
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DOMAIN-AWARE TENSOR NETWORK STRUCTURE
SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Tensor networks (TNs) provide efficient representations of high-dimensional data,
yet identification of the optimal TN structures, the so called tensor network structure
search (TN-SS) problem, remains a challenge. Current state-of-the-art (SOTA)
algorithms solve TN-SS as a purely numerical optimization problem and require
extensive function evaluations, which is prohibitive for real-world applications. In
addition, existing methods ignore the valuable domain information inherent in real-
world tensor data and lack transparency in their identified TN structures. To this
end, we propose a novel TN-SS framework, termed the tnLLM, which incorporates
domain information about the data and harnesses the reasoning capabilities of large
language models (LLMs) to directly predict suitable TN structures. The proposed
framework involves a domain-aware prompting pipeline which instructs the LLM
to infer suitable TN structures based on the real-world relationships between tensor
modes. In this way, our approach is capable of not only iteratively optimizing the
objective function, but also generating domain-aware explanations for the identified
structures. Experimental results demonstrate that tnLLM achieves comparable
TN-SS objective function values with much fewer function evaluations compared
to SOTA algorithms. Furthermore, we demonstrate that the LLM-enabled domain
information can be used to find good initializations in the search space for sampling-
based SOTA methods to accelerate their convergence while preserving theoretical
performance guarantees. Our code is included in the supplementary materials.

1 INTRODUCTION

The exponential increase in the volume and richness of available data has led to the widespread
use of multi-way arrays, often represented as higher-order tensors. Tensor network decomposition
methods aim to represent higher-order tensors in “super-compressed” formats through smaller-sized
components, by effectively capturing cross-modal latent patterns and correlations. These methods
have been applied across various fields, including machine learning (Zhe et al., 2015; Cichocki et al.,
2016; Malik, 2021), signal processing (Zheng et al., 2023), computer vision (Shakeri & Zhang, 2019;
Yamamoto et al., 2022), and quantum physics (Orús, 2019; Felser et al., 2021). The success of
tensor network decomposition techniques is closely linked to their ability to mitigate the “curse of
dimensionality”, which is achieved by decomposing higher-order data into lower-order factors.

However, tensor network (TN) practitioners face significant challenges related to choosing the most
appropriate TN structure, the so called tensor network structure search (TN-SS) problem, which has
been proven to be NP-hard (Hillar & Lim, 2013; Li et al., 2023). TN-SS involves determining the
optimal TN parameters, such as TN ranks, TN topology, and TN mode permutations (Li et al., 2022).

Existing TN-SS methods solve TN-SS as a purely numerical optimization problem and include
approaches such as Bayesian inference (Zeng et al., 2024b), greedy algorithm (Hashemizadeh et al.,
2020), discrete optimization (Li et al., 2022; 2023), and continuous optimization (Zheng et al., 2024).
To date, sampling-based methods (Li & Sun, 2020; Li et al., 2022; 2023; Zeng et al., 2024a), whose
workflows are illustrated in Figure 1a and 1b, have demonstrated the best performance in addressing
the TN-SS problem.

However, these methods require large number of evaluations (of the training and testing data),
are prone to getting stuck in local minima, and lack transparency in their found structure-related
parameters (Li et al., 2023). Critically, a large number of evaluations needed to optimize the objective

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

function leads to a high computational cost. We hypothesize that these limitations arise from failing
to exploit the rich domain information inherent in real-world tensors, such as the mode information.
To this end, we ask ourselves:

How can we utilize the intrinsic domain information in tensor data to significantly reduce the number
of evaluations required to solve the TN-SS problem, while providing domain-aware explanations for
the identified TN solutions?

Domain 
Information

 

LLM

Explanations

Human
Workflow

LLMTN-SS Algorithm

New

Old

(b) tnGPS (c) tnLLM(a) TNLS & TnALE

Numerical
Tensor Data

TN
Structure

Figure 1: Comparison of SOTA tensor net-
work structure search (TN-SS) methods. (a)
TN-SS algorithms with theoretical guaran-
tees: TNLS (Li et al., 2022) & TnALE (Li
et al., 2023). (b) tnGPS (Zeng et al., 2024a),
a prompting pipeline which uses LLMs to
generate new TN-SS algorithms. (c) tnLLM
(ours), which uses domain information about
the tensor data and LLM reasoning to solve
the TN-SS problem and generate explanations
for the identified TN structure.

To address this question, we propose a domain-aware
large language model (LLM)-guided TN-SS frame-
work, termed tnLLM. Within this framework, an
LLM is utilized to initialize the TN structure based on
domain information about the relationships between
tensor modes. Then, the reasoning capabilities of the
LLM are used to navigate the search space effectively,
in order to achieve good optimization of the objective
function with very few evaluations.

Our proposed framework is found to achieve signif-
icant speed-ups over current state-of-the-art (SOTA)
methods in terms of the number of evaluations, due
to its ability to find good TN structure initializations
through the use of domain information. Moreover,
tnLLM generates practically meaningful explanations
for the TN solutions, thus offering transparency in the
identified structures. This is particularly beneficial
for tensor practitioners who lack deep expertise in a
specific data domain, as it enables them to both com-
prehend the interactions between tensor modes and
trust the discovered TN structures. It also allows the
identified structures to be verified by domain experts.

To evaluate the effectiveness of tnLLM, we compare
its performance against SOTA TN-SS algorithms on
real-world tensor datasets of order-3, 4, and 5. The
experimental results demonstrate that tnLLM delivers
performance comparable to current SOTA methods,
while requiring significantly fewer function evalua-
tions and providing domain-aware explanations for the identified TN structures. Moreover, we
constructed a hybrid algorithm to combine the speed-up benefits of tnLLM with the theoretical
guarantees of existing sampling-based approaches. The main contributions of this work are:

• We propose tnLLM, a novel domain-aware LLM-guided TN-SS framework, which achieves
performance on par with SOTA methods while requiring much fewer evaluations;

• To the best of our knowledge, our framework is the first to utilize domain information
inherent in real-world tensor data to address the TN-SS problem. This enables the generation
of domain-aware explanations that allows practitioners to verify the identified TN structures.

1.1 RELATED WORK

Tensor network structure search (TN-SS). Compared to traditional tensor decompositions (Hitch-
cock, 1927; Tucker, 1966; Oseledets, 2011; Zhao et al., 2016; Wu et al., 2022), which have pre-defined
tensor network structures, the TN-SS problem focuses on finding custom tensor networks, which
have been shown to achieve higher parameter efficiency and are an important paradigm of tensor
decompositions (Li et al., 2022; 2023; Li & Sun, 2020; Zeng et al., 2024a). Various approaches have
been proposed to address the TN-SS problem, including Bayesian inference (Zeng et al., 2024b),
greedy algorithm (Hashemizadeh et al., 2020), program synthesis (Guo et al., 2025), and continuous
optimization (Zheng et al., 2024). Sampling-based methods (Li et al., 2023; 2022; Li & Sun, 2020;
Zeng et al., 2024a), which fall under discrete optimization methods, have demonstrated superior
performance compared to other approaches in addressing the TN-SS problem. Among these, TNLS

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Behavior-Directive 
Prompt

Task-Directive 
Prompt

Domain-Informed LLM

TN-Initialization

Iterative TN 

TN-Discovery

Current Best
TN 

Domain-Informed LLM

Initial  TN

Solution 
History

Optimization-Directive 
Prompt

Overall Best 
TN Structure 

Best TN Structure 
Explanation

Last TN 
Structure

TN Structure 
Explanation

Propagation of Discovered TN Structure Propagation of Explanation Propagation of Best TN Structure 

Input Tensor Data
& Domain Information

Figure 2: The workflow of the proposed tnLLM framework consists of two key stages commonly
adopted by SOTA TN-SS methods (Li et al., 2022; 2023; Zeng et al., 2024a): TN-initialization and
TN-discovery. The proposed tnLLM efficiently utilises the domain information in tensor data and
uses an LLM to guide these two stages.

(Li et al., 2022) and TnALE (Li et al., 2023) achieve state-of-the-art (SOTA) performance, with
TnALE accelerating TNLS by slightly reducing the number of evaluations required to optimize the
objective function. While both TNLS and TnALE adopt a “local-search” scheme, this acceleration
is achieved by the alternating variable updates proposed in TnALE. However, these methods still
face challenges, such as a large number of function evaluations required to converge, difficulty in
balancing exploration and exploitation, and a lack of transparency in the found structures.

More recently, tnGPS (Zeng et al., 2024a) has emerged as an approach that uses LLMs to gener-
ate sampling-based TN-SS algorithms, demonstrating performance comparable to SOTA methods.
Despite being closest to our work, tnGPS focuses on generating TN-SS algorithms based on sampling-
based heuristics and does not incorporate any domain information in the tensor data. As such,
tnGPS suffers from the same limitations as existing sampling-based methods, including a lack of
explainability in the identified structure-related parameters.

To this end, our work proposes to harness the domain information in tensor data to solve the TN-SS
problem. We achieve this by using the domain knowledge and the inherent reasoning capabilities of
LLMs to directly infer tensor network structures. Facilitated by our carefully designed prompting
pipeline (see Section 3), the proposed framework is shown not only to require significantly fewer
evaluations, but also to produce domain-aware and verifiable solutions to the TN-SS problem.

Reasoning with large language models. The rise of transformer-based LLMs, pretrained on vast
text corpora, has demonstrated a remarkable capacity for “reasoning” (Wei et al., 2022a). This
reasoning ability is further enhanced when LLMs are guided by task-specific prompting strategies,
such as chain-of thought (Wei et al., 2022b; Suzgun et al., 2023; Kojima et al., 2024). These strategies
enable LLMs to generate text effectively for tasks such as arithmetic reasoning, optimization (Yang
et al., 2024), and factual knowledge retrieval, leading to exceptional performance in complex question-
answering and tasks requiring real-world knowledge (Liévin et al., 2023; Singhal et al., 2023). These
findings suggest that, through pretraining on diverse textual data, LLMs encode rich knowledge
about real-world relationships, which they can effectively leverage to perform various downstream
tasks (Choi et al., 2022). In this work, we utilize the real-world domain knowledge and “reasoning”
capabilities of LLMs to directly infer suitable TN structures.

2 PRELIMINARIES

2.1 TENSOR NETWORK STRUCTURE SEARCH (TN-SS)

We first provide the definition of TN-SS through its application in higher-order data decomposition.
An optimal solution to the TN-SS problem aims to find the best trade-off between identifying the
most compressed TN structure while preserving the expressivity of the TN (Li & Zhao, 2021).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1: Sampling-based Algorithms for TN-SS (Li et al., 2022; 2023; Zeng et al., 2024a)
1: Initialize:
2: NIter ▷ Maximum number of iterations
3: NSample ▷ Number of samples per iteration
4: P ← [] ▷ Historical TN structures
5: H ← [] ▷ Discovered TN structures in each iter.
6: F(·)← Equation (1) ▷ Objective function
7: (G, r) = Initial TN Structure ▷ TN-initialization
8:
9: Algorithm:

10: for n = 1 to NIter do
11: H ← NSample TN structures sampled in the neighborhood of (G, r). ▷ TN-discovery
12: P ← P ∪H
13: if ∃(Ĝ, r̂) ∈ P such that F(Ĝ, r̂) < F(G, r) then
14: (G, r)← (Ĝ, r̂).
15: if Converged then
16: return (G, r)
17: Output: (G, r)

Let X ∈ RI1×I2×···×IN be a non-zero order-N tensor, with its Frobenius norm as ∥X∥F . Tensor
networks can be represented using the graphical notation (Orús, 2014; Ye & Lim, 2018), whereby a
tensor network G is represented using a set of N vertices, V , and a set of edges, E, i.e., G = (V,E).
Each vertex represents a decomposed core tensor, and the closed edges between two core tensors
are generalized higher-order matrix multiplications, termed tensor contractions (Cichocki et al.,
2016). Closed edges have assigned TN-ranks, r ∈ ZE

+, which indicate the degree of connectivity
between different pairs of connected vertices. Therefore, the properties of a TN structure can be fully
expressed by the combination (G, r).

Similar to SOTA TN-SS methods (Li & Sun, 2020; Li et al., 2023; 2022; Zeng et al., 2024a), the
discrete optimization problem of TN-SS is formalized as a minimization of the objective function,
which is a linear sum of the complexity of the TN structure (e.g., compression rate) and the TN
expressivity (e.g., approximation error), and is given by

min
(G,r)

ln

(
ϕ(G, r) +

λ

L
min

{Vl,i}N
i=1

L∑
l=1

∥∥Xl − TNC
(
{Vl,i}Ni=1; (G, r)

)∥∥
F

∥Xl∥F

)
(1)

where L represents the number of tensor samples in the dataset, and the first term ϕ(G, r) measures
the TN structure complexity. The second term in Equation (1) measures the expressivity of the
TN through the relative squared error (RSE) between the original tensors {Xl}Ll=1 and their TN
approximations

{
TNC

(
{Vl,i}Ni=1; (G, r)

)}L
l=1

, where TNC(·) stands for the tensor contraction
operation of the entire tensor network. The pair (G, r) characterizes how the vertices, {Vl,i}Ni=1, are
contracted together to approximate the original tensor Xl. The coefficient λ is a positive non-zero
scaling factor which balances the trade-off between model complexity and model expressivity. Note
that (Li & Sun, 2020; Ye & Lim, 2018) pointed out that the TN-SS problem is conveniently equivalent
to the TN rank search problem of a fully connected TN (Zheng et al., 2021).

2.2 SOTA SAMPLING-BASED ALGORITHMS FOR TN-SS

Algorithm 1 summarizes the current SOTA algorithms for TN-SS. They follow a three-step search
process: TN-initialization → TN-discovery via sampling in the search neighborhood → Updating
the center of the search neighborhood. Existing methods ignore the inherent domain information in
real-world tensor data, which calls for the development of a framework that can effectively utilize
domain knowledge in TN-initialization and TN-discovery to improve performance.

To this end, our proposed framework introduces domain-aware LLM-guided TN-initialization and TN-
discovery. By doing so, it addresses the limitations of existing methods, such as high computational
costs caused by the large number of evaluations (NIter × NSample) required and the tendency
to get stuck in local minima due to difficulties in balancing the exploration-exploitation trade-off.
Importantly, by incorporating domain information, our tnLLM framework provides practically
meaningful explanations for the identified TN structures, a feature absent in current approaches.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 TNLLM: A DOMAIN-AWARE FRAMEWORK FOR SOLVING TN-SS

This section presents tnLLM, a domain-aware LLM-guided framework that efficiently solves the
TN-SS problem with very few evaluations and verifiable solution explanations. We detail the role of
each component in the prompting pipeline and the guidelines followed by each prompt.

Workflow of tnLLM. Figure 2 illustrates the workflow of the proposed tnLLM framework. The
“Behavior-directive” prompt is used to supply the problem specification and guide the general-purpose
LLM into a model tailored for solving the TN-SS problem. Inspired by current sampling-based
SOTA algorithms, this domain-informed LLM is then employed for LLM-guided TN-initialization
and TN-exploration.

During the TN-initialization stage, the “Task-directive” prompt is used to propose a strong initial
TN structure by using the provided domain information. In the TN-discovery stage, the last and
best-identified TN structures are used in conjunction with the “Optimization-directive” prompt to
guide the LLM in navigating the search space effectively. The identified TN structures are fed into
an objective function evaluation program to obtain the objective function values. This iterative
process leads to the refinement of the TN structure and yields improved objective function values
over successive evaluations.

Prompting pipeline. The interactions between the carefully designed user prompts and the LLM
assistant follow an automated structured dialogue (OpenAI, 2023; Touvron et al., 2023). This dialogue-
based approach is intuitive for generating stepwise conversational reasoning and is particularly useful
for iterative tasks such as the TN-SS problem. To further improve the ability of the LLM to perform
complex reasoning, we employ the chain-of-thought prompting (Wei et al., 2022b). This prompting
strategy breaks down complex tasks into a series of intermediate reasoning steps and thus enables the
model to solve the problem by addressing smaller, simpler sub-tasks sequentially. In the proposed
tnLLM framework, three distinctly purposed prompts are employed, each serving a unique role. The
full prompts are given in Appendix B.

“Behavior-directive” prompt. This is the system message in the dialogue. Its primary objective is
to establish the role of the LLM as an expert in the TN-SS problem (orange section of Figure 3a)
and guide its behavior throughout the dialogue (green section of Figure 3a). Additionally, it sets the
context by outlining the TN-SS problem and the objective function (blue section of Figure 3a).

“Task-directive” prompt. This is the first non-system prompt supplied to the LLM and serves
as the basis for LLM-guided TN-initialization. It is designed to thoroughly explain the domain
information about the tensor structure, including details such as the number of modes and the specific
information about each mode (orange section of Figure 3b). Furthermore, it guides the model’s
thought process and ensures that its responses align with the task requirements by instructing it to
reason step-by-step and utilize domain knowledge (blue section of Figure 3b).

Define the problem and objective
"Your task is to... . You should provide... that minize the objective function which is ..."  

 Urge LLM to provide step-by-step reasoning using domain knowledge
"Work your suggestions out step-by-step based on rigorous reasoning, and <domain> 

knowledge."

Frame LLM as domain expert
"You are a  <domain> expert specialized in tensor decomposition..." 

(a) “Behavior-directive” prompt

Describe the structure and type of data
"We are working with a <order> tensor representing <domain> data with ...  modes: 

<description of  each mode> " 

Define task and urge step-by-step reasoning using domain knowledge
"Your task is... . The  loss function to minimize is .... reason step-by-step, ...based 

on your understanding about <mode information>" 

Specify exact output format

(b) “Task-directive” prompt

Figure 3: Structure and components of (a) the “Behavior-directive” prompt, which frames the LLM’s
role as a domain expert, and (b) the “Task-directive” prompt for LLM-guided TN-initialization.

“Optimization-directive” prompt. This is the iterative prompt supplied to the LLM in all subse-
quent evaluations and serves as the basis for LLM-guided TN-discovery. Its purpose is to guide the
LLM to efficiently navigate the search space by incorporating context from the best and previous
evaluations (orange section of Figure 4). The prompt explains how refinements to the identified
TN structure influence the objective function value and instructs the model to leverage step-by-step

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

reasoning and domain knowledge to optimize the objective function (blue section of Figure 4). At the
same time, it encourages the LLM to both explore and exploit new solutions to reduce the likelihood
of the method being stuck in local minima (purple section of Figure 4).

Aid model in navigating search space
"The last solution is <last_solution> with a loss of <last_loss>. ... The lowest total loss 

is <best_loss> ...  found by using the solution <best_solution>. " 

Explain impact of solution refinements to the objective function   
"The  loss function to minimize is the sum.... . Increasing the ranks decreases  ... but 

increases... . Refine the ranks to balance..." 

Urge LLM to "explore & exploit"  and provide step-by-step reasoning
"You are encouraged to be explorative... . Do not change ranks if ... . You should never try the 

same set of ranks more than once. .  Provide ranks based on... and reason step-by-step...''

Specify exact output format

Figure 4: Structure and components of
the “Optimization-directive” prompt used for
LLM-guided TN-discovery.

Efficient and effective search space navigation. A
critical factor in the performance of tnLLM, both in
terms of evaluations and objective function value,
is the incorporation of memory (orange section of
Figure 4) and the encouragement of search space "ex-
ploration and exploitation" (purple section of Figure
4) in the “Optimization-directive” prompt. By includ-
ing the best and most recent TN solutions, along with
their respective objective function values and the do-
main information about mode interactions, the LLM
gains a better understanding of the search space and
can make more informed decisions. Additionally, by
encouraging the model to explore new solutions when
necessary and exploit good solutions already found assists the optimization process, by reducing the
possibility of the model getting stuck in local minima, a common caveat of sampling-based methods.

Output format specification. As observed in Figures 3b and 4, in addition to the goal-oriented
components of each prompt, an essential feature (highlighted in green) of both the “Task-directive”
and “Optimization-directive” prompts is the specification of the exact output format of the TN-SS
solution. This includes defining both the sequence in which the LLM should present its response
and the precise format of the TN-SS solution. To meet these requirements, the prompt shown in
Figure 5 was developed through experimentation and a trial-and-error process with the LLM. This
step serves to eliminate “hallucinations” in the LLM output and enables a fully automated prompting
pipeline without the need for any human intervention during the entire iterative optimization process.

... Output format:
Reasoning: Reason about the intrinsic interactions between every pair of modes 
based on your understanding of <domain> data.
Solution: <Exact solution format>. 
End the output message with <description of solution format>. 
"""

Figure 5: The prompt used to specify the
LLM output format.

Remark 3.1. Both tnGPS and tnLLM use LLMs
to solve the TN-SS problem, however, the two ap-
proaches are fundamentally different. tnGPS uses the
LLM to generate new sampling-based TN-SS algo-
rithms by reviewing existing algorithms, causing the
discovered methods to inherit similar limitations. In
contrast, tnLLM uses the LLM to directly infer TN
structures to solve the TN-SS problem by incorporat-
ing the rich domain information in real-world tensor data. In turn, this allows tnLLM to provide
explanations for the TN solutions, thereby adding transparency to the identified TN structures.

4 EXPERIMENTAL RESULTS

In this section, the performance of tnLLM was evaluated against the SOTA sampling-based methods
in tensor decomposition tasks in terms of the number of evaluations and objective function value. Our
results demonstrate that tnLLM achieves comparable objective function values while delivering sig-
nificant speed-ups. Moreover, we demonstrate its ability to generate domain-consistent explanations
for the identified TN structures. Finally, an ablation study was conducted to evaluate the effectiveness
of domain information and assess the framework’s robustness across different LLMs.

Data preparation. Given the flexibility of our method to handle tensor data of any order, we
evaluated its performance on three types of tensor data with varying sizes and dimensionalities across
different domains. In particular, we tested on datasets of order-3 RGB images and order-4 RGB
videos. We also curated a completely new order-5 financial time-series dataset of 142 tensors to
ensure that it was not included in the training data of LLMs. This time-series tensor dataset, to the
best of our knowledge, is the largest dataset in terms of number of samples ever considered in the
TN-SS problem. All entries were standardized to values in [0, 1], with 80% of each dataset used for
training, and the remaining 20% for testing. More details about the data can be found in Appendix C.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison across different datasets. The values on the left give the lowest
training and corresponding testing objective function values. The values in [square brackets] give
the number of evaluations required to first achieve the best training objective function value. For
robustness assessment of tnLLM, we report the average and standard deviation of both the objective
function value and the number of evaluations across 5 independent runs. For both metrics, a lower
value is better. The best values are denoted in bold. The second best values are underlined.

Data Type TNLS TnALE tnGPS tnLLM (Ours)

Images Train -0.66 [114] -0.65 [81] -0.66 [438] -0.63±0.01 [4.0±1.9]Test -0.47 -0.46 -0.44 -0.48±0.05

Videos Train -1.64 [484] -1.66 [254] -1.65 [175] -1.63±0.01 [6.2±3.5]Test -1.72 -1.72 -1.71 -1.70±0.02

Time-series Train -0.45 [218] -0.47 [177] -0.39 [38] -0.42±0.02 [5.6±4.4]Test -0.43 -0.47 -0.40 -0.41±0.02

Settings of tnLLM. In Equation (1), we set λ = 10 and used the same compression ratio function,
ϕ, as in previous sampling-based methods (Li & Sun, 2020), defined as the ratio between the number
of parameters in the compressed TN format and the original tensor. The maximum number of
evaluations was set to 500 for the images and videos datasets, and 250 for the financial time-series
dataset. An early stopping criterion with a patience of 5 was applied. For all experiments, the LLM
model GPT-4o (gpt-4o-2024-08-06) (OpenAI, 2024) was used, with temperature set at 0.2.

Implementation details. In all experiments, we also implemented the three SOTA sampling-based
TN-SS algorithms, namely TNLS (Li et al., 2022), TnALE (Li et al., 2023) and tnGPS (Zeng et al.,
2024a), and accelerated them with GPUs. Since the vanilla TNLS is designed to search only for the
permutation of a TN, we extended it to fit the settings of TN-SS. For fair comparisons, all baseline
methods were evaluated using the same objective function and maximum number of evaluations,
with one evaluation defined as a single pass through the entire training and testing dataset. The full
implementation details are provided in Appendix D.

Numerical results. We ran tnLLM five times and examined the mean and standard deviation
for both the objective function values and the number of evaluations to demonstrate its robustness.
Observe from Table 1 that tnLLM achieved performance on par with SOTA sampling-based algorithms
in both training and test objectives across all data types, as measured by the objective function.
Importantly, tnLLM minimizes the objective function with significantly fewer evaluations, requiring
up to 78× fewer evaluations than TNLS, 41× fewer than TnALE, and 110× fewer than tnGPS.
Consequently, tnLLM achieves runtime reductions of up to 98.3% compared to TNLS, 97.7%
compared to TnALE, and 98.1% compared to tnGPS, even after accounting for LLM inference. The
full runtime comparisons are provided in Appendix E. Furthermore, in Table 2, we report the best
compression rates (number of entries in the original tensor/ number of entries in its TN compressed
format) achieved by all methods for a given test approximation error threshold across three datasets
(0.02 for Images and 0.01 for Videos and Time-Series datasets). The approximation error is calculated

as 1
L

∑L
l=1

∥Xl−TNC({Vl,i}N
i=1;(G,r))∥

F

∥Xl∥F
. An error threshold of 0.01 can be interpreted as almost a

‘perfect’ reconstruction for standardized tensors. We use 0.02 as the test approximation error threshold
for the Images dataset, as none of the methods achieved an error of 0.01. Observe from Table 2, that
the proposed tnLLM achieves the best compression rate in two of the three datasets.

Table 2: Comparison of the best compression rates (No. entries in the original tensors / No. entries in
the compressed TN formats) achieved by TNLS, TnALE, tnGPS, and tnLLM. Results are reported
achieving a test approximation error below the threshold of 0.02 for Images and 0.01 for Videos and
Time-Series. Bold values indicate the best compression performance. The second best are underlined.
“Failed” means that the method failed to achieve an approximation error below the threshold.

Dataset TNLS TnALE tnGPS tnLLM
Images 2.54 2.25 2.47 2.63
Videos 12.38 12.67 11.52 11.22
Time-Series 1.47 Failed 1.49 1.60

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Summarized generated explanations of tnLLM for the initialized TN structure, with and
without the incorporation of domain information in the prompts.

Domain-aware explanations. To assess the domain-relevance of the identified TNs, we manually
verified the explanations provided for the identified TN structures in all three datasets tested. The
explanations of the tnLLM model for the initialized TN structure, with and without domain knowledge,
are provided in Figure 6. Observe that without domain information, although the model is inherently
capable of reasoning, its lack of domain information about the modes in the real-world tensors causes
it to default to random assumptions, likely influenced by its pre-training data, such as assuming a
mode as resembling time or frequency. As a result, the explanations are entirely incorrect from a
practical perspective and are therefore ineffective in solving TN-SS.

In contrast, incorporating domain information enables the model to identify relationships between
modes (highlighted in blue) and, more importantly, relate them to real-world principles in vision and
finance (highlighted in green). The model also shows consistent reasoning in its rank suggestions:
when describing a rank as low, medium, or high, it quantitatively selects a value that is coherent
relative to other ranks within the same tensor. Moreover, it adjusts these values based on compar-
isons across different mode pairs, for example by assigning similar ranks to the Height–RGB and
Width–RGB modes in the images dataset, and a lower rank to the RGB–Frames mode in the videos
dataset. This demonstrates the model’s understanding of tensor mode relationships based on domain
information and supports the validity of the identified TN structure. Consequently, tnLLM offers
explanations that are practically useful in helping domain experts to verify and trust the discovered
structures. Summarized explanations across three runs for all datasets are provided in Appendix F.

4.1 ACCELERATING SOTA METHODS WITH TNLLM

In the first part of Section 4, we have demonstrated that tnLLM achieves comparable objective
function values compared to SOTA sampling-based algorithms, while generating domain-aware
explanations for the identified TN structures and significantly reducing the required number of
function evaluations. However, due to the black-box nature of LLMs, no theoretical analysis can be
provided for the evaluation efficiency of tnLLM, in contrast to TNLS and TnALE.

At the same time, while sampling-based methods follow a “local-search” scheme within a neigh-
borhood, there is no guarantee on the minimum number of evaluations required to find a “good”
neighborhood. Moreover, poor initialization significantly increases the number of evaluations needed.
To address this, we construct a hybrid algorithm that first runs tnLLM for 10 evaluations to leverage
its domain knowledge and reasoning capabilities in order to identify a strong initialization point in
the “global-search” stage. Sampling-based methods then perform “local-search” in the identified
neighborhood, combining the speed-up benefits of tnLLM with their theoretical guarantees.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Number of Evaluations

1.0

0.5

0.0

0.5

1.0

1.5

Tr
ai

ni
ng

 O
bj

ec
tiv

e

Training Images

0 100 200 300 400 500
Number of Evaluations

2.0

1.5

1.0

0.5

0.0

0.5

1.0
Training Videos

0 50 100 150 200 250
Number of Evaluations

0.5

0.0

0.5

1.0

1.5
Training Time Series

0 100 200 300 400 500
Number of Evaluations

1.0

0.5

0.0

0.5

1.0

1.5

Te
st

in
g 

Ob
je

ct
iv

e

Testing Images

0 100 200 300 400 500
Number of Evaluations

2.0

1.5

1.0

0.5

0.0

0.5

1.0
Testing Videos

0 50 100 150 200 250
Number of Evaluations

0.5

0.0

0.5

1.0

1.5

2.0
Testing Time Series

0 25 50

0

1

0 25 50

1

0

0 25 50
0.5

0.0

0.5

1.0

0 25 50

0

1

0 25 50

1

0

0 25 50

0

1

TNLS tnLLM-init TNLS TnALE tnLLM-init TnALE

Figure 7: Experimental results across all 3 datasets show that both TNLS and TnALE are significantly
accelerated with an initial center of search neighborhood found by tnLLM. We ran TNLS and
TnALE with tnLLM initialization in all 3 datasets over 50 evaluations, which include the plotted 10
evaluations performed by tnLLM. Vanilla TNLS and TnALE performed 500 evaluations for both the
images and videos datasets and 250 evaluations for the financial time-series dataset if not converged.

Numerical results. Figure 7 demonstrates the performance difference of TNLS and TnALE with
and without a tnLLM-initialized structure. The “global-search” capability of tnLLM significantly
sped up the iterative minimization process. During “local-search”, both TNLS and TnALE further
improved upon the structures found in “global-search” by tnLLM. Overall, the tnLLM-initialized
algorithms achieved nearly identical objective function values with up to 23× fewer evaluations
compared to vanilla TNLS, and up to 13× fewer evaluations compared to vanilla TnALE. The full
numerical performance comparison is provided in Appendix G.

4.2 ABLATION STUDY

Removal of domain information. To assess the effectiveness of injecting domain information
into the TN-SS problem, we removed the carefully designed structured prompts of the tnLLM
framework, equivalent to using the LLM to solve the TN-SS problem without any priors on the
domain information. Without domain information, the LLM generates a poorly initialized TN
structure that is 80.3% worse in terms of objective function value, due to its lack of information
about the different modes, and requires 10.4× more evaluations to converge. Moreover, as the model
defaults to random assumptions about the modes, as illustrated in Figure 6, it was found to produce
uniformly connected TN structures throughout the minimization process. This restricts the search
space to a much smaller set of solutions that are not domain-meaningful from a practical perspective.

Selection of LLM models. To examine how the choice of LLM affects the performance of
tnLLM, we compared our baseline model, GPT-4o (gpt-4o-2024-08-06), against GPT-4.5
(gpt-4.5-preview-2025-02-27), GPT4o-mini (gpt-4o-mini-2024-07-18), GPT-3.5
(gpt-3.5-turbo-1106) and the open-source DeepSeek V3 (DeepSeek-V3-0324) model.
Observe from Table 3 that due to the carefully designed prompts and the structure of the overall
framework, tnLLM is robust to the choice of the LLM used. While there are small variations in
the achieved objective function values, the overall performance remained consistent across all three
datasets in both training and testing sets. Furthermore, the number of evaluations required by all
LLMs falls within the mean ± standard deviation range reported in Table 1. It is important to note
that, despite the consistent performance, weaker models and in particular GPT-3.5 occasionally
misinterpreted the optimization objective, mistakenly assuming that higher values were preferable.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Ablation study of using different LLMs within the proposed framework. For different LLMs,
we report the best training objective values achieved and their corresponding testing objective values.

Dataset GPT-4o (Baseline) GPT-4.5 GPT-4o-mini GPT-3.5 DeepSeek-V3
Train Test Train Test Train Test Train Test Train Test

Images -0.63 -0.48 -0.62 -0.54 -0.61 -0.48 -0.64 -0.52 -0.62 -0.47
Videos -1.63 -1.70 -1.62 -1.65 -1.62 -1.69 -1.63 -1.70 -1.63 -1.70
Time-series -0.42 -0.41 -0.40 -0.41 -0.41 -0.40 -0.42 -0.40 -0.40 -0.39

5 CONCLUSION

We have introduced tnLLM, a domain-aware LLM-guided TN-SS framework for directly infering
TN structures. This has been achieved by utilizing the rich domain information in real-world tensor
data and the inherent reasoning capabilities of LLMs. Experimental results have demonstrated that
tnLLM achieves performance comparable to current SOTA algorithms, while requiring significantly
fewer function evaluations. Notably, by incorporating domain information, our framework is the
first to mitigate the black-box nature of the identified TN structures in TN-SS through generating
domain-relevant solution explanations. Furthermore, we have shown that tnLLM can be used to
accelerate SOTA sampling-based algorithms while preserving their theoretical guarantees.

REPRODUCIBILITY STATEMENT

Details of the overall framework and prompts used are provided in Section 3 and Appendix B.
Experimental settings are provided in Section 4. Implementation details of the baseline models are
provided in Appendix D. Details of the data are provided in Section 4 and Appendix C.

REFERENCES

Marion Baumgardner, Larry Biehl, and David Landgrebe. 220 band aviris hyperspectral image data
set: June 12, 1992 indian pine test site 3. 2015.

Kristy Choi, Chris Cundy, Sanjari Srivastava, and Stefano Ermon. LMPriors: Pre-trained language
models as task-specific priors. In NeurIPS 2022 Foundation Models for Decision Making Workshop,
2022.

Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh Huy Phan, Qibin Zhao, and Danilo P Mandic.
Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor
decompositions. Foundations and Trends® in Machine Learning, 9(4-5):249–429, 2016.

Chris A Cocosco. Brainweb: online interface to a 3d mri simulated brain database. (No Title), 1997.

Fabio Dell’Acqua, Paolo Gamba, Alessio Ferrari, Jon Aevar Palmason, Jón Atli Benediktsson, and
Kolbeinn Árnason. Exploiting spectral and spatial information in hyperspectral urban data with
high resolution. IEEE Geoscience and Remote Sensing Letters, 1(4):322–326, 2004.

Tobias Felser, Michele Trenti, Lorenzo Sestini, Alessandro Gianelle, Davide Zuliani, Donatella
Lucchesi, and Simone Montangero. Quantum-inspired machine learning on high-energy physics
data. npj Quantum Information, 7(1):111, 2021.

Zheng Guo, Aditya Deshpande, Brian Kiedrowski, Xinyu Wang, and Alex Gorodetsky. Tensor
network structure search using program synthesis. arXiv preprint arXiv:2502.02711, 2025.

Meraj Hashemizadeh, Michelle Liu, Jacob Miller, and Guillaume Rabusseau. Adaptive learning of
tensor network structures. NeurIPS Workshop on Quantum Tensor Networks in Machine Learning,
2020.

Christopher J. Hillar and Lek-Heng Lim. Most tensor problems are NP-hard. Journal of the ACM, 60
(6):1–39, 2013.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164–189, 1927.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Proceedings of the 36th International Conference on
Neural Information Processing Systems, 2024.

Chao Li and Zhun Sun. Evolutionary topology search for tensor network decomposition. In Proceed-
ings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pp. 5947–5957. PMLR, 13–18 Jul 2020.

Chao Li and Qibin Zhao. Is rank minimization of the essence to learn tensor network structure.
In Second Workshop on Quantum Tensor Networks in Machine Learning (QTNML), Neurips,
volume 3, 2021.

Chao Li, Junhua Zeng, Zerui Tao, and Qibin Zhao. Permutation search of tensor network structures
via local sampling. In Proceedings of the 39th International Conference on Machine Learning, pp.
13106–13124, Jul 2022.

Chao Li, Junhua Zeng, Chunmei Li, Cesar Caiafa, and Qibin Zhao. Alternating local enumeration
(TnALE): solving tensor network structure search with fewer evaluations. In Proceedings of the
40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Valentin Liévin, Christoffer Egeberg Hother, Andreas Geert Motzfeldt, and Ole Winther. Can large
language models reason about medical questions? arXiv, 2023.

Osman Asif Malik. More efficient sampling for tensor decomposition. ArXiv, abs/2110.07631, 2021.

OpenAI. GPT-4 Technical Report. Technical report, OpenAI, 2023.

OpenAI. Hello GPT-4o. https://openai.com/index/hello-gpt-4o/, 2024.

Román Orús. A practical introduction to tensor networks: Matrix product states and projected
entangled pair states. Annals of Physics, 349:117–158, 2014.

Román Orús. Tensor networks for complex quantum systems. Nature Reviews Physics, 1(9):538–550,
2019.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):
2295–2317, 2011.

Moein Shakeri and Hong Zhang. Moving object detection under discontinuous change in illumination
using tensor low-rank and invariant sparse decomposition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7221–7230. IEEE, 2019.

Karan Singhal, Shekoofeh Azizi, Tinsu Tu, et al. Large language models encode clinical knowledge.
Nature, 620:172–180, 2023. doi: 10.1038/s41586-023-06291-2.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-
bench tasks and whether chain-of-thought can solve them. In Findings of the Association for
Computational Linguistics: ACL 2023. Association for Computational Linguistics, July 2023.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):
279–311, 1966.

11

https://openai.com/index/hello-gpt-4o/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022a. ISSN 2835-8856.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems, 2022b.

Zhong-Cheng Wu, Ting-Zhu Huang, Liang-Jian Deng, Hong-Xia Dou, and Deyu Meng. Tensor
wheel decomposition and its tensor completion application. Advances in Neural Information
Processing Systems, 35:27008–27020, 2022.

Ryuki Yamamoto, Hidekata Hontani, Akira Imakura, and Tatsuya Yokota. Fast algorithm for low-rank
tensor completion in delay-embedded space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2048–2056. IEEE, 2022.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Ke Ye and Lek-Heng Lim. Tensor network ranks. arXiv preprint arXiv:1801.02662, 2018.

Tatsuya Yokota, Burak Erem, Seyhmus Guler, Simon K Warfield, and Hidekata Hontani. Missing
slice recovery for tensors using a low-rank model in embedded space. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8251–8259, 2018.

Junhua Zeng, Chao Li, Zhun Sun, Qibin Zhao, and Guoxu Zhou. tnGPS: Discovering unknown
tensor network structure search algorithms via large language models (LLMs). In Proceedings of
the Forty-first International Conference on Machine Learning, 2024a.

Junhua Zeng, Guoxu Zhou, Yuning Qiu, Chao Li, and Qibin Zhao. Bayesian tensor network structure
search and its application to tensor completion. Neural Networks, 175(C), July 2024b.

Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring decomposi-
tion. arXiv preprint arXiv:1606.05535, 2016.

Shandian Zhe, Zenglin Xu, Xinqi Chu, Yuan Qi, and Youngja Park. Scalable nonparametric multiway
data analysis. In Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics, pp. 1125–1134. PMLR, 2015.

Wen-Jie Zheng, Xi-Le Zhao, Yu-Bang Zheng, Jie Lin, Lina Zhuang, and Ting-Zhu Huang. Spatial-
spectral-temporal connective tensor network decomposition for thick cloud removal. ISPRS Journal
of Photogrammetry and Remote Sensing, 199:182–194, 2023.

Yu-Bang Zheng, Ting-Zhu Huang, Xi-Le Zhao, Qibin Zhao, and Tai-Xiang Jiang. Fully-connected
tensor network decomposition and its application to higher-order tensor completion. Proceedings
of the AAAI Conference on Artificial Intelligence, 35(12):11071–11078, May 2021.

Yu-Bang Zheng, Xi-Le Zhao, Junhua Zeng, Chao Li, Qibin Zhao, Heng-Chao Li, and Ting-Zhu
Huang. SVDinsTN: A tensor network paradigm for efficient structure search from regularized
modeling perspective. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024.

12

https://openreview.net/forum?id=Bb4VGOWELI


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LIMITATIONS AND FUTURE WORK

Despite the good performance, the proposed domain-aware TN-SS framework currently lacks theo-
retical guarantees for its evaluation efficiency due to the black-box nature of LLMs. This could be
mitigated by developing domain-aware TN-SS algorithms based on continuous optimization. Also,
as mentioned in the ablation study, weaker LLM models, such as GPT-3.5, were found to be more
prone to misinterpret the optimization objectives. Therefore, improving the reasoning consistency
of smaller LLM models promises to further improve the efficiency of the framework. Furthermore,
prompt learning is an active area of research in LLMs, which can be used to potentially enhance the
tnLLM framework in future works.

B FULL PROMPTS OF TNLLM FRAMEWORK

The full “Behavior-directive”, “Task-directive” and “Optimization-directive” prompts used in the
tnLLM framework are illustrated in Figures 8, 9, 10, respectively.

 """ You are a <domain> expert specialized in tensor decomposition. Your task is to <task description>. You need to 
provide <solution description> which minimizes the loss function, which is the natural log of the sum of the compression 
rate and 10 times the approximation error. The compression ratio is calculated as the number of parameters in the 
compressed FCTND format divided by the original number of parameters of the uncompressed tensor and the 
approximation error is the relative square error between the original and approximate tensor. Work your suggestions out 
step-by-step based on rigorous reasoning and <domain> knowledge. Explain your final suggestions in a logical, concise 
manner."""

"""We are working with a fully connected <tensor size> tensor representing <domain> data with the following modes:
<Description of each mode including its size and content>

Your task is to suggest the optimal solution for each connection in a fully connected tensor network decomposition. The 
loss function to minimize is a natural log of the sum of the compression rate and 10 times the tensor approximation error 
which is the relative square error between the original and approximate tensor. Provide your response in the following 
format:
1. Take a deep breath and reason step-by-step about the intrinsic interactions between every pair of modes based on 
your understanding of the relationships about <mode information>. It is important to reason about those intrinsic 
interactions based on interpretable factors.
2. Based on your reasoning, output <solution desciption>.  Keep in mind that higher intrinsic interactions usually imply 
that a higher rank should be used. And a lower intrinsic interaction usually imply that a lower rank should be used. 
Similar intrinsic inte  

Output format:
Reasoning: Reason about the intrinsic interactions between every pair of modes based on your understanding of 
<domain> data.

Solution: <Exact solution format> 
End the output message with <description of solution format>. """

Figure 8: The full “Behavior-directive” prompt.

"""We are working with a fully connected <tensor size> tensor representing <domain> data with the following modes:
<Description of each mode including its size and content>

Your task is to suggest the optimal solution for each connection in a fully connected tensor network decomposition. The 
loss function to minimize is a natural log of the sum of the compression rate and 10 times the tensor approximation error 
which is the relative square error between the original and approximate tensor. Provide your response in the following 
format:
1. Take a deep breath and reason step-by-step about the intrinsic interactions between every pair of modes based on 
your understanding of the relationships about <mode information>. It is important to reason about those intrinsic 
interactions based on interpretable factors.
2. Based on your reasoning, output <solution desciption>.  
Output format:
Reasoning: Reason about the intrinsic interactions between every pair of modes based on your understanding of 
<domain> data.

Solution: <Exact solution format> 
End the output message with <description of solution format>. """

Figure 9: The full “Task-directive” prompt.

C DATA

We constructed a custom financial time series dataset with 142 temporally ordered fifth-order tensors,
denoted as {Xn}142n=1 ∈ R3×6×3×4×5, each representing a rolling window produced via multi-way
delay embedding through the temporal direction (Yokota et al., 2018). This leads to the value selection
process of 10 ranks. To the best of our knowledge, this is the largest tensor dataset in terms of number
of samples ever considered in the TN-SS problem. The first 80% of these tensors were used as the
training data, while the remaining 20% with non-overlapping entries with the training data were used
for testing. The modes of each time series tensor correspond to:

• Mode 1: Types of financial instruments. They are equity indices, commodities, and currency
swaps.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

""" The last solution is <last_solution> with a total loss function of <last loss>, which is the natural log of the sum of the 
current compression rate of <last_compression_rate> and 10 times the current approximation error of 
<last_approximation_error>. The lowest total loss function is <best_objective_function}> which is the natural log of the 
sum of the compression rate of <best_compression_rate> and ten times the approximation error of 
<best_approximation_error}> is found by using the solution <best_solution>, The loss function to minimize is a natural log 
of the sum of the compression rate and 10 times the tensor approximation error which is the relative square error 
between the original and approximate tensor. 

Take a deep breath, refine the solution suggestions to make the loss function smaller, and justify any changes in the 
solution. Keep in mind that increasing the ranks significantly decreses the approximation error, while it increases the 
compression rate. However, if the compression rate is already very low compared to the approximation error (for 
example, the compression rate is smaller than half of the approximation error), increasing the ranks (such as doubling it) 
to decrease the approximation error will usually lead to a lower loss function. Also, if the compression rate is already very 
high compared to the approximation error (for example, the compression rate is larger than two times the approximation 
error), reducing the ranks (such as cutting it in half) to decrease the compression rate will usually lead to a lower loss 
function.

When refining the ranks, consider how each mode <mode titles> interacts with the others and how reducing or increasing 
the rank will affect the overall decomposition accuracy. You are encouraged to be explorative to try small and large rank 
value changes in this process. Do not change ranks if you think its not necessary. You should never try the same set of 
ranks more than once. Trying the same set of ranks more than once wastes computation resources and will not lead to a 
different outcome.

Provide the solution and reason step-by-step for the changes in the following format:
Output format:
Reasoning: Reason about the intrinsic interactions between every pair of modes based on your understanding of 
<domain> data.

Solution: <Exact solution format> 
End the output message with <description of solution format>. """
    

Figure 10: The full “Optimization-directive” prompt.

• Mode 2: Assets within each type of financial instrument. For equity indices, these are
Hang Seng, Nikkei 225, S&P 500, EURO STOXX 50, FTSE 100, and Shanghai Composite
Index. For commodities, these are Brent Crude, Copper, Natural gas, Comex gold, Soybeans,
and Wheat. For currency swaps, these are HKD/USD, JPY/USD, CHF/USD, EUR/USD,
CNY/USD, and GBP/USD.

• Mode 3: Features of each asset. These are average adjusted closing price log return, average
relative price min-max, and average high-low spread.

• Mode 4: Interval of time points on which we calculate the average features. There are 4
intervals – 1 day, 5 days, 10 days, and 15 days.

• Mode 5: Time points within each rolling window of length 5.

The images and videos datasets are fetched from http://trace.eas.asu.edu/yuv/. Figure 11 illustrates 5
example image samples, {Xn}5n=1 ∈ R144×176×3, used in the experiments. The first 80% of these
tensors were used as the training data, while the remaining 20% for testing. The modes of each image
tensor correspond to:

• Mode 1: Height of the image. These are the vertical pixel indexes.
• Mode 2: Width of the image. These are the horizontal pixel indexes.
• Mode 3: RGB channels. These are the red, green, and blue channels.

Figure 11: Image samples used in the experiments.

Video dataset is produced from performing the multi-way delay embedding (Yamamoto et al., 2022)
through the temporal mode in a video to produce 5 samples, {Xn}5n=1 ∈ R144×176×3×10. Figure 12

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

shows an example sample of the videos dataset at different frames. The modes of each video tensor
correspond to:

• Mode 1: Height of the image. These are the vertical pixel indexes.

• Mode 2: Width of the image. These are the horizontal pixel indexes.

• Mode 3: RGB channels. These are the red, green, and blue channels.

• Mode 4: Frames in a video. These are the index of the frames in a video.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 6 Frame 7 Frame 8 Frame 9 Frame 10

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 6 Frame 7 Frame 8 Frame 9 Frame 10

Figure 12: One example sample of the Video data used in the experiments.

D IMPLEMENTATION DETAILS

All baseline models are initialized as a “fully-disconnected” graph. The TN search template is set
to a complete graph. For TNLS, we set the number of samples (evaluations), #Sample, in each
sampling step to 4 in the images dataset, 60 in the videos dataset, and 10 in the time series dataset.
For TnALE, we set D = 1, r = 1. For tnGPS, we selected the best-performing algorithm discovered
(“Ho-2”) and adopted the following hyperparameters as suggested in their paper: code upper bound
of 10, mutation rate of 0.1, crossover rate of 0.6, selection pressure of 1.5, elitism enabled, diversity
factor of 0.05, variance decay of 0.98, minimum variance of 0.1, tournament size factor of 0.2, elite
diversity boost of 2.0, random individual chance of 0.05, and a maximum mutation of 3. All models
were run for 500 evaluations in both the images and videos dataset, and 250 evaluations in the time
series dataset if not converged. An internal server with NVIDIA RTX A6000 GPU, an AMD Ryzen
Threadripper PRO 5955WX with 16 cores, and 256GB of RAM was used.

E RUNTIME COMPARISONS

Table 4 reports the total average runtime in seconds to first achieve the best training objective function
value for all models across the three datasets of Table 1. For tnLLM, this also includes the LLM
inference time. The proposed tnLLM achieves comparable performance to SOTA methods while
reducing runtime by up to 98.3% compared to TNLS, 97.7% compared to TnALE, and 98.1%
compared to tnGPS.

Table 4: Runtime comparisons across three datasets. The values are the total average runtime in
seconds to first achieve the best training objective function value. A lower value is better. The best
values are denoted in bold. The second best values are underlined.

Data Type TNLS TnALE tnGPS tnLLM (Ours)
Images 2,122s 1,659s 8,025s 151s
Videos 17,690s 15,298s 20,461s 1,984s
Time-series 110,945s 80,700s 17,287s 1,866s

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F SUMMARIZED GENERATED EXPLANATIONS OF TNLLM FOR THE
INITIALIZED TN STRUCTURE

The full set of summarized LLM generated explanations over three independent runs for the images,
videos, and time-series datasets are provided in Tables 5, 6, and 7, respectively. The suggested ranks
are verified to be consistent with the domain-informed reasoning provided by tnLLM. Also, the
domain-relevant explanations are robust across multiple runs.

Table 5: Summarized generated explanations of tnLLM for the initialized TN structure in the Images
dataset over 3 independent runs.

Mode Pair Run 1 Run 2 Run 3

Mode 1 & Mode 2
(Width ↔ Height) • Defines spatial resolution

• Spatial coherence is
significant due to
smoothness

• High rank needed to
capture spatial detail
(suggested rank: 20)

• Spatial dimensions are
highly correlated

• Captures patterns and
structures

• High rank to capture
spatial complexity
(suggested rank: 20)

• Spatial resolution key for
details and patterns

• High rank crucial to
capture more spatial
features to maintain
image quality

• High rank (suggested
rank: 20)

Mode 1 & Mode 3
(Width ↔ RGB) • Captures horizontal color

distribution

• Less complex than spatial
features

• Moderate rank to
capture color variation
without overfitting
(suggested rank: 5)

• Horizontal color changes
are smooth

• Color variations less
complex as object
maintains consistent
color across width

• Moderate rank
(suggested rank: 5)

• Related through color
distribution along width

• Color variations less
complex than spatial
variation

• Moderate rank
(suggested rank: 5)

Mode 2 & Mode 3
(Height ↔ RGB) • Captures vertical color

patterns

• Vertical and horizontal
color distributions often
equally important

• Rank should be similar
to the width–RGB
connection (suggested
rank: 5)

• Captures vertical color
variation

• Vertical structures (e.g.,
stripes) may add
complexity

• Rank might be slightly
higher than
width–channel rank
(suggested rank: 8)

• Complexity of color
variation along height
and width typically
similar

• Moderate rank is also
appropriate (suggested
rank: 5)

G PERFORMANCE COMPARISON FOR VANILLA AND TNLLM-INITIALIZED
TNLS AND TNALE

Table 8 illustrates the detailed performance of vanilla and tnLLM-initialized TNLS and TnALE
across different datasets.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Summarized generated explanations of tnLLM for the initialized TN structure in the Videos
dataset over 3 independent runs.

Mode Pair Run 1 Run 2 Run 3

Mode 1 & Mode 2
(Width ↔ Height) • Defines spatial

resolution per frame

• Needs to capture spatial
detail for video quality
but balance with
compression

• Moderate-to-high rank
(suggested rank: 20)

• Define spatial resolution
per frame

• Higher rank captures
more complex spatial
patterns and correlations

• Moderate-to-high rank
to balance detail capture
and compression
(suggested rank: 20)

• Define spatial resolution
per frame

• Spatial resolution is a
significant aspect of
video quality

• Moderate-to-high rank
to capture more spatial
details across frames
(suggested rank: 20)

Mode 1 & Mode 3, Mode 2 & Mode 3
(Width/Height ↔ RGB) • Less complex than

spatial info

• Limited variation of
color across
width/height

• Low rank suffices
(suggested rank: 5)

• Less directly correlated
than spatial dimensions

• Certain
horizontal/vertical
patterns prominent in
specific color channels

• Low rank suffices
(suggested rank: 5)

• Captures color
variations
horizontally/vertically

• Color variations can be
significant in videos
with rich color content

• Moderate-to-low rank
(suggested rank: 5)

Mode 1 & Mode 4, Mode 2 & Mode 4
(Width/Height ↔ Frames) • Captures

horizontal/vertical
structure changes over
time

• Videos have temporal
consistency

• Moderate rank
(suggested rank: 10)

• Related through motion
and changes across
frames

• Moderate rank to
capture temporal
changes across
width/height of the
video (suggested rank:
10)

• Captures temporal
variations across the
horizontal/vertical
dimension

• Temporal changes
crucial for motion
representation

• Moderate rank
(suggested rank: 10)

Mode 3 & Mode 4
(RGB ↔ Frames) • Captures color changes

over time

• Color changes often
subtle and less complex
than spatial changes

• Lower rank can be used
to maintain compression
(suggested rank: 3)

• Captures color changes
over time

• Crucial for capturing
dynamic color variations
and transitions

• Low rank to model
temporal color variation
(suggested rank: 5)

• Captures temporal color
changes

• Essential for
representing dynamic
scenes

• Moderate-to-low rank
necessary to capture
these changes
(suggested rank: 5)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Summarized generated explanations of tnLLM for the initialized TN structure in the Time-
series dataset over 3 independent runs.

Mode Pair Run 1 Run 2 Run 3

Mode 1 & Mode 2
(Types of financial instruments ↔ Assets
within each type)

• Strong intrinsic
relationship

• Different assets within
a type exhibit correlated
behaviors due to shared
market factors

• Higher rank
(suggested rank: 3)

• Strong relationship as
each type is defined by
its constituent assets

• High diversity and
specificity across assets

• Higher rank
(suggested rank: 3)

• Strong connection as
each instrument has
specific assets

• Rank should reflect the
diversity and specificity
of assets within each
type

• Higher rank
(suggested rank: 3)

Mode 1 & Mode 3
(Types of financial instruments ↔ Features of
each asset)

• Features influenced by
instrument type

• For example, volatility
of commodities might
differ from that of
equity indexes

• Moderate rank
(suggested rank: 2)

• Different instruments
behave distinctly
(returns, volatility,
spreads)

• Features somewhat
standardized across
types

• Moderate rank to not
overfit (suggested rank:
2)

• Instruments behave
differently in terms of
features

• However, features
themselves are common
across all types

• Moderate rank to
capture variability
(suggested rank: 2)

Mode 1 & Mode 4
(Types of financial instruments ↔ Interval of
time points)

• Different financial
instruments react
differently over time
intervals due to inherent
market dynamics

• Moderate rank
(suggested rank: 2)

• Financial instruments
differ in how sensitive
they are to short and
long-term time intervals

• Moderate rank
(suggested rank: 2)

• Impact of time intervals
on financial instruments
can vary.

• Commodities react
differently to short-term
versus long-term
intervals compared to
equity indexes.

• Moderate rank
(suggested rank: 2)

Mode 1 & Mode 5
(Types of financial instruments ↔ Time
points in each rolling window)

• Reaction of financial
instruments to specific
time points can vary

• This interaction might
not be as strong as
others

• Lower rank (suggested
rank: 1)

• Financial instruments
show low sensitivity to
individual time points

• Rolling windows
naturally smooth out
short-term fluctuations

• Lower rank (suggested
rank: 1)

• Specific time points
affect different
instruments differently

• This interaction is likely
less significant than
others

• Lower rank (suggested
rank: 1)

Mode 2 & Mode 3
(Assets within each type ↔ Features of each
asset)

• Features directly
derived from assets
indicating strong
relationship

• Different assets have
distinct feature profiles

• Higher rank
(suggested rank: 3)

• Each asset has unique
characteristics in terms
of returns, volatility,
and spreads

• Higher rank to
accurately capture
specific features
(suggested rank: 3)

• Each asset has unique
characteristics in terms
of features like log
returns and spreads

• Higher rank needed
for this detailed
interaction (suggested
rank: 3)

Mode 2 & Mode 4
(Assets within each type ↔ Interval of time
points)

• Performance of assets
over different time
intervals can vary
significantly, especially
in volatile markets.

• Moderate rank
(suggested rank: 2)

• Assets respond
differently to various
time intervals

• Some assets exhibit
stronger trends or
higher volatility over
specific periods

• Moderate rank
(suggested rank: 2)

• Different assets exhibit
different behaviors over
various time intervals.

• Some assets may be
more volatile in the
short term.

• Moderate rank to
capture these dynamics
(suggested rank: 2)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Mode 2 & Mode 5
(Assets within each type ↔ Time points in
each rolling window)

• Specific time points
within a rolling window
can affect asset
performance

• This interaction might
be less pronounced

• Lower rank (suggested
rank:1)

• Influence of time points
on asset features is
minimal

• Rolling window
averages out short-term
noise.

• Lower rank (suggested
rank:1)

• Specific time points
within a rolling window
can affect asset
performance

• This interaction is likely
less significant than
others

• Lower rank (suggested
rank:1)

Mode 3 & Mode 4
(Features of each asset ↔ Interval of time
points)

• Features such as log
returns and spreads are
sensitive to the time
interval chosen.

• Moderate rank to
capture temporal effects
(suggested rank: 2)

• Features such as returns
and volatility can vary
significantly over
different time intervals.

• Moderate rank
(suggested rank: 2)

• Features like log returns
and spreads can vary
significantly over
different time intervals.

• Connection is strong as
the features are
calculated over these
intervals.

• Higher rank (suggested
rank: 3)

Mode 3 & Mode 5
(Features of each asset ↔ Time points in each
rolling window)

• Features can vary with
specific time points
within a rolling window,
but interaction is
weaker

• Lower rank is suitable
(suggested rank: 1)

• Specific time points
have a limited impact
on features due to
averaging effects.

• Lower rank is suitable
(suggested rank: 1)

• Specific time points
within a rolling window
can affect the
calculation of features

• This interaction is likely
less significant than
others.

• Lower rank is suitable
(suggested rank: 1)

Mode 4 & Mode 5
(Interval of time points ↔ Time points in
each rolling window)

• Inherently linked as
rolling window defines
the context for the time
points

• Moderate rank
(suggested rank: 2)

• Weak relationship as
rolling window
smooths out short-term
variations

• Lower rank is suitable
(suggested rank: 1)

• Intrinsic connection as
time points are nested
within the intervals

• Moderate rank to
capture this structure
(suggested rank: 2)

Table 8: Performance comparison across different datasets for vanilla and tnLLM-initialized TNLS
and TnALE. The values on the left give the lowest training objective function values and their
corresponding testing objective function values. The values in [square brackets] give the number of
evaluations required to first achieve the best training objective function value. For both metrics, a
lower value is better. The least number of evaluations are highlighted in bold.

Data Type TNLS TnALE
Vanilla tnLLM-init Vanilla tnLLM-init

Images Train -0.66 [114] -0.64 [20] -0.65 [81] -0.64 [19]Test -0.47 -0.46 -0.46 -0.46

Videos Train -1.64 [484] -1.64 [21] -1.66 [254] -1.65 [20]Test -1.72 -1.71 -1.72 -1.70

Time-series Train -0.45 [218] -0.47 [14] -0.47 [177] -0.47 [20]Test -0.43 -0.44 -0.47 -0.44

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H PERFORMANCE COMPARISON WITH EARLY STOPPING

To further assess the speed-up benefits of the proposed tnLLM method, we incorporate an early
stopping criterion for the baseline methods, which is not present in their original implementations.
Specifically, Table 9 reports the convergence behavior of all baselines using an early stopping
threshold of 0.01 on the objective function, with a patience of 15, applied across all three datasets.
observe from Table 9 that even with early stopping the proposed tnLLM is able to achieve significant
speed ups in number of evaluations (up to 68x compared to TNLS, 24x compared to TnALE, and 53x
compared to tnGPS), while the objective values achieved by the baselines are now slightly worse
relative to those reported in Table 1.

Table 9: Performance comparison across different datasets. The values on the left give the lowest
training and corresponding testing objective function values. The values in [square brackets] give
the number of evaluations required to first achieve the best training objective function value. For all
methods, we report the average and standard deviation of both the objective function value and the
number of evaluations across 5 independent runs. For both metrics, a lower value is better. The best
values are denoted in bold. The second best values are underlined.

Data Type TNLS TnALE tnGPS tnLLM (Ours)

Images Train -0.64 ± 0.01 [58.6 ± 5.2] -0.63 ± 0.02 [51.2 ± 10.4] -0.64 ± 0.01 [210.0 ± 22.3] -0.63 ± 0.01 [4.0 ± 1.9]Test -0.46 ± 0.02 -0.46 ± 0.01 -0.42 ± 0.03 -0.48 ± 0.05

Videos Train -1.63 ± 0.02 [422.2 ± 20.1] -1.66 ± 0.01 [148.8 ± 11.5] -1.65 ± 0.01 [185.0 ± 26.8] -1.63 ± 0.01 [6.2 ± 3.5]Test -1.70 ± 0.03 -1.72 ± 0.01 -1.71 ± 0.02 -1.70 ± 0.02

Time-series Train -0.46 ± 0.01 [170.6 ± 7.6] -0.46 ± 0.03 [115.2 ± 14.4] -0.40 ± 0.02 [62.6 ± 17.0] -0.42 ± 0.02 [5.6 ± 4.4]Test -0.42 ± 0.01 -0.44 ± 0.02 -0.40 ± 0.02 -0.41 ± 0.02

I EXPLANATIONS OF TNLLM DURING TN-DISCOVERY STAGE

The full outputs of the proposed tnLLM during the TN-discovery stage for a single run on the images,
video and time-series datasets are provided below.

Images Dataset

TN Initialization Rank Array: [20, 5, 5]
Loss Function at iteration 0: -0.5737094673

TN Discovery

Running iteration 1 of iterative prompt:
Detailed Reasoning: To refine the rank suggestions for the Fully Connected Tensor Network
Decomposition (FCTND) of an RGB image tensor, we need to balance the trade-off between the
compression rate and the approximation error. The goal is to minimize the loss function, which
is the natural log of the sum of the compression rate and ten times the approximation error.

1. Current Situation Analysis:
- The current rank array is [20, 5, 5] with a loss function of -0.5737094673.
- The compression rate is 0.4218618476, and the approximation error is 0.141569679.
2. Understanding the Trade-offs:
- Compression Rate: This is the ratio of parameters in the compressed tensor to the original
tensor. A lower compression rate means more compression.
- Approximation Error: This is the relative square error between the original and approximate
tensor. A lower approximation error indicates a better approximation.
3. Guidelines for Adjusting Ranks:
- If the compression rate is much lower than half of the approximation error, increasing the ranks
might reduce the approximation error significantly, potentially lowering the loss function.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

- If the compression rate is much higher than twice the approximation error, reducing the ranks
might lower the compression rate, potentially lowering the loss function.
4. Current Comparison:
- The compression rate (0.4218618476) is approximately three times the approximation error
(0.141569679). This suggests that reducing the ranks could be beneficial, as the compression
rate is relatively high compared to the approximation error.
5. Rank Adjustment Strategy:
- Since the compression rate is significantly higher than twice the approximation error, we should
consider reducing the ranks to decrease the compression rate.
- We should explore reducing the rank for the connection between the width and height (Mode 1
and Mode 2), as this is typically the largest dimension in an image tensor and might have the
most significant impact on the compression rate.
6. Proposed Rank Changes:
- Reduce the rank for the connection between Mode 1 (width) and Mode 2 (height) from 20 to 10.
This is a moderate reduction that should help decrease the compression rate without drastically
increasing the approximation error.
- Keep the ranks for the connections between Mode 1 (width) and Mode 3 (RGB channels), and
Mode 2 (height) and Mode 3 (RGB channels) at 5, as these are already relatively low and further
reduction might significantly increase the approximation error.
Rank Array: [10, 5, 5]
This proposed rank array aims to balance the compression rate and approximation error more
effectively, potentially leading to a lower loss function.
Loss Function at iteration 1: -0.5521177879

Running iteration 2 of iterative prompt:
Detailed Reasoning: Let’s analyze the situation with the given rank arrays and their correspond-
ing loss functions. We have two sets of ranks and their associated loss functions:
1. Last Rank Array [10, 5, 5]:
- Compression Rate: 0.2114241372
- Approximation Error: 0.3643051088
- Loss Function: -0.5521177879

2. Best Rank Array [20, 5, 5]:
- Compression Rate: 0.4218618476
- Approximation Error: 0.141569679
- Loss Function: -0.5737094673
The goal is to minimize the loss function, which is the natural log of the sum of the compression
rate and ten times the approximation error.
Analysis:
- Compression Rate vs. Approximation Error:
- The rank array [20, 5, 5] has a higher compression rate but a significantly lower approximation
error compared to [10, 5, 5]. This results in a lower loss function, indicating that the approxima-
tion error has a more substantial impact on the loss function than the compression rate in this
scenario.
- The compression rate for [10, 5, 5] is much lower than the approximation error, suggesting that
increasing ranks could potentially lower the loss function by reducing the approximation error.
- Intrinsic Interactions:
- In RGB images, the interaction between the width and height (spatial dimensions) is crucial for
maintaining image structure. The interaction between spatial dimensions and the RGB channels
is also important for color fidelity.
- Increasing the rank between the spatial dimensions (Mode 1 and Mode 2) could significantly
reduce the approximation error, as it allows for better representation of spatial patterns.
- The rank between the spatial dimensions and the RGB channels (Mode 1 and Mode 3, Mode 2
and Mode 3) should be balanced to maintain color accuracy without excessively increasing the
compression rate.
Proposed Changes:

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Given the analysis, we should explore increasing the rank between the spatial dimensions (Mode
1 and Mode 2) to reduce the approximation error, while keeping the ranks involving the RGB
channels moderate to avoid a high compression rate.
- Rank for (Mode 1, Mode 2): Increase from 10 to 15 to improve spatial representation.
- Rank for (Mode 1, Mode 3) and (Mode 2, Mode 3): Maintain at 5 to balance color accuracy
and compression rate.
Rank Array: [15, 5, 5]
This adjustment aims to reduce the approximation error significantly while keeping the compres-
sion rate in check, potentially leading to a lower loss function.
Loss Function at iteration 2: -0.6382834296

Videos Dataset

TN Initialization
Rank Array: [20, 5, 10, 5, 10, 3]
Loss Function at iteration 0: -0.8044418714

TN Discovery

Running iteration 1 of iterative prompt:
Detailed Reasoning: To refine the rank suggestions and minimize the loss function, we need
to carefully balance the compression rate and the approximation error. The current rank array
is [20, 5, 10, 5, 10, 3], with a compression rate of 0.425117056 and an approximation error of
0.0222204728. The loss function is calculated as the natural log of the sum of the compression
rate and ten times the approximation error.
1. Compression Rate vs. Approximation Error: The current compression rate (0.425117056)
is significantly larger than the approximation error (0.0222204728). This suggests that we might
benefit from reducing the ranks to decrease the compression rate, as the compression rate is
more than two times the approximation error.
2. Mode Interactions:
- Width and Height: These are spatial dimensions and typically have strong correlations. Re-
ducing the rank between these modes might slightly increase the approximation error but could
significantly reduce the compression rate.
- RGB Channels: The interaction between RGB channels and other modes (width, height, frames)
is crucial for maintaining color fidelity. However, the rank between RGB channels and other
modes can often be reduced without a significant impact on the approximation error.
- Frames: Temporal coherence is important, but reducing the rank between frames and spatial
dimensions can often be done with minimal impact on the approximation error.
3. Rank Adjustments:
- (Mode 1, Mode 2): Reduce from 20 to 15. This should decrease the compression rate
significantly while maintaining a reasonable approximation error.
- (Mode 1, Mode 3): Reduce from 5 to 4. This small reduction should help with the compression
rate without a large impact on error.
- (Mode 1, Mode 4): Reduce from 10 to 8. This balances the spatial and temporal dimensions.
- (Mode 2, Mode 3): Reduce from 5 to 4. This should help reduce the compression rate.
- (Mode 2, Mode 4): Reduce from 10 to 8. This maintains a balance between spatial and
temporal coherence.
- (Mode 3, Mode 4): Reduce from 3 to 2. This is a conservative reduction to help with
compression.
By making these adjustments, we aim to reduce the compression rate more significantly than the
increase in approximation error, thereby minimizing the loss function.
Rank Array: [15, 4, 8, 4, 8, 2]
Loss Function at iteration 1: -1.3477094611

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Running iteration 2 of iterative prompt:
Detailed Reasoning: To refine the rank suggestions, we need to balance the compression rate
and approximation error to minimize the loss function, which is the natural log of the sum of the
compression rate and ten times the approximation error. The current rank array is [15, 4, 8, 4, 8,
2], with a compression rate of 0.2038299663 and an approximation error of 0.0560047748.
1. Compression Rate vs. Approximation Error: The compression rate (0.2038) is approxi-
mately 3.64 times the approximation error (0.0560). This suggests that the compression rate is
relatively high compared to the approximation error. According to the guideline, if the compres-
sion rate is larger than two times the approximation error, reducing the ranks to decrease the
compression rate might lead to a lower loss function.
2. Mode Interactions: In RGB video tensors, the modes typically represent width, height, RGB
channels, and frames. The interaction between these modes can be complex, but generally:
- The connection between spatial dimensions (width and height) often requires higher ranks to
capture spatial patterns.
- The connection between RGB channels might not need as high ranks since color information is
often correlated.
- Temporal connections (frames) can vary depending on the video content, but often require
moderate ranks to capture motion.
3. Adjusting Ranks:
- (Mode 1, Mode 2) and (Mode 2, Mode 3): These connections involve spatial dimensions and
RGB channels. Given the high compression rate, we can try reducing these ranks slightly to see
if we can reduce the compression rate without significantly increasing the approximation error.
- (Mode 1, Mode 3) and (Mode 2, Mode 4): These involve spatial and temporal dimensions. We
should be cautious in reducing these too much as they are crucial for capturing spatial-temporal
patterns.
- (Mode 3, Mode 4): This involves RGB channels and frames. We can try reducing this rank
slightly as RGB channels often have correlated information.
Based on these considerations, let’s propose a new rank array:
Rank Array: [12, 3, 8, 3, 7, 2]
- (Mode 1, Mode 2): Reduced from 15 to 12 to decrease the compression rate.
- (Mode 1, Mode 3): Reduced from 4 to 3 to slightly decrease the compression rate.
- (Mode 1, Mode 4): Kept at 8 to maintain spatial-temporal accuracy.
- (Mode 2, Mode 3): Reduced from 4 to 3 to slightly decrease the compression rate.
- (Mode 2, Mode 4): Reduced from 8 to 7 to slightly decrease the compression rate while
maintaining temporal accuracy.
- (Mode 3, Mode 4): Kept at 2 as RGB and temporal interaction might not need high ranks.
This adjustment aims to reduce the compression rate while keeping the approximation error
manageable, potentially leading to a lower loss function.
Current rank array is: [12, 3, 8, 3, 7, 2]
Loss Function at iteration 2: -1.5880439406

Running iteration 3 of iterative prompt:
Detailed Reasoning: Let’s start by analyzing the current situation. The current rank array is
[12, 3, 8, 3, 7, 2], with a compression rate of 0.1144228746 and an approximation error of
0.0899020181. The loss function is calculated as the natural log of the sum of the compression
rate and ten times the approximation error, resulting in a value of -1.5880439406.
1. Compression Rate vs. Approximation Error: - The compression rate (0.114) is slightly
higher than the approximation error (0.0899). This suggests that the compression rate is not
excessively high compared to the approximation error, but it is not significantly lower either.
Therefore, we should aim to balance these two factors more effectively.
2. Intrinsic Interactions:
- In RGB video data, the interactions between modes such as width, height, RGB channels, and
frames are crucial. The RGB channels often have less variability compared to spatial dimensions
(width and height) and temporal dimensions (frames). Therefore, we can consider adjusting
ranks related to RGB channels more conservatively.
- The spatial dimensions (width and height) are typically more correlated, and increasing ranks
here could potentially reduce the approximation error significantly.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

3. Explorative Adjustments:
- Given the current ranks, we can explore increasing the ranks where the approximation error
might be reduced more effectively. Since the compression rate is not excessively low, we can
afford to increase some ranks to see if the approximation error decreases more than the increase
in the compression rate.
- We should consider increasing the ranks between spatial dimensions (width and height) and
temporal dimensions (frames) as these are likely to have more complex interactions.
4. Proposed Changes:
- Increase the rank between width and height (Mode 1 and Mode 2) from 12 to 16. This is
because spatial dimensions often have complex interactions that can benefit from higher ranks.
- Increase the rank between width and frames (Mode 1 and Mode 4) from 8 to 10. This might
help capture more temporal dynamics.
- Increase the rank between height and frames (Mode 2 and Mode 4) from 7 to 9. This will
further help in capturing temporal dynamics.
5. Maintaining Other Ranks:
- Keep the rank between width and RGB channels (Mode 1 and Mode 3) at 3, as RGB channels
typically do not require high ranks.
- Keep the rank between height and RGB channels (Mode 2 and Mode 3) at 3 for the same
reason.
- Keep the rank between RGB channels and frames (Mode 3 and Mode 4) at 2, as this interaction
is typically less complex.
By making these adjustments, we aim to reduce the approximation error more significantly than
the increase in the compression rate, potentially leading to a lower loss function.
Rank Array: [16, 3, 10, 3, 9, 2]
Loss Function at iteration 3: -1.3734126669

Running iteration 4 of iterative prompt:
Detailed Reasoning:
To refine the rank suggestions, we need to balance the compression rate and the approximation
error to minimize the loss function. The loss function is the natural log of the sum of the
compression rate and ten times the approximation error. Our goal is to find a rank configuration
that results in a lower loss function than the previous best of -1.5880439406.
1. Understanding the Current State:
- The last rank array [16, 3, 10, 3, 9, 2] resulted in a loss function of -1.3734126669.
- The best rank array [12, 3, 8, 3, 7, 2] resulted in a loss function of -1.5880439406.
2. Analyzing Compression Rate and Approximation Error:
- The compression rate for the best configuration was 0.1144228746, and the approximation
error was 0.0899020181.
- The compression rate for the last configuration was 0.1933475379, and the approximation error
was 0.0598937173.
3. Strategy for Refinement:
- Since the compression rate in the best configuration is lower than half of the approximation
error, increasing the ranks could potentially decrease the approximation error significantly,
leading to a lower loss function.
- Conversely, if the compression rate is high relative to the approximation error, reducing ranks
could be beneficial.
4. Explorative Adjustments:
- Mode 1 and Mode 3 (Width and RGB Channels): The rank was 3 in both configurations.
Keeping it constant might be beneficial as it balances compression and error.
- Mode 1 and Mode 4 (Width and Frames): The rank was 10 in the last configuration and 8 in
the best configuration. Increasing this rank could reduce the approximation error significantly.
- Mode 2 and Mode 3 (Height and RGB Channels): The rank was 3 in both configurations.
Keeping it constant might be beneficial as it balances compression and error.
- Mode 2 and Mode 4 (Height and Frames): The rank was 9 in the last configuration and 7 in
the best configuration. A slight increase might help reduce approximation error.
- Mode 3 and Mode 4 (RGB Channels and Frames): The rank was 2 in both configurations.
Increasing this rank could help reduce the approximation error.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

5. Proposed Rank Adjustments:
- Increase the rank between Mode 1 and Mode 4 from 8 to 10.
- Increase the rank between Mode 2 and Mode 4 from 7 to 8.
- Increase the rank between Mode 3 and Mode 4 from 2 to 3.
Rank Array: [12, 3, 10, 3, 8, 3] Loss Function at iteration 4: -1.5407013427

Running iteration 5 of iterative prompt:
Detailed Reasoning: 1. Understanding the Current Situation:
- The current rank array [12, 3, 10, 3, 8, 3] results in a loss function of -1.5407013427.
- The best-known rank array [12, 3, 8, 3, 7, 2] results in a lower loss function of -1.5880439406.
2. Compression Rate vs. Approximation Error:
- The current compression rate is 0.1381115846, and the approximation error is 0.0761192149.
- The best-known compression rate is 0.1144228746, and the approximation error is
0.0899020181.
3. Analyzing the Balance:
- The current compression rate is higher than the approximation error, suggesting that reducing
the ranks could potentially lower the loss function.
- The best-known configuration has a lower compression rate but a slightly higher approximation
error, which overall results in a better loss function.
4. Explorative Adjustments:
- Width and Height (Mode 1 and Mode 2): These are typically the largest dimensions in video
data. A rank of 12 between them seems reasonable, but we could explore reducing it slightly to
10 to see if it impacts the compression rate favorably.
- Frames (Mode 4): Temporal coherence is important, but the ranks involving frames are
relatively high. We could try reducing the rank between Mode 1 and Mode 4 from 10 to 8 and
Mode 2 and Mode 4 from 8 to 6 to see if it helps reduce the compression rate further without
significantly impacting the approximation error.
5. Proposed Rank Adjustments:
- Reduce the rank between Mode 1 and Mode 2 from 12 to 10.
- Reduce the rank between Mode 1 and Mode 4 from 10 to 8.
- Reduce the rank between Mode 2 and Mode 4 from 8 to 6.
Based on the above reasoning, the adjusted rank array is:
Rank Array: [10, 3, 8, 3, 6, 3]
This configuration aims to balance the compression rate and approximation error more effectively,
potentially leading to a lower overall loss function.
Loss Function at iteration 5: -1.6246676937

Time-Series Dataset

TN Initialization
Rank Array: [3, 2, 2, 1, 3, 2, 1, 2, 1, 1]
Loss Function at iteration 0: 1.0711770536

TN Discovery

Running iteration 1 of iterative prompt:
Detailed Reasoning:
To refine the rank suggestions and minimize the loss function, we need to carefully balance the
compression rate and the approximation error. The current rank array is [3, 2, 2, 1, 3, 2, 1, 2, 1,
1], with a compression rate of 0.2009259259 and an approximation error of 2.7178871524. The
loss function is the natural log of the sum of the compression rate and 10 times the approximation
error.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

1. Current Situation Analysis: The compression rate (0.2009) is significantly lower than half
of the approximation error (2.7179). This suggests that increasing the ranks could potentially
reduce the approximation error more significantly than it would increase the compression rate,
leading to a lower loss function.
2. Strategic Adjustments:
- Increase Ranks: Since the compression rate is much lower than the approximation error,
we should consider increasing some ranks to reduce the approximation error. This could be
particularly effective for connections that are currently at their minimum (rank 1), as increasing
these could have a substantial impact on reducing the approximation error.
- Targeted Increases: Focus on increasing ranks where the interaction between modes is likely
to be more complex and impactful. For instance, connections involving financial instrument
types and assets might benefit from higher ranks due to the inherent complexity and variability
in financial data.
3. Proposed Changes:
- Increase the rank between Mode 1 and Mode 4 from 1 to 2. This connection might represent
a critical interaction between financial instrument types and time points, which could benefit
from a higher rank.
- Increase the rank between Mode 2 and Mode 5 from 1 to 2. This could represent an
interaction between assets and indexes of rolling windows, which might capture more variability
with a higher rank.
- Increase the rank between Mode 3 and Mode 5 from 1 to 2. This might capture more detailed
interactions between features and indexes of rolling windows.
Expected Outcome: These changes are expected to decrease the approximation error sig-
nificantly while only slightly increasing the compression rate, thus reducing the overall loss
function.
Rank Array: [3, 2, 2, 2, 3, 2, 2, 2, 2, 1]
Loss Function at iteration 1: -0.390709764

Running iteration 2 of iterative prompt:
Detailed Reasoning: Let’s take a deep breath and analyze the current situation. The current
rank array [3, 2, 2, 2, 3, 2, 2, 2, 2, 1] yields a compression rate of 0.4 and an approximation error
of 0.2765764944, resulting in a total loss function of -0.390709764. Our goal is to minimize this
loss function by adjusting the ranks, keeping in mind the balance between compression rate and
approximation error.
1. Compression Rate vs. Approximation Error: The current compression rate (0.4) is
relatively low compared to the approximation error (0.2765764944). According to the guideline,
if the compression rate is smaller than half of the approximation error, increasing the ranks could
potentially decrease the loss function. Here, 0.4 is not smaller than half of 0.2765764944 (which
is approximately 0.138), so we don’t strictly fall into this category. However, the compression
rate is still significantly lower than the approximation error, suggesting that a slight increase in
ranks might be beneficial.
2. Exploration of Rank Changes: We need to explore both small and large changes in ranks.
Since the compression rate is not excessively low compared to the approximation error, we
should consider moderate increases in ranks to see if the approximation error can be reduced
more significantly than the increase in compression rate.
3. Mode Interactions: In financial data, interactions between different modes such as financial
instrument types, assets, features, and time points are crucial. Increasing ranks in connec-
tions involving these modes might capture more complex interactions, potentially reducing the
approximation error.
4. Proposed Changes:
- Increase the rank between (Mode 1, Mode 2) from 3 to 4. This connection might capture
more complex interactions between financial instrument types and assets.
- Increase the rank between (Mode 1, Mode 5) from 3 to 4. This could help capture more
temporal dynamics across different financial instruments.
- Increase the rank between (Mode 2, Mode 3) from 3 to 4. This might improve the interaction
modeling between assets and features.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

5. Maintaining Other Ranks: Keep the other ranks the same to avoid a significant increase in
the compression rate, which could offset the benefits of reduced approximation error.
By making these adjustments, we aim to achieve a better balance between the compression rate
and approximation error, thereby minimizing the loss function.
Rank Array: [4, 2, 2, 4, 4, 2, 2, 2, 2, 1]
Loss Function at iteration 2: -0.2087247722

Running iteration 3 of iterative prompt:
Certainly! Let’s take a deep breath and analyze the situation step-by-step.
Detailed Reasoning:
1. Understanding the Current Situation:
- The current rank array [4, 2, 2, 4, 4, 2, 2, 2, 2, 1] results in a loss function of -0.2087247722.
- The lowest loss function observed was -0.390709764 with the rank array [3, 2, 2, 2, 3, 2, 2, 2, 2,
1].
2. Loss Function Analysis:
- The loss function is influenced by both the compression rate and the approximation error.
- The goal is to minimize the sum of the compression rate and 10 times the approximation error.
3. Compression Rate vs. Approximation Error:
- If the compression rate is much lower than the approximation error, increasing ranks can help
reduce the approximation error significantly, potentially lowering the loss function.
- Conversely, if the compression rate is much higher than the approximation error, reducing ranks
can help decrease the compression rate, potentially lowering the loss function.
4. Current Observations:
- The current compression rate is 0.7259259259, and the approximation error is 0.085692659.
- The lowest loss function had a compression rate of 0.4 and an approximation error of
0.2765764944.
5. Strategic Adjustments:
- The current compression rate is higher than the approximation error, suggesting that reducing
ranks could be beneficial.
- The previous lowest loss function had a lower compression rate, indicating that a balance
between compression and error is crucial.
6. Proposed Adjustments:
- Focus on reducing ranks where the compression rate can be decreased without significantly
increasing the approximation error.
- Consider reducing the ranks where the compression rate is disproportionately high compared to
the approximation error.
Rank Array Proposal: - Rank for the connection between (Mode 1, Mode 2): Reduce from 4
to 3 to decrease compression rate.
- Rank for the connection between (Mode 1, Mode 3): Keep at 2 as it is balanced.
- Rank for the connection between (Mode 1, Mode 4): Reduce from 4 to 3 to decrease
compression rate.
- Rank for the connection between (Mode 1, Mode 5): Reduce from 4 to 3 to decrease
compression rate.
- Rank for the connection between (Mode 2, Mode 3): Keep at 2 as it is balanced.
- Rank for the connection between (Mode 2, Mode 4): Keep at 2 as it is balanced.
- Rank for the connection between (Mode 2, Mode 5): Keep at 2 as it is balanced.
- Rank for the connection between (Mode 3, Mode 4): Keep at 2 as it is balanced.
- Rank for the connection between (Mode 3, Mode 5): Keep at 2 as it is balanced.
- Rank for the connection between (Mode 4, Mode 5): Keep at 1 as it is already minimal.
Final Rank Array:
Rank Array: [3, 2, 3, 3, 2, 2, 2, 2, 2, 1]
This adjusted rank array aims to reduce the compression rate while maintaining a reasonable
approximation error, potentially leading to a lower loss function.
Loss Function at iteration 3: -0.4233019939

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

J EXAMPLE RUNS OF TNLLM IN EACH DATASET

We report the objective value of tnLLM after the initialization and after each step until early stopping
for one example run across all 3 datasets.

Table 10: Train and Test Objective Function Values for an example run of tnLLM until early stopping
in Images, Videos, and Time-series Datasets.

Evaluation Images Videos Time-series

Train Test Train Test Train Test

TN Initialization -0.57 -0.47 -0.80 -0.81 1.07 1.43
TN Discovery 1 -0.55 -0.29 -1.35 -1.37 -0.39 -0.36
TN Discovery 2 -0.64 -0.50 -1.59 -1.66 -0.21 -0.20
TN Discovery 3 - - -1.37 -1.39 -0.42 -0.42
TN Discovery 4 - - -1.54 -1.58 - -
TN Discovery 5 - - -1.62 -1.70 - -

K FURTHER DATA DOMAINS

We report below the performance of tnLLM against TNLS, TnALE, and tnGPS on three additional
datasets from data domains (Physics, Geospatial Hyperspectral, and Biomedical MRI Neuroimaging)
beyond the current SOTA TN-SS literature (Li et al., 2022; 2023; Zeng et al., 2024a; Zheng et al.,
2024). For the Physics experiment, we use the Darcy Flow dataset from PDEBench (Takamoto
et al., 2022). Each tensor has the shape of 128 × 128 × 10, with 10 samples used for training and
10 for testing. For the geospatial hyperspectral image experiment, we use the datasets provided
in (Baumgardner et al., 2015) and (Dell’Acqua et al., 2004). Each tensor is cropped to share a
common shape of 100 × 100 × 80, where each mode represents the width, height, and spectral bands
respectively. For the neuroimaging experiment, we use the BrainWeb MRI dataset (Cocosco, 1997).
Each tensor has the shape of 217 × 181 × 36 × 2, where 217 is the height, 181 is the width, 36 is the
number of slices, and 2 is the modality. We use the normal brain data for training and the brain data
with multiple sclerosis for testing.

Table 11: Performance comparison across different additional datasets (Physics, Geospatial Hyper-
spectral, and Biomedical MRI). The values on the left give the lowest training and corresponding
testing objective function values. The values in [square brackets] give the number of evaluations
required to first achieve the best training objective function value. Best values are bolded and second-
best values are underlined.

Dataset TNLS TnALE tnGPS tnLLM

Physics Train -0.57 [196] -0.56 [162] -0.55 [92] -0.54 [7]Test -0.49 -0.56 -0.52 -0.54

Geospatial Hyperspectral Train -1.45 [205] -1.43 [151] -1.43 [76] -1.42 [7]Test -1.33 -1.29 -1.35 -1.33

Biomedical MRI Train -0.46 [310] -0.45 [146] -0.41 [130] -0.48 [5]Test -0.54 -0.53 -0.45 -0.55

28


	Introduction
	Related work

	Preliminaries
	Tensor network structure search (TN-SS)
	SOTA sampling-based algorithms for TN-SS

	tnLLM: a domain-aware framework for solving TN-SS
	Experimental results
	Accelerating SOTA methods with tnLLM
	Ablation study

	Conclusion
	Limitations and future work
	Full prompts of tnLLM framework
	Data
	Implementation details
	Runtime Comparisons
	Summarized generated explanations of tnLLM for the initialized TN structure
	Performance comparison for vanilla and tnLLM-initialized TNLS and TnALE
	Performance Comparison with Early Stopping
	Explanations of tnLLM during TN-discovery stage
	Example Runs of tnLLM in Each Dataset
	Further Data Domains

