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Abstract
Inductive knowledge graph completion aims to
predict missing triplets in an incomplete knowl-
edge graph that differs from the one observed
during training. While subgraph reasoning mod-
els have demonstrated empirical success in this
task, their theoretical properties, such as stability
and generalization capability, remain unexplored.
In this work, we present the first theoretical anal-
ysis of the relationship between the stability and
the generalization capability for subgraph reason-
ing models. Specifically, we define stability as
the degree of consistency in a subgraph reasoning
model’s outputs in response to differences in in-
put subgraphs and introduce the Relational Tree
Mover’s Distance as a metric to quantify the differ-
ences between the subgraphs. We then show that
the generalization capability of subgraph reason-
ing models, defined as the discrepancy between
the performance on training data and test data, is
proportional to their stability. Furthermore, we
empirically analyze the impact of stability on gen-
eralization capability using real-world datasets,
validating our theoretical findings.

1. Introduction
Knowledge graphs (KGs) represent real-world knowledge
by modeling relationships between entities as triplets (Wang
et al., 2017). Due to their inherent incompleteness, nu-
merous studies have focused on knowledge graph comple-
tion (KGC), which aims to predict missing triplets within
KGs (Bordes et al., 2013; Schlichtkrull et al., 2018). Con-
ventional models for KGC operate under a transductive
setting, where a KG to be completed during inference is
identical to the one observed during training (Bordes et al.,
2013). These models typically learn representations of the
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observed entities and utilize the learned representations to
predict missing links (Chung et al., 2023; Lee et al., 2023a).

As real-world KGs continually expand, recent research has
shifted its focus to inductive KGC, where the KG that ap-
pears during inference differs from the one used for train-
ing (Teru et al., 2020). Most models designed for trans-
ductive KGC are unsuitable for inductive inference because
they cannot handle unobserved entities, as these entities lack
learned representations. To overcome this limitation, recent
studies have adopted subgraph reasoning approaches (Teru
et al., 2020; Zhu et al., 2021; Zhang & Yao, 2022). Unlike
models that learn representations for individual entities and
use the learned representations for link prediction, subgraph
reasoning models determine the validity of a triplet by utiliz-
ing the structure of the subgraph extracted around the triplet.
Consequently, these models can effectively perform induc-
tive link prediction using the subgraph structures extracted
from the inference KG.

To theoretically explain the empirical success of KGC mod-
els, several analyses have been conducted. Most of these
studies focus on understanding what these models are ca-
pable of learning. For example, some investigate the graph
structures that the models can distinguish (Barcelo et al.,
2022; Huang et al., 2023), while others examine the rules
within a KG that the models can infer (Qiu et al., 2024). In
contrast, relatively little attention has been given to two criti-
cal theoretical properties of subgraph reasoning models: (1)
generalization capability, which refers to the discrepancy be-
tween a model’s performance on training and test data, and
(2) stability, defined as the degree to which a model’s output
varies in response to the changes in input. Although a recent
study examined the generalization capability of knowledge
graph representation learning models in a transductive set-
ting (Lee et al., 2024), the stability and the generalization
capability of subgraph reasoning models for inductive KGC
have not been studied.

In this paper, we present the first theoretical analysis of the
relationship between stability and generalization capabil-
ity of subgraph reasoning models designed for KGC. To
comprehensively analyze existing subgraph reasoning mod-
els, we provide the framework that can represent existing
subgraph reasoning models by decomposing subgraph rea-
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soning models into two components: a subgraph extractor
that extracts a subgraph associated with an input triplet from
a KG and a Subgraph Message-Passing Neural Network
(SMPNN) that computes the score of the input triplet us-
ing the extracted subgraph. The proposed framework can
represent well-known subgraph reasoning models, such as
GraIL (Teru et al., 2020), NBFNet (Zhu et al., 2021), and
RED-GNN (Zhang & Yao, 2022). Within this framework,
we show that the differences in output scores computed
by subgraph reasoning models are bounded by the Rela-
tional Tree Mover’s Distance (RTMD) between the input
subgraphs, where RTMD is introduced to quantify the dif-
ferences between subgraphs of KGs. We define the stability
of a subgraph reasoning model as the ratio of the RTMD
between the subgraphs to the difference between the scores
of the subgraphs computed by its SMPNN. This measure is
then used to derive a generalization bound of the subgraph
reasoning models for inductive KGC.

Our theoretical analysis reveals that the stability of subgraph
reasoning models is a key factor influencing the generaliza-
tion capability. Furthermore, we empirically validate our
theoretical findings by demonstrating that RTMD can be
used to infer the labels of triplets in real-world datasets, that
the differences between the output scores of SMPNN are
bounded by RTMD of the input subgraphs, and that stable
models tend to exhibit superior generalization capability.

Our contributions can be summarized as follows:

• We propose a general framework for subgraph reason-
ing models and derive their stability with respect to the
perturbations of the subgraph structures.

• We introduce a pseudo-metric1, RTMD, specifically
designed for subgraph reasoning models, and use it to
compute the stability of subgraph reasoning models.

• We theoretically analyze the generalization bound of
subgraph reasoning models and discuss the impact of
the stability on their generalization capability.

• We empirically show that RTMD is a suitable metric for
subgraph reasoning models and examine how stability
impacts generalization error on real-world KGs.

2. Related Work
Subgraph Reasoning Models for Inductive KGC Sub-
graph reasoning models have been proposed to predict
missing links in graphs without relying on predefined
rules (Zhang & Chen, 2018). These models extract a sub-
graph associated with a target link, relabel the nodes within
the subgraph, and compute a score of the relabeled subgraph.
Since these methods do not require the entities encountered

1While RTMD is a pseudo-metric since there exists a pair of
distinct subgraphs for which RTMD between them is 0, we refer
to it as a metric for convenience in this paper.

during inference to have been observed during training,
subgraph reasoning has been widely adopted for inductive
KGC (Teru et al., 2020; Chen et al., 2021; Mai et al., 2021;
Lin et al., 2022; Liu et al., 2023; Zhu et al., 2021; Zhang
& Yao, 2022; Zhu et al., 2023; Zhang et al., 2023). For
instance, GraIL (Teru et al., 2020) extracts an enclosing
subgraph for a given triplet and labels the entities within
the subgraph based on the shortest distance from the head
and tail entities of the triplet. The model then computes a
score for the subgraph using edge attention and an R-GCN
encoder (Schlichtkrull et al., 2018).

Theoretical Analysis on KGs Various studies have been
conducted to theoretically understand KGC models, focus-
ing on their expressivity (Barcelo et al., 2022; Huang et al.,
2023; Qiu et al., 2024). For instance, Barcelo et al. (2022)
extended the WL test (Weisfeiler & Lehman, 1968) to multi-
relational graphs to explore the expressivity of GNN-based
KGC models. While the expressivity of KGC models is ac-
tively studied, the generalization capability has received less
attention. Recently, Lee et al. (2024) introduced a frame-
work called ReED that generalizes diverse knowledge graph
representation learning methods and computed the general-
ization bounds of the ReED framework for the transductive
setting, which is not applicable to the subgraph reasoning
models for inductive KGC. On the other hand, we analyze
subgraph reasoning models in the inductive setting, focusing
on the stability and generalization capability of subgraph
reasoning models.

Generalization Capability of Graph Neural Networks
Some research has focused on the generalization capabil-
ity of Graph Neural Networks (GNNs) using various ap-
proaches (Scarselli et al., 2018; Garg et al., 2020; Oono &
Suzuki, 2020; Ma et al., 2021; Maskey et al., 2022; Zhou
et al., 2022; Ju et al., 2023; Karczewski et al., 2024; Aminian
et al., 2024). For example, Liao et al. (2021) computed the
PAC-Bayesian generalization bound of GNNs for graph
classification tasks. Furthermore, recent studies have ana-
lyzed the relationship between the generalization capability
and other theoretical properties of GNNs (Morris et al.,
2023; Franks et al., 2024; Chuang & Jegelka, 2022; Huang
et al., 2024; Dong et al., 2024). For instance, Chuang &
Jegelka (2022) derived the generalization bound of GIN (Xu
et al., 2019) using the stability assessed by the Lipschitz con-
tinuity under the Tree Mover’s Distance (TMD). In contrast,
we extend TMD into a form applicable to subgraphs ex-
tracted from KGs and provide analysis applicable to various
subgraph reasoning models.

3. Inductive KGC by Subgraph Reasoning
To provide a general analysis applicable to existing subgraph
reasoning approaches, we formally define the subgraph rea-
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soning models for inductive KGC.

3.1. Inductive Knowledge Graph Completion

A knowledge graph G = (V,R,F ∪T ) consists of a set
of entities V , a set of relations R, a set of triplets F ⊆
V×R×V assumed to be known, and another set of triplets
T ⊆ V×R×V for prediction, where F∩T = ∅. Each triplet
(h, r, t) is associated with a label yhrt ∈ {−1,+1}. A label
of +1 denotes a positive triplet, indicating the given triplet
is true, whereas a label of −1 denotes a negative triplet,
indicating the given triplet is false.

KGC is the task of predicting the labels of triplets in T based
on the triplets in F . In inductive KGC, a model is trained
using a training knowledge graph Gtr = (Vtr,R,Ftr ∪ Ttr)
and conducts inference on an inference knowledge graph
Ginf = (Vinf,R,Finf ∪ Tinf). Note that transductive KGC
is a special case of inductive KGC, where Vtr = Vinf and
Ftr = Finf.

3.2. Subgraph Reasoning Models for Inductive KGC

A subgraph reasoning model uses a subgraph extractor to
extract a subgraph corresponding to a target triplet included
in T and predicts the label of the target triplet using a scoring
function that takes the extracted subgraph as input. We
formally define a subgraph extractor as follows.

Definition 3.1 (Subgraph Extractor). Given a knowl-
edge graph G = (V,R,F ∪ T ), a subgraph extractor
g(G, (h, q, t)) = S is a non-parametric function that uti-
lizes F to map a triplet (h, q, t) ∈ T into a subgraph S. A
subgraph S is denoted as S = (VS , ES ,R, INITS , (h, q, t)),
where VS and ES denote the sets of entities and triplets of the
subgraph S, respectively. The function INITS : VS → Rd0
generates an initial entity embedding vector with dimension
d0 for each entity. The triplet (h, q, t) is referred to as the
query triplet, and q is referred to as the query relation of
the subgraph S. Note that h and t are always included in
VS . For each entity v in VS , the multiset of v’s neighbors is
defined as NS(v) = {{(r, u) | (u, r, v) ∈ ES}}.

A common form of subgraphs extracted by a subgraph ex-
tractor is an enclosing subgraph constructed by the inter-
section of the k-hop neighbor entities of h and t for each
query triplet (h, q, t) (Teru et al., 2020). Given a subgraph
extracted by a subgraph extractor, a scoring function of a
subgraph reasoning model computes a score of the subgraph
through a message-passing. In Definition 3.2, we propose a
framework called Subgraph Message-Passing Neural Net-
works (SMPNNs), which generalizes the scoring functions
that utilize the message-passing.

Definition 3.2 (Subgraph Message-Passing Neural Net-
works). Given a subgraph S = (VS ,ES ,R,INITS ,(h, q, t)),
a Subgraph Message-Passing Neural Network (SMPNN)

fw with parameters w is defined by

x
(0)
S (v) = INITS(v)

M(l)
S (v)={{MSG(l)(x

(l−1)
S (u),x

(l−1)
S (v), r, q)|(r, u)∈NS(v)}}

x
(l)
S (v) = UPD(l)

(
x
(θ(l))
S (v),AGG(l)(M(l)

S (v))
)

fw(S)=RD
(
x
(L)
S (h),x

(L)
S (t),GRD({{x(L)

S (u)|u ∈ VS}}), q
)

where x
(l)
S (v) ∈ Rd is an embedding vector of an entity

v ∈ VS , MSG(l) : Rd × Rd ×R×R → Rd is a message
function, M(l)

S (v) is a multiset of messages propagated
to the entity v, AGG(l) : 2R

d → Rd is an aggregation
function, UPD(l) : Rd × Rd → Rd is an update function,
GRD : 2R

d → Rd is a global-readout function, RD : Rd ×
Rd × Rd × R → R is a readout function that computes
the score of the subgraph, and θ is a history function with
θ(k) = k − 1 or θ(k) = 0.

A subgraph reasoning model consists of a subgraph extractor
g and an SMPNN fw. By appropriately configuring the sub-
graph extractor and the functions within the SMPNN, well-
known subgraph reasoning models such as GraIL (Teru et al.,
2020), NBFNet (Zhu et al., 2021), and RED-GNN (Zhang
& Yao, 2022) can be subsumed within our framework. De-
tailed explanations are provided in Appendix A.

4. Stability of Subgraph Reasoning Models
The stability of a model refers to the degree of consistency
in its outputs with respect to the changes in its inputs (Bous-
quet & Elisseeff, 2002; Shalev-Shwartz et al., 2010). Since
the subgraph extractor of a subgraph reasoning model is
non-parametric and discrete, we define the stability of a
subgraph reasoning model in terms of the stability of its
SMPNN. To quantify the stability of SMPNNs, it is nec-
essary to measure the differences between subgraphs, as
direct comparisons between subgraphs are hard to quan-
tify. Therefore, we introduce the Relational Tree Mover’s
Distance (RTMD) which measures differences between sub-
graphs while reflecting the message-passing mechanism of
SMPNNs. Specifically, the RTMD between two subgraphs
is computed as the optimal transport distance between the
sets of relational computation trees of the subgraphs, where
the relational computation tree represents how SMPNNs
perform message-passing on the subgraphs.

4.1. Optimal Transport

Optimal transport distance (Villani et al., 2009; Cuturi,
2013) is a measure used to quantify the discrepancy be-
tween two probability distributions. For two multisets
A = {{ai}}mi=1,B = {{bj}}mj=1, a matrix PA,B ∈ Rm×m

+

is referred to as a transportation plan if it satisfies

PA,B1m = P⊤
A,B1m = 1m
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Figure 1. A visualization of the construction of a depth-l relational
computation tree T (l)

S (v) for the entity v. The root entity of each
subtree and the relation pointing to that subtree are derived from
the multiset of v’s incoming neighbors NS(v).

where 1m ∈ Rm is a one vector. Given a cost function
ϕ : A×B → R that maps each pair (ai, bj) ∈ A×B to the
transportation cost between ai and bj , the optimal transport
distance between A and B is defined as:

OTϕ(A,B) = min
PA,B

m∑
i,j

PA,B[i, j]ϕ[i, j] (1)

The transportation plan that provides the optimal solution
for Eq. 1 is referred to as the optimal transportation plan.

4.2. Relational Tree Mover’s Distance

Tree Mover’s Distance (TMD) (Chuang & Jegelka, 2022) is
a metric designed to quantify differences between graphs,
particularly for analyzing the stability of message-passing
neural networks. However, TMD cannot be directly ap-
plied to analyze SMPNNs, as it only accounts for node
features and graph structure, whereas the input subgraphs
of SMPNNs are associated with triplets and contain edges
labeled by relations. To address this issue, we propose
Relational Tree Mover’s Distance (RTMD), which incorpo-
rates initial entity embeddings, edge labels, subgraph struc-
tures, and the triplets associated with the input subgraphs
to compute the differences between subgraphs. Specifi-
cally, RTMD captures subgraph structures by modeling
how SMPNNs process these structures, which is formal-
ized through the concept of a relational computation tree, as
defined in Definition 4.1.
Definition 4.1 (Relational Computation Tree). Given a sub-
graph S = (VS , ES ,R, INITS , (h, q, t)) and l > 0, the
depth-l relational computation tree T

(l)
S (v) of an entity

v ∈ VS is defined by

T
(0)
S (v) = (v, ∅)

SUB(T (l)
S (v)) = {{(r, T (l−1)

S (u))|(r, u) ∈ NS(v)}}

T
(l)
S (v) =

(
v,SUB(T (l)

S (v))
)

where SUB(T (l)
S (v)) is a multiset of subtrees of T (l)

S (v).
The entity v is referred to as the root entity of T (l)

S (v).
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Figure 2. A visualization of computation of the Relational Tree
Distance (RTD) between two subtrees of relational computation
trees. The RTD is the sum of the difference between initial entity
embeddings, the penalties for different relations and queries, and
the optimal transport distance between the multisets of subtrees.

As illustrated in Figure 1, the relational computation tree is
constructed by recursively adding neighboring relations and
entities to the leaf nodes, which aligns with the process of
updating entity embedding vectors in SMPNNs. Therefore,
the relational computation tree of an entity v represents the
computation tree of SMPNNs for v.

To define the difference between the relational computa-
tion trees of two entities, we consider three factors: (i) the
difference between the initial embedding vectors of their
root entities, (ii) the difference between the multisets of
their subtrees, and (iii) whether their query relations differ.
However, to measure the difference between the multisets
of subtrees, it is necessary to first define the difference be-
tween individual subtrees. Since each subtree consists of
a relation and a relational computation tree, the difference
between two subtrees, (r1, T

(l1)
S1

(v1)) and (r2, T
(l2)
S2

(v2)),
is determined by two factors: (i) the difference between the
relational computation trees, T (l1)

S1
(v1) and T (l2)

S2
(v2), and

(ii) whether their relations, r1 and r2, differ. This differ-
ence is referred to as the relational tree distance, which is
formally defined in Definition 4.2. Note that the difference
between the relational computation trees is a special case
of relational tree distance, obtained by introducing a virtual
relation rroot shared across all relational computation trees.
Definition 4.2 (Relational Tree Distance). Given two sub-
graphs S1 = (VS1

, ES1
,R, INITS1

, (h1, q1, t1)), S2 =
(VS2

, ES2
,R, INITS2

, (h2, q2, t2)) and l1, l2 > 0, for v1 ∈
VS1 , v2 ∈ VS2 and r1, r2 ∈ R, the relational tree distance
between (r1, T

(l1)
S1

(v1)) and (r2, T
(l2)
S2

(v2)) is defined as

RTD
(
(r1, T

(l1)
S1

(v1)), (r2, T
(l2)
S2

(v2))
)
=

∥INITS1(v1)−INITS2(v2)∥2+
1

|R|2 (1[r1 ̸= r2]+1[q1 ̸= q2])

+w(max(l1, l2))OTRTD

(
ρ(SUB(T (l1)

S1
(v1)), SUB(T (l2)

S2
(v2)))

)
where T (l)

S (v) is the depth-l relational computation tree of
entity v for subgraph S, w(l) is a weight function for the
distance between multisets of subtrees based on the depth
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of the subtrees, and ρ denotes the blank tree augmentation
defined in Definition B.1.

To quantify the difference between two multisets, we use
the optimal transport distance. However, since the optimal
transport distance requires the multisets to have equal sizes,
and the sizes of the two multisets of neighbors may differ,
we augment the smaller set by adding blank trees to match
the size. This process is referred to as blank tree augmen-
tation, detailed in Appendix B. Figure 2 illustrates how the
relational tree distance between two subtrees is computed.

Finally, we define the RTMD between two subgraphs by
considering (i) the difference between the head entities of
the query triplets, (ii) the difference between the tail enti-
ties of the query triplets, and (iii) the difference between
the multisets of relational computation trees of all entities
in the subgraphs. The differences between the head and
tail entities are measured using the relational tree distances
between their relational computation trees, while the differ-
ence between the multisets of relational computation trees
is quantified by the optimal transport distance. RTMD is
formally defined in Definition 4.3.
Definition 4.3 (Relational Tree Mover’s Distance). Given
two subgraphs S1 = (VS1 , ES1 ,R, INITS1 , (h1, q1, t1)),
S2 = (VS2

, ES2
,R, INITS2

, (h2, q2, t2)) and L > 0, Re-
lational Tree Mover’s Distance (RTMD) between S1 and S2
is defined by

RTMD(S1, S2) = RTD((rroot, T
(L)
S1

(h1)), (rroot, T
(L)
S2

(h2)))+

RTD((rroot, T
(L)
S1

(t1)), (rroot, T
(L)
S2

(t2)))+

OTRTD({{(rroot, T
(L)
S1

(v1))|v1 ∈ VS1}},

{{(rroot, T
(L)
S2

(v2))|v2 ∈ VS2}})

where T (L)
S (v) is the depth-L relational computation tree of

entity v for subgraph S, and rroot is a virtual relation.

While the query relation is taken into account when com-
puting the difference between relational computation trees,
the head and tail entities of the query triplet are considered
during the computation of RTMD. This distinction arises
because SMPNNs incorporate the query relations during
message-passing, whereas the head and tail entities serve
solely as the identities of the subgraphs and are not directly
utilized in the message-passing.

4.3. Stability of SMPNNs

Lipschitz continuity is a property of a function that holds
when the difference between the outputs of a function is
bounded by the difference between the inputs. Therefore,
Lipschitz-continuous functions are also referred to as stable
functions (Huang et al., 2024; Dong et al., 2024; Wang
et al., 2022; Chuang & Jegelka, 2022). To define the stable
SMPNNs, we define the Lipschitz continuity of SMPNNs
with respect to the RTMD as follows.

Definition 4.4 (Lipschitz Continuity of SMPNNs). Given
Gtr = (Vtr,R,Ftr ∪ Ttr) and Ginf = (Vinf,R,Finf ∪ Tinf),
an SMPNN fw with L layers is Lipschitz continuous
if there exists a constant η ≥ 0 such that |fw(S1) −
fw(S2)| ≤ η RTMD(S1, S2) for any subgraphs S1, S2 ∈
{{g(Gtr, e1)|e1 ∈ Ttr}} ∪ {{g(Ginf, e2)|e2 ∈ Tinf}}.

Since Lipschitz-continuous functions have a non-zero Lips-
chitz constant, we denote ηf as the Lipschitz constant of the
fw. Then, a smaller ηf indicates that the score computed
by the SMPNN is less affected by the distance between sub-
graphs, implying that the model is more stable. To ease of
analysis, we quantify how stable an SMPNN is by defining
its stability as Cf = 1

ηf
. Therefore, the higher Cf implies

the lower Lipschitz constant and the more stable SMPNN.

Note that we assume the message, aggregation, update,
global-readout, and readout functions of the SMPNNs to
be Lipschitz continuous, which holds for the SMPNNs of
many existing subgraph reasoning models such as GraIL,
NBFNet, and RED-GNN, as detailed in Appendix A. Using
the Lipschitz constant of each function, we derive the upper
bound of the Lipschitz constant of the SMPNNs.

Theorem 4.5 (Lipschitz Constant of SMPNNs). Given
Gtr = (Vtr,R,Ftr ∪ Ttr), Ginf = (Vinf,R,Finf ∪ Tinf), and
an SMPNN fw with L layers, if the message, aggregation,
update, global-readout, and readout functions of fw are
Lipschitz continuous, then fw is Lipschitz continuous with
the Lipschitz constant ηf and the following holds:

ηf ≤


(∏L+1

l=1 η(l)
)

θ(k) = k − 1

(L+ 1)
(∏L+1

l=1 η(l)
)

θ(k) = 0

η(l) = max(A
(l)
upd + dmaxB

(l)
updA

(l)
aggB

(l)
msg, B

(l)
updA

(l)
aggA

(l)
msg,

|R|2B(l)
updA

(l)
aggC

(l)
msg, |R|2B(l)

updA
(l)
aggD

(l)
msg, 1),

η(L+1) = max(Ard, Brd, CrdAgrd,
|R|2Drd

2 + max(|Vtr|, |Vinf|)
)

where 1≤ l≤ L, A(l)
msg, B

(l)
msg, C

(l)
msg, D

(l)
msg are the Lipschitz

constants of the message function, A(l)
agg is the Lipschitz

constant of the aggregation function, A(l)
upd, B

(l)
upd are the Lip-

schitz constants of the update function, Agrd is the Lipschitz
constant of the global-readout function, Ard, Brd, Crd, Drd

are the Lipschitz constants of the readout function, and dmax

is the maximum degree of Gtr and Ginf.

We provide a proof for Theorem 4.5 in Appendix C. Accord-
ing to Theorem 4.5 and Definition 4.4, the stability increases
as the Lipschitz constants of the functions in the SMPNNs
become smaller. Therefore, we can compare the stability of
subgraph reasoning models by comparing the Lipschitz con-
stants of these functions. For instance, while the Lipschitz
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constant of the aggregation function that uses a sum aggre-
gator is 1, the Lipschitz constant of the aggregation function
that uses a mean aggregator is reciprocal of the maximum
degree of the KG. This indicates that the subgraph reasoning
model using a mean aggregator as the aggregation function
is more stable than the model using a sum aggregator as the
aggregation function. Detailed calculations of the Lipschitz
constants for each function are provided in Appendix A.

5. PAC-Bayesian Generalization Bound of
Stable Subgraph Reasoning Models for
Inductive KGC

We present the first PAC-Bayesian generalization bound of
subgraph reasoning models for inductive KGC and relate
their stability to their generalization capability.

5.1. Assumptions

We make the following assumptions to derive the general-
ization bound of the subgraph reasoning models.

A.1 Label y of a triplet e in a knowledge graph G is drawn
from a distribution conditional to the subgraph corre-
sponding to e, i.e., y ∼ P(Y |g(G, e)), where Y is a
random variable that follows a binomial distribution.

A.2 In a knowledge graph G = (V,R,F ∪ T ), the set of
triplets F contains sufficient information for predicting
the labels of the triplets in T .

Assumption 1 follows from the underlying assumption of
the subgraph reasoning models, and Assumption 2 ensures
that the subgraph reasoning model can predict the label of
the subgraph based solely on the given KG.

5.2. PAC-Bayesian Generalization Bound for Inductive
Knowledge Graph Completion

To measure the risk of a subgraph reasoning model, we
employ a γ-margin risk. The γ-margin risk increases when
a score for a positive triplet is less than or equal to γ or when
a score for a negative triplet is greater than or equal to −γ.
Note that the γ-margin loss, a differentiable approximation
of a γ-margin risk, is a commonly used loss function for
inductive KGC (Teru et al., 2020).

Definition 5.1 (γ-margin Risk). Given G = (V,R,F ∪ T )
and a subgraph reasoning model with a subgraph extractor
g and an SMPNN fw with parameters w, for any γ ≥ 0, its
empirical γ-margin risk on G is defined by

L̂G(fw, γ) =
1

|T |
∑

(h,r,t)∈T

1 [yhrtfw(g(G, (h, r, t))) ≤ γ]

where 1[·] is an indicator function. The expected γ-margin

risk is defined as the expectation of the empirical risk:

LG(fw, γ) = Eyhrt∼P(Y |g(G,(h,r,t)))

[
L̂G(fw, γ)

]

To assess the generalization capability of a subgraph rea-
soning model, we derive a generalization bound which is
defined as the upper bound of a generalization error. The
generalization error of a subgraph reasoning model with an
SMPNN fw is defined by LGinf(fw, 0)−L̂Gtr(fw, γ) where
Gtr is a training KG and Ginf is an inference KG. We use
the expected 0-margin risk since we are interested in the
classification accuracy on the inference KG. Additionally,
since the training KG and the inference KG are different in
the inductive setting, the generalization error depends on
the expected risk discrepancy in Definition 5.2.

Definition 5.2 (Expected Risk Discrepancy). Given
Gtr, Ginf, a subgraph reaoning model with a subgraph ex-
tractor g and an SMPNN fw, and a distribution P on the
parameter space of fw, for any λ > 0 and γ ≥ 0, the ex-
pected risk discrepancy between Gtr and Ginf with respect
to P , λ, and γ is defined by

D(P, λ, γ)

=ln
(
Ew∼P

[
exp

(
λ
(
LGtr(fw,

γ

2
)− LGinf(fw, γ)

))])
where exp is an exponential function.

We utilize the PAC-Bayesian approach which computes the
generalization bound based on the KL divergence between
the posterior distribution Q and the prior distribution P
over the parameter space. The prior distribution is defined
independently of the training dataset, while the posterior
distribution is the distribution after training. Originally, the
PAC-Bayesian approach was used to derive generalization
bounds for stochastic models, while most subgraph reason-
ing models are deterministic. Therefore, we present the
PAC-Bayesian generalization bound of deterministic sub-
graph reasoning models in Theorem 5.3 by extending the
PAC-Bayesian generalization bound for stochastic classi-
fiers introduced by Ma et al. (2021).

Theorem 5.3 (PAC-Bayesian Generalization Bound of
Deterministic Subgraph Reasoning Models). Given Gtr=
(Vtr,R,Ftr ∪ Ttr), Ginf = (Vinf,R,Finf ∪ Tinf), and
a subgraph reasoning model with a subgraph ex-
tractor g and an SMPNN fw, for any prior dis-
tribution P and posterior distribution Q on the pa-
rameter space of fw constructed by adding random
noise ẅ to w such that P

(
max(maxe∈Ttr |fw̃(g(Gtr, e)) −

fw(g(Gtr, e))|,maxe∈Tinf |fw̃(g(Ginf, e)) − fw(g(Ginf, e))|) <
γ
4

)
> 1

2
, and γ > 0, λ > 0, the following holds with proba-
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bility at least 1− δ:

LGinf(fw, 0) ≤ L̂Gtr(fw, γ)+

1

λ

(
2KL(Q||P) + ln

4

δ
+

λ2

4|Ttr|
+D

(
P, λ, γ

2

))
where D

(
P,λ,γ2

)
is the expected risk discrepancy between

Gtr and Ginf and KL(Q||P) is a KL divergence of Q from P .

We derive Theorem 5.3 by approximating a determinis-
tic model by introducing a stochastic model generated by
adding random perturbations ẅ to the fixed parameter w,
which is a common technique for translating a deterministic
model into a stochastic model (Liao et al., 2021; Ma et al.,
2021; Neyshabur et al., 2018; Lee et al., 2024). A detailed
proof is provided in Appendix D.1.

5.3. Upper Bound of the Expected Risk Discrepancy

To discuss the generalization capability of subgraph reason-
ing models, we analyze the generalization bound presented
in Theorem 5.3 which depends on both the KL divergence
and the expected risk discrepancy D(P, λ, γ). The KL di-
vergence represents how far the learned distribution is from
the prior distribution on the parameter space, and it increases
as the complexity of the model grows, e.g., increasing the
norm of learnable weight matrices or the number of layers.
This term arises from the definition of the PAC-Bayesian
approach (McAllester, 2003) and is also present in other
PAC-Bayesian generalization bounds (Liao et al., 2021; Lee
et al., 2024). In contrast, the expected risk discrepancy
D(P, λ, γ) is a key factor that affects our generalization
bound for inductive KGC, where the training KG and infer-
ence KG are separately defined. Therefore, to focus on the
discrepancy between the training KG and the inference KG,
we derive the upper bound of the expected risk discrepancy
in Theorem 5.4 and provide its implications.
Theorem 5.4 (Bound of D(P, λ, γ)). Given Gtr =
(Vtr,R,Ftr ∪ Ttr), Ginf = (Vinf,R,Finf ∪ Tinf), and a sub-
graph reasoning model with a subgraph extractor g and an
SMPNN fw with stability Cf , for any prior distribution P
and posterior distribution Q on the parameter space of fw,
and λ > 0, the following holds:

D(P, λ, γ) ≤ λ

(
max(0,

|Ttr|
|Tinf|

−1) +
2 OTRTMD(ψ(Tinf, Ttr))

γCf max(|Tinf|, |Ttr|)

)
where ψ is the empty subgraph augmentation defined in
Definition D.2.

The term OTRTMD(ψ(Tinf, Ttr)) is the optimal transport dis-
tance between the multisets {{g(Gtr, ei)|ei ∈ Ttr}} and
{{g(Ginf, ei)|ei ∈ Tinf}}. Since the sizes of two sets of
triplets differ, empty subgraph augmentation ψ adds empty
subgraphs to the smaller multiset of subgraphs. We provide
the proof for Theorem 5.4 in Appendix D.2

In Theorem 5.4, the upper bound of the expected risk dis-
crepancy increases as the optimal transport distance between
the multisets of subgraphs extracted from the training KG
and the inference KG increases. A large optimal trans-
port distance between the multisets of subgraphs indicates
a more significant difference between the distributions of
subgraph structures. This is consistent with existing analy-
ses, which show that the generalization capability decreases
as the difference between source and target distribution
increases (Chuang & Jegelka, 2022; Shen et al., 2018). Fur-
thermore, as the stability Cf of the SMPNN increases, the
expected risk discrepancy decreases. A large Cf implies
a smaller difference in the scores calculated for subgraphs
with small distances, indicating a more stable model. Thus,
a subgraph reasoning model with a more stable SMPNN
tends to exhibit a higher generalization capability.

6. Experiments
In the previous section, we provided our theoretical findings
on the stability and generalization capability of subgraph
reasoning models for inductive KGC. To empirically val-
idate our findings, we conduct experiments on real-world
KGs using the inductive KGC datasets provided in Teru
et al. (2020). Specifically, we use v3 of WN18RR (WNv3),
v1 of FB15K-237 (FBv1), and v2 of NELL-995 (NLv2).
For the triplets in Ttr and Tinf, we extract 2-hop enclosing
subgraphs using Ftr and Finf, respectively. Further experi-
mental details are provided in Appendix E.

6.1. Label Classification using RTMD

We demonstrate that RTMD is a valid metric for quantifying
differences between subgraphs extracted from real-world
KGs. Figure 3 presents t-SNE visualizations of subgraphs
based on RTMD with 3 layers. Specifically, the distance
between points in the plot is proportional to the RTMD
between subgraphs corresponding to the points. The results
show that positive and negative triplets are well clustered
according to their labels in WNv3. While the clustering is
less distinct in FBv1 and NLv2, triplets in these datasets
still exhibit a tendency to form label-based clusters.

Furthermore, for each dataset, we evaluate the classifica-
tion accuracy of subgraphs corresponding to positive and
negative triplets using a support vector machine (SVM) clas-
sifier with an indefinite kernel exp(−0.1× RTMD) (Luss
& d’Aspremont, 2007), following Chuang & Jegelka (2022).
We set the number of layers in RTMD as L = 2 or L = 3.
Table 1 reports the label classification accuracies of the
SVM classifiers. Since the datasets contain equal numbers
of positive and negative triplets, the baseline accuracy of ran-
dom classification is 0.5. The classification results indicate
that an SVM classifier can effectively distinguish subgraphs
with different labels using RTMD, which demonstrates that
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(a) WNv3 (b) FBv1 (c) NLv2

Figure 3. t-SNE visualizations of subgraphs using RTMD. Blue
and orange points represent positive and negative subgraphs, re-
spectively. The points tend to be clustered according to their labels.

Table 1. Label classification accuracies of support vector machine
classifiers on WNv3, FBv1, and NLv2 using RTMD with 2 and 3
layers. Random classification accuracy is 0.5.

WNv3 FBv1 NLv2

L = 2 0.8204 0.7743 0.8652
L = 3 0.8205 0.7739 0.8654

RTMD is an appropriate metric for quantifying the distance
between subgraphs.

6.2. Comparing RTMD with Scores

In Section 4.3, we defined the Lipschitz continuity of
SMPNNs using RTMD and proved that existing SMPNNs
are Lipschitz continuous. To further support our theoret-
ical findings, we empirically demonstrate that SMPNNs
are indeed Lipschitz continuous with respect to RTMD.
Specifically, we use GraIL (Teru et al., 2020) as a represen-
tative of SMPNN model, denoted as fw, and train fw using
Ttr of each dataset. For each pair of subgraphs S1, S2 ∈
{{g(Gtr, e)|e ∈ Ttr}} ∪ {{g(Ginf, e)|e ∈ Tinf}}, we compute
RTMD(S1, S2) and the score difference |fw(S1)−fw(S2)|.
In this computation, the number of layers in both the
RTMD and the subgraph reasoning model is set to 3. Fig-
ure 4 displays the scatter plots of RTMD(S1, S2) against
|fw(S1)− fw(S2)| in the WNv3, FBv1, and NLv2 datasets.
Across all datasets, we observe that the maximum score
difference increases as RTMD increases, demonstrating the
Lipschitz continuity of fw. Moreover, the results indicate
that the bound defined by RTMD approximates this trend,
showing that RTMD is a valid metric for defining the Lips-
chitz continuity of SMPNNs.

6.3. Comparing Stability with Generalization Errors

As described in Section 5.3, we have theoretically shown
that a more stable model tends to exhibit better generaliza-
tion capability. To empirically validate this claim, we train
48 different subgraph reasoning models, including GraIL,
NBFNet, RED-GNN, and their variations, generated by per-
muting the candidate functions of each component of the

(a) WNv3 (b) FBv1 (c) NLv2

Figure 4. Scatter plots of RTMD versus the score differences on
WNv3, FBv1, and NLv2. The maximum score difference increases
as RTMD between subgraphs increases.

(a) WNv3 (b) FBv1 (c) NLv2

Figure 5. Comparisons of stability and generalization error on
WNv3, FBv1, and NLv2. The dashed lines illustrate the nega-
tive correlations between stability and generalization error.

SMPNN as detailed in Appendix E. For each trained model,
we compute its empirical Lipschitz constant (Chuang &
Jegelka, 2022), defined as maxS1,S2

|fw(S1)−fw(S2)|
RTMD(S1,S2)

, where
S1, S2 ∈ {{g(Gtr, e)|e ∈ Ttr}}∪{{g(Ginf, e)|e ∈ Tinf}}. We
then utilize the reciprocal of the empirical Lipschitz con-
stant of a model as its stability. To assess the generalization
capability of SMPNNs, we compute the generalization error
defined in Section 5. Figure 5 presents the generalization
errors of different subgraph reasoning models and their
stability, along with the average Pearson correlation coeffi-
cients between generalization errors and stability. Across
all datasets, we observe negative average Pearson correla-
tion coefficients, which indicates that generalization error
decreases as the stability increases, i.e., a positive correla-
tion between generalization capability and stability. Also,
Table 2 provides correlation values, p-values, and 95% con-
fidence intervals regarding the correlation between stability
and generalization errors on WNv3, FBv1, and NLv2. Since
the p-values are all below 0.01 and the 95% confidence in-
tervals do not include zero, we can conclude that the ob-
served correlations are statistically significant. These results
confirm that our theoretical finding, i.e., stable subgraph rea-
soning models exhibit high generalization capability, also
holds in real-world datasets.

7. Conclusion and Future Works
We establish the relationship between stability and the gen-
eralization capability of subgraph reasoning models for in-
ductive KGC. To facilitate a comprehensive analysis, we
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Table 2. The correlation values, p-values, and 95% confidence
intervals regarding the correlation between stability and generaliza-
tion errors on WNv3, FBv1, and NLv2. If the p-value is lower than
0.01 and the 95% confidence interval does not include zero, we
conclude that the observed correlation is statistically significant.

Dataset Corr. p-value 95% Confidence Interval

WNv3 -0.5759 0.00019 (-0.7584, -0.3097)
FBv1 -0.5134 0.00031 (-0.7013, -0.2589)
NLv2 -0.4912 0.00584 (-0.7235, -0.1591)

provide a framework that can represent various existing
subgraph reasoning models. In this framework, we define
the stability of subgraph reasoning models with respect to
RTMD. Using the PAC-Bayesian approach, we derive the
first generalization bound for subgraph reasoning models in
the inductive setting and show that a more stable subgraph
reasoning model exhibits a better generalization capability.
On real-world KGs, we validate our theoretical findings and
ensure they are aligned with empirical observations. Our
analysis highlights the importance of designing stable sub-
graph reasoning models to enhance generalization capability
in inductive KGC.

We will further explore additional theoretical properties of
subgraph reasoning models, such as their expressive power
and how they relate to stability and generalization capability.
Also, we plan to extend our analyses to scenarios where
both unobserved entities and unobserved relations appear
during inference (Lee et al., 2023b; Geng et al., 2023).

Impact Statement
This paper provides a theoretical foundation for understand-
ing stability and generalization capability in subgraph rea-
soning models. Our primary contributions are theoretical,
aiming to advance the fundamental understanding of induc-
tive knowledge graph completion. By establishing theoreti-
cal insights into how stability influences generalization, our
work provides guidance for designing more robust and reli-
able subgraph reasoning models for knowledge graph com-
pletion. Knowledge graph completion models are widely
used in various applications such as information retrieval,
recommendation systems, and biomedical research, where
ensuring model stability and generalization capability is
crucial for reliable decision-making. Our theoretical find-
ings contribute to developing methodologies that improve
model robustness, potentially leading to more reliable pre-
dictions in real-world applications. We encourage future
research to further explore the implications of stability and
generalization in safety-critical domains.
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A. Instantiatation of Existing Subgraph Reasoning Models
A subgraph reasoning model consists of a subgraph extractor and an SMPNN. By appropriately configuring the subgraph
extractor and the functions within the SMPNN, we can represent existing well-known models for inductive KGC by subgraph
reasoning. Furthermore, under Assumption A.1, each function satisfies Lipschitz continuous.
Assumption A.1. We assume that the L2-norms of all weight vectors, weight matrices, and relation embedding matrices are
upper bounded by κ. Additionally, we assume that the L2-norms of the entity representation vectors computed at every
layer of SMPNNs are upper bounded by β.

The Lipschitz continuity for each function in SMPNNs is defined as follows:
Definition A.2 (Lipschitz Continuity). A message function MSG of SMPNNs is Lipschitz continuous if and only if there
exist constants A(l)

msg, B
(l)
msg, C

(l)
msg, D

(l)
msg ≥ 0 that satisfies

∥MSG(l)(a1,a2, r1, q1)− MSG(l)(b1,b2, r2, q2)∥2
≤A(l)

msg∥a1 − b1∥2 +B(l)
msg∥a2 − b2∥2 + C(l)

msg1[r1 ̸= r2] +D(l)
msg1[q1 ̸= q2]

Given a transportation plan PA,B between A and B, an aggregation function AGG of SMPNNs is Lipschitz continuous if
and only if there exists a constant A(l)

agg ≥ 0 that satisfies

∥AGG(l)(A = {{ai}}ni=1)− AGG(l)(B = {{bj}}nj=1)∥2 ≤ A(l)
agg

∑
i,j

P
(l)
A,B[i, j]∥ai − bi∥2

An update function UPD of SMPNNs is Lipschitz continuous if and only if there exist constants A(l)
upd, B

(l)
upd ≥ 0 that satisfies

∥UPD(l)(a1,a2)− UPD(l)(b1,b2)∥2 ≤ A
(l)
upd∥a1 − b1∥2 +B

(l)
upd∥a2 − b2∥2

Given a transportation plan PA,B between A and B, a global-readout function GRD of SMPNNs is Lipschitz continuous if
and only if there exists a constant Agrd ≥ 0 that satisfies

∥GRD(A = {{ai}}ni=1)− GRD(B = {{bj}}nj=1)∥2 ≤ Agrd

∑
i,j

PA,B[i, j]∥ai − bi∥2

A readout function RD of SMPNNs is Lipschitz continuous if and only if there exist constants Ard, Brd, Crd, Drd ≥ 0 that
satisfies

|RD(a1,a2,a3, q1)− RD(b1,b2,b3, q2)|
≤Ard∥a1 − b1∥2 +Brd∥a2 − b2∥2 + Crd∥a3 − b3∥2 +Drd1[q1 ̸= q2]

where n > 0, ai,bj ∈ Rd for 1 ≤ i, j ≤ n, and r1, r2, q1, q2 ∈ R.

Now, we demonstrate how GraIL (Teru et al., 2020), NBFNet (Zhu et al., 2021), and RED-GNN (Zhang & Yao, 2022) can
be instantiated as subgraph reasoning models.

A.1. Instantiating GraIL

GraIL (Teru et al., 2020) can be instantiated as follows:

A.1.1. SUBGRAPH EXTRACTION

GraIL extracts the enclosing subgraph for the head and tail entities of a given triplet, which is constructed by the intersection
of k-hop neighbors entities from the head and tail entity. Therefore, the subgraph extractor is a function that extracts the
enclosing subgraph for h and t in the triplet (h, q, t).

A.1.2. INITIALIZATION

GraIL applies a double radius vertex labeling scheme to the entities within the subgraph. This scheme encodes the shortest
path distances from each entity to the head and tail entities as one-hot vectors and concatenates these vectors. Therefore, by
setting INITS to the double radius vertex labeling scheme, the initial labeling of GraIL can be instantiated.
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A.1.3. SUBGRAPH MESSAGE-PASSING NEURAL NETWORKS

Message Function The message function of GraIL is formulated as follows.

MSG(l)(x
(l−1)
S (u),x

(l−1)
S (v), r, q) = α(l)

r,q,v,uW
(l)
r x

(l−1)
S (u)

α(l)
r,q,v,u = σ(a

(l)
5 · ReLU(W

(l)
1 x

(l−1)
S (u) +W

(l)
2 x

(l−1)
S (v) +W

(l)
3 Ra[r] +W

(l)
4 Ra[q] + b1) + b2)

where W (l)
r ,W

(l)
1 ,W

(l)
2 ,W

(l)
3 ,W

(l)
4 ,Ra are learnable weight matrices that satisfy the Assumption A.1, a(l)5 ,b1 are

learnable weight vectors that satisfy the Assumption A.1, and b2 is a learnable parameter, σ is a sigmoid function, and ReLU
is a ReLU activation function. The Lipschitz continuity of the message function of GraIL can be formally established as
follows.

∥MSG(l)
(x

(l−1)
S1

(u1),x
(l−1)
S1

(v1), r1, q1) − MSG(l)
(x

(l−1)
S2

(u2),x
(l−1)
S2

(v2), r2, q2)∥2

≤∥α(l)
r1,q1,v1,u1

W
(l)
r1

x
(l−1)
S1

(u1) − α
(l)
r2,q2,v2,u2

W
(l)
r2

x
(l−1)
S2

(u2)∥2

≤∥α(l)
r1,q1,v1,u1

(
W

(l)
r1

x
(l−1)
S1

(u1) − W
(l)
r2

x
(l−1)
S2

(u2)
)
+
(
α

(l)
r1,q1,v1,u1

− α
(l)
r2,q2,v2,u2

)
W

(l)
r2

x
(l−1)
S2

(u2)∥2

≤|α(l)
r1,q1,v1,u1

|∥W (l)
r1

x
(l−1)
S1

(u1) − W
(l)
r2

x
(l−1)
S2

(u2)∥2 + |α(l)
r1,q1,v1,u1

− α
(l)
r2,q2,v2,u2

|∥W (l)
r2

x
(l−1)
S2

(u2)∥2

≤|α(l)
r1,q1,v1,u1

|∥W (l)
r1

(
x
(l−1)
S1

(u1) − x
(l−1)
S2

(u2)
)
+
(
W

(l)
r1

− W
(l)
r2

)
x
(l−1)
S2

(u2)∥2 + |α(l)
r1,q1,v1,u1

− α
(l)
r2,q2,v2,u2

|∥W (l)
r2

x
(l−1)
S2

(u2)∥2

≤|α(l)
r1,q1,v1,u1

|
(
∥W (l)

r1
∥2∥x(l−1)

S1
(u1) − x

(l−1)
S2

(u2)∥2 + ∥W (l)
r1

− W
(l)
r2

∥2∥x(l−1)
S2

(u2)∥2

)
+ |α(l)

r1,q1,v1,u1
− α

(l)
r2,q2,v2,u2

|∥W (l)
r2

∥2∥x(l−1)
S2

(u2)∥2

≤κ∥x(l−1)
S1

(u1) − x
(l−1)
S2

(u2)∥2 + 2κβ1[r1 ̸= r2] + κβ|α(l)
r1,q1,v1,u1

− α
(l)
r2,q2,v2,u2

|

For the attention value α(l)
r1,q1,v1,u1 , the following inequalities hold.

|α(l)
r1,q1,v1,u1

− α(l)
r2,q2,v2,u2

|

≤|σ(a(l)
5 · ReLU(W

(l)
1 x

(l−1)
S1

(u1) +W
(l)
2 x

(l−1)
S1

(v1) +W
(l)
3 Ra[r1] +W

(l)
4 Ra[q1] + b1) + b2)−

σ(a
(l)
5 · ReLU(W

(l)
1 x

(l−1)
S2

(u2) +W
(l)
2 x

(l−1)
S2

(v2) +W
(l)
3 Ra[r2] +W

(l)
4 Ra[q2] + b1) + b2)|

≤|a(l)
5 · ReLU(W

(l)
1 x

(l−1)
S1

(u1) +W
(l)
2 x

(l−1)
S1

(v1) +W
(l)
3 Ra[r1] +W

(l)
4 Ra[q1] + b1)−

a
(l)
5 · ReLU(W

(l)
1 x

(l−1)
S2

(u2) +W
(l)
2 x

(l−1)
S2

(v2) +W
(l)
3 Ra[r2] +W

(l)
4 Ra[q2] + b1)|

≤∥a(l)
5 ∥2∥ReLU(W

(l)
1 x

(l−1)
S1

(u1) +W
(l)
2 x

(l−1)
S1

(v1) +W
(l)
3 Ra[r1] +W

(l)
4 Ra[q1] + b1)−

ReLU(W
(l)
1 x

(l−1)
S2

(u2) +W
(l)
2 x

(l−1)
S2

(v2) +W
(l)
3 Ra[r2] +W

(l)
4 Ra[q2] + b1)∥2

≤∥a(l)
5 ∥2∥W (l)

1 x
(l−1)
S1

(u1) +W
(l)
2 x

(l−1)
S1

(v1) +W
(l)
3 Ra[r1] +W

(l)
4 Ra[q1]−(

W
(l)
1 x

(l−1)
S2

(u2) +W
(l)
2 x

(l−1)
S2

(v2) +W
(l)
3 Ra[r2] +W

(l)
4 Ra[q2]

)
∥2

≤∥a(l)
5 ∥2

(
∥W (l)

1 ∥2∥x(l−1)
S1

(u1)− x
(l−1)
S2

(u2)∥2 + ∥W (l)
2 ∥2∥x(l−1)

S1
(v1)− x

(l−1)
S2

(v2)∥2+

∥W (l)
3 ∥2∥Ra[r1]−Ra[r2]∥2 + ∥W (l)

4 ∥2∥Ra[q1]−Ra[q2]∥2
)

≤∥a(l)
5 ∥2

(
∥W (l)

1 ∥2∥x(l−1)
S1

(u1)− x
(l−1)
S2

(u2)∥2 + ∥W (l)
2 ∥2∥x(l−1)

S1
(v1)− x

(l−1)
S2

(v2)∥2+

∥W (l)
3 ∥2∥Ra · One-Hot(r1)−Ra · One-Hot(r2)∥2 + ∥W (l)

4 ∥2∥Ra · One-Hot(q1)−Ra · One-Hot(q2)∥2
)

≤∥a(l)
5 ∥2

(
∥W (l)

1 ∥2∥x(l−1)
S1

(u1)− x
(l−1)
S2

(u2)∥2 + ∥W (l)
2 ∥2∥x(l−1)

S1
(v1)− x

(l−1)
S2

(v2)∥2+

∥W (l)
3 ∥2∥Ra∥2∥One-Hot(r1)− One-Hot(r2)∥2 + ∥W (l)

4 ∥2∥Ra∥2∥One-Hot(q1)− One-Hot(q2)∥2
)

≤∥a(l)
5 ∥2

(
∥W (l)

1 ∥2∥x(l−1)
S1

(u1)− x
(l−1)
S2

(u2)∥2 + ∥W (l)
2 ∥2∥x(l−1)

S1
(v1)− x

(l−1)
S2

(v2)∥2+

+
√
2∥W (l)

3 ∥2∥Ra∥21[r1 ̸= r2] +
√
2∥W (l)

4 ∥2∥Ra∥21[q1 ̸= q2]
)

≤κ
(
κ∥x(l−1)

S1
(u1)− x

(l−1)
S2

(u2)∥2 + κ∥x(l−1)
S1

(v1)− x
(l−1)
S2

(v2)∥2
√
2κ2

1[r1 ̸= r2] +
√
2κ2

1[q1 ̸= q2]
)

=κ2∥x(l−1)
S1

(u1)− x
(l−1)
S2

(u2)∥2 + κ2∥x(l−1)
S1

(v1)− x
(l−1)
S2

(v2)∥2 +
√
2κ3

1[r1 ̸= r2] +
√
2κ3

1[q1 ̸= q2]
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Therefore,

∥MSG(l)(x
(l−1)
S1

(u1),x
(l−1)
S1

(v1), r1, q1)− MSG(l)(x
(l−1)
S2

(u2),x
(l−1)
S2

(v2), r2, q2)∥2
≤κ∥x(l−1)

S1
(u1)− x

(l−1)
S2

(u2)∥2 + 2κβ1[r1 ̸= r2]+

κβ
(
κ2∥x(l−1)

S1
(u1)− x

(l−1)
S2

(u2)∥2 + κ2∥x(l−1)
S1

(v1)− x
(l−1)
S2

(v2)∥2 +
√
2κ31[r1 ̸= r2] +

√
2κ31[q1 ̸= q2]

)
≤(κ+ βκ3)∥x(l−1)

S1
(u1)− x

(l−1)
S2

(u2)∥2 + βκ3∥x(l−1)
S1

(v1)− x
(l−1)
S2

(v2)∥2+

(2κβ +
√
2βκ4)1[r1 ̸= r2] +

√
2βκ41[q1 ̸= q2]

Finally, the Lipschitz constants of the message function of GraIL are computed as follows.

A(l)
msg = κ+ βκ3, B(l)

msg = βκ3, C(l)
msg = 2κβ +

√
2βκ4, D(l)

msg =
√
2βκ4

History Function The history function of GraIL is θ(k) = k − 1.

Aggregation Function GraIL uses sum aggregation as the aggregation function, which is formulated as follows.

AGG(l)(A = {{ai}}ni=1) =

n∑
i=1

ai

We can justify the Lipschitz continuity of the aggregation function of GraIL as follows.

∥AGG(l)(A = {{ai}}ni=1)− AGG(l)(B = {{bj}}nj=1)∥2 =∥
n∑
i=1

ai −
n∑
j=1

bj∥2

=∥
∑
i,j

PA,B[i, j](ai − bj)∥2

≤
∑
i,j

PA,B[i, j]∥ai − bj∥2

where PA,B is a transportation plan between A,B. Finally, the Lipschitz constants of the aggregation function of GraIL are
computed as follows.

A(l)
agg = 1

Also, since adding zero vectors to the sum of vectors does not change the resulting vector, the embedding vector Φagg is a
zero vector.

Update Function The update function of GraIL is formulated as follows

UPD(l)(a1,a2) = ReLU(W
(l)
selfa1 + a2)

where W (l)
self is a learnable weight matrix that satisfies Assumption A.1. We can justify the Lipschitz continuity of the update

function of GraIL as follows.

∥UPD(l)(a1,a2)− UPD(l)(b1,b2)∥2 =∥ReLU(W
(l)
selfa1 + a2)− ReLU(W

(l)
selfb1 + b2)∥2

≤∥W (l)
selfa1 + a2 −W

(l)
selfb1 − b2∥2

≤∥W (l)
self(a1 − b1) + a2 − b2∥2

≤∥W (l)
self∥2∥a1 − b1∥2 + ∥a2 − b2∥2

≤κ∥a1 − b1∥2 + ∥a2 − b2∥2

Finally, the Lipschitz constants of the update function of GraIL are computed as follows.

A
(l)
upd = κ,B

(l)
upd = 1
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Global Readout Function GraIL uses mean aggregation as the global-readout function, which is formulated as follows.

GRD(A = {{ai}}ni=1) =
1

n

n∑
i=1

ai

We can justify the Lipschitz continuity of the global-readout function of GraIL as follows.

∥GRD(A = {{ai}}ni=1)− GRD(B = {{bj}}nj=1)∥2 =∥ 1
n

n∑
i=1

ai −
1

n

n∑
j=1

bj∥2

=
1

n
∥
∑
i,j

PA,B[i, j](ai − bj)∥2

≤ 1

n

∑
i,j

PA,B[i, j]∥ai − bj∥2

where PA,B is a transportation plan between A,B and n = max(|VS1 |, |VS2 |). Finally, the Lipschitz constants of the global
readout function of GraIL are computed as follows.

Agrd =
1

max(|VS1
|, |VS2

|)

Also, since GRD({{ai}}ni=1) = GRD({{ai}}ni=1 ∪ {{ 1
n

∑n
i=1 ai}}), the embedding vector Φgrd = 1

n

∑n
i=1 ai.

Readout Function The readout function of GraIL is formulated as follows.

RD(a1,a2,a3, q) = W ha1 +W ta2 +W ga3 +W qR[q]

where W h,W t,W g,W q are learnable weight matrices that satisfy Assumption A.1. We can justify the Lipschitz continuity
of the readout function of GraIL as follows.

|RD(a1,a2,a3, q1)− RD(b1,b2,b3, q2)|
≤|W ha1 +W ta2 +W ga3 +W qR[q1]−W hb1 −W tb2 −W gb3 −W qR[q2]|
≤|W h(a1 − b1) +W t(a2 − b2) +W g(a3 − b3) +W q(R[q1]−R[q2])|
=|W h(a1 − b1) +W t(a2 − b2) +W g(a3 − b3) +W q(R · One-Hot(q1)−R · One-Hot(q1))|
≤∥W h∥2∥a1 − b1∥2 + ∥W t∥2∥a2 − b2∥2 + ∥W g∥2∥a3 − b3∥2 + ∥W q∥2∥R∥2∥One-Hot(q1)− One-Hot(q1)∥2
≤κ∥a1 − b1∥2 + κ∥a2 − b2∥2 + κ∥a3 − b3∥2 +

√
2κ21[q1 ̸= q2]

Finally, the Lipschitz constants of the readout function of GraIL are computed as follows.

Ard = Brd = Crd = κ,Drd =
√
2κ2

A.2. Instantiation of NBFNet

NBFNet (Zhu et al., 2021) can be instantiated as follows:

A.2.1. SUBGRAPH EXTRACTION

NBFNet computes a score for a given triplet based on the paths from the head entity to the tail entity using the entities’
conditional representation with respect to the head entity and the query relation. Thus, it does not explicitly extract subgraphs
for scoring. However, from the perspective of calculating the score for a specific triplet, NBFNet considers only the entities
included in the union of L-hop neighbor entities from the head and tail entity. This approach is equivalent to scoring the
subgraph constructed by the union of L-hop neighbor entities from the two entities.

A.2.2. INITIALIZATION

In NBFNet, only the initial embedding vector of the head entity h is initialized with the embedding vector of the query
relation, while the initial representations of all other entities are initialized as zero vectors.
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A.2.3. SUBGRAPH MESSAGE-PASSING NEURAL NETWORKS

Message Function NBFNet utilizes TransE (Bordes et al., 2013), DistMult (Yang et al., 2015), and RotatE (Sun et al.,
2019) as the message function. First, the message function with TransE is formulated as follows.

MSG(l)(x
(l−1)
S (u),x

(l−1)
S (v), r, q) = x

(l−1)
S (u) +W (l)

r R[q] + b(l)
r

where W (l)
r is a learnable weight matrix that satisfies the Assumption A.1, and b

(l)
r is a learnable weight vector that satisfies

the Assumption A.1. We can show the Lipschitz continuity of the message function with TransE as follows.

∥MSG(l)(x
(l−1)
S1

(u1),x
(l−1)
S1

(v1), r1, q1)− MSG(l)(x
(l−1)
S2

(u2),x
(l−1)
S2

(v2), r2, q2)∥2
≤∥x(l−1)

S1
(u1) +W (l)

r1 R[q1] + b(l)
r1 − x

(l−1)
S2

(u2)−W (l)
r2 R[q2]− b(l)

r2 ∥2
≤∥x(l−1)

S1
(u1)− x

(l−1)
S2

(u2)∥2 + ∥W r1∥
(l)
2 ∥R[q1]−R[q2]∥2 + ∥W (l)

r1 −W (l)
r2 ∥2R[q2] + ∥b(l)

r1 − b(l)
r2 ∥2

≤∥x(l−1)
S1

(u1)− x
(l−1)
S2

(u2)∥2 +
√
2∥W (l)

r1 ∥2∥R∥21[q1 ̸= q2] + ∥W (l)
r1 −W (l)

r2 ∥2R[q2] + ∥b(l)
r1 − b(l)

r2 ∥2
≤∥x(l−1)

S1
(u1)− x

(l−1)
S2

(u2)∥2 +
√
2κ21[q1 ̸= q2] + 2κ21[r1 ̸= r2] + 2κ1[r1 ̸= r2]

Finally, the Lipschitz constants of the message function with TransE are computed as follows.

A(l)
msg = 1, B(l)

msg = 0, C(l)
msg = 2κ2 + κ,D(l)

msg =
√
2κ2

The message function with DistMult is formulated as follows.

MSG(l)(x
(l−1)
S (u),x

(l−1)
S (v), r, q) = diag

(
x
(l−1)
S (u)

)
(W (l)

r R[q] + b(l)
r )

where W (l)
r is a learnable weight matrix that satisfies the Assumption A.1, and b

(l)
r is a learnable weight vector that satisfies

the Assumption A.1. We can justify the Lipschitz continuity of the message function with DistMult as follows.

∥MSG(l)(x
(l−1)
S1

(u1),x
(l−1)
S1

(v1), r1, q1)− MSG(l)(x
(l−1)
S2

(u2),x
(l−1)
S2

(v2), r2, q2)∥2

=∥diag
(
x
(l−1)
S1

(u1)
)
(W (l)

r1 R[q1] + b(l)
r1 )− diag

(
x
(l−1)
S2

(u2)
)
(W (l)

r2 R[q2] + b(l)
r2 )∥2

=∥diag
(
x
(l−1)
S1

(u1)
)
(W (l)

r1 R[q1] + b(l)
r1 −W (l)

r2 R[q2]− b(l)
r2 ) +

(
diag

(
x
(l−1)
S1

(u1)
)
− diag

(
x
(l−1)
S2

(u2)
))

(W (l)
r2 R[q2] + b(l)

r2 )∥2

=∥diag
(
x
(l−1)
S1

(u1)
)
(W (l)

r1 (R[q1]−R[q2]) + (W (l)
r1 −W (l)

r2 )R[q2] + b(l)
r1 − b(l)

r2 )+(
diag

(
x
(l−1)
S1

(u1)
)
− diag

(
x
(l−1)
S2

(u2)
))

(W (l)
r2 R[q2] + b(l)

r2 )∥2

≤∥diag
(
x
(l−1)
S1

(u1)
)
∥2

(
∥W (l)

r1 ∥2∥R[q1]−R[q2]∥2 + ∥W (l)
r1 −W (l)

r2 ∥2∥R[q2]∥2 + ∥b(l)
r1 − b(l)

r2 ∥2
)
+

∥diag
(
x
(l−1)
S1

(u1)
)
− diag

(
x
(l−1)
S2

(u2)
)
∥2∥(W (l)

r2 R[q2] + b(l)
r2 )∥2

≤∥diag
(
x
(l−1)
S1

(u1)
)
∥F

(
∥W (l)

r1 ∥2∥R[q1]−R[q2]∥2 + ∥W (l)
r1 −W (l)

r2 ∥2∥R[q2]∥2 + ∥b(l)
r1 − b(l)

r2 ∥2
)
+

∥diag
(
x
(l−1)
S1

(u1)
)
− diag

(
x
(l−1)
S2

(u2)
)
∥F ∥(W (l)

r2 R[q2] + b(l)
r2 )∥2

≤β
(√

2κ2
1[q1 ̸= q2] + 2κ2

1[r1 ̸= r2] + 2κ1[r1 ̸= r2]
)
+ ∥x(l−1)

S1
(u1)− x

(l−1)
S2

(u2)∥2(κ2 + κ)

Finally, the Lipschitz constants of the message function with DistMult are computed as follows.

A(l)
msg = κ2 + κ,B(l)

msg = 0, C(l)
msg = 2βκ2 + 2βκ,D(l)

msg =
√
2βκ2

The message function with RotatE is formulated as follows.

MSG(l)(x
(l−1)
S (u),x

(l−1)
S (v), r, q) =

[
I d

2
0 d

2
, d
2

]
x
(l−1)
S (u) ◦

[
I d

2
0 d

2
, d
2

]
(W rR[q] + br)−

[
0 d

2
, d
2

I d
2

]
x
(l−1)
S (u) ◦

[
0 d

2
, d
2

I d
2

]
(W rR[q] + br)[

I d
2

0 d
2
, d
2

]
x
(l−1)
S (u) ◦

[
0 d

2
, d
2

I d
2

]
(W rR[q] + br) +

[
0 d

2
, d
2

I d
2

]
x
(l−1)
S (u) ◦

[
I d

2
0 d

2
, d
2

]
(W rR[q] + br)
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where ◦ is an element-wise vector multiplication, W (l)
r is a learnable weight matrix that satisfies the Assumption A.1, and

b
(l)
r is a learnable weight vector that satisfies the Assumption A.1. Note that the embedding dimension d should be an even

number to use the RotatE. Let us show that message function with RotatE is Lipschitz continuous. Let

x1 =
[
I d

2
0 d

2 ,
d
2

]
x
(l−1)
S1

(u1)◦
[
I d

2
0 d

2 ,
d
2

]
(W r1R[q1]+br1)−

[
0 d

2 ,
d
2

I d
2

]
x
(l−1)
S1

(u1)◦
[
0 d

2 ,
d
2

I d
2

]
(W r1R[q1]+br1)

y1 =
[
I d

2
0 d

2 ,
d
2

]
x
(l−1)
S1

(u1)◦
[
0 d

2 ,
d
2

I d
2

]
(W r1R[q1]+br1)+

[
0 d

2 ,
d
2

I d
2

]
x
(l−1)
S1

(u1)◦
[
I d

2
0 d

2 ,
d
2

]
(W r1R[q1]+br1)

x2 =
[
I d

2
0 d

2 ,
d
2

]
x
(l−1)
S2

(u2)◦
[
I d

2
0 d

2 ,
d
2

]
(W r2R[q2]+br2)−

[
0 d

2 ,
d
2

I d
2

]
x
(l−1)
S2

(u1)◦
[
0 d

2 ,
d
2

I d
2

]
(W r1R[q1]+br2)

y2 =
[
I d

2
0 d

2 ,
d
2

]
x
(l−1)
S2

(u2)◦
[
0 d

2 ,
d
2

I d
2

]
(W r2R[q2]+br2)+

[
0 d

2 ,
d
2

I d
2

]
x
(l−1)
S2

(u1)◦
[
I d

2
0 d

2 ,
d
2

]
(W r1R[q1]+br2)

By applying the method for deriving the Lipschitz constant for DistMult and

∥
[
I d

2
0 d

2 ,
d
2

]
x∥2 ≤ ∥x∥2, ∥

[
0 d

2 ,
d
2

I d
2

]
x∥2 ≤ ∥x∥2

for a vector x ∈ Rd, we get the following inequalities.

∥x1 − x2∥2

≤2∥x(l−1)
S1

(u1)∥2
(
∥W (l)

r1 ∥2∥R[q1]−R[q2]∥2 + ∥W (l)
r1 −W (l)

r2 ∥2∥R[q2]∥2 + ∥b(l)
r1 − b(l)

r2 ∥2
)
+

2∥x(l−1)
S1

(u1)− x
(l−1)
S2

(u2)∥2∥(W (l)
r2 R[q2] + b(l)

r2 )∥2

≤2β
(√

2κ21[q1 ̸= q2] + 2κ21[r1 ̸= r2] + 2κ1[r1 ̸= r2]
)
+ 2∥x(l−1)

S1
(u1)− x

(l−1)
S2

(u2)∥2(κ2 + κ)

∥y1 − y2∥2

≤2∥x(l−1)
S1

(u1)∥2
(
∥W (l)

r1 ∥2∥R[q1]−R[q2]∥2 + ∥W (l)
r1 −W (l)

r2 ∥2∥R[q2]∥2 + ∥b(l)
r1 − b(l)

r2 ∥2
)
+

2∥x(l−1)
S1

(u1)− x
(l−1)
S2

(u2)∥2∥(W (l)
r2 R[q2] + b(l)

r2 )∥2

≤2β
(√

2κ21[q1 ̸= q2] + 2κ21[r1 ̸= r2] + 2κ1[r1 ̸= r2]
)
+ 2∥x(l−1)

S1
(u1)− x

(l−1)
S2

(u2)∥2(κ2 + κ)

Then,

∥MSG(l)(x
(l−1)
S1

(u1),x
(l−1)
S1

(v1), r1, q1)− MSG(l)(x
(l−1)
S2

(u2),x
(l−1)
S2

(v2), r2, q2)∥2

=∥


[
I d

2
0 d

2
, d
2

]
x
(l−1)
S1

(u1) ◦
[
I d

2
0 d

2
, d
2

]
(W r1R[q1] + br1)−

[
0 d

2
, d
2

I d
2

]
x
(l−1)
S1

(u1) ◦
[
0 d

2
, d
2

I d
2

]
(W r1R[q1] + br1)[

I d
2

0 d
2
, d
2

]
x
(l−1)
S1

(u1) ◦
[
0 d

2
, d
2

I d
2

]
(W r1R[q1] + br1) +

[
0 d

2
, d
2

I d
2

]
x
(l−1)
S1

(u1) ◦
[
I d

2
0 d

2
, d
2

]
(W r1R[q1] + br1)

−


[
I d

2
0 d

2
, d
2

]
x
(l−1)
S2

(u2) ◦
[
I d

2
0 d

2
, d
2

]
(W r2R[q2] + br2)−

[
0 d

2
, d
2

I d
2

]
x
(l−1)
S2

(u1) ◦
[
0 d

2
, d
2

I d
2

]
(W r1R[q1] + br2)[

I d
2

0 d
2
, d
2

]
x
(l−1)
S2

(u2) ◦
[
0 d

2
, d
2

I d
2

]
(W r2R[q2] + br2) +

[
0 d

2
, d
2

I d
2

]
x
(l−1)
S2

(u1) ◦
[
I d

2
0 d

2
, d
2

]
(W r1R[q1] + br2)

 ∥2

≤∥

x1

y1

−

x2

y2

 ∥2

≤∥x1 − x2∥2 + ∥y1 − y2∥2

≤4β
(√

2κ2
1[q1 ̸= q2] + 2κ2

1[r1 ̸= r2] + 2κ1[r1 ̸= r2]
)
+ 4∥x(l−1)

S1
(u1)− x

(l−1)
S2

(u2)∥2(κ2 + κ)

Finally, the Lipschitz constants of the message function with RotatE are computed as follows.

A(l)
msg = 4κ2 + 4κ,B(l)

msg = 0, C(l)
msg = 8βκ2 + 8βκ,D(l)

msg = 4
√
2βκ2
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History Function The history function of NBFNet is θ(k) = 0.

Aggregation Function NBFNet uses sum, mean, and max/min pooling aggregator as the aggregation function. First, the
sum aggregator of NBFNet is formulated as follows.

AGG(l)(A = {{ai}}ni=1) =

n∑
i=1

ai

The Lipschitz continuity of the sum aggregator of NBFNet is formally established as follows.

∥AGG(l)(A = {{ai}}ni=1)− AGG(l)(B = {{bj}}nj=1)∥2 =∥
n∑
i=1

ai −
n∑
j=1

bj∥2

=∥
∑
i,j

PA,B[i, j](ai − bj)∥2

≤
∑
i,j

PA,B[i, j]∥ai − bj∥2

where PA,B is a transportation plan between A,B. Finally, the Lipschitz constant of the sum aggregator of NBFNet is
computed as follows.

A(l)
agg = 1

Also, since adding zero vectors to the sum of vectors does not change the resulting vector, the embedding vector Φagg is a
zero vector. The mean aggregator of NBFNet is formulated as follows.

AGG(l)(A = {{ai}}ni=1) =
1

n

n∑
i=1

ai

We can justify the Lipschitz continuity of the mean aggregator of NBFNet as follows.

∥AGG(l)(A = {{ai}}ni=1)− AGG(l)(B = {{bj}}nj=1)∥2 =∥ 1
n

n∑
i=1

ai −
1

n

n∑
j=1

bj∥2

=
1

n
∥
∑
i,j

PA,B[i, j](ai − bj)∥2

≤ 1

n

∑
i,j

PA,B[i, j]∥ai − bj∥2

where PA,B is a transportation plan between A,B and n is the maximum of the degree of the training KG and the inference
KG since the blank tree augmentation defined in Definition B.1. Finally, the Lipschitz constant of the mean aggregator of
NBFNet is computed as follows.

A(l)
agg =

1

dmax

Also, since AGG({{ai}}ni=1) = AGG({{ai}}ni=1 ∪ {{ 1
n

∑n
i=1 ai}}), the embedding vector Φagg = 1

n

∑n
i=1 ai.

The max pooling aggregator of NBFNet is formulated as follows.

AGG(l)(A = {{ai}}ni=1) = ΨA where ΨA[k] = max
i

ai[k]

We prove the Lipschitz continuity of the max pooling aggregator of NBFNet as follows.

∥AGG(l)(A = {{ai}}ni=1)− AGG(l)(B = {{bj}}nj=1)∥2
=∥ΨA −ΨB∥2
≤∥ΨA −ΨB∥1
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=

d∑
k=1

|max
i

ai[k]−max
j

bj [k]|

Without loss of generality, we assume maxi ai[k] ≥ maxj bj [k]. Let ik = argmaxi(ai[k]). Then by the definition of
transportation plan, we can ensure the existence of jk that satisfies PA,B[ik, jk] > 0. Also, there always exists a non-zero
minimum value of PA,B. Then,

d∑
k=1

|max
i

ai[k]−max
j

bj [k]| =
d∑
k=1

|aik [k]−max
j

bj [k]|

≤
d∑
k=1

|aik [k]− bjk [k]|

=

d∑
k=1

1

PA,B[ik, jk]
PA,B[ik, jk]|aik [k]− bjk [k]|

≤
d∑
k=1

1

PA,B[ik, jk]

∑
i,j

PA,B[i, j]|ai[k]− bj [k]|

≤ 1

mini,j,PA,B[i,j]>0 PA,B[i, j]

d∑
k=1

∑
i,j

PA,B[i, j]|ai[k]− bj [k]|

=
1

mini,j,PA,B[i,j]>0 PA,B[i, j]

∑
i,j

PA,B[i, j]

d∑
k=1

|ai[k]− bj [k]|

=
1

mini,j,PA,B[i,j]>0 PA,B[i, j]

∑
i,j

PA,B[i, j]∥ai − bi∥1

≤
√
d

mini,j,PA,B[i,j]>0 PA,B[i, j]

∑
i,j

PA,B[i, j]∥ai − bi∥2

where d is the dimension of the vectors. Finally, If we set K as the minimum value among all non-zero values of the
optimal transportation plans for l-th layer of all computation trees, the Lipschitz constant of the max pooling function of
NBFNet is computed as follows.

A(l)
agg =

√
d

K

Also, since AGG({{ai}}ni=1) = AGG({{ai}}ni=1 ∪ {{ΨA}}), the embedding vector Φagg = ΨA.

The min pooling aggregator of NBFNet is formulated as follows.

AGG(l)(A = {{ai}}ni=1) = ΨA where ΨA[k] = min
i

ai[k]

We prove the Lipschitz continuity of the min pooling aggregator of NBFNet as follows.

∥AGG(l)(A = {{ai}}ni=1)− AGG(l)(B = {{bj}}nj=1)∥2
=∥ΨA −ΨB∥2
≤∥ΨA −ΨB∥1

=

d∑
k=1

|min
i

ai[k]−min
j

bj [k]|

Without loss of generality, we assume the mini ai[k] ≤ minj bj [k]. Let ik = argmini(ai[k]), then by the definition of the
transportation plan, we can ensure that the existence of the jk that satisfies PA,B[ik, jk] > 0. Also, there always exists the
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non-zero minimum value of PA,B, then

d∑
k=1

|min
i

ai[k]−min
j

bj [k]| =
d∑
k=1

|aik [k]−min
j

bj [k]|

≤
d∑
k=1

|aik [k]− bjk [k]|

=

d∑
k=1

1

PA,B[ik, jk]
PA,B[ik, jk]|aik [k]− bjk [k]|

≤
d∑
k=1

1

PA,B[ik, jk]

∑
i,j

PA,B[i, j]|ai[k]− bj [k]|

≤ 1

mini,j,PA,B[i,j]>0 PA,B[i, j]

d∑
k=1

∑
i,j

PA,B[i, j]|ai[k]− bj [k]|

=
1

mini,j,PA,B[i,j]>0 PA,B[i, j]

∑
i,j

PA,B[i, j]

d∑
k=1

|ai[k]− bj [k]|

=
1

mini,j,PA,B[i,j]>0 PA,B[i, j]

∑
i,j

PA,B[i, j]∥ai − bi∥1

=

√
d

mini,j,PA,B[i,j]>0 PA,B[i, j]

∑
i,j

PA,B[i, j]∥ai − bi∥2

where d is the dimension of the vectors. Finally, the Lipschitz constant of the min pooling function of NBFNet is computed
as follows.

A(l)
agg =

√
d

mini,j,PA,B[i,j]>0

Also, since AGG({{ai}}ni=1) = AGG({{ai}}ni=1 ∪ {{ΨA}}), the embedding vector Φagg = ΨA.

Update Function NBFNet aggregates x(θ(l))
S (v) together with the messages from neighboring entities during the aggrega-

tion process. Therefore, update function of NBFNet can be represented as a linear projection applied to the concatenation of
the two input vectors.

UPD(l)(a1,a2) = σ
(
W

(l)
1 a1 +W

(l)
2 a2

)
where σ is an activation function with the Lipschitz constant 1, and W

(l)
1 is a learnable weight matrix that satisfies the

Assumption A.1. The Lipschitz constants of the update function of NBFNet are computed as follows.

A
(l)
upd = κ,B

(l)
upd = κ

Global Readout Function The global-readout function is not used in NBFNet.

GRD(A = {{ai}}ni=1) = 0

Therefore, the Lipschitz constant of the global-readout function is computed as zero.

Agrd = 0

Readout Function Since NBFNet uses only the final representation of the tail entity t to calculate the final score of the
subgraph, the readout function of NBFNet is formulated as follows.

RD
(
x
(L)
S (h),x

(L)
S (t),GRD({{x(L)

S (u)|u ∈ VS}}), q
)
= MLP(x(L)

S (t))
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Note that the MLP is Lipschitz continuous under the Assumption A.1 and let the Lipschitz constant of the MLP be Cmlp.
Then, we can prove the Lipschitz continuity of the readout function of NBFNet as follows.

|RD
(
x
(L)
S1

(h1),x
(L)
S1

(t1),GRD({{x(L)
S1

(u1)|u1 ∈ VS1
}}), q1

)
− RD

(
x
(L)
S2

(h2),x
(L)
S2

(t2),GRD({{x(L)
S2

(u2)|u2 ∈ VS2
}}), q2

)
|

=|MLP(x(L)
S1

(t1))− MLP(x(L)
S2

(t2))|

=Cmlp|x(L)
S1

(t1)− x
(L)
S2

(t2)|

Finally, the Lipschitz constants of the readout function of NBFNet are computed as follows.

Ard = 0, Brd = Cmlp, Crd = 0, Drd = 0

A.3. Instantiation of RED-GNN

RED-GNN (Zhang & Yao, 2022) can be instantiated as follows:

A.3.1. SUBGRAPH EXTRACTION

RED-GNN extracts a relational digraph for a given triplet. However, the final embedding vector of the tail entity is computed
using only the embedding vectors of the L-hop neighbor entities of the head entity and the tail entity. Therefore, the subgraph
extractor in RED-GNN can be defined as a function that extracts the subgraphs constructed by the union of L-hop neighbor
entities from the head entity and tail entity.

A.3.2. INITIALIZATION

RED-GNN initializes the embedding vectors of all entities in the subgraph as zero-vectors.

A.3.3. SUBGRAPH MESSAGE-PASSING NEURAL NETWORKS

Message Function The message function of RED-GNN is formulated as follows.

MSG(l)(x
(l−1)
S (u),x

(l−1)
S (v), r, q) = α(l)

u,r,q(x
(l−1)
S (u) +R(l)[r])

α(l)
u,r,q = σ(w(l)

α · ReLU(W
(l)
1 x

(l−1)
S (u) +W

(l)
2 R(l)[r] +W

(l)
3 R(l)[q]))

where R(l) is a relation embedding matrix that satisfies the Assumption A.1, W (l)
1 ,W

(l)
2 ,W

(l)
3 are learnable weight

matrices that satisfy the Assumption A.1, and w
(l)
α is a learnable weight vector that satisfy the Assumption A.1.

The Lipschitz continuity of the message function of RED-GNN can be shown as follows.

∥MSG(l)(x
(l−1)
S1

(u1),x
(l−1)
S1

(v1), r1, q1)− MSG(l)(x
(l−1)
S2

(u2),x
(l−1)
S2

(v2), r2, q2)∥2
=∥α(l)

u1,r1,q1(x
(l−1)
S1

(u1) +R(l)[r1])− α(l)
u2,r2,q2(x

(l−1)
S2

(u2) +R(l)[r2])∥2
≤∥α(l)

u1,r1,q1(x
(l−1)
S1

(u1) +R(l)[r1]− x
(l−1)
S2

(u2)−R(l)[r2]) + (α(l)
u1,r1,q1 − α(l)

u2,r2,q2)(x
(l−1)
S2

(u2) +R(l)[r2])∥2
≤|α(l)

u1,r1,q1 |(∥x
(l−1)
S1

(u1)− x
(l−1)
S2

(u2)∥2 + ∥R(l)[r1]−R(l)[r2]∥2) + |α(l)
u1,r1,q1 − α(l)

u2,r2,q2 |∥x
(l−1)
S2

(u2) +R(l)[r2]∥2
≤(∥x(l−1)

S1
(u1)− x

(l−1)
S2

(u2)∥2 +
√
2κ1[r1 ̸= r2]) + (κ+ β)|α(l)

u1,r1,q1 − α(l)
u2,r2,q2 |

For the attention value α(l)
u1,r1,q1 , the following inequalities hold.

|α(l)
u1,r1,q1 − α(l)

u2,r2,q2 |

=|σ(w(l)
α · ReLU(W

(l)
1 x

(l−1)
S1

(u1) +W
(l)
2 R(l)[r1] +W

(l)
3 R(l)[q1]))

− σ(w(l)
α · ReLU(W

(l)
1 x

(l−1)
S2

(u2) +W
(l)
2 R(l)[r2] +W

(l)
3 R(l)[q2]))|

≤|w(l)
α · ReLU(W

(l)
1 x

(l−1)
S1

(u1) +W
(l)
2 R(l)[r1] +W

(l)
3 R(l)[q1])
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−w(l)
α · ReLU(W

(l)
1 x

(l−1)
S2

(u2) +W
(l)
2 R(l)[r2] +W

(l)
3 R(l)[q2])|

=|w(l)
α · (ReLU(W

(l)
1 x

(l−1)
S1

(u1) +W
(l)
2 R(l)[r1] +W

(l)
3 R(l)[q1])− ReLU(W

(l)
1 x

(l−1)
S2

(u2) +W
(l)
2 R(l)[r2] +W

(l)
3 R(l)[q2]))|

≤∥w(l)
α ∥2∥ReLU(W

(l)
1 x

(l−1)
S1

(u1) +W
(l)
2 R(l)[r1] +W

(l)
3 R(l)[q1])

− ReLU(W
(l)
1 x

(l−1)
S2

(u2) +W
(l)
2 R(l)[r2] +W

(l)
3 R(l)[q2])∥2

≤∥w(l)
α ∥2∥W (l)

1 x
(l−1)
S1

(u1) +W
(l)
2 R(l)[r1] +W

(l)
3 R(l)[q1]−W

(l)
1 x

(l−1)
S2

(u2)−W
(l)
2 R(l)[r2]−W

(l)
3 R(l)[q2]∥2

=∥w(l)
α ∥2∥W (l)

1 (x
(l−1)
S1

(u1)− x
(l−1)
S2

(u2)) +W
(l)
2 (R(l)[r1]−R(l)[r2]) +W

(l)
3 (R(l)[q1]−R(l)[q2])∥2

≤∥w(l)
α ∥2

(
∥W (l)

1 ∥2∥x(l−1)
S1

(u1)− x
(l−1)
S2

(u2)∥2 + ∥W (l)
2 ∥2∥R(l)[r1]−R(l)[r2]∥2 + ∥W (l)

3 ∥2∥R(l)[q1]−R(l)[q2]∥2
)

≤κ
(
κ∥x(l−1)

S1
(u1)− x

(l−1)
S2

(u2)∥2 +
√
2κ2

1[r1 ̸= r2] +
√
2κ2

1[q1 ̸= q2]
)

=κ2∥x(l−1)
S1

(u1)− x
(l−1)
S2

(u2)∥2 +
√
2κ3

1[r1 ̸= r2] +
√
2κ3

1[q1 ̸= q2]

Therefore, we get

∥MSG(l)(x
(l−1)
S1

(u1),x
(l−1)
S1

(v1), r1, q1)− MSG(l)(x
(l−1)
S2

(u2),x
(l−1)
S2

(v2), r2, q2)∥2
≤∥x(l−1)

S1
(u1)− x

(l−1)
S2

(u2)∥2 +
√
2κ1[r1 ̸= r2] + (κ+ β)(κ2∥x(l−1)

S1
(u1)− x

(l−1)
S2

(u2)∥2
+
√
2κ31[r1 ̸= r2] +

√
2κ31[q1 ̸= q2])

Finally, the Lipschitz constants of the message function of RED-GNN are computed as follows.

A(l)
msg = κ3 + βκ2 + 1, B(l)

msg = 0, C(l)
msg =

√
2κ4 +

√
2βκ3 +

√
2κ,D(l)

msg =
√
2κ4 +

√
2βκ3

History Function Since RED-GNN does not utilize x
(θ(l))
S (v) in its update function, it can be instantiated by the model

with both θ(k) = k − 1 and θ(k) = 0.

Aggregation Function RED-GNN uses sum aggregation as the aggregation function. Therefore, the Lipschitz constant of
the aggregation function of RED-GNN is computed as follows.

A(l)
agg = 1

Update Function RED-GNN does not utilize x
(θ(l))
S (v) in the update function. Therefore, the update function of

RED-GNN can be formulated as follows.

UPD(l)
(
x
(θ(l))
S (v),a

(l)
S (v)

)
= δ(W (l)a

(l)
S (v))

where δ is an activation function with the Lipschitz constant 1, W (l) is a learnable weight matrix that satisfies the
Assumption A.1. The Lipschitz continuity of the update function of RED-GNN can be shown as follows.

∥UPD(l)
(
x
(θ(l))
S1

(v1),a
(l)
S1
(v1)

)
− UPD(l)

(
x
(θ(l))
S2

(v2),a
(l)
S2
(v2)

)
∥2

=∥W (l)a
(l)
S1
(v1)−W (l)a

(l)
S2
(v2)∥2

=∥W (l)∥2∥a(l)S1
(v1)− a

(l)
S2
(v2)∥2

=κ∥a(l)S1
(v1)− a

(l)
S2
(v2)∥2

Therefore, the Lipschitz constants of the update function of RED-GNN are computed as follows.

A
(l)
upd = 0, B

(l)
upd = κ
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Global Readout Function The global-readout function is not used in RED-GNN.

GRD(A = {ai}ni=1) = 0

Therefore, the Lipschitz constant of the global-readout function is computed as zero.

Agrd = 0

Readout Function Since RED-GNN uses only the final representation of the tail entity t to calculate the final score of the
subgraph, the readout function of NBFNet is formulated as follows.

RD
(
x
(L)
S (h),x

(L)
S (t),GRD({{x(L)

S (u)|u ∈ VS}}), q
)
= w · x(L)

S (t)

where w is a learnable weight vector that satisfies the Assumption A.1. The Lipschitz constants of the readout function of
NBFNet are computed as follows.

Ard = 0, Brd = κ,Crd = 0, Drd = 0

B. Blank Tree Augmentation
Similar to Chuang & Jegelka (2022), we introduce blank tree augmentation for the relational computation trees. To handle
potential variations in the number of the subtrees, we define a blank tree T0, which consists of a single virtual root entity.
This virtual root entity has no connections to any other entities within the subgraph and is assigned a unique label distinct
from the labels of all other entities. The blank tree T0 is used to augment the multisets of subtrees, ensuring that their sizes
are equal. The augmentation process is formalized as follows:

Definition B.1 (Blank Tree Augmentation). Given two multisets of subtrees SUB(T (l)
S1

(v1)), SUB(T (l)
S2

(v2)), a blank tree
augmentation ρ is defined by

ρ(SUB(T (l)
S1

(v1)), SUB(T (l)
S2

(v2))) =

{
SUB(T (l)

S1
(v1)) ∪Θn2−n1 , SUB(T (l)

S2
(v2)) n1 < n2

SUB(T (l)
S1

(v1)), SUB(T (l)
S2

(v2)) ∪Θn1−n2 n1 ≥ n2

where Θn =
⋃n
k=1{{(rblank, T0)}}, n1 = |SUB(T (l)

S1
(v1))|, n2 = |SUB(T (l)

S2
(v2))|, and rblank is a virtual relation.

C. Proof for Lipschitz Continuity of Subgraph Message-Passing Neural Networks
We provide a proof for Theorem 4.5.

Theorem 4.5 (Lipschitz Constant of SMPNNs). Given an SMPNN fw with L layers, Gtr = (Vtr,R,Ftr ∪ Ttr) and
Ginf = (Vinf,R,Finf ∪ Tinf), if the message, aggregation, update, global-readout, and readout functions of fw are Lipschitz
continuous, then fw is Lipschitz continuous with the Lipschitz constant ηf and the following holds:

ηf ≤


(∏L+1

l=1 η(l)
)

θ(k) = k − 1

(L+ 1)
(∏L+1

l=1 η(l)
)

θ(k) = 0

η(l) = max(A
(l)
upd + dmaxB

(l)
updA

(l)
aggB

(l)
msg, B

(l)
updA

(l)
aggA

(l)
msg,

|R|2B(l)
updA

(l)
aggC

(l)
msg, |R|2B(l)

updA
(l)
aggD

(l)
msg, 1),

η(L+1) = max(Ard, Brd, CrdAgrd,
|R|2Drd

2 + max(|Vtr|, |Vinf|)
)

where 1≤ l≤L, A(l)
msg, B

(l)
msg, C

(l)
msg, D

(l)
msg are the Lipschitz constants of the message function, A(l)

agg is the Lipschitz constant of
the aggregation function, A(l)

upd, B
(l)
upd are the Lipschitz constants of the update function, Agrd is the Lipschitz constant of the

global-readout function, Ard, Brd, Crd, Drd are the Lipschitz constants of the readout function, and dmax is the maximum
degree of Gtr and Ginf.
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Proof. Without loss of generality, we assume |VS1
| ≥ |VS2

|. Let XS1
= {{x(L)

S1
(v1)|v1 ∈ VS1

}} and XS2
=

{{x(L)
S2

(v2)|u ∈ VS2}} ∪
⋃|VS1

|−|VS2
|

k=1 {{Φgrd}} where Φgrd ∈ Rd is an embedding vector that makes GRD(XS2) same

as GRD({{x(L)
S2

(v2)|u ∈ VS2
}}). We assume that such an embedding vector exists, and justify this for each vari-

ation of global-readout function in the Appendix A. Also, we set PXS1
,XS2

as the optimal transportation plan of

OTRTD

(
ρ
(
{{(rroot, T

(L)
S1

(v1))|v1 ∈ VS1}}, {{(rroot, T
(L)
S2

(v2))|v2 ∈ VS2}}
))

. Using the Lipschitz continuity of each func-
tion in an SMPNN defined in Definition A.2, we deduce the following inequalities:

|fw(S1)− fw(S2)| =
∣∣∣RD

(
x
(L)
S1

(h1),x
(L)
S1

(t1),GRD({{x(L)
S1

(v1)|v1 ∈ VS1
}}), q1

)
−

RD
(
x
(L)
S2

(h2),x
(L)
S2

(t2),GRD({{x(L)
S2

(v2)|u ∈ VS2
}}), q2

) ∣∣∣
≤Ard∥x(L)

S1
(h1)− x

(L)
S2

(h2)∥2 +Brd∥x(L)
S1

(t1)− x
(L)
S2

(t2)∥2+

Crd∥GRD({{x(L)
S1

(v1)|v1 ∈ VS1}})− GRD({{x(L)
S2

(v2)|u ∈ VS2}})∥2 +Drd1[q1 ̸= q2]

≤Ard∥x(L)
S1

(h1)− x
(L)
S2

(h2)∥2 +Brd∥x(L)
S1

(t1)− x
(L)
S2

(t2)∥2 +Drd1[q1 ̸= q2]+

CrdAgrd

∑
i,j

PXS1
,XS2

[i, j]∥x(L)
S1

(vi)− x
(L)
S2

(vj)∥2

Similar to blank tree augmentation, pairs of rblank and virtual entities are added to the smaller set among NS1
(vi) and

NS2(vj), resulting in the augmented multisets ÑS1(vi) and ÑS2(vj). These augmented multisets are equivalent to the
multiset whose elements are pairs of relations and root entities of each subtree in ρ(SUB(T (l)

S1
(vi)),SUB(T (l)

S2
(vj))). Note

that P (l)

ÑS1
(vi),ÑS2

(vj)
is a transportation plan between ÑS1(vi) and ÑS2(vj). We set the computed message of the virtual

root entity of T0 and virtual relation rblank as an embedding vector Φagg ∈ Rd that makes the aggregated message of the
neighbor multiset NS(v) same as the aggregated message of the augmented multiset ÑS(v). We assume that such an
embedding vector exists, and justify this for each variation of aggregation function in the Appendix A.

∥x(l)
S1
(vi)− x

(l)
S2
(vj)∥2

=∥UPD(l)
(
x
(θ(l))
S1

(vi),AGG(l)({{MSG(l)(x
(l−1)
S1

(ui′),x
(l−1)
S1

(vi), ri′ , q1)|(ri′ , ui′) ∈ NS1(vi)}})
)
−

UPD(l)
(
x
(θ(l))
S2

(vj),AGG(l)({{MSG(l)(x
(l−1)
S2

(uj′),x
(l−1)
S2

(vj), rj′ , q2)|(rj′ , uj′) ∈ NS2
(vj)}})

)
∥2

≤A(l)
upd∥x

(θ(l))
S1

(vi)− x
(θ(l))
S2

(vj)∥2 +B
(l)
upd∥AGG(l)({{MSG(l)(x

(l−1)
S1

(ui′),x
(l−1)
S1

(vi), ri′ , q1)|(ri′ , ui′) ∈ NS1
(vi)}})−

AGG(l)({{MSG(l)(x
(l−1)
S2

(uj′),x
(l−1)
S2

(vj), rj′ , q2)|(rj′ , uj′) ∈ NS2
(vj)}})∥2

=A
(l)
upd∥x

(θ(l))
S1

(vi)− x
(θ(l))
S2

(vj)∥2 +B
(l)
upd∥AGG(l)({{MSG(l)(x

(l−1)
S1

(ui′),x
(l−1)
S1

(vi), ri′ , q1)|(ri′ , ui′) ∈ ÑS1(vi)}})−

AGG(l)({{MSG(l)(x
(l−1)
S2

(uj′),x
(l−1)
S2

(vj), rj′ , q2)|(rj′ , uj′) ∈ ÑS2(vj)}})∥2
≤A(l)

upd∥x
(θ(l))
S1

(vi)− x
(θ(l))
S2

(vj)∥2+

B
(l)
updA

(l)
agg

∑
i′,j′

P
(l)

ÑS1
(vi),ÑS2

(vj)
[i′, j′]∥MSG(l)(x

(l−1)
S1

(ui′),x
(l−1)
S1

(vi), ri′ , q1)−MSG(l)(x
(l−1)
S2

(uj′),x
(l−1)
S2

(vj), rj′ , q2)∥2

≤A(l)
upd∥x

(θ(l))
S1

(vi)− x
(θ(l))
S2

(vj)∥2 +B
(l)
updA

(l)
agg

∑
i′,j′

P
(l)

ÑS1
(vi),ÑS2

(vj)
[i′, j′]

(
A(l)

msg∥x
(l−1)
S1

(ui′)− x
(l−1)
S2

(uj′)∥2

+B(l)
msg∥x

(l−1)
S1

(vi)− x
(l−1)
S2

(vj)∥2 + C(l)
msg1[ri′ ̸= rj′ ] +D(l)

msg1[q1 ̸= q2]
)

Let us first consider the case where the history function is defined as θ(k) = k − 1. If we define the Lipschitz continuity of
each layer of an SMPNN as

η(l) = max(A
(l)
upd + dmaxB

(l)
updA

(l)
aggB

(l)
msg, B

(l)
updA

(l)
aggA

(l)
msg, |R|2B(l)

updA
(l)
aggC

(l)
msg, |R|2B(l)

updA
(l)
aggD

(l)
msg, 1), (2)
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Figure 6. Visualization of the iterative process. Each box represents the L2 norm of the difference between two entity pairs.

η(L+1) = max(Ard, Brd, CrdAgrd,
|R|2Drd

2 + max(|Vtr|, |Vinf|)
)

, and η(0) = 1 for 1 ≤ l ≤ L, the following inequalities hold.

∥x(l)
S1

(vi) − x
(l)
S2

(vj)∥2

≤A(l)
upd∥x

(l−1)
S1

(vi) − x
(l−1)
S2

(vj)∥2+

B
(l)
updA

(l)
agg

∑
i′,j′

P
(l)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]
(
A

(l)
msg∥x

(l−1)
S1

(ui′ ) − x
(l−1)
S2

(uj′ )∥2+B
(l)
msg∥x

(l−1)
S1

(vi) − x
(l−1)
S2

(vj)∥2! +C
(l)
msg1[ri′ ̸= rj′ ]+D

(l)
msg1[q1 ̸= q2]

)
≤
(
A

(l)
upd + dmaxB

(l)
updA

(l)
aggB

(l)
msg

)
∥x(l−1)

S1
(vi) − x

(l−1)
S2

(vj)∥2+∑
i′,j′

P
(l)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]
(
B

(l)
updA

(l)
aggA

(l)
msg∥x

(l−1)
S1

(ui′ ) − x
(l−1)
S2

(uj′ )∥2 + B
(l)
updA

(l)
aggC

(l)
msg1[ri′ ̸= rj′ ] + B

(l)
updA

(l)
aggD

(l)
msg1[q1 ̸= q2]

)
≤η(l)

(
∥x(l−1)

S1
(vi) − x

(l−1)
S2

(vj)∥2+

∑
i′,j′

P
(l)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]

(
∥x(l−1)

S1
(ui′ ) − x

(l−1)
S2

(uj′ )∥2 +
1

|R|2
(1[ri′ ̸= rj′ ] + 1[q1 ̸= q2])

)
≤η(l)

(
η
(l−1)

(
∥x(l−2)

S1
(vi) − x

(l−2)
S2

(vj)∥2+

∑
i′,j′

P
(l)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]

(
∥x(l−2)

S1
(ui′ ) − x

(l−2)
S2

(uj′ )∥2 +
1

|R|2
(1[ri′ ̸= rj′ ] + 1[q1 ̸= q2])

)+

∑
i′,j′

P
(l)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]

(
∥x(l−1)

S1
(ui′ ) − x

(l−1)
S2

(uj′ )∥2 +
1

|R|2
(1[ri′ ̸= rj′ ] + 1[q1 ̸= q2])

)

The above process shows how a single recursion is unrolled and applied to the next layer. The overall iteration process for L
layers is presented in Figure 6. Each box in the figure represents the L2 norm of the difference between embedding vectors
of a specific entity pair at a particular layer. The vertical axis corresponds to layers, and the horizontal axis corresponds
to some entity pairs. Hence, boxes within the same column represent the same entity pair across different layers, while
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boxes in the same row represent the same layer across different entity pairs. From the above inequalities, we can infer that
calculating the upper bound of each box requires evaluating the expressions corresponding to the box directly below and
the one diagonally below to the right. In Figure 6, a shift to the right column indicates the neighbor sets of the entity pairs
in the current column. Thus, the arrows pointing diagonally down to the right require a transportation plan, which must
remain consistent for the same entity pair. The process reaches the leaf boxes corresponding to the 0-th layer by recursively
applying the iterations described above. The final upper bound for the box at the L-th layer is expressed using the values
derived from these leaf boxes. The coefficient for each box is equal to the number of shortest paths from the top box to
the corresponding leaf box. Therefore, the coefficients of the leaf boxes correspond to the L-th row of Pascal’s triangle.
Additionally, the coefficient of the penalties for the relations and queries can be calculated by the summation of Pascal’s
triangle up to the previous layer in the same column. Therefore, we get the following inequalities.

∥x(L)
S1

(vi) − x
(L)
S2

(vj)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])

≤
(L
0

)( L∏
k=1

η
(k)

)
∥x(0)

S1
(vi) − x

(0)
S2

(vj)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])+

∑
i′,j′

P
(L)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]

((L
1

)( L∏
k=1

η
(k)

)
∥x(0)

S1
(ui′ ) − x

(0)
S2

(uj′ )∥2 +
1

|R|2

(
L∑

r=1

(L− r

0

) L∏
k=r

η
(k)

)(
1[ri′ ̸= rj′ ] + 1[q1 ̸= q2]

)
+

∑
i′′,j′′

P
(L−1)

ÑS1
(v

i′ ),ÑS2
(v

j′ )
[i

′′
, j

′′
]

((L
2

)( L∏
k=1

η
(k)

)
∥x(0)

S1
(ui′′ ) − x

(0)
S2

(uj′′ )∥2 +
1

|R|2

(
L−1∑
r=1

(L− r

1

) L∏
k=r

η
(k)

)(
1[ri′′ ̸= rj′′ ] + 1[q1 ̸= q2]

)
+

. . . ∑
i(L−1),j(L−1)

P
(2)

ÑS1

(
v
i(L−2)

)
,ÑS2

(
v
j(L−2)

)[i(L−1)
, j

(L−1)
]

(( L

L− 1

)( L∏
k=1

η
(k)

)
∥x(0)

S1
(u

i(L−1) ) − x
(0)
S2

(u
j(L−1) )∥2

+
1

|R|2

(
2∑

r=1

(L− r

L− 2

) L∏
k=r

η
(k)

)(
1[r

i(L−1) ̸= r
j(L−1) ] + 1[q1 ̸= q2]

)
+

∑
i(L),j(L)

P
(1)

ÑS1

(
v
i(L−1)

)
,ÑS2

(
v
j(L−1)

)[i(L)
, j

(L)
]

((L
L

)( L∏
k=1

η
(k)

)
∥x(0)

S1
(u

i(L) ) − x
(0)
S2

(u
j(L) )∥2

+
1

|R|2

(
1∑

r=1

(L− r

L− 1

) L∏
k=r

η
(k)

)(
1[r

i(L) ̸= r
j(L) ] + 1[q1 ̸= q2]

)))
. . .

))

≤
(

L∏
k=1

η
(k)

)
∥x(0)

S1
(vi) − x

(0)
S2

(vj)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])+

(L
1

)(L
0

) ∑
i′,j′

P
(L)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]

((
L∏

k=1

η
(k)

)
∥x(0)

S1
(ui′ ) − x

(0)
S2

(uj′ )∥2 +
1

|R|2

(
L∑

r=1

(L−r
0

)(L
1

) L∏
k=r

η
(k)

)(
1[ri′ ̸= rj′ ] + 1[q1 ̸= q2]

)
+

(L
2

)(L
1

) ∑
i′′,j′′

P
(L−1)

ÑS1
(v

i′ ),ÑS2
(v

j′ )
[i

′′
, j

′′
]

((
L∏

k=1

η
(k)

)
∥x(0)

S1
(ui′′ ) − x

(0)
S2

(uj′′ )∥2 +
1

|R|2

(
L−1∑
r=1

(L−r
1

)(L
2

) L∏
k=r

η
(k)

)(
1[ri′′ ̸= rj′′ ] + 1[q1 ̸= q2]

)
+

. . .( L
L−1

)( L
L−2

) ∑
i(L−1),j(L−1)

P
(2)

ÑS1

(
v
i(L−2)

)
,ÑS2

(
v
j(L−2)

)[i(L−1)
, j

(L−1)
]

((
L∏

k=1

η
(k)

)
∥x(0)

S1
(u

i(L−1) ) − x
(0)
S2

(u
j(L−1) )∥2

+
1

|R|2

(
2∑

r=1

(L−r
L−2

)( L
L−1

) L∏
k=r

η
(k)

)(
1[r

i(L−1) ̸= r
j(L−1) ] + 1[q1 ̸= q2]

)
+

(L
L

)( L
L−1

) ∑
i(L),j(L)

P
(1)

ÑS1

(
v
i(L−1)

)
,ÑS2

(
v
j(L−1)

)[i(L)
, j

(L)
]

((
L∏

k=1

η
(k)

)
∥x(0)

S1
(u

i(L) ) − x
(0)
S2

(u
j(L) )∥2

+
1

|R|2

(
1∑

r=1

(L−r
L−1

)(L
L

) L∏
k=r

η
(k)

)(
1[r

i(L) ̸= r
j(L) ] + 1[q1 ̸= q2]

)))
. . .

))

≤
(

L∏
k=0

η
(k)

)(
∥x(0)

S1
(vi) − x

(0)
S2

(vj)∥2 +
1

|R|2

(
L∏

k=0

1

η(k)

)
(1[rroot ̸= rroot] + 1[q1 ̸= q2]) +

(L
1

)(L
0

) ∑
i′,j′

P
(L)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]

(
∥x(0)

S1
(ui′ ) − x

(0)
S2

(uj′ )∥2 +
1

|R|2

(
L∑

r=1

(L−r
0

)(L
1

) r−1∏
k=0

1

η(k)

)(
1[ri′ ̸= rj′ ] + 1[q1 ̸= q2]

)
+

(L
2

)(L
1

) ∑
i′′,j′′

P
(L−1)

ÑS1
(v

i′ ),ÑS2
(v

j′ )
[i

′′
, j

′′
]

(
∥x(0)

S1
(ui′′ ) − x

(0)
S2

(uj′′ )∥2 +
1

|R|2

(
L−1∑
r=1

(L−r
1

)(L
2

) r−1∏
k=0

1

η(k)

)(
1[ri′′ ̸= rj′′ ] + 1[q1 ̸= q2]

)
+

. . .
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( L
L−1

)( L
L−2

) ∑
i(L−1),j(L−1)

P
(2)

ÑS1

(
v
i(L−2)

)
,ÑS2

(
v
j(L−2)

)[i(L−1)
, j

(L−1)
]
(
∥x(0)

S1
(u

i(L−1) ) − x
(0)
S2

(u
j(L−1) )∥2

+
1

|R|2

(
2∑

r=1

(L−r
L−2

)( L
L−1

) r−1∏
k=0

1

η(k)

)(
1[r

i(L−1) ̸= r
j(L−1) ] + 1[q1 ̸= q2]

)
+

(L
L

)( L
L−1

) ∑
i(L),j(L)

P
(1)

ÑS1

(
v
i(L−1)

)
,ÑS2

(
v
j(L−1)

)[i(L)
, j

(L)
]
(
∥x(0)

S1
(u

i(L) ) − x
(0)
S2

(u
j(L) )∥2

+
1

|R|2

(
1∑

r=1

(L−r
L−1

)(L
L

) r−1∏
k=0

1

η(k)

)(
1[r

i(L) ̸= r
j(L) ] + 1[q1 ̸= q2]

)))
. . .

)))

≤
(

L∏
k=0

η
(k)

)(
∥x(0)

S1
(vi) − x

(0)
S2

(vj)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])+

(L
1

)(L
0

) ∑
i′,j′

P
(L)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]

(
∥x(0)

S1
(ui′ ) − x

(0)
S2

(uj′ )∥2 +
1

|R|2

(
L∑

r=1

(L−r
0

)(L
1

) r−1∏
k=0

1

)(
1[ri′ ̸= rj′ ] + 1[q1 ̸= q2]

)
+

(L
2

)(L
1

) ∑
i′′,j′′

P
(L−1)

ÑS1
(v

i′ ),ÑS2
(v

j′ )
[i

′′
, j

′′
]

(
∥x(0)

S1
(ui′′ ) − x

(0)
S2

(uj′′ )∥2 +
1

|R|2

(
L−1∑
r=1

(L−r
1

)(L
2

) r−1∏
k=0

1

)(
1[ri′′ ̸= rj′′ ] + 1[q1 ̸= q2]

)
+

. . .( L
L−1

)( L
L−2

) ∑
i(L−1),j(L−1)

P
(2)

ÑS1

(
v
i(L−2)

)
,ÑS2

(
v
j(L−2)

)[i(L−1)
, j

(L−1)
]
(
∥x(0)

S1
(u

i(L−1) ) − x
(0)
S2

(u
j(L−1) )∥2

+
1

|R|2

(
2∑

r=1

(L−r
L−2

)( L
L−1

) r−1∏
k=0

1

)(
1[r

i(L−1) ̸= r
j(L−1) ] + 1[q1 ̸= q2]

)
+

(L
L

)( L
L−1

) ∑
i(L),j(L)

P
(1)

ÑS1

(
v
i(L−1)

)
,ÑS2

(
v
j(L−1)

)[i(L)
, j

(L)
]
(
∥x(0)

S1
(u

i(L) ) − x
(0)
S2

(u
j(L) )∥2

+
1

|R|2

(
1∑

r=1

(L−r
L−1

)(L
L

) r−1∏
k=0

1

)(
1[r

i(L) ̸= r
j(L) ] + 1[q1 ̸= q2]

)))
. . .

)))

≤
(

L∏
k=0

η
(k)

)(
∥x(0)

S1
(vi) − x

(0)
S2

(vj)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])+

(L
1

)(L
0

) ∑
i′,j′

P
(L)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]

(
∥x(0)

S1
(ui′ ) − x

(0)
S2

(uj′ )∥2 +
1

|R|2
(1[ri′ ̸= rj′ ] + 1[q1 ̸= q2])+

(L
2

)(L
1

) ∑
i′′,j′′

P
(L−1)

ÑS1
(v

i′ ),ÑS2
(v

j′ )
[i

′′
, j

′′
]

(
∥x(0)

S1
(ui′′ ) − x

(0)
S2

(uj′′ )∥2 +
1

|R|2
(1[ri′′ ̸= rj′′ ] + 1[q1 ̸= q2])+

. . .(L
L

)( L
L−1

) ∑
i(L),j(L)

P
(1)

ÑS1

(
v
i(L−1)

)
,ÑS2

(
v
j(L−1)

)[i(L)
, j

(L)
]

(
∥x(0)

S1
(u

i(L) ) − x
(0)
S2

(u
j(L) )∥2 +

1

|R|2
(1[r

i(L) ̸= r
j(L) ] + 1[q1 ̸= q2])

)
. . .





If we set each transportation plan as the optimal transportation plan of the RTD((rroot, T
(L)
S1

(vi)), (rroot, T
(L)
S2

(vj))) with the

weight function w(l) = ( L
L−l+1)
( L
L−l)

, we can bound the above equation as follows.

∥x(L)
S1

(vi)− x
(L)
S2

(vj)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2]) ≤

(
L∏
l=0

η(l)

)
RTD((rroot, T

(L)
S1

(vi)), (rroot, T
(L)
S2

(vj)))

Finally if we set P (l)

ÑS1
(vi),ÑS2

(vj)
as the optimal transportation plan of the OTRTD(S1, S2), we can get following equations.

|fw(S1)− fw(S2)|

≤Ard∥x(L)
S1

(h1)− x
(L)
S2

(h2)∥2 +Brd∥x(L)
S1

(t1)− x
(L)
S2

(t2)∥2 +Drd1[q1 ̸= q2]+

CrdAgrd

∑
i,j

PXS1
,XS2

[i, j]∥x(L)
S1

(vi)− x
(L)
S2

(vj)∥2

≤η(L+1)

(
∥x(L)

S1
(h1)− x

(L)
S2

(h2)∥2 + ∥x(L)
S1

(t1)− x
(L)
S2

(t2)∥2 +
2 +max(|VS1

|, |VS2
|)

|R|2
1[q1 ̸= q2]
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+
∑
i,j

PXS1
,XS2

[i, j]∥x(L)
S1

(vi)− x
(L)
S2

(vj)∥2


≤η(L+1)

(
∥x(L)

S1
(h1)− x

(L)
S2

(h2)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])+

∥x(L)
S1

(t1)− x
(L)
S2

(t2)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])+

∑
i,j

PXS1
,XS2

[i, j]

(
∥x(L)

S1
(vi)− x

(L)
S2

(vj)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])

)
≤

(
L+1∏
l=1

η(k)

)(
RTD((rroot, T

(L)
S1

(h1)), (rroot, T
(L)
S2

(h2))) + RTD((rroot, T
(L)
S1

(t1)), (rroot, T
(L)
S2

(t2))) + OTRTD(S1, S2)
)

≤

(
L+1∏
l=1

η(k)

)
RTMD(S1, S2)

Next, we consider the case where the history function is defined as θ(k) = 0. Using the Lipschitz continuity of each
function in an SMPNN defined in Definition A.2, we deduce the following inequalities:

∥x(l)
S1

(vi) − x
(l)
S2

(vj)∥2

≤A(l)
upd∥x

(0)
S1

(vi) − x
(0)
S2

(vj)∥2+

B
(l)
updA

(l)
agg

∑
i′,j′

P
(l)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]
(
A

(l)
msg∥x

(l−1)
S1

(ui′ ) − x
(l−1)
S2

(uj′ )∥2 + B
(l)
msg∥x

(l−1)
S1

(vi) − x
(l−1)
S2

(vj)∥2 + C
(l)
msg1[ri′ ̸= rj′ ] +D

(l)
msg1[q1 ̸= q2]

)
≤A(l)

upd∥x
(0)
S1

(vi) − x
(0)
S2

(vj)∥2 + dmaxB
(l)
updA

(l)
aggB

(l)
msg∥x

(l−1)
S1

(vi) − x
(l−1)
S2

(vj)∥2+∑
i′,j′

P
(l)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]
(
B

(l)
updA

(l)
aggA

(l)
msg∥x

(l−1)
S1

(ui′ ) − x
(l−1)
S2

(uj′ )∥2 + B
(l)
updA

(l)
aggC

(l)
msg1[ri′ ̸= rj′ ] + B

(l)
updA

(l)
aggD

(l)
msg1[q1 ̸= q2]

)
≤η(l)

(
∥x(0)

S1
(vi) − x

(0)
S2

(vj)∥2 + ∥x(l−1)
S1

(vi) − x
(l−1)
S2

(vj)∥2+

∑
i′,j′

P
(l)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]

(
∥x(l−1)

S1
(ui′ ) − x

(l−1)
S2

(uj′ )∥2 +
1

|R|2
(1[ri′ ̸= rj′ ] + 1[q1 ̸= q2])

)
Using the same approach as for the case where θ(k) = k − 1, we can derive the following equation. The only difference is

in calculating the coefficients for the values corresponding to the leaf boxes. In this case, the coefficient of each leaf box is
equal to the sum of paths from all boxes in that column to the leaf box.

∥x(L)
S1

(vi) − x
(L)
S2

(vj)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])

≤
((L

0

)( L∏
k=1

η
(k)

)
+

L∑
r=1

(L− r

0

) L∏
k=r

η
(k)

)
∥x(0)

S1
(vi) − x

(0)
S2

(vj)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])+

∑
i′,j′

P
(L)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]

(((L
1

)( L∏
k=1

η
(k)

)
+

L−1∑
r=1

(L− r

1

) L∏
k=r

η
(k)

)
∥x(0)

S1
(ui′ ) − x

(0)
S2

(uj′ )∥2

+
1

|R|2

(
L∑

r=1

(L− r

0

) L∏
k=r

η
(k)

)(
1[ri′ ̸= rj′ ] + 1[q1 ̸= q2]

)
+

∑
i′′,j′′

P
(L−1)

ÑS1
(v

i′ ),ÑS2
(v

j′ )
[i

′′
, j

′′
]

(((L
2

)( L∏
k=1

η
(k)

)
+

L−2∑
r=1

(L− r

2

) L∏
k=r

η
(k)

)
∥x(0)

S1
(ui′′ ) − x

(0)
S2

(uj′′ )∥2

+
1

|R|2

(
L−1∑
r=1

(L− r

1

) L∏
k=r

η
(k)

)(
1[ri′′ ̸= rj′′ ] + 1[q1 ̸= q2]

)
+

. . . ∑
i(L−1),j(L−1)

P
(2)

ÑS1

(
v
i(L−2)

)
,ÑS2

(
v
j(L−2)

)[i(L−1)
, j

(L−1)
]

((( L

L− 1

)( L∏
k=1

η
(k)

)
+

1∑
r=1

(L− r

L− 1

) L∏
k=r

η
(k)

)
∥x(0)

S1
(u

i(L−1) ) − x
(0)
S2

(u
j(L−1) )∥2

+
1

|R|2

(
2∑

r=1

(L− r

L− 2

) L∏
k=r

η
(k)

)(
1[r

i(L−1) ̸= r
j(L−1) ] + 1[q1 ̸= q2]

)
+
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∑
i(L),j(L)

P
(1)

ÑS1

(
v
i(L−1)

)
,ÑS2

(
v
j(L−1)

)[i(L)
, j

(L)
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((L
L

)( L∏
k=1

η
(k)

)
∥x(0)

S1
(u

i(L) ) − x
(0)
S2

(u
j(L) )∥2

+
1

|R|2

(
1∑

r=1

(L− r

L− 1

) L∏
k=r

η
(k)

)(
1[r

i(L) ̸= r
j(L) ] + 1[q1 ̸= q2]

)))
. . .

))

≤
(

L∏
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η
(k)
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0

)
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L∑
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(L− r

0

) r−1∏
k=0

1

η(k)

)
∥x(0)

S1
(vi) − x

(0)
S2

(vj)∥2 +
1

|R|2

(
L∏

k=0

1

η(k)
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(1[rroot ̸= rroot] + 1[q1 ̸= q2])+

∑
i′,j′

P
(L)

ÑS1
(vi),ÑS2

(vj)
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′
, j

′
]
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1

)
+

L−1∑
r=1

(L− r

1

) r−1∏
k=0

1

η(k)

)
∥x(0)

S1
(ui′ ) − x

(0)
S2

(uj′ )∥2

+
1

|R|2

(
L∑

r=1

(L− r

0

) r−1∏
k=0

1

η(k)

)(
1[ri′ ̸= rj′ ] + 1[q1 ̸= q2]

)
+

∑
i′′,j′′

P
(L−1)

ÑS1
(v

i′ ),ÑS2
(v

j′ )
[i

′′
, j

′′
]

(((L
2

)
+

L−2∑
r=1

(L− r

2

) r−1∏
k=0

1

η(k)

)
∥x(0)

S1
(ui′′ ) − x

(0)
S2

(uj′′ )∥2

+
1

|R|2

(
L−1∑
r=1

(L− r

1

) r−1∏
k=0

1

η(k)

)(
1[ri′′ ̸= rj′′ ] + 1[q1 ̸= q2]

)
+

. . .

∑
i(L−1),j(L−1)
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(2)

ÑS1

(
v
i(L−2)

)
,ÑS2

(
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j(L−2)

)[i(L−1)
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(L−1)
]

((( L

L− 1

)
+
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r=1

(L− r

L− 1

) r−1∏
k=0

1

η(k)

)
∥x(0)

S1
(u

i(L−1) ) − x
(0)
S2

(u
j(L−1) )∥2

+
1

|R|2
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(L− r

L− 2

) r−1∏
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1

η(k)

)(
1[r

i(L−1) ̸= r
j(L−1) ] + 1[q1 ̸= q2]

)
+

∑
i(L),j(L)
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(1)

ÑS1

(
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)
,ÑS2

(
v
j(L−1)

)[i(L)
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(L)
]

((L
L

)
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(u

i(L) ) − x
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j(L) )∥2

+
1

|R|2

(
1∑
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i(L) ̸= r
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. . .
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≤
(

L∏
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)
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(L− r

0

))
∥x(0)

S1
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(0)
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(vj)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])+

∑
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(L)
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(vi),ÑS2
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]
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(uj′ )∥2 +
1

|R|2

(
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(L− r

0

))(
1[ri′ ̸= rj′ ] + 1[q1 ̸= q2]

)
+

∑
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P
(L−1)

ÑS1
(v

i′ ),ÑS2
(v
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]
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+
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2

))
∥x(0)
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(0)
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(uj′′ )∥2 +
1

|R|2

(
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r=1
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1

))(
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)
+

. . . ∑
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(2)
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(
v
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)
,ÑS2
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]

((( L
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)
+
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L− 1

))
∥x(0)

S1
(u

i(L−1) ) − x
(0)
S2

(u
j(L−1) )∥2

+
1

|R|2

(
2∑
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(L− r
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))(
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i(L−1) ̸= r
j(L−1) ] + 1[q1 ̸= q2]

)
+

∑
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(1)
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(
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)
,ÑS2

(
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(L)
]

((L
L

)
∥x(0)
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(u

i(L) ) − x
(0)
S2

(u
j(L) )∥2

+
1

|R|2

(
1∑

r=1

(L− r

L− 1

))(
1[r

i(L) ̸= r
j(L) ] + 1[q1 ̸= q2]

)))
. . .

)))

≤
(

L∏
k=1

η
(k)

)(((L
0

)
+
(L
1

))
∥x(0)

S1
(vi) − x

(0)
S2

(vj)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])+

∑
i′,j′

P
(L)

ÑS1
(vi),ÑS2

(vj)
[i

′
, j

′
]

(((L
1

)
+
(L
2

))
∥x(0)

S1
(ui′ ) − x

(0)
S2

(uj′ )∥2 +
1

|R|2
(L
1

) (
1[ri′ ̸= rj′ ] + 1[q1 ̸= q2]

)
+

∑
i′′,j′′

P
(L−1)

ÑS1
(v

i′ ),ÑS2
(v

j′ )
[i

′′
, j

′′
]

(((L
2

)
+
(L
3

))
∥x(0)

S1
(ui′′ ) − x

(0)
S2

(uj′′ )∥2 +
1

|R|2
(L
2

) (
1[ri′′ ̸= rj′′ ] + 1[q1 ̸= q2]

)
+

. . . ∑
i(L−1),j(L−1)

P
(2)

ÑS1

(
v
i(L−2)

)
,ÑS2

(
v
j(L−2)

)[i(L−1)
, j

(L−1)
]

((( L

L− 1

)
+
(L
L

))
∥x(0)

S1
(u

i(L−1) ) − x
(0)
S2

(u
j(L−1) )∥2

+
1

|R|2
( L

L− 1

)(
1[r

i(L−1) ̸= r
j(L−1) ] + 1[q1 ̸= q2]

)
+
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∑
i(L),j(L)
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(1)

ÑS1

(
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(
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. . .
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(k)
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(vi) − x
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1
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0
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1

) (1[rroot ̸= rroot] + 1[q1 ̸= q2]) +
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]

(
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3
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L
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≤
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0
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1
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+
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1
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P
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(vj)
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′
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′
]

(
∥x(0)
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(0)
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1
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2

)
+
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3
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1

)
+
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2
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j′ )
[i

′′
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]

(
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1

|R|2
(1[ri′′ ̸= rj′′ ] + 1[q1 ̸= q2])+
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(
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]
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+
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. . .

)))

If we set each transportation plan as the optimal transportation plan of the RTD((rroot, T
(L)
S1

(vi)), (rroot, T
(L)
S2

(vj))) with the
weight function in Equation 3,

w(l) =


( L
L−l+1)+(

L
L−l+2)

( L
L−l)+(

L
L−l+1)

l ≥ 2

( L
L−l+1)

( L
L−l)+(

L
L−l+1)

l = 1
(3)

we can get the bound below

∥x(L)
S1

(vi)− x
(L)
S2

(vj)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2]) ≤ (L+ 1)

(
L∏
l=0

η(k)

)
RTD((rroot, T

(L)
S1

(vi)), (rroot, T
(L)
S2

(vj)))

Finally if we set P (l)

ÑS1
(vi),ÑS2

(vj)
as the optimal transportation plan of the OTRTD(S1, S2), we can get following equations.

|fw(S1)− fw(S2)|

≤Ard∥x(L)
S1

(h1)− x
(L)
S2

(h2)∥2 +Brd∥x(L)
S1

(t1)− x
(L)
S2

(t2)∥2 +Drd1[q1 ̸= q2]+
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CrdAgrd

∑
i,j

PXS1
,XS2

[i, j]∥x(L)
S1

(vi)− x
(L)
S2

(vj)∥2

≤η(L+1)

(
∥x(L)

S1
(h1)− x

(L)
S2

(h2)∥2 + ∥x(L)
S1

(t1)− x
(L)
S2

(t2)∥2 +
2 +max(|VS1 |, |VS2 |)

|R|2
1[q1 ̸= q2]

+
∑
i,j

PXS1
,XS2

[i, j]∥x(L)
S1

(vi)− x
(L)
S2

(vj)∥2


≤η(L+1)

(
∥x(L)

S1
(h1)− x

(L)
S2

(h2)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])+

∥x(L)
S1

(t1)− x
(L)
S2

(t2)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])+

∑
i,j

PXS1
,XS2

[i, j]

(
∥x(L)

S1
(vi)− x

(L)
S2

(vj)∥2 +
1

|R|2
(1[rroot ̸= rroot] + 1[q1 ̸= q2])

)
≤(L+ 1)

(
L+1∏
l=1

η(k)

)(
RTD((rroot, T

(L)
S1

(h1)), (rroot, T
(L)
S2

(h2))) + RTD((rroot, T
(L)
S1

(t1)), (rroot, T
(L)
S2

(t2))) + OTRTD(S1, S2)
)

≤(L+ 1)

(
L+1∏
l=1

η(k)

)
RTMD(S1, S2)

D. Proof for Generalization Bound
We prove Theorem 5.3 and Theorem 5.4.

D.1. Proof for Theorem 5.3

The risks associated with any distribution Q over the parameters of a stochastic SMPNN can be defined as follows.

L̂G(Q, γ) = Efw∼QL̂G(fw, γ)

LG(Q, γ) = Efw∼QLG(fw, γ)

Lemma D.1 is a modified version of the PAC-Bayesian generalization bound proposed in (Ma et al., 2021) for subgraph
reasoning models.

Lemma D.1 (Generalization Bound for Stochastic Subgraph Reasoning Models). Given Gtr,Ginf, and a subgraph reasoning
model with a subgraph extractor g and an SMPNN fw, for any prior distribution P on the parameter space of fw, posterior
distribution Q on the parameter space of fw, and λ > 0, the following holds with probability at least 1− δ:

LGinf(Q,
γ

2
) ≤ L̂Gtr(Q, γ) +

1

λ

(
KL(Q||P) + ln

1

δ
+

λ2

4|Ttr|
+D (P, λ, γ)

)
where D(P, λ, γ) = ln (Ew∼P [exp (λ (LGtr(fw, γ)− LGinf(fw, γ)))])

From Lemma D.1, we derive the PAC-Bayesian generalization bound for deterministic subgraph reasoning models in
Theorem 5.3.

Theorem 5.3 (PAC-Bayesian Generalization Bound of Deterministic Subgraph Reasoning Models). Given Gtr=
(Vtr,R,Ftr ∪Ttr), Ginf = (Vinf,R,Finf ∪Tinf), and a subgraph reasoning model with a subgraph extractor g and an SMPNN
fw, for any prior distribution P and posterior distribution Q on the parameter space of fw constructed by adding random
noise ẅ to w such that P(max(maxe∈Ttr |fw̃(g(Gtr, e))− fw(g(Gtr, e))|,maxe∈Tinf |fw̃(g(Ginf, e))− fw(g(Ginf, e))|) < γ

4
) > 1

2
,
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and γ > 0, λ > 0, the following holds with probability at least 1− δ:

LGinf(fw, 0) ≤ L̂Gtr(fw, γ)+

1

λ

(
2KL(Q||P) + ln

4

δ
+

λ2

4|Ttr|
+D

(
P, λ, γ

2

))
where D

(
P,λ,γ2

)
is the expected risk discrepancy between Gtr and Ginf and KL(Q||P) is a KL divergence of Q from P .

Proof. The posterior distribution Q is the probability distribution of w̃ in the parameter space H. We define the following
set in the parameter space H.

C = {w̃ ∈ H|max(max
e∈Ttr

|fw̃(g(Gtr, e))− fw(g(Gtr, e))|,max
e∈Tinf

|fw̃(g(Ginf, e))− fw(g(Ginf, e))|) <
γ

4
} ⊂ H

Then, p = Pw̃∼Q(w̃ ∈ C) > 1
2 . Using Q, we create the following distributions.

Q̀ =

{
1
pQ(w̃) w̃ ∈ C
0 w̃ ∈ H\C

, Q́ =

{
0 w̃ ∈ C
1

1−pQ(w̃) w̃ ∈ H\C

For any (h, r, t) ∈ Tinf and w̃ ∼ Q̀

|yhrtfw̃(g(Ginf, (h, r, t)))− yhrtfw(g(Ginf, (h, r, t)))|
=|yhrt (fw̃(g(Ginf, (h, r, t)))− fw(g(Ginf, (h, r, t)))) |

=|fw̃(g(Ginf, (h, r, t)))− fw(g(Ginf, (h, r, t)))| ≤
γ

4

Then,
fw(g(Ginf, (h, r, t))) ≤ 0 → fw̃(g(Ginf, (h, r, t))) ≤

γ

4

which indicates that
1[fw(g(Ginf, (h, r, t))) ≤ 0] ≤ 1[fw̃(g(Ginf, (h, r, t))) ≤

γ

4
]

Therefore, LGinf(fw, 0) ≤ LGinf(fw̃,
γ
4 ) for any w̃ ∼ Q̀, which means that that

LGinf(fw, 0) ≤ Ew̃∼Q̀LGinf(fw̃,
γ

4
)

Also, for any (h, r, t) ∈ Ttr and w̃ ∼ Q̀

|yhrtfw̃(g(Gtr, (h, r, t)))− yhrtfw(g(Gtr, (h, r, t)))|
=|yhrt (fw̃(g(Gtr, (h, r, t)))− fw(g(Gtr, (h, r, t)))) |

=|fw̃(g(Gtr, (h, r, t)))− fw(g(Gtr, (h, r, t)))| ≤
γ

4

Then,
fw̃(g(Gtr, (h, r, t))) ≤

γ

2
→ fw(g(Gtr, (h, r, t))) ≤ γ

which indicates that
1[fw̃(g(Gtr, (h, r, t))) ≤

γ

2
] ≤ 1[fw(g(Gtr, (h, r, t))) ≤ γ]

Therefore, L̂Gtr(fw̃,
γ
2 ) ≤ L̂Gtr(fw, γ) for any w̃ ∼ Q̀, meaning that

Ew̃∼Q̀L̂Gtr(fw̃,
γ

2
) ≤ L̂Gtr(fw, γ)
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Then, with probability at least 1− δ,

LGinf(fw, 0) ≤Ew̃∼Q̀LGinf(fw̃,
γ

4
)

≤Ew̃∼Q̀L̂Gtr(fw̃,
γ

2
) +

1

λ

(
KL(Q̀||P) + ln

1

δ
+

λ2

4|Ttr|
+D

(
P, λ, γ

2

))
≤L̂Gtr(fw, γ) +

1

λ

(
KL(Q̀||P) + ln

1

δ
+

λ2

4|Ttr|
+D

(
P, λ, γ

2

))
by applying Lemma D.1. Also, the following holds:

KL(Q||P) =

∫
w̃∈C

Q ln
Q
P
dw̃ +

∫
w̃∈H\C

Q ln
Q
P
dw̃

=p

∫
w̃∈C

Q
p
ln

Q
pP

dw̃ + (1− p)

∫
w̃∈H\C

Q
1− p

ln
Q

(1− p)P
dw̃

+

∫
w̃∈C

Q ln pdw̃ +

∫
w̃∈H\C

Q ln (1− p)dw̃

=pKL(Q̀||P) + (1− p)KL(Q́||P) + p ln p+ (1− p) ln(1− p)

Since 1
2 < p < 1, − ln 2 < p ln p+ (1− p) ln (1− p) < 0 holds. Considering that KL divergence is non-negative,

KL(Q̀||P) =
1

p
KL(Q||P)− (1− p)KL(Q́||P)− p ln p− (1− p) ln (1− p)

≤1

p
(KL(Q||P) + ln 2) ≤ 2KL(Q||P) + 2 ln 2

Consequently,

LGinf(fw, 0) ≤L̂Gtr(fw, γ) +
1

λ

(
KL(Q̀||P) + ln

1

δ
+

λ2

4|Ttr|
+D

(
P, λ, γ

2

))
≤L̂Gtr(fw, γ) +

1

λ

(
2KL(Q||P) + ln

4

δ
+

λ2

4|Ttr|
+D

(
P, λ, γ

2

))

D.2. Proof for Theorem 5.4

The degree of difference between the subgraphs extracted from the training KG and the inference KG can be represented
through the optimal transport between the multisets of subgraphs extracted from the sets of triplets Ttr and Tinf. Since the
number of the triplets differs, an empty subgraph Sblank, containing only virtual head and tail entities, is defined to facilitate
the computation of optimal transport. These virtual head and tail entities are identical to the virtual entities forming the
blank tree and always have initial labels distinct from all other entities. The multisets of subgraphs, extended with the empty
subgraph set, are defined as follows:

Definition D.2 (Empty Subgraph Augmentation). The empty subgraph augmentation ψ for two triplet sets Ttr and Tinf is
defined as follows:

ψ(Tinf, Ttr) =

{
{{g(Ginf, ei)|ei ∈ Tinf}} ∪

⋃n2−n1

k=1 {{Sblank}}, {{g(Gtr, ej)|ej ∈ Ttr}} n1 < n2

{{g(Ginf, ei)|ei ∈ Tinf}}, {{g(Gtr, ej)|ej ∈ Ttr}} ∪
⋃n1−n2

k=1 {{Sblank}} n1 ≥ n2

where |Tinf| = n1, |Ttr| = n2.

In this case, the score calculated by the SMPNNs fw for an empty subgraph is always 0.

Now, we prove Theorem 5.4.
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Theorem 5.4 (Bound of the D(P, λ, γ)). Given Gtr = (Vtr,R,Ftr ∪ Ttr), Ginf = (Vinf,R,Finf ∪ Tinf), and an SMPNN fw
with stability Cf , for any prior distribution P and posterior distribution Q on the parameter space of fw, and λ > 0, the
following holds:

D(P, λ, γ) ≤ λ

(
max(0,

|Ttr|
|Tinf|

−1) +
2 OTRTMD(ψ(Tinf, Ttr))

γCf max(|Tinf|, |Ttr|)

)
where ψ is the empty subgraph augmentation defined in Definition D.2.

Proof. Let P ψ(Tinf,Ttr) be a transportation plan between the augmented multisets of subgraphs ψ(Tinf, Ttr). Then, the
following equations hold.

LGinf(fw,
γ

2
)− LGtr(fw, γ)

=Ey[L̂Ginf(fw,
γ

2
)]− Ey[L̂Gtr(fw, γ)]

=Ey
[
L̂Ginf(fw,

γ

2
)− L̂Gtr(fw, γ)

]
=Ey

[ 1

|Tinf|
∑
ei∈Tinf

1[yifw(g(Ginf, ei)) ≤
γ

2
]− 1

|Ttr|
∑
ei∈Ttr

1[yifw(g(Gtr, ei)) ≤ γ]
]

=Ey
[ ∑
(Si,Sj)∈ψ(Tinf,Ttr)

P ψ(Tinf,Ttr)[i, j]

(
1[yifw(Si) ≤ γ

2 ]

|Tinf|
− 1[yjfw(Sj) ≤ γ]

|Ttr|

)]
First, we consider the case that |Tinf| < |Ttr|. For any pair of subgraphs (S1, S2) ∈ ψ(Tinf, Ttr), the following inequalities
hold.

1[yifw(Si) ≤ γ
2 ]

|Tinf|
− 1[yjfw(Sj) ≤ γ]

|Ttr|
≤ 1/|Ttr|

γ/2
|fw(Si)− fw(Sj)|+

1

|Tinf|
− 1

|Ttr|

Next, we consider the case that |Tinf| ≥ |Ttr|. For any pair of subgraphs (S1, S2) ∈ ψ(Tinf, Ttr), the following inequalities
hold.

1[yifw(Si) ≤ γ
2 ]

|Tinf|
− 1[yjfw(Sj) ≤ γ]

|Ttr|
≤ 1/|Tinf|

γ/2
|fw(Si)− fw(Sj)|

By combining the above two inequalities and applying the Lipschitz continuity of an SMPNNin Definition 4.4,

LGinf(fw,
γ

2
)− LGtr(fw, γ)

=Ey
[ ∑
(Si,Sj)∈ψ(Tinf,Ttr)

P ψ(Tinf,Ttr)[i, j]

(
1[yifw(Si) ≤ γ

2 ]

|Tinf|
− 1[yjfw(Sj) ≤ γ]

|Ttr|

)]
≤Ey

[ ∑
(Si,Sj)∈ψ(Tinf,Ttr)

P ψ(Tinf,Ttr)[i, j]

(
2

γmax(|Tinf|, |Ttr|)
|fw(Si)− fw(Sj)|+max(0,

1

|Tinf|
− 1

|Ttr|
)

)]
≤Ey

[ ∑
(Si,Sj)∈ψ(Tinf,Ttr)

P ψ(Tinf,Ttr)[i, j]

(
2

γCf max(|Tinf|, |Ttr|)
RTMD(Si, Sj) + max(0,

1

|Tinf|
− 1

|Ttr|
)

)]
=Ey

[
max(0,

|Ttr|
|Tinf|

− 1) +
2

γCf max(|Tinf|, |Ttr|)
∑

(Si,Sj)∈ψ(Tinf,Ttr)

P ψ(Tinf,Ttr)[i, j]RTMD(Si, Sj)
]

holds. If we set P ψ(Tinf,Ttr) as the optimal transportation plan of the OTRTMD(ψ(Tinf, Ttr)), we can derive the following
inequalities.

LGinf(fw,
γ

2
)− LGtr(fw, γ)
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≤Ey
[
max(0,

|Ttr|
|Tinf|

− 1) +
2

γCf max(|Tinf|, |Ttr|)
∑

(Si,Sj)∈ψ(Tinf,Ttr)

P ψ(Tinf,Ttr)[i, j]RTMD(Si, Sj)
]

≤Ey
[
max(0,

|Ttr|
|Tinf|

− 1) +
2

γCf max(|Tinf|, |Ttr|)
OTRTMD(ψ(Tinf, Ttr))

]
=max(0,

|Ttr|
|Tinf|

− 1) +
2

γCf max(|Tinf|, |Ttr|)
OTRTMD(ψ(Tinf, Ttr))

Finally, we get

D(P, λ, γ) =ln
(
Ew∼P

[
exp

(
λ
(
LGtr(fw,

γ

2
)− LGinf(fw, γ)

))])
≤ln

(
Ew∼P

[
exp

(
λ

(
max(0,

|Ttr|
|Tinf|

− 1) +
2

γCf max(|Tinf|, |Ttr|)
OTRTMD(ψ(Tinf, Ttr))

))])
=ln

(
exp

(
λ

(
max(0,

|Ttr|
|Tinf|

− 1) +
2

γCf max(|Tinf|, |Ttr|)
OTRTMD(ψ(Tinf, Ttr))

)))
=λ

(
max(0,

|Ttr|
|Tinf|

− 1) +
2

γCf max(|Tinf|, |Ttr|)
OTRTMD(ψ(Tinf, Ttr))

)

E. Experimental Details
We conduct experiments on the inductive split of three real-world KGs, WN18RR, FB15K-237, and NELL-995 from (Teru
et al., 2020). Specifically, we use the v3 of WN18RR (WNv3), v1 of FB15K-237 (FBv1), and v2 of NELL-995 (NLv2). For
WNv3 and NLv2, we randomly sample 20% of the prediction triplets from both the training KG and the inference KG due
to the large size of the dataset. Additionally, we split the triplet set of the training KG into two parts in a 3:1 ratio, using
them as Ftr and Ttr, respectively. For inference KG, we use the triplets in train.txt as Finf and the triplets in test.txt as Tinf.
Since all triplets in the original datasets are positive, we generate negative triplets by randomly perturbing either the head or
tail entity of each positive triplet in T , following (Socher et al., 2013). The resulting positive and negative triplets are treated
as the final prediction triplet sets of the training and inference KGs, Ttr and Tinf, respectively.

Following GraIL (Teru et al., 2020), we extract 2-hop enclosing subgraphs for all positive and negative triplets. To limit the
size of extracted subgraphs, we limit the maximum number of neighbors for each hop to 50. The initial embedding vectors
are generated by the double radius vertex labeling of GraIL.

When we compute the optimal transport distance with respect to the relational tree distance in Definition 4.2, we use the
Sinkhorn algorithm (Cuturi, 2013), a fast approximation of optimal transport distance, due to the limit of computing time.
We use GeomLoss (Feydy et al., 2019) for implementing the Sinkhorn algorithm on GPU. During the computation of
the optimal transport distance with respect to the RTMD in Definition 4.3, we compute the exact solution using the POT
library (Flamary et al., 2021).

We use Python 3.8 and Pytorch 1.13.0 with cudatoolkit 11.7 to implement SMPNNs. In our experiments, we tune the learning
rate from {5e-4, 1e-3, 5e-3, 1e-2} by measuring the empirical risk on the training graph every epoch. The combination of
the learning rate and the epoch with the lowest empirical risk is chosen. We run all models for 1000 epochs. To compute the
generalization error, we use a margin of 0.5, i.e., γ = 0.5.

In the experiment in Section 6.1, we use 10% of all subgraphs from both training and inference KGs to train the support
vector machine classifier and evaluate classification accuracies on the remaining subgraphs. We evaluate 5 times with
different seeds: 1,2,3,4,5.

In the experiment analyzing the relationship between the scores computed by SMPNNs and RTMD in Section 6.2, we use
the architecture of GraIL, as described in Section A. For WNv3, we use d = 32. For FBv1 and NLv2, we use d = 64. Also,
for NLv2, we fix the norm of the weight matrices to 20 (Lee et al., 2024).

In the experiment analyzing the relationship between the SMPNN’s stability and generalization error in Section 6.3, we use
variations of three well-known SMPNNs: GraIL, RED-GNN, and NBFNet. First, we fix the message, update, and readout
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functions to those of GraIL while varying the aggregation and global-readout functions, selecting either a sum or mean
aggregator. Additionally, to consider models that do not use the global-readout function, we design a variation where the
output of the global-readout function is set to a zero vector. Second, we adopt the message and update functions from
RED-GNN while applying the same variations as above. Last, we explore multiple instantiations of NBFNet by varying the
message and aggregation functions. Specifically, we implement message functions based on TransE, DistMult, and RotatE,
and design models using a sum aggregation, a max pooling, or a min pooling as aggregation function. We also use θ(l) = 0
as the history function with a sum aggregation. Note that we retain NBFNet’s update, readout, and global-readout functions.

For all models, we use L = 2 and L = 3. resulting in 48 instantiations of SMPNNs. These variations include different
message, aggregation, update, global-readout, readout, and history functions, and the number of layers. We then compare
the stability and generalization error of these models. For WNv3 and FBv1, we use d = 32. For NLv2, we use d = 64.
Also, for FBv1 and NLv2, we fix the norm of the weight matrices to 20. We filter out the models that are not well-trained,
by setting a threshold for their empirical risk on the training graph. The threshold is 0.25 for WNv3, 0.2 for FBv1, and 0.05
for NLv2.
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