ti) is symmetric positive definite, and thus E ;- is also symmetric positive definite
with eigenvalues 1 — exp(—Ag,n, t5/n.) € (0,1). Even if we relax the condition to K (-, -) being
only positive semi-definite, the matrix exponential exp( — iK (X X)) tj) remains symmetric
positive definite, since the exponential of any symmetric matrix with nonnegative eigenvalues yields
strictly positive eigenvalues.

O

D.2 KERNEL GRADIENT FLOW UNDER OGD

In this section, we derive Equation (17)), which characterizes the gradient flow dynamics under OGD.
For any task T € [T, the parameter 6, evolves according to the differential equation

do" 1 & , , _
2T — PV b0 = —P.— § JY — o e
dt Tv@.,.g( 7') Tn (fT('I:T) yT)ve.,-fT(xT)? (33)

T j:1
where t > 0 denotes continuous time.

Based on @), the evolution of the network output satisfies

& Fi(w) = Vo St (@) —:—n—z (F(2) = 2) (Vor F(2), PV f1(a2)

(34)
_ _E Z 1) (P Vo fi(z), P-Ver fL(2])) .

18
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Therefore, under the NTK regime, the kernel gradient flow takes the following form:
d 1 -
S (@) = ==K (@, Xo) (fr(X) = Y7), (35)

where K, (z,2') = (P-Vo: [ i(x), PrVg=_ ff_y(2')). Therefore, the resulting kernel coin-

1/7—1
cides with the one derived in|Bennani et al.| (2020).

E PROOF OF THEOREM 1]

In this section, we provide the proof of Theorem [T} which establishes the upper bounds of forgetting
Fr and generalization error G. We first introduce the notion of Rademacher complexity in Subsec-
tion[E.T} We then derive the upper bound of the generalization error in Subsection [E.2] followed by
the proof of the upper bound of forgetting in Subsection

E.1 GENERALIZATION AND RADEMACHER COMPLEXITY

There are several ways to quantify the complexity of a function class F, one important and widely
used measure is the Rademacher complexity. Following the notation in |Arora et al.| (2019a), we
define the empirical Rademacher complexity as follows:

Definition 1. Given a sample set S, = {(zt,y.)}!",, the empirical Rademacher complexity of a
function class F is defined as:

1 ne 4
Rs. (F) = —E¢ |sup eflal)], (36)
)= 1 [ 3 atet)
where € = (e1,...,€,) " is avector of i.i.d. random variables drawn from the Rademacher distribu-

tion, Le., €; ~ Unif(—1,+1).

Rademacher complexity provides a data-dependent upper bound on the generalization error of a
learning algorithm (Bartlett & Mendelsonl 2002).

Theorem 2. Suppose the loss function {(-,-) is bounded in [0,c] and is p—Lipschitz in the first
argument. Then, with probability at least 1 — 9, for all f € F, it holds that

Lo(f) ~ Ls() < 20R(F) + 0y 2020, @

Based on Theorem [2} we state the following corollary:

Corollary 1. Suppose the loss function £(-,-) is bounded in [0,c] and is p—Lipschitz in the first
argument. Then, with probability at least 1 — 6, for all f € F, it holds that

Ls(f) ~ Lo(f) < 2pRs(F) + ey 20 3

Proof. LetG :={gs(2) = £(f(x),y) : f € F}, where each g takes values in [0, ¢]. For any f € F,
define the population risk Lp(f) = Ep[g,] and the empirical risk Ls(f) = Eg[g;].

From the standard Rademacher generalization bound, with probability at least 1 — §, it holds that

Lo(f) < Ls(f) + 2Rs(G) + 3cy/ 2822 (39)
To obtain the reverse direction, consider the shifted function class

¢ ={gj(z) =c—gs(2) : [ EF},

which also takes values in [0, ¢] and satisfies Rs(G') = Rs(G). Applying the same bound to G’
yields

Ls(f) = Lp(f) < 2Rs(G) + 3cy/ 12829
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Finally, by the contraction lemma, since ¢(-, y) is p-Lipschitz in its first argument, we have
Rs(G) < pRs(F).

Substituting this completes the proof. O

Next, we provide an upper bound on the Rademacher complexity of a specific form of function class,
as stated in Lemmal 6]

Lemma 6. Let {K; : X; x X; — R}, be a sequence of positive semi-definite kernels such that
sup,cy [|[Ki(z,x)|| < oo forallt € [T]. Foreacht € [T}, let H be the reproducing kernel Hilbert
space (RKHS) associated with Ky, equipped with inner product (-,-)+,. Given a sequence of positive
constants { By }L_,, we define the function class Fr as

‘FTZ{f:X—)R

T
z =Y fil@), fi(x) = Kz, X0) o, | fillw, < BVt € [T]} - (40)

t=1

Then the empirical Rademacher complexity of Fr over S satisfies

T
B
Rs, (Fr) < 3 —(Tr(Ku(X,, X))H2. (41)
t=1 T

Proof. For any kernel K, there exists an associated feature map ®; : X; — H; such that for all
X1, T2 € Xp, we have Ki(x1, x2) = (Pi(21), Pe(22))%,. In particular, the kernel vector Ky (z, X+)
is defined as Ky(z, X;) = (K(z,2}),..., Ki(z,2}*))" and the coefficient vector is given by
ar = (af,...,a}")T. Consequently, for any f € Fr, we have

T

F@) =" fulw)
B
:ZKt(z,Xt)Tat

T ng
=ZZaiKt(a:,xi) (42)

t=1 i=1

T ng . )
=3 all@u(e), dulwi)n,

t=1 i=1

T Nne

<‘I’t($)7zai¢’t($i)>m-

t=1

Letwy = > 1" ai®;(z}). Then the function f can be represented as:

T

fla) = (wy, ®y(2))n, (43)

t=1

Moreover, the norm of w; in H; satisfies:

[well#, = Z o (Py(h), Do (x])) 2,
%]
= ajod Ky(a},2]) (44)
%)
=a; Ki(X4, Xi)ou
= fella,
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We define the function class fT as follows:

ﬁTz{f:X—nR

T
z =Y (we, ®4(2))2,, [lwellz, < BVt e [T]} (45)

By construction, we have Fr C Fr. Consequently, the empirical Rademacher complexity of Fr
over S, can be upper bounded by that of Fr, i.e.,

N, T

~ 1
Rs,(Fr) < Rs, (Fr) =—E] sup € > (wy, ®4(xL)),]
nr wa,lmtht,we[T]; ;
1 T nr
=—E[ sup (we, ¥ €®y(al))p,]
N lwellp, <Bi VtE[T) ; ; '
nr
<— EJ sup (wy, 6Py (28)) 7]
Nz ; [lwe ||, < B¢ ;
:Z Hzﬁzq’t M)
=1
Ly
— =t . -
7; o E| ZezeJKt(:nT, z7)] (46)
= ,J

T B —
<> — > Ecleie Kt 7))
t=1 "\ ij
T
Z t\/ZE € Kt x5, T)]

zzft IS Ko, a)
t=1 T i

(Tr(K (X7, X)) 2

o)

3
3

-~
=

~

I
M=
Flw

-
Il
—

E.2 BOUND ON THE GENERALIZATION ERROR G

In order to derive an upper bound on the generalization error defined in Equation (), we utilize the
inequality provided in Equation (37). To proceed, we will separately bound the empirical loss term
L, (f7) and the Rademacher complexity term Rg_(Fr).

Proof. (1) For the term Lg_(f7) for any 7 € [T, we have:
* 1 * 2
Ls,(2) =%HfT<XT> v

7\\f Z fi(X7) = Yo%

k=71+1

47

Notably, the convention ZZ:T 41+ = 0 always holds, which is known as the empty sum convention.
Therefore, when 7 = T, Equation remains valid.

Next, we compute the term || f*(X,) — Y, ||? as follows:
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1£2(X0) = Yo l? =0 (X)) + (X)) = Yo
=1 F5(X7) = Yo |?
=K (X7, X:)Bp - Ko (X, X7) 7Y, = Y2 |2 (48)
=V, — K (X,, X, )e 7 e X0 0 (X X)W, — V|2
= K (X, X )emn KX (X X0) Y2

In order to simplify the result in Equation (92)), we use the Taylor expansion of the exponential

function, i.e., eX = 377 7 X*. Therefore, we have:
1 N
(X)) = Y2 =|| K ( Xy, X — (= — K (Xp, X ) K (X7, X)) 71 Y2 |2
1£7(X0) = Yol = ;ﬁn XK (X X) T Y|

- (X, X, ——KT X XK (X, X))
|Zk, X K (X XV (K X TP

f||2 (o K O X))

_||6 Fro — K, (X, X, )tTY ||2

Therefore, we obtain the following upper bound:

T
1 ~ 1 .
Ls, (f7) Il > Ki(Xr, Xx) Bt Kie (X, Xi) 7' Yie|* + —|le wr KX X0ty |12
nr k=7+1 nr
(50)

(2) For th~e term R (Fr), we first consider a bound on the reproduced kernel Hilbert space (RKHS)
norm of f*. Let (Hx_, || - [, ) be the RKHS induced by the kernel /.. We define

ar = Epp K- (X7, X2) 7Y (51

Then, f: can be written as: .
fi(@) = K (2, X:) "o (52)
The RKHS norm of f: is then given by:
Hf:”g-tx, = OzIK.,-(XT, X7)a;
=V, K. (X7, X;) "B Ko (X7, X;) Ep e Ko (X0, X)) 7Y (53)
<Y, E,.; K, (X, X;)"'Y, = B?

The final inequality in Equation (33) is easily verified by the following equation:

Y, K (Xe, X7)  Er s Ko (Xp, X7 Ers Ko (X7, X0) 7Y, =V Br Ko (X, X)) 7Y,
=Y, (K (X7, X:) ' Erge Ko (X7, X7) = 1) Epe K- (X7, X) 'Y,
=Y, (K (X7, Xo)  Er e K (X7, Xr) = Ko (X, Xp) T K (X0, X)) B Ko (X7, XC)THY,
=Y, K (X;, X:)  (Brye — DK (X7, X)Er e Ko (X7, X,) 7Y,

= - ?TTKT(X‘IW XT)_1eiﬁKT(XT’XT)t:KT(XTa XT)ET,t:KT(XTa X‘r)_lf}r
(54)
Based on Lemma , since K. (X, X,), K- (X,, X;)™? e_ﬁK (XX and E; 4+ are all posi-
tive semi-definite, it follows that
1~/-,-TI(T()(‘MAXV‘i')_lEtr,t;‘,I(T()(‘mAXV7')E“F,1€,’,‘_I(‘r()(T»)(7')_1}}7' - ?TTET,t:KT(XT7XT)_1}7T § 0
(55)
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Therefore, we verify that Equation holds, and we obtain an upper bound for || f: . » which
we denote by B,. We define the function class Fr as follows:

T=1

.FTZ{f:X%R

T
T — Zf‘r(w)vfr(w) = KT($>XT)TCVT7 ||fT||HKT < Br, VT € [T]} - (56)

Based on Lemma 6] we obtain the following bound on the empirical Rademacher complexity of Fr
over S;:

T
B
Rs, (Fr) <3 = (Tr(Ki(Xr, X:))'/
k=17
. N - (57)
[Tr(Ky(Xr, X0 )Yy B Ko (X, Xgo) 71 Y52
<y :
ny
k=1
Based on Theorem[2} and by combining Equation (93)) with Equation (57), we have:
T
LDUH<*HE:Kwﬂﬂwﬂﬁmeﬂwlﬂw+*W"*(“Lmﬁw
nr k=1+1
n 2pz TI' Kk, XT, X ))Y/kTEk,tsz(Xk7 X’C)_lffk]l/Q + 3¢ 109(2/5)
N, 2n.,
(58)
By substituting the bound from Equation (58) into Equation (), we obtain:
1 1 —1x7 112 1 — LK (X, X )t 12
Gip <7 Z —T > Kn(Xr, Xp) Epa: Ki(Xp, X3) 75 |? + n—T||e Y|
k=71+1
ZT: [Tr(Kp (X, X, ))Y,CTEk,t;;Kk(Xk,Xk)ilffk]l/z 43¢ log(2/9)
— N, 2n,
(59)
O

E.3 BOUND ON FORGETTING Fr
In this section, we derive an upper bound on the average forgetting, as presented in Equation (3).

Proof. We decompose each term in Equation (3) as follows:

For any 7 € [T — 1], we have:

Lp,(fr) = Lp,(f7) = Lp.(fr) — Ls,(f7) + Ls,(f7) — Ls,(f7) + Ls, (f7) — Lp, (f7)
(a) (b) (¢)

(60)
Next, we derive upper bounds for terms (a), (b), and (c), respectively.

For term (a), by applying Theorem 2] together with the bound in Equation (57), we obtain:

u * log(2/6
Lp, (f#) = Ls.(ff) < 20Rs. (Fr) +3 %
[Tr(Kp(Xr, X2))Y, Epye K (Xp, Xi) "1 Y] /2
<2pz (K ( DY, B pr K (X, Xp) ™ Y] s M
ftr 2n,
(61)

For term (b), we begin by deriving explicit expressions for Ls_(f7) and Lg_(fF), as follows:
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1
s.(fr) < —lf(Xr) = Y||2+77|| Z frx)I? (62)
nr T k= T+1
* 1 * 2
LSr(fT) = ;”f‘r(X‘r) - YT” (63)
Subtracting the two expressions, we obtain:
1 &
Ls,(fr) = Ls.(fz) <l > I
k;T-‘rl (64)
1 L
SE > KX, Xi) Ep g Ko (X, X)) ™ V|2
k=1+1
For term (c), by applying Corollary [I] together with the bound in Equation (57), we obtain:
log(2/d
Ls, ()~ L, (£2) < 2R, (F) + 30y | 2420
[Tr(Kp (X, X))V, Er s K (Xp, Xp) 1Y) 1/2 log(2/6
<2PZ k DYy B K (X, Xi) ™' Y] + 3¢ 0g(2/9)
nr 277,7-
(65)
Then, we have:
T-1 T T —1y7 172
1 [TI‘(Kk(X.,-,XT))Yk Ek,t‘ij(Xkka) Yk]
Fosg7 2 {QPZ -
T=1 k=1
Tr(Kp(Xr, X:)) YT Epe Kio (X, Xi) 1Y H/2 loa(2/§
Lo [T (K ( DYy, Bty K (X, Xi) V5] IO L ICTL)
nr 2n7-
k=1
1 < ~
+— Z ||Kk(XT,Xk)Ek,t;;Kk(Xk,Xk)_1Yk||2}
T k=r+1
O
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F FORGETTING AND GENERALIZATION ERROR OF PGN

We first present the main result in Theorem [3] To help readers quickly understand the proof strategy,
we also provide a proof sketch. The detailed proofs are given in Appendix [FI] Appendix [F2]

Appendix [F.3] and Appendix [F4]

Theorem 3. Consider a sequence of T tasks. For each task T € [T, let D, denote the data
distribution, and let S; = {X;,Y;} be the corresponding training dataset drawn i.i.d. from D,.
Suppose the loss function ((-,-) takes values in the interval [0, c| and is p-Lipschitz in the first
argument. Then, with probability at least 1 — 6, the following bounds hold:

1 Tl{ T [ Tr(Ke(Xr, X))V, (EIE%NVKk(kaXk)ilYk]lﬂ

Fo Sp1 2% 2 =

T=1 k=1+1
- 1< 11/2
TI‘ Kk XT,X ))Y (EPGLN)QKk(Xk,Xk) IYk [ 2/
+4PZ kPt ] 1 6e 092( /9) (67)
nr nr

T

1 o

+— E ||Kk(X7'7ch)Els%I\IKk(Xk,Xk) 1Yk||2}7
Tk=T+1

T T
1 1 -
G, gf§ {n § ||Kk(XT7Xk)E}§ N Ky (Xi, Xi) Y512

T -
T=1 k=141
KX X)—w[K(X X)]? 2
+—He = m ™ Y, || (68)
Tr(Kp( Xy, X)), (EPSN)2 K (X, X5) 1Y) Y/2 loa(2/§
o, 2 oaof20).

where EXYSN = T — exp ( — K (X7, Xr) — %@KE(XT,XTD and ®,(t) satisfy ®,(t) =

Js NI S A AT A

proof sketch. Our proof consists of four main parts.

(1) Gradient flow of PGN. We first compute the gradient of the PGN loss in Equation (T3] and apply
the chain rule 4 f(z) = Vg fL(x) dj{

% KT(anT)KT(XTaXT)(ff'(XT) 7YT)

i \/(ff‘(XT) - YT)TKT(XTaXT)(f‘ft-(XT) - Y‘r) .
(69)

A @) =~ X () - Y) -

The detailed derivation is provided in Appendix [F1]

(2) Solution of the kernel gradient flow for PGN. We adopt a similar approach to Appendix [D.1]to
solve the ODE. We first derive the solution on the training set X :

) = Ve exp( = E KA (X, Xp) = BORAX, X)) (f2(X,) = Y2). (70)
We then obtain the solution at an arbitrary point z:

Fh@) = 1oy (0) — Ko (o, X0) BRSNS K2 (X0 X0 (F24(X0) - V7). (1)

T

The detailed derivation is provided in Appendix [F.2]

(3) Bound on the generalization error. We use standard techniques from statistical learning theory
to bound the generalization error of the regularization based method via Rademacher complex-
ity (Kakade et al] [2008; [Cortes et all, 2010). According to Theorem [2} we need to control the
empirical loss Lg_(f7) and the Rademacher complexity of the function class Rg_ (Fr).
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The empirical loss Lg_(f}) can be bounded using Equation (71), which yields

Ls.(fi) <—

T

T
~ 112
> KX X0 B SN KX X0) 7 Y

k=741 (72)
-2 o x|

1
+7
nr

¥
— T KA (X7, X
e nr ( )

We bound the Rademacher complexity through the RKHS norm of fj and Lemma@

Ki(Xr, X))V, (BESN)2 K (X, X5) ™'V 1/2

N

Rs, (Fr) <Y Rl
k=1

(73)

By combining Equations (72)and with Theorem [2] we obtain the desired upper bound on the
generalization error GG;,.. The detailed derivation is provided in Appendix@

(4) Bound on forgetting. We decompose each term in the forgetting metric in Equation (3)) as

Lp,(fr) = Lp.(f7) = Lp,(f7) — Ls.(f7) + Ls, (f7) = Ls, (f7) + Ls.(f7) = Lp. (f7),
(a) (®) ©

(74)
forany 7 € [T —1].
Theorem 2]and Corollary [T]imply that terms (a) and (c) are controlled by the Rademacher complexi-

ties Rs, (Fr) and Rg, (F) respectively. The bounds on Rs_(Fr) and Rg, (F;) have already been
obtained in step (3). The second term (b) can be bounded as

T
* * 1 [k 2
Ls (f7) = Ls.(f7) < —| D Fi(Xo)
k;7'+1 (75)
<L ST KX, X EFSN K (X, Xi) 1V
= oA, Ak ) L g B (X gy X k|l -

k=7+1

Combining these bounds yields the desired upper bound on the average forgetting. The detailed
derivation is provided in Appendix[F4]

O
F.1 KERNEL GRADIENT FLOW OF PGN
In the CL setting, the training loss of PGN for any task 7 € [T] is given by
LETN (0;) = Ls, (6:) + az ||V, Ls, (6-), (76)
Therefore, we have
VoLESN(8,) = Vo, Ls,(0-) + a, V3 Ls._(6,) Ve, Ls. (0) (77)

Ve, Ls, (0-)l2”
Based on Equation (3], we have

Vo Ls. (6) = [V, FLOX] T (FL(X0) - V2).

T
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For any task T € [T, the parameter 6, evolves according to the differential equation

do Vo Ls, (07)

=T = Vg Ls, (08) — a;V3 Ls, () o T
o oL, (07) = e Voy Ls. 00 17 T a0,

1 %Vrf:.XTTff.XT -Y;
LT SO (X = Y2) — a7 i s, 1) T o) 2 Y
r K[v% fﬁ(XT)]T (fi(X‘r) - Y‘r)
(78)
where ¢ > 0 denotes continuous time.
Under the NTK linearization, we simplify
1 1
Vi, Ls(0-) = Vo, f1(X)] T -1 Vo, f1(X5) = -= Vo, (X)) Vo, f1(X5).
Therefore, we have
ot 1
== Ve FO)T (F(X) - Vr)
Vo FLX)T (FHXL) — Y, (79)
_ % [V@t f-,t—(XT)]TVGE_f-,t—(XT) [ HTfT( = )] (fr( ) ) ,
T \/(fi(XT) - Y‘r) K.,.(XT,XT)(f_ﬁ(XT) - Y.,_)

where we used [|[Vor ££(X,)] T (FL0X) = Yo) || = / (F(X0) = Vi) T K (X0, Xo) (FE(X0) — V).
Based on the chain rule, we have

d dot
&fﬁ(m) :Vegfi(m) ditT

— Vi f2a) (Vo ST ()~ 1) 50)
ar Ve fH(x) Voo fHXA)] Vo fFEX7) [Vor fAX)] T (fH(X7) = V) .

\/(fﬁ(XT) - YT)TKT(XT7 XT)(ff'(XT) - YT)

ny

Therefore, under the NTK regime, the kernel gradient flow takes the following form:
QT KT(vaT)KT(XTvXT)(ff'(XT) 7YT)
N, T
\/(ff—(XT) - YT) KT(XT, XT) (f:-(XT) - Y‘r)

(81)
(), Ve:_lf;kq(xl»'

) = K X (FUX) - Y7) -

nr

)

where K, (x,2') = (V-

T—1

F.2  SOLUTION OF KERNEL GRADIENT FLOW FOR PGN

We follow the approach in Appendix [D.T} first derive the solution on the training set X, then extend
it to an arbitrary input x.

(1) Solution on the training set X .. Evaluating Equation (81) at X gives
KT(XTa X‘r)2 (f,ﬁ(X.,-) - YT)

D) = K (0 X () ) -2

= :
\/(fj—(XT) - YT) KT(erXT)(fqt—(Xr) - YT)
(82)
Let g(t) = fL(X,) — Y, and abbreviate K, := K,(X,, X,). Then Equation (82) becomes the
matrix ODE
d 1 o K2 g(t
(6) =~ K. glt) - 27 — 290

@’ ", nr g TR g(0)
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Since K, is real symmetric positive semidefinite and K, commutes with K2, the theory of linear
time-varying ODEs with commuting coefficients yields the solution

t
a;
g(t) = exp( — LK, — U K2) g(0), 0= [ =teas o9
N " 0 Vg(s)TKrg(s)
Substituting g(t) = fL(X,) — Y, into Equation yields
FLX) =Y +exp( = LK, = UK (£2(X,) - V7). (85)
(2) Solution at an arbitrary point . For any 2 € R?, Equation can be rewritten as
d 1 ar K (x, X)) K, g(t
4 i) =~ Ko X gtr) - O B X Kol (56)
dt nr nr Vg(t) T Krg(t)
Notably, multiplying K, (x, X, ) K- on both sides of Equation gives
. d 1 ar K (x, X)) K, g(t d
K (v, X)) K" —g(t) = —— K (v, X,) g(t) — — ( ) Krg(t) = —fl(z). (87)
at’ nr ne g(t)TKg(t)  dt
Integrating Equation over [0, t] yields
Fr(@) = f(z) = K(o, X-) K7 (g() = 9(0)). (88)

Substituting Equation into Equation and using f2(x) = f*_,(x) gives the closed form

Jiw) = Froa )+ Ko (o, Xo) K (exp(( = oK, = ZOK2) - 1) (f74(X,) - Y7)
= fioal@) = Ko, Xo) BESN K (£, (X,) = V7).

T—1

(89)

where EE GN =T — exp( - LK, — q’;—(t)Kf_) Therefore, we obtain a form for PGN that is

nr-
analogous to the SGD solution in Equation i The only difference is that PGN uses EE ?N, whereas
SGD uses E; ;. For notational convenience, define

i) = K.(x, XT) EXSN K (X, X,) Y, (90)

T

Therefore, the predictor for task 7 can be written as

F.3 BOUND ON THE GENERALIZATION ERROR

In this section we derive an upper bound on the generalization error. In particular, we bound the
population loss Lp_( f7) using the Rademacher complexity of the hypothesis class, the empirical
loss Ls_(f7), and appropriate constants as shown in Theorem [2] This approach follows standard
statistical techniques for regularization based methods as in Kakade et al.| (2008)); |Cortes et al.[(2010).
Specifically, the regularization term affects the bound through its influence on the Rademacher
complexity of the function class.

(1) For the term Lg_(f7) for any 7 € [T'], we have:

Ls. (/) =iuf;:<xf> At
T ©n
Hf ( Z ]:(XT)_YTHQ'

2n7.
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Next, we compute the term || f*(X,) — Y, ||? as follows:

15 (Xr) = Yq|?
= (X)) + f1 (X)) = Y22
=[If7(Xr) — Y|
=|| K (X7, X0 ) ERGN K (X7, X)) 1Y, = Y|

) 2:(03) o ©2)
=||V; — K (X, X, )e o XX KXl e (X X))V, — 1|2
L KX, X )— T(t)[K(X X))? 1y (12
=K~ (XT,X Je T K (X, X)) T
@, (t )
L g (X, X )— Ko (X, X,
—||€ nr ( ) [K~( Dk YH2
Therefore, we obtain the following upper bound:
1, — ~
Ls. (f3) g;|| > Ki(Xr, Xp) BESNKi (Xp, Xi) 71 Y32
T k=141 (93)
+ Lo o- P (X

(2) For the term R(F7), we first consider a bound on the reproduced kernel Hilbert space (RKHS)
norm of f*. Let (Hx,, || - [|#,, ) be the RKHS induced by the kernel K-. We define

v, = EFONK (X, X,) 1Y, (94)

Then, f: can be written as:
Fr(w) = Kr (2, X7) oy (95)

T

The RKHS norm of f: is then given by:

Hf:H?-LK, = A:KT(XT,X )df
=Y, Ko (Xr, Xo) T EDEN R (X,

XA EFENK (X, X,) 7Y, (96)
=Y, (EEgN) KT(XT,XT) Y :BE

We define the function class F as follows:

fT_{f:X—)R

T
T — Zf,r(x),f,r(x) = KT(x,XT)T&T, ||f7'||HKT < B, Vre [T]} )

T=1

Based on Lemmal6} we obtain the following bound on the empirical Rademacher complexity of Frr
over S;:

el

k

RST (]:T) (Tr(Kk(XﬁXT)))l/Q

IA
7

- 98
TR (X, X)) (BEGN) K (X, Xp)~ T2 o

nr

M 11>

IN
i
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Based on Theorem[2] we have:

T
* 1 —1v/
Lp (f7) <—| Y Ki(Xr, Xp) BN Ky (X, X5) ™ V||
T k=741
( )

R (X Xy ) Ko (X0, X5
+ 7”6 nr ( ) ( ( )] Y7—||2
L [Tr(Ki (X, X))V (EREN)? K (X, Xi) V3] log(2/9)
+2p +3cy | ———=
Pt N 2n,
99)

By substituting the bound from Equation (99) into Equation (@), we obtain:

T
1 1 o
Gr < Z{II S Ku(Xr, Xi) BR $N K (X, Xi) ™ Va2

T2 n,
k=7+1
( 7)
—i—*H@ nTK (X, X7)— (K7 (X7, X)) Y ||2 (100)
[Tr(Kn(X,, X)), (EIS?*N) Ki(Xp, Xi) Y]/ log(2/9)

F.4 BOUND ON FORGETTING

We decompose each term in Equation (3) as follows:
For any 7 € [T' — 1], we have:
Lp. (fr) = Lp,(f7) = Lp,(fr) — Ls,(f7) + Ls, (f7) = Ls. (f7) + Ls,(f7) = Lp, (f7)
(a) (b) (e)

(101)
Next, we derive upper bounds for terms (a), (b), and (c), respectively.
For term (a), by applying Theorem [2]together with the bound in Equation (98)), we obtain:
Lp. (fr) — Ls.(fr)
log(2/6
<2pRs. (Fr) + 3ey | 2920
2n, (102)
- Z ([Tr(Ki(Xr, X))V, (BEGN)? K (X, X3) 71 Y3]H2 © 50, [109(2/0)
P n, 2n.
For term (b), we begin by deriving explicit expressions for Lg_( f}) and Lg, (f¥), as follows:
* 1 *
Ls, (f7) < —|f7(X:) = Y7 ||2+—|| Z fi(X)|1? (103)
T nr k=1+1
Ls. (f7) = —||f( r) = Yo||? (104)
Subtracting the two expressions, we obtain:
T
* * 1 [k
Ls, (f7) = Ls.(ff) <—| > Fi(Xo)|?
k;7'+1 (105)
1 o
<rT D IEKw(Xr, Xi) Ep GN Ky (X, Xp) ™ V||
k=71+1
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For term (c), by applying Corollary [I]together with the bound in Equation (98)), we obtain:
Ls,(f7) — Lo, (f7)

log(2/6
<2pRs.(Fr)+ 3¢ % (106)
[T (K (Xr, X))V (BESN)2 K (X, Xi) Y32 log(2/9)
<2PZ n +ae 2n

Then, we have:

o1 Tzfl ) Z [Tr(Kp(Xr, X))V, (E}:%N)?Kk(Xk,Xk)*lffk]l/Q
—T-1 = P — n,
T Tr(K(Xr, X7)Y, (EPSNY2 K (Xg, Xi) 1 Y] Y/2 loa(2/§
12 bR 4 6ey L9007y
Pt n, 2n,

T

1 .

+ — E ||Kk,(XT,Xk)EfGNKk(Xk,Xk) 1Yk2}
T k=141

G ADDITIONAL PROOFS

G.1 PROOF oF LEMMA[I]

Proof. To better reflect practical training scenarios, we consider a finite number of training iterations,
denoted by ¢, and restrict ¢p to the interval [1,¢7%*]. We exclude the trivial case t7 = 0, as it
corresponds to the stopping point of task 7" — 1. Accordingly, we analyze the evolution of the upper
bounds Gy and F;**" over [1, t7*].

(I) We first analyze G,"*". Its derivative with respect to t7 can be written as

dGupper
T = 9u(tr) + pgaltr), (108)
where the functions g; and g» are given by
T
1 _tr
gi(tr) =" —— Vil e e X o (X, X Ko (X, Xp)(1 — ¢ KO8
T=1 n-nr
- 1 ~— 2 -
Kr(Xr, Xp) ™ Vr = Ve e K00 X0 g (X0, XY,
T
(109)
and
T [ Te(Kr(X,, X,))] 2 §T e Kr(Xr Xy,
. = - (110)
=1 2nsng V(1 — e e Fr T X Ko (X, X)) =171/

We first assume that [ Tr(K7(X,, X;))] 1/2 # 0 for any 7 € [T7, and that Y7 # 0. This assumption
is mild, since if either term equals zero, the corresponding component can simply be omitted. From

L Kr(Xr,Xr) .

the proof of Lemma we know that e_ nr is positive definite. Consequently, go(t7) > 0

holds for all t € [1 tmax}

Moreover, both g; and g, are continuous with respect to ¢7 on the interval [1, t7**]. We therefore
define

my:= min go(z) >0, My == max |gi(z)|.
IG[l,t'q"f’x] Ie[l,tf]"jlx]
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Let pgy := %—[i Then, for any p > pg4, we obtain

dGePPer
dz; = g1(tr) + pga(tr)
M
> g1(tr) + —ga(tr) a1
mi
> g1(tr) + My
> 0.

Therefore, for any Lipschitz constants p > pg, Gy*" is monotonically increasing with respect to t7-.

Since
T T —1v711/2
Tr(Kp(X,, X:))Y, Eg o Kip( Xk, X Y:
Z[ (K ( NYy Bz K (X, Xi) ™1 Y] >0 112)
nr

k=1
it follows that a smaller Lipschitz constant p directly results in smaller values of G-
tr.

PP for any fixed

(IT) Then, we analyze F,**" similarly. Its derivative with respect to 7 can be written as

dF
e fi(tr) + pfa(tr), (113)
where the functions f; and f5 are given by
-1 .
filtr) =" ——V e m KX o (o X0 Ko (X, X):
= nene (114)

(I—e ;KT(XT,XT))KT(XT,XT)fl}}T’

and

5 (t Ti [ Tr(Kr(Xs, X,))]" Ve Kr(Xr X g,
(tr) == =
ke Y/ (I—e ~wg K (XT’XT))KT(XT X7)~1Y7|1/2

T=1

(115)

We first assume that [ Tr(K7(X;, X;))] 1/ # 0 for any 7 € [T — 1]. If the term equals zero, the
corresponding component can simply be omitted. Hence, fo(¢t7) > 0 holds for all ¢t € [1,t7].

Moreover, both f; and f are continuous with respect to ¢7 on the interval [1, £5**]. We therefore
define
me = min fa(z) >0, M, := max |fi(z)|
x€[1,tm) we[l,tm)

Let py := % Then, for any p > py, we obtain

d FUPper
d;T = fitr) + pfa(tr)
T
Mo
> filtr) + — fa(tr) (116)
ma
> filtr) + Mo
> 0.

Therefore, for any Lipschitz constant p > py, the bound F;"™" is monotonically increasing with

respect to t7. Let p* := max{py, p, }. It then follows that both G and F{*™" are monotonically
increasing in ¢ whenever p > p*.

In addition, since

T T —1y-11/2
Tr Ky (X7, X)Y," By ¢ Ki(Xg, X Y;
k DY, B er Ki (X, X3) 1Y) >0, arn
Z n,

k=1
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and
[ Tr(Ki(Xr, X))V Bre Ki(Xi, X50) V3] /2

nr

>0, (118)
k=1

it follows that a smaller Lipschitz constant p directly leads to smaller values of F**" for any fixed
tp. O

G.2 BRIDGING PREDICTION- AND PARAMETER-LIPSCHITZ CONSTANTS

We first introduce the prediction-Lipschitz constant p¢ and the parameter-Lipschitz constant pg of
the loss:

IL(f(z1)) = L(f(z2))| < pslf(z1) = f(22)|, Vai,22 €D, (119)
and
|L(01) — L(0-)|

where () denotes the parameter space.

IN

po |6 — 02, V61,02 €Q, (120)

By the mean-value argument combined with the Cauchy-Schwarz inequality, there exist f/ =
cef(x1) + (1 —cy)f(xe) and 0" = coby + (1 — cp)b2 With ¢5, cg € [0, 1] such that

L(f(21) = L(f(22)| < (VL) () = Fa2)]) (121)
L(01) ~ L(02)] < [VaL(O)]]16: — 6] (122)

As shown by Zhao et al.|(2022), adding the regularization term ||V L(6)|| approximately reduces
the parameter-Lipschitz constant pg. However, the Lipschitz constant p appearing in Theorem [I]
is the prediction-Lipschitz constant py. To justify using a parameter-space penalty to proxy a
prediction-space penalty, we relate |V ;L(f)|| and |VoL(0)| via the chain rule:

VoL(0) = J;(0) "V L(f(0)),
where J¢(6) is the Jacobian of f with respect to §. Consequently,

amin(Jr(0) |V L(FO)]| < [[VoLO)|] < [T, ||V rL(£(6))]]

Therefore, in any region where J;(6) is well conditioned (i.e., omin(Jf) > m > 0 and ||J¢|| <
M < 00), penalizing |[VoL(0)]| also penalizes ||V ¢L(f)||, and thus approximately reduces the
prediction-Lipschitz constant py.

G.3 PROOF OF LEMMA 2] AND DISCUSSION

We first present the proof of Lemma[2]as follows.

Proof. Consider any entry Ky (z} |, =) withi € [n,_1] and j € [ng]:

Ki(zh_y,2]) = (Pu¥Vo: _ fr1(xh 1), PcVe:  fr_1(z])). (123)

Nk—1

By definition, the subspace By = span{Vp:  fr_ (x}_,)} =" Since Vo: fi_i(z}_,) €
Ex—1, applying the projection operator Py yields P, Vo: | fi_,(z%_,) = 0. Therefore, it follows
that

Kk(x};_l,xi) = f(k(m};_l,xfg_l) =0, Vi€|[ng-1],je<nk, € ni]
O

Further discussion of Lemma E} If we define the projector Py, as P]Ekil’ then Lemmalzl still holds,

since PkV9;_1 fiq (33271) = 0 remains satisfied. This ensures that the gradients of the current task
are orthogonal only to those of the immediately preceding task.
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G.4 PROOF OF LEMMA 3]

We present the proof of Lemma3]as follows.

Proof. Consider any entry Ky (z%, z),) withi € [n,] and j € [ng]:
Ki(ar, a}) = (PiVeoy_ fioa(ah), PeVoy fio (i) (124)

By definition, the subspace |y, = span{Vy, f; (z]*) | | € [k], m € [n]}. Since Vo: _ fr_,(zL) €
Ej,_. applying the projection operator P}, yields P, Vg~ fr_,(«%) = 0. Therefore, it follows that

Ki(zh,2]) = Ki(2i,2L) =0, Vi€ [n,], j€[nl, I € [n,].

G.5 FORGETTING AND GENERALIZATION ERROR BOUNDS FOR OGD AND OGD+

In this section, we derive upper bounds on forgetting and generalization error for both OGD and
OGD+.

Theorem 4 (OGD). Consider a sequence of T tasks. For each task T € [T, let D, denote the
data distribution, and let S; = {X;,Y.} be the corresponding training dataset drawn i.i.d. from
D.. Suppose the loss function {(-, -) takes values in the interval [0, c| and is p-Lipschitz in the first
argument. Then, with probability at least 1 — 6, the following bounds hold.

~, ~ 11/2
T-1 [ Te (K (X, X))V, B Ko (X, Xi) "1 ¥3]

Fosri X (] o

[Te(K(Xr, X))V, Bpx Koo (X5, Xi) V5]
J,-QPZ 1" k R )) k le,tk k( ks k) k} 1 6e 1092(2/6) (125)

nr

T

1 o

o Z 1 Kk (X, Xi) B K (X, Xi) 1Y1f||2}
Tk:r+2

T
1 1 —1v7 (12 1 — LK (X, Xt 12
<TZ—:{"k +2||Kk-(X7-an)Ek,tZKk-(Xk-7Xk) Yal| +TTT||€ n Yol

Z n,

T [Tr(Kp(Xr, X7 ))YkTEktZKk(Xk’Xk)1Yk]1/2}+3c M
2n,

(126)

Theorem 5 (OGD+). Consider a sequence of T tasks. For each task T € [T, let D, denote the
data distribution, and let S; = {X;,Y,} be the corresponding training dataset drawn i.i.d. from
D... Suppose the loss function (-, -) takes values in the interval |0, ¢| and is p-Lipschitz in the first
argument. Then, with probability at least 1 — 6, the following bounds hold.

- . 1o 11/2
Tr(Kk(Xr, X7))Y, Egr K (X, Xi) 1Y%
FfT Z {sz k - k ]
- — g (127)
[ Te(Kn(Xr, X2) Y Eper Ko (X, Xi) 1 Y5 + ey 1092/
N, 2n,

+2p
k=1
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[Tr(Kp(Xr, X )Y Eryr K (Xg, X3) 1Y) 1/2
G, {2PZ 2 )Y, s,tk ke (X, Xi) ™1 Y]

T=1

(128)

2
—|——||e K. (Xr,X5) Y||2+3 log( /5>}

2n,

Therefore, the bounds on both forgetting and generalization error for OGD in CL are tighter than
those for standard SGD. Furthermore, OGD+ achieves even tighter bounds than OGD, providing
stronger theoretical guarantees.

G.6 PROOF OF LEMMA]
Based on the bounds established in Theorem|5| we characterize the evolution of ;""" and G}

Proof. Similar to the proof in Appendix E we analyze the evolution of the upper bounds G}

and F**" over the interval [1, t1*].

(I) We first analyze G,"". Its derivative with respect to t7 can be written as

dG P
dt; = g1(tr) + pg2(tr), (129)
where the functions g; and g, are given by
1 ~+ _ =2 -
g1(t7) = —— Y7 KX Xt e (X, Xop) Yo, (130)
T
and
[ Te(Er (X, X)) Vile oy Ke(Xe Xo) g,
Z o (131)

[?TT(I e E KT(XT,XT))KT(XT7XT)—1YT]1/2

We first assume that [Tr(KT(XT, X;))] 12 # 0 for all 7 € [T, and that Y7 # 0. This is a mild
assumption, since if either term is zero, the corresponding component can be disregarded. From the

proof of Lemmal we know that ¢~ K7 (X7 X7) |

_ 2tp
tr € [1,t9*]. Moreover, since e "7 KT(XT’XT)KT (X7, Xr) is positive definite, it follows that

g1(tr) < O forall tp € [1, 5]

is positive definite. Hence, g2(t7) > 0 for all

Moreover, both g; and g are continuous with respect to ¢7 on the interval [1, t%‘“]. We therefore
define
M; :=— max gi(x) >0, My := max go(z) > 0.
we[1,tm] zE[1,tm)

Let pj, = % Then, for any p < p/, we obtain

dGeper
—2— = g1(t) + pga(tr)
dtr
M
<gi(tr) + 37 92(tr) (132)
2
< gi(tr) + M
<0.
Therefore, for any Lipschitz constants p < pf, Gy is monotonically decreasing with respect to t7.
Since .
[Tr(Kp(Xr, X))V, Ep e Ki(Xp, Xp) ™ Y] V/2
Z k )) k Fkity k( k k) Ic} >0, (133)
ny
k=1
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upper

it follows that a smaller Lipschitz constant p directly results in smaller values of G’

tr.

for any fixed

(II) Then, we analyze F,*™" similarly. Its derivative with respect to 7 can be written as

dFupper
S = ph(tr), (134)
T
where the function f5 is given by
fatr) = 3 LT X)) v Vi e O Xy,

o2\l ) = - 7 ~ .

= nenT V(T — e mr KT X0y o (X, Xop) =1 ] 1/2
(135)

We first assume that [ Tr(K7 (X, X,))]"/? # 0 for all 7 € [T], and that V- # 0. This is a mild
assumption, since if either term is zero, the corresponding component can be disregarded. From the
t
proof of Lemma we know that ¢~ nr 17 (X X7)
upper
tr € [1, 7], which leads to —;Z— > 0. Therefore, F;*"" is monotonically increasing with respect

dtr
to tp.

is positive definite. Hence, f2(t7) > 0 for all

In addition, since

ZTZ [ Te(Ku (X7 X)W B K (X, X)) 0 (136)
Ny o
k=1
and . - 1 11/2
Z [ Tr(Ky (X7, X))V By K (X, Xie) 'Y >0 (137
n,- T

—_

k=

it follows that a smaller Lipschitz constant p directly leads to smaller values of F**" for any fixed
tr. O]
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