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ABSTRACT

Tensor networks (TNs) provide efficient representations of high-dimensional data,
yet identification of the optimal TN structures, the so called tensor network structure
search (TN-SS) problem, remains a challenge. Current state-of-the-art (SOTA)
algorithms solve TN-SS as a purely numerical optimization problem and require
extensive function evaluations, which is prohibitive for real-world applications. In
addition, existing methods ignore the valuable domain information inherent in real-
world tensor data and lack transparency in their identified TN structures. To this
end, we propose a novel TN-SS framework, termed the tnLLM, which incorporates
domain information about the data and harnesses the reasoning capabilities of large
language models (LLMs) to directly predict suitable TN structures. The proposed
framework involves a domain-aware prompting pipeline which instructs the LLM
to infer suitable TN structures based on the real-world relationships between tensor
modes. In this way, our approach is capable of not only iteratively optimizing the
objective function, but also generating domain-aware explanations for the identified
structures. Experimental results demonstrate that tnLL.M achieves comparable
TN-SS objective function values with much fewer function evaluations compared
to SOTA algorithms. Furthermore, we demonstrate that the LLM-enabled domain
information can be used to find good initializations in the search space for sampling-
based SOTA methods to accelerate their convergence while preserving theoretical
performance guarantees. Our code is included in the supplementary materials.

1 INTRODUCTION

The exponential increase in the volume and richness of available data has led to the widespread
use of multi-way arrays, often represented as higher-order tensors. Tensor network decomposition
methods aim to represent higher-order tensors in “super-compressed” formats through smaller-sized
components, by effectively capturing cross-modal latent patterns and correlations. These methods
have been applied across various fields, including machine learning (Zhe et al., 2015} |Cichocki et al.}
2016} Malikl, 2021), signal processing (Zheng et al., 2023), computer vision (Shakeri & Zhang| [2019;
Yamamoto et al., |2022)), and quantum physics (Orus, 2019} [Felser et al.,[2021). The success of
tensor network decomposition techniques is closely linked to their ability to mitigate the “curse of
dimensionality”, which is achieved by decomposing higher-order data into lower-order factors.

However, tensor network (TN) practitioners face significant challenges related to choosing the most
appropriate TN structure, the so called tensor network structure search (TN-SS) problem, which has
been proven to be NP-hard (Hillar & Lim| 2013} |Li et al.,|2023)). TN-SS involves determining the
optimal TN parameters, such as TN ranks, TN topology, and TN mode permutations (Li et al.;2022).

Existing TN-SS methods solve TN-SS as a purely numerical optimization problem and include
approaches such as Bayesian inference (Zeng et al.,[2024b)), greedy algorithm (Hashemizadeh et al.|
2020), discrete optimization (Li et al., 2022; 2023)), and continuous optimization (Zheng et al., 2024).
To date, sampling-based methods (L1 & Sun, 2020; |L1 et al., |2022;2023; Zeng et al.,|2024a), whose
workflows are illustrated in Figure[Ip and[Ip, have demonstrated the best performance in addressing
the TN-SS problem.

However, these methods require large number of evaluations (of the training and testing data),
are prone to getting stuck in local minima, and lack transparency in their found structure-related
parameters (Li et al., 2023)). Critically, a large number of evaluations needed to optimize the objective
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function leads to a high computational cost. We hypothesize that these limitations arise from failing
to exploit the rich domain information inherent in real-world tensors, such as the mode information.
To this end, we ask ourselves:

How can we utilize the intrinsic domain information in tensor data to significantly reduce the number
of evaluations required to solve the TN-SS problem, while providing domain-aware explanations for
the identified TN solutions?

To address this question, we propose a domain-aware
large language model (LLM)-guided TN-SS frame-
work, termed tnLLM. Within this framework, an
LLM is utilized to initialize the TN structure based on
domain information about the relationships between
tensor modes. Then, the reasoning capabilities of the J
LLM are used to navigate the search space effectively,

in order to achieve good optimization of the objective ]
function with very few evaluations. i E
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Our proposed framework is found to achieve signif-

icant speed-ups over current state-of-the-art (SOTA)
methods in terms of the number of evaluations, due
to its ability to find good TN structure initializations
through the use of domain information. Moreover,
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tnLLM generates practically meaningful explanations
for the TN solutions, thus offering transparency in the
identified structures. This is particularly beneficial
for tensor practitioners who lack deep expertise in a
specific data domain, as it enables them to both com-
prehend the interactions between tensor modes and
trust the discovered TN structures. It also allows the
identified structures to be verified by domain experts.

Figure 1: Comparison of SOTA tensor net-
work structure search (TN-SS) methods. (a)
TN-SS algorithms with theoretical guaran-
tees: TNLS (L1 et al., 2022) & TnALE (L1
et al.,|2023). (b) tnGPS (Zeng et al.,|[2024a),
a prompting pipeline which uses LLMs to
generate new TN-SS algorithms. (c) tnLLM
(ours), which uses domain information about
the tensor data and LLM reasoning to solve
the TN-SS problem and generate explanations
for the identified TN structure.

To evaluate the effectiveness of tnLLM, we compare
its performance against SOTA TN-SS algorithms on
real-world tensor datasets of order-3, 4, and 5. The
experimental results demonstrate that tnLLM delivers
performance comparable to current SOTA methods,
while requiring significantly fewer function evalua-
tions and providing domain-aware explanations for the identified TN structures. Moreover, we
constructed a hybrid algorithm to combine the speed-up benefits of tnLLM with the theoretical
guarantees of existing sampling-based approaches. The main contributions of this work are:

* We propose tnLLM, a novel domain-aware LLM-guided TN-SS framework, which achieves
performance on par with SOTA methods while requiring much fewer evaluations;

* To the best of our knowledge, our framework is the first to utilize domain information
inherent in real-world tensor data to address the TN-SS problem. This enables the generation
of domain-aware explanations that allows practitioners to verify the identified TN structures.

1.1 RELATED WORK

Tensor network structure search (TN-SS). Compared to traditional tensor decompositions (Hitch-
cockl [1927;|Tucker, [1966; |Oseledets} [2011}; Zhao et al., 2016; |Wu et al.,[2022), which have pre-defined
tensor network structures, the TN-SS problem focuses on finding custom tensor networks, which
have been shown to achieve higher parameter efficiency and are an important paradigm of tensor
decompositions (Li et al., 2022;2023; [Li & Sun, 2020} [Zeng et al.,[2024a). Various approaches have
been proposed to address the TN-SS problem, including Bayesian inference (Zeng et al.l |2024b)),
greedy algorithm (Hashemizadeh et al.,|2020), program synthesis (Guo et al., 2025)), and continuous
optimization (Zheng et al.,2024). Sampling-based methods (Li et al.| 2023} [2022; [Li & Sunl 2020;
Zeng et al.| [20244a), which fall under discrete optimization methods, have demonstrated superior
performance compared to other approaches in addressing the TN-SS problem. Among these, TNLS
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Figure 2: The workflow of the proposed tnLLM framework consists of two key stages commonly
adopted by SOTA TN-SS methods (Li et al., 2022} 2023} |Zeng et al., [2024a): TN-initialization and
TN-discovery. The proposed tnLLM efficiently utilises the domain information in tensor data and
uses an LLM to guide these two stages.

(L1 et al., 2022) and TnALE (L1 et al., 2023) achieve state-of-the-art (SOTA) performance, with
TnALE accelerating TNLS by slightly reducing the number of evaluations required to optimize the
objective function. While both TNLS and TnALE adopt a “local-search” scheme, this acceleration
is achieved by the alternating variable updates proposed in TnALE. However, these methods still
face challenges, such as a large number of function evaluations required to converge, difficulty in
balancing exploration and exploitation, and a lack of transparency in the found structures.

More recently, tnGPS (Zeng et al., |2024a) has emerged as an approach that uses LLMs to gener-
ate sampling-based TN-SS algorithms, demonstrating performance comparable to SOTA methods.
Despite being closest to our work, tnGPS focuses on generating TN-SS algorithms based on sampling-
based heuristics and does not incorporate any domain information in the tensor data. As such,
tnGPS suffers from the same limitations as existing sampling-based methods, including a lack of
explainability in the identified structure-related parameters.

To this end, our work proposes to harness the domain information in tensor data to solve the TN-SS
problem. We achieve this by using the domain knowledge and the inherent reasoning capabilities of
LLMs to directly infer tensor network structures. Facilitated by our carefully designed prompting
pipeline (see Section [3)), the proposed framework is shown not only to require significantly fewer
evaluations, but also to produce domain-aware and verifiable solutions to the TN-SS problem.

Reasoning with large language models. The rise of transformer-based LLMs, pretrained on vast
text corpora, has demonstrated a remarkable capacity for “reasoning” (Wei et al.| |2022a). This
reasoning ability is further enhanced when LLMs are guided by task-specific prompting strategies,
such as chain-of thought (Wei et al., 2022bj;|Suzgun et al., 2023 [Kojima et al.,2024). These strategies
enable LLMs to generate text effectively for tasks such as arithmetic reasoning, optimization (Yang
et al.}[2024), and factual knowledge retrieval, leading to exceptional performance in complex question-
answering and tasks requiring real-world knowledge (Liévin et al., 2023} Singhal et al.| [2023)). These
findings suggest that, through pretraining on diverse textual data, LLMs encode rich knowledge
about real-world relationships, which they can effectively leverage to perform various downstream
tasks (Choi et al.||2022). In this work, we utilize the real-world domain knowledge and “reasoning”
capabilities of LLMs to directly infer suitable TN structures.

2 PRELIMINARIES

2.1 TENSOR NETWORK STRUCTURE SEARCH (TN-SS)

We first provide the definition of TN-SS through its application in higher-order data decomposition.
An optimal solution to the TN-SS problem aims to find the best trade-off between identifying the
most compressed TN structure while preserving the expressivity of the TN (Li & Zhaol 2021]).
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Algorithm 1: Sampling-based Algorithms for TN-SS (Li et al., 2022; 2023 Zeng et al., [2024a))

. Initialize:

: Niter > Maximum number of iterations
: Nsample > Number of samples per iteration
P+ > Historical TN structures
H <« > Discovered TN structures in each iter.
: F(-) « Equation (T)) > Objective function
: (G,r) = Initial TN Structure > TN-initialization

: Algorithm:

: for n = 1to Nyter do

H < Nsampie TN structures sampled in the neighborhood of (G, r). > TN-discovery
P+ PUH A

if 3(G, t) € P such that F(G, T) < F(G,r) then

_(Gr) = (G7).

if Converged then

| return (G,r)

: Output: (G,r)

e e e e e
Q00 E QR—OLRE I AWN—

Let X € RI1>12XXIN be g non-zero order-N tensor, with its Frobenius norm as || X || 7. Tensor
networks can be represented using the graphical notation (Orus, 2014} |Ye & Lim,|2018)), whereby a
tensor network G is represented using a set of N vertices, V, and a set of edges, F, i.e., G = (V, E).
Each vertex represents a decomposed core tensor, and the closed edges between two core tensors
are generalized higher-order matrix multiplications, termed tensor contractions (Cichocki et al.
2016). Closed edges have assigned TN-ranks, r € Z*, which indicate the degree of connectivity
between different pairs of connected vertices. Therefore, the properties of a TN structure can be fully
expressed by the combination (G, r).

Similar to SOTA TN-SS methods (Li & Sun, [2020; [Li et al., 2023} 2022; [Zeng et al., [2024a)), the
discrete optimization problem of TN-SS is formalized as a minimization of the objective function,
which is a linear sum of the complexity of the TN structure (e.g., compression rate) and the TN
expressivity (e.g., approximation error), and is given by

| | = TNC ({Vii}X15 (Go1)) |
By n (¢<G7r> T min Z EqE 1 ) v

{Vll}1 17=1

where L represents the number of tensor samples in the dataset, and the first term ¢(G, r) measures
the TN structure complexity. The second term in Equation (I)) measures the express1V1ty of the
TN through the relative squared error (RSE) between the original tensors {Xl}l ; and their TN

approximations {TNC ({V,;}X; (G, r )}l:1’ where TN C(-) stands for the tensor contraction

operation of the entire tensor network. The pair (G, r) characterizes how the vertices, {V,;} ¥ ;, are
contracted together to approximate the original tensor &;. The coefficient ) is a positive non-zero
scaling factor which balances the trade-off between model complexity and model expressivity. Note
that (Li & Sun, [2020; Ye & Lim, 2018)) pointed out that the TN-SS problem is conveniently equivalent
to the TN rank search problem of a fully connected TN (Zheng et al., 2021).

2.2  SOTA SAMPLING-BASED ALGORITHMS FOR TN-SS

Algorithm [T summarizes the current SOTA algorithms for TN-SS. They follow a three-step search
process: TN-initialization — TN-discovery via sampling in the search neighborhood — Updating
the center of the search neighborhood. Existing methods ignore the inherent domain information in
real-world tensor data, which calls for the development of a framework that can effectively utilize
domain knowledge in TN-initialization and TN-discovery to improve performance.

To this end, our proposed framework introduces domain-aware LLM-guided TN-initialization and TN-
discovery. By doing so, it addresses the limitations of existing methods, such as high computational
costs caused by the large number of evaluations (N, X Nggmpie) required and the tendency
to get stuck in local minima due to difficulties in balancing the exploration-exploitation trade-off.
Importantly, by incorporating domain information, our tnLLM framework provides practically
meaningful explanations for the identified TN structures, a feature absent in current approaches.
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3 TNLLM: A DOMAIN-AWARE FRAMEWORK FOR SOLVING TN-SS

This section presents tnLLM, a domain-aware LLM-guided framework that efficiently solves the
TN-SS problem with very few evaluations and verifiable solution explanations. We detail the role of
each component in the prompting pipeline and the guidelines followed by each prompt.

Workflow of tnLLM. Figure [2illustrates the workflow of the proposed tnLLM framework. The
“Behavior-directive” prompt is used to supply the problem specification and guide the general-purpose
LLM into a model tailored for solving the TN-SS problem. Inspired by current sampling-based
SOTA algorithms, this domain-informed LLM is then employed for LLM-guided TN-initialization
and TN-exploration.

During the TN-initialization stage, the “Task-directive” prompt is used to propose a strong initial
TN structure by using the provided domain information. In the TN-discovery stage, the last and
best-identified TN structures are used in conjunction with the “Optimization-directive” prompt to
guide the LLM in navigating the search space effectively. The identified TN structures are fed into
an objective function evaluation program to obtain the objective function values. This iterative
process leads to the refinement of the TN structure and yields improved objective function values
over successive evaluations.

Prompting pipeline. The interactions between the carefully designed user prompts and the LLM
assistant follow an automated structured dialogue (OpenAll2023; Touvron et al., 2023). This dialogue-
based approach is intuitive for generating stepwise conversational reasoning and is particularly useful
for iterative tasks such as the TN-SS problem. To further improve the ability of the LLM to perform
complex reasoning, we employ the chain-of-thought prompting (Wei et al., 2022b). This prompting
strategy breaks down complex tasks into a series of intermediate reasoning steps and thus enables the
model to solve the problem by addressing smaller, simpler sub-tasks sequentially. In the proposed
tnLLM framework, three distinctly purposed prompts are employed, each serving a unique role. The
full prompts are given in Appendix [B]

“Behavior-directive” prompt. This is the system message in the dialogue. Its primary objective is
to establish the role of the LLM as an expert in the TN-SS problem ( section of Figure [3a)
and guide its behavior throughout the dialogue (green section of Figure[3a). Additionally, it sets the
context by outlining the TN-SS problem and the objective function (blue section of Figure [3a).

“Task-directive” prompt. This is the first non-system prompt supplied to the LLM and serves
as the basis for LLM-guided TN-initialization. It is designed to thoroughly explain the domain
information about the tensor structure, including details such as the number of modes and the specific
information about each mode ( section of Figure [3b). Furthermore, it guides the model’s
thought process and ensures that its responses align with the task requirements by instructing it to
reason step-by-step and utilize domain knowledge (blue section of Figure [3b).

Frame LLM as domain expert Describe the structure and type of data
You are a <domain> expert specialized in tensor decomposition "We are working with a <order> tensor representing <domain> data with ... modes

. o <description of each mode> "
Define the problem and objective

"Your task is to... . You should provide... that minize the objective function which is ..." Define task and urge step-by-step reasoning using domain knowledge
"Your task is... . The loss function to minimize is .... reason step-by-step, ...based
Urge LLM to provide step-by-step reasoning using domain knowledge on your understanding about <mode information>"
"Work your suggestions out step-by-step based on rigorous reasoning, and <domain>
knowledge." Specify exact output format
. . sy . e ey
(a) “Behavior-directive” prompt (b) “Task-directive” prompt

Figure 3: Structure and components of (a) the “Behavior-directive” prompt, which frames the LLM’s
role as a domain expert, and (b) the “Task-directive” prompt for LLM-guided TN-initialization.

“Optimization-directive” prompt. This is the iterative prompt supplied to the LLM in all subse-
quent evaluations and serves as the basis for LLM-guided TN-discovery. Its purpose is to guide the
LLM to efficiently navigate the search space by incorporating context from the best and previous
evaluations ( section of Figure ). The prompt explains how refinements to the identified
TN structure influence the objective function value and instructs the model to leverage step-by-step
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reasoning and domain knowledge to optimize the objective function (blue section of Figured). At the
same time, it encourages the LLM to both explore and exploit new solutions to reduce the likelihood
of the method being stuck in local minima (purple section of Figure [).

Efficient and effective search space navigation. A
critical factor in the performance of tnLLM, both in

Aid model in navigating search space

terms of evaluations and objective function value, b LD SIS
is the incorporation of memory ( section of e e e e e v neren
Figure d)) and the encouragement of search space "ex- T croases.. R s arke s bence o
ploration and exploitation” (purple sectlon Of Flgure Urge LLM to "explore & exploit" and provide step-by-step reasoning

"You are encouraged to be explorative... . Do not change ranks if ... . You should never try the

M) in the “Optimization-directive” prompt. By includ- | samesetofrans more anonce. . proucerans basecon.. and reason step y-step..
ing the best and most recent TN solutions, along with Specly exact vt formet

their respective objective function values and the do-
main information about mode interactions, the LLM
gains a better understanding of the search space and
can make more informed decisions. Additionally, by
encouraging the model to explore new solutions when
necessary and exploit good solutions already found assists the optimization process, by reducing the
possibility of the model getting stuck in local minima, a common caveat of sampling-based methods.

Figure 4: Structure and components of
the “Optimization-directive” prompt used for
LLM-guided TN-discovery.

Output format specification. As observed in Figures [3bland 4] in addition to the goal-oriented
components of each prompt, an essential feature (highlighted in green) of both the “Task-directive”
and “Optimization-directive” prompts is the specification of the exact output format of the TN-SS
solution. This includes defining both the sequence in which the LLM should present its response
and the precise format of the TN-SS solution. To meet these requirements, the prompt shown in
Figure [5| was developed through experimentation and a trial-and-error process with the LLM. This
step serves to eliminate “hallucinations” in the LLM output and enables a fully automated prompting
pipeline without the need for any human intervention during the entire iterative optimization process.

Remark 3.1. Both tnGPS and tnLLM use LLMsS [ Gopnoma

Reasoning: Reason about the intrinsic interactions between every pair of modes

to solve the TN-SS problem, however, the tWo ap- | iecd onvour underatanding of cdomains dats.
proaches are fundamentally different. tnGPS USes the | o i oo meeace wih cscription of solution formats
LLM to generate new sampling-based TN-SS algo-
rithms by reviewing existing algorithms, causing the . .
discoverid method% to inhe%it s%milar limitation%. In Figure 5: The prompt used to specify the
contrast, tnLLM uses the LLM to directly infer TN LLM output format.

structures to solve the TN-SS problem by incorporat-

ing the rich domain information in real-world tensor data. In turn, this allows tnLLM to provide

explanations for the TN solutions, thereby adding transparency to the identified TN structures.

4 EXPERIMENTAL RESULTS

In this section, the performance of tnLLM was evaluated against the SOTA sampling-based methods
in tensor decomposition tasks in terms of the number of evaluations and objective function value. Our
results demonstrate that tnLLM achieves comparable objective function values while delivering sig-
nificant speed-ups. Moreover, we demonstrate its ability to generate domain-consistent explanations
for the identified TN structures. Finally, an ablation study was conducted to evaluate the effectiveness
of domain information and assess the framework’s robustness across different LLMs.

Data preparation. Given the flexibility of our method to handle tensor data of any order, we
evaluated its performance on three types of tensor data with varying sizes and dimensionalities across
different domains. In particular, we tested on datasets of order-3 RGB images and order-4 RGB
videos. We also curated a completely new order-5 financial time-series dataset of 142 tensors to
ensure that it was not included in the training data of LLMs. This time-series tensor dataset, to the
best of our knowledge, is the largest dataset in terms of number of samples ever considered in the
TN-SS problem. All entries were standardized to values in [0, 1], with 80% of each dataset used for
training, and the remaining 20% for testing. More details about the data can be found in Appendix
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Table 1: Performance comparison across different datasets. The values on the left give the lowest
training and corresponding testing objective function values. The values in [square brackets] give
the number of evaluations required to first achieve the best training objective function value. For
robustness assessment of tnLLM, we report the average and standard deviation of both the objective
function value and the number of evaluations across 5 independent runs. For both metrics, a lower
value is better. The best values are denoted in bold. The second best values are underlined.

Data Type TNLS TnALE tnGPS tnLLM (Ours)

mags qo" gl UM QG B0 8 e GG 401
v TP 4 e 08 w0 15w 0 e
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Settings of tnLLM. In Equation (I, we set A = 10 and used the same compression ratio function,
¢, as in previous sampling-based methods (Li & Sunl[2020), defined as the ratio between the number
of parameters in the compressed TN format and the original tensor. The maximum number of
evaluations was set to 500 for the images and videos datasets, and 250 for the financial time-series
dataset. An early stopping criterion with a patience of 5 was applied. For all experiments, the LLM
model GPT-40 (gpt-40-2024-08-06) (OpenAl, 2024)) was used, with temperature set at 0.2.

Implementation details. In all experiments, we also implemented the three SOTA sampling-based
TN-SS algorithms, namely TNLS (Li et al.| [2022)), TnALE (Li et al.,|2023) and tnGPS (Zeng et al.,
2024a)), and accelerated them with GPUs. Since the vanilla TNLS is designed to search only for the
permutation of a TN, we extended it to fit the settings of TN-SS. For fair comparisons, all baseline
methods were evaluated using the same objective function and maximum number of evaluations,
with one evaluation defined as a single pass through the entire training and testing dataset. The full
implementation details are provided in Appendix [D}

Numerical results. We ran tnLLM five times and examined the mean and standard deviation
for both the objective function values and the number of evaluations to demonstrate its robustness.
Observe from Table[T|that tnLLM achieved performance on par with SOTA sampling-based algorithms
in both training and test objectives across all data types, as measured by the objective function.
Importantly, tnLLM minimizes the objective function with significantly fewer evaluations, requiring
up to 78x fewer evaluations than TNLS, 41x fewer than TnALE, and 110x fewer than tnGPS.
Consequently, tnLLM achieves runtime reductions of up to 98.3% compared to TNLS, 97.7%
compared to TnALE, and 98.1% compared to tnGPS, even after accounting for LLM inference. The
full runtime comparisons are provided in Appendix [E] Furthermore, in Table[2] we report the best
compression rates (number of entries in the original tensor/ number of entries in its TN compressed
format) achieved by all methods for a given test approximation error threshold across three datasets
(0.02 for Images and 0.01 for Videos and Time-Series datasets). The approximation error is calculated
1 L [[H=TNO(Vds(Gn) ||, :

as 7Y g EAP . An error threshold of 0.01 can be interpreted as almost a
‘perfect’ reconstruction for standardized tensors. We use 0.02 as the test approximation error threshold
for the Images dataset, as none of the methods achieved an error of 0.01. Observe from Table 2] that
the proposed tnLLM achieves the best compression rate in two of the three datasets.

Table 2: Comparison of the best compression rates (No. entries in the original tensors / No. entries in
the compressed TN formats) achieved by TNLS, TnALE, tnGPS, and tnLLM. Results are reported
achieving a test approximation error below the threshold of 0.02 for Images and 0.01 for Videos and
Time-Series. Bold values indicate the best compression performance. The second best are underlined.
“Failed” means that the method failed to achieve an approximation error below the threshold.

Dataset TNLS TnALE tnGPS tnLLM
Images 2.54 2.25 2.47 2.63
Videos 12.38 12.67 11.52 11.22

Time-Series 1.47 Failed 1.49 1.60




Under review as a conference paper at ICLR 2026

With Domain Information - Images With Domain Information - Videos
Mode 1(Width) & Mode 2 (Height): Defines:spatialresolution. Mode 1 (Width) & Mode 2 (Height): Defines:spatialresolutionsper-frame. Needs:to
Spatial coherence is significant due to smoothness. High rank capture spatial detail for video quality but balance compression. Moderate-to-high
needed to capture spatial detail (suggested rank:20) rank (suggested rank:20)
Mode 1 (Width) & Mode 3 (RGB): Capturesshorizontalcolor Mode 1 (Width)/Mode 2 (Height) & Mode 3 (RGB) :L.essicomplexithansspatiakinfo:
distribution. Lessicomplex:thansspatialfeatures. Moderate rank to | | Limited variationsofscoloracross:width/height. Low rank suffices (suggested rank:5)
eapturemoionvariationuithoutsoveitting (suggested rank:5) Mode 1 (Width)/Mode 2 (Height) & Mode 3 (Frames): Capturesshorizontal/vertical
Mode 2 (Height) & Mode 3(RGB): Captures:vertical:color structure changes over time. Videos have temporal consistency. Moderate rank
patterns. Vertical and horizontal color distributions often (suggested rank: 10)
equallysimportant: Rank should be similar to the width-RBG Mode 3 (RGB) & Mode 4(Frames): Captures color changes over time. Color-changes-often
connection (suggested rank:5) subtie;andiess.complexthanispatial:changes. Lower rank can be used to maintain
compression (suggested rank: 3)
With Domain Information - Time-Series No Domain Information
Mode 1(Types of financial instruments) & Mode 2 (Assets in each type): Strongsintrinsic Mode 1& Mode 2: These modes might have a strong
relationship as each type is defined by its constituent assets. High diversity and specificity interaction if they represent dimensions that are closely
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Figure 6: Summarized generated explanations of tnLLM for the initialized TN structure, with and
without the incorporation of domain information in the prompts.

Domain-aware explanations. To assess the domain-relevance of the identified TNs, we manually
verified the explanations provided for the identified TN structures in all three datasets tested. The
explanations of the tnLLM model for the initialized TN structure, with and without domain knowledge,
are provided in Figure[6] Observe that without domain information, although the model is inherently
capable of reasoning, its lack of domain information about the modes in the real-world tensors causes
it to default to random assumptions, likely influenced by its pre-training data, such as assuming a
mode as resembling time or frequency. As a result, the explanations are entirely incorrect from a
practical perspective and are therefore ineffective in solving TN-SS.

In contrast, incorporating domain information enables the model to identify relationships between
modes (highlighted in blue) and, more importantly, relate them to real-world principles in vision and
finance (highlighted in green). The model also shows consistent reasoning in its rank suggestions:
when describing a rank as low, medium, or high, it quantitatively selects a value that is coherent
relative to other ranks within the same tensor. Moreover, it adjusts these values based on compar-
isons across different mode pairs, for example by assigning similar ranks to the Height-RGB and
Width—RGB modes in the images dataset, and a lower rank to the RGB—Frames mode in the videos
dataset. This demonstrates the model’s understanding of tensor mode relationships based on domain
information and supports the validity of the identified TN structure. Consequently, tnLLM offers
explanations that are practically useful in helping domain experts to verify and trust the discovered
structures. Summarized explanations across three runs for all datasets are provided in Appendix [F}

4.1 ACCELERATING SOTA METHODS WITH TNLLM

In the first part of Section [ we have demonstrated that tnLLM achieves comparable objective
function values compared to SOTA sampling-based algorithms, while generating domain-aware
explanations for the identified TN structures and significantly reducing the required number of
function evaluations. However, due to the black-box nature of LLMs, no theoretical analysis can be
provided for the evaluation efficiency of tnLLM, in contrast to TNLS and TnALE.

At the same time, while sampling-based methods follow a “local-search” scheme within a neigh-
borhood, there is no guarantee on the minimum number of evaluations required to find a “good”
neighborhood. Moreover, poor initialization significantly increases the number of evaluations needed.
To address this, we construct a hybrid algorithm that first runs tnLLM for 10 evaluations to leverage
its domain knowledge and reasoning capabilities in order to identify a strong initialization point in
the “global-search” stage. Sampling-based methods then perform “local-search” in the identified
neighborhood, combining the speed-up benefits of tnLLM with their theoretical guarantees.
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Figure 7: Experimental results across all 3 datasets show that both TNLS and TnALE are significantly
accelerated with an initial center of search neighborhood found by tnLLM. We ran TNLS and
TnALE with tnLLM initialization in all 3 datasets over 50 evaluations, which include the plotted 10
evaluations performed by tnLLM. Vanilla TNLS and TnALE performed 500 evaluations for both the
images and videos datasets and 250 evaluations for the financial time-series dataset if not converged.

Numerical results. Figure [/|demonstrates the performance difference of TNLS and TnALE with
and without a tnLLM-initialized structure. The “global-search” capability of tnL.LM significantly
sped up the iterative minimization process. During “local-search”, both TNLS and TnALE further
improved upon the structures found in “global-search” by tnLLM. Overall, the tnLL.M-initialized
algorithms achieved nearly identical objective function values with up to 23x fewer evaluations
compared to vanilla TNLS, and up to 13 x fewer evaluations compared to vanilla TnALE. The full
numerical performance comparison is provided in Appendix [G|

4.2 ABLATION STUDY

Removal of domain information. To assess the effectiveness of injecting domain information
into the TN-SS problem, we removed the carefully designed structured prompts of the tnLLM
framework, equivalent to using the LLM to solve the TN-SS problem without any priors on the
domain information. Without domain information, the LLM generates a poorly initialized TN
structure that is 80.3% worse in terms of objective function value, due to its lack of information
about the different modes, and requires 10.4x more evaluations to converge. Moreover, as the model
defaults to random assumptions about the modes, as illustrated in Figure[6] it was found to produce
uniformly connected TN structures throughout the minimization process. This restricts the search
space to a much smaller set of solutions that are not domain-meaningful from a practical perspective.

Selection of LLM models. To examine how the choice of LLM affects the performance of
tnLLM, we compared our baseline model, GPT-40 (gpt-40-2024-08-06), against GPT-4.5
(gpt-4.5-preview-2025-02-27), GPT40-mini (gpt-40-mini-2024-07-18), GPT-3.5
(gpt—-3.5-turbo-1106) and the open-source DeepSeek V3 (DeepSeek-V3-0324) model.
Observe from Table [3| that due to the carefully designed prompts and the structure of the overall
framework, tnLLM is robust to the choice of the LLM used. While there are small variations in
the achieved objective function values, the overall performance remained consistent across all three
datasets in both training and testing sets. Furthermore, the number of evaluations required by all
LLMs falls within the mean =+ standard deviation range reported in Table[I] It is important to note
that, despite the consistent performance, weaker models and in particular GPT-3.5 occasionally
misinterpreted the optimization objective, mistakenly assuming that higher values were preferable.
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Table 3: Ablation study of using different LLMs within the proposed framework. For different LLMs,
we report the best training objective values achieved and their corresponding testing objective values.

Dataset GPT-40 (Baseline) GPT-4.5 GPT-40-mini GPT-3.5 DeepSeek-V3

Train Test Train Test Train Test Train Test Train Test
Images -0.63 -0.48 -0.62  -0.54 -0.61 -048 -0.64 -052 -0.62 -047
Videos -1.63 -1.70 -1.62  -1.65 -1.62 -1.69 -1.63 -1.70  -1.63 -1.70
Time-series  -0.42 -0.41 -0.40  -0.41 -0.41 -040 -042 -040 -040 -0.39

5 CONCLUSION

We have introduced tnLLM, a domain-aware LLM-guided TN-SS framework for directly infering
TN structures. This has been achieved by utilizing the rich domain information in real-world tensor
data and the inherent reasoning capabilities of LLMs. Experimental results have demonstrated that
tnLLM achieves performance comparable to current SOTA algorithms, while requiring significantly
fewer function evaluations. Notably, by incorporating domain information, our framework is the
first to mitigate the black-box nature of the identified TN structures in TN-SS through generating
domain-relevant solution explanations. Furthermore, we have shown that tnLLM can be used to
accelerate SOTA sampling-based algorithms while preserving their theoretical guarantees.

REPRODUCIBILITY STATEMENT

Details of the overall framework and prompts used are provided in Section [3| and Appendix
Experimental settings are provided in Section[d] Implementation details of the baseline models are
provided in Appendix [D] Details of the data are provided in Sectiondand Appendix [C]
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A LIMITATIONS AND FUTURE WORK

Despite the good performance, the proposed domain-aware TN-SS framework currently lacks theo-
retical guarantees for its evaluation efficiency due to the black-box nature of LLMs. This could be
mitigated by developing domain-aware TN-SS algorithms based on continuous optimization. Also,
as mentioned in the ablation study, weaker LLM models, such as GPT-3.5, were found to be more
prone to misinterpret the optimization objectives. Therefore, improving the reasoning consistency
of smaller LLM models promises to further improve the efficiency of the framework. Furthermore,
prompt learning is an active area of research in LLMs, which can be used to potentially enhance the
tnLLM framework in future works.

B FULL PROMPTS OF TNLLM FRAMEWORK

The full “Behavior-directive”, “Task-directive” and “Optimization-directive” prompts used in the
tnLLM framework are illustrated in Figures[8] [0} [I0] respectively.

""" You are a <domain> expert specialized in tensor decomposition. Your task is to <task description>. You need to
provide <solution description> which minimizes the loss function, which is the natural log of the sum of the compression
rate and 10 times the approximation error. The compression ratio is calculated as the number of parameters in the
compressed FCTND format divided by the original number of parameters of the uncompressed tensor and the
approximation error is the relative square error between the original and approximate tensor. Work your suggestions out
step-by-step based on rigorous reasoning and <domain> knowledge. Explain your final suggestions in a logical, concise
manner.""

Figure 8: The full “Behavior-directive” prompt.

""\We are working with a fully connected <tensor size> tensor representing <domain> data with the following modes:
<Description of each mode including its size and content>

Your task is to suggest the optimal solution for each connection in a fully connected tensor network decomposition. The
loss function to minimize is a natural log of the sum of the compression rate and 10 times the tensor approximation error
which is the relative square error between the original and approximate tensor. Provide your response in the following
format:

1. Take a deep breath and reason step-by-step about the intrinsic interactions between every pair of modes based on
your understanding of the relationships about <mode information>. It is important to reason about those intrinsic
interactions based on interpretable factors.

2. Based on your reasoning, output <solution desciption>.

Output format:

Reasoning: Reason about the intrinsic interactions between every pair of modes based on your understanding of
<domain> data.

Solution: <Exact solution format>
End the output message with <description of solution format>. ™"

Figure 9: The full “Task-directive” prompt.

C DATA

We constructed a custom financial time series dataset with 142 temporally ordered fifth-order tensors,
denoted as { X, } 142, € R3*6X3x4X5 each representing a rolling window produced via multi-way
delay embedding through the temporal direction (Yokota et al.l[2018]). This leads to the value selection
process of 10 ranks. To the best of our knowledge, this is the largest tensor dataset in terms of number
of samples ever considered in the TN-SS problem. The first 80% of these tensors were used as the
training data, while the remaining 20% with non-overlapping entries with the training data were used

for testing. The modes of each time series tensor correspond to:

* Mode 1: Types of financial instruments. They are equity indices, commodities, and currency
swaps.

13
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""" The last solution is <last_solution> with a total loss function of <last loss>, which is the natural log of the sum of the
current compression rate of <last_compression_rate> and 10 times the current approximation error of
<last_approximation_error>. The lowest total loss function is <best_objective_function}> which is the natural log of the
sum of the compression rate of <best_compression_rate> and ten times the approximation error of
<best_approximation_error}> is found by using the solution <best_solution>, The loss function to minimize is a natural log
of the sum of the compression rate and 10 times the tensor approximation error which is the relative square error
between the original and approximate tensor.

Take a deep breath, refine the solution suggestions to make the loss function smaller, and justify any changes in the
solution. Keep in mind that increasing the ranks significantly decreses the approximation error, while it increases the
compression rate. However, if the compression rate is already very low compared to the approximation error (for
example, the compression rate is smaller than half of the approximation error), increasing the ranks (such as doubling it)
to decrease the approximation error will usually lead to a lower loss function. Also, if the compression rate is already very
high compared to the approximation error (for example, the compression rate is larger than two times the approximation
error), reducing the ranks (such as cutting it in half) to decrease the compression rate will usually lead to a lower loss
function.

When refining the ranks, consider how each mode <mode titles> interacts with the others and how reducing or increasing
the rank will affect the overall decomposition accuracy. You are encouraged to be explorative to try small and large rank
value changes in this process. Do not change ranks if you think its not necessary. You should never try the same set of
ranks more than once. Trying the same set of ranks more than once wastes computation resources and will not lead to a
different outcome.

Provide the solution and reason step-by-step for the changes in the following format:

Output format:

Reasoning: Reason about the intrinsic interactions between every pair of modes based on your understanding of
<domain> data.

Solution: <Exact solution format>
End the output message with <description of solution format>. """

Figure 10: The full “Optimization-directive” prompt.

* Mode 2: Assets within each type of financial instrument. For equity indices, these are
Hang Seng, Nikkei 225, S&P 500, EURO STOXX 50, FTSE 100, and Shanghai Composite
Index. For commodities, these are Brent Crude, Copper, Natural gas, Comex gold, Soybeans,
and Wheat. For currency swaps, these are HKD/USD, JPY/USD, CHF/USD, EUR/USD,
CNY/USD, and GBP/USD.

* Mode 3: Features of each asset. These are average adjusted closing price log return, average
relative price min-max, and average high-low spread.

* Mode 4: Interval of time points on which we calculate the average features. There are 4
intervals — 1 day, 5 days, 10 days, and 15 days.

* Mode 5: Time points within each rolling window of length 5.

The images and videos datasets are fetched from hetp://trace.eas.asu.edu/yuv/. Figure[IT]illustrates 5
example image samples, {X,,}>_, € R144X176X3 'yqed in the experiments. The first 80% of these
tensors were used as the training data, while the remaining 20% for testing. The modes of each image
tensor correspond to:

* Mode 1: Height of the image. These are the vertical pixel indexes.
* Mode 2: Width of the image. These are the horizontal pixel indexes.
* Mode 3: RGB channels. These are the red, green, and blue channels.

|
A

Figure 11: Image samples used in the experiments.

Video dataset is produced from performing the multi-way delay embedding 2022)
through the temporal mode in a video to produce 5 samples, {X;, }2_; € RMXIT6x3X10 "Figyre
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shows an example sample of the videos dataset at different frames. The modes of each video tensor
correspond to:

* Mode 1: Height of the image. These are the vertical pixel indexes.

* Mode 2: Width of the image. These are the horizontal pixel indexes.

* Mode 3: RGB channels. These are the red, green, and blue channels.

¢ Mode 4: Frames in a video. These are the index of the frames in a video.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

s 3 . . 3
m m B-\ ! a BA !

Frame 6 Frame 7 Frame 8 Frame 9 Frame 10

B R m Ny R
Figure 12: One example sample of the Video data used in the experiments.

D IMPLEMENTATION DETAILS

All baseline models are initialized as a “fully-disconnected” graph. The TN search template is set
to a complete graph. For TNLS, we set the number of samples (evaluations), #Sample, in each
sampling step to 4 in the images dataset, 60 in the videos dataset, and 10 in the time series dataset.
For TnALE, we set D = 1, r = 1. For tnGPS, we selected the best-performing algorithm discovered
(“Ho-2") and adopted the following hyperparameters as suggested in their paper: code upper bound
of 10, mutation rate of 0.1, crossover rate of 0.6, selection pressure of 1.5, elitism enabled, diversity
factor of 0.05, variance decay of 0.98, minimum variance of 0.1, tournament size factor of 0.2, elite
diversity boost of 2.0, random individual chance of 0.05, and a maximum mutation of 3. All models
were run for 500 evaluations in both the images and videos dataset, and 250 evaluations in the time
series dataset if not converged. An internal server with NVIDIA RTX A6000 GPU, an AMD Ryzen
Threadripper PRO 5955WX with 16 cores, and 256GB of RAM was used.

E RUNTIME COMPARISONS

Table [ reports the total average runtime in seconds to first achieve the best training objective function
value for all models across the three datasets of Table[I] For tnLLM, this also includes the LLM
inference time. The proposed tnLLM achieves comparable performance to SOTA methods while
reducing runtime by up to 98.3% compared to TNLS, 97.7% compared to TnALE, and 98.1%
compared to tnGPS.

Table 4: Runtime comparisons across three datasets. The values are the total average runtime in
seconds to first achieve the best training objective function value. A lower value is better. The best
values are denoted in bold. The second best values are underlined.

Data Type TNLS TnALE tnGPS tnLLM (Ours)

Images 2,122s 1,659s 8,025s 151s
Videos 17,690s  15,298s 20,461s 1,984s
Time-series 110,945s  80,700s 17,287s 1,866s
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F SUMMARIZED GENERATED EXPLANATIONS OF TNLLM FOR THE

INITIALIZED TN STRUCTURE

The full set of summarized LLM generated explanations over three independent runs for the images,
videos, and time-series datasets are provided in Tables 3} [f] and[7] respectively. The suggested ranks
are verified to be consistent with the domain-informed reasoning provided by tnLLM. Also, the
domain-relevant explanations are robust across multiple runs.

Table 5: Summarized generated explanations of tnLLM for the initialized TN structure in the Images

dataset over 3 independent runs.

Mode Pair Run 1 Run 2 Run 3
Mode 1 & Mode 2
(Width < Height) ¢ Defines spatial resolution ¢ Spatial dimensions are * Spatial resolution key for

¢ Spatial coherence is
significant due to
smoothness

* High rank needed to
capture spatial detail
(suggested rank: 20)

highly correlated

Captures patterns and
structures

High rank to capture
spatial complexity
(suggested rank: 20)

details and patterns

« High rank crucial to
capture more spatial
features to maintain
image quality

« High rank (suggested
rank: 20)

Mode 1 & Mode 3

(Width <+ RGB) « Captures horizontal color
distribution

Less complex than spatial
features

* Moderate rank to
capture color variation
without overfitting
(suggested rank: 5)

Horizontal color changes
are smooth

Color variations less
complex as object
maintains consistent
color across width

Moderate rank
(suggested rank: 5)

* Related through color
distribution along width

¢ Color variations less
complex than spatial
variation

¢ Moderate rank
(suggested rank: 5)

Mode 2 & Mode 3

(Height <> RGB) « Captures vertical color
patterns

Vertical and horizontal
color distributions often
equally important

* Rank should be similar
to the width-RGB

connection (suggested
rank: 5)

Captures vertical color
variation

Vertical structures (e.g.,
stripes) may add
complexity

Rank might be slightly
higher than
width—channel rank
(suggested rank: 8)

Complexity of color
variation along height
and width typically
similar

¢ Moderate rank is also

appropriate (suggested
rank: 5)

G PERFORMANCE COMPARISON FOR VANILLA AND TNLLM-INITIALIZED

TNLS AND TNALE

Table [8] illustrates the detailed performance of vanilla and tnLLM-initialized TNLS and TnALE

across different datasets.
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Table 6: Summarized generated explanations of tnLLM for the initialized TN structure in the Videos
dataset over 3 independent runs.

Mode Pair

Run 1

Run 2

Run 3

Mode 1 & Mode 2
(Width <> Height)

¢ Defines spatial
resolution per frame

« Needs to capture spatial
detail for video quality
but balance with
compression

* Moderate-to-high rank
(suggested rank: 20)

¢ Define spatial resolution
per frame

« Higher rank captures
more complex spatial
patterns and correlations

* Moderate-to-high rank
to balance detail capture
and compression
(suggested rank: 20)

¢ Define spatial resolution
per frame

Spatial resolution is a
significant aspect of
video quality

* Moderate-to-high rank
to capture more spatial
details across frames
(suggested rank: 20)

Mode 1 & Mode 3, Mode 2 & Mode 3

(Width/Height <> RGB)

¢ Less complex than
spatial info

¢ Limited variation of
color across
width/height

¢ Low rank suffices
(suggested rank: 5)

¢ Less directly correlated
than spatial dimensions

¢ Certain
horizontal/vertical
patterns prominent in
specific color channels

¢ Low rank suffices
(suggested rank: 5)

¢ Captures color
variations
horizontally/vertically

« Color variations can be
significant in videos
with rich color content

¢ Moderate-to-low rank
(suggested rank: 5)

Mode 1 & Mode 4, Mode 2 & Mode 4

(Width/Height <> Frames)

* Captures
horizontal/vertical
structure changes over
time

* Videos have temporal
consistency

¢ Moderate rank
(suggested rank: 10)

« Related through motion
and changes across
frames

* Moderate rank to
capture temporal
changes across
width/height of the
video (suggested rank:
10)

¢ Captures temporal
variations across the
horizontal/vertical
dimension

¢ Temporal changes
crucial for motion
representation

¢ Moderate rank
(suggested rank: 10)

Mode 3 & Mode 4
(RGB <> Frames)

 Captures color changes
over time

* Color changes often
subtle and less complex
than spatial changes

* Lower rank can be used
to maintain compression
(suggested rank: 3)

 Captures color changes
over time

¢ Crucial for capturing
dynamic color variations
and transitions

* Low rank to model
temporal color variation
(suggested rank: 5)

 Captures temporal color
changes

Essential for
representing dynamic
scenes

* Moderate-to-low rank
necessary to capture
these changes
(suggested rank: 5)
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Table 7: Summarized generated explanations of tnLLM for the initialized TN structure in the Time-
series dataset over 3 independent runs.

Mode Pair

Run 1

Run 2

Run 3

Mode 1 & Mode 2
(Types of financial instruments <> Assets
within each type)

¢ Strong intrinsic
relationship

« Different assets within
a type exhibit correlated
behaviors due to shared
market factors

¢ Higher rank
(suggested rank: 3)

 Strong relationship as
each type is defined by
its constituent assets

* High diversity and
specificity across assets

* Higher rank
(suggested rank: 3)

Strong connection as
each instrument has
specific assets

Rank should reflect the
diversity and specificity
of assets within each
type

Higher rank
(suggested rank: 3)

Mode 1 & Mode 3
(Types of financial instruments <+ Features of
each asset)

Features influenced by
instrument type

« For example, volatility
of commodities might
differ from that of
equity indexes

¢ Moderate rank
(suggested rank: 2)

« Different instruments
behave distinctly
(returns, volatility,
spreads)

* Features somewhat
standardized across
types

¢ Moderate rank to not

overfit (suggested rank:
2)

Instruments behave
differently in terms of
features

However, features
themselves are common
across all types

Moderate rank to
capture variability
(suggested rank: 2)

Mode 1 & Mode 4
(Types of financial instruments <+ Interval of
time points)

Different financial
instruments react
differently over time
intervals due to inherent
market dynamics

* Moderate rank
(suggested rank: 2)

* Financial instruments
differ in how sensitive
they are to short and
long-term time intervals

* Moderate rank
(suggested rank: 2)

Impact of time intervals
on financial instruments
can vary.

Commodities react
differently to short-term
versus long-term
intervals compared to
equity indexes.

Moderate rank
(suggested rank: 2)

Mode 1 & Mode 5
(Types of financial instruments <> Time
points in each rolling window)

« Reaction of financial
instruments to specific
time points can vary

« This interaction might
not be as strong as
others

* Lower rank (suggested
rank: 1)

 Financial instruments
show low sensitivity to
individual time points

* Rolling windows
naturally smooth out
short-term fluctuations

e Lower rank (suggested
rank: 1)

Specific time points
affect different
instruments differently

This interaction is likely
less significant than
others

Lower rank (suggested
rank: 1)

Mode 2 & Mode 3
(Assets within each type <+ Features of each
asset)

« Features directly
derived from assets
indicating strong
relationship

Different assets have
distinct feature profiles

¢ Higher rank
(suggested rank: 3)

¢ Each asset has unique
characteristics in terms
of returns, volatility,
and spreads

* Higher rank to
accurately capture
specific features
(suggested rank: 3)

Each asset has unique
characteristics in terms
of features like log
returns and spreads

Higher rank needed
for this detailed
interaction (suggested
rank: 3)

Mode 2 & Mode 4
(Assets within each type <> Interval of time
points)

¢ Performance of assets
over different time
intervals can vary
significantly, especially
in volatile markets.

* Moderate rank
(suggested rank: 2)

e Assets respond
differently to various
time intervals

* Some assets exhibit
stronger trends or
higher volatility over
specific periods

* Moderate rank
(suggested rank: 2)

Different assets exhibit
different behaviors over
various time intervals.

Some assets may be
more volatile in the
short term.

Moderate rank to
capture these dynamics
(suggested rank: 2)
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Mode 2 & Mode 5
(Assets within each type <+ Time points in
each rolling window)

Specific time points
within a rolling window
can affect asset
performance

This interaction might
be less pronounced
Lower rank (suggested
rank:1)

Influence of time points
on asset features is
minimal

Rolling window
averages out short-term
noise.

Lower rank (suggested
rank:1)

Specific time points
within a rolling window
can affect asset
performance

This interaction is likely
less significant than
others

Lower rank (suggested
rank:1)

Mode 3 & Mode 4
(Features of each asset <+ Interval of time
points)

Features such as log
returns and spreads are
sensitive to the time
interval chosen.

Moderate rank to
capture temporal effects
(suggested rank: 2)

Features such as returns
and volatility can vary
significantly over
different time intervals.

Moderate rank
(suggested rank: 2)

Features like log returns
and spreads can vary
significantly over
different time intervals.

Connection is strong as
the features are
calculated over these
intervals.

Higher rank (suggested
rank: 3)

Mode 3 & Mode 5
(Features of each asset <+ Time points in each
rolling window)

Features can vary with
specific time points
within a rolling window,
but interaction is
weaker

Lower rank is suitable
(suggested rank: 1)

Specific time points
have a limited impact
on features due to
averaging effects.

Lower rank is suitable
(suggested rank: 1)

Specific time points
within a rolling window
can affect the
calculation of features

This interaction is likely
less significant than
others.

Lower rank is suitable
(suggested rank: 1)

Mode 4 & Mode 5
(Interval of time points <+ Time points in
each rolling window)

Inherently linked as
rolling window defines
the context for the time
points

Moderate rank
(suggested rank: 2)

‘Weak relationship as
rolling window
smooths out short-term
variations

Lower rank is suitable
(suggested rank: 1)

Intrinsic connection as
time points are nested
within the intervals

Moderate rank to
capture this structure
(suggested rank: 2)

Table 8: Performance comparison across different datasets for vanilla and tnLLM-initialized TNLS
and TnALE. The values on the left give the lowest training objective function values and their
corresponding testing objective function values. The values in [square brackets] give the number of
evaluations required to first achieve the best training objective function value. For both metrics, a
lower value is better. The least number of evaluations are highlighted in bold.

Data Type . TNLS .. . TnALE -

Vanilla tnLLM-init Vanilla tnLLM-init
e T 0%t % m 3% w0 bn w
v T 1S e 1% o0 1% e 1% oo
T
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H PERFORMANCE COMPARISON WITH EARLY STOPPING

To further assess the speed-up benefits of the proposed tnLLM method, we incorporate an early
stopping criterion for the baseline methods, which is not present in their original implementations.
Specifically, Table [9] reports the convergence behavior of all baselines using an early stopping
threshold of 0.01 on the objective function, with a patience of 15, applied across all three datasets.
observe from Table 0] that even with early stopping the proposed tnLLM is able to achieve significant
speed ups in number of evaluations (up to 68x compared to TNLS, 24x compared to TnALE, and 53x
compared to tnGPS), while the objective values achieved by the baselines are now slightly worse
relative to those reported in Table[I]

Table 9: Performance comparison across different datasets. The values on the left give the lowest
training and corresponding testing objective function values. The values in [square brackets] give
the number of evaluations required to first achieve the best training objective function value. For all
methods, we report the average and standard deviation of both the objective function value and the
number of evaluations across 5 independent runs. For both metrics, a lower value is better. The best
values are denoted in bold. The second best values are underlined.

Data Type TNLS TnALE tnGPS tnLLM (Ours)

tmages  qeat DUV rssersa PRI si2ei04 (HT00 210042230 ET00 (40 19)
Videos Do O 00 mmax20n) TN (s 1Ls) ﬁi o nssox268) S T00 [62435)
Timesseries TN 046 £ 001 0 T 7046003 ([ 040E 002 o 0T 042002 <o

Test -0.42 £ 0.01 -0.44 £ 0.02 -0.40 £ 0.02 -0.41 £0.02

I EXPLANATIONS OF TNLLM DURING TN-DISCOVERY STAGE

The full outputs of the proposed tnLLM during the TN-discovery stage for a single run on the images,
video and time-series datasets are provided below.

Images Dataset

TN Initialization Rank Array: [20, 5, 5]
Loss Function at iteration 0: -0.5737094673

TN Discovery

Running iteration 1 of iterative prompt:

Detailed Reasoning: To refine the rank suggestions for the Fully Connected Tensor Network
Decomposition (FCTND) of an RGB image tensor, we need to balance the trade-off between the
compression rate and the approximation error. The goal is to minimize the loss function, which
is the natural log of the sum of the compression rate and ten times the approximation error.

1. Current Situation Analysis:

- The current rank array is [20, 5, 5] with a loss function of -0.5737094673.

- The compression rate is 0.4218618476, and the approximation error is 0.141569679.

2. Understanding the Trade-offs:

- Compression Rate: This is the ratio of parameters in the compressed tensor to the original
tensor. A lower compression rate means more compression.

- Approximation Error: This is the relative square error between the original and approximate
tensor. A lower approximation error indicates a better approximation.

3. Guidelines for Adjusting Ranks:

- If the compression rate is much lower than half of the approximation error, increasing the ranks
might reduce the approximation error significantly, potentially lowering the loss function.
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- If the compression rate is much higher than twice the approximation error, reducing the ranks
might lower the compression rate, potentially lowering the loss function.

4. Current Comparison:

- The compression rate (0.4218618476) is approximately three times the approximation error
(0.141569679). This suggests that reducing the ranks could be beneficial, as the compression
rate is relatively high compared to the approximation error.

5. Rank Adjustment Strategy:

- Since the compression rate is significantly higher than twice the approximation error, we should
consider reducing the ranks to decrease the compression rate.

- We should explore reducing the rank for the connection between the width and height (Mode 1
and Mode 2), as this is typically the largest dimension in an image tensor and might have the
most significant impact on the compression rate.

6. Proposed Rank Changes:

- Reduce the rank for the connection between Mode 1 (width) and Mode 2 (height) from 20 to 10.
This is a moderate reduction that should help decrease the compression rate without drastically
increasing the approximation error.

- Keep the ranks for the connections between Mode 1 (width) and Mode 3 (RGB channels), and
Mode 2 (height) and Mode 3 (RGB channels) at 5, as these are already relatively low and further
reduction might significantly increase the approximation error.

Rank Array: [10, 5, 5]

This proposed rank array aims to balance the compression rate and approximation error more
effectively, potentially leading to a lower loss function.

Loss Function at iteration 1: -0.5521177879

Running iteration 2 of iterative prompt:

Detailed Reasoning: Let’s analyze the situation with the given rank arrays and their correspond-
ing loss functions. We have two sets of ranks and their associated loss functions:

1. Last Rank Array [10, 5, 5]:

- Compression Rate: 0.2114241372

- Approximation Error: 0.3643051088

- Loss Function: -0.5521177879

2. Best Rank Array [20, 5, 5]:

- Compression Rate: 0.4218618476

- Approximation Error: 0.141569679

- Loss Function: -0.5737094673

The goal is to minimize the loss function, which is the natural log of the sum of the compression
rate and ten times the approximation error.

Analysis:

- Compression Rate vs. Approximation Error:

- The rank array [20, 5, 5] has a higher compression rate but a significantly lower approximation
error compared to [10, 5, 5]. This results in a lower loss function, indicating that the approxima-
tion error has a more substantial impact on the loss function than the compression rate in this
scenario.

- The compression rate for [10, 5, 5] is much lower than the approximation error, suggesting that
increasing ranks could potentially lower the loss function by reducing the approximation error.
- Intrinsic Interactions:

- In RGB images, the interaction between the width and height (spatial dimensions) is crucial for
maintaining image structure. The interaction between spatial dimensions and the RGB channels
is also important for color fidelity.

- Increasing the rank between the spatial dimensions (Mode 1 and Mode 2) could significantly
reduce the approximation error, as it allows for better representation of spatial patterns.

- The rank between the spatial dimensions and the RGB channels (Mode 1 and Mode 3, Mode 2
and Mode 3) should be balanced to maintain color accuracy without excessively increasing the
compression rate.

Proposed Changes:
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Given the analysis, we should explore increasing the rank between the spatial dimensions (Mode
1 and Mode 2) to reduce the approximation error, while keeping the ranks involving the RGB
channels moderate to avoid a high compression rate.

- Rank for (Mode 1, Mode 2): Increase from 10 to 15 to improve spatial representation.

- Rank for (Mode 1, Mode 3) and (Mode 2, Mode 3): Maintain at 5 to balance color accuracy
and compression rate.

Rank Array: [15, 5, 5]

This adjustment aims to reduce the approximation error significantly while keeping the compres-
sion rate in check, potentially leading to a lower loss function.

Loss Function at iteration 2: -0.6382834296

Videos Dataset

TN Initialization
Rank Array: [20, 5, 10, 5, 10, 3]
Loss Function at iteration 0: -0.8044418714

TN Discovery

Running iteration 1 of iterative prompt:

Detailed Reasoning: To refine the rank suggestions and minimize the loss function, we need
to carefully balance the compression rate and the approximation error. The current rank array
is [20, 5, 10, 5, 10, 3], with a compression rate of 0.425117056 and an approximation error of
0.0222204728. The loss function is calculated as the natural log of the sum of the compression
rate and ten times the approximation error.

1. Compression Rate vs. Approximation Error: The current compression rate (0.425117056)
is significantly larger than the approximation error (0.0222204728). This suggests that we might
benefit from reducing the ranks to decrease the compression rate, as the compression rate is
more than two times the approximation error.

2. Mode Interactions:

- Width and Height: These are spatial dimensions and typically have strong correlations. Re-
ducing the rank between these modes might slightly increase the approximation error but could
significantly reduce the compression rate.

- RGB Channels: The interaction between RGB channels and other modes (width, height, frames)
is crucial for maintaining color fidelity. However, the rank between RGB channels and other
modes can often be reduced without a significant impact on the approximation error.

- Frames: Temporal coherence is important, but reducing the rank between frames and spatial
dimensions can often be done with minimal impact on the approximation error.

3. Rank Adjustments:

- (Mode 1, Mode 2): Reduce from 20 to 15. This should decrease the compression rate
significantly while maintaining a reasonable approximation error.

- (Mode 1, Mode 3): Reduce from 5 to 4. This small reduction should help with the compression
rate without a large impact on error.

- (Mode 1, Mode 4): Reduce from 10 to 8. This balances the spatial and temporal dimensions.
- (Mode 2, Mode 3): Reduce from 5 to 4. This should help reduce the compression rate.

- (Mode 2, Mode 4): Reduce from 10 to 8. This maintains a balance between spatial and
temporal coherence.

- (Mode 3, Mode 4): Reduce from 3 to 2. This is a conservative reduction to help with
compression.

By making these adjustments, we aim to reduce the compression rate more significantly than the
increase in approximation error, thereby minimizing the loss function.

Rank Array: [15, 4, 8, 4, 8, 2]

Loss Function at iteration 1: -1.3477094611
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Running iteration 2 of iterative prompt:

Detailed Reasoning: To refine the rank suggestions, we need to balance the compression rate
and approximation error to minimize the loss function, which is the natural log of the sum of the
compression rate and ten times the approximation error. The current rank array is [15, 4, 8, 4, 8,
2], with a compression rate of 0.2038299663 and an approximation error of 0.0560047748.

1. Compression Rate vs. Approximation Error: The compression rate (0.2038) is approxi-
mately 3.64 times the approximation error (0.0560). This suggests that the compression rate is
relatively high compared to the approximation error. According to the guideline, if the compres-
sion rate is larger than two times the approximation error, reducing the ranks to decrease the
compression rate might lead to a lower loss function.

2. Mode Interactions: In RGB video tensors, the modes typically represent width, height, RGB
channels, and frames. The interaction between these modes can be complex, but generally:

- The connection between spatial dimensions (width and height) often requires higher ranks to
capture spatial patterns.

- The connection between RGB channels might not need as high ranks since color information is
often correlated.

- Temporal connections (frames) can vary depending on the video content, but often require
moderate ranks to capture motion.

3. Adjusting Ranks:

- (Mode 1, Mode 2) and (Mode 2, Mode 3): These connections involve spatial dimensions and
RGB channels. Given the high compression rate, we can try reducing these ranks slightly to see
if we can reduce the compression rate without significantly increasing the approximation error.
- (Mode 1, Mode 3) and (Mode 2, Mode 4): These involve spatial and temporal dimensions. We
should be cautious in reducing these too much as they are crucial for capturing spatial-temporal
patterns.

- (Mode 3, Mode 4): This involves RGB channels and frames. We can try reducing this rank
slightly as RGB channels often have correlated information.

Based on these considerations, let’s propose a new rank array:

Rank Array: [12, 3, 8, 3, 7, 2]

- (Mode 1, Mode 2): Reduced from 15 to 12 to decrease the compression rate.

- (Mode 1, Mode 3): Reduced from 4 to 3 to slightly decrease the compression rate.

- (Mode 1, Mode 4): Kept at 8 to maintain spatial-temporal accuracy.

- (Mode 2, Mode 3): Reduced from 4 to 3 to slightly decrease the compression rate.

- (Mode 2, Mode 4): Reduced from 8 to 7 to slightly decrease the compression rate while
maintaining temporal accuracy.

- (Mode 3, Mode 4): Kept at 2 as RGB and temporal interaction might not need high ranks.
This adjustment aims to reduce the compression rate while keeping the approximation error
manageable, potentially leading to a lower loss function.

Current rank array is: [12, 3, 8, 3, 7, 2]

Loss Function at iteration 2: -1.5880439406

Running iteration 3 of iterative prompt:

Detailed Reasoning: Let’s start by analyzing the current situation. The current rank array is
[12, 3, 8, 3, 7, 2], with a compression rate of 0.1144228746 and an approximation error of
0.0899020181. The loss function is calculated as the natural log of the sum of the compression
rate and ten times the approximation error, resulting in a value of -1.5880439406.

1. Compression Rate vs. Approximation Error: - The compression rate (0.114) is slightly
higher than the approximation error (0.0899). This suggests that the compression rate is not
excessively high compared to the approximation error, but it is not significantly lower either.
Therefore, we should aim to balance these two factors more effectively.

2. Intrinsic Interactions:

- In RGB video data, the interactions between modes such as width, height, RGB channels, and
frames are crucial. The RGB channels often have less variability compared to spatial dimensions
(width and height) and temporal dimensions (frames). Therefore, we can consider adjusting
ranks related to RGB channels more conservatively.

- The spatial dimensions (width and height) are typically more correlated, and increasing ranks
here could potentially reduce the approximation error significantly.
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3. Explorative Adjustments:

- Given the current ranks, we can explore increasing the ranks where the approximation error
might be reduced more effectively. Since the compression rate is not excessively low, we can
afford to increase some ranks to see if the approximation error decreases more than the increase
in the compression rate.

- We should consider increasing the ranks between spatial dimensions (width and height) and
temporal dimensions (frames) as these are likely to have more complex interactions.

4. Proposed Changes:

- Increase the rank between width and height (Mode 1 and Mode 2) from 12 to 16. This is
because spatial dimensions often have complex interactions that can benefit from higher ranks.
- Increase the rank between width and frames (Mode 1 and Mode 4) from 8 to 10. This might
help capture more temporal dynamics.

- Increase the rank between height and frames (Mode 2 and Mode 4) from 7 to 9. This will
further help in capturing temporal dynamics.

5. Maintaining Other Ranks:

- Keep the rank between width and RGB channels (Mode 1 and Mode 3) at 3, as RGB channels
typically do not require high ranks.

- Keep the rank between height and RGB channels (Mode 2 and Mode 3) at 3 for the same
reason.

- Keep the rank between RGB channels and frames (Mode 3 and Mode 4) at 2, as this interaction
is typically less complex.

By making these adjustments, we aim to reduce the approximation error more significantly than
the increase in the compression rate, potentially leading to a lower loss function.

Rank Array: [16, 3, 10, 3,9, 2]

Loss Function at iteration 3: -1.3734126669

Running iteration 4 of iterative prompt:

Detailed Reasoning:

To refine the rank suggestions, we need to balance the compression rate and the approximation
error to minimize the loss function. The loss function is the natural log of the sum of the
compression rate and ten times the approximation error. Our goal is to find a rank configuration
that results in a lower loss function than the previous best of -1.5880439406.

1. Understanding the Current State:

- The last rank array [16, 3, 10, 3, 9, 2] resulted in a loss function of -1.3734126669.

- The best rank array [12, 3, 8, 3, 7, 2] resulted in a loss function of -1.5880439406.

2. Analyzing Compression Rate and Approximation Error:

- The compression rate for the best configuration was 0.1144228746, and the approximation
error was 0.0899020181.

- The compression rate for the last configuration was 0.1933475379, and the approximation error
was 0.0598937173.

3. Strategy for Refinement:

- Since the compression rate in the best configuration is lower than half of the approximation
error, increasing the ranks could potentially decrease the approximation error significantly,
leading to a lower loss function.

- Conversely, if the compression rate is high relative to the approximation error, reducing ranks
could be beneficial.

4. Explorative Adjustments:

- Mode 1 and Mode 3 (Width and RGB Channels): The rank was 3 in both configurations.
Keeping it constant might be beneficial as it balances compression and error.

- Mode 1 and Mode 4 (Width and Frames): The rank was 10 in the last configuration and 8 in
the best configuration. Increasing this rank could reduce the approximation error significantly.
- Mode 2 and Mode 3 (Height and RGB Channels): The rank was 3 in both configurations.
Keeping it constant might be beneficial as it balances compression and error.

- Mode 2 and Mode 4 (Height and Frames): The rank was 9 in the last configuration and 7 in
the best configuration. A slight increase might help reduce approximation error.

- Mode 3 and Mode 4 (RGB Channels and Frames): The rank was 2 in both configurations.
Increasing this rank could help reduce the approximation error.
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S. Proposed Rank Adjustments:

- Increase the rank between Mode 1 and Mode 4 from 8 to 10.

- Increase the rank between Mode 2 and Mode 4 from 7 to 8.

- Increase the rank between Mode 3 and Mode 4 from 2 to 3.

Rank Array: [12, 3, 10, 3, 8, 3] Loss Function at iteration 4: -1.5407013427

Running iteration 5 of iterative prompt:

Detailed Reasoning: 1. Understanding the Current Situation:

- The current rank array [12, 3, 10, 3, 8, 3] results in a loss function of -1.5407013427.

- The best-known rank array [12, 3, 8, 3, 7, 2] results in a lower loss function of -1.5880439406.
2. Compression Rate vs. Approximation Error:

- The current compression rate is 0.1381115846, and the approximation error is 0.0761192149.
- The best-known compression rate is 0.1144228746, and the approximation error is
0.0899020181.

3. Analyzing the Balance:

- The current compression rate is higher than the approximation error, suggesting that reducing
the ranks could potentially lower the loss function.

- The best-known configuration has a lower compression rate but a slightly higher approximation
error, which overall results in a better loss function.

4. Explorative Adjustments:

- Width and Height (Mode 1 and Mode 2): These are typically the largest dimensions in video
data. A rank of 12 between them seems reasonable, but we could explore reducing it slightly to
10 to see if it impacts the compression rate favorably.

- Frames (Mode 4): Temporal coherence is important, but the ranks involving frames are
relatively high. We could try reducing the rank between Mode 1 and Mode 4 from 10 to 8 and
Mode 2 and Mode 4 from 8 to 6 to see if it helps reduce the compression rate further without
significantly impacting the approximation error.

5. Proposed Rank Adjustments:

- Reduce the rank between Mode 1 and Mode 2 from 12 to 10.

- Reduce the rank between Mode 1 and Mode 4 from 10 to 8.

- Reduce the rank between Mode 2 and Mode 4 from 8 to 6.

Based on the above reasoning, the adjusted rank array is:

Rank Array: [10, 3, 8, 3, 6, 3]

This configuration aims to balance the compression rate and approximation error more effectively,
potentially leading to a lower overall loss function.

Loss Function at iteration 5: -1.6246676937

Time-Series Dataset

TN Initialization
Rank Array: [3,2,2,1,3,2,1,2,1, 1]
Loss Function at iteration 0: 1.0711770536

TN Discovery

Running iteration 1 of iterative prompt:

Detailed Reasoning:

To refine the rank suggestions and minimize the loss function, we need to carefully balance the
compression rate and the approximation error. The current rank array is [3, 2,2, 1,3, 2, 1, 2, 1,
1], with a compression rate of 0.2009259259 and an approximation error of 2.7178871524. The
loss function is the natural log of the sum of the compression rate and 10 times the approximation
error.
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1. Current Situation Analysis: The compression rate (0.2009) is significantly lower than half
of the approximation error (2.7179). This suggests that increasing the ranks could potentially
reduce the approximation error more significantly than it would increase the compression rate,
leading to a lower loss function.

2. Strategic Adjustments:

- Increase Ranks: Since the compression rate is much lower than the approximation error,
we should consider increasing some ranks to reduce the approximation error. This could be
particularly effective for connections that are currently at their minimum (rank 1), as increasing
these could have a substantial impact on reducing the approximation error.

- Targeted Increases: Focus on increasing ranks where the interaction between modes is likely
to be more complex and impactful. For instance, connections involving financial instrument
types and assets might benefit from higher ranks due to the inherent complexity and variability
in financial data.

3. Proposed Changes:

- Increase the rank between Mode 1 and Mode 4 from 1 to 2. This connection might represent
a critical interaction between financial instrument types and time points, which could benefit
from a higher rank.

- Increase the rank between Mode 2 and Mode 5 from 1 to 2. This could represent an
interaction between assets and indexes of rolling windows, which might capture more variability
with a higher rank.

- Increase the rank between Mode 3 and Mode 5 from 1 to 2. This might capture more detailed
interactions between features and indexes of rolling windows.

Expected Outcome: These changes are expected to decrease the approximation error sig-
nificantly while only slightly increasing the compression rate, thus reducing the overall loss
function.

Rank Array: [3,2,2,2,3,2,2,2,2,1]

Loss Function at iteration 1: -0.390709764

Running iteration 2 of iterative prompt:

Detailed Reasoning: Let’s take a deep breath and analyze the current situation. The current
rank array (3, 2, 2, 2, 3, 2, 2, 2, 2, 1] yields a compression rate of 0.4 and an approximation error
of 0.2765764944, resulting in a total loss function of -0.390709764. Our goal is to minimize this
loss function by adjusting the ranks, keeping in mind the balance between compression rate and
approximation error.

1. Compression Rate vs. Approximation Error: The current compression rate (0.4) is
relatively low compared to the approximation error (0.2765764944). According to the guideline,
if the compression rate is smaller than half of the approximation error, increasing the ranks could
potentially decrease the loss function. Here, 0.4 is not smaller than half of 0.2765764944 (which
is approximately 0.138), so we don’t strictly fall into this category. However, the compression
rate is still significantly lower than the approximation error, suggesting that a slight increase in
ranks might be beneficial.

2. Exploration of Rank Changes: We need to explore both small and large changes in ranks.
Since the compression rate is not excessively low compared to the approximation error, we
should consider moderate increases in ranks to see if the approximation error can be reduced
more significantly than the increase in compression rate.

3. Mode Interactions: In financial data, interactions between different modes such as financial
instrument types, assets, features, and time points are crucial. Increasing ranks in connec-
tions involving these modes might capture more complex interactions, potentially reducing the
approximation error.

4. Proposed Changes:

- Increase the rank between (Mode 1, Mode 2) from 3 to 4. This connection might capture
more complex interactions between financial instrument types and assets.

- Increase the rank between (Mode 1, Mode 5) from 3 to 4. This could help capture more
temporal dynamics across different financial instruments.

- Increase the rank between (Mode 2, Mode 3) from 3 to 4. This might improve the interaction
modeling between assets and features.

26




Under review as a conference paper at ICLR 2026

5. Maintaining Other Ranks: Keep the other ranks the same to avoid a significant increase in
the compression rate, which could offset the benefits of reduced approximation error.

By making these adjustments, we aim to achieve a better balance between the compression rate
and approximation error, thereby minimizing the loss function.

Rank Array: [4,2,2,4,4,2,2,2,2,1]

Loss Function at iteration 2: -0.2087247722

Running iteration 3 of iterative prompt:

Certainly! Let’s take a deep breath and analyze the situation step-by-step.

Detailed Reasoning:

1. Understanding the Current Situation:

- The current rank array [4, 2, 2,4, 4, 2,2, 2,2, 1] results in a loss function of -0.2087247722.
- The lowest loss function observed was -0.390709764 with the rank array [3, 2, 2, 2, 3,2, 2, 2, 2,
1].

2. Loss Function Analysis:

- The loss function is influenced by both the compression rate and the approximation error.

- The goal is to minimize the sum of the compression rate and 10 times the approximation error.
3. Compression Rate vs. Approximation Error:

- If the compression rate is much lower than the approximation error, increasing ranks can help
reduce the approximation error significantly, potentially lowering the loss function.

- Conversely, if the compression rate is much higher than the approximation error, reducing ranks
can help decrease the compression rate, potentially lowering the loss function.

4. Current Observations:

- The current compression rate is 0.7259259259, and the approximation error is 0.085692659.
- The lowest loss function had a compression rate of 0.4 and an approximation error of
0.2765764944.

5. Strategic Adjustments:

- The current compression rate is higher than the approximation error, suggesting that reducing
ranks could be beneficial.

- The previous lowest loss function had a lower compression rate, indicating that a balance
between compression and error is crucial.

6. Proposed Adjustments:

- Focus on reducing ranks where the compression rate can be decreased without significantly
increasing the approximation error.

- Consider reducing the ranks where the compression rate is disproportionately high compared to
the approximation error.

Rank Array Proposal: - Rank for the connection between (Mode 1, Mode 2): Reduce from 4
to 3 to decrease compression rate.

- Rank for the connection between (Mode 1, Mode 3): Keep at 2 as it is balanced.

- Rank for the connection between (Mode 1, Mode 4): Reduce from 4 to 3 to decrease
compression rate.

- Rank for the connection between (Mode 1, Mode 5): Reduce from 4 to 3 to decrease
compression rate.

- Rank for the connection between (Mode 2, Mode 3): Keep at 2 as it is balanced.

- Rank for the connection between (Mode 2, Mode 4): Keep at 2 as it is balanced.

- Rank for the connection between (Mode 2, Mode 5): Keep at 2 as it is balanced.

- Rank for the connection between (Mode 3, Mode 4): Keep at 2 as it is balanced.

- Rank for the connection between (Mode 3, Mode 5): Keep at 2 as it is balanced.

- Rank for the connection between (Mode 4, Mode 5): Keep at 1 as it is already minimal.
Final Rank Array:

Rank Array: [3,2,3,3,2,2,2,2,2, 1]

This adjusted rank array aims to reduce the compression rate while maintaining a reasonable
approximation error, potentially leading to a lower loss function.

Loss Function at iteration 3: -0.4233019939
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J  EXAMPLE RUNS OF TNLLM IN EACH DATASET

We report the objective value of tnLLM after the initialization and after each step until early stopping
for one example run across all 3 datasets.

Table 10: Train and Test Objective Function Values for an example run of tnLLM until early stopping
in Images, Videos, and Time-series Datasets.

. Images Videos Time-series
Evaluation g

Train Test Train Test Train Test

TN Initialization -0.57 -0.47 -0.80 -0.81 1.07 143
TN Discovery 1~ -0.55 -0.29 -1.35 -137 -0.39 -0.36
TN Discovery2  -0.64 -0.50 -1.59 -1.66 -021 -0.20

TN Discovery 3 - - -137 -1.39 -042 -0.42
TN Discovery 4 - - -1.54 -1.58 - -
TN Discovery 5 - - -1.62 -1.70 - -

K FURTHER DATA DOMAINS

We report below the performance of tnLLM against TNLS, TnALE, and tnGPS on three additional
datasets from data domains (Physics, Geospatial Hyperspectral, and Biomedical MRI Neuroimaging)
beyond the current SOTA TN-SS literature (Li et al.,[2022}; 2023}, [Zeng et al | [2024a; Zheng et al ]
2024). For the Physics experiment, we use the Darcy Flow dataset from PDEBench (Takamoto
et al., |2022). Each tensor has the shape of 128 x 128 x 10, with 10 samples used for training and
10 for testing. For the geospatial hyperspectral image experiment, we use the datasets provided
in (Baumgardner et all, 2015)) and (Dell"’Acqua et all [2004). Each tensor is cropped to share a
common shape of 100 x 100 x 80, where each mode represents the width, height, and spectral bands
respectively. For the neuroimaging experiment, we use the BrainWeb MRI dataset [1997).
Each tensor has the shape of 217 x 181 x 36 x 2, where 217 is the height, 181 is the width, 36 is the
number of slices, and 2 is the modality. We use the normal brain data for training and the brain data
with multiple sclerosis for testing.

Table 11: Performance comparison across different additional datasets (Physics, Geospatial Hyper-
spectral, and Biomedical MRI). The values on the left give the lowest training and corresponding
testing objective function values. The values in [square brackets] give the number of evaluations
required to first achieve the best training objective function value. Best values are bolded and second-
best values are underlined.

Dataset TNLS TnALE tnGPS tnLLM
I3 ow 4% we 38 @ 38 o
Geospatial Hyperspectral g:‘t‘“ L‘g [205] :}:‘2‘3 [151] :i:gg 1761 }7‘3‘% (71
Biomedical MRI rain ﬁ Bl 0B pee O3 wo 08 s
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