
Shedding Light on Random Dropping and
Oversmoothing

Han Xuanyuan
Independent

hxuany@outlook.com

Tianxiang Zhao
Penn State University
tkz5084@psu.edu

Dongsheng Luo
Florida International University

dluo@fiu.edu

Abstract

Graph Neural Networks (GNNs) are widespread in graph representation learning.
Random dropping approaches, notably DropEdge and DropMessage, claim to
alleviate the key issues of overfitting and oversmoothing by randomly removing
elements of the graph representation. However, their effectiveness is largely unveri-
fied. In this work, we show empirically that they have a limited effect in reducing
oversmoothing at test time due to their training time exclusive nature. We show that
DropEdge in particular can be seen as a form of training data augmentation, and
its benefits to model generalization are not strictly related to oversmoothing, sug-
gesting that in practice, the precise link between oversmoothing and performance
is more nuanced than previously thought. We address the limitations of current
dropping methods by learning to drop via optimizing an information bottleneck,
which enables dropping to be performed effectively at test time.

1 Introduction

Graphs are pervasive in the real world, effectively representing complex relationships among various
entities across a multitude of domains such as social media [1], finance [2], and biology [3]. Graph
neural networks (GNNs), as state-of-the-art tools for graph representation learning, have garnered
significant interest in recent years [4, 5, 6]. At the core of GNNs lies a message-passing schema,
which allows each node to aggregate information from its neighboring nodes.

Despite rapid advances in GNNs, they still face critical challenges. In particular, oversmoothing
occurs when representations of different nodes in a GNN become indistinguishable, as they aggregate
information from neighbors recursively [7]. This phenomenon hinders GNNs from effectively
modeling higher-order dependencies from multihop neighbors and makes them more vulnerable
to adversarial attacks [8, 9]. Common approaches for mitigating oversmoothing include adding
regularization terms based on measures of oversmoothing [9], and restricting the pairwise distances
between nodes [10].

Another widely used approach is based on the random dropping of information from the graph or its
representation. Prominent examples include DropEdge [11] and DropMessage [12], which operate
on the edge and message levels respectively. Notably, DropMessage has been recently proposed as
a generalization of DropEdge. However, the impact of these techniques on oversmoothing and the
precise link between their oversmoothing reduction and the benefits to model performance have not
been thoroughly investigated.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

In this paper, we investigate the extent to which DropEdge and DropMessage are able to mitigate
oversmoothing. We show that at test time, both methods actually have a limited effect in reduciung
oversmoothing according to metrics such as Dirichlet energy and mean average distance. We
hypothesise that DropEdge has a similar effect to training with data augmentation and demonstrate
that its beneficial effects on model performance are highly conditional on the randomness used in
dropping. We also observe that enabling random dropping at test time will considerably reduce
oversmoothing, but this does not translate to improved performance, suggesting that minimizing
oversmoothing by itself is insufficient. This motivates Learn2Drop. In contrast to traditional dropping
mechanisms, which apply a uniform approach to information pruning and reduce oversmoothing in a
deterministic manner, Learn2Drop learns a mask over the messages each node receives, enabling
test-time message dropping to be performed dynamically.

The foundation of Learn2Drop is rooted upon the information bottleneck principle [13]. The bottle-
neck seeks a representation Z that is minimally informative about the input X , whilst simultaneously
being maximally informative about the target Y . By balancing I(X,Z) and I(Z, Y), it allows
task-irrelevant information to be discarded while preserving useful information, allowing the GNN to
focus on the most salient features of the data. In a sense, this potentially allows the GNN to learn to
reduce oversmoothing in an optimal way.

2 Related work

2.1 Dropout in neural networks

Dropout, as introduced by Srivastava et al. [14], stems from the notion that the random deactivation
of certain units during training equates to training an ensemble of networks. This process effectively
counters overfitting in various models, GNNs included. DropEdge [11] adopts a different strategy
by randomly omitting a subset of edges from the input graph prior to the standard message-passing
procedure. This operation only occurs during training. Given an input graph G = (E, V), they
remove p|V | edges randomly, where p ∈ (0, 1) is a user-defined parameter. The authors argue that
this approach simultaneously addresses both overfitting and oversmoothing. DropNode [15] is a
similar approach, in which nodes are randomly removed, although it does not specifically aim to
address oversmoothing. DropMessage [12] is another dropping approach in which elements of the
message matrix are randomly dropped during training.

2.2 Current understanding of oversmoothing

Many earlier works on oversmoothing have proposed practical techniques to alleviate it [9, 10, 11, 16].
Recently there has been a greater focus investigating the theoretical nature of oversmoothing. Oono
and Suzuki [7] performed an asymptotic analysis, showing that node embeddings homogenize when
the number of layers tends to infinity. Wu et al. [17] performed a non-asymptotic analysis, showing
that oversmoothing occurs when an undesirable mixing effect overcomes a desirable denoising
effect. Keriven [18] showed that some smoothing but not too much can be desirable for linear GNNs,
and that there exists a number of layers which optimizes this tradeoff. A major limitation of the
existing body of work and an active area of research is the need of a formalized understanding of
the relationship between homogenized node representations and model generalization. Many prior
works such as DropEdge typically assume a clear relationship between oversmoothing reduction and
model performance without formally justifying it. However, Keriven [18] has made a step in this new
direction, giving a theoretical analysis based on risk minimization, although it is limited to linear
GNNs.

3 Random dropout and oversmoothing

The authors of DropEdge [11] and DropMessage [12] propose to directly measure the amount of
smoothing after applying each method. DropEdge [11] measures the difference in Euclidean distance
between internal layers and the final layer. One criticism is that it does not distinguish between nodes
in the same layer. In contrast, DropMessage [12] computes a metric over the nodes of the same layer,
the mean average distance (MAD) [9]. Notably, both methods are applied exclusively during training,
which raises concerns regarding whether they can address oversmoothing at test time:

2

1. Generalization to unseen data: while these training-time interventions might help reduce
oversmoothing on the training data, their absence during the test phase can potentially lead
to inconsistent behaviour on the test data due to increased oversmoothing.

2. Model confidence: if the robustness against oversmoothing is only demonstrated during
training and not during testing, it reduces the overall confidence in the model’s reliability
across diverse environments.

The distinction between training and testing time, and its implications on oversmoothing, remains
unaddressed in the aforementioned works. This oversight has prompted our investigation into the
effects of these random dropping methods on oversmoothing across both training and testing phases.

3.1 Measuring smoothing

One metric commonly used in the literature to empirically measure smoothing is mean average
distance (MAD) [9]:

dMAD(X
ℓ) =

1

|V |
∑
i∈V

∑
j∈Ni

1−
Xℓ

i
⊤
Xℓ

j

||Xℓ
iX

ℓ
j ||
. (1)

More recently many works have proposed metrics of smoothing based on the concept of Dirichlet
energy [19, 20] which is typically defined as

dDE(X
ℓ) =

1

|V |
∑
i∈V

∑
j∈Ni

||Xℓ
i −Xℓ

j ||22. (2)

This has the property that dDE(X
ℓ) = 0 if and only if all node representations are equal – in other

words, complete oversmoothing is equivalent to 0 Dirichlet energy, which has led to conceptually
cleaner proofs [19] in the theoretical analysis of oversmoothing. However, note that the Dirichlet
energy is sensitive to arbitrary scaling of embeddings. Observe that, by simply multiplying the
embeddings by a constant greater than 1 after each layer, we are guaranteed to increase this energy.
In reality, this might not reflect any improvement in the ability of the model to generalize. For our
study, this may be problematic as DropMessage and standard dropout, which scale the embeddings
– in the case of dropout with probability p it is common to scale with 1/(1− p). This would ‘fix’
oversmoothing if a sufficiently high dropping probability is used compared to a model that applies
less dropping. This is less of a concern when observing the layer-wise exponential convergence of
embeddings within the same model.

Our experiments also aim to empirically compare the relative amount of oversmoothing suffered
by different GNNs. As we specifically investigate methods that inherently scale the embeddings,
we also consider using MAD, which has two known limitations: (i) complete oversmoothing (all
node representations being identical) does not equate to 0 MAD, and (ii) it is ineffective in the
case where node representations are scalars – nodes with the same sign but different magnitude
cannot be distinguished. However, it can still be shown that for multidimensional MAD, there
exist constants C1, C2 > 0 such that µMAD(X

ℓ) ≤ C1e
−C2ℓ for ℓ ∈ [0, N]— it exhibits layer-wise

exponential convergence [21]. Although theoretically inconvenient, MAD still enables us to make
meaningful empirical comparisons on oversmoothing on models where the node embeddings are high
dimensional. Limitation (i) is not strictly a concern when we seek a comparison between methods,
rather than an absolute measure of oversmoothing that is theoretically sound.

3.2 Observing the effect of random dropping on oversmoothing

We empirically observe oversmoothing in a model by measuring the amount of smoothing after each
layer. We compare a vanilla baseline with DropEdge and DropMessage by training models while
applying random dropping and evaluate the extent of oversmoothing in two scenarios: (i) without
applying any random dropping (simulating test-time inference), and (ii) with random dropping applied
(resembling a training forward pass).

Experimental setup. Using 128-layer deep GNNs of the GCN architecture [4], we train models on
node classification tasks with varying levels of homophily. In addition to the commonly-used citation
networks Cora [22], Citeseer [23] and Pubmed [24], we use heterophilic datasets Wisconsin, Texas,

3

Cornell [25] and Chameleon [26]. As baselines, we use a vanilla model trained with skip connections
[27], and also a model trained with dropout.

1 16 32 48 64 80 96 112 128

10 3

10 1

101

Cora
Vanilla
DropEdge
DropEdge (Train)
DropMessage
DropMessage (Train)
Skip
Dropout
Dropout (Train)

1 16 32 48 64 80 96 112 128

10 4

10 2

100

102
Texas

1 16 32 48 64 80 96 112 128

10 4

10 2

100

102
Cornell

Layer

Di
ric

hl
et

en
er

gy

Figure 1: Measuring oversmoothing in random dropping models, averaged over 5 runs.

The results using Dirichlet energy are shown in Figure 1. We observe that at training time, DropEdge
can alleviate the amount of smoothing at some layers by a scaling factor – however, the trend is still
exponential: at layer ℓ the Dirichlet energy is O(C−ℓ) for some constant C. Layer-wise exponential
convergence is still occurring. DropMessage, in contrast, is able to completely nullify it at training
time, although it appears the same can also be achieved by applying dropout on the node vectors at
each layer. Results using MAD are very similar, and given in A.3.

At test time, random dropping is not applied. Instead any improvement comes from the effect that
the dropping has during training. However, we observe from our experiments (included in Table
1 in Section 5.2 for ease of later comparison) that naively enabling DropEdge and DropMessage
at test time translates to poor accuracy and inconsistent model inference, despite the reduction of
oversmoothing, suggesting that the main benefits of these random dropping methods is not primarily
from oversmoothing reduction, or that oversmoothing reduction by itself is insufficient to guarantee
improved performance.

Discussion. During forward passes, DropEdge is able to mitigate the amount of oversmoothing,
but does not appear to prevent it. The amount of mitigation is greater at training time than test time.
DropMessage, in contrast, is able to stabilize the oversmoothing at training time, but has little effect
at test time. If the primary cause of oversmoothing is the recursive aggregation inherent in the GNN’s
structure, this issue will still manifest at test time – it will aggregate information across all available
edges without any dropping, which may lead to homogenized node representations.

We further note a close similarity between methods used outside the specific context of graphs.
For instance, DropEdge is methodologically similar to word dropout [28] used in natural language
processing and cutout [29] used in computer vision, both of which are augmentation techniques
that aim to prevent the model from overfitting on a specific input feature. In addition, we note that
DropMessage’s approach is effectively applying dropout between the aggregate and update stages of
message passing1. We observe that it has a similar effect on oversmoothing compared to applying
dropout on the node representations.

If their primary effect was only through introducing noise during training, then the two methods
would arguably be analogous to dropout and other similar approaches. Dropout aims to make neural
networks more robust by preventing over-reliance on any particular neuron during training, but it
does not drop out neurons at test time. Similarly, DropEdge/DropMessage can be seen as a way to
ensure that the GNN does not over-rely on any particular edge or message.

In conclusion, DropEdge and DropMessage exhibit nuanced effects on smoothing at training time and
are not applied at test time. They appear more aligned with robust training and overfitting prevention
than directly combating the oversmoothing phenomenon. This suggests that these techniques, particu-
larly DropEdge, might operate more as data augmentation. Their role in mitigating oversmoothing
could then be an indirect outcome of the models they assist in training – models that are more robust
and inherently resistant to oversmoothing. Further research is needed to explore the primary versus
secondary effects of these techniques.

1This can be verified using the source code: https://github.com/zjunet/DropMessage/blob/master/src/layer.py

4

3.3 The importance of randomness

An important implication of our results is the possibility that DropEdge actually does not have a
significant effect in reducing oversmoothing. The overall behavior is still O(k−L). This is contrary
to what is implied by the original work. We suspect that the reasons for DropEdge’s performance
improvements could lie elsewhere, and we investigate this.

We first recall that the authors of DropEdge use a specific definition of oversmoothing: they define
the concept of ϵ-smoothing, which occurs when all node representations lie within a distance ϵ from a
subspace. It can be shown that during a forward inference pass, dropping edges can increase the layer
at which (a relaxed version) of ϵ-smoothing occurs. This is stated as Theorem 1 in the work by Rong
et al. [11], and we shall continue to refer to this theorem as the DropEdge theorem. The DropEdge
theorem does not make any assumption on how edges are removed, it only requires that the number
of edges in the perturbed graph be less than the original. Therefore, removing edges in a completely
deterministic manner would also satisfy the theorem, but it is unclear whether this would lead to the
same effects. This is the motivation for our next experiment.

Experiment. We perform an investigation in which we train a model Φ using a version of DropEdge
where a proportion of the edges, controlled by parameter τ ∈ [0, 1], are sampled deterministically.
That is, we set a predefined set of edges E ⊂ E such that |E| = ⌊p|E|⌋. During the training of Φ, at
each epoch we choose the edges F to drop by sampling from S = {E ′ | |E ′ ∩ E| ≥ ⌊τ |E|⌋ ∧ |E ′| =
⌊p|E|⌋}. When τ = 0, the method is equivalent to standard DropEdge. When τ = 1, the method
is a fully deterministic version of DropEdge where the same edges are sampled for all epochs. For
different values of τ ∈ [0, 1] we observe the test accuracy of Φ and the MAD.
Remark 3.1. τ controls the mutual information between E and F

10

5

0

5

Cora
∆ test acc

2

0

2

4

Citeseer

1

0

1

2

3
Pubmed

0 1
7.5

5.0

2.5

0.0

2.5

5.0

0 1

2

0

2

4

0 1

1

0

1

2

3

0.000

0.025

0.050

0.075

0.100

∆ smoothing (Train)
∆ smoothing

0.00

0.05

0.10

0.15

0.00

0.02

0.04

0.06

60

40

20

0

0.0

2.5

5.0

7.5

10.0

12.5

75

50

25

0

25

50∆
tes

t a
cc

 (%
)

∆
 M

AD
∆

 D
ir

En
er

gy

τ

Figure 2: Investigating the effects of stochasticity in DropEdge.

In order to obtain stable results, we train shallower models with 3 GCN layers and skip connections.
We repeat this experiment for multiple choices of the initial edge set E and measure the mean test
accuracy and MAD at each τ . Results using MAD and Dirichlet energy are shown in Figure 2. As
τ increases, the performance improvement from using DropEdge degrades. Although satisfying
the DropEdge theorem, for certain values of τ that are sufficiently large (typically after 0.9), the
model has worse test performance than not using DropEdge, while the amount of oversmoothing
surprisingly decreases according to MAD. Moreover, according to Dirichlet energy, there is no
consistent relationship between performance improvement and smoothing. For Pubmed the Dirichlet
energy tends to decrease as performance worsens, but for Citeseer there is an initial increase. This
suggests:

• the performance improvement provided by DropEdge is highly sensitive to the amount of
random noise being injected into the sampling during each training epoch.

5

• the amount of oversmoothing at both training and test time is possibly related to the model’s
error on the training/test sets, and how it generalizes (i.e. whether we find good minima).

As an additional check, we perform the same experiment but modifying the computation of MAD
and Dirichlet energy so that only pairs of nodes with different labels are considered. The motivation
is that smoothing across nodes with different labels is more problematic for performance, whereas
smoothing across nodes with the same label is desirable. The resulting trends are very similar
and shown in A.2 We can conclude that a GNN with reduced oversmoothing does not necessarily
generalize better, which challenges the preconception made in previous works [11, 8, 9] that less
smoothing is strictly better.

4 Learning to drop

In Section 3 we highlighted several limitations of DropEdge and DropMessage. In summary,
both DropEdge and DropMessage operate only during training, and do not sufficiently address
oversmoothing on unseen data at test time. It is unclear whether oversmoothing is related to
their effect on model performance. Moreover, dropout on the message matrix (as in the case of
DropMessage) will stabilize both Dirichlet energy and MAD. However, doing this at test time will
result in poor model performance and unstable predictions.

To address these concerns, we propose learning to drop (Learn2Drop) in which we learn which
elements to drop rather than applying uniform treatment, and at test time choosing which elements to
drop based on experience. This will incorporate domain knowledge into the dropping process, which
may be advantageous over a pure adhoc approach where the dropping probability is fixed. This can
(i) allow the model to keep essential information while filtering out noise, which has been previously
observed to be a potential cause of oversmoothing [9], (ii) allow the use of topological information,
which can affect smoothing [30], and (iii) perform dropping at test time in a more informed manner.

4.1 Information bottleneck

Aligning with the motivation to preserve only critical information, we propose dropping messages
based on the information bottleneck (IB) principle [13]. This principle has been previously adopted
in neural networks for similar purposes, such as pruning less informative neurons [31] and enhancing
robustness against adversarial attacks [32]. The overall idea is to seek a representation Z that is
minimally informative about the input X , whilst simultaneously being maximally informative about
the target Y . This done by optimally balancing the mutual information terms I(X,Z) and I(Z, Y).

Recall that in message passing GNNs, at layer ℓ we obtain the next representation of node i, by
applying an aggregation function ⊕ on the messages passed from the nodes in its neighborhood Ni:

hℓ+1
i = ϕ

(
hℓ
i ,⊕j∈Ni

(
ψ
(
hℓ
i ,h

ℓ
j

)))
. (3)

Here, ψ
(
hℓ
i ,h

ℓ
j

)
denotes the message that a node j passes to a node i. Let Mℓ ∈ R|E|×m be the

message matrix given to layer ℓ. It is formed by stacking all messages passed at layer ℓ, and each
row is a different message. Note that Mℓ, along with the adjacency matrix of the input graph, are
sufficient for obtaining the final output of the model. Thus, Mℓ can be viewed as some intermediate
representation. In this view, the layers 1, . . . , ℓ− 1 of the message passing GNN can be treated as an
encoder, and the remainder of the model can be viewed as a decoder. Mℓ contains the information
necessary to make predictions about the target Y . This motivates us to apply the IB principle, treating
Mℓ as the optimal representation Z. We shall refer to Mℓ as Z for clarity.

Let ϕ be the parameters of the encoder and θ be the parameters of the decoder. We can write
the mutual information between the input X and the messages Z as I(X,Z;ϕ), and the mutual
information between the messages and the output Y as I(Z, Y ; θ). We can treat Z as a random
variable with distribution P(Z|X; θ). Following standard use of the IB principle, we obtain

max
θ,ϕ

I(Z, Y ; θ)− βI(X,Z;ϕ). (4)

Optimizing this objective will allow us to obtain minimal and sufficient representations of the input
graph. This objective is intractable. Following Alemi et al. [33], Wu et al. [34], Miao et al. [35], we

6

use variational approximations: Pϕ to approximate the encoder, and Qθ to approximate the decoder,
and R(Z) to approximate the marginal distribution of Z. This yields the variational bounds:

I(X,Z;ϕ) ≤ EX,ZKL(Pϕ(Z|X) || R(Z)) (5)
I(Z, Y ; θ) ≥ EZ,Y [logQθ(Y | Z)] +H(Y) (6)

It can be shown using the standard derivation introduced by Alemi et al. [33] that applying these
variational bounds results in the objective

max
θ,ϕ

E[logQθ(Y | Z)]− βE[KL(Pϕ(Z|X) || R(Z))]. (7)

Here, the first term is the expected negative log-likelihood. For classification tasks this is equivalent
to the cross entropy loss. The second term is harder to evaluate, and depends on the instantiation of
the encoder Pϕ.

4.2 Instantiating the distributions

We have a choice of distribution for the encoding of Z. Recall that our motivation is to optimize the
dropping of information from the messages. We can do this probabilistically. Specifically, we obtain
each element of every message by sampling from a spike and slab distribution [36]. Each distribution
is parameterized by a value v and a sample probability p. The value v is sampled with probability p,
and 0 is sampled with probability 1− p. In the context of our method, we consider each message
element as a variable that can be either retained or discarded. This captures the notion of allowing
elements to be dropped. We choose the slab as a Delta function δ(x− l). The parameters l and p for
each distribution are learned during training.

Thus, sampling from Pϕ is equivalent to sampling from a set of spike-and-slab distributions, where
each distribution is parameterized by a different value in the original message matrix (prior to
dropping). In practice, for a message vector qij – the message passed from node j to i – we can
obtain the vector of probabilities by feeding the concatenated node representations [hℓ−1

i ||hℓ−1
j] into

an MLP. The final message vector after dropping can be obtained using the Gumbel Sigmoid trick
[37] to allow the gradients to flow through the learned probabilities. Doing this for all messages will
compute the optimized representation Z.

We can define R(Z), the variational approximation of the marginal P (Z), by sampling each message
element qkij from set of spike and slab distributions sharing the same spike probability r ∈ [0, 1],
as well as the same uniform slab distribution Uniform(a, b) where a, b ∈ R. This gives R(Z) =∏
P (qkij) where P (qkij) = P(x) = p

b−a + (1− p)δ(x).

Now, computing the KL term in Equation 7 directly is intractable, as it requires a summation over
all possible Z. Instead, we note that since the elements of Z are independent given X , the joint
distribution P(Z | X) can be factorized into the product of the individual marginal distributions
of each element of Z. That is,

∏
P (vkij | X), where vkij refers to the k-th message element of the

message passed from j to i. The KL divergence then has the analytical form

∑
(ij)∈E,k∈[m]

− (1− pkij) log
1− pkij
1− r

−
∫ ∞

−∞
pkijδ(x− lkij) log

pkijδ(x− lkij)

1/(b− a)
dx

=
∑

(ij)∈E,k∈[m]

− (1− pkij) log
1− pkij
1− r

− pkij log
pkij(b− a)

r
,

(8)

where pkij and lkij are the spike-and-slab parameters for each message element. This is sum of the KL
divergences of the marginal distributions of each message element.

5 Experiments on oversmoothing

In this section, we evaluate the effectiveness of Learn2Drop. We first show that Learn2Drop is able to
successfully mitigate oversmoothing at test time, whereas DropEdge and DropMessage are unable to.
We then evaluate the performance of Learn2Drop against previous dropping approaches to investigate
whether it helps model performance in practice.

7

5.1 Oversmoothing reduction

1 16 32 48 64 80 96 112 128

10 3

10 1

101

Cora
Vanilla
DropEdge
DropMessage
Skip
L2D
L2D*

1 16 32 48 64 80 96 112 128

10 4

10 2

100

Citeseer

1 16 32 48 64 80 96 112 128

10 4

10 2

100

102
Cornell

1 16 32 48 64 80 96 112 128

10 3

10 1

101

103
Chameleon

1 16 32 48 64 80 96 112 128

10 4

10 2

100

102
Wisconsin

1 16 32 48 64 80 96 112 128

10 4

10 2

100

102
Texas

Layer

Di
ric

hl
et

en
er

gy

Figure 3: Oversmoothing comparison across six node classification datasets.

Using the same methodology as in 3.2 we measure the amount of test-time oversmoothing in
models trained using Learn2Drop. We evaluate two versions of Learn2Drop: one where dropping
is performed at every layer (denoted L2D) and another where dropping is only performed once
every ten layers (L2D*), since dropping at every layer for very deep GNNs may add unnecessary
overhead. The results using Dirichlet energy are shown in Figure 3, and corresponding results using
MAD are given in Appendix A.3. We observe that for each task, Learn2Drop results in a significant
reduction in smoothing according to both metrics. Interestingly, from observing L2D*, we observe
that applying a single dropping layer is able to reset the Dirichlet energy. While for DropEdge and
DropMessage, there is an increase in oversmoothing at a super-linear rate, it is clear that Learn2Drop
keeps oversmoothing from changing beyond one order of magnitude.

5.2 Model performance

In prior work, it has been standard to perform an indirect evaluation on oversmoothing by training
very deep GNNs and showing that the usual performance degradation (compared to a shallow
model) is reduced [11]. For instance, whereas a vanilla GCN would suffer a significant reduction
in performance on Cora if we were to use 64 layers instead of the usual 2 to 3 that typically yields
optimal performance, DropEdge may only suffer a moderate hit. However, as discussed in Section
3.3, the effects of overfitting and oversmoothing are likely interlaced and difficult to decouple. It is
not evident from such observations whether the model is simply more resistant against overfitting,
or whether oversmoothing is actually reduced, especially since one of these may be the indirect
consequence of the other. Nevertheless, it may be beneficial to observe the performance of models in
such scenarios where a combination of issues is prevalent.

For each dataset, we train 3-layer, 32-layer, and 64-layer GCN models. We compare the test time
accuracy against both default and test-time enabled versions of DropEdge and DropMessage, as well
as an additional baseline where dropout with probability 0.5 is applied after each layer. Moreover,
in the context of evaluating oversmoothing, which purportedly occurs at deeper layers, we desire a
scenario where it is beneficial to use more layers. Following Zhao and Akoglu [10] we opt for using
a ‘missing feature’ setting where 90% of the nodes have their feature vector initialized to 0.

The results shown in Table 1. Learn2Drop is able to successfully mitigate the performance degradation
when increasing the number of layers. Note that the test-time versions of DropEdge and DropMessage
(denoted with ∗), despite reducing oversmoothing, perform highly inconsistently resulting in poor
performance, and often fail to converge. To make this baseline more sensible, we obtain each
individual result by averaging 10 forward passes. Meanwhile, Learn2Drop consistently achieves
higher test accuracy, perhaps as it learns the optimal way to drop. One can view this as a mechanism

8

that controls the amount of smoothing reduction by using the IB principle to optimally make the
tradeoff between signal and noise. However, we emphasize that this is merely a hypothesis. On
the contrary, it could be that the oversmoothing reduction is a side effect of the true mechanisms
underlying the performance improvement, which is what we have examined for DropEdge.

Here we focus on understanding the effect of various random dropping techniques on model perfor-
mance. Competing with the state-of-the-art techniques that address oversmoothing is not the objective.
For completeness, we have included the recent method GraphCON [20] which has specifically been
designed to combat oversmoothing and outperforms all dropping approaches.

L Cora Citeseer Cornell Chameleon Wisconsin Texas

3

Vanilla 64.2 ± 0.7 44.0 ± 1.1 45.4 ± 7.3 28.4 ± 1.2 46.3 ± 9.3 56.2 ± 6.7
DropEdge 66.0 ± 2.4 44.5 ± 1.4 44.3 ± 5.6 27.5 ± 2.5 46.3 ± 8.3 57.3 ± 5.5
Dropout 65.1 ± 3.3 46.2 ± 2.4 43.8 ± 5.2 29.3 ± 2.6 45.9 ± 8.9 55.7 ± 4.7

DropMessage 64.4 ± 2.4 48.0 ± 2.0 47.5 ± 5.3 27.9 ± 2.8 51.0 ± 4.6 56.6 ± 4.4
L2D 66.4 ± 1.3 49.1 ± 2.5 48.5 ± 4.7 30.2 ± 3.3 51.0 ± 2.4 56.4 ± 4.3

DropEdge* 58 .9 ± 4 .3 42 .3 ± 1 .3 42 .2 ± 4 .9 25 .7 ± 2 .9 44 .3 ± 6 .4 55 .7 ± 5 .3
DropMessage* 60 .3 ± 3 .0 43 .0 ± 1 .3 40 .5 ± 1 .9 23 .6 ± 3 .5 47 .1 ± 4 .6 37 .3 ± 21

GraphCon 68 .5 ± 3 .2 52 .1 ± 0 .9 53 .1 ± 2 .3 35 .2 ± 5 .3 53 .4 ± 2 .4 58 .5 ± 3 .1

32

Vanilla 70.5 ± 1.5 51.2 ± 1.4 44.3 ± 5.6 27.6 ± 2.6 49.4 ± 7.6 58.9 ± 5.5
DropEdge 68.6 ± 1.7 47.9 ± 1.7 40.0 ± 5.0 30.0 ± 2.2 46.3 ± 8.0 57.8 ± 5.3
Dropout 23.6 ± 7.6 22.3 ± 3.3 44.3 ± 5.6 20.4 ± 1.9 48.6 ± 8.1 57.8 ± 5.8

DropMessage 66.2 ± 1.7 50.5 ± 1.4 47.1 ± 7.2 28.3 ± 2.1 50.0 ± 4.5 57.3 ± 4.5
L2D 72.4 ± 2.5 52.3 ± 4.6 47.4 ± 6.4 30.5 ± 2.1 51.0 ± 2.7 59.8 ± 2.4

DropEdge* 62 .9 ± 3 .7 44 .8 ± 2 .8 44 .3 ± 6 .2 27 .9 ± 1 .7 40 .8 ± 5 .3 58 .4 ± 6 .2
DropMessage* 53 .2 ± 20 29 .4 ± 3 .2 16 .8 ± 3 .0 16 .4 ± 3 .3 21 .6 ± 11 14 .1 ± 6 .5

GraphCon 76 .6 ± 4 .6 53 .1 ± 1 .2 49 .3 ± 3 .2 33 .4 ± 4 .3 52 .3 ± 3 .4 59 .6 ± 3 .1

64

Vanilla 47.2 ± 14.3 48.3 ± 3.4 44.3 ± 5.6 27.6 ± 1.7 46.3 ± 7.2 58.4 ± 5.6
DropEdge 66.4 ± 4.0 45.7 ± 0.7 43.2 ± 5.9 27.4 ± 0.8 42.7 ± 3.1 55.7 ± 7.2
Dropout 18.3 ± 7.0 21.8 ± 2.4 44.3 ± 5.6 21.4 ± 1.4 47.8 ± 8.8 58.4 ± 5.6

DropMessage 65.2 ± 2.1 48.6 ± 1.5 45.8 ± 7.5 28.9 ± 2.6 50.0 ± 3.3 55.9 ± 5.6
L2D 69.3 ± 3.6 50.5 ± 2.6 47.3 ± 4.7 28.7 ± 1.4 49.0 ± 1.7 59.3 ± 1.5

DropEdge* 29 .7 ± 5 .0 29 .0 ± 4 .9 44 .3 ± 6 .2 27 .0 ± 0 .7 47 .1 ± 8 .0 56 .2 ± 5 .2
DropMessage* 16 .7 ± 7 .1 23 .8 ± 6 .1 18 .9 ± 9 .2 17 .3 ± 1 .9 20 .8 ± 10 20 .0 ± 21

GraphCon 71 .4 ± 3 .4 53 .3 ± 1 .2 50 .5 ± 2 .2 33 .6 ± 3 .7 56 .3 ± 3 .6 59 .6 ± 5 .6

Table 1: Comparison of test accuracy for different models and datasets with different backbone
models, averaged over 5 runs. The highest accuracy across random dropping approaches is boldened.

6 Conclusion

In summary, we investigate the relationship between random dropping approaches and their ability to
reduce oversmoothing. Specifically, while DropEdge introduces a degree of robustness, its direct
impact on addressing oversmoothing at test time appears limited. We hypothesize that its effects
are similar to data augmentation and support this with empirical results. DropMessage has a more
pronounced effect but is still a training phase technique. In response to the the difficulty in directly
applying dropping methods at test time, we present Learn2Drop, which decides which parts of the
message matrix to keep or discard based on the information’s relevance. This approach allows us
to leverage the effect of dropping at test time in a more informed manner. Learn2Drop, like many
previous methods, reduce oversmoothing while improving performance. However, this is not a
guarantee that the performance improvement is a consequence of this oversmoothing reduction.

Our work provides novel emprical results that align with Keriven [18]’s theoretical analysis, sug-
gesting that always seeking to minimize oversmoothing is not optimal. An important takeaway from
our work is that in practice, oversmoothing reduction will not strictly boost a GNN’s performance
– it is trivial to minimize oversmoothing by dropping messages randomly at test time. We have
observed that a GNN with little oversmoothing does not guarantee optimal performance, and a GNN
that experiences less oversmoothing is not necessarily more accurate. There is perhaps a general
misconception that reducing oversmoothing is always desirable because many of the earlier methods
proposed to tackle oversmoothing also implicitly introduce some form of regularization. We hope
that future research can shed more clarity on this.

9

References
[1] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural

networks for social recommendation. In The world wide web conference, pages 417–426, 2019.
[2] Wendong Bi, Bingbing Xu, Xiaoqian Sun, Zidong Wang, Huawei Shen, and Xueqi Cheng.

Company-as-tribe: Company financial risk assessment on tribe-style graph with hierarchical
graph neural networks. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 2712–2720, 2022.

[3] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[4] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

[5] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In NIPS, 2017.

[6] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

[7] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=S1ldO2EFPr.

[8] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI Conference on Artificial Intelligence, 2018.

[9] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving
the over-smoothing problem for graph neural networks from the topological view. In AAAI
Conference on Artificial Intelligence, 2019.

[10] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=rkecl1rtwB.

[11] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=Hkx1qkrKPr.

[12] Taoran Fang, Zhiqing Xiao, Chunping Wang, Jiarong Xu, Xuan Yang, and Yang Yang. Dropmes-
sage: Unifying random dropping for graph neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 4267–4275, 2023.

[13] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
arXiv preprint physics/0004057, 2000.

[14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/
v15/srivastava14a.html.

[15] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning
on graphs. Advances in neural information processing systems, 33:22092–22103, 2020.

[16] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pages 1725–1735.
PMLR, 2020.

[17] Xinyi Wu, Zhengdao Chen, William Wang, and Ali Jadbabaie. A non-asymptotic analysis of
oversmoothing in graph neural networks. arXiv preprint arXiv:2212.10701, 2022.

[18] Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing.
Advances in Neural Information Processing Systems, 35:2268–2281, 2022.

[19] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

10

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=Hkx1qkrKPr
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

[20] T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael
Bronstein. Graph-coupled oscillator networks. In International Conference on Machine
Learning, pages 18888–18909. PMLR, 2022.

[21] T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing
in graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

[22] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. Information Retrieval, 3:127–163,
2000.

[23] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
system. In Proceedings of the third ACM conference on Digital libraries, pages 89–98, 1998.

[24] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[25] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom Mitchell, Kamal Nigam,
and Seán Slattery. Learning to extract symbolic knowledge from the world wide web. AAAI/IAAI,
3(3.6):2, 1998.

[26] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geo-
metric graph convolutional networks. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=S1e2agrFvS.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[28] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. Advances in neural information
processing systems, 26, 2013.

[29] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural
networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[30] Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Liò, and Michael
Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing
in gnns. Advances in Neural Information Processing Systems, 35:18527–18541, 2022.

[31] Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations
through noisy computation. IEEE transactions on pattern analysis and machine intelligence,
40(12):2897–2905, 2018.

[32] Artemy Kolchinsky, Brendan D. Tracey, and Steven Van Kuyk. Caveats for information
bottleneck in deterministic scenarios. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=rke4HiAcY7.

[33] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational
information bottleneck. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=HyxQzBceg.

[34] Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. Advances
in Neural Information Processing Systems, 33:20437–20448, 2020.

[35] Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic
attention mechanism. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 15524–
15543. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/miao22a.
html.

[36] Hemant Ishwaran and J Sunil Rao. Spike and slab variable selection: Frequentist and bayesian
strategies. arXiv preprint math/0505633, 2005.

[37] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=rkE3y85ee.

11

https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=rke4HiAcY7
https://openreview.net/forum?id=HyxQzBceg
https://proceedings.mlr.press/v162/miao22a.html
https://proceedings.mlr.press/v162/miao22a.html
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee

A Additional results

A.1 Smoothing of DropEdge and DropMessage

1 16 32 48 64 80 96 112 128

10 6

10 4

10 2

100
Cora

Vanilla
DropEdge
DropEdge (Train)
DropMessage
DropMessage (Train)
Skip
Dropout
Dropout (Train)

1 16 32 48 64 80 96 112 128
10 7

10 6

10 5

10 4

10 3

10 2

10 1

Texas

1 16 32 48 64 80 96 112 128

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Cornell

Layer

M
AD

Figure 4: Full oversmoothing comparison using mean average distance.

A.2 DropEdge oversmoothing vs test accuracy

10

5

0

5

Cora
∆ test acc

2

0

2

4

Citeseer

1

0

1

2

3
Pubmed

0 1
7.5

5.0

2.5

0.0

2.5

5.0

0 1

2

0

2

4

0 1

1

0

1

2

3

0.00

0.01

0.02

0.03

0.04

∆ smoothing (Train)
∆ smoothing

0.00

0.02

0.04

0.06

0.005

0.000

0.005

0.010

0.015

0.020

10.0

7.5

5.0

2.5

0.0

2.5

0

1

2

3

10

5

0

5

10

∆
tes

t a
cc

 (%
)

∆
 M

AD
∆

 D
ir

En
er

gy

τ

Figure 5: Oversmoothing and test accuracy relationship when DropEdge is applied. Oversmoothing
here is calculated on only node pairs with different labels.

12

A.3 Learn2Drop oversmoothing

1 16 32 48 64 80 96 112 128

10 6

10 4

10 2

100
Cora

Vanilla
DropEdge
DropMessage
Skip
L2D
L2D*

1 16 32 48 64 80 96 112 128

10 6

10 4

10 2

Citeseer

1 16 32 48 64 80 96 112 128

10 6

10 4

10 2

Cornell

1 16 32 48 64 80 96 112 128

10 5

10 3

10 1

Chameleon

1 16 32 48 64 80 96 112 128

10 6

10 4

10 2

Wisconsin

1 16 32 48 64 80 96 112 128

10 6

10 4

10 2

Texas

Layer

M
AD

Figure 6: Oversmoothing comparison across six node classification datasets, using MAD.

B Experimental setup

We provide details of the model architectures and parameter settings for each of our experiments. All
of our experiments were conducted using a V100 GPU on a Colab Pro+ subscription.

B.1 Experiments in Section 3.3 (Oversmoothing vs model performance)

For this experiment, we train shallow 3-layer GNNs on Cora, Citeseer and Pubmed using the GCN
architecture provided by torch-geometric2. The Adam optimizer from pytorch is used for all
experiments in this work. The train-validation-test splits are the ones defined by setting the public
parameter in torch-geometric. The DropEdge probability is fixed at 0.5.

Parameter Cora Citeseer Pubmed
Learning Rate 0.003 0.005 0.003

Training Epochs 2000 2000 2000
Early Stopping 150 150 150

Embedding Size 32 32 32
Number of Layers 3 3 3

Table 2: Training and Implementation Details for GNNs on Different Datasets

B.2 Experiments in Section 5.1 (Oversmoothing analysis)

In this section we mainly focus on observing oversmoothing for individual models rather than strictly
comparing them. There is no rigourous grid search of parameters. The same settings are used across
all methods for the same dataset. 0.5 is used as the dropping probability for both DropMessage and
DropEdge.

2https://pytorch-geometric.readthedocs.io/en/latest/

13

Parameter Cora Citeseer Cornell Chameleon Wisconsin Texas
Learning Rate 0.01 0.005 0.002 3e-5 2e-5 5e-5

Training Epochs 2000 2000 2000 3500 500 500
Early Stopping 150 150 150 450 150 150

Embedding Size 32 32 32 32 32 32
Number of Layers 128 128 128 128 128 128

Table 3: Training details for GNNs

B.3 Experiments in Section 5.2 (Model performance)

In these experiments we attempt to compare model performance across different randrom dropping
methods. As such, we perform a grid search on the learning rate. The ranges of this search are
specified in the table and the search space is logarithmic. The same settings are used across all
methods for the same dataset.

Parameter Cora 3 Citeseer 3 Cornell 3 Chameleon 3 Wisconsin 3 Texas 3
Learning Rate 2e-4 to 1e-6 2e-4 to 1e-6 2e-4 to 1e-6 1e-5 to 1e-6 1e-5 to 1e-6 2e-5 to 2e-6

Training Epochs 2000 2000 2000 3500 500 500
Early Stopping 150 150 150 450 150 150

Embedding Size 32 32 32 32 32 32
Table 4: 3 layer models

Parameter Cora 32 Citeseer 32 Cornell 32 Chameleon 32 Wisconsin 32 Texas 32
Learning Rate 2e-4 to 1e-6 2e-4 to 1e-6 2e-4 to 1e-6 1e-5 to 1e-6 1e-5 to 1e-6 2e-5 to 2e-6

Training Epochs 4000 4000 4000 4500 5500 5500
Early Stopping 550 550 550 1450 1450 1450

Embedding Size 32 32 32 32 32 32
Table 5: 32 layer models

Parameter Cora 64 Citeseer 64 Cornell 64 Chameleon 64 Wisconsin 64 Texas 64
Learning Rate 1e-3 to 2e-5 1e-3 to 2e-5 2e-4 to 2e-5 9e-4 to 9e-6 9e-4 to 9e-6 9e-4 to 9e-6

Training Epochs 4000 4000 4000 4500 5500 5500
Early Stopping 550 550 550 1450 1450 1450

Embedding Size 32 32 32 32 32 32
Table 6: 64 layer models

Moreover, there are method-specific parameters obtained using grid search.

Parameter Start End Search Space
DropEdge p 0.2 0.8 Linear

DropMessage p 0.2 0.8 Linear
L2D β 0 100 Logarithmic

Table 7: Parameter Search Ranges

14

	Introduction
	Related work
	Dropout in neural networks
	Current understanding of oversmoothing

	Random dropout and oversmoothing
	Measuring smoothing
	Observing the effect of random dropping on oversmoothing
	The importance of randomness

	Learning to drop
	Information bottleneck
	Instantiating the distributions

	Experiments on oversmoothing
	Oversmoothing reduction
	Model performance

	Conclusion
	Additional results
	Smoothing of DropEdge and DropMessage
	DropEdge oversmoothing vs test accuracy
	Learn2Drop oversmoothing

	Experimental setup
	Experiments in Section 3.3 (Oversmoothing vs model performance)
	Experiments in Section 5.1 (Oversmoothing analysis)
	Experiments in Section 5.2 (Model performance)

