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Deep convolutional neural networks (CNNs) have certain structural,
mechanistic, representational, and functional parallels with primate vi-
sual cortex and also many differences. However, perhaps some of the
differences can be reconciled. This study develops a cortex-like CNN
architecture, via (1) a loss function that quantifies the consistency of a
CNN architecture with neural data from tract tracing, cell reconstruc-
tion, and electrophysiology studies; (2) a hyperparameter-optimization
approach for reducing this loss, and (3) heuristics for organizing units
into convolutional-layer grids. The optimized hyperparameters are con-
sistent with neural data. The cortex-like architecture differs from typ-
ical CNN architectures. In particular, it has longer skip connections,
larger kernels and strides, and qualitatively different connection sparsity.
Importantly, layers of the cortex-like network have one-to-one correspon-
dences with cortical neuron populations. This should allow unambigu-
ous comparison of model and brain representations in the future and,
consequently, more precise measurement of progress toward more bio-
logically realistic deep networks.

1 Introduction

Computational models can help to clarify how neural cell and circuit mech-
anisms contribute to behavior. However, while the brain’s purpose is to or-
chestrate sophisticated interactions with complex environments, it is hard
to develop models with comparable behavior. Despite having developed
somewhat independently of neuroscience, deep networks are capable of
more realistic behavior than other models. For example, such systems can
extract a wide variety of ethologically relevant information from natural
visual scenes (Krizhevsky, Sutskever, & Hinton, 2012; Žbontar & LeCun,
2016; He, Gkioxari, Dollar, & Girshick, 2017; Kheradpisheh, Ghodrati, &
Ganjtabesh, 2016). When combined with reinforcement learning, they can
also interact successfully with visually complex environments (Mnih et al.,
2015). So, importantly, from a functional perspective, deep networks are
currently the most realistic brain models.
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Deep networks, however are mechanistically quite different from the
brain. Deep convolutional neural networks (CNNs) are typically little more
than hierarchies of linear-nonlinear units, with fairly straightforward feed-
forward structures. This limits their usefulness as brain models. For ex-
ample, they cannot be used to study the role of contour integration in
naturalistic environments if they lack contour integration. Such mechanistic
differences are also a likely source of differences in behavior (Karpathy,
2014; Nayebi & Ganguli, 2017; Lake, Ullman, Tenenbaum, & Gershman,
2016; Hassabis, Kumaran, Summerfield, & Botvinick, 2017; Rajalingham
et al., 2018).

A related limitation is that existing deep networks have different archi-
tectures than cortical networks do, including different populations and con-
nections. This prevents the use of deep networks to study the functional
roles of specific brain areas. Architectural differences also impede the com-
parison of representations in deep networks and the brain. Deep networks
account for a surprising amount of detail in neural representations. In par-
ticular, CNNs trained for object recognition are good linear predictors of
neural activity at multiple points in the ventral visual stream (Yamins et al.,
2014; Khaligh-Razavi & Kriegeskorte, 2014) and of functional magnetic res-
onance imaging data from large areas of human visual cortex (Güçlü & van
Gerven, 2015; Eickenberg, Gramfort, Varoquaux, & Thirion, 2016; Seeliger
et al., 2017; Shi, Wen, Zhang, Han, & Liu, 2017; Wen, Shi, Chen, & Liu, 2017).
They also represent category-orthogonal information similar to primate in-
ferotemporal cortex (Hong, Yamins, Majaj, & DiCarlo, 2016). There are also
differences between deep networks and the ventral stream, including differ-
ences in representational similarity (Cadieu et al., 2014), response sparsity
(Dong, Liu, & Hu, 2017), and other response statistics (Tripp, 2017), as well
as dynamics (Tamura & Tanaka, 2001; Brincat & Connor, 2006; Issa, Cadieu,
& DiCarlo, 2018). However, because layers of existing deep networks do
not have one-to-one analogies with biological neural populations, it is not
clear which layers should be compared to which groups of real neurons.
This could obscure effects of network mechanisms (e.g., local response nor-
malization) in producing more or less realistic representations. Also, since
representations depend on position in the network, architectural differences
may impose a ceiling on the representational similarity of artificial and bi-
ological networks.

This issue is addressed here by developing a data-driven convolutional
architecture based on the primate visual cortex. Hyperparameters of con-
volutional neural networks (CNNs) are optimized to fit neurobiological
data, including data from tract tracing, cell reconstruction, and electrophys-
iology studies. It is found that hyperparameters can be chosen to closely
match neurophysiological data. However, the resulting architecture is qual-
itatively distinct from current widely used CNN architectures. In particu-
lar, it has longer skip connections; wider ranges of kernel sizes, strides, and
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connection densities; and qualitative differences in sparsity. The code used
in this study is available at github.com/bptripp/calc.

2 Methods

CNN architectures were optimized for similarity with the visual cortex of
macaque monkeys. Because standard CNNs are feedforward, only feedfor-
ward connections were included, according to the hierarchy of Felleman
and Van Essen (1991). These feedforward architectures should be elabo-
rated with lateral and feedback connections in the future, but there is no
standard way to do this. Multiple approaches, (Tompson, Jain, LeCun, &
Bregler, 2014; Rubin, Hooser, & Miller, 2015; Lotter, Kreiman, & Cox, 2017;
Nayebi et al., 2018) could potentially be integrated and compared to the
basic feedforward model developed here. The architectures included sepa-
rate CNN layers corresponding to cortical layers L2/3, L4, L5, and L6. L1
was omitted because it has few excitatory cells. Feedforward interarea con-
nections in the model originated from L2/3, L5, and L6 and terminated on
neurons in L4 (Felleman & Van Essen, 1991). Within each area, interlaminar
connections from L4 to L2/3 and L5, L2/3 to L5, and L5 to L6 were included
(see Figure 1).

2.1 Quantification of Similarity to Cortical Architecture. A loss func-
tion was developed to clearly quantify the inconsistency between a given
CNN architecture and measurable cortical properties. Optimizing the hy-
perparameters to minimize this loss function improves the consistency of
the CNN with neural data. This is a flexible approach that allows for miss-
ing data, constraints, and priors on the hyperparameters and the potential
addition of further data sets in the future.

Cortical properties were estimated from data in the neuroscience litera-
ture (see section 2.4 for details of these estimates); these are written below
with a tilde overtop. Associated with the ith layer in the model (correspond-
ing to a specific population in the brain) are ñi (number of neurons in the
layer), ẽi (number of extrinsic inputs per neuron, i.e. inputs from other brain
areas), and w̃i

RF (the receptive field width in degrees visual angle). For in-
terarea connections, associated with the connection from layer j to layer i
is f̃ i j (the fraction of all neurons projecting to layer i that are from layer
j). A related property that is not directly estimated is ñi j, or the number of
presynaptic neurons that contribute to the (i j)th connection. For interlam-
inar connections, associated with the connection from layer j to layer i is
b̃i j, the mean number of inputs from layer j that converge onto each post-
synaptic neuron.

A convolutional neural network (CNN) has analogous properties, which
are written using the same variable names but without the tilde. For exam-
ple, the actual number of units in the network’s ith layer is denoted ni, and
the goal is to make ni ≈ ñi. These parameters cannot be set directly because
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Figure 1: Sketch of a generic visual area (large box) and its relationship with
other visual areas that are lower, higher, and at the same hierarchical level
(smaller boxes). The model includes the feedforward connections that are indi-
cated with solid arrows and omits feedback and lateral connections (dashed ar-
rows). Interlaminar connections from L4 to L2/3 and L5 are counted among the
feedforward ones because feedforward input arrives mainly in L4 and leaves
via other layers. Ascending interlaminar connections from deep layers were
omitted because they appear to be modulatory. They have broad terminations
that cross functional boundaries (Callaway, 2004) and tend to target inhibitory
interneurons (Thomson & Bannister, 2003). The connections sketched in this di-
agram are based on Felleman and Van Essen (1991) and Binzegger, Douglas,
and Martin (2004).

they are functions of overlapping sets of tunable hyperparameters. Rather,
the tunable hyperparameters are optimized to minimize the loss,

C =
∑

i

κn log2 ni

ñi
+

∑
i

κw log2 wi
RF

w̃i
RF

+
∑

i

κe log2 ei

ẽi
+

∑
i j∈A

κ f log2 f i j

f̃ i j

+
∑
i j∈L

κb log2 bi j

b̃i j
+ Cconstraints, (2.1)
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where κ are importance weights, the sets A and L are interarea and interlam-
inar connections, respectively, and Cconstraints is a placeholder for additional
cost terms such as soft constraints on the parameters. For example, some-
times a term was added to penalize the total number of parameters in the
network, because numbers of parameters relate to memory requirements,
run time, and overfitting. However, none of the results presented later in
this letter incorporated this term. The log2 terms are symmetric in the ratio
of actual versus ideal values (e.g., two times too big is as bad as two times
too small). Estimates were lacking for some physiological receptive field
sizes, in which case the corresponding terms were omitted from the sums
(see the details in section 2.4). To obtain the results presented later, the κ

terms were all set to one over the number of items in the corresponding
sum.

2.1.1 Relating Cortical Properties to CNN Hyperparameters. The above mea-
surable properties of the cortex do not correspond directly to hyperparam-
eters of CNNs. For example, kernel size affects receptive field size but is not
the same thing.

There are hyperparameters associated with each layer and connection of
a CNN. Layer hyperparameters are mi (number of feature maps, or chan-
nels, in convolutional layer i), and wi (width of layer i in pixels; the height
is assumed to be the same as the width). Standard connection hyperparam-
eters include si j (the stride of the connection) and w

i j
K (kernel width). Both

the i and j indices are needed for these parameters because stride and ker-
nel width are not necessarily the same for different connections into a given
layer. Two nonstandard connection parameters were used: ci j (the fraction
of feature maps in layer j that contribute to the i jth connection) and σ i j (a
pixel-wise sparsity parameter, the fraction of nonzero kernel elements in
the channels that are not fully zeroed due to ci j). The parameter ci j is re-
lated to Scardapane, Comminiello, Hussain, & Uncini (2017); however, that
work used group-sparsity regularization to encourage all of a unit’s output
weights to go to zero so that it could be removed from the network. In con-
trast, layers here typically have a number of targets, so eliminating a unit
from one connection does not eliminate it from the network.

Network hyperparameters are related to physiological properties in part
through

ni = mi(wi)2, (2.2)

ei =
∑
j∈Ii

(wi j
k )2ci jmjσ i j, (2.3)

where Ii is the set of inputs to layer i. The expression for f i j is more complex,
so it is developed in the appendix.
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Additionally, certain properties of a layer depend on properties of its
incoming connections. Such relationships are straightforward in networks
with a sequential feedforward structure; however, the brain has a high de-
gree of convergence from multiple origin areas onto each target, raising the
problem of consistency across these connections. Two such properties are
the map width wi (the number of units along one dimension of a feature
map) and the receptive field width wi

RF . In a sequential feedforward net-
work, the map width depends on the width of the input (in image pixels)
and the strides of all previous layers. It also depends on how edges are
treated in the convolutions, but for simplicity, it is assumed here that edges
are padded to prevent changes in resolution due to edge effects (i.e., “same”
padding in Matlab terminology). In a network that lacks convergence of
multiple connections onto a layer, wi = w j/si j, so the parameters wi and si j

are redundant with each other. In a network where multiple layers ( j ∈ Ii)
provide input to layer i, w j and si j may be different for different inputs.
However, their ratios should all be consistent with the same value of wi. A
procedure for ensuring this is described in section 2.3.

The receptive fields sizes, wi
RF, could also potentially be inconsistent

when calculated along different converging paths. To avoid this, wi
RF are

treated as hyperparameters, and w
i j
K are derived from them. The full recep-

tive field grows linearly with depth. However, the edges of a unit’s recep-
tive field tend to exert a weak influence on its activity. This work considers
instead the effective receptive field, which tends to be approximately gaus-
sian in shape and to grow more slowly than the full receptive field (Luo, Li,
Urtasun, & Zemel, 2016). If the stride is 1 and the kernel elements are sta-
tistically uniform, the variance (σ i)2 of the gaussian postsynaptic receptive
field (RF) is the sum of variances of the presynaptic receptive field, (σ j )2,
and the kernel,

(σ i)2 = (σ j )2 + 1

w
i j
K

(wi j
K −1)/2∑

x=−(wi j
K −1)/2

x2. (2.4)

The units are layer j pixels. To facilitate optimization, the sum is approxi-
mated as an integral:

(σ i)2 ≈ (σ j )2 + 2/w
i j
K

∫ w
i j
K /2

x=0
x2dx = (σ j )2 + (wi j

K )2/12. (2.5)

The RF size in degrees visual angle is (accounting for strides in earlier
connections)

w
j
RF = σ j[wp

RF (w0/w j )], (2.6)
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Table 1: Summary of the Cortical Population Properties Considered in This
Study, with Key Sources from the Neuroscience Literature and Equations for
Analogous Properties in CNNs.

Cortical Property Neuroscience Sources CNN Equivalent

ñi (number of neurons) Schmidt, Bakker, Hilgetag,
Diesmann, and van
Albada (2018)

Garcia-Marin, Kelly, and
Hawken (2017)

ni = mi(wi )2

ẽi (number of extrinsic
inputs per neuron; inputs
from other brain areas)

Schmidt et al. (2018)
Garcia-Marin et al. (2017)

ei = ∑
j∈Ii

(wi j
k )2ci jm jσ i j

w̃i
RF (receptive field width
in degrees visual angle)

See Table 3. w
j
RF = σ j[wp

RF (w0/w j )]

(σ i )2 = (σ j )2

+ 2/w
i j
K

∫ w
i j
K /2

x=0
x2dx

Notes: The index i on layer properties indicates the ith layer. The indices j and i on connec-
tion properties indicate the presynaptic and postsynaptic layers, respectively. The CNN
hyperparameters are: mi (number of channels); wi (width of layer i in pixels); si j (stride);
w

i j
K (kernel width); ci j (fraction of channels in layer j that contribute to the i jth connection);

and σ i j (pixel-wise kernel sparsity). w0 is the width of the input image.

where w
p
RF is the size of a single image pixel in degrees visual angle (a prop-

erty of the camera) and w0 is the width of the input image (in pixels). The
expression in square brackets is the size of a layer j pixel in degrees of vi-
sual angle. wi j

K can therefore be found given pre- and postsynaptic receptive
field widths.

Tables 1 and 2 summarize the cortical architectural properties considered
here, their definitions in terms of CNN hyperparameters, and the sources
in the neuroscience literature that were used to estimate them (discussed
further in section 2.4).

2.1.2 Soft Constraints. Further loss terms were added to avoid underuse
or overuse of individual feature maps. Specifically, Cconstraint included a term
( f w

j − ∑
i j∈Aj

ci j )2, where f w
j is an estimated fraction of excitatory neurons

with axons that enter the white matter for each j among the L2/3, L5, and L6
layers (sources of interarea connections), and Aj is the set of interarea con-
nections that originate in j. For L5 and L6, f w

j = 1. This encouraged the use
of each feature map approximately once in an outgoing connection. Among
projection neurons, different pyramidal neurons tend to project to different
places (Hübener, Schwarz, & Bolz, 1990; Lur, Vinck, Tang, Cardin, & Higley,
2016) with little branching observed in anterograde tracer studies (Rock-
land, 2013) and little double labeling observed in retrograde tracer studies
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Table 2: Summary of Cortical Connection Properties Considered Here.

Cortical Property Neuroscience Sources CNN Equivalent

f̃ i j (fraction of all neurons
projecting to layer i that
are from layer j; for
interarea connections)

Markov et al. (2014)
Bakker, Wachtler, &

Diesmann (2012)
Schmidt et al. (2018)

f i j = ni j∑
j∈Ii

ni j

ni j = n jci jσ
i j
∗ αi j

αi j =
⎧⎨
⎩

1, if si j < w
i j
K

(wi j
K /si j )2, otherwise

σ
i j
∗ = 1 − (1 − σ i j )β

i jmi

β i j =
{

(wi j
K /si j )2, if si j < w

i j
K

1, otherwise

b̃i j (mean number of inputs
from layer j that converge
onto each postsynaptic
neuron; for inter-laminar
connections)

Schmidt et al. (2018)
Fares and Stepanyants

(2009)

bi j = (wi j
K )2m jci jσ i j

Notes: The organization is the same as Table 1. The expression for f i j is explained in the
appendix.

(Bullier, Kennedy, & Salinger, 1984). Many pyramidal cells in these cortical
layers do not contribute to feedforward interarea connections, but nonpro-
jecting neurons in L5 and L6 were omitted from the model, as described
in section 2.4. For L2/3, f w

j = 0.5 (Callaway & Wiser, 1996). Cconstraint also
included a term (1 − ∑

i j∈Lj
ci j )2 for j among the L2/3, L4, and L5 layers

(sources of interlaminar connections), where Lj is the set of inter-laminar
connections that originate in j.

2.2 Quantization of Receptive Field Variations. In a CNN layer, recep-
tive field centers and kernel variations are quantized, and units are orga-
nized on a grid of three dimensions (vertical center, horizontal center, and
feature map). Apopulation of size n must be divided somehow among these
dimensions. For simplicity, the height of each feature map was made equal
to the width, w, so that n = w2m, where m is the number of feature maps.
There is no correct choice of m because biological neurons are not organized
in a three-dimensional grid of discrete features and pixels. However, some
choices may be more reasonable than others.

In V1, many receptive fields are similar to various Gabor functions, and
corresponding convolutional-layer channels would encode different orien-
tations and spatial frequencies. If there were too few channels, the net-
work would be blind to certain orientations. But if there were an excess
of channels and too few pixels spanning the scene, the network would be
blind to edges at periodic retinotopic positions. To avoid these extremes, the
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Figure 2: Scatter plot of V1 receptive field (RF) sizes versus eccentricity (data
replotted from Gattass et al., 1981). The average coefficient of variation (CV) of
RF sizes around a given eccentricity was estimated as 0.44. The red dots illus-
trate the neighborhoods used for this estimate. Around each RF (e.g., the large
red dot), the CV was calculated over up to 10 other RFs (smaller red dots) with
eccentricity no more than 20% larger or smaller. These CVs were averaged over
the entire population.

heuristic adopted here is that receptive fields should overlap with their
nearest neighbors about as much across channels as across space.

As a preliminary step in this calculation, the coefficient of variation (CV)
of receptive-field sizes at a given eccentricity was estimated from data in
Figure 13 of Gattass, Gross, and Sandell (1981; replotted here in Figure 2)
as 0.44. From the same data set, it was estimated that half of the visual field
is approximately 24 V1 receptive fields wide. (This is the integral of the
inverse of the regression line, from 0 to 90 degrees.) Finally, the number of
neurons in L2/3 of V1, in a single hemisphere, is estimated as 53,072,320
neurons, based on the density estimate of 47,386 neurons/mm2 (Schmidt
et al., 2018) and mean surface area of 1120 mm2 (Felleman & Van Essen,
1991).

Correlations between neighboring receptive fields were then estimated
using a recent model of receptive field variations across V1 (Goris, Simon-
celli, & Movshon, 2015). For a given number of feature maps, m, the same
number of random linear kernels was drawn from the model, using param-
eter distributions from Goris et al. (2015) and varying the receptive field size
according to the estimated CV of 0.44 (above). Pairwise correlations were
calculated between kernels and their nearest neighbors in visual space and
feature space. To find a kernel’s nearest neighbor in visual space, the ker-
nel was shifted horizontally by a fraction of the receptive field size, 24/w,
where w = √

n/m. Figure 3a shows examples of the nearest neighbors of a
kernel in visual space and feature map space. Figure 3b shows how these
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Figure 3: Heuristics for organizing neurons into grids. For V1, the number of
feature maps was chosen so that differences between receptive fields would be
about as large in feature space as in visual space. (a) The left panel shows an ex-
ample of a model V1 receptive field kernel. The center panel shows the kernel
of a nearest neighbor in visual space, that is, the same kernel shifted laterally.
Its correlation with the left kernel is 0.91. The right panel shows the nearest
neighbor in feature space, which has a correlation of 0.90. (b) Given a certain
number of neurons, as the number of feature maps increases, the correlation
between nearest neighbors in feature space increases, while the correlations in
visual space decrease. The lines show means, and the colored areas show stan-
dard deviations. (c) Extrapolation to other areas was based on basal spine count.
The large dots show spine counts from Elston (2007) versus distance from each
area to V1 (Schmidt et al., 2018). The smaller dots are inferences for other areas,
from the regression line.

correlations depend on the number of feature maps used to model V1 L2/3
in a random sample of V1-like receptive-field kernels. As the number of fea-
ture maps increases, neighbors in feature space get nearer, and neighbors
in visual space get farther away because there are fewer pixels. Neighbors
in feature and visual space are about equally close when there are about
125 feature maps. Over 10 groups of random kernels, this point occurred
with 130 +/−6 feature maps (mean +/−standard deviation). The model of
Goris et al. (2015) also includes a nonlinear component. If this is included,
the result is 87 +/−5 feature maps. However, Cowley et al. (2016) found
that the version of this model without the nonlinear component was more
consistent with dimension reduction of recordings of V1 cells, so in this
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letter, L2/3 of V1 was taken to be most consistent with about 130 convolu-
tional feature maps. However, given the large standard deviations, a wide
range of choices around this value would also be fairly reasonable.

Another heuristic was needed to extrapolate this estimate outside V1. If
a convolutional network were to include recurrent connections and if spar-
sity and kernel size were held constant, then the in-degree associated with
these connections would vary linearly with the number of feature maps.
The density of spines on basal dendrites in L2/3 was used as a correlate
of in-degree of recurrent connections. These densities vary across visual ar-
eas by an order of magnitude (Elston, 2007). The number of feature maps
in L2/3 of each area was set to be linearly proportional to these densities,
interpolating unknown values according to the distance of each area from
V1 (see Figure 3c). Together with the V1 model, this led to heuristics for the
numbers of feature maps in each visual area.

2.3 Optimization of the Hyperparameters. Some CNN hyperparame-
ters are integers, which makes their optimization an integer programming
problem. Some of these integers, particularly the number of feature maps
(m) and the kernel width (wk), can be rounded after optimizing them as real
numbers, without introducing large errors, allowing the use of gradient-
based methods. However, strides cannot be handled in this way. This is
partly because strides are often two or fewer, so rounding them has a rela-
tively large effect. A more fundamental issue is that there are typically mul-
tiple paths from the input to a given layer. The product of strides should
be the same along each of these paths; otherwise, different paths will pro-
duce input for inconsistent numbers of neurons. We cannot set the strides by
first setting all the map widths to physiologically realistic values and then
setting each stride to the ratio of presynaptic and postsynaptic map widths
because this ratio will not be an integer generally. One way to resolve this in-
consistency would be zero-pad lower-resolution inputs to a layer, but then
each unit would receive a mixture of different features from different parts
of the scene.

For this reason, only sets of hyperparameters with valid stride patterns
were considered, meaning that the strides were integers, the product of
strides along each path to a given layer was the same, and the product of
strides along any path was no greater than the width of the input (so that
each layer had at least one pixel). The integer programming problem is non-
convex because the error terms involve a difference between a target value
and a product of stride parameters. This prevents the use of open source
packages such as CVXPY (www.cvxpy.org). Instead, a heuristic method was
used to generate a large number of valid stride patterns, and the one with
the lowest cost was chosen.

Complicating this process, the ratio of invalid to valid stride patterns
is exponential in the number of connections. The search was made more
tractable by exploiting the fact that longer paths through the network tend

www.cvxpy.org
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to have smaller strides at each step. Algorithm 1 gives details of the process
that was used to sample random valid stride patterns. This process included
a heuristic probability distribution for individual strides (P(i) in algorithm
1) that sampled small values more frequently. In a long path, many of the
strides should be one. For example, if the input is 256 pixels wide and the
output is to be at least 1 pixel wide, no more than eight strides in a path can
be more than 1.

After generating many valid stride patterns (typically 1000), a single pat-
tern was chosen based on consistency with heuristics for the numbers of
feature maps in each visual area (discussed in the previous section).

With the stride pattern determined, certain other hyperparameters could
then be calculated directly. For example, the resolution of layer i, wi, is the
resolution of the input divided by the product of strides along any path to
i. The number of feature maps is then mi = [

ñi/w
2
i

]
, rounded to the nearest
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integer. For a given connection, if both the presynaptic and postsynaptic
receptive field sizes were known, the kernel size of the connection could
also be calculated directly. However, this did not occur in the current work,
because receptive field sizes were specified only for L2/3 (see section 2.4).
Remaining hyperparameters were optimized in TensorFlow (Abadi et al.,
2016), with the Adam algorithm (Kingma & Ba, 2014). This is a generic
approach that works with or without various priors and hard or soft con-
straints and would be compatible with incorporation of other data sets in
the future. Also, as shown below, this approach produces good fits to the
data.

Kernel widths are among the integer hyperparameters, but these values
were not rounded after optimization. The rationale was that real-valued
kernel sizes can be approximated by rounding up and increasing sparsity
at the edges. For example, a kernel size of 4.1 and sparsity σ can be approx-
imated by a kernel of size five, with sparsity σ throughout the center and
0.55σ on the edges, producing an average of (3 + 2(.55))σ = 4.1σ nonzero
weights in each row.

2.4 Estimates of Physiological Properties. Schmidt et al. (2018) recently
combined many data sources from the literature to estimate the network
structure of macaque visual cortex, using the FV91 (Felleman & Van Essen,
1991) cortical parcellation. Many of their estimates are adopted here. Read-
ers are referred to their paper for a thorough description of their process
and the many decisions involved.

2.4.1 Numbers of Neurons. The number of neurons in each layer and area
(e.g., L2/3 of V1) was estimated from the corresponding cortical surface
area (in mm2) times the neuron density of the layer (in neurons/mm2). Both
estimates were taken from Schmidt et al. (2018). Numbers of neurons in
subdivisions of V1 layers (e.g., L4Cα) were estimated by dividing laminar
totals from Schmidt et al. (2018) according to ratios in Garcia-Marin et al.
(2017).

CNN units correspond most closely to excitatory neurons. CNN units
are actually neither excitatory nor inhibitory, because the kernels can take
on both positive and negative values. However, a network with such mix-
ing of positive and negative weights can be transformed into a more phys-
iologically realistic structure (with distinct excitatory and inhibitory units)
in a way that barely affects the effective connections (Parisien, Anderson,
& Eliasmith, 2008). This is done by shifting the weights in each connection
until they are all positive and then adding a parallel two-synapse pathway
through a new population of inhibitory neurons. (See also Tripp & Elia-
smith, 2016, for additional results on the stability of recurrent networks
in this scheme.) The original units become excitatory after this transform.
The Parisien transform was not used in my study, as it increases computa-
tional requirements with little effect on function. However, reflecting this
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well-defined correspondence between excitatory neurons and mixed arti-
ficial units, targets for the numbers of units in each layer were based on
excitatory neuron densities. Consistent with this interpretation, most of the
convolutional units in the current model project to other cortical areas (anal-
ogous to excitatory pyramidal neurons).

The model includes only feedforward connections, so an effort was made
to exclude neurons that are involved mainly in feedback. Both supragran-
ular and infragranular layers participate in feedforward and feedback con-
nections with other areas, although infragranular layers are a more frequent
source of feedback (Felleman & Van Essen, 1991). Cortical layer L6 sends
dense (Binzegger et al., 2004) modulatory (Callaway, 2004) feedback to L4,
as well as the thalamus (Briggs, 2010). Different cortico-cortical cells in L5
project to different cortical areas, both higher and lower in the visual hier-
archy (Kim, Juavinett, Kyubwa, Jacobs, & Callaway, 2015). To focus on neu-
rons that contribute to feedforward cortico-cortical connections, population
sizes of L5 and L6 were reduced. The L5 feedforward cortico-cortical popu-
lation was estimated as 1/16 of the total L5 excitatory population. This was
based on a reconstruction of 16 L5 pyramids in Callaway and Wiser (1996),
of which only 3 reached the white matter, and on other work showing 3 dis-
tinct types of L5 projection neurons, only 1 of which is cortico-cortical (Lur
et al., 2016). Similarly, the L6 feedforward cortico-cortical population was
estimated as 0.15 of the total L6 excitatory population. This was based on
Wiser and Callaway (1996), which found that 28% of L6 pyramids entered
the white matter but about half of these were cortico-thalamic rather than
cortico-cortical.

2.4.2 Interarea Connection Sparsity. Interarea connections in the model
were based on retrograde tract-tracing data from a large, systematic study
(Markov et al., 2014) that included tracer injections into 27 cortical areas.
Markov et al. (2014) reported the fractions of labeled neurons found in
each area extrinsic to the injection site (the FLNe). They also reported the
percentage of supragranular neurons that contributed to each connection
(%SLN). My model requires FLNe estimates for each feedforward interarea
connection, including separate estimates for connections that originate in
L2/3, L5, and L6. Supragranular and infragranular totals were obtained by
multiplying the area-wise FLNe values by %SLN/100 and (1−%SLN/100),
respectively. The supragranular total was assigned to L2/3. The infragran-
ular total was divided between L5 and L6 on the basis of laminar con-
nection strengths in CoCoMac (Bakker et al., 2012), where available, or
otherwise divided evenly between L5 and L6. Laminar connections in
CoCoMac can be marked as present, absent, or unknown or marked with
qualitative strength labels of 1 to 3. If a laminar source was marked as
present with unknown strength, it was assigned a strength of 2. The strength
labels were then treated as if they were linear quantitative descriptions. For
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example, if L5 and L6 had strengths 2 and 3, respectively, then L5 and L6
were assigned 2/5 and 3/5 of the infragranular FLNe.

For the many visual areas that were not injected by Markov et al. (2014),
Schmidt et al. (2018) included connections that are present in CoCoMac
(Bakker et al., 2012). For these connections, they estimated FLNe and %SLN
by regression from interarea distances and cell-density ratios, respectively,
and these estimates are adopted here.

Markov et al. (2014) did not use the FV91 parcellation, so Schmidt et al.
(2018) assigned FLNe to FV91 areas according to overlaps between the two
parcellation schemes. For target areas that were not injected by Markov et al.
(2014), they included only those connections present in CoCoMac. For areas
injected by Markov et al. (2014), they included any connections that were
produced by redistributing FLNe according to overlaps between areas in
the two parcellation schemes. A limitation of this approach is that it seems
to overestimate the number of interarea connections targeting areas injected
by Markov et al. (2014). In the Markov et al. (2014) data, 66% of possible con-
nections exist, but mapping to the FV91 parcellation leads to 97% connec-
tivity into areas injected by Markov et al. (2014). Diverging from Schmidt
et al. (2018), a more conservative estimate was obtained here by redistribut-
ing FLNe only among connections that exist in the CoCoMac database (for
target areas injected by Markov et al., 2014, as well as other target areas).
This approach probably misses some connections, as Markov et al. (2014)
reported a number of newly found connections that are not present in Co-
CoMac. Furthermore, the number of connections is less important than the
density; for example, a very weak connection is similar to a lack of connec-
tion. However, while the newly found connections in Markov et al. (2014)
were about 100 times as weak as previously known connections on aver-
age, the connections eliminated in the current approach were only about
5 times weaker than known connections. So the current approach proba-
bly misses some of the weakest connections (about 100 times weaker than
average) while avoiding somewhat stronger spurious connections (about 5
times weaker than average).

2.4.3 Convergence onto Individual Neurons. Schmidt et al. (2018) produced
detailed estimates of the average numbers of synapses onto each neu-
ron, by layer and area, including both interlaminar and interarea con-
nections. These estimates were adopted in the present work. Specifically,
Schmidt et al. (2018) estimated the number of excitatory and inhibitory
inputs from other visual areas, excitatory and inhibitory interlaminar in-
puts from within a 1 mm2 patch around the target neuron, and total “exter-
nal” inputs, xext , including inputs from nonvisual areas and from the same
area but outside the 1 mm2 patch. For my model, estimates of total excita-
tory interlaminar inputs were needed, including those inside and outside a
1 mm2 patch. Because inputs from distant cortical areas are a small minority
(Markov et al., 2014), it was assumed for simplicity that all the “external”
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inputs were interlaminar, whereas in reality a small fraction are from non-
visual areas (these were called type IV connections in Schmidt et al., 2018).
It was also assumed that the ratio of excitatory over total inputs, rex/tot , was
the same outside as inside the patch. The estimates of interlaminar connec-
tion densities within a 1 mm2 patch, from Schmidt et al. (2018), were there-
fore multiplied by a gain, (epatch + rex/totxext )/epatch, where epatch is the total
within-patch excitatory input. This produced estimates of the total inter-
laminar connection densities, including connections from both inside and
outside the patch.

Connections between pairs of neurons typically involve multiple
synapses, with low variance (Fares & Stepanyants, 2009; Kasthuri et al.,
2015; Song, Sjostrom, Reigl, Nelson, & Chklovskii, 2005). To approximate
the number of functional inputs to a neuron rather than the number of phys-
ical synapses, Schmidt et al.’s (2018) synapse estimates were divided by the
mean number of synapses per connection across cases in Fares and Stepa-
nyants (2009), which was 4.47. In the projections from LGN to V1 Garcia-
Marin et al. (2017) estimated a higher redundancy of 25 to 28 synapses per
functional connection, with each L4 neuron receiving input from only 7 or
8 distinct LGN neurons. This estimate was used directly for the connection
from LGN to V1.

2.4.4 Receptive Field Sizes. Classical receptive field (RF) sizes have been
reported for many cortical areas. Within a cortical area, mean RF sizes usu-
ally vary with eccentricity, or distance from fovea to RF center (Gattass et al.,
1981), whereas RF sizes in convolutional networks are uniform across the
visual field, by construction. However, this distinction was deferred for sim-
plicity. RF sizes were taken from five degrees eccentricity (an intermedi-
ate value). RF sizes vary somewhat by cortical layer (Gilbert, 1977), with
deeper layers generally having larger receptive fields. Most reports of RF
sizes do not identify the layer, however, in part because the layer can be un-
certain during in vivo recording. Lacking layer-wise data for most visual
areas, mean RFs reported in the literature were applied to layer 2/3, and
other layers were omitted from this term in the loss function. RF sizes have
not been thoroughly characterized in all areas. However, without constrain-
ing kernel structure, receptive fields can only get larger along feedforward
paths, so specifying a few RF sizes throughout the network constrains the
remaining ones. Table 3 lists the RF sizes used and the corresponding liter-
ature sources.

2.4.5 Limitations of Physiological Estimates. In general, the accuracy of
these estimates is limited. For example, regression curves were used to in-
terpolate unknown data on FLNe and %SLN in Schmidt et al. (2018), but
the measured values have large scatter around these curves. For example,
FLNe of connections with lengths of between 29 mm and 31 mm vary over
five orders of magnitude (data from Figure 4C of Schmidt et al., 2018).
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Table 3: Mean Receptive Field (RF) Sizes, in Degrees Visual Angle, at Five De-
grees Eccentricity.

Area RF Size Source

V1 1.3 Gattass et al. (1981)
V2 2.2 Gattass et al. (1981)
V3 2.8 Gattass, Sousa, and Gross (1988) and Felleman and Van Essen

(1987)
V4 4.8 Gattass et al. (1988) and Boussaoud et al. (1991)
MT 4.2 Komatsu and Wurtz (1988) and Maunsell and Van Essen (1987)
PO 7.7 Galletti et al. (1999)
MSTd 16.0 Komatsu & Wurtz (1988)
PITd, PITv 8.9 Boussaoud et al. (1991)
CITd, CITv 38.5 Boussaoud et al. (1991)

Notes: Where multiple references are given, estimates are the average of those in each
reference. Some studies did not use the FV91 parcellation. Following Table 1 of Felleman
and Van Essen (1991), V6 in Galletti, Fattori, Gamberini, and Kutz (1999) is interpreted
as PO, and TEO in Boussaoud, Desimone, and Ungerleider (1991) is interpreted as both
PITd and PITv. Boussaoud et al. (1991) group data for TE together, but the recording sites
are mostly close to TEO (see their Figure 4), so this is interpreted as spanning CITd and
CITv.

Furthermore, the measurements that underlie these regressions are also
somewhat uncertain. The tracer injections did not uniformly fill the injected
areas, so the measurements cannot account for heterogeneity within areas.
There is also a substantial spread in published estimates of cell counts and
synapse densities, for example, between Garcia-Marin et al. (2017) versus
O’Kusky and Colonnier (1982). There is also variation among monkeys. For
example, in Van Essen and Newsome (1984), the surface area of a single
hemisphere of striate cortex varied from 690 mm to 1560 mm2, in a group
of six macaque monkeys. FLNe values often vary over an order of magni-
tude (+/− one standard deviation) across individuals (Markov et al., 2011).
In short, a fairly wide range of parameters would be within the range of
individual variations, but many of the estimates used here are probably
outside this range. Such uncertainties are subtle, however, compared to
large qualitative differences with standard CNNs that are shown later (see
section 3.2).

2.5 Single-Hemisphere Model. The methods already described could
be used to develop models of various subnetworks of the brain, such as
the ventral visual stream in one hemisphere or all of the visual cortex in
both hemispheres. Results that follow are reported for a specific single-
hemisphere model, referred to here as the macaque single-hemisphere
(MSH) model. This model included all 32 vision-related areas in the FV91
parcellation (Felleman & Van Essen, 1991). Most visual areas were divided
into layers L2/3 to L6, with connections as described in section 2. The lateral
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geniculate nucleus (LGN) was modeled with 1,27,0000 neurons divided
between parvocellular (89.7%) and magnocellular (10.3%) layers (Weber,
Chen, Hubbard, & Kaufman, 2000), and an additional koniocellular layer
the same size as the magnocellular layer. L2/3 of V1 was divided into blobs
and interblobs. L4 of V1 was divided into L4B, L4Cα, and L4Cβ (L4A was
omitted as it is quite thin). V2 was divided into three groups of layers, cor-
responding to thick stripes, thin stripes, and pale stripes. The thick stripes
received magnocellular V1 input and sent output to dorsal areas. The thin
and pale stripes received parvocellular V1 input and sent output to dorsal
and ventral visual areas. L2/3 blobs in V1 also received input from L4Cα,
consistent with magnocellular and parvocellular convergence onto blobs,
and with contributions of both systems to activity in V4 (Merigan & Maun-
sell, 1993). These connections are based on a classical view of connectivity
in early visual cortex (Livingstone & Hubel, 1988). More recent studies have
revealed many further details, including finer-grained V1 populations and
greater mixing of retinal output streams in V1 (reviewed by Nassi & Call-
away, 2009). However, further work is needed to develop a more realistic
quantitative model of the early vision network from this newer literature.

2.6 Convolutional Network Implementation. Training of the MSH net-
work is deferred to future work. However, to verify that the approach pro-
duced fully specified and trainable networks, smaller subnetworks were
implemented in Keras (Chollet, 2015) and trained on the CIFAR-10 image
classification task (Krizhevsky, 2009). Each connection included only a sub-
set of the channels in the presynaptic layer (according to the sparsity pa-
rameter ci j), which required use of Keras’s “concatenate” layer to combine
the desired channels. For layers with multiple inputs, a separate “Conv2D”
layer was created for each input, and their activations were summed using
a “sum” layer, before entering a nonlinearity.

3 Results

This section presents outcomes of the optimization process and then com-
pares the architecture of the macaque single-hemisphere (MSH) model (sec-
tion 2.5) to those of several widely used convolutional networks.

3.1 Optimization Results. The first optimization step was to generate
1000 valid stride patterns (see section 2.3) and select the one that matched
heuristic targets (see section 2.2) for the number of feature maps (or chan-
nels), m, in each layer most closely. The distance metric was the root mean
squared log ratio of the actual versus target products of strides. (The tar-
get products of strides were calculated from n and the m targets.) Figure 4
shows a histogram of these distances over 1000 samples. This figure also
shows the loss C (see section 2.1) during optimization with five different
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Figure 4: (Left) Histogram of distances from heuristics for numbers of feature
maps in each visual area, over 1000 random stride patterns. (Right) Loss C over
training iterations, with several different stride patterns. The loss is essentially
independent of the stride pattern.

stride patterns. The stride pattern had little effect on C, which describes the
consistency of the architecture with neurophysiological data. Rather, sepa-
rately, different stride patterns varied in their agreement with heuristics for
the numbers of feature maps (see section 2.2). Different stride patterns also
led to different numbers of parameters in the network. This is because for
given n, a larger stride means greater m everywhere downstream, and the
number of parameters in a kernel is proportional to the product of presy-
naptic and postsynaptic m.

Figure 5 shows scatter plots of estimated physiological values, corre-
sponding to terms in equation 2.1, versus corresponding values calculated
from network hyperparameters after optimization. The scatter in FLNe is
strongly correlated across independently optimized networks, even with
different stride patterns (r > .999 between these two networks, plotted in
panel E). The scatter seems to be due to the low sensitivity of FLNe to σi j

values, combined with competition between the influences on ci j of FLNe
targets and

∑
i j ci j targets. FLNe differences from targets are moderate com-

pared to uncertainty in FLNe due to incomplete data. Overall, most of the
optimization errors are well within the range of individual variation. How-
ever, there are probably much larger errors in the target values themselves
due to incomplete and uncertain data.

In the network with the best-fitting stride pattern (shown with triangle
markers in Figure 5), there are approximately 40 million kernel weights (i.e.,∑

i j mimjw
2
i jci jσi j). This number is related to the capacity of the network. In

a standard setting with graphical processing units, the weight-wise sparse-
ness parameters σi j could be approximated in part using dilated convolu-
tions (Yu & Koltun, 2015), although dilation reduces the FLNe only if the
dilation step and the stride have a greatest common divisor greater than
one. Somewhat more storage would be needed to approximate σi j values
more closely by fixing some of the kernel entries at zero.
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Figure 5: Optimized properties of MSH network (vertical axes) versus tar-
gets estimated from the neuroscience literature (horizontal axes). The different
markers show two separate optimization results, with two different stride pat-
terns. (A) Number of units per layer (n in section 2.1). (B) Receptive field widths
(wr f ). (C) Number of inputs per unit from other visual areas (e). (D) In-degrees
of interlaminar connections. (E) The connection sparsity measure FLNe.

3.2 Comparison with Standard Convolutional Networks. The archi-
tectures of optimized MSH models were compared with several standard
and widely used convolutional networks, specifically VGG-16 (Simonyan
& Zisserman, 2015), ResNet50 (He, Zhang, Ren, & Sun, 2016), InceptionV3
(Szegedy et al., 2015), and DenseNet121 (Huang, Liu, van der Maaten, &
Weinberger, 2017).

Figures 6, 7, and 8 plot the connection sparsity measure FLNe (see sec-
tion 2.4) for VGG-16, InceptionV3, and DenseNet121. Recall that in retro-
grade tracer studies, FLNe are the fractions of labeled neurons in each other
cortical area (extrinsic to an injection site). This approximates the fraction
of all neurons that project to the injected area, which have cell bodies in
each other area. The connections in these convolutional networks involve
all the units in the corresponding presynaptic layers, so the analogous val-
ues are simply the number of presynaptic units in each connection divided
by the total units presynaptic to the target layer. These values are also
called FLNe here. VGG-16 has a simple sequential structure. InceptionV3
and DenseNet121 have “skip connections,” resulting in greater convergence
onto certain layers. In fact, the key innovation of DenseNet is to include all
possible skip connections. However, in deeper versions of this network, this
is done in blocks, with no skip connections between blocks (Huang et al.,
2017).
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Figure 6: Connections in a widely used CNN, VGG-16 (Simonyan & Zisser-
man, 2015). Presynaptic layers are on the vertical axis, and postsynaptic layers
are on the horizontal axis. Colors indicate the fractions of presynaptic neurons
that contribute to each connection. This corresponds to a measure used in ret-
rograde tracer studies (Markov et al., 2014), the fraction of labeled neurons ex-
trinsic to the injection site (FLNe). In this network, all of the log-FLNe values
are 0, meaning that each layer gets all of its input from one other layer, with no
convergence.

Figure 9 plots the FLNe of a macaque-optimized network. To show the
structure of the whole network in a single plot, the FLNe values are divided
across L2/3, L5, and L6 in the source areas, according to %SLN and lami-
nar source strengths in CoCoMac. Corresponding values are also plotted
for interlaminar connections based on the ratios of nici j in each connection
to their sum. The interlaminar connections are the dense connections close
to the diagonal. The vertical banded structure of the off-diagonal elements
is due to the convergence of interarea connections on L4, and the horizon-
tal banding is due to interarea connections arising from L2/3, L5, and L6
(see also Figure 1). Overall, FLNe values vary over six orders of magnitude,
consistent with Markov et al. (2014). The range of numbers of connections
into L4 of different areas is wide, reflecting connections recorded in the
CoCoMac database (Bakker et al., 2012). For example, 7a receives input
from 16 other areas (half of the network), while CITd has incoming connec-
tions only from V4. Some connections may be missing from the database,
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Figure 7: Connections in an Inception network (Szegedy et al., 2015). Conven-
tions as in Figure 6. To reduce clutter, labels are not shown for the convolutional
layers.

however (Markov et al., 2014). The longest path through the network is from
the input to L6 of area TH, and it has 39 steps. The greatest shortcut (skip
connection) is a direct connection from V2 thick stripes’ L2/3 to L4 of area
46. The longest path parallel to this direct connection has 30 steps.

Comparing Figures 6 to 9, the DenseNet arguably has the most cortex-
like structure, with many long skip connections and a high degree of con-
vergence onto some layers. However, DenseNet has several qualitative dif-
ferences from the MSH model. First, the DenseNet has a single input and
a single output. In contrast, the visual cortex culminates in several paral-
lel high-level areas that are involved in different functions, such as visu-
ally guided navigation and grasping, as well as visual recognition (Kravitz,
Saleem, Baker, & Mishkin, 2011). Second, the DenseNet has a regular block-
wise pattern of skip connections and a lack of skip connections between
blocks, whereas skip connections in the MSH model span up to three-
quarters of the network depth. Third, the DenseNet’s FLNe values vary
over one order of magnitude, whereas those in the MSH model vary over
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Figure 8: Connections in a DenseNet (Huang et al., 2017). Conventions as in
Figure 7.

six orders of magnitude. Each DenseNet layer’s FLNe values are essentially
uniform, whereas in the macaque, they have a broad log-normal distribu-
tion (Markov et al., 2011). Finally, aside from statistical differences, the par-
ticular connections are different. There are no analogous layers across the
two networks beyond the input layer.

Figure 10 compares the numbers of feature maps (channels) and units in
each layer of the MSH model to those in the standard CNNs. In each of the
standard CNNs studied here, the number of channels increases with the
depth. This is also the trend in the MSH model (although there is greater
scatter, due partly to differences in layer sizes within each area, and omis-
sion of nonprojecting L5 and L6 neurons). Also, in both the standard CNNs
and the MSH model, the numbers of channels do not increase quickly
enough to offset decreases in resolution. In each of the networks, the num-
ber of units peaks early and falls by at least an order of magnitude in later
convolutional layers. In the MSH network, this reflects the tendency to-
ward smaller visual areas higher in the macaque visual hierarchy (Felleman
& Van Essen, 1991). This is also consistent with the deep-network design
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Figure 9: Connections in the cortex-like MSH network. The areas are ordered
by hierarchical level (Felleman & Van Essen, 1991) and (within each level) by
the number of incoming connections to L4. To show the whole network struc-
ture together, FLNe values are divided into supragranular and infragranular
components and generalized to include interlaminar connections, as described
in the text. To reduce clutter, only labels for L4 of each area are shown. L2/3, L5,
and L6 of each area are before and after L4. Reproduced with permission from
https://github.com/bptripp/calc.

heuristic of reducing the representation gradually (Szegedy, Vanhoucke,
Ioffe, Shlens, & Wojna, 2016). The standard networks are all designed for
the 1000-way ImageNet classification task, so the final softmax layer has
exactly 1000 units in each case. Except for the softmax layer, the macaque
model has a similar trend, with large V1 and V2 layers and much smaller
layers at later stages.

Figure 11 plots distributions of kernel widths. In addition to convolu-
tional layers, the standard CNNs also have pooling layers, which lack con-
volutional kernels. For these layers, the pool size is reported because it also
defines the size of the neighborhood in the presynaptic layer that influences
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Figure 10: (Top) Number of feature maps per layer, in several standard CNNs
and the macaque-like MSH model. (Bottom) Number of units per layer in these
networks. The macaque-based MSH network has many parallel paths. Its layer
depths are plotted based on the hierarchy in Felleman and Van Essen (1991).
The input has depth 0, LGN layers have depth 1, and cortical layers have depth
1 + 4(a − 1) + l, where a is the hierarchical level of the cortical area, and l is 1
for L4, 2 for L2/3, 3 for L5, or 4 for L6.

each postsynaptic unit. For fully connected layers with convolutional-layer
input, the resolution of the convolutional layer is reported. For fully con-
nected layers with nonspatial input, the kernel width is reported as one, as
these connections are equivalent to 1 × 1 convolutions operating on 1 × 1
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Figure 11: Histograms of kernel widths in a macaque-like MSH network (top)
and several standard CNNs. The last bin includes kernels 70 or more elements
wide. The largest kernels varied fairly widely in different optimizations, de-
pending on the stride pattern. This example had particularly large kernels, with
12 kernel widths above 300.

feature maps. In modern CNNs, 3 × 3 kernels and 2 × 2 pooling neighbor-
hoods are widely used. Inception networks have a wider variety of kernel
sizes, from 1 × 1 to 5 × 5. The MSH model has a much wider range, includ-
ing a substantial number of kernels larger than 30 × 30. Such kernels tend
to be very sparse (see Figure 12), and to belong to long skip connections
(see Figure 13). These large kernels are a consequence of direct connections
between layers with very different receptive field sizes and the assumption
that each input to a population affects the full receptive field. If these ker-
nels were small, input (for example) from V2 to IT would affect only a small
part of an IT neuron’s receptive field.

Figure 14 shows distributions of strides. In all the networks, strides of
one are most common, and strides of two are also common. The MSH model
also has a small number of strides of four and eight.
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Figure 12: Scatter plot of sparsity (cσ ) versus kernel width in an MSH network.
Larger kernels tend to be sparser. The markers “x” and “.” correspond to ker-
nels of interarea and interlaminar connections, respectively. Interlaminar con-
nections tend to be smaller and less sparse.

Figure 13: Scatter plot of kernel width versus length of skip connections (i.e.,
the longest path that is parallel to each connection). Connections with longer
skip lengths have larger kernels. The markers “x” and “.” correspond to ker-
nels of interarea and interlaminar connections, respectively. Interlaminar con-
nections have skip lengths of one or two and do not include kernels as large as
the interarea connections.

3.3 Training on the CIFAR-10 Data Set. To verify that these methods
produced trainable networks, a subnetwork including ventral areas up to
PITd was trained to perform 10-way image classifications on the CIFAR-
10 data set (Krizhevsky, Nair, & Hinton, 2014). To make training more
tractable, the number of neurons in each population was reduced by a fac-
tor of 10, and connections with FLNe less than 0.15 were omitted. The ac-
curacy of the network’s predictions on the held-out validation set was 0.79,
which is well above chance and well below state of the art. Future work will
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Figure 14: Histograms of strides in the macaque-like MSH network (top) and
several standard CNNs. ResNet50 has one outlier, marked with an asterisk.

experiment with other regularization and learning parameters to improve
performance and train the full MSH network with parallel objectives for
different outputs (e.g., visual odometry, grasp planning).

4 Discussion

This study developed a method of making deep networks that have similar
architectures to the visual cortex. This allowed a new and specific compari-
son between cortical and standard convolutional architectures. Among the
standard CNNs explored here, DenseNet (Huang et al., 2017) was qualita-
tively the most similar to the cortex-like MSH network, in that DenseNet
has more and longer skip connections than other standard networks and
greater degrees of convergence onto some layers.

However, there were several qualitative differences between the MSH
network and all of the standard CNNs. In the MSH network, skip connec-
tions covered a greater fraction of the network depth, kernels were larger
and more varied in size, connections were sparser on average and had
a wider range of sparsity, and there was greater variation in strides. The
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macaque-optimized network also had more units per layer than the stan-
dard CNNs.

The MSH network was similar to the standard networks in other ways.
For example, the number of units per layer peaked in early layers. The
longest path in the MSH model (39 steps) was within the rather wide range
of depths of the standard CNNs studied here—between 22 and 127 layers. A
much wider range of depths has been used in other CNNs in the literature,
for example, up to 1202 layers (He et al., 2016).

In deep learning, skip connections have been used to reduce problems
with training very deep networks (He et al., 2016) and to allow widespread
use of features that are learned in early layers, without relearning them re-
dundantly in later layers (Huang et al., 2017). In the brain, timing may be
an additional consideration. Deeper neurons’ earliest responses can lag a
stimulus by more than 100 ms (Schmolesky et al., 1998). Skip connections
might provide a rapid source of information to higher visual areas. For ex-
ample, they might facilitate rapid recognition of objects or states that have
highly salient low-level features, such as blood and brake lights.

In addition to providing a new perspective on architectural differences
between visual cortex and standard CNNs, a cortex-like convolutional
model is a necessary step toward clear comparisons between representa-
tions in analogous CNN and cortical areas. Such specific comparisons may
be useful for understanding and reducing differences between deep net-
works and the brain.

Finally, biological neural networks are adapted to demanding and com-
plex environments, so a macaque-like network may have practical advan-
tages. For example, the MSH might complement recent work in a neural ar-
chitecture search (Zoph & Le, 2016), either serving as a source of priors for
hyperparameter values or suggesting a somewhat different search space,
such as one with a wide range of connection sparsity.

4.1 Lack of a Unique Brainlike Set of Hyperparameters. Matching
CNN hyperparameters to physiological data is inherently an undercon-
strained exercise because some hyperparameters (e.g., m, the number of
feature maps in a layer) define a gridlike organization of units that has no
analogy in the brain. Some choices of m are probably more reasonable than
others, though. Two heuristics were used to guide these choices. First, the
grid was chosen so that V1-like receptive fields would overlap with their
neighbors about as much across channels as across space. Second, the num-
ber of channels in other areas was scaled relative to spine counts on basal
dendrites, as explained in section 2.2.

A possible alternative heuristic would be to equate a V1 hypercolumn
to a single pixel. A rationale for this could be that a hypercolumn spans
the variety of tuning around one point in the visual field, much like all
the channels of a single pixel in a convolutional layer. Each hypercolumn
covers about 2 mm2 of cortical surface, and there are (depending on the
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monkey) roughly 1200 mm2 of V1 in a single hemisphere. So, instead of
roughly 130 640 × 640 pixel feature maps in L2/3 of V1, as in the MSH
model, this would result in about 85,000 25 × 25 pixel feature maps. Ar-
guing against this interpretation, there is scatter in receptive field centers
within a hypercolumn (Hubel & Wiesel, 1974), which could be achieved in
this model only if weights were localized within subregions of oversized
kernels. Furthermore, this alternative heuristic would lead to an intractable
number of parameters because each feature map has its own kernels.

4.2 Connection Sparsity. In the standard CNNs studied here, every
unit in a layer contributed to all of the layer’s outgoing connections. Thus,
the FLNe of each connection was simply the number of presynaptic units,
divided by the total number of units connected to the postsynaptic layer.
There was much less variation in FLNe in these networks than in the
macaque brain (Markov et al., 2014), and a lack of low FLNe values. In
this sense, connections are much less sparse in standard CNNs than in the
macaque brain.

Interestingly, common notions of connection sparsity in CNNs are al-
most unrelated to FLNe measured in cortex. There has been vigorous in-
terest in sparse connections in CNNs (LeCun, Denker, & Solla, 1989; Wen,
Wu, Wang, Chen, & Li, 2016; Sun, Wang, & Tang, 2016), partly motivated
by a desire for small CNNs that can run on embedded systems. Some stud-
ies achieve a reduction in parameters by kernel decomposition (Liu, Wang,
Foroosh, Tappen, & Penksy, 2015), which is unrelated to FLNe. Another
common approach has been to zero a fraction of the kernel entries through
various means. This leads to sparsity in the same sense as the σ parame-
ter in this study. However, because kernels are shared across units, a single
nonzero entry might pass output from every presynaptic unit in a given
channel (depending on the stride). So this kind of sparsity has a weak rela-
tionship with FLNe.

Dilated (or atrous) convolutions (Yu & Koltun, 2015; Chen, Papandreou,
Kokkinos, Murphy, & Yuille, 2018) can strongly affect FLNe, but they typi-
cally do not. The number of presynaptic units that contribute to a connec-
tion with a dilated convolution is reduced by the square of the greatest
common divisor of the dilation factor and the stride. For example, if the
stride of the connection is one, then all the presynaptic units contribute, re-
gardless of the dilation factor. In the MSH model, very sparse connections
often have large strides, so setting dilation factors equal to strides would be
an efficient way to approach the required sparsity.

Other deep-learning studies use a sparsity parameter that is related to
the channel-wise sparsity parameter c. For example, in the early convolu-
tional network of LeCun, Boser, et al. (1989), each feature map in the third
convolutional layer received input from a distinct subset of the maps in the
second layer. Recent variations of this scheme include Changpinyo, Sandler,
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and Zhmoginov (2017) and Zhang, Zhou, Lin, and Sun (2018). However,
this scheme does not affect FLNe. Although it involves subsets of presy-
naptic maps, all of the maps are used somewhere in a connection from one
layer to another.

Another perspective on sparsity in the deep learning literature comes
from Inception networks. These networks involve parallel connections from
one layer to another, each with different kernel sizes (1 × 1, 3 × 3, and 5 ×
5). The authors of this scheme consider it to be another form of sparsity, be-
cause it involves many kernels and large kernels but requires fewer weights
than many large kernels. However, this kind of sparsity is also unrelated
to FLNe. In summary, the kind of connection sparsity that is measured in
retrograde tracer studies in neuroscience is almost orthogonal to standard
notions of connection sparsity in deep learning.

4.3 Limitations and Future Work. This work has omitted prominent
features of cortical networks, including foveation and cortical magnifica-
tion and recurrent, lateral, and feedback connections. Naturalistic foveation
(with smoothly varying resolution) has not been extensively explored in
deep networks (but see Wang & Cottrell, 2017; Dai et al., 2017; Rajalingham
et al., 2018). There seem to be basic open questions on this topic, such as
how to deal with a loss of translational equivariance in polar coordinates.
So while this is an important topic, it has been omitted here for simplicity.
Lateral and feedback connections (Angelucci et al., 2002) were also omitted
because they are absent from standard convolutional networks. Recurrent
layers (Greff, Srivastava, Koutník, Steunebrink, & Schmidhuber, 2017) and
other model components with lateral (Tompson et al., 2014) and feedback
(Xu et al., 2015) connections have been incorporated into convolutional net-
works, but there is a lack of standard approaches that have clear analogies
with brain organization. However, recent work has shown that networks
with such connections exhibit dynamic responses to static images that are
similar to those in the ventral stream (Nayebi et al., 2018).

In addition to these missing features, the accuracy of the model is also
limited by incomplete data on the macaque connectome. A particular lim-
itation is that the estimates of interlaminar connectivity in Schmidt et al.
(2018) relied largely on data from cat and mouse, including Binzegger et al.
(2004). Also, many of the FLNe and %SLN values used here were interpo-
lated from injections into about one-third of the visual areas (Schmidt et al.,
2018), and estimates of cell and synapse density have not stabilized (Garcia-
Marin et al., 2017). But despite these limitations, the MSH model has one-
to-one analogies with macaque visual cortex, and it has hyperparameters
that are probably much more consistent with macaque cortex than those of
any previous convolutional network.

Future work should experiment with elaborations of the MSH model and
with various training regimes and compare the resulting representations
to those of monkeys. It would be interesting to see, for example, whether
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more realistic plasticity rules, circuit mechanisms, or experiences make the
representations much more realistic than supervised learning of standard
tasks.

4.4 What Insights into the Visual System Can Be Gained from the
Model? A key motivation for this work is to help clarify comparisons be-
tween representations in deep networks and primate visual cortex in the
future. Recently, a number of deep networks have been systematically
benchmarked in terms of their ability to account for ventral stream repre-
sentations (Schrimpf et al., 2018). However, these networks have nonbiolog-
ical architectures. Because representations depend completely on position
in a network, this may impose a ceiling on their similarity to the cortex.
Furthermore, it is not really clear which layers in these networks should
be compared with which neurobiological populations. This is a source of
noise if one wishes to test whether specific changes to deep networks (such
as adding local response normalization) result in more realistic represen-
tations. The model developed here should allow more specific compar-
isons in the future. This may facilitate development of more brain-like
deep networks, indirectly contributing to future insights into visual cortex
function.

In the meantime, since convolutional networks are the top-performing
artificial systems in many vision tasks, such as object recognition, segmen-
tation, and monocular and stereo depth estimation, they are arguably the
most functionally realistic computational models of visual cortex. Under-
standing how convolutional networks differ from visual cortex therefore
provides a valuable perspective on the visual cortex. This letter helps to
clarify some architectural relationships. It shows that one can set hyperpa-
rameters to make the architecture of a convolutional network very similar
to the feedforward architecture of visual cortex. Furthermore, there are a
number of specific similarities and differences between the resulting MSH
network and standard deep networks. For example, the number of layers
in the MSH network is within the range of standard deep networks, and the
MSH network has a rapid expansion in number of units per layer near the
input and gradual decline in later layers, which many standard deep net-
works share. In contrast, standard deep networks do not have the kind of
connection sparseness that exists in the cortex. A wide variety of deep net-
work architectures are in current use, and the primate architecture is distinct
from all of them but not terribly out of place.

5 Conclusion

This study developed a convolutional network architecture similar to
macaque visual cortex and showed that its architecture differs qual-
itatively from architectures of standard convolutional networks. The
cortex-like architecture has longer skip connections, qualitatively different
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connection sparsity, and wider ranges of sparsity and kernel size. These
architectural differences may suggest directions for artificial general vision
systems. Standard CNNs and cortex-like CNNs have similar increases in
number of feature maps farther from the input and similar peaks in popu-
lation size in early layers. Finally, layers in the architectures developed here
have one-to-one relationships with neural populations in the visual cortex.
This should allow more direct comparisons between representations in ar-
tificial networks and the brain.

Appendix: FLNe in CNNs

An important measure in retrograde tracer studies (Markov et al., 2014)
is the fraction of labeled neurons (extrinsic to the injection site) associated
with each connection (FLNe of the connection). In a convolutional network,
an analogous quantity is

f i j = ni j∑
j∈Ii

ni j , (A.1)

where Ii are the inputs to layer i, and ni j is the number of presynaptic neu-
rons that contribute to the (i j)th connection. This is

ni j = njci jσ
i j
∗ αi j, (A.2)

where nj is the number of neurons in presynaptic layer j, ci j is the fraction
of channels of layer j that contribute to connection i j, and σ

i j
∗ and αi j are

factors related to pixel-wise sparsity and stride, respectively.
The stride affects ni j only if it is greater than the kernel width—

specifically,

αi j =
⎧⎨
⎩

1, if si j ≤ w
i j
K(

w
i j
K /si j

)2
, otherwise

. (A.3)

This is illustrated in Figure 15.
The factor σ

i j
∗ describes the impact of the element-wise sparseness factor

σ i j (the fraction of nonzero kernel entries). Specifically,

σ
i j
∗ = 1 − (1 − σ i j )β

i jmi
, (A.4)
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Figure 15: The stride of a connection, si j, influences FLNe only when it is greater
than the kernel width (wi j), as shown in the example on the right. The circles
indicate units in one channel of a presynaptic layer. Units marked with filled
circles contribute to the connection, and those marked with open circles do not.
Solid and dashed boxes are drawn around groups of units that provide input to
two different postsynaptic units. wi j = 3 in each case. In the left example, si j = 2,
which is less than wi j, so all the presynaptic units are used. On the right, si j = 4,
which is greater than wi j, so some of the presynaptic units are not used in the
connection.

where

β i j =
⎧⎨
⎩

(
w

i j
K /si j

)2
, if si j < w

i j
K

1, otherwise
. (A.5)

This is due to the fact that a given presynaptic unit’s output passes through
different kernel entries on its way to different postsynaptic units. In the
right-hand side of (A.4), (1 − σ i j ) is the probability that a given kernel ele-
ment is zero, and (1 − σ i j )β

i jmi
is the probability that all kernel elements out-

bound from a given presynaptic unit are zero. This depends on the number
of postsynaptic channels, mi, and also on the stride-kernel width ratio via
β i j. Specifically, if the stride is less than the kernel width, then each presy-
naptic unit has multiple chances to affect different units in a given postsy-
naptic channel.
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