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Abstract
We introduce Mean-Field Trust Region Policy
Optimization (MF-TRPO), a novel algorithm de-
signed to compute approximate Nash equilib-
ria for ergodic Mean-Field Games (MFG) in fi-
nite state-action spaces. Building on the well-
established performance of TRPO in the reinforce-
ment learning (RL) setting, we extend its method-
ology to the MFG framework, leveraging its stabil-
ity and robustness in policy optimization. Under
standard assumptions in the MFG literature, we
provide a rigorous analysis of MF-TRPO, estab-
lishing theoretical guarantees on its convergence.
Our results cover both the exact formulation of
the algorithm and its sample-based counterpart,
where we derive high-probability guarantees and
finite sample complexity. This work advances
MFG optimization by bridging RL techniques
with mean-field decision-making, offering a theo-
retically grounded approach to solving complex
multi-agent problems.

1. Introduction
In an increasingly interconnected world, autonomous sys-
tems capable of adaptive decision-making have become
indispensable. Their range of applications is vast and contin-
uously expanding, spanning from autonomous driving (see,
e.g., Shalev-Shwartz et al., 2016) to energy market con-
trol (Samvelyan et al., 2019), and from traffic light opti-
mization (Wiering et al., 2000) to advanced robotic sys-
tems (Matignon et al., 2007; Kober et al., 2013).

A powerful framework to model these adaptive decision
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agents is Multi-Agent Reinforcement Learning (MARL),
which enables agents to learn optimal strategies through
interaction with both the environment and other agents (see,
e.g., Zhang et al., 2021; Gronauer & Diepold, 2022). How-
ever, MARL faces two major challenges: scalability and
non-stationarity. As the number of agents increases, the
joint state-action space grows exponentially, making learn-
ing computationally prohibitive. Additionally, because all
agents are simultaneously updating their policies, the en-
vironment becomes non-stationary from the perspective of
each individual agent, severely hindering convergence and
stability. To address these issues, many techniques have
been considered, like Centralized Training with Decentral-
ized Execution (CTDE) (Foerster et al., 2018) and attention
approaches (Iqbal & Sha, 2019). While these methods im-
prove stability and learning efficiency, it comes at a signifi-
cant computational cost, limiting its scalability in large-scale
systems.

Under the assumptions of homogeneity and anonymity, com-
plex multi-agent games can be effectively approximated us-
ing Mean-Field Games (MFG). MFG provide an asymptotic
approximation of exchangeable particle systems as the num-
ber of agents grows. Originally introduced by Lasry & Lions
(2006a;b; 2007) and Huang et al. (2003; 2005; 2006a;b),
MFG replace direct agent-to-agent interactions with a rep-
resentative agent interacting with the statistical distribution
of the population. Due to their analytical tractability and
broad applicability, MFG have been widely adopted across
various domains, including economic modeling (Bassière
et al., 2024), finance (Lavigne & Tankov, 2023; Carmona
et al., 2013), public health dynamics (Doncel et al., 2022),
and energy storage (Alasseur et al., 2020).

In particular, Mean-Field Reinforcement Learning (MFRL)
arises as the scaling limit of many MARL problems, posi-
tioning itself at the intersection of MFG and Reinforcement
Learning (RL). In this setting, RL techniques are employed
to solve equilibrium problems in large-scale multi-agent sys-
tems. At the core of this framework, each agent optimizes
its objective while treating the mean-field distribution as
fixed. This structure closely resembles CTDE in the MARL
setting, but its computational cost is significantly reduced
due to the mean-field approximation. In turn, the distribu-
tion evolves dynamically based on the collective behavior

1



Finite-Sample Convergence Bounds for MF-TRPO

of all agents. This formulation extends the classical notion
of Nash equilibrium to the Mean-Field Nash Equilibrium
(MFNE), where equilibrium emerges from the interaction
between individual decision-making and population-wide
updates.

MFNE provide an adequate approximation for large-
scale multi-agent interactions, achieving an Õ(1/

√
N)-

approximate Nash equilibrium in the corresponding N -
player game (Cardaliaguet et al., 2019; Fischer & Silva,
2021; Flandoli et al., 2022). This approximation drastically
reduces the complexity of analyzing strategic interactions in
large populations, establishing MFG as a scalable and com-
putationally efficient framework for real-world applications.

Related works. Recent work in MFG has explored the
use of proximal methods due to their stability and empir-
ical performance. Notably, Pérolat et al. (2022); Perrin
et al. (2022) analyze Online Mirror Descent (OMD) from
a model-specific perspective, while Yardim et al. (2023)
extend this direction with a model-free approach. However,
their analysis does not address population updates, operat-
ing in a restricted no-manipulation regime. These works
have demonstrated the effectiveness of proximal methods in
MFG, which is consistent with our research direction.

We extend this line of research by establishing finite-sample
complexity guarantees providing a rigorous theoretical
framework that ensures provable efficiency in solving MFG.
Moreover, we explicitly incorporates the role of monotonic-
ity in stabilizing population dynamics, a key aspect of the
ergodic structure in MFG, and relax overly restrictive as-
sumptions—such as uniformly bounded-away-from-zero
policies or absolute continuity with respect to the uniform
distribution. With a more flexible framework, we get refined
learning guarantees under weaker assumptions, achieving
an Õ(1/L) convergence rate in the optimization problem
with improved sample efficiency, thus broadening the appli-
cability of these methods. For an additional discussion on
related work, we refer to Appendix A.

Contributions. We propose Exact MF-TRPO and
Sample-Based MF-TRPO, trust-region-based algo-
rithms for computing approximate MFNE in the MFRL
setting. Our method combines the structure of ergodic
MFG with the stability of trust-region optimization to
enable theoretically grounded learning in multi-agent
environments. Our key contributions are:

1. Theoretical analysis of Exact MF-TRPO with a
bound on the exploitability of the learned policies,
quantifying the achieved εK -MFNE after K iterations.

2. A sample-based variant, Sample-Based
MF-TRPO, with finite-sample complexity guar-
antees under the ν-paradigm, requiring at most

Õ(1/ε6) environment interactions to reach an
ε-MFNE.

3. Numerical experiments validating the efficiency and
effectiveness of our approach in representative MFRL
settings.

2. Framework
We use the discounted formulation as an approximation to
the ergodic setting, a standard approach in the literature (see,
e.g., Laurière et al., 2022). This methodology allows us
to build on the well-established theoretical framework of
discounted RL while capturing the long-term behavior of
the ergodic formulation in a stepwise fashion. In partic-
ular, we adopt the Mean-Field Markov Decision Process
(MF-MDP) framework, a natural extension of the infinite-
horizon discounted MDP commonly studied in RL (Sutton
& Barto, 2018a). This adaptation preserves the computa-
tional tractability and convergence properties of the dis-
counted problem while approximating the stationary dynam-
ics of the ergodic setting. The MF-MDP framework thus
serves as a bridge between classical RL and MFG models
and provides a structured approach to policy optimization
that is valid for both finite horizons and stationary regimes.
A detailed discussion of this approach and its theoretical
foundations can be found in the Appendix B.

Notations. For a finite set X , let P(X ) denote the set of
probability distributions over X . A finite MF-MDP is a
tuple (S,A,P , r , γ), where S is a finite state space, A is
a finite action space, P : S × A × P(S) → P(S) is the
transition function, r : S × A × P(S) → R is the reward
function, γ ∈ [0, 1) is the discount factor. Since we consider
probability distributions over a finite state space of size |S|,
they can be identified as vectors in R|S|; thus, we define the
inner product ⟨·, ·⟩ and the Euclidean norm ∥·∥2 accordingly.

We assume that r is continuous, thus bounded, and denote
by ∥r∥∞ its upper bound, i.e., r (s, a, µ) ∈ [0, ∥r∥∞], for
(s, a, µ) ∈ S × A × P(S). Given a policy π : S → P(A)
and a population profile µ ∈ P(S), we define the transition
operator Pπ

µ as the transition matrix induced by the proba-
bility kernel, where actions are sampled as a ∼ π(s) under
the mean-field parameter µ, i.e.,

Pπ
µ (s, s

′) =
∑
a∈A

π(a|s)P (s′|s, a, µ) , for s, s′ ∈ S ,

µPπ
µ (s) =

∑
s0∈S

µ(s0)P
π
µ (s0, s) , for s ∈ S .

(1)

Denote λπ,µ the stationary distribution of the Markov chain
Pπ
µ . Let Π to be set the policies, i.e., the set of func-

tions from S to P(A). For s ∈ S, and π, π′ ∈ Π, the
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Kullback–Leibler (KL) divergence between the two distribu-
tions π(·|s) and π′(·|s) is defined as KL(π(·|s)∥π′(·|s)) =∑

a∈A π(a|s) log(π(a|s)/π′(a|s)), if π is absolutely con-
tinuous to π′, KL(π(·|s)∥π′(·|s)) = ∞ otherwise. We
use the notation Õ(·) to hide polylogarithmic factors in the
asymptotic complexity.

Problem formulation. As in Laurière et al. (2022), the
discounted stationary problem within a mean-field interac-
tion setting is designed to approximate the N -player game
in the ergodic regime, as γ → 1. In this setting, a repre-
sentative agent in the mean-field approximation seeks to
maximize the expected discounted sum of rewards while
interacting with the population distribution µ under a policy
π. The objective function is given by

JMFG(π, µ, ξ)

:= E

[ ∞∑
t=0

γt
[
r (st, at, µ) + η log

(
π(at|st)

)]]
,

(2)

Given an initial state s0 ∼ ξ, actions are sampled at each
time step as at ∼ π(· | st), with state transitions governed
by the kernel P , i.e., st+1 ∼ P (· | st, at, µ). We consider an
entropy-regularized variant of the classical MFG problem,
where η denotes the entropy regularization parameter.

As MFG are an Õ(1/
√
N)-approximation of the N -player

game, it is natural to introduce an additional regularization
term. If this extra bias remains within the order of the ex-
isting approximation error, model fidelity is thus preserved.
Regularization enhances solution stability, which is partic-
ularly beneficial given the inherent nonlinearity of MFG
optimization. This is especially advantageous in RL set-
tings, where small perturbations in the value function or
policy updates can otherwise lead to erratic behavior.

The value function is defined as

V MFG(µ, ξ) := max
π∈Π

JMFG(π, µ, ξ) . (3)

With a slight abuse of notation, we use V MFG(µ, s) (resp.
V MFG(µ) and JMFG(π, µ)) to denote V MFG(µ, δs) for s ∈
S (resp. V MFG(µ, µ) and JMFG(π, µ, µ)).

Furthermore, let Qπ
µ denote the regularized Q-function, de-

fined as

Qπ
µ(s, a)

= r (s, a, µ) + γ
∑
s′∈S

P (s′|s, a, µ) · JMFG(π, µ, s′) . (4)

We denote πµ the optimal policy of optimization prob-
lem V MFG (µ), which is unique in the entropy-regularized
RL (see, e.g. Haarnoja et al., 2017; Geist et al., 2019).

Define dπ
ξ,µ (resp. dπ

s,µ and dπ
µ ) the occupation measure of

the process (st)t induced by this policy, under the popula-
tion distribution µ and initial distribution ξ (resp. δs and µ),
i.e.,

dπ
ξ,µ(s, a) = (1− γ)

∞∑
t=0

γtP ((st, at) = (s, a)) , (5)

with s0 ∼ ξ, at ∼ πt(·|st), and st+1 ∼ P (·|st, at, µ), and
d
π

µ,ξ its spatial marginal, i.e.,

d
π

µ,ξ(s) =
∑
a∈A

dπ
ξ,µ(s, a) . (6)

Interactions with the environment. In the RL literature,
various paradigms have been proposed to structure the in-
teraction between an agent and its environment, influencing
how data is collected and utilized for policy updates. In our
setting, two fundamental actions can be performed: reset
and step. The reset action initializes the environment by
sampling a new state from the distribution ν, effectively
allowing the agent to restart from a fresh initial condition.
The step action, on the other hand, takes a chosen action
a and the mean-field distribution profile µ, and progresses
the environment based on the current state s. Specifically, it
samples the next state from the transition kernel P (·|s, a, µ)
and updates the environment accordingly. This interaction
model aligns with previous works (Kakade, 2003; Shani
et al., 2020) and provides an intermediate assumption in the
spectrum of data access models in RL. It is therefore weaker
than assuming full access to the true model or a generative
model, where arbitrary state-action pairs can be queried,
but stronger than the setting where no restarts are allowed,
restricting exploration to trajectories induced by the current
policy. This ensures reliable state exploration and promotes
stable convergence.

Nash Equilibrium. Our work aims to compute a MFNE.
A Nash equilibrium (NE), a fundamental concept in game
theory, represents a stable state in which no player can
improve her payoff by unilaterally changing her strategy,
i.e., each player reacts optimally to the strategies of the
others.

In the MFG framework, as the number of agents approaches
infinity, this concept extends to a situation in which each
agent optimally adapts its strategy to the behavior of the
collective population. This leads to a mean-field fixed-
point condition in which individual decisions shape and are
shaped by the evolving population distribution. This formu-
lation makes MFG a powerful tool for analyzing large-scale
strategic interactions.

Definition 2.1 (MFNE). A pair (π⋆, µ⋆) is said to be a
MFNE if it satisfies the following two conditions:
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1. (Optimality under the population dynamics) The
policy π⋆ is an optimal solution to (3), given the popu-
lation evolution µ⋆, i.e.,

JMFG(π⋆, µ⋆, µ⋆) = max
π∈Π

JMFG(π, µ⋆, µ⋆) .

2. (Consistency of the population evolution) The popu-
lation distribution µ⋆ is a fixed point of the mean-field
evolution equation

µ⋆ = µ⋆P
µ⋆
π⋆

.

In this definition, the first condition ensures that no indi-
vidual agent can improve their long-term objective by uni-
laterally deviating from the equilibrium policy π⋆. Given
the equilibrium population distribution µ⋆, this optimality
condition guarantees that the policy π⋆ remains the best
possible strategy for each agent, thereby ensuring individual
rationality.

The second condition enforces consistency in population
dynamics: when all agents follow the equilibrium policy
π⋆, the resulting population distribution remains stable over
time. This fixed-point property ensures the system’s long-
term evolution does not deviate from the equilibrium state.

This notion of equilibrium, introduced by Nash (1950)
and extended to the mean-field setting by Lasry & Lions
(2006a;b; 2007); Huang et al. (2003; 2005; 2006a), is fun-
damental in game theory. In these works, the authors gen-
eralize the results of Nash (1951), proving the existence of
at least one NE using the Brouwer Fixed-Point Theorem.
This non-constructive result holds under mild assumptions,
such as the continuity of payoff functions and the compact-
ness of strategy spaces, forming a cornerstone for analyzing
strategic interactions. However, explicitly computing such
equilibria remains challenging, particularly in the multi-
player regime (Austrin et al., 2011).

Exploitability. A key metric for evaluating the deviation
from a NE is exploitability (Laurière et al., 2022). Formally,
the mean-field setting, it is defined as:

ϕ(π, µ) :=

max
π′∈Π

JMFG (π′, λπ,µ, λπ,µ)− JMFG (π, λπ,µ, λπ,µ) .

(7)

This quantity measures the potential improvement an indi-
vidual agent could achieve by deviating unilaterally from
the learned policy π, given as mean-field parameter the
stationary distribution λπ,µ.

Definition 2.2. A pair (πε, µε) is said to be a ε-MFNE, if
its exploitability is bounded by ε, i.e., ϕ(πε, µε) ≤ ε.

3. Assumptions
We outline the key assumptions that guarantee the well-
posedness and stability of the MFG problem, providing a
foundation for deriving finite-sample complexity bounds for
the proposed algorithm.
A-1. Let r (resp. P ) be Lipschitz continuous with respect to
µ, with Lipschitz constant Lr

µ (resp. LP
µ ), i.e., for s, s′ ∈ S ,

a ∈ A, and µ, µ′ ∈ P(S), we have

|r (s, a, µ)− r (s, a, µ′)| ≤ Lr ∥µ− µ′∥2 ,
|P (s′|s, a, µ)− P (s′|s, a′, µ′)| ≤ LP ∥µ− µ′∥2 .

Lipschitz continuity for the MDP parameters ensures that
small perturbations in the state or action lead to propor-
tionally small changes in the transition dynamics. This
assumption is well established in the RL literature (Asadi
et al., 2018; Le Lan et al., 2021) and it facilitates the deriva-
tion of meaningful error bounds and convergence rates in
policy optimization. From this, we establish Lipschitz con-
tinuity of the optimal policies w.r.t. mean-field parameter as
follows (cf. Corollary E.4).

Proposition 3.1. Suppose Assumption 1 holds. Then, there
exists a constant Cπ,µ ≥ 0 such that, for µ, µ′ ∈ P(S),

sup
s∈S
∥πµ(·|s)− πµ′(·|s)∥2TV ≤ Cπ,µ ∥µ− µ′∥2 ,

where πµ is the optimal policy associated with the mean-field
distribution µ.

This result connects the structural properties of the MFG
framework with the behavior of the associated optimal poli-
cies, forming a key theoretical foundation for the analysis
of the proposed algorithms.

A-2. There exist an integer M ≥ 1 and a real number
Cop,MFG < 1 such that, for µ ∈ P(S), we have〈

µ− µ′, µ
(
Pπµ
µ

)M
− µ′

(
P

πµ′

µ′

)M〉
≤ Cop,MFG ∥µ− µ′∥2 .

This monotonicity condition of the mean-field update is
employed in various forms throughout the MFG litera-
ture (Angiuli et al., 2021; 2023; Yardim et al., 2023). This
condition, originally introduced in the foundational works
by Huang et al. (2003; 2005; 2006a;b), ensures that iterative
updates to the population distribution progressively aligns
the system with the NE.

This condition extends the classical contractivity condition,
which corresponds to M = 1 (see, e.g., Guo et al., 2019).
The condition might fail for M = 1 but hold for some
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M > 1, reflecting the combined effect of the Lipschitz
continuity of the regularized best response and the ergod-
icity of the Markov reward process P

πµ
µ . A full in-depth

discussion of this condition and its implications is provided
in Appendix E.4. As the regularized best response admits
a unique optimizer πµ, the previous condition ensures the
uniqueness of the fixed point of the associated operator, i.e.,

µ⋆ = µ⋆P
πµ⋆
µ⋆ , (8)

with µ⋆ the unique fixed point of this operator. This implies
that, in this setting, we obtain the uniqueness of the MFNE,
corresponding to the pair (πµ⋆

, µ⋆).

A-3. The MF-MDP (S,A,P , r , γ) is unichain: for every
fixed µ ∈ P(S), every stationary policy π induces a unique
stationary distribution λπ,µ over the state space, satisfying,
for all s ∈ S, the following equation:

λπ,µ(s) =
∑

(s′,a′)∈S×A

P (s | s′, a′, µ)π(a′ | s′)λπ,µ(s′) .

Moreover, there exist constants ρ ∈ (0, 1] and CErg > 0
such that the following uniform mixing property holds for
all ξ, µ ∈ P(S) and t ≥ 0:∥∥∥ξ (Pπµ

µ

)t − λπµ,µ

∥∥∥
TV
≤ CErgρ

t . (9)

The unichain property eliminates ambiguities in the initial
population distribution caused by multiple recurrent classes,
which could otherwise complicate value function evalua-
tion and policy improvement steps. As highlighted in Shani
et al. (2020), optimal policies are defined only within the
recurrent states of the Markov reward process at equilib-
rium. Moreover, the ergodicity property naturally aligns
with the regularization framework, as it promotes explo-
ration within the Markov chain, leading to a more robust
and stable optimization landscape.
A-4. We have that

sup
µ∈P(S)

sup
s∈S

∣∣∣∣∣d
πµ

µ,µ(s)

ν(s)

∣∣∣∣∣ <∞ .

The structured interaction with the environment in the con-
sidered RL paradigm requires this concentration property of
the occupation measure with respect to the reset distribution
ν. This property enhances sample efficiency and aids in
the accurate estimation of key quantities, such as the value
function.

4. Exact algorithm: Exact MF-TRPO

We now introduce Exact MF-TRPO to solve the opti-
mization problem (3). Note that the entropic regularization

Algorithm 1 Exact TRPO(µ)

1: Initialize: π0 is the uniform policy.
2: Input: L.
3: for ℓ ∈ [L] do
4: JMFG(πℓ, µ, µ)← µ(I− γPπℓ

µ )−1rπk
µ

5: Sdπℓ
ν,µ

:= {s ∈ S : dπℓ
ν,µ(s) > 0}

6: for s ∈ Sdπℓ
ν,µ

do
7: for a ∈ A do
8: Qπℓ,µ

(s, a)← r (s, a, µ)

+γ
∑

s′ P (s′|s, a, µ)JMFG(πℓ, µ, s
′)

9: end for
10: πℓ+1(a|s)← PolicyUpdate(πℓ, Qπℓ,µ; ℓ)(a, s)

11: end for
12: end for
13: Output: πL.

used in Exact MF-TRPO is particularly well-suited for
TRPO (see, e.g., Shani et al., 2020), as the proximal policy
update fully exploits the entropy term, enabling a soft-max
closed-form updates in terms of the Q-functions. This prop-
erty enhances convergence by ensuring smoother and more
stable policy iterations.

Although (3) is not a convex optimization problem, the
adaptive nature of the regularization term allows us to use
mirror descent techniques from convex analysis to establish
strong convergence guarantees. In particular, we derive
finite-sample complexity bounds showing that show that
Exact MF-TRPO converges at a rate of Õ(1/L).

TRPO. For a fixed mean-field population distribution µ,
Exact TRPO(µ) provides a reliable approximation of the
value function. The convergence of the algorithm is ex-
plicitly influenced by the regularization parameter η, which
determines the optimal step size 1/(η(ℓ+ 2)).

The proposed algorithm relies on the subroutine
PolicyUpdate, a key step in refining the policy
at each iteration. This update mechanism is inherently
tied to the regularization scheme employed in the mirror
ascent formulation of TRPO. Specifically, with entropic
regularization, as shown in Beck (2017), the policy update
admits a closed-form solution in the form of a softmax
function. This structure inherently ensures that the updated
policy remains within the probabilistic simplex without
requiring additional projections. This fosters smooth and
stable learning while preventing overly aggressive updates
that could destabilize the optimization process.

This policy update leverages a function Q : S ×A → R and
a policy π ∈ Π at iteration ℓ, leading to an explicit update

5
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Algorithm 2 Exact MF-TRPO

1: Input: Initial distribution µ0, K.
2: Initialize: Initial policy π0 is the uniform policy.
3: for k ∈ [K] do
4: πk ←Exact TRPO(µk−1)

5: µk ← µk−1 + βk

(
µk−1

(
Pπk
µk−1

)M
− µk−1

)
# population update

6: end for
7: Output: µK .

rule given by

PolicyUpdate(π,Q; ℓ)(a, s)

=
π(a|s) exp (αℓ (Q(s, a)− η log π(a|s)))∑

a′∈A π(a
′|s) exp (αℓ (Q(s, a′)− η log π(a′|s)))

,

(10)

with learning rate αℓ = 1/(η(ℓ+ 2)).

Shani et al. (2020) establishes error bounds for the approxi-
mation of value functions that can be directly generalized
to our setting. Building on these results, we quantify the
gap between the value function of the computed policy and
the optimal value function under the given mean-field distri-
bution. This allows to control the policy itself, and derive
policy guarantees.

Proposition 4.1. Suppose that Assumptions 1 and 3 hold.
Let {πℓ}Lℓ=0 be the sequence generated by the Exact
TRPO(µ) algorithm. Then, there exists a constant C > 0
such that, for all L ≥ 1, we have

Es∼µ

[
∥πL(·|s)− πµ(·|s)∥2TV

]
≤ C logL

L
.

MF-TRPO. We now present Exact MF-TRPO, which
iteratively solves the MFG problem (3) by updating the pop-
ulation distribution µ using the output of Exact TRPO(µ).
This approach assumes direct access to the transition ker-
nel and cost function, eliminating the need for stochastic
approximation in policy updates.

The analysis of Exact MF-TRPO is instrumental to under-
stand the performances of its sample-based counterpart. We
do this providing precise theoretical guarantees on conver-
gence rates without the additional complexity of sampling-
induced errors. Building on this deterministic setup, we
then focus on the convergence behavior of the broader
Sample-Based MF-TRPO framework. We use the la-
bel “informal” to avoid overloading the main text with
technical assumptions (e.g., on learning rates), rigorously
stated in Appendix C.

Proposition 4.2 (informal). Suppose that Assumptions 1, 2,
and 3 hold. Then, there exists a constantC > 0 such that the
sequence {µk}k≥0 generated by Exact MF-TRPO satis-

fies

∥µk − µ⋆∥22 ≤2 exp

−τ
2

k∑
j=1

βj

+ C
log(L)

L
,

for k ≥ 1, with τ := 1− Cop,MFG.

All constants appearing in our results are explicitly defined
and detailed in Appendix C, where we also provide complete
proofs supporting our theoretical guarantees.

This convergence result proves its effectiveness in tackling
the challenges inherent in the non-linear and non-gradient
structure of MFNE. Below, we summarize the key insights
derived from this result:

• Convergence. We establish an exponential rate of
convergence in the first term of the bound to the equi-
librium population distribution µ⋆, while the second
one captures the finite-sample bias in the best-response
computation.

• Learning Rates constraints. The theorem provides ex-
plicit constraints on the step size βk (cf. condition (17)),
ensuring stability and preventing oscillations or diver-
gence in the optimization process.

• Explicit Dependence on Model Parameters. All con-
stants in the convergence bound are fully character-
ized in terms of the structural parameters of the model
(cf. Appendix C).

• Controlled Policy Learning Bias. The bias intro-
duced by policy updates in Exact TRPO, bounded
by log(L)/L (Proposition 4.2), remains controlled
throughout the iterative process. This ensures algo-
rithmic stability, even with approximations in policy
optimization.

With these results, we can now explicitly quantify the pa-
rameter ε corresponding to the proximity of our obtained
solution with respect to the MFNE.
Corollary 4.3. Suppose that Assumptions 1, 2, and 3 hold.
Let µK (resp. πK+1) the output of Exact MF-TRPO (resp.
Exact TRPO(µK)). Then, there exists a constant C > 0,
such that (πK+1, µK) is εK-MFNE, with

εK = C exp

−τ
4

K∑
j=1

βj

+ C

√
log(L)

L
.

5. Stochastic approximation: Sample-Based
MF-TRPO

We provide Sample-Based MF-TRPO, a model-free
variant of the previous algorithm designed to operate with-
out explicit knowledge of the environment’s dynamics, nor

6
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Algorithm 3 Sample-Based TRPO(µ)

1: Initialize: π0(·|s) = U(A) for s ∈ S.
2: Input: Iℓ, Tℓ, ϵ, δ > 0, L.
3: for ℓ ∈ [L] do
4: SIℓ

ℓ = {}
5: Qπ̂ℓ,µ

(s, a) = 0, nℓ(s, a) = 0, for any (s, a)
6: for i = 1, . . . , Iℓ do
7: Sample si ∼ d

π̂ℓ

ν,µ(·), ai ∼ U(A)
8: Qπ̂ℓ,µ

(si, ai, i)← r (si, ai, µ)+∑Tℓ

t=1 γ
tE

st∼δsi (P
π̂ℓ
µ )t,at∼π̂ℓ(·|st)

[r (st, at, µ)

+η log
(
π̂ℓ(at|st)

)]
9: Qπ̂ℓ,µ

(si, ai)← Qπ̂ℓ,µ
(si, ai) +Qπ̂ℓ,µ

(si, ai, i)
10: nℓ(si, ai)← nℓ(si, ai) + 1
11: SIℓ

ℓ = SIℓ
ℓ ∪ {si}

12: end for
13: for s ∈ SIℓ

ℓ do
14: for a ∈ A do
15: Qπ̂ℓ,µ

(s, a)←
|A|Qπ̂ℓ,µ

(s,a)∑
a′∈A nℓ(s,a′)

16: end for
17: π̂ℓ+1(a|s)← PolicyUpdate(π̂ℓ, Qπ̂ℓ,µ

; ℓ)(a, s)
18: end for
19: end for
20: Output: π̂Unif,µ̂k

L .

the reward function. Sample-Based MF-TRPO utilizes
sampled trajectories to estimate these updates, making it
more applicable to real-world scenarios.

TRPO. First, we adapt Exact TRPO to estimate policy
updates in a data-driven manner. This approach leverages
sampled trajectories to approximate the policy gradient, pro-
viding quantitative bounds on the proximity of the best
response. Additionally, this TRPO formulation is particu-
larly well-suited to the considered oracle-based framework,
incorporating the ν-restart modeling. This structure ensures
robust exploration while maintaining stability in policy up-
dates, aligning naturally with the trust-region optimization
paradigm.

The inherent stochasticity in the updates prevents us from
establishing sample complexity bounds on the last iter-
ate of the algorithm. However, by leveraging an averag-
ing scheme, implemented through a dedicated subroutine
(cf. Remark D.1), we mitigate this variability and provide
clear quantitative bounds on the desired gap. Specifically,
the policy we focus on is the uniform mixture π̂Unif,µL over
the first L+ 1 policies. This averaging scheme is standard
in the RL literature and, in the unregularized case, satisfies
the identity

1

L+ 1

L∑
ℓ=0

JMFG(π̂ℓ, µ, µ) = JMFG(π̂Unif,µL , µ, µ) .

(11)

While we do not have a statistically feasible expression
for this mixture policy, it is straightforward to sample from
π̂Unif,µL , using Uniform-Mixture({π̂ℓ}ℓ=0,...,L), as dis-
cussed in Remark D.1.

Proposition 5.1. Suppose Assumptions 1, 2, 3, and 4
hold. Fix ϵ, δ > 0. Let π̂Unif,µ̂k

L be the output of
Sample-Based TRPO(µ), over L iterations.

Then, there exists C > 0 such that the following holds with
probability greater than 1− δ

Es∼µ

[∥∥∥π̂Unif,µL (·|s)− πµ(·|s)
∥∥∥2
TV

]
≤ C

(
logL

L
+ ϵ

)
.

All the constants appearing in our results are explicitly de-
fined and detailed in Appendix D, where we also provide
the complete proofs supporting our theoretical guarantees.

MF-TRPO. We present a version of Sample-Based
MF-TRPO, with the full algorithm and detailed implemen-
tation provided in Appendix D.3.

One key aspect of the algorithm is the initialization step.
Unlike in a generative model paradigm, access to a state
s ∼ µ is only available through a subroutine initialized at the
restart distribution ν. For further details on this procedure,
we refer to Appendix D.2.

The theoretical foundation of the convergence guarantees of
this algorithm relies on deriving high-probability estimates

Algorithm 4 Sample-Based MF-TRPO (informal)

1: Input: Initial distribution µ0, K.
2: Initialize: Initial policy π0 is the uniform policy.
3: for k ∈ [K] do
4: π̂k ←Sample-Based TRPO(µ̂k−1).
5: for p ∈ [P ] do
6: Initialize s0,p,k ∼ µ̂k−1.
7: for m ∈ [M ] do
8: sm,p,k ∼ P

µ̂k−1

π̂k
(·|sm−1,p,k)

9: end for
10: ζ̂k,p ← 1{sM,p,k}(·).
11: end for
12: ζ̂k ← 1

P

∑P
p=1 ζ̂k,p.

13: µ̂k ← µ̂k−1 + βk

(
ζ̂k − µ̂k−1

)
14: end for
15: Output: µK .

(cf. Proposition D.3). This is a crucial step in sample com-
plexity bounds and is achieved using a martingale-based
argument (Harvey et al., 2019). By leveraging concentra-
tion inequalities for martingales, the analysis ensures that
the error in estimating key quantities, such as the policy
value and state distributions, remains controlled with high
probability throughout the learning process.

7
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Proposition 5.2 (informal). Suppose Assumptions 1, 2, 3,
and 4 hold. Fix ϵ, δ > 0. Then, there exists a constant
C > 0 such that the sequence {µk}k≥0 generated by
Sample-Based MF-TRPO satisfies, for k ≥ 1,

∥µk − µ⋆∥22 ≤2 exp

−τ
2

k∑
j=1

βj

+ C
log(L)

L
+ Cϵ .

All the constants appearing in our results are explicitly de-
fined and detailed in Appendix D, where we also provide
the complete proofs supporting our theoretical guarantees.

The sample-based convergence analysis of
Sample-Based MF-TRPO in the model-free set-
ting demonstrates that the algorithm preserves the same
desirata described in Section 4 driving the convergence
of its exact counterpart Exact MF-TRPO—proximal
updates, entropic regularization, and trust-region opti-
mization—remain intact. While having a model-agnostic
nature, its theoretical power of estimation of the MFNE
is preserved, as explicit knowledge of the environment’s
transition dynamics or reward structure is required. It builds
on trajectory sampling to iteratively refine policy updates
while maintaining stability and efficiency.

This result entails that the stochastic error in the estimation
of the mean-field distribution at each iteration does not
compound throughout the iterative process. By leveraging
concentration inequalities and high-probability guarantees,
the cumulative impact of these estimation errors remains
controlled, preventing divergence or instability. As a result,
Sample-Based MF-TRPO retains strong convergence
guarantees, making it a practical approach for solving MFG
in a data-driven manner.

Moreover, we can also bound the exploitability as follows.

Corollary 5.3. Suppose that Assumptions 1, 2, 3, and 4
hold. Fix ϵ, δ > 0. Let µ̂K (resp. π̂Unif,µ̂K

L ) the out-
put of Sample-Based MF-TRPO (resp. the iterates of
Sample-Based TRPO(µ̂k)). Then, there exists a con-
stant C > 0 such that

ϕ(π̂Unif,µ̂K

L , µ̂k)

≤ C

exp

−τ
4

K∑
j=1

βj

+

√
log(L)

L
+ ϵ

 .

The complexity analysis demonstrates that the proposed
Sample-Based MF-TRPO algorithm achieves a com-
putational cost scaling as Õ(1/ε6) to reach an ε-MFNE
(cf. Remark D.7). This scaling emerges naturally from two
principal contributions: the inner loop performing the policy
optimization via Sample-Based TRPO, and the outer
population distribution update. These results align well

with established convergence bounds in Shani et al. (2020),
emphasizing a balanced trade-off between computational
efficiency and the precision required to approximate the
MFNE.

6. Numerical Experiments
We present here the results of the numerical experiments
obtained with the Sample-Based MF-TRPO algorithm.
The environment considered is a Grid-Based Crowd Model-
ing game where, from a given initial distribution, agents are
tasked with moving through a grid, avoiding both static
obstacles and potential overcrowding. A representative
player’s state corresponds to her position within the grid,
and at every time step, she can choose to move in any di-
rection or stay in place. The reward structure imposes a
small penalty for movement, offers a slight incentive for
staying, and discourages agents from entering overcrowded
areas. In addition, agents are encouraged to move toward a
designated target, that is,

r̃ (s, a, µ) = r (s, a, µ) +max {0.3− 0.1 · d(s, starget); 0} ,

where d(·, ·) is a ℓ1-distance between the corresponding
states, and the crowd reward is defined as

r (s, a, µ) = −κ log(µ(s)) + Γ(a) ,

where Γ(a) = 0.2 · 1{a=Stay} − 0.2 · 1{a ̸=Stay}, with 1 be-
ing the indicator function and κ being a crowd-aversion
parameter. We refer to Appendix F for additional details
and experimental results related to the Exact MF-TRPO
algorithm. The environment used here is a 5 × 5 grid fea-
turing three walls located at coordinates (1, 2), (2, 2), and
(3, 2). The point of interest is located in the bottom-right
corner of the grid, and all the players start clustered in the
top-left corner. In Figure 1 it is possible to observe that the
exploitability behavior of the Sample-Based MF-TRPO
algorithm converges after a few iterations, matching the the-
oretical predictions, whereas Figure 2 illustrates the progres-
sion of the mean field distribution across three different time
steps during the learning phase, thus demonstrating that the
players progressively learn to distribute themselves around
the point of interest, preserving spread over the whole state
space.

7. Conclusion
In this work, we introduced Exact MF-TRPO, a novel
algorithm for computing MFNE in ergodic MFG. By lever-
aging the trust-region policy optimization framework, we
established explicit non-asymptotic convergence guarantees,
demonstrating that Exact MF-TRPO inherits the Õ(1/L)
rate from TRPO, ensuring efficient learning in structured
multi-agent systems.
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Figure 1. Exploitability achieved by the Sample-Based
MF-TRPO algorithm in the 5 × 5 Grid-Based Crowd Modeling
game with the bottom-right corner being a point of interest. The
left plot corresponds to η = 0.05, and the right to η = 0.3 with
results averaged over 10 and 3 random seeds, respectively.

Figure 2. Evolution of the mean field distribution for η = 0.05 in
the 5×5 Grid-Based Crowd Modeling game with the bottom-right
corner being a point of interest. From left to right: step 0, step 10
and step 200.

To bridge the gap between theoretical guarantees and prac-
tical applicability, we further developed Sample-Based
MF-TRPO, a model-free variant that estimates policy up-
dates solely from sampled trajectories, under the ν-restart
RL paradigm. Using concentration inequalities, we pro-
vided finite-sample complexity bounds for this algorithm,
proving convergence under more relaxed assumptions com-
pared to recent literature. Moreover, we show that a total
number of calls to the environment that scales as Õ(1/ε6),
consistent with standard RL results (see, e.g., Shani et al.,
2020). This result highlights the potential of RL techniques
for scalable and data-driven MFG solutions.

Overall, our work contributes to the growing intersection of
MFG and RL, providing both theoretical insights and algo-
rithmic advancements. Future directions include extending
these methods to more general MFG settings, such as those
with continuous state spaces, and exploring adaptive sam-
pling techniques to further improve efficiency in real-world
applications.
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M., and Takáč, M. Regularization of the policy updates
for stabilizing mean field games. In Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, pp.
361–372. Springer, 2023.

Anahtarci, B., Kariksiz, C. D., and Saldi, N. Learning mean-
field games with discounted and average costs. Journal
of Machine Learning Research, 24(17):1–59, 2023a.

9



Finite-Sample Convergence Bounds for MF-TRPO

Anahtarci, B., Kariksiz, C. D., and Saldi, N. Q-learning
in regularized mean-field games. Dynamic Games and
Applications, 13(1):89–117, 2023b.

Anand, E., Karmarkar, I., and Qu, G. Mean-field sampling
for cooperative multi-agent reinforcement learning. arXiv
preprint arXiv:2412.00661, 2024.

Angiuli, A., Fouque, J.-P., and Laurière, M. Unified rein-
forcement q-learning for mean field game and control
problems. arXiv preprint arXiv:2006.13912, 2021.

Angiuli, A., Fouque, J.-P., Laurière, M., and Zhang, M.
Convergence of multi-scale reinforcement Qlearning al-
gorithms for mean field game and control problems. arXiv
preprint arXiv:2312.06659, 2023.

Arapostathis, A., Biswas, A., and Carroll, J. On solu-
tions of mean field games with ergodic cost. Journal
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Ruszczyński, A. Risk-averse dynamic programming for
markov decision processes. Mathematical programming,
125:235–261, 2010.

Saldi, N. Discrete-time average-cost mean-field games on
polish spaces. Turkish Journal of Mathematics, 44(2):
463–480, 2020.

Samvelyan, M., Rashid, T., De Witt, C. S., Farquhar, G.,
Nardelli, N., Rudner, T. G., Hung, C.-M., Torr, P. H.,
Foerster, J., and Whiteson, S. The starcraft multi-agent
challenge. arXiv preprint arXiv:1902.04043, 2019.

Scherrer, B. and Geist, M. Local policy search in a convex
space and conservative policy iteration as boosted policy
search. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2014,
Nancy, France, September 15-19, 2014. Proceedings, Part
III 14, pp. 35–50. Springer, 2014.

Schulman, J., Levine, S., Moritz, P., Jordan, M., and Abbeel,
P. Trust region policy optimization. In Proceedings
of the 32nd International Conference on International
Conference on Machine Learning-Volume 37, pp. 1889–
1897, 2015.

Shalev-Shwartz, S., Shammah, S., and Shashua, A. Safe,
multi-agent, reinforcement learning for autonomous driv-
ing. arXiv preprint arXiv:1610.03295, 2016.

Shani, L., Efroni, Y., and Mannor, S. Adaptive trust region
policy optimization: Global convergence and faster rates
for regularized mdps. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 34(04):5668–5675, 2020.

Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y. Near-
optimal time and sample complexities for solving markov

12



Finite-Sample Convergence Bounds for MF-TRPO

decision processes with a generative model. Advances in
Neural Information Processing Systems, 31, 2018.

Sutton, R. and Barto, A. G. Reinforcement learning: An
introduction. SIAM Rev, 6(2):423, 2018a.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018b.
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Appendix
In the appendix, we provide a detailed exposition of the theoretical foundations and technical results supporting our main
contributions. In Appendix A, we give a broad description of related work in MFG and MFRL, and in Appendix B, we lay
out the fundamental framework of the MFG problem we aim to study. This section introduces the ergodic MFG formulation
and its connection to the discounted setting. We also discuss the role of entropic regularization in RL and MFG, emphasizing
its impact on stability and the approximation of Nash equilibria. In Appendix B.4, we present key assumptions we use in the
proofs. In Appendix C, we present the exact TRPO-based algorithm for solving the MFG problem. This section provides a
precise formulation of the exact methods and establishes its theoretical convergence guarantees. The adaptation of TRPO to
the MFG setting is examined in detail, leveraging the structure of entropy-regularized RL. We present formal results on
convergence rates and error bounds, ensuring the effectiveness and reliability of these methods in computing approximate
MFNE. In Appendix D, we extend our analysis to the sample-based version of the algorithm. Here, we derive global sample
complexity results and analyze the statistical error introduced by sampling. We establish high-probability bounds on the
approximation error at each iterations. Next, in Appendix E, we provide additional proofs and auxiliary results that support
the theoretical analysis conducted in the previous sections. These supplementary results play a crucial role in rigorously
validating the convergence and stability properties of our proposed algorithms. Finally, in Appendix F we provide additional
experimental details as well as experiments on exact versions of the algorithm.

A. Related works
Except for the well-known Linear-Quadratic (LQ) case, where explicit solutions can be derived analytically or through
simple ordinary differential equations, computing MFNE numerically remains a challenging and active research area. A
vast body of literature has focused on addressing the computational complexity of these models, leading to three major
methodological approaches.

The first class of methods relies on PDE approximations, leveraging the classical formulation of MFG through the Hamilton–
Jacobi–Bellman equation coupled with the Fokker–Planck–Kolmogorov equation (Achdou & Capuzzo-Dolcetta, 2010;
Achdou et al., 2012; Achdou & Porretta, 2016; Achdou et al., 2020). While mathematically elegant, these methods suffer
from the well-documented curse of dimensionality, as solving PDEs numerically becomes intractable in high-dimensional
state spaces.

The second approach leverages deep learning techniques with neural networks to approximate equilibrium solutions. These
methods exploit function approximation to bypass explicit PDE resolution, making them a promising alternative in high-
dimensional settings (Weinan et al., 2017; Chassagneux et al., 2019; Germain et al., 2022). However, they lack rigorous
convergence guarantees. Additionally, these methods struggle to capture model specifications in a purely data-driven manner
directly, limiting their adaptability in real-world applications.

The third category of numerical methods integrates RL techniques into the MFG framework, leading to two primary
subcategories. The first subcategory employs RL as a solver for a given MFG model, using value-based or policy-based
RL techniques to approximate Nash equilibria (Pérolat et al., 2022; Perrin et al., 2022). These approaches have achieved
state-of-the-art performance in various settings and have been successfully deployed in large-scale simulations.

The second subcategory focuses on developing model-free RL algorithms for solving MFG, often incorporating regularization
techniques to enhance stability (Cui & Koeppl, 2021; Perrin et al., 2021). While these methods show promising empirical
performance, theoretical guarantees on finite-sample complexity remain limited, particularly for model-based RL approaches.

RL for MFG. Among model-free RL approaches, we identify three main categories: value function-based methods, actor-
critic methods—which combine value-based and policy-based approaches—and policy-oriented methods. As in classical
RL, proximal methods have emerged as state-of-the-art techniques across a wide range of tasks, both in model-specific and
model-agnostic settings.

Several studies have explored Q-learning-based algorithms for MFG, establishing theoretical convergence guaran-
tees (Angiuli et al., 2021; 2023; Guo et al., 2019; Anahtarci et al., 2023b). However, these approaches rely on stringent
assumptions that are often difficult to verify in practice. Moreover, Q-learning operates within the generative model oracle
framework of RL, which assumes full query access to state-action transitions. In contrast, the restart oracle assumption
provides a significantly weaker paradigm, offering a more practical and adaptable alternative for real-world learning settings.
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Two-timescale updates have been employed in, e.g., Zaman et al. (2023) and Mao et al. (2022), where policy updates operate
on a faster timescale, while the population distribution evolves more slowly based on model-based estimates of state dynamics.
However, these approaches introduce significant challenges in both theoretical analysis and practical implementation. Their
convergence often relies on strong assumptions that are difficult to verify, particularly in non-stationary environments.

In the MFG setting, proximal methods have been adopted for their stability properties and strong empirical performance.
Among these approaches, we highlight the work of Pérolat et al. (2022), where the authors investigate Online Mirror Descent
(OMD) from a model-specific perspective. Yardim et al. (2023) build up in this direction, developing the model-free analysis.
Their approach, however, does not consider the crucial aspect of population updates, placing itself in the no-manipulation
regime. In contrast, our work explicitly discusses how the monotonicity assumption can stabilize the population evolution
up to a certain threshold, a perspective that aligns naturally with the ergodic nature of the Markov reward process once a
policy has been selected. This additional consideration allows us to provide a more refined analysis of the learning dynamics
in MFG, ensuring a more structured and well-posed approach to policy optimization.

Furthermore, Yardim et al. (2023) imposes stringent assumptions by requiring that policies remain uniformly bounded away
from zero by a fixed constant, effectively enforcing an overly rigid form of regularization. This constraint exceeds the
controlled bias typically introduced by entropic regularization. Notably, a similar assumption appears in Angiuli et al. (2021;
2023), where the Markov reward process is required to be absolutely continuous with respect to the uniform distribution
over the state-action space—a significantly stronger condition than our unichain assumption.

By adopting a more flexible framework, we relax these restrictive conditions while improving sample complexity, particularly
in terms of the number of required trajectories. Our analysis still achieves an Õ(1/L) error bound in trajectory estimates but
under significantly milder assumptions.

An interesting direction for future work would be to connect our framework with that of Anand et al. (2024), which
focuses on mean-field control. While their setting assumes cooperative agents optimizing a common objective, our work
addresses non-cooperative mean-field games. Despite this key difference, it would be valuable to explore how our analytical
tools—particularly for handling weak structural assumptions—could generalize their approach to broader settings.

B. Framework
B.1. Ergodic MFG problem

The ergodic problem focuses on optimizing the long-term average performance of a stochastic system over an infinite
time horizon. In contrast to finite time horizon problems, the emphasis is on stability and efficiency over time, making it
essential for operations such as energy systems, financial markets and resource management. The goal is to find stationary
policies that balance short-term costs with long-term gains. This approach is robust to uncertainties and ensures consistent
performance despite stochastic disturbances.

Ergodic MFG have been first studied in continuous time and space problems (see, e.g., Bardi & Priuli, 2014; Arapostathis
et al., 2017; Carmona & Laurière, 2021). In the context of discrete-time MFG, the ergodic setting has been studied by Saldi
(2020) under the terminology of average-cost MFG. Anahtarci et al. (2023a) proposed a learning algorithm based on
Q-learning and analyzed its convergence and sample complexity using a strict contraction argument.

Similarly, in Guo et al. (2023), the authors address the problem of evolving mean-field parameters, focusing on dynamically
adjusting the population distribution over time. This differs from our approach, where we aim to learn policies without
requiring explicit control or manipulation of the mean-field distribution at each step.

B.2. From ergodic MFG to discounted formulation

In this article, we focus on an ergodic equilibrium problem within the framework of mean-field games. This problem is
traditionally defined as the unique solution resulting from the optimization of a long-term average cost function

JMFG
erg (π, µ, ξ) := lim inf

T→∞

1

T
E

[
T∑

t=0

r (st, at, µt)

∣∣∣∣∣s0∼ξ, at∼πt(·|st), µt+1=µtPπt,µt

st+1∼P (·|st,at,µt)

]
,

for π = (πt)
∞
t=0. We seek Nash equilibria with respect to this cost function, i.e., a tuple (π⋆, µ, ξ) such that
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• JMFG
erg (π⋆, µ, ξ) = maxπ J

MFG
erg (π, µ, ξ) ;

• L(st) = µt.

Such a problem is independent of the initial condition ξ and is stationary. Therefore, we can consider only constant vectors
π = (πt)

∞
t=0 for πt = π, for any t ≥ 0, aπ ∈ Π.

Moreover, given the stationarity of both the policy and the problem, we can further restrict ourselves to time-invariant
policies and reformulate the problem as follows.

JMFG
erg,stat(π, µ) := lim inf

T→∞

1

T
E

[
T∑

t=0

r (st, at, µ)

∣∣∣∣∣s0∼µ, at∼πt(·|st),
st+1∼P (·|st,at,µ)

]
,

Moreover, as also noted in Carmona et al. (Chapter 7.1, Volume 1, 2018), we have that

JMFG
erg,stat(π, µ) := lim

γ→1

1

1− γ
JMFG
γ (π, µ, µ) ,

with

JMFG
γ (π, µ, ξ) = E

[ ∞∑
t=0

γtr (st, at, µ)

∣∣∣∣∣s0∼ξ, at∼πt(·|st),
st+1∼P (·|st,at,µ)

]
.

For this reason, for a γ close to 1, we can consider the problem as formulated in Section 2. This is also the consideration
behind the formulation of the ergodic problem presented in Laurière et al. (Remark 8, 2022).

B.3. Regularization

Entropy regularization in RL. Entropy regularization has been a prominent concept across various fields, including
RL (Sutton & Barto, 2018b; Szepesvári, 2022). In dynamic programming and RL contexts, entropy-regularized Bellman
equations and corresponding algorithms have been extensively studied to address key challenges. These include inducing
safe exploration (Fox et al., 2016) and designing risk-sensitive policies (Howard & Matheson, 1972; Marcus et al., 1997;
Ruszczyński, 2010). Additionally, these methods have been employed to model behaviors of imperfect decision-makers, as
demonstrated by Ziebart et al. (2010); Ziebart (2010); Braun et al. (2011).

Beyond dynamic programming approaches, direct policy search methods have emerged as a powerful alternative for
optimizing entropy-regularized objectives. These methods, which aim to drive safe online exploration in unknown Markov
decision processes, have been explored in works such as Williams & Peng (1991); Peters et al. (2010); Schulman et al.
(2015); Mnih (2016); O’Donoghue et al. (2017). Notably, state-of-the-art RL methods, including those by Mnih (2016);
Schulman et al. (2015), leverage entropy-regularized policy search to balance exploration and exploitation effectively,
highlighting the central role of regularization in achieving robust and safe learning.

Regularization, particularly the entropic one, has been extensively studied in the theoretical literature. In Neu et al. (2017),
the authors provide a comprehensive analysis of mirror descent methods for RL, highlighting how regularization influences
policy optimization and convergence properties. Similarly, Geist et al. (2019) formalize the theoretical impact of entropy
regularization, demonstrating its role in stabilizing policy updates and improving exploration.

Regularization in RL for MFG. In the inherently non-linear MFG setting, stabilizing policy updates is essential to
ensuring convergence and preventing oscillatory behavior. In this setting, the underlying dynamics involve the interplay of
numerous agents and necessitate a precise balance between individual and collective objectives. Regularization plays a key
role by smoothing the cost landscape, mitigating instability, and creating well-conditioned optimization problems, ultimately
leading to more reliable and efficient learning dynamics.

Moreover, MFG serve as approximations of the N -player game problem in MARL, leveraging assumptions like anonymity
and homogeneity to simplify the otherwise intractable dynamics of joint policy updates in large-scale systems. Intro-
ducing regularization into the MFG framework not only enhances stability but is theoretically justified, as the additional
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approximation error introduced by regularization is comparable to the inherent O(1/
√
N) error of the MFG approximation

itself.

Moreover, in the context of RL for MFG, regularize policies has been used to facilitates convergence of learning algo-
rithms. Cui & Koeppl (2021) show that strict contraction property used by several other works fail to holds in general.
The authors then studied a modified MFG with an entropy-regularized reward and showed that, for a sufficiently large
degree of regularization, policy-iteration type RL algorithms can be shown to converge using contraction techniques. A
similar approach has been used by Anahtarci et al. (2023b) to prove convergence of a Q-learning algorithm, and by Yardim
et al. (2023) to prove the convergence of policies learned by independent learners in a regularized MFG. On the empirical
side, policy regularization has also been used by Algumaei et al. (2023) through an algorithm relying on proximal policy
optimization (PPO).

B.4. Discussion on the assumptions

Lipschitz property of the MDP parameters. Assumption 1 of Lipschitz continuity on the parameters of the MDP, reward
function r and transition probability matrix P , implies that the MDP does not change abruptly with respect to the state
or action. This ensures that small perturbations in these variables lead to correspondingly small changes in the MDP’s
dynamics.

This assumption is well-established in the RL literature (see, e.g., Asadi et al., 2018; Le Lan et al., 2021) and serves several
critical purposes. First, it ensures the smoothness of value functions, essential for the stability of iterative optimization
methods Second, it enables the derivation of meaningful error bounds and convergence rates, as shown in foundational
works on policy optimization.

Moreover, as the reward function r is defined on a compact domain, since S andA are finite, it is guaranteed that ∥r∥∞ <∞.
A common practice in RL literature to normalize r , i.e., ∥r∥∞ = 1, without loss of generality (Mei et al., 2020). This
normalization simplifies expressions and makes algorithms scale-independent. However, in this work, we retain ∥r∥∞
explicitly in our analysis to emphasize the clear dependence of all constants and bounds on the magnitude of the reward
function. This approach ensures transparency in how the properties of r influence the theoretical results and practical
performance.

Unique recurrence property of the Markov reward process. To ensure the well-posedness of the TRPO algorithm
and derive meaningful performance bounds, we impose the unichain assumption 3. This assumption guarantees that the
Markov chain induced by any admissible policy has a single recurrent class, potentially accompanied by a set of transient
states. Such a property ensures that the long-term behavior of the Markov chain is well-defined, with a unique stationary
distribution for each policy.

The unichain property plays a pivotal role in stabilizing the analysis of RL algorithms, particularly TRPO, as highlighted
in Neu et al. (2017). It eliminates ambiguities on the initial population distribution arising from multiple recurrent classes,
which could otherwise complicate the evaluation of value functions and policy improvement steps. As shown in in Puterman
& Shin (1978), this condition is satisfied if all policies induce an irreducible and aperiodic Markov chain. Moreover, in
the regularized setting, the regularization term helps in its satisfaction. Therefore, for any mean-field population profile µ,
the Markov chain P

πµ
µ is irreducible and aperiodic, implying the existence of a unique stationary distribution λπµ,µ and

establishes the foundation for the mixing property (9).

The ergodicity assumption has been explored in various forms by different authors in the MFG literature. Notably, Angiuli
et al. (2021; 2023) impose the condition that the induced Markov chain is aperiodic and absolutely continuous with respect
to the uniform distribution over the state space. While this guarantees strong mixing properties, it is a highly restrictive
assumption, as it effectively enforces immediate communication between all states, which is often unrealistic in practical
applications. Instead, we generalize this assumption by adopting a standard ergodicity condition widely used in RL
literature (Mei et al., 2020). This approach maintains the necessary stability properties while allowing for more realistic
transition dynamics, ensuring broader applicability in complex multi-agent systems.

Finite concentration of the occupation measure. In this paper, we adopt a RL paradigm where access to the environment
is structured through a ν-restart, ensuring that each learning episode begins from a well-defined initial state distribution.
The concentration of the occupation measure assumption is crucial for the convergence of the Sample-Based TRPO
algorithm, ensuring that the estimation of the policy update remains stable and accurate over successive iterations. To
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compute this task, the algorithm operates in an episodic setting, where each episode begins by drawing an initial state
s0 from the restart distribution ν, followed by collecting a trajectory (s0, r0, s1, r1, . . . ) under the current policy πk. This
episodic structure allows the algorithm to interact with the MDP in a controlled manner, facilitating the estimation of
quantities like the value function JMFG.

This approach builds on the seminal work of Kakade (2003), which introduced the notion of a ν-restart model as an
intermediary assumption in RL. The ν-restart model is weaker than having direct access to the true model or a generative
model (Kearns & Singh, 1998; Azar et al., 2013; Sidford et al., 2018; Agarwal et al., 2020), as it does not require full
knowledge of the transition kernel or the reward function. At the same time, it is stronger than the unrestricted case where
no restarts are allowed, ensuring that the algorithm can sample states from a well-defined initial distribution at the start
of each episode. This controlled interaction with the environment is crucial for accurately estimating value functions and
gradients in the Sample-Based TRPO algorithm, ultimately enabling convergence guarantees.

The supremum in Assumption 4, often referred to as the concentrability coefficient, plays a critical role in the theoretical
analysis of policy search algorithms. This concept was initially highlighted in the foundational work of Kakade & Langford
(2002) and has since been extensively studied in the RL (RL) literature.

One of the reasons the concentrability coefficient has garnered attention is its frequent appearance in the analysis of
approximate policy iteration schemes. Research by Scherrer & Geist (2014) and Bhandari & Russo (2024) shows that the
concentrability coefficient often governs error propagation during learning. In essence, it provides bounds on how errors in
approximating value functions or policies propagate through successive updates.

C. Exact algorithms
Various algorithms have been proposed in the literature to address the exact MFG problem in scenarios where the MDP
kernel and the reward function are fully accessible. In this case, the value function and a best response can be computed using
dynamic programming and backward induction. This approach has been used, e.g., by Perrin et al. (2020) and Pérolat et al.
(2022) to implement Fictitious Play (FP) and Online Mirror Descent (OMD) respectively. Cui & Koeppl (2022) presented a
exact fixed point algorithm for graphon games. Angiuli et al. (2023) analyzed the convergence of a model-specific multi-scale
algorithm for MFG.

This line of research often stems from the classical control theory and optimization frameworks, tailored to solve specific
MFG problems with high precision. These methods focus on the exact representation of the MFG dynamics, providing
critical insights into the equilibrium behavior of large-agent systems. In this work, we propose a novel adaptation of the
TRPO algorithm, building on the robust framework of Shani et al. (2020). Our adaptation incorporates key elements of the
MFG structure, leveraging entropic regularization and mean-field population dynamics. Moreover, we establish finite sample
complexity results for this algorithm, demonstrating its theoretical convergence properties and its practical applicability in
solving the ergodic MFG problem under a finite state-action setting.

C.1. TRPO - exact formulation

TRPO, inherently structured as a mirror descent method, proves particularly well-suited for entropy-regularized settings.
This framework benefits from a significant simplification: the policy update admits a closed-form solution (Beck, 2017),
expressed in terms of the Q-function associated with the current policy. By recasting the optimization problem in terms of
Q-function computation, the algorithm focuses on the essential dynamics of the system, effectively bypassing the need for
direct policy optimization over a high-dimensional space.

This closed-form update leverages the softmax form of the policy, a direct consequence of entropy regularization. The
softmax structure ensures that the updated policies remain strictly in the interior of the probability simplex P(S), avoiding
deterministic solutions. This property not only facilitates numerical stability but also aligns with the theoretical foundations
of the regularized problem. The use of first-order conditions becomes feasible and efficient, as the regularization term
enforces a smooth, convex optimization landscape.

Moreover, the reward function’s linear dependence on the policy pairs seamlessly with the coercive nature of the entropy-
regularized optimization problem. The coercivity guarantees that the optimal policies minimize the objective within
the confines of the simplex, effectively balancing exploration and exploitation. This alignment between the problem
structure and the algorithm’s mechanics underscores the power of TRPO in achieving convergence while maintaining
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theoretical guarantees in entropy-regularized MFG settings. By translating the original optimization problem intoQ-function
evaluations, the algorithm provides a practical yet robust pathway to finding approximate Nash equilibria in complex
systems.

In the case where the mean-field population distribution parameter µ is fixed, the algorithm Exact TRPO(µ) provides a
robust approximation to the value function. By iteratively updating the policy using trust region optimization techniques,
the algorithm ensures convergence rates that explicitly depend on the regularization parameter η. Given a fixed η, the
learning rate 1/(η(ℓ + 2)) is optimally chosen to balance stability and efficiency in the policy updates. The following
result establishes the error bounds for the value function approximation, highlighting the role of entropic regularization
in convergence guarantees. Specifically, the bounds quantify the discrepancy between the value function induced by the
computed policy and the optimal value function for the given mean-field population profile.

Theorem C.1 (Theorem 16 in Shani et al. (2020)). Fix µ ∈ P(S) the initial distribution. Let {πℓ}Lℓ=0 be the sequence
generated by the Exact TRPO(µ) algorithm. Then, there exists a constant C ′

TRPO,0 > 0 such that

JMFG(πµ, µ, µ)− JMFG(πL, µ, µ) ≤ C ′
TRPO,0

(
∥r∥∞ + η2 log2 |A|

)
η(1− γ)3

· logL
L

. (12)

Corollary C.2. Let {πℓ}Lℓ=0 be the sequence generated by the Exact TRPO(µ) algorithm. Then, we have that

∑
s∈S
∥π̂L(·|s)− πµ(·|s)∥2TV µ(s) ≤ CTRPO,0 ·

logL

L
, (13)

with

CTRPO,0 := C ′
TRPO,0

2

η(1− γ)
·
(
∥r∥∞ + η2 log2 |A|

)
η(1− γ)3

.

Proof. Using Proposition E.2, we use the relationship between the total variation distance of a policy π to the optimal policy
πµ and the corresponding difference in their value functions obtainine

∑
s∈S
∥π̂L(·|s)− πµ(·|s)∥2TV µ(s) ≤

2

η(1− γ)

(
JMFG (πµ, µ, µ)−

1

L+ 1

L∑
ℓ=0

JMFG (πℓ, µ, µ)

)

Therefore, using (12), we get (13).

C.2. Exact algorithm

We now analyze Algorithm 5, where no approximation is made. This algorithm is exact and does not involve any
approximation. We provide a convergence result for this algorithm in the tabular setting.

Algorithm 5 ExactAlgo
1: Input: M .
2: Initialize: µ0.
3: for k ∈ [K] do

4: µk := µk−1 + βk

(
µk−1

(
P

πµk−1
µk−1

)M
− µk−1

)
. # Update population distribution

5: end for
6: Output: µK .

Proposition C.3. Suppose that Assumptions 1, 2, and 3 hold. Assume that, for any k ≥ 0,

βk <
τ

τ − Cop,MFG + C2
π,µC

2
Erg,M

, (14)
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with τ := 1− Cop,MFG. Then, the sequence {µk}k≥0 defined in ExactAlgo satisfies

∥µk − µ⋆∥22 ≤ (1− τβk) ∥µk−1 − µ⋆∥22 . (15)

Moreover, if the step-sizes βk satisfy

∞∑
k=0

βk =∞ , (16)

we have that the exact algorithm ExactAlgo converges to the optimal policy in the tabular setting.

Proof. We focus on the convergence of the sequence µk toward µ⋆. Recall that µ⋆ is the fixed point (8). From this condition,
we then have that

µ⋆ = µ⋆P
πµ⋆
µ⋆ = µ⋆

(
P

πµ⋆
µ⋆

)M
.

We then have that

∥µk − µ⋆∥22 =

∥∥∥∥µk−1 − µ⋆ + βk

{
µk−1

(
P

πµk−1
µk−1

)M
− µk−1

}∥∥∥∥2
2

=

∥∥∥∥µk−1 − µ⋆ + βk

{(
µk−1

(
P

πµk−1
µk−1

)M
− µk−1

)
−
(
µ⋆

(
P

πµ⋆
µ⋆

)M − µ⋆

)}∥∥∥∥2
2

=

∥∥∥∥(1− βk) (µk−1 − µ⋆) + βk

{
µk−1

(
P

πµk−1
µk−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M}∥∥∥∥2
2

=(1− βk)2 ∥µk−1 − µ⋆∥22 + 2(1− βk)βk
〈
µk−1 − µ⋆, µk−1

(
P

πµk−1
µk−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M〉
+ β2

k

∥∥∥∥µk−1

(
P

πµk−1
µk−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M∥∥∥∥2
2

.

Applying Assumptions 2, and Corollary E.4, together with Lemma E.1, the previous equality implies that

∥µk − µ⋆∥22 ≤
[
(1− βk) (1 + (2Cop,MFG − 1)βk) + β2

kC
2
π,µC

2
Erg,M

]
∥µk−1 − µ⋆∥22 .

Since βk satisfy (14), we then obtain 15. We see that 15 is a contraction inequality. Combining this with (16), it implies that
the sequence µk converges to µ⋆ exponentially fast, i.e.,

∥µk − µ⋆∥22 ≤
k∏

j=1

(1− τβj) ∥µ0 − µ⋆∥22 ≤ exp

−τ k∑
j=1

βj

 ∥µ0 − µ⋆∥22 .

The rate of convergence is determined by the step-size βk. This concludes the proof.

Remark C.4. The exact algorithm ExactAlgo is a simplified version of the algorithm we consider in this paper. The
exact algorithm does not involve any approximation, thus is deterministic. This convergence is in line with deterinistic
optimization. In fact, to get a precision of ε, we need k to be of order

• log(∥µ0 − µ⋆∥22 /ε)(1− 2Cop,MFG + C2
π,µC

2
Erg,M), if βk is constant equal to γ > 0 such that (14) is verified;

• ∥µ0 − µ⋆∥22 /ε exp(1− 2Cop,MFG + C2
π,µC

2
Erg,M), if βk = C/k for a certain C > 0 such that (14) is verified.

We now analyze the convergence of the algorithm with approximation, i.e., Algorithm 2. We consider the following
algorithm.

Theorem C.5. Suppose that Assumptions 1 and 2 hold. Assume that, for any k ≥ 0,

βk < b0 :=
τ

4C2
π,µC

2
Erg,M + 2τ

, for k ≥ 1 , (17)
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Then, the exact algorithm Exact MF-TRPO converges to the optimal policy in the tabular setting. In particular, we have
that

∥µk − µ⋆∥22 ≤ exp

−τ
2

k∑
j=1

βj

 ∥µ0 − µ⋆∥22 +
2CMF,0

τ
· log(L)

L
, (18)

with

τ := 1− Cop,MFG ,

CMF,0 :=
2 + b0
τ
· CErg,MCTRPO,0 .

Proof. We focus on the convergence of the sequence µk → µ⋆, with µ⋆ as in (8). Denote πk the output of Exact
TRPO(µk) at each step. We then have that

∥µk − µ⋆∥22 =

∥∥∥∥µk−1 − µ⋆ + βk

{
µk−1

(
Pπk
µk−1

)M
− µk−1

}∥∥∥∥2
2

=

∥∥∥∥µk−1 − µ⋆ + βk

(
µk−1

(
Pπk
µk−1

)M
− µk−1

(
P

πµk−1
µk−1

)M)
+

+βk

(
µk−1

(
P

πµk−1
µk−1

)M
− µk−1

)∥∥∥∥2
2

=

∥∥∥∥µk−1 − µ⋆ + βk

(
µk−1

(
Pπk
µk−1

)M
− µk−1

(
P

πµk−1
µk−1

)M)
+βk

(
µk−1

(
P

πµk−1
µk−1

)M
− µk−1

)
− βk

(
µ⋆

(
P

πµ⋆
µ⋆

)M − µ⋆

)∥∥∥∥2
2

=

∥∥∥∥(1− βk) (µk−1 − µ⋆) + βk

(
µk−1

(
Pπk
µk−1

)M
− µk−1

(
P

πµk−1
µk−1

)M)
+βk

(
µk−1

(
P

πµk−1
µk−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M)∥∥∥∥2
2

=(1− βk)2 ∥µk−1 − µ⋆∥22 + 2(1− βk)βk
〈
µk−1 − µ⋆, µk−1

(
P

πµk−1
µk−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M〉
+ β2

k

∥∥∥∥µk−1

(
P

πµk−1
µk−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M∥∥∥∥2
2

+ 2(1− βk)βk
〈
µk−1 − µ⋆, µk−1

(
Pπk
µk−1

)M
− µk−1

(
P

πµk−1
µk−1

)M〉
+ β2

k

∥∥∥∥µk−1

(
Pπk
µk−1

)M
− µk−1

(
P

πµk−1
µk−1

)M∥∥∥∥2
2

+ 2β2
k

〈
µk−1

(
Pπk
µk−1

)M
− µk−1

(
P

πµk−1
µk−1

)M
, µk−1

(
P

πµk−1
µk−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M〉
.

Applying Assumptions 2 and Corollary E.4 together with Lemma E.1, and following the same lines as in the proof
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of Proposition C.3, the previous equality implies that

∥µk − µ⋆∥22 ≤
[
(1− βk) (1 + (1− 2τ)βk) + β2

kC
2
π,µC

2
Erg,M

]
∥µk−1 − µ⋆∥22

+ 2(1− βk)βk
〈
µk−1 − µ⋆, µk−1

(
Pπk
µk−1

)M
− µk−1

(
P

πµk−1
µk−1

)M〉
+ β2

k

∥∥∥∥µk−1

(
Pπk
µk−1

)M
− µk−1

(
P

πµk−1
µk−1

)M∥∥∥∥2
2

+ 2β2
k

〈
µk−1

(
Pπk
µk−1

)M
− µk−1

(
P

πµk−1
µk−1

)M
, µk−1

(
P

πµk−1
µk−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M〉
=:
[
(1− βk) (1 + (1− 2τ)βk) + β2

kC
2
π,µC

2
Erg,M

]
∥µk−1 − µ⋆∥22

+ 2βk(1− βk)T1 + β2
kT2 + 2β2

kT3 .

We now proceed in studying the terms T1, T2, and T3. Using Young’s inequality, we get that

|T1| ≤
τ

2
∥µk−1 − µ⋆∥22 +

1

2τ

∥∥∥∥µk−1

(
Pπk
µk−1

)M
− µk−1

(
P

πµk−1
µk−1

)M∥∥∥∥2
2

≤ τ

2
∥µk−1 − µ⋆∥22 +

1

2τ
T2 ,

and, using Lemma E.1 and Corollary E.4,

|T3| ≤
1

2

∥∥∥∥µk−1

(
P

πµk−1
µk−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M∥∥∥∥2
2

+
1

2

∥∥∥∥µk−1

(
Pπk
µk−1

)M
− µk−1

(
P

πµk−1
µk−1

)M∥∥∥∥2
2

≤ 1

2
C2

π,µC
2
Erg,M ∥µk−1 − µ⋆∥22 +

1

2
T2 .

Since τ < 1 from Assumption 2 and βk satisfies (17), a straightforward computation shows that

(1− βk) (1 + (1− τ)βk) + 2β2
kC

2
π,µC

2
Erg,M −

τ

2
βk ≤

(
1− τ

2
βk

)
.

Moreover, applying Lemma E.1, together with Theorem C.1 on the performances of TRPO, we have

T2 ≤ CErg,M

(∑
s∈S

µ2
k−1(s) ∥πk(·|s)− πµ(·|s)∥

2
TV

)

≤ CErg,M

(∑
s∈S

µk−1(s)
∥∥πk(·|s)− πµk−1

(·|s)
∥∥2
TV

)

≤ CErg,M

(
JMFG(πµk−1

, µk−1, µk−1)− JMFG(πk, µk−1, µk−1)
)
≤ CErg,M 2CTRPO,0

log(L)

L
.

Therefore, combining the previous inequalities, we have that

∥µk − µ⋆∥22 ≤
(
1− τ

2
βk

)
∥µk−1 − µ⋆∥22 + βk

(
1− βk
τ

+
3βk
2

)
· 2CErg,MCTRPO,0

log(L)

L

≤
(
1− τ

2
βk

)
∥µk−1 − µ⋆∥22 + βk

2 + b0
τ
· CErg,MCTRPO,0

log(L)

L

≤
(
1− τ

2
βk

)
∥µk−1 − µ⋆∥22 + βkCMF,0

log(L)

L
.

(19)

Developping the recursion (19), we obtain

∥µk − µ⋆∥22 ≤
k∏

j=1

(
1− τ

2
βj

)
∥µ0 − µ⋆∥22 + CMF,0

k∑
j=1

log(L)

L
βj

k∏
ℓ=j+1

(
1− τ

2
βℓ

)

≤ exp

−τ
2

k∑
j=1

βj

 ∥µ0 − µ⋆∥22 + CMF,0
log(L)

L

k∑
j=1

βj

k∏
ℓ=j+1

(
1− τ

2
βℓ

)
.
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Note that the second term of the r.h.s. of the previous inequality is a telescopic sum, as the central term can be rewritten as

βj

k∏
ℓ=j+1

(
1− τ

2
βℓ

)
=

2

τ

 k∏
ℓ=j+1

(
1− τ

2
βℓ

)
−

k∏
ℓ=j

(
1− τ

2
βℓ

) .

Therefore, we get (18).

ε-MFNE. With the theoretical foundations established in Theorem C.1 and Theorem C.5, we can now derive a result on
the closeness of the proposed algorithm to the MFNE. Specifically, we show that Exact MF-TRPO achieves an ε-MFNE,
where the approximation error ε is explicitly quantified as follows.

Corollary C.6. Suppose that Assumptions 1, 2, and 3 hold. Assume that, for any k ≥ 0, the learning rate βk satisfies (17).
Let µk (resp. πk+1) the output of Exact MF-TRPO (resp. Exact TRPO(µk)). Then, (πk+1, µk) is εk-MFNE, with

εk := δNE,1,k + Cϕ

(
(1 + CErg,∞ (1 + Cπ,µ))

√
δNE,2,k +

2CErg,∞
√
|S|

η(1− γ)
·
√
δNE,1,k

)
,

δNE,1,k = C ′
TRPO,0

(
∥r∥∞ + η2 log2 |A|

)
η(1− γ)3

· logL
L

,

δNE,2,k = exp

−τ
2

k∑
j=1

βj

 ∥µ0 − µ⋆∥2 +
2CMF,0

τ
· log(L)

L
.

Proof. From Proposition E.5, we have that the exploitability of a policy π and a mean-field parameter µ can be bound by the
gap of optimality of the π w.r.t. the value function JMFG(·, µ, µ) and the distance between µ and the stationary distribution
λπ,µ.

From Theorem C.1, we have that

max
π∈Π

JMFG(π, µk, µk)− JMFG(πk, µk, µk) ≤ δNE,1,k . (20)

On the other hand, using the fact that (πµ⋆
, µ⋆) is a MFNE, we have

µk − λπk+1,µk
=(µk − µ⋆) +

(
λπµ⋆ ,µ⋆

− λπµk
,µk

)
+
(
λπµk

,µk
− λπk+1,µk

)
.

Then, applying Lemma E.1, together with Corollary E.4, we obtain∥∥∥λπµ⋆ ,µ⋆
− λπµk

,µk

∥∥∥
2
≤ CErg,∞ (1 + Cπ,µ) ∥µ⋆ − µk∥2 .

Moreover, from Theorem C.1 on the performances of Exact TRPO, together with Lemma E.1 and Proposition E.2, we
have∥∥∥λπµk

,µk
− λπk+1,µk

∥∥∥
2
≤ CErg,∞

∑
s∈S

µk(s) ∥πk+1(·|s)− πµk
(·|s)∥TV

≤
2CErg,∞

√
|S|

η(1− γ)

√
JMFG(πµk

, µk, µk)− JMFG(πk+1, µk, µk) ≤
2CErg,∞

√
|S|

η(1− γ)
·
√
δNE,1,k .

Using the triangle inequality, together with Theorem C.5, we can bound
∥∥µk − λπk+1,µk

∥∥
2

as

∥∥µk − λπk+1,µk

∥∥
2
≤ (1 + CErg,∞ (1 + Cπ,µ)) ∥µ⋆ − µk∥2 +

2CErg,∞
√
|S|

η(1− γ)
·
√
δNE,1,k

≤ (1 + CErg,∞ (1 + Cπ,µ))
√
δNE,2,k +

2CErg,∞
√
|S|

η(1− γ)
·
√
δNE,1,k .
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Using the last inequality and (20), together with Proposition E.5, we have that

ϕ(πk+1, µk) ≤ δNE,1,k + Cϕ

(
(1 + CErg,∞ (1 + Cπ,µ))

√
δNE,2,k +

2CErg,∞
√
|S|

η(1− γ)
·
√
δNE,1,k

)
= εk .

Therefore, (µk, πk+1) is εk-MFNE as defined in Definition (2.1).

Remark C.7. From this corollary, it follows directly that to achieve an ε-MFNE, the required number of inner policy updates
L and outer population updates K must satisfy the following scaling conditions:

L ∈ Õ
(
1/ε2

)
and K ∈ Õ (log(1/ε)) .

This implies that the sample complexity of the proposed algorithm scales polynomially in 1/ε with respect to the inner
optimization steps and logarithmically with respect to the outer mean-field updates. This confirms the efficiency of our
approach, ensuring that even for small values of ε, convergence to an approximate MFNE remains computationally feasible.

D. Model free algorithms
Model-free approaches play a fundamental role in developing model-agnostic algorithms capable of autonomously adapt-
ing to diverse and evolving environments. In the MFG context, various models have been proposed across different
domains (Perrin et al., 2021; Yardim et al., 2023), and recent efforts have explored data-driven methodologies to enhance
their applicability. Following this line of research, we introduce Sample-Based MF-TRPO, a model-free approach
tailored for MFG problems. By leveraging RL techniques with scalable sample-based updates, our method contributes to the
growing body of work on data-driven MFG solutions, providing finite-sample complexity guarantees in this setting. This
framework further aligns MFG with model-free learning paradigms, broadening their potential for real-world deployment in
complex decision-making environments.

D.1. TRPO - sample-based formulation

In the framework established by Shani et al. (2020), it is important to note that the sample-based algorithm does not
provide a last-iterate sample complexity guarantee. This contrasts with the exact algorithm, where the policy improvement
lemma (Lemma 15, Shani et al., 2020) serves as a foundation for analyzing the convergence properties of the last iterate.
In the exact update setting, this guarantee is analogous to Howard’s lemma (Howard, 1960). However, the presence of
sampling errors in the sample-based setting hinders the attainment of such guarantees, necessitating a more refined approach
when designing and analyzing RL algorithms for MFG.

To address this limitation, it becomes essential to consider alternative strategies than Theorem 5 in Shani et al. (2020). This
theorem, however, still provides a framework for analyzing the uniform mixture of the policies generated during the iterative
procedure, rather than relying solely on the last iterate. By shifting focus to such policy, we can generalize the theoretical
guarantees of the algorithm—a property inherent to the MFG setting.

Additionally, the connection between the value function and the policy space plays a crucial role. Proposition E.2 ensures that
the gap in value functions directly bounds the differences between policies. This property provides a pathway to refine the
policy improvement process and derive meaningful finite-sample complexity guarantees. By combining these insights, we
can propose a robust methodology where the sample-based algorithm achieves convergence with high probability, utilizing
uniform mixture policies to overcome the challenges posed by the lack of last-iterate guarantees.

Overall, this refinement introduces a smarter utilization of the sample-based algorithm, emphasizing the role of averaging
in mitigating the variability and uncertainty inherent in sample-based methods. This approach not only aligns with the
theoretical underpinnings of convex optimization but also strengthens the practical applicability of RL algorithms in MFG,
delivering finite-sample complexity results with rigorous probabilistic guarantees.
Remark D.1. For a fixed µ, the output of Sample-Based TRPO(µ) is the uniform mixture policy π̂Unif,µL . This policy is
such that, in the unregularized case, we have (11). It consists on a mixture of π̂ℓ, for ℓ = 0, . . . , L. The following dedicated
subroutine achieve the sampling process in a computationally efficient manner, without performing a direct mixture at every
decision step.

24



Finite-Sample Convergence Bounds for MF-TRPO

Algorithm 6 Sample-Based TRPO(µ)

1: Initialize: π0(·|s) = U(A) for any s ∈ S.
2: Input: ϵ, δ > 0, L.
3: for ℓ ∈ [L] do
4: SIℓ

ℓ = {}, ∀s, a, Qπℓ,µ
(s, a) = 0, nℓ(s, a) = 0

5: Iℓ ≥
|A|2(∥r ∥∞+η2 log2 |A|)(|S| log 2|A|+log 1

δ )
(1−γ)2ϵ2 # Sample Trajectories

6: Tℓ ≥ 1
1−γ log

(
ϵ

|A|(∥r ∥∞+η log |A|)

)
# Rollout horizon

7: for p = 1, . . . , Iℓ do
8: Sample si ∼ d

πℓ

ν,µ(·), ai ∼ U(A)
9: Qπ̂ℓ,µ

(si, ai, i)← r (si, ai, µ) +
∑Tℓ

t=1 γ
tE

st∼δsi (P
π̂ℓ
µ )t,at∼π̂ℓ(·|st)

[
r (st, at, µ) + η log

(
π̂ℓ(at|st)

)]
# Truncated rollout

10: Qπℓ,µ
(si, ai)← Qπℓ,µ

(si, ai) +Qπℓ,µ
(si, ai, i)

11: nℓ(si, ai)← nℓ(si, ai) + 1
12: SIℓ

ℓ = SIℓ
ℓ ∪ {si}

13: end for
14: for s ∈ SIℓ

ℓ do
15: for a ∈ A do
16: Qπ̂ℓ,µ

(s, a)←
|A|Qπ̂ℓ,µ

(s,a)∑
a′∈A nℓ(s,a′)

17: end for
18: π̂ℓ+1(a|s)←

π̂ℓ(a|s) exp( 1
η(ℓ+2) (Qπ̂ℓ,µ

(s,a)−η log π̂ℓ(a|s)))∑
a′∈A π̂ℓ(a′|s) exp

(
1

η(ℓ+2)

(
Qπ̂ℓ,µ

(s,a′)−η log π̂ℓ(a′|s)
))

19: end for
20: end for
21: Output: π̂Unif,µL .

Algorithm 7 Uniform-Mixture({π̂ℓ}ℓ=0,...,L)

1: Input: {π̂ℓ}ℓ=0,...,L.
2: Draw a random variable ℓ̂ ∼ U({0, 1, . . . , L}).
3: Output: π̂ℓ̂

This policy is defined is to sample from this policy efficiently without explicitly computing an arithmetic average at the
sampling level, particularly in its use within the inner loop of Sample-Based TRPO(µ). Moroever, given that the
number of iterations L is fixed beforehand, the procedure begins by drawing a random variable ℓ̂ uniformly from the set
{0, 1, . . . , L}. Once ℓ̂ is selected, the sampling step follows the policy π̂ℓ̂. This approach ensures that the selected action is
drawn a policy π̂Unif,µL without incurring unnecessary computational overhead during execution.

In particular, due to the regularization term, we have that the following inequality holds:

1

L+ 1

L∑
ℓ=0

JMFG(π̂ℓ, µ, µ) ≤ JMFG(π̂Unif,µL , µ, µ) . (21)

In the absence of regularization, the objective is linear in the occupancy measure, which allows for exact equalities when
considering mixtures of policies. However, once the entropic regularization term is introduced, the objective becomes
concave in the occupancy measure (see, e.g., Neu et al. (2017) for a proof). As a result, we only obtain the previous
inequality rather than (11) when averaging over iterates, as in the relation involving the mixture policy.

Theorem D.2 (Based on Theorem 5 in Shani et al. (2020)). Suppose Assumption 4 holds. Fix ϵ, δ > 0. Let {π̂ℓ}ℓ≥0 be the
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sequence generated by Sample-Based TRPO(µ), using

Iℓ ≥
|A|2

(
∥r∥2∞ + η2 log2 |A|

) (
|S| log 2|A|+ log 1

δ

)
(1− γ)2ϵ2

trajectories in each iteration and a rollout up to time Tℓ with

Tℓ ≥
1

1− γ
log

(
ϵ

|A| (∥r∥∞ + η log |A|)

)
.

Then, there exists C ′
TRPO,1 > 0 such that for all L ≥ 1, the following holds with probability greater than 1− δ

JMFG (πµ, µ, µ)− JMFG(π̂Unif,µL , µ, µ)

≤ JMFG (πµ, µ, µ)−
1

L+ 1

L∑
ℓ=0

JMFG (π̂ℓ, µ, µ)

≤ C ′
TRPO,1


(
∥r∥2∞ + η2 log2 |A|

)
|A|2 logL

η(1− γ)3(L+ 1)
+

ϵ

(1− γ)2

∥∥∥∥∥d
πµ

µ,µ

ν

∥∥∥∥∥
∞

 .

(22)

Proof. The proof of this result is based on the proof of Shani et al. (Theorem 5, 2020). The main difference is that we are
considering the uniform mixture of the policies generated during the iterative procedure.

Applying Shani et al. (Lemma 19, 2020), we get

1− γ
η(ℓ+ 2)

(
JMFG (πµ, µ, µ)− JMFG (π̂ℓ, µ, µ)

)
≤ d

πµ

µ,µ

((
1− 1

ℓ+ 2

)
DΩ(πµ, π̂ℓ)−DΩ(πµ, π̂ℓ+1)

)
+

h2(ℓ)

2η2(ℓ+ 2)2
+ d

πµ

µ,µϵk

≤ d
πµ

µ,µ

(
ℓ+ 1

ℓ+ 2
DΩ(πµ, π̂ℓ)−DΩ(πµ, π̂ℓ+1)

)
+

h2(L)

2η2(ℓ+ 2)2
+ d

πµ

µ,µϵk ,

with

d
πµ

µ,µϵk =
∑
s∈S

d
πµ

µ,µ(s)

Iℓd
πµ

ν,µ(s)

Iℓ∑
i=1

1{s=si}
∑
a∈A

(
1

η(ℓ+ 2)

(
|A|Qπ̂ℓ,µ

(s, a, i)− η (1 + log π̂ℓ(a|s))
)

− log π̂ℓ+1(a|s) + log π̂ℓ(a|s)
)
(π̂ℓ+1(a|s)− πµ(a|s))

h(ℓ) =(1 + 8η)
∥r∥∞ + η log |A|

1− γ
log ℓ

using that h is a non-decreasing function. Multiplying both sides by η(ℓ + 2), summing from ℓ = 0 to L, and using the
linearity of expectation, we get

(1− γ)
L∑

ℓ=0

(
JMFG (πµ, µ, µ)− JMFG (π̂ℓ, µ, µ)

)
≤ d

πµ

µ,µ

(
DΩ(πµ, π0)− (L+ 2)DΩ(πµ, πL+1)

)
+

L∑
ℓ=0

h2(L)

2η(ℓ+ 2)
+

L∑
ℓ=0

η(ℓ+ 2)d
πµ

µ,µϵℓ

≤ d
πµ

µ,µDΩ(πµ, π0) +

L∑
ℓ=0

h2(L)

2η(ℓ+ 2)
+

L∑
ℓ=0

η(ℓ+ 2)d
πµ

µ,µϵℓ

≤ log |A|+
L∑

ℓ=0

h2(L)

2η(ℓ+ 2)
+

L∑
ℓ=0

η(ℓ+ 2)d
πµ

µ,µϵℓ ,
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with the occupancy measure d
πµ

µ,µ defined as (6), where the second relation holds by the positivity of the Bregman distance,
and the third relation by Shani et al. (Lemma 28, 2020) for uniformly initialized π0.

L∑
ℓ=0

(
JMFG (πµ, µ, µ)− JMFG (π̂ℓ, µ, µ)

)
≤ log |A|

1− γ
+ C ′

TRPO,1

h2(L) logL

η(1− γ)
+

1

1− γ

L∑
ℓ=0

η(ℓ+ 2)d
πµ

µ,µϵℓ .

Dividing by (L+ 1), we obtain

1

L+ 1

L∑
ℓ=0

(
JMFG (πµ, µ, µ)− JMFG (π̂ℓ, µ, µ)

)
≤ log |A|

(1− γ)(L+ 1)
+ C ′

TRPO,1

h2(L) logL

η(1− γ)(L+ 1)
+

1

(1− γ)(L+ 1)

L∑
ℓ=0

η(ℓ+ 2)d
πµ

µ,µϵℓ .

Plugging in Shani et al. (Lemma 22 and Lemma 23, 2020), we get that for any (ϵ, δ), if the number of trajectories in the ℓ-th
iteration satisfies

Iℓ ≥
8|A|2

(
∥r∥2∞ + η2 log2 |A|

)
ϵ2(1− γ)2

(
|S| log 2|A|+ log

π2(ℓ+ 1)2

6δ

)
,

and the rollout is performed up to time Tℓ with

Tℓ ≥
1

1− γ
log

(
ϵ

|A| (∥r∥∞ + η log |A|)

)
,

then with probability at least 1− δ,

1

L+ 1

L∑
ℓ=0

(
JMFG (πµ, µ, µ)− JMFG (π̂ℓ, µ, µ)

)
log |A|

(1− γ)(L+ 1)
+ C ′

TRPO,1

h2(L) logL

η(1− γ)(L+ 1)
+

1

(1− γ)(L+ 1)

L∑
ℓ=0

η(ℓ+ 2)d
πµ

µ,µϵℓ + C ′
TRPO,1

ϵ

(1− γ)2

∥∥∥∥∥d
πµ

µ,µ

ν

∥∥∥∥∥
TV

,

where we used Assumption 4 to bound the last term. Thus, combining this with (21), we obtain that

JMFG (πµ, µ, µ)− JMFG(π̂Unif,µL , µ, µ)

≤ 1

L+ 1

L∑
ℓ=0

(
JMFG (πµ, µ, µ)− JMFG (π̂ℓ, µ, µ)

)

≤ C ′
TRPO,1


(
∥r∥2∞ + η2 log2 |A|

)
|A|2 logL

η(1− γ)3(L+ 1)
+

ϵ

(1− γ)2

∥∥∥∥∥d
πµ

µ,µ

ν

∥∥∥∥∥
TV

 .

D.2. Initialization step in the sample-based algorithm

The initialization step of the Sample-Based MF-TRPO algorithm presents particular challenges due to the limited
operations allowed, specifically the reset and action operations, as described in Section 2. During each iteration of the
algorithm, the initial state must be sampled from the distribution µ̂k−1.

As detailed in Section 5, the distribution update in the algorithm follows the iterative rule:

µ̂k ← µ̂k−1 + βk

(
ζ̂k − µ̂k−1

)
,
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where ζ̂k is the output of a single iteration of the Sample-Based MF-TRPO algorithm.

Consequently, at iteration k, the distribution µ̂k−1 is an estimator of

k−1∏
j=1

(1− βj)ν +
k−1∑
ℓ=1

βℓ

k−1∏
j=ℓ+1

(1− βj)ν
(
Pπ̂1

µ̂1

)M
· · ·
(
Pπ̂ℓ

µ̂ℓ

)M
,

since the update ζ̂ℓ at iteration ℓ of Sample-Based MF-TRPO, is an unbiased estimator of the product distribution
ν(Pπ̂1

µ̂1
)M · · · (Pπ̂i

µ̂i
)M .

To correctly initialize the environment to a state s such that s ∼ µ̂k, the following subroutine is applied:

1. Sampling a Level. Define the categorical random variable Catk that takes value in the discrete space {0, 1, . . . , k}
with probabilities given by

 k∏
j=1

(1− βj), β1
k∏

j=2

(1− βj), . . . , βk−1(1− βk), βk

 ,

i.e.,

P (Catk = ℓ) = βℓ

k∏
j=ℓ+1

(1− βj) .

2. Selecting a Level. Draw a sample ℓ̂ ∼ Catk.

3. Rollout Procedure. Starting from an initial state sampled as sinit0,p,k ∼ ν, execute a rollout of the Markov transition
kernels up to level ℓ̂, having µ̂k−1 to be the particle approximation of ν(Pπ̂1

µ̂1
)M · · · (Pπ̂ℓ

µ̂ℓ
)M .

D.3. Sample based algorithm and High Probability Estimates

Transitioning from exact computations to a sample-based setting, we introduce estimators for the key quantities involved
in the learning process. These estimators leverage sampled trajectories to approximate the necessary expectations while
maintaining computational efficiency.

To ensure the reliability of these approximations, we establish high-probability error bounds by leveraging concentration
inequalities. This allows us to rigorously assess the performance of the algorithm, providing quantitative guarantees on the
estimation error and its impact on the overall convergence rate. Through this probabilistic framework, we ensure that the
sample-based algorithm retains stability and efficiency despite the inherent stochasticity.
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Algorithm 8 Sample-Based MF-TRPO

1: Input: K.
2: Initialize: Initial policy π0(·|s) = U(A), for any s ∈ S. Initial distribution µ0 = ν.
3: for k ∈ [K] do
4: π̂k ←Sample-Based TRPO(µ̂k−1). # Update of the policy.
5: for p ∈ [P ] do
6: ℓ̂ ∼ Catk # Sampling a level.
7: Sample sinit0,p,k ∼ ν.
8: for ℓ ∈ [ℓ̂− 1] do
9: for m ∈ [M ] do

10: Sample sinitm+(ℓ−1)M,p,k ∼ Pπ̂ℓ

µ̂ℓ
(·|sinit(m−1)+(ℓ−1)M,p,k). # Rollout from the MDP for level ℓ.

11: end for
12: end for
13: Initialize s0,p,k = sinit

ℓ̂M,p,k
. # Initialization.

14: for m ∈ [M ] do
15: Sample sm,p,k ∼

∑
a∈A P (·|sm−1,p,k, a, µ̂k−1)π̂k(a|sm−1,p,k). # Rollout from the MDP.

16: end for
17: ζ̂k,p ← 1{sM,p,k}(·).
18: end for
19: ζ̂k ← 1

P

∑P
p=1 ζ̂k,p.

20: µ̂k ← µ̂k−1 + βk

(
ζ̂k − µ̂k−1

)
. # Update population distribution.

21: end for
22: Output: µK .

Examining the Sample-Based MF-TRPO algorithm, we observe that two key approximations are introduced in the
learning process. First, the policy update is performed through Sample-Based TRPO, whose finite-sample analysis in
high probability is established in Theorem D.2. This result ensures that the policy iterates remain well-controlled throughout
the optimization process in high probability. Secondly, in order to analyze the evolution of the mean-field population
distribution, we need to establish a similar high-probability bound on the estimation of the term µ̂k−1 (P

π̂k

µ̂k−1
)M , which

represents the transition dynamics under the estimated policy.

The unbiased estimator of this term uses the trajectories {sm,p,k−1}Mm=0 and is given by the empirical sum of ζ̂k,p =
1{sM,p,k}(·). Note that each component of this vector is distributed according to a Bernoulli distribution and is centered in
µ̂k−1 (P

π̂k

µ̂k−1
)M . Therefore, define ϵk the following martingale difference term

ϵk =
1

P

P∑
p=1

ζ̂k,p − µ̂k−1 (P
π̂k

µ̂k−1
)M ,

with sM,p,k−1 defined as in Sample-Based MF-TRPO.

To address this, we first derive Proposition D.3, which is a preliminary concentration result that quantifies the approximation
error in the estimation of this key quantity. The first one is Proposition D.3, which provides guarantees on the deviation of
the error incurred in a single iteration of the algorithm, with high probability. Specifically, it establishes that the error made
while estimating the error at each iteration, which is a bounded increment of a martingale. This result is pivotal, as it ensures
that the errors introduced in each iteration of the algorithm are controlled and do not diverge as the algorithm progresses,
and lays the foundation for a rigorous convergence analysis of Sample-Based MF-TRPO.

Proposition D.3. For any ϵ > 0 and δ > 0, if the number of trajectories in the k-th iteration satisfies:

P ≥ 64

ϵ2
log

2

δ
,

then, with probability at least 1− δ, the following holds:

∥ϵk∥2 ≤ ϵ .
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Proof. From previous consideration, we have that ζ̂k is unbiased and ϵk is a martingale difference. Moreover, note that
ζ̂k,p − µ̂k−1 (P

π̂k

µ̂k−1
)M is a bounded vectore, i.e.∥∥∥ζ̂k,p − µ̂k−1 (P

π̂k

µ̂k−1
)M
∥∥∥
2
≤ 2

∥∥∥ζ̂k,p − µ̂k−1 (P
π̂k

µ̂k−1
)M
∥∥∥
1

= 2
∑
s∈S

∣∣∣ζ̂k,p(s)− µ̂k−1 (P
π̂k

µ̂k−1
)M (s)

∣∣∣
≤ 2

(∑
s∈S

ζ̂k,p(s) +
∑
s∈S

µ̂k−1 (P
π̂k

µ̂k−1
)M (s)

)
= 4 .

Moreover, using Jenses’s inequality, we have that

∥ϵk∥2 =

∥∥∥∥∥ 1P
P∑

p=1

ζ̂k,p − µ̂k−1 (P
π̂k

µ̂k−1
)M

∥∥∥∥∥
2

≤ 1

P

P∑
p=1

∥∥∥ζ̂k,p − µ̂k−1 (P
π̂k

µ̂k−1
)M
∥∥∥
2
≤ 4 .

Therefore, ϵk is a bounded martingale difference. To show that the increment is bounded with high probability, we use
Hoeffding’s inequality. Let ϵk =

∑P
p=1 ϵk,p, where ϵk,p = ζ̂k,p − µ̂k−1 (P

π̂k

µ̂k−1
)M . Then, for any tk > 0, we have

P

(
1

P

P∑
p=0

∑
s∈S

∣∣∣ϵk,p(s)− µ̂k−1 (P
π̂k

µ̂k−1
)M (s)

∣∣∣ ≥ ϵ

4

)
= P

(
1

P

P∑
p=0

∥∥∥∥ϵk,p − µ̂k−1

(
Pπ̂k

µ̂k−1

)M∥∥∥∥
1

≥ ϵ

4

)

≤ 2 exp

(
−Pϵ

2

64

)
=: δ .

This consideration is a special case of the Generalized Freedman inequality as presented in Harvey et al. (2019). The
inequality provides sharp high-probability bounds for the sum of bounded, dependent random variables. In our case, the
formulation is simplified due to the presence of a uniform bound on the variables we aim to control.

Therefore, in order to guarantee that∥∥∥∥ϵk − µ̂k−1

(
Pπ̂k

µ̂k−1

)M∥∥∥∥
2

≤ 4

P

P∑
p=0

∥∥∥∥ϵk,p − µ̂k−1

(
Pπ̂k

µ̂k−1

)M∥∥∥∥
1

≤ ϵ ,

we need the number of trajectories P to be at least

P ≥ 64

ϵ2
log

2

δ
.

D.4. Convergence of Sample-Based MF-TRPO

We now extend the exact analysis of Exact MF-TRPO to its sample-based counterpart, establishing global sample
complexity bounds. While the exact algorithm benefits from having full knowledge of the transition kernel and reward
function, the sample-based version introduces additional approximation errors due to finite sampling. We quantify these
errors and derive high-probability guarantees on the convergence of the algorithm. This requires adapting the theoretical
tools developed in the exact setting to account for trajectory-based estimations and ensuring that the resulting policy updates
remain stable despite stochastic approximations.
Theorem D.4. Suppose that Assumptions 1, 2, 3, and 4 hold. Assume that the following holds

βk < b1 :=
τ

6C2
π,µC

2
Erg,M + 2τ

, for k ≥ 1 . (23)

For any ϵ > 0 and δ > 0, if the number of trajectories in each iteration for Sample-Based MF-TRPO satisfies

P ≥ 64

ϵ2
log

2

δ
, (24)
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and the number of iteration in each epoch of Sample-Based TRPO satisfies

Iℓ ≥
|A|2

(
∥r∥∞ + η2 log2 |A|

) (
|S| log 2|A|+ log 1

δ

)
(1− γ)2ϵ2

(25)

and the rollout is performed up to time Tℓ with

Tℓ ≥
1

1− γ
log

(
ϵ

|A| (∥r∥∞ + η log |A|)

)
. (26)

Then, with probability at least 1− δ, we have that

∥µ̂K − µ⋆∥22 ≤ exp

−τ
2

k∑
j=1

βj

 ∥µ0 − µ⋆∥22 +
2CMF,1

τ

log(L)

L
+

2CMF,2

τ
ϵ . (27)

with

τ := 1− Cop,MFG

CMF,1 := CErg,M · CTRPO,1 ·
2 + b1
τ

,

CMF,2 :=
2 + b1
τ

(
CErg,M CTRPO,2 + 1

)
,

CTRPO,1 :=
2C ′

TRPO,1

η(1− γ)
·

(
∥r∥2∞ + η2 log2 |A|

)
|A|2 logL

η(1− γ)3L
,

CTRPO,2 :=
2C ′

TRPO,1

η(1− γ)
· 1

(1− γ)2

∥∥∥∥∥d
πµ

µ,µ

ν

∥∥∥∥∥
∞

,

with C ′
TRPO,1 the constant coming from Theorem D.2.

Proof. We focus on the convergence of the sequence µ̂k → µ⋆, with µ⋆ as in (8). Denote π̂k (resp. ζ̂k) the output of
Sample-Based TRPO(µ̂k) at each step (resp. the estimator used in the update of µ̂k in Sample-Based MF-TRPO).
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We then have that

∥µ̂k − µ⋆∥22 =
∥∥∥µ̂k−1 − µ⋆ + βk

(
ζ̂k − µ̂k−1

)∥∥∥2
2

=

∥∥∥∥µ̂k−1 − µ⋆ + βk

(
ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M)
+ βk

(
µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

)∥∥∥∥2
2

=

∥∥∥∥µ̂k−1 − µ⋆ + βk

(
ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M)
+βk

(
µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M)
+βk

(
µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M
− µ̂k−1

)∥∥∥∥2
2

=

∥∥∥∥µ̂k−1 − µ⋆ + βk

(
ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M)
+βk

(
µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M)
+βk

(
µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M
− µ̂k−1

)
− βk

(
µ⋆

(
P

πµ⋆
µ⋆

)M − µ⋆

)∥∥∥∥2
2

=

∥∥∥∥(1− βk) (µ̂k−1 − µ⋆) + βk

(
ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M)
+βk

(
µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M)
+βk

(
µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M)∥∥∥∥2
2

=(1− βk)2 ∥µ̂k−1 − µ⋆∥22

+ 2(1− βk)βk
〈
µ̂k−1 − µ⋆, ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M〉
+ β2

k

∥∥∥∥ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M∥∥∥∥2
2

+ 2β2
k

〈
ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M
, µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M〉
+ 2β2

k

〈
ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M
, µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M〉
+ 2(1− βk)βk

〈
µ̂k−1 − µ⋆, µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M〉
+ β2

k

∥∥∥∥µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M∥∥∥∥2
2

+ 2(1− βk)βk
〈
µ̂k−1 − µ⋆, µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M〉
+ β2

k

∥∥∥∥µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M∥∥∥∥2
2

+ 2β2
k

〈
µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M
, µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M〉
.

Applying Assumptions 2 and Corollary E.4 together with Lemma E.1, and following the same lines as in the proof
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of Proposition C.3, the previous equality implies that

∥µ̂k − µ⋆∥22 ≤
[
(1− βk) (1 + (2Cop,MFG − 1)βk) + β2

kC
2
π,µC

2
Erg,M

]
∥µ̂k−1 − µ⋆∥22

+ 2(1− βk)βk
〈
µ̂k−1 − µ⋆, ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M〉
+ β2

k

∥∥∥∥ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M∥∥∥∥2
2

+ 2β2
k

〈
ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M
, µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M〉
+ 2β2

k

〈
ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M
, µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M〉
+ 2(1− βk)βk

〈
µ̂k−1 − µ⋆, µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M〉
+ β2

k

∥∥∥∥µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M∥∥∥∥2
2

+ 2β2
k

〈
µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M
, µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M〉
=:
[
(1− βk) (1 + (2Cop,MFG − 1)βk) + β2

kC
2
π,µC

2
Erg,M

]
∥µ̂k−1 − µ⋆∥22

+ 2βk(1− βk)E1 + β2
kE2 + 2β2

kE3 + 2β2
kE4

+ 2βk(1− βk)T1 + β2
kT2 + 2β2

kT3 .

We now proceed in studying the terms E1, E2, E3, E4, T1, T2, and T3. Using Young’s inequality, we get that

|E1| ≤
τ

4
∥µ̂k−1 − µ⋆∥22 +

1

τ

∥∥∥∥ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M∥∥∥∥2
2

≤ τ

4
∥µ̂k−1 − µ⋆∥22 +

1

τ
E2 ,

|E3| ≤
1

2

∥∥∥∥µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M∥∥∥∥2
2

+
1

2

∥∥∥∥ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M∥∥∥∥2
2

≤ 1

2
T2 +

1

2
E2 ,

|E4| ≤
1

2

∥∥∥∥µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M∥∥∥∥2
2

+
1

2

∥∥∥∥ζ̂k − µ̂k−1

(
Pπ̂k

µ̂k−1

)M∥∥∥∥2
2

≤ 1

2
C2

π,µC
2
Erg,M ∥µ̂k−1 − µ⋆∥22 +

1

2
E2 ,

where we used Lemma E.1 and Corollary E.4 in the last inequality. Using Young’s inequality, we get that

|T1| ≤
τ

4
∥µ̂k−1 − µ⋆∥22 +

1

τ

∥∥∥∥µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M∥∥∥∥2
2

≤ τ

4
∥µ̂k−1 − µ⋆∥22 +

1

τ
T2 ,

|T3| ≤
1

2

∥∥∥∥µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M
− µ⋆

(
P

πµ⋆
µ⋆

)M∥∥∥∥2
2

+
1

2

∥∥∥∥µ̂k−1

(
Pπ̂k

µ̂k−1

)M
− µ̂k−1

(
P

πµ̂k−1

µ̂k−1

)M∥∥∥∥2
2

≤ 1

2
C2

π,µC
2
Erg,M ∥µ̂k−1 − µ⋆∥22 +

1

2
T2 ,

where we used Lemma E.1 and Corollary E.4 in the last inequality. Since τ < 1 from Assumption 2 and βk satisfies (23), a
straightforward computation shows that

(1− βk) (1 + (1− τ)βk) + 3β2
kC

2
π,µC

2
Erg,M < 1− τ

2
βk .
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Since we have that (25) holds, we can apply Theorem D.2, together with Lemma E.1, to get that

T2 ≤ CErg,M

(∑
s∈S

µ̂2
k−1(s)

∥∥π̂k(·|s)− πµ̂k−1
(·|s)

∥∥2
TV

)

≤ CErg,M

(∑
s∈S

µ̂k−1(s)
∥∥π̂k(·|s)− πµ̂k−1

(·|s)
∥∥2
TV

)
≤ CErg,M

(
JMFG(πµ̂k−1

, µ̂k−1, µ̂k−1)− JMFG(π̂k, µ̂k−1, µ̂k−1)
)

≤ CErg,M
2

η(1− γ)

(
CTRPO,1

log(L)

L
+ CTRPO,2 ϵ

)
.

Moreover, since (24) holds, using Proposition D.3, we have that, with probability at least 1− δ,

E2 ≤ ϵ.

Therefore, combining the previous inequalities, we have that

∥µ̂k − µ⋆∥22
≤
(
1− τ

2
βk

)
∥µ̂k−1 − µ⋆∥22

+ βk

(
2(1− βk)

τ
− 3βk

)
·
[
CErg,M

(
CTRPO,1

log(L)

L
+ CTRPO,2 ϵ

)
+ ϵ

]
≤
(
1− τ

2
βk

)
∥µ̂k−1 + µ⋆∥22 + βk

2 + b1
τ

[
CErg,M

(
CTRPO,1

log(L)

L
+ CTRPO,2 ϵ

)
+ ϵ

]
≤
(
1− τ

2
βk

)
∥µ̂k−1 − µ⋆∥22 + βk CMF,1

log(L)

L
+ βk CMF,2 ϵ .

(28)

Developping the recursion (28), we obtain

∥µ̂k − µ⋆∥22 ≤
k∏

j=1

(
1− τ

2
βj

)
∥µ0 − µ⋆∥22

+

(
CMF,1

log(L)

L
+ βk CMF,2 ϵ

) k∑
j=1

βj

k∏
ℓ=j+1

(
1− τ

2
βℓ

)

≤ exp

−τ
2

k∑
j=1

βj

 ∥µ0 − µ⋆∥22

+

(
CMF,1

log(L)

L
+ βk CMF,2 ϵ

) k∑
j=1

βj

k∏
ℓ=j+1

(
1− τ

2
βℓ

)
.

Note that the second term of the r.h.s. of the previous inequality is a telescopic sum, as the central term can be rewritten as

βj

k∏
ℓ=j+1

(
1− τ

2
βℓ

)
=

2

τ

 k∏
ℓ=j+1

(
1− τ

2
βℓ

)
−

k∏
ℓ=j

(
1− τ

2
βℓ

) .

Therefore, we get (18). Moreover, since βk satisfy (14), this concludes the proof.

D.5. ε-MFNE

We aim to characterize the proximity of an approximate Nash equilibrium, specifically an ε-Nash equilibrium. In this
context, we address two key questions:
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1. Given a fixed budget K of sampled trajectories, how close the value function to the unique Nash equilibrium?

2. Given a target approximation level ε, how many trajectories K are required to achieve an ε-Nash equilibrium?

These questions are crucial for understanding the sample complexity of learning equilibria in mean-field settings and provide
insights into the efficiency of our algorithmic approach.
Corollary D.5. Suppose that Assumptions 1, 2, 3, and 4 hold. Fix ϵ, δ > 0. Assume that, for any k ≥ 0, the learning rate βk
satisfies (23), and let P be the number of trajectories in each iteration for Sample-Based MF-TRPO satisfying (24). Let
µ̂k (resp. π̂Unif,µ̂k

L ) the output of Sample-Based MF-TRPO (resp. of Sample-Based TRPO(µ̂k)). Then, we have
the following bound on the exploitability

ϕ(π̂Unif,µ̂k

L , µ̂k) ≤ εk ,

with

ε̂k := δ̂NE,1,k + Cϕ

(
(1 + CErg,∞ (1 + Cπ,µ))

√
δ̂NE,2,k +

2CErg,∞
√
|S|

η(1− γ)
·
√
δ̂NE,1,k

)
,

δ̂NE,1,k = C ′
TRPO,1


(
∥r∥2∞ + η2 log2 |A|

)
|A|2 logL

η(1− γ)3(L+ 1)
+

ϵ

(1− γ)2
sup

µ∈P(S)

∥∥∥∥∥d
πµ

µ,µ

ν

∥∥∥∥∥
∞

 ,

δ̂NE,2,k = exp

−τ
2

k∑
j=1

βj

 ∥µ0 − µ⋆∥22 +
2CMF,1

τ

log(L)

L
+

2CMF,2

τ
ϵ .

Proof. From Proposition E.5, we have that the exploitability of a policy π and a mean-field parameter µ can be bound by the
gap of optimality of the π w.r.t. the value function JMFG(·, µ, µ) and the distance between µ and the stationary distribution
λπ,µ.

From Theorem D.2, we have that

max
π∈Π

JMFG(π, µ̂k, µ̂k)− JMFG(π̂Unif,µ̂k

L , µ̂k, µ̂k) ≤ δ̂NE,1,k . (29)

On the other hand, using the fact that (πµ⋆
, µ⋆) is a MFNE, we have

µ̂k − λπ̂Unif,µ̂k
L ,µ̂k

=(µ̂k − µ⋆) +
(
λπµ⋆ ,µ⋆

− λπµ̂k
,µ̂k

)
+
(
λπµ̂k

,µ̂k
− λ

π̂
Unif,µ̂k
L ,µ̂k

)
,

for ℓ = 0, . . . , L. As in proof of Corollary C.6, we have∥∥∥λπµ⋆ ,µ⋆
− λπµ̂k

,µ̂k

∥∥∥
2
≤ CErg,∞ (1 + Cπ,µ) ∥µ⋆ − µ̂k∥2 .

Moreover, ∥∥∥λπµ̂k
,µ̂k
− λ

π̂
Unif,µ̂k
L ,µ̂k

∥∥∥
2
≤ CErg,∞

∑
s∈S

µ̂k(s)
∥∥∥π̂Unif,µ̂k

L (·|s)− πµ̂k
(·|s)

∥∥∥
TV

≤
2CErg,∞

√
|S|

η(1− γ)

√
JMFG(πµ̂k

, µ̂k, µ̂k)− JMFG(π̂Unif,µ̂k

L , µ̂k, µ̂k)

≤
2CErg,∞

√
|S|

η(1− γ)
·
√
δ̂NE,1,k .

Using the triangle inequality, together with Theorem D.2, we can bound
∥∥∥µ̂k − λπ̂Unif,µ̂k

L ,µ̂k

∥∥∥
2

as

∥∥∥µ̂k − λπ̂Unif,µ̂k
L ,µ̂k

∥∥∥
2
≤ (1 + CErg,∞ (1 + Cπ,µ)) ∥µ⋆ − µ̂k∥2 +

2CErg,∞
√
|S|

η(1− γ)
·
√
δ̂NE,1,k

≤ (1 + CErg,∞ (1 + Cπ,µ))

√
δ̂NE,2,k +

2CErg,∞
√
|S|

η(1− γ)
·
√
δ̂NE,1,k .
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Using the last inequality and (20), together with Proposition E.5, we have that ϕ(π̂Unif,µ̂k

L , µk) ≤ εk .

Remark D.6. It is important to note that our analysis does not directly bound the exploitability of the last iterate but on the
uniform mixture of policies over the learning process. This distinction arises due to the absence of an exact counterpart to
Howard’s theorem (Howard, 1960) in Sample-Based TRPO, as noted in Appendix D.1. Unlike Exact TRPO, where
policy improvement guarantees can be established step by step, sampling errors introduce additional variability that prevents
such guarantees in the sample-based setting.

Despite this limitation, our results demonstrate that the learned policies perform well on average and that we approximate
the MFNE accordingly. The bounded average exploitability ensures that, over time, the algorithm remains close to an
equilibrium, reinforcing the practical effectiveness of the proposed approach in large-scale multi-agent learning.

Remark D.7. From the obtained sample complexity result, it follows directly that to achieve an ε-MFNE, the required
number of inner policy updates L and outer population updates K must satisfy the following scaling conditions:

L ∈ Õ(1/ε2) and K ∈ Õ(log(1/ε2)).

In addition to these requirements, we also establish that the number of episodes P and the number of iterations per policy
update Iℓ must satisfy

P, Iℓ ∈ Õ(1/ε4).

These additional conditions ensure that the variance introduced by the sampling procedure remains controlled, allowing for a
sufficiently accurate estimation of the value function and policy updates. This highlights the tradeoff between computational
efficiency and precision in approximating the MFNE, showing that our algorithm achieves a well-balanced complexity while
ensuring convergence guarantees.

At each iteration of Sample-Based MF-TRPO, the total number of calls to the environment consists of those re-
quired by the Sample-Based TRPO procedure plus the additional subroutine for updating the mean-field parameter.
Sample-Based TRPO requires Õ(1/ε6) environment calls, scaling proportionally to the product L × Iℓ. This aligns
with Shani et al. (2020); however, we highlight a distinction stemming from the chosen metrics: the metric they use
corresponds to the square root of our exploitability measure, introducing a cubic dependency in terms of ε. Additionally,
the total complexity includes a multiplicative factor K, whose contribution is negligible in practice due to its logarithmic
scaling, preserving overall algorithmic efficiency.

On the other hand, in each iteration of Sample-Based MF-TRPO, the update step for the mean-field distribution scales
as Õ(P ×Iℓ×K), which means Õ(1/ε2) calls to the MF-MDP. This complexity arises naturally from the oracle assumption
adopted, which involves an initialization step at each iteration potentially requiring up to K steps to accurately initialize the
mean-field distribution. While introducing additional complexity, this initialization procedure is crucial for maintaining
consistency across iterative population updates, thereby ensuring the stability and convergence accuracy of the algorithm
towards the mean-field Nash equilibrium.

Combining these two contributions, we obtain an overall complexity that scales as Õ(1/ε6), consistent with established
convergence rates in the RL literature.

E. Technical Lemmata
E.1. Lipschitzness of the Markov reward process iterates

We show in this section that Assumption 1 implies the existence of a Lipschitz constant for the operator λπ,µ and (Pπ
µ )

M ,
for any µ ∈ P(S) and M ≥ 0.

Lemma E.1. Suppose Assumptions 1 and 3 holds. Fix M ≥ 0 (resp. M = ∞). Then, there exists a constant CErg ≥ 0
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such that ∥∥∥∥ξ(Pπ
µ

)M
− ξ
(
Pπ′

µ′

)M∥∥∥∥
TV

≤CErg,M

(∑
s∈S

ξ(s) ∥π(·|s)− π′(·|s)∥TV + ∥µ− µ′∥2

)

≤CErg,M

(
sup
s∈S
∥π(·|s)− π′(·|s)∥TV + ∥µ− µ′∥2

)
(resp. ∥λπ,µ − λπ′,µ′∥TV ≤CErg,∞

(∑
s∈S

ξ(s) ∥π(·|s)− π′(·|s)∥TV + ∥µ− µ′∥2

)

≤CErg,∞

(
sup
s∈S
∥π(·|s)− π′(·|s)∥TV ξ(s) + ∥µ− µ

′∥2

)
) ,

(30)

with

CErg,M =CErg LP
1− ρM

1− ρ
, (resp. CErg,∞ =

CErg LP

1− ρ
) .

for π, π′ ∈ Π and µ, µ′ ∈ P(S).

Proof. This proof is adapted from Fort et al. (Lemma 4.2, 2011) on parametrized Markov chains.

Step 1. Consider first M <∞. By employing a telescoping sum, we obtain

(
Pπ
µ

)M
−
(
Pπ′

µ′

)M
=

M−1∑
m=0

(
Pπ
µ

)M−m−1(
Pπ
µ − Pπ′

µ′

)(
Pπ′

µ′

)m
.

Consider a function ψ : S → R+ with ∥ψ∥∞ ≤ 1. Therefore, since Pπ
µ − Pπ′

µ′ is a difference of probabilities, we have that

∑
s∈S

[
ξ
(
Pπ
µ

)M
ψ

]
(s)−

[
ξ
(
Pπ′

µ′

)M
ψ

]
(s)

=
∑
s∈S

M−1∑
m=0

∑
s′∈S

ξ
(
Pπ
µ

)M−m−1(
Pπ
µ − Pπ′

µ′

)((
Pπ′

µ′

)m
(s′, s)ψ(s)− λπ′,µ′ψ(s)

)
.

(31)

This is due to the fact that whenever we evaluate the previous difference of probabilities matrices on ψ, the term∑
s∈S λπ′,µ′ψ(s) is perceived a constant by the transition kernels Pπ

µ and Pπ′

µ′ , summing this part to zero.

Define ϕm : S → R+ as

ϕm(s) =
∑
s′∈S

(
Pπ
µ − Pπ′

µ′

)
(s, s′)

∑
s′′∈S

((
Pπ′

µ′

)m
(s′, s′′)ψ(s′′)− λπ′,µ′ψ(s′′)

)
.

From Assumption 3, we have that∣∣∣(Pπ′

µ′

)m
(s′, s′′)ψ(s′′)− λπ′,µ′ψ(s′′)

∣∣∣ ≤ CErgρ
m ∥ψ∥∞ . (32)

Therefore, we have

|ϕm(s)| ≤ sup
s′∈S

(
Pπ
µ (s

′, s)− Pπ′

µ′ (s′, s)
)
CErgρ

m ∥ψ∥∞ ,

and, applying Assumption 1, we get

|ϕ(s)| ≤ LP (∥π(·|s)− π′(·|s)∥TV + ∥µ− µ′∥2)× CErgρ
m ∥ψ∥∞ ,
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for any s′ ∈ S . Combining this with (31), we get, from the characterization of the total variation norm of the integral with
respect to the positive functions bounded in sup-norm by 1, that∥∥∥∥ξ(Pπ

µ

)M
− ξ
(
Pπ′

µ′

)M∥∥∥∥
TV

≤LPCErg

M−1∑
m=0

ρm
∑
s∈S

ξ
(
Pπ
µ

)M−m−1

(∥π(·|s)− π′(·|s)∥TV + ∥µ− µ′∥2)

≤LPCErg

M−1∑
m=0

ρm
∑
s∈S

ξ(s) (∥π(·|s)− π′(·|s)∥TV + ∥µ− µ′∥2)

≤LPCErg
1− ρM

1− ρ

(∑
s∈S

ξ(s) ∥π(·|s)− π′(·|s)∥TV + ∥µ− µ′∥2

)

≤LPCErg
1− ρM

1− ρ

(
sup
s∈S
∥π(·|s)− π′(·|s)∥TV + ∥µ− µ′∥2

)
,

where we have used the fact that Pπ
µ a stochastic matrix, thus its biggest eigenvalue is 1 and ξ is a vector of just positive

components.

Step 2. Consider now the ergodic distributions. Fix M ≥ 1. From triangle inequality, we have

∥λπ,µ − λπ′,µ′∥TV ≤
∥∥∥∥λπ,µ − (Pπ

µ

)M∥∥∥∥
TV

+

∥∥∥∥(Pπ
µ

)M
−
(
Pπ′

µ′

)M∥∥∥∥
TV

+

∥∥∥∥(Pπ′

µ′

)M
− λπ′,µ′

∥∥∥∥
TV

.

From Assumption 3 together with Step 1, we obtain

∥λπ,µ − λπ′,µ′∥TV ≤ CErgρ
M + LPCErg

1− ρM

1− ρ

(∑
s∈S

ξ(s) ∥π(·|s)− π′(·|s)∥TV + ∥µ− µ′∥2

)
+ CErgρ

M

≤ CErgρ
M +

LPCErg

1− ρ

(∑
s∈S

ξ(s) ∥π(·|s)− π′(·|s)∥TV + ∥µ− µ′∥2

)
+ CErgρ

M

≤ CErgρ
M +

LPCErg

1− ρ

(
sup
s∈S
∥π(·|s)− π′(·|s)∥TV + ∥µ− µ′∥2

)
+ CErgρ

M .

As this is true for any M ≥ 1, taking M to infinity, from Fatou’s lemma we get (30).

E.2. From bound on Value function to bounds on Policy

In this section, we demonstrate how a bound on the value function naturally leads to a corresponding bound on the policies.
In the seminal work by Shani et al. (2020), an Õ(1/N) bound was established for the cost functions. This result can be
extended to derive a bound on the distance between policies by leveraging the properties of regularization. The connection
between the value function and policies highlights the role of regularization in maintaining both theoretical guarantees and
practical performance stability.

Indeed, from the entropic regularization, the optimization problem (3) with respect to the profile µ admits a unique solution
πµ. These considerations form the foundation of the following proposition.

Proposition E.2. We have that

∥π(·|s0)− πµ(·|s0)∥2TV ≤
2

η(1− γ)
(
JMFG(πµ, µ, s0)− JMFG(π, µ, s0)

)
, (33)

for any s0 ∈ S.

Proof. Denote Ω the entropic regularization tem in the reward function (2) as a function of the occupation measure, i.e.,

Ω
(
dπ
ξ,µ

)
:=

∑
a∈A,s∈S

dπ
ξ,µ(s, a) log(π(a|s)) ,
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with dπ
ξ,µ as in 5. Therefore, we can express JMFG as

JMFG(π, µ, ξ) =
∑

a∈A,s∈S
r (s, a, µ)dπ

ξ,µ(a, s) + ηΩ
(
dπ
ξ,µ

)
. (34)

Taking the disentegration on the spatial component, we have the following relationship between the occupation measure and
its marginal

dπ
ξ,µ(s, a) =

∞∑
t=0

γtπ(a|s)Pπ

(
st = s

∣∣∣s0 ∼ ξ, st+1 ∼ P (·|st, a, µ)
)

= π(a|s) dπ

µ,ξ(s) ,

(35)

with d
π

µ,ξ as in 6. This also implies that

Ω
(
dπ
ξ,µ

)
=

∑
a∈A,s∈S

dπ
ξ,µ(s, a) log(π(a|s)) =

∑
a∈A,s∈S

π(a|s) log(π(a|s)) dπ

µ,ξ(s) . (36)

From (34), as the optimal value does not depend on the initial condition, we have that the optimal policy πµ of the previous
optimization problem satisfies

∇πJ
MFG(πµ, µ, s0) = 0 ,

for any s0 ∈ S. Combining this with (35), we obtain that the previous condition equivalent to

r (s, a, µ) = −η∇Ω
(
dπµ
s0,µ

)
(s, a) ,

for any a ∈ A, s0 ∈ S . We recall that the Bregman divergence DΩ with respect to the regularization Ω is defined as follows

DΩ(ν∥ν′) = Ω(ν)− Ω(ν)−∇Ω(ν′)⊤ (ν − ν′) , for ν, ν′ ∈ A× S .

Therefore,

JMFG(π, µ, s0)− JMFG(πµ, µ, s0)

=
∑

(s,a)∈S×A

r (s, a, µ)
(
dπ
s0,µ − dπµ

s0,µ

)
(s, a) + ηΩ

(
dπ
s0,µ

)
− ηΩ

(
dπµ
s0,µ

)
= −η

∑
(s,a)∈S×A

∇Ω
(
dπµ
s0,µ

)
(s, a)

(
dπ
s0,µ − dπµ

s0,µ

)
(s, a) + ηΩ

(
dπ
s0,µ

)
− ηΩ

(
dπµ
s0,µ

)
= η ·DΩ

(
dπ
s0,µ

∥∥dπµ
s0,µ

)
.

(37)

However, we have that with the Bregman divergence corresponding to the entropy regularization Ω has the following
expression (see, e.g., Neu et al., 2017)

DΩ

(
dπ
s0,µ

∥∥dπµ
s0,µ

)
=

∑
(s,a)∈S×A

dπ
s0,µ(s, a) log

(
π(a|s)
πµ(a|s)

)

=
∑
s∈S

d
π

µ,s0(s)
∑
a∈A

π(a|s) log
(
π(a|s)
πµ(a|s)

)
=
∑
s∈S

d
π

µ,s0(s)KL
(
π(a|s)

∥∥πµ(a|s)) .
Moreover, from the definition of d , extracting the first term of the series, we obtain

d
π

µ,s0(s) =(1− γ)
∞∑
t=0

γtPπ
µ (st = s)

=(1− γ)δs0(s) + (1− γ)
∞∑
t=1

γtPπ
µ (st = s)

=(1− γ)δs0(s) + (1− γ)γ
∞∑
t=0

γtPπ
µ (st+1 = s) .
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Using the decomposition of Pπ
µ (st+1 = s) as

Pπ
µ (st+1 = s) =

∑
(s′,a′)∈S×A

P (st+1 = s|st = s′, at = a′, µ)Pπ
µ (st = s′, at = a′)

=
∑

(s′,a′)∈S×A

P (s|s′, a′, µ)Pπ
µ (st = s′, at = a′) ,

we get

d
π

µ,s0(s) =(1− γ)δs0(s) + γ
∑

(s′,a′)∈S×A

P (s|s′, a′, µ)(1− γ)
∞∑
t=0

γtPπ
µ (st = s′, at = a′)

=(1− γ)δs0(s) + γ
∑

(s′,a′)∈S×A

P (s|s′, a′, µ)dπ
s0,µ(s

′, a′) .

Therefore, for a function ψ : S → [0,∞), we have∑
s∈S

ψ(s)d
π

µ,s0(s) = (1− γ)ψ(s0) + γ
∑

(s′,a′)∈S×A

∑
s∈S

ψ(s)P (s|s′, a′, µ)dπ
s0,µ(s

′, a′)

≥ (1− γ)ψ(s0) ,

since ψ is a positive function and dπ
s0,µ is a positive measure. Applying this to the positive function s 7→

KL
(
π(a|s)

∥∥πµ(a|s)), together with Pinsker’s inequality (see, e.g., Cover, 1999), we have

DΩ

(
dπ
s0,µ

∥∥dπµ
s0,µ

)
≥ (1− γ)KL

(
π(a|s0)

∥∥πµ(a|s0))
≥ 1− γ

2
∥π(a|s0)− πµ(a|s0)∥2TV .

Combining this with (37), we get (33).

Proposition E.3. Suppose Assumption 1 holds. Then, we have for any two µ, µ′ that

∣∣JMFG(πµ, µ, s0)− JMFG(πµ′ , µ′, s0)
∣∣ ≤ Lr +

γ
1−γLP (∥r∥∞ + η log |A|)

1− γ
· ∥µ− µ′∥2 , (38)

and

∣∣JMFG(π, µ, s0)− JMFG(π, µ′, s0)
∣∣ ≤ Lr +

γ
1−γLP (∥r∥∞ + η log |A|)

1− γ
· ∥µ− µ′∥2 , (39)

for any s0 ∈ S and any π ∈ Π.

Proof. Step 1. Let us state the optimal Bellman equations

Qπµ
µ (s, a) = r (s, a, µ) + γ

∑
s′∈S

P (s′|s, a, µ) · JMFG(πµ, µ, s
′) ,

JMFG(πµ, µ, s) = η log

(∑
a∈A

exp

{
1

η
Qπµ

µ (s, a)

})
.

We notice that a function x 7→ η · log
(∑d

i=1 exp{
1
ηxi}

)
is 1-Lipschitz in ℓ∞-norm since the ℓ1-norm of the gradient of

this function always lies on a probability simplex (see, e.g., Geist et al., 2019). Thus, we have

JMFG(πµ, µ, s0)− JMFG(πµ′ , µ′, s0) ≤ max
a∈A

∣∣∣Qπµ
µ (s0, ·)−Q

πµ′

µ′ (s0, ·)
∣∣∣ .
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Then, we study the Lipschitzness of optimal Q-values for arbitrary action a0 ∈ A∣∣∣Qπµ
µ (s0, a0)−Q

πµ′

µ′ (s0, a0)
∣∣∣ ≤ |r (s0, a0, µ)− r (s0, a0, µ

′)|

+ γ

∣∣∣∣∣∑
s′∈S

[P (s′|s0, a0, µ)− P (s′|s0, a0, µ′)] · JMFG(πµ, µ, s
′)

∣∣∣∣∣
+ γ

∣∣∣∣∣∑
s′∈S

P (s′|s0, a0, µ′) ·
[
JMFG(πµ, µ, s

′)− JMFG(πµ′ , µ′, s′)
]∣∣∣∣∣ .

By Assumption 1, we have

|r (s0, a0, µ)− r (s0, a0, µ
′)| ≤ Lr ∥µ− µ′∥2 , ∥P (·|s0, a0, µ)− P (·|s0, a0, µ′)∥TV ≤ LP ∥µ− µ′∥2 .

thus ∣∣∣Qπµ
µ (s0, a0)−Q

πµ′

µ′ (s0, a0)
∣∣∣ ≤ (Lr + γLP

∥∥JMFG(πµ, µ, ·)
∥∥
∞

)
· ∥µ− µ′∥2

+ γ
∥∥JMFG(πµ, µ, ·)− JMFG(πµ′ , µ′, ·)

∥∥
∞ .

Overall, we have a recursive bound on difference between value functions∥∥JMFG(πµ, µ, ·)− JMFG(πµ′ , µ′, ·)
∥∥
∞ ≤

(
Lr + γLP

∥∥JMFG(πµ, µ, ·)
∥∥
∞

)
· ∥µ− µ′∥2

+ γ
∥∥JMFG(πµ, µ, ·)− JMFG(πµ′ , µ′, ·)

∥∥
∞ ,

therefore ∥∥JMFG(πµ, µ, ·)− JMFG(πµ′ , µ′, ·)
∥∥
∞ ≤

Lr + γLP

∥∥JMFG(πµ, µ, ·)
∥∥
∞

1− γ
∥µ− µ′∥2 .

By a bound
∥∥JMFG(πµ, µ, ·)

∥∥
∞ ≤ (∥r∥∞ + η log |A|)/(1− γ), we conclude the statement (38).

Step 2. Applying directly the Bellman equation, we have∣∣JMFG(π, µ, s0)− JMFG(π, µ′, s0)
∣∣

≤
∑
a0∈A

π(a0|s0) |r (s0, a0, µ)− r (s0, a0, µ
′)|

+ γ
∑
a0∈A

π(a0|s0)

∣∣∣∣∣∑
s′∈S
· [P (s′|s0, a0, µ)− P (s′|s0, a0, µ′)] · JMFG(πµ, µ, s

′)

∣∣∣∣∣
+ γ

∑
a0∈A

π(a0|s0)

∣∣∣∣∣∑
s′∈S

P (s′|s0, a0, µ′) ·
[
JMFG(πµ, µ, s

′)− JMFG(πµ′ , µ′, s′)
]∣∣∣∣∣ .

Following the same lines as in the Step 1, we can then obtain (39).

Corollary E.4. Suppose Assumption 1 holds. Then, we have for any two µ, µ′ that

sup
s∈S
∥πµ(·|s)− πµ′(·|s)∥2TV ≤ Cπ,µ ∥µ− µ′∥2 , (40)

with

Cπ,µ :=
4

η(1− γ)
·
Lr +

γ
1−γLP (∥r∥∞ + η log |A|)

1− γ
.
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Proof. From E.2, we have that

∥π(·|s0)− πµ(·|s0)∥2TV

≤ 2

η(1− γ)
(
JMFG(πµ, µ, s0)− JMFG(πµ′ , µ, s0)

)
≤ 2

η(1− γ)
(
JMFG(πµ, µ, s0)− JMFG(πµ′ , µ′, s0) + JMFG(πµ′ , µ′, s0)− JMFG(πµ′ , µ, s0)

)
.

Then, applying twice Proposition E.3, we obtain (40).

E.3. Bound on the Exploitability

To analyze the exploitability ϕ of a given policy π and a given mean-field parameter µ, we decompose it into two key
contributions. The first term captures the suboptimality of the best response against the mean-field distribution, quantifying
how much an agent can improve its reward by deviating optimally. The second term accounts for the discrepancy between
the current population distribution and the stationary distribution of the Markov reward process induced by (π, µ). This
decomposition allows us to explicitly bound the exploitability by controlling both the policy’s optimality and the convergence
of the population dynamics to equilibrium.
Proposition E.5. Fix a policy π ∈ Π and two mean-field parameter µ ∈ P(S). Then, we have that the exploitability ϕ as
defined in (7) is bounded by

ϕ(π, µ) ≤
(
max
π′

JMFG (π′, µ, µ)− JMFG (π, µ, µ)
)
+ Cϕ ∥λπ,µ − µ∥2 ,

with

Cϕ := 2
Lr +

γ
1−γLP (∥r∥∞ + η log |A|)

1− γ
+ 2
√
|S| ·

∥r∥∞ + η log(|A|)
1− γ

. (41)

Proof. Fix a policy π ∈ Π and two mean-field parameter µ, µ′ ∈ P(S). Then, we have that

JMFG (π, µ, µ) =
(
JMFG (π, µ, µ)− JMFG (π, µ′, µ)

)
+
(
JMFG (π, µ′, µ)− JMFG (π, µ′, µ′)

)
+ JMFG (π, µ′, µ′) .

On the one hand, from Proposition E.3, we have that∣∣JMFG(π, µ, µ)− JMFG(π, µ′, µ)
∣∣ ≤ Lr +

γ
1−γLP (∥r∥∞ + η log |A|)

1− γ
· ∥µ− µ′∥2 .

On the other hand, we have that

JMFG (π, µ′, µ) =
∑
s∈S

JMFG (π, µ′, s0)µ(s0) ,

and a similar decomposition applies for JMFG (π, µ′, µ′). This means that∣∣JMFG(π, µ′, µ)− JMFG(π, µ′, µ′)
∣∣ ≤∑

s∈S

∣∣JMFG (π, µ′, s0)
∣∣ |µ′(s)− µ(s)|

≤
∥r∥∞ + η log(|A|)

1− γ
∑
s∈S
|µ′(s)− µ(s)|

≤
√
|S| ·

∥r∥∞ + η log(|A|)
1− γ

∥µ′ − µ∥2 ,

where we have applied Cauchy-Schwarz inequality in the last bound. Therefore, we can bound the exploitability ϕ as defined
in (7) as

ϕ(π, µ) = max
π′∈Π

J(π′, λπ,µ, λπ,µ)− J(π, λπ,µ, λπ,µ)

≤ max
π′∈Π

J(π′, µ, µ)− J(π, µ, µ) + Cϕ ∥λπ,µ − µ∥2
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E.4. Discussion on the monotonicity of the optimal Markov Kernel

Define the operator PM as PM (µ) := µ
(
P

πµ
µ

)M
. In this section, we outline sufficient conditions under which this operator,

responsible for updating the population distribution in the MFG framework, exhibits monotonicity. Monotonicity of PM is a
crucial property that ensures stability and convergence of the iterative updates toward the Nash equilibrium.

This operator represents a generalization of the standard contractivity condition, which is traditionally formulated with
M = 1. This generalization is motivated by the fact that, as we aim at studying the regularized ergodic MFG problem (2)-(3),
the condition can hold for some M > 1.

This contractivity condition reflects the combined effect of the Lipschitz continuity of the regularized best response πµ
and the ergodicity of the Markov reward process Pπµ

µ , ensuring the stability and convergence of the mean-field population
updates in the ergodic setting.

Lemma E.6 (Strong monotonicity of PM ). Suppose that Assumptions 1 and 3 hold. We have for all distribution measures
µ and µ′

⟨PM (µ′)− PM (µ), µ′ − µ⟩ ≤ Cop,MFG ∥µ′ − µ∥22 ,

with

Cop,MFG = CErgLP
1− ρM

1− ρ
(1 + Cπ,µ) + 2 |S|CErgρ

M .

Proof. Consider the following decomposition

⟨µ′ − µ,PM (µ′)− PM (µ)⟩ =
〈
µ′ − µ, µ′

[(
P

πµ′

µ′

)M
−
(
Pπµ
µ

)M]〉
+

〈
µ′ − µ, (µ′ − µ)

(
Pπµ
µ

)M〉
.

On one hand, applying Lemma E.1 and Cauchy-Schwartz inequality, we obtain〈
µ′ − µ, µ′

[(
P

πµ′

µ′

)M
−
(
Pπµ
µ

)M]〉
≤∥µ′ − µ∥2 ·

∥∥∥∥(Pπµ′

µ′

)M
−
(
Pπµ
µ

)M∥∥∥∥
TV

≤∥µ′ − µ∥2 · CErgLP
1− ρM

1− ρ

(
sup
s∈S
∥πµ(·|s)− πµ′(·|s)∥TV + ∥µ− µ′∥2

)
≤CErgLP

1− ρM

1− ρ
(1 + Cπ,µ) ∥µ− µ′∥22 ,

where in the last inequality we have applied Corollary (E.4).

On the other hand, from Assumption 3, we get that〈
µ′ − µ, (µ′ − µ)

(
Pπµ
µ

)M〉
≤∥µ′ − µ∥1

∥∥∥∥(µ′ − µ)
(
Pπµ
µ

)M∥∥∥∥
TV

≤∥µ′ − µ∥1

(∥∥∥∥µ(Pπµ
µ

)M
− λπµ,µ

∥∥∥∥
TV

+

∥∥∥∥λπµ,µ − µ′
(
Pπµ
µ

)M∥∥∥∥
TV

)
≤∥µ′ − µ∥1 · 2CErgρ

M

≤2 |S|CErgρ
M ∥µ′ − µ∥22 .

The condition Cop,MFG < 1 is satisfied when the Lipschitz constant LP associated with the transition kernel is sufficiently
small, and the exponent M is large enough.
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Intuitively, a smaller LP indicates that the transition dynamics of the MDP are less sensitive to changes in the population
distribution, reducing the potential for instability. A regularity condition on LP is a standard assumption in the literature to
ensure the uniqueness of the MFNE. Similar assumptions have been employed in various works, including Becherer & Hesse
(2024), Espinosa & Touzi (2015), Lacker & Zariphopoulou (2019), and Tangpi & Zhou (2024), among many others. These
studies leverage regularity constraints to prevent degeneracies in equilibrium selection and to guarantee well-posedness in
the associated fixed-point problems.

Meanwhile, a larger M amplifies the effect of the contraction over multiple iterations of the operator, ensuring convergence
even in cases where individual updates are not strongly contractive. This interplay between LP and M highlights the
importance of balancing the model’s inherent dynamics with the structural assumptions to guarantee monotonicity and
stability in the population updates.

F. Additional Experiments
We present results for the Exact MF-TRPO algorithm on two extensions of the Crowd Modeling game and we benchmark
our results against Ficticious Play (FP) (Perrin et al., 2020) and Online Mirror Descent (OMD) (Pérolat et al., 2022).
Our findings demonstrate that the exact algorithm matches the performance of state-of-the-art methods, highlighting its
effectiveness in these settings. In the following, we provide a detailed overview of the games employed.

Grid-based Crowd Modeling Game. This environment, inspired by the Four Rooms example from Geist et al. (2022), is
based on a two-dimensional grid with obstacles. Each agent’s state is defined by her position on the grid, and she can choose
from five possible actions: moving left, right, up, down, or staying in place. The reward function is designed to discourage
overcrowding by penalizing agents based on the population density at their next position. Specifically, agents receive a
negative reward proportional to the logarithm of the density at their destination, encouraging a more even distribution across
the state space. Additionally, a small bonus is given for staying in place, while moving in any direction results in a penalty.
Formally, the reward function is defined as

r (s, a, µ) = −κ log(µ(s)) + Γ(a) ,

where Γ(a) = 0.2 · 1{a=Stay} − 0.2 · 1{a ̸=Stay}, with 1 being the indicator function and κ being a crowd-aversion parameter.

In this environment, the transition matrix does not depend on the mean-field distribution µ; however, some stochasticity is
introduced through a slipperiness parameter: when an agent selects an action, she is most likely to follow it, but there remains
a smaller probability of performing a different valid move. In particular, for each action, a total slipperiness probability of
0.1 is evenly distributed among the alternative actions. Furthermore, this game can be extended by introducing a designated
point of interest, denoted as starget, which guides the behavior of the players. The modified reward function is defined as

r̃ (s, a, µ) = r (s, a, µ) + max (0.3− 0.1 · d(s, starget), 0) ,

where r (s, a, µ) denotes the previously defined reward function, and d(s, starget) is the distance between state s and the
target state starget, computed as the ℓ1 norm of their coordinate difference.

Two-Islands-Graph Crowd Modeling. The Two Islands Crowd Modeling Game replaces the grid structure with two
interconnected graphs, referred to as islands, connected by a single narrow bridge. The main challenge in this setting arises

Figure 3. The reading order is (from left to right): Four Rooms Crowd Modeling, Two-Islands-Graph Crowd Modeling, and Four Rooms
Crowd Modeling with a point of interest. Solid lines denote η = 0.05, whereas dashed lines indicate η = 0.3.
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Table 1. Parameter settings for the algorithms.

Algorithm/Parameter κ γ η L β Iℓ P M

Exact MF-TRPO {0.2, 0.4} 0.9 {0.05, 0.3} 10 0.01 N/A N/A N/A
Sample-Based MF-TRPO 0.2 0.9 {0.05, 0.3} 100 0.1 3 · 105 3 · 105 100

from the limited connectivity between the two sub-populations. The transition matrix is generated randomly, assigning to
each node a probability distribution over its neighboring nodes, including itself. The reward function penalizes the logarithm
of the mean-field distribution while encouraging movement toward the second island i2,

r (s, µ) = −κ log(µ(s))(2 · 1s∈i2 + 1s∈i1) .

The Exact MF-TRPO algorithm is evaluated on the two proposed variants of the Grid-Based environment and on the
Two-Islands-Graph Crowd Modeling game. The former is modeled as an 11× 11 grid with walls delineating four symmetric
and interconnected rooms, as in Geist et al. (2022), with all the players starting clustered in the top-left corner. For the
latter, we consider a state space of size |S| = 14 and an action space of size |A| = 2, with a branching factor of 2, that is,
each state is connected to exactly two neighbors. Here, initially, all players are positioned at location 2 on the first island i1
(see Figure 5).

F.1. Experimental setting

Results are presented for two different values of the regularization parameter: η = 0.05 and η = 0.3 and, throughout all
experiments, the discount factor is set to γ = 0.9. A key feature of both the exact and sample-based methods is the use of a
warm start for the policy in the RL component. Rather than resetting the policy to a uniform distribution over actions at
each iteration, it is initialized with the policy learned from the previous iteration. Moreover, the step size used for updating
the distribution remains constant throughout the learning phase, i.e., βk = β. The key parameters for the two algorithms are
summarized in Table 1.

F.2. Results

The plots presented show the exploitability, defined in Equation (7), to evaluate the effectiveness of our approach, along
with the evolution of the mean-field distribution over time. Compared to FP and OMD, Exact MF-TRPO performs
competitively across all evaluated environments, demonstrating superior long-term performance. As training progresses, the
model continually improves its policy and ultimately outperforms the other algorithms (see Figure 3). Moreover, players in
grid-based games tend to move toward less crowded areas, gradually achieving a more uniform distribution (see Figure 4).
Moreover, when a point of interest is introduced, the players manage to cluster around it (see Figure 6). Finally, as shown
in Figure 5, the players progressively concentrate on the second island, attracted by the higher reward present in that region.

Figure 4. Evolution of the mean field distribution for η = 0.05 in the Four Rooms Crowd Modeling game. From left to right: step 0, step
1000 and step 5000.
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Figure 5. Evolution of the mean field distribution for η = 0.05 in the Two-Islands Graph Crowd Modeling game. From left to right: step
0, step 2000 and step 5000.

Figure 6. Evolution of the mean field distribution for η = 0.05 in the Four Rooms Graph Crowd Modeling game with the bottom-right
corner being a point of interest. From left to right: step 0, step 1000 and step 5000.
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