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Abstract

Causality is essential for understanding complex systems,
such as the economy, the brain, and the climate. Construct-
ing causal graphs often relies on either data-driven or expert-
driven approaches, both fraught with challenges. The for-
mer methods, like the celebrated PC algorithm, face issues
with data requirements and assumptions of causal sufficiency,
while the latter demand substantial time and expertise. This
work explores the capabilities of Large Language Models
(LLMs) as an alternative to domain experts for causal graph
generation. We frame conditional independence queries as
prompts to LLMs and employ the PC algorithm with the an-
swers. The performances of the LLM-based conditional inde-
pendence oracle on systems with known causal graphs show
a high degree of variability. We improve the performance
through a proposed statistical-inspired voting schema that al-
lows control over false-positives and false-negatives rates. Fi-
nally, we apply the LLM-based PC algorithm to a complex set
of variables around food insecurity in the Horn of Africa and
find a plausible graph. Inspecting the chain-of-thought argu-
mentation, we occasionally find causal reasoning to justify its
answer to a probabilistic query.

Introduction
Understanding causality is imperative across various disci-
plines, as it offers critical insights into the mechanisms of
complex systems. For example, in the Earth and climate
sciences, uncovering the causal relationship between green-
house gas emissions and global warming has informed in-
ternational climate agreements and spurred initiatives for re-
newable energy adoption, aiding in the mitigation of climate
change impacts and promoting environmental sustainability
(Stips et al. 2016).

Unraveling causality not only enhances our understand-
ing of the underlying processes, but also empowers us
to make informed decisions and take proactive measures
to address pressing challenges, thus ensuring the well-
being and sustainability of our societies and the environ-
ment. Investigating causality poses considerable challenges,
with constructing causal graphs representing a particularly
formidable task. Data-driven causal discovery methods, in-
cluding prominent techniques like PC (Spirtes, Glymour,
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and Scheines 2000) and GES (Chickering 2002), encounter
a range of issues. These methodologies rely heavily on copi-
ous amounts of data, necessitating complex conditional in-
dependence tests that can be particularly challenging, espe-
cially when working with diverse and mixed data types. The
assumption of causal sufficiency, which presumes that all
relevant variables are observed, can lead to erroneous con-
clusions, especially when unobserved variables act as poten-
tial confounders between system variables. Notably, there
exist alternative methods such as LPCMCI (Gerhardus and
Runge 2020), FCI (Spirtes, Glymour, and Scheines 2000),
SVAR-FCI (Malinsky and Spirtes 2018), and GPS (Claassen
and Bucur 2022) that do not assume causal sufficiency
(Camps-Valls et al. 2023). Nonetheless, missing data and
selection bias continue to pose persistent challenges in real-
world applications, prompting efforts to develop more re-
silient causal discovery methods (Camps-Valls et al. 2023).

In addition to data-driven causal discovery methods, an-
other approach for creating causal graphs involves lever-
aging domain knowledge. However, this process is inher-
ently challenging and time-consuming, demanding substan-
tial expertise and labor (Long et al. 2023b). Experts tasked
with constructing causal graphs must possess a deep un-
derstanding of the relationships and mechanisms within the
system under investigation. This often entails extensive con-
sultations, discussions, and reviews with domain specialists,
adding significant time and resource commitments to the
process. Furthermore, the complexity of many real-world
systems amplifies the difficulty of accurately capturing all
relevant causal relationships, leading to potential oversights
and inaccuracies in the resulting causal graph. These chal-
lenges underscore the necessity for more automated method-
ologies. In that respect, LLMs could play a key role if they
prove to be a reliable source of causal knowledge.

LLMs present a promising knowledge-driven alternative
to expert-based graph building or data-driven causal discov-
ery methods. They have shown good performance across a
range of language understanding and logical reasoning tasks
(Brown et al. 2020; Xu et al. 2023). This could extend to
probabilistic and causal reasoning, including interventional
and counterfactual scenarios. Whether or not this is the case
is the subject of heated debate (Hobbhahn, Lieberum, and
Seiler 2022; Willig et al. 2023; Zečević et al. 2023). Despite
the inherent complexity of directly asking LLMs to provide
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Figure 1: Illustration of the introduced scheme for PC with
GPT/LLM. Credits: Little robot face by Antònia Font.

complete causal graphs, given the various levels of reasoning
involved and the rich context necessary, different strategies
exist to elicit causal graphs from LLMs effectively. These
strategies include LLMs to predict causal relations (Kıcıman
et al. 2023; Long et al. 2023a; Willig et al. 2023), LLMs as
priors for data-driven causal discovery methods (Ban et al.
2023), and LLMs to aid in downstream causal inference
tasks by predicting the causal order of variables (Vashishtha
et al. 2023).

To marry the traditional and the LLM-based methods, our
work proposes chatPC as a hybrid approach. Specifically,
this work:
• Frames conditional independence queries as prompts to

LLMs and employs the PC algorithm with this oracle for
causal graph construction.

• Evaluates the performance of LLMs on conditional inde-
pendence tests across various problems, showing varied
performance.

• Introduces a statistical-based approach for aggregating
multiple LLM answers, improving performance.

• Examines the graphs predicted by PC with the LLM ora-
cle, finding them to be reasonable.

• Identifies a general tendency for conservative answers
from LLMs compared to experts and finds traces of
causal reasoning in the model’s answers.

• Suggests that the approach could mitigate limitations of
traditional methods, offering a promising avenue for au-
tomated causal graph construction.

We argue that relying solely on bivariate causal queries in-
herently overlooks the presence of mediators, consequently
limiting the comprehensive understanding of the full causal
graph. Additionally, our research explores the extent to
which LLMs’ queries can effectively substitute data-driven
conditional independence tests, considering that PC repre-
sents the current state of the art in causal discovery, and
under a perfect oracle, it can consistently retrieve the ideal
graph up to the Markov equivalence class (Spirtes, Glymour,
and Scheines 2000).

Conditional Independence Queries via LLM
We start by describing and evaluating conditional indepen-
dence (CI) queries with LLMs. Specifically, we are inter-
ested in estimating the validity of conditional independence
statements of the type:

Is X independent of Y given Z = (Z1, Z2, . . . , Zk)?,

without having access to observations of the involved vari-
ables. Instead, we would like to rely on available or expert
knowledge accessible through LLMs.

For an LLM to be able to answer CI queries, it needs to be
presented with some context and additional information re-
lated to the variables of interest alongside their description.
In particular, we assume that for each problem, we have ac-
cess to the following information:

variables names or acronyms plus a short description for
each quantity of interest.

field the general subject area or expert field related to the
problem.

context a description of the broad context of the variables
under consideration, including relevant details that go be-
yond general knowledge

Prompting for conditional independence testing
While the approach we propose in this work could be im-
plemented with any LLM trained to follow instructions, we
employ gpt-3.5-turbo from OpenAI1. For a CI statement
(X ⊥⊥ Y |Z), we consider a simple prompt that combines
the field and context information and a description of the
involved variables (X,Y , and eventually Z) with a general
instruction and response template as follows (see the Ap-
pendix for a detailed specification of the used prompt):

Persona specification
Instructions
Context
Variables description
CI Statement question
Response template

The persona is based on the field variable and primes the
LLM to produce reasoning appropriate to the area under
study. To improve the answers, we apply chain-of-thought
prompting following Wei et al. (2023), enabling us to gain
insights into the model’s reasoning and inspect if it is
causally inspired. Further, we ask the model to provide un-
certainty about its best guess along the lines of Tian et al.
(2023).

Testing
Various strategies could be envisaged to perform a “Hy-
pothesis test” for a conditional independence statement with
LLMs. A naive option consists of asking the LLM a sin-
gle question with the prompt described in the previous sec-
tion and decide that a statement is valid (i.e., the variables
are indeed independent) if the answer is YES and other-
wise, it is NO. The main problem with this approach is that
since LLMs are probabilistic, a single answer from an LLM
does not need to correspond to its mode (the most likely an-
swer) or could fail to respect the required response template
and answer, for instance, UNCERTAIN instead of YES/NO.
Instead, we ask for an independent batch (size n) of an-
swers, parse the obtained answers (YES or NO) together
with the reported uncertainties, and finally output either an

1https://platform.openai.com/docs/models/gpt-3-5



answer based on simple voting or weighted voting where the
weights are the reported probabilities.

Alternatively, we implement a “statistical approach”
where we actually produce p-values for the null hypothe-
sis pno ≥ pyes (or alternatively pno ≤ pyes) where pno, pyes
are the proportion of NO and YES answers over the total
requested batch n. The constructed test is based on the idea
that we want to test if the probability of obtaining the answer
NO is significantly higher than that of obtaining the answer
YES and vice-versa. If we find the difference non-significant
in light of the obtained responses, we opt for the null hy-
pothesis. A final decision can then be obtained by setting a
significance level α and reject the chosen null hypothesis if
the p-value is less or equal to α (we will employ α = 0.05
in the experiments). This last strategy has the advantage of
considering the random variability of the answers and could
offer a principled way of controlling the false positive rate.
The user could then specify, for a particular problem, which
of the two null hypotheses they would like to employ (either
pno ≥ pyes or pyes ≥ pno), which in turn implies a differ-
ent false-positive control (considering either NO or YES as
positive).

Evaluation

We evaluate the performance for CI testing on various prob-
lems defined in the BNLearn repository (Scutari and Denis
2014), the spurious correlation website (Vigen 2023), and
a classical problem on reconstructing protein-signaling net-
works (Sachs et al. 2005):

• cancer Simple causal graph involving four factors in-
fluencing the probability of cancer (Korb and Nicholson
2010).

• burglary A modification of the classical earthquake
example in (Korb and Nicholson 2010; Scutari and Denis
2014)

• asia Causal graph of eight factors linked to respiratory
problems (Lauritzen and Spiegelhalter 1988).

• sachs: Causal graph among 11 phosphorylated proteins
and phospholipids in single-cell data (Sachs et al. 2005).

• spurious: Famous examples of pairs of variables that
are spuriously correlated, obtained from the spurious-
correlation website (Vigen 2023).

For the small problems (burglary and cancer) we eval-
uate all possible CI statements over 5 variables with both
permutations of X and Y (160 statements per problem). For
sachs and asia we evaluate all CI statements (with X-Y
permutations) up to conditioning sets of a certain size (0 and
1, respectively) plus 100 random valid CI statements. Addi-
tionally for sachs, we evaluate also 100 randomly chosen
statements with a conditioning set of size less or equal to
three. Lastly, for spurious we evaluate the marginal inde-
pendence statements X ⊥⊥ Y for all pairs of variables. For
all the experiments, we obtain the answer to the CI queries
by aggregating, as described previously, n = 20 indepen-
dent batched responses from the LLM.

Table 1: Performance of LLM-based conditional indepen-
dence tests with different voting procedures and metrics (ac-
curacy, precision, recall, and F1 score.

Dataset Prediction method Acc. Prec. Rec. F1

burglary

voting 0.54 0.26 0.36 0.30
weighted voting 0.55 0.29 0.45 0.36
stat. Test (H0: ⊥⊥) 0.53 0.33 0.73 0.46
stat. Test (H0: ̸⊥⊥) 0.69 0.38 0.23 0.29
NO 0.73 0.00 0.00 0.00

cancer

voting 0.88 0.00 0.00 0.00
weighted voting 0.88 0.00 0.00 0.00
stat. Test (H0: ⊥⊥) 0.88 0.00 0.00 0.00
stat. Test (H0: ̸⊥⊥) 0.88 0.00 0.00 0.00
NO 0.88 0.00 0.00 0.00

asia

voting 0.79 0.10 0.18 0.12
weighted voting 0.78 0.09 0.18 0.12
stat. Test (H0: ⊥⊥) 0.68 0.15 0.59 0.24
stat. Test (H0: ̸⊥⊥) 0.86 0.08 0.06 0.07
NO 0.91 0.00 0.00 0.00

sachs

voting 0.58 0.48 0.87 0.62
weighted voting 0.57 0.47 0.86 0.61
stat. Test (H0: ⊥⊥) 0.52 0.45 0.99 0.62
stat. Test (H0: ̸⊥⊥) 0.61 0.50 0.46 0.48
NO 0.61 0.00 0.00 0.00

Permutation consistency The result of a conditional in-
dependence test should not depend on the order of variables,
i.e., it should be commutative in X and Y (given Z). As
a first sanity check, we checked the consistency of the re-
sponses with respect to the change of order of X and Y (see
Figure 4 in the Appendix).

In over 80% of the cases, the majority votes resulted in
the same response, while roughly 13% of the statements dis-
agreed. In the remaining cases, at least one direction resulted
in a tie. Given the variance in the generated responses and
the majority vote over merely 20 queries, some mismatch
is expected. Overall, the LLM seems sufficiently consistent
in its responses under change of order. Nevertheless, we pro-
pose to aggregate the results of the queries in both directions
to obtain results invariant to the order of the two involved
variables.

Performance of CIT Table 1 summarizes the evaluations
of the conditional independence queries over the different
problems. We compute the proposed approaches’ standard
classification metrics (accuracy, precision, recall, and F1
scores). We use the test that always yields NO (meaning NO
independence) as a reference point. It reflects the density
of the graph (the higher its accuracy, the denser) as it cor-
responds to assuming a fully connected graph. The results
show varying performance over the different causal graphs.
In terms of accuracy, all prediction methods underperform
with respect to the constant NO baseline due to the density
of the graphs. The statistical test (H0: ̸⊥⊥) approach, which
favors dependence, comes closest to this and only loses a
few percent points in all cases. For burglary and sachs,



it has the highest precision. In Recall and F1 score, the other
statistical test (H0: ⊥⊥) partially outperforms the other meth-
ods. As independence is usually the underrepresented class,
it usually improves in recall and F1 score. Weighted vot-
ing usually helps to steer responses that ended in a tie in
favour of the one where the models were more certain but
did not change the results substantially compared to the nor-
mal vote. Statistical-based approaches have a more princi-
pled way of working with cases where the vote is not clear
enough and allow the deployer to choose how to control
for false positive or false negative rates. Even though the
LLM did not excel in this task, the responses for the two
statistical-based approaches may serve as additional base-
lines. In the case of the cancer problem, the response of
the LLM corresponded to the NO baseline, as it consistently
suggested that there could still be some relationship between
the variables. As for health data, there are always many con-
founders; this seems to be a conservative or safe decision.

Inquiring spurious correlations To investigate this fur-
ther, we went to the other extreme and asked for statisti-
cal independence between variables taken from the spurious
correlation website (see Table 2 in the Appendix). Here, in-
stead, the model almost always chose independence. At the
same time, revenue-CS, spending-suicides, and chicken-oil
showed the highest disagreement in the responses. For the
statistical-based (H0: ̸⊥⊥), this even leads to a rejection in
the case of revenue-CS. Also, in this case, the model of-
ten seems to take the conservative answer: correlation by
chance, i.e., YES to independence. On the other side, corre-
lation, according to Reichenbach’s principle, implies either
direct causation or a common cause. We examined the re-
sponses of the LLMs to the queries of the above-mentioned
pairs. For the pair spending-suicides, for instance, in some
answers, it reasons about factors that influence both vari-
ables and gives reasonable examples of confounders such
as diverting resources or progress in mental health research
(see Appendix Response example A for the full response).
The mentioned response shows causal reasoning when the
model was not directly requested. And it goes beyond the
required reasoning for directing edges as in previous works.
We find, however, that the model does not consistently take
this path in the answer. In some cases, instead, it reasons
about the impacts on probability when fixing the condition-
ing set and makes false statements about determining condi-
tional independence (see Appendix Response example B for
the full response). This shows that more work must be done
to steer LLMs towards reliable and coherent causal reason-
ing.

Application to Causal Discovery
We propose to couple the conditional independence oracle
or testing, introduced in the previous section, with the PC-
algorithm (Colombo and Maathuis 2014) for recovery of
the Markov equivalence class of a causal graph. The PC al-
gorithm starts from a fully connected skeleton (undirected
graph) among the considered variables and iteratively re-
moves edges between variables X and Y when it finds a
conditioning set Z such that X is independent of Y given
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Figure 2: Assumed true graph (a) and skeleton recovered
(b) with the proposed chatPC approach for the burglary
problem. Variables: Burglary in progress (B); earthquake
(E); radio station announcing earthquake (R); alarm ringing
(A); security company calling (C).

Z. After the so-called skeleton phase, v-structures are iden-
tified through specific conditional independence testing, and
finally, a set of orientation rules are applied (Meek 1995).
Hence, to implement chatPC, we plug in the LLM-based
conditional independence testing in an available PC imple-
mentation (Atienza, Bielza, and Larrañaga 2022).

Causal graphs from the examples
Since for the cancer problem, all CI statements are con-
sidered to be false (see Table 1), chatPC would retrieve a
complete skeleton. The graph obtained in the burglary
problem (with the stat. H0 =⊥⊥ strategy) is depicted in Fig-
ure 2 together with the assumed ground truth, while the esti-
mated graph in the asia and sachs problems are reported
in the Appendix.

In all cases, the obtained causal graphs have some sim-
ilarities with the ground truth graphs. Given the imperfect
results in the CI statements, recovering the true causal graph
is impossible. Nevertheless, we can observe that some in-
teresting patterns have been uncovered (e.g. the Plcg-PIP2-
PIP3 and Raf-Mek-Erk relationships in sachs) and an al-
most correct skeleton in the burglary problem has been
estimated.

Exploring the uncertain: Food insecurity in Africa
As an exploratory real-world example, we try to extract the
causal graph among 8 variables related to food security in
Somalia using chatPC. The Horn of Africa has seen a trou-
bling increase in food insecurity, impacting 6.5 million peo-
ple in 2022. Prolonged dry spells, along with factors like
hydrological conditions, limited food production, market ac-
cess issues, inadequate humanitarian aid, conflicts, and dis-
placement, contribute to the complex challenges of house-
holds in Somalia (Cerdà-Bautista et al. 2023).

The output graph obtained leveraging information of CI
statements up to conditioning sets of size 1 is shown in Fig-
ure 3. Firstly, we note that the obtained graph is not fully
connected. We observe that all obtained arcs and the es-
timated causal directions are not inconsistent with domain
knowledge and common sense (Cerdà-Bautista et al. 2023).
Specifically, we can see the following causal relationships,
which agree with the dynamics of agropastoralist house-
holds in drought displacement situations, as reported by the
Internal Displacement Monitoring Center (iDMC) (Internal
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Figure 3: Causal graph obtained from chatPC
(gpt-3.5-turbo) with the statistical strategy (H0 =⊥⊥)
and using the information of conditional independence tests
up to conditioning set of size 1. Variables: El Niño Southern
Oscillation (ENSO); Standardized Precipitation Index
(SPI); Recorded fatalities due to violent conflicts (VC);
Local market prices (LMP); Sorghum yield production (Y);
Drought-induced internal displacement (DD); Number of
individuals that received cash from humanitarian aid (RC);
Global Acute Malnutrition (GAM).

Displacement Monitoring Centre (iDMC) 2020); i.e., Vio-
lent Conflict (VC) - Drought Displacement (DD), Standard-
ized Precipitation Index (SPI) - Sorghum Yield Production
(Y), Local Market Prices (LMP) - Global Acute Malnutri-
tion (GAM).

Conclusions
Our work contributes to the existing literature by probing an
alternative to data-driven PC, leveraging the capabilities of
LLMs for PC when data is limited or unavailable. Building
a reliable knowledge-based conditional independence ora-
cle could either provide a prior to constrain its data-driven
counterpart or even deliver a more reliable substitute for
data-driven methods. Our analysis attempts to shed light
on where we stand in this endeavor. We found that LLM
sometimes conjectures about hidden confounders, showing
that they use causal reasoning to tackle this primarily sta-
tistical task. This, however, is neither done consistently nor
always successfully. The varying performance over differ-
ent tasks showed that more effort is needed to steer the
models to more efficient causal reasoning. We proved that
employing an aggregating mechanism framed as a statisti-
cal test leads to improved performance and effective con-
trol over false positive and negative rates. The causal graphs
predicted by the PC algorithm with LLM-based conditional
independence tests appear reasonable. While not infallible,
the method demonstrates potential in capturing meaningful
causal relationships, offering a promising avenue for au-

tomated causal graph construction. Finally, we found that
LLMs generally tend toward conservative answers, contrast-
ing with the often bolder responses from human experts. Un-
derstanding and addressing the cautious nature of LLM rea-
soning is crucial for refining the accuracy and reliability of
the generated causal graphs.

In the future, we will explore the combination of data-
driven and language-driven causality, where relying on CIT
estimates in PC schemes constitutes a sound framework to
improve consistency and robustness.
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Details on the Prompt
Here, we describe the details of the prompt used. In the fol-
lowing prompt scheme, curly brackets {} denotes elements
that are replaced by corresponding elements from the prob-
lem description and the specific CI statement which is been
queried. In particular {field} and {context} are replaced
by their values for the problem; and {x}, {y} and {z} are
the name of the variables involved in the CI (X ⊥⊥ Y |Z). If
Z = ∅ the whole given {z} is dropped from the prompt.
1
2 system: You are a helpful expert in {

field} and willing to answer
questions.

3
4 system: You will be asked to provide

your best guess and your uncertainty
on the statistical independence
between two variables potentially
conditioned on a set of variables.
Your answer should not be based on
data or observations but on available
knowledge. Even when unsure or

uncertain, provide your best guess (
YES or NO) and the probability that
your guess is correct. Answer only in
the required format.

5
6 user: {context} Consider the following

variables:
7 {variables list and description}
8 is {x} independent of {y} given {z}?
9

10 system: Work out the answer in a step-by
-step way to be as sure as possible
that you have the right answer. After
explaining your reasoning, provide

the answer in the following form: [<



ANSWER> (<PROBABILITY>)] where ANSWER
is either YES or NO and PROBABILITY

is a percentage between 0\% and
100\%.

11 YES stands for "{x} is independent of {y
} given {z}" and NO stands for "{x}
is not independent of {y} given {z}".

12
13 For example [NO (50%)] or [YES (50%)].

Permutation consistency
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Figure 4: Confusion matrix of the model’s responses to
queries with changing order of X and Y . Uncertain out-
comes in case of a tie in majority voting are hidden.

Response example A
1 Based on the given information, it is

difficult to determine the
statistical independence between
spending on science, space, and
technology and suicides by hanging,
strangulation, and suffocation. There
may be multiple factors that

influence both variables, such as
socioeconomic status, mental health,
and government policies.

2
3 However, contrary to what might be

expected, there is a possibility that
spending on science, space, and

technology could have an indirect
effect on suicides. Investments in
science and technology may lead to
advancements in healthcare, mental
health research, and improvements in
overall quality of life, potentially
reducing suicide rates. On the other
hand, excessive spending in these
areas may divert resources from other
societal needs, which could

indirectly increase psychosocial
stressors contributing to suicide
rates.

4
5 Considering the lack of concrete

evidence and the potential indirect

pathways, we can only make an
educated guess.

6
7 My best guess would be that spending is

not completely independent of
suicides, and there might be some
association between the two variables
. However, the strength and direction
of this association are uncertain.

8
9 [NO (60%)]

Response example B
1 To determine if E is independent of B

given [’’C’’], we need to assess if
knowledge of C provides any
additional information about the
relationship between E and B.

2
3 Assuming that the alarm system is

designed to detect burglaries
accurately but is not specifically
designed to detect earthquakes, the
occurrence of an earthquake should
not affect the probability of a
burglary in progress. Therefore, the
variables E and B should be
statistically independent.

4
5 However, the alarm company will inform

the owner once the alarm system is
triggered. The decision to call the
owner is based on whether the alarm
company received a signal or not (
variable C). This introduces a
conditional relationship between E, B
, and C.

6
7 Since C is conditioned on B, the

occurrence of an earthquake (E) may
impact the probability of the alarm
system being triggered (C) when a
burglary is in progress (B), as an
earthquake could potentially set off
the alarm system accidentally. Thus,
the variables E and B may no longer
be independent given the knowledge of
C.

8
9 Therefore, E is likely not independent

of B given [’’C’’].
10
11 [NO (90%)]

Spurious Correlations
We report in Table 2 the responses obtained for the
spurious problem over 15 marginal independence state-
ments for the corresponding pairs of spuriously associated
variables. We report the decisions obtained with the voting
and the two statistical approaches; moreover, the number of
NO and YES answers among the n = 20 batched response
are reported.



Table 2: Predictions for variable pairs of the spurious correlations dataset.

Variable Name Description voting stat. Test Test
NO - YES (H0 :⊥⊥) (H0 :̸⊥⊥)

spending US spending on science, space, and technology YES YES YES
suicides Suicides by hanging, strangulation and suffocation 4 - 11

pool number of people who drowned by falling into a pool per year YES YES YES
cage number of films Nicolas Cage appeared in per year 0 - 19

cheese per capita cheese consumption YES YES YES
bed number of people who died by becoming tangled in their bedsheet 0 - 19

divorce divorce rate in Maine YES YES YES
margarine per capita consumption of margarine 0 - 12

age age of Miss America YES YES YES
murder number of people murdered by steam, hot vapors and hot objects 3 - 15

revenue total revenue generated by arcades YES YES NO
CS computer science doctorates awarded in the US 5 - 9

launches worldwide non-commercial space launches YES YES YES
Soc sociology doctorates awarded (US) 3 - 15

mozzarella per capita consumption of mozzarella cheese YES YES YES
engineering civil engineering doctorates awarded 3 - 15

boat people who drowned after falling out of a fishing boat YES YES YES
Kentucky marriage rate in Kentucky 0 - 18

Norway US crude oil imports from Norway YES YES YES
railway drivers killed in collision with railway train 4 - 15

chicken per capita consumption of chicken YES YES YES
oil US crude oil imports 5 - 14

swimming-pool number people who drowned while in a swimming-pool YES YES YES
power power generated by US nuclear power plants 3 - 16

cars Japanese passenger cars sold in the US YES YES YES
crashing Suicides by crashing of motor vehicle 3 - 12

spelling letters in winning word of Scripps National Spelling Bee YES YES YES
spiders number of people killed by venomous spiders 0 - 20

maths math doctorates awarded YES YES YES
uranium uranium stored at US nuclear power plants 2 - 14



Estimated Graphs
In Figure 5 and 6, we report the estimated graphs for the
asia and sachs problems, respectively. For asia only
information on the CI statements up to conditioning sets of
size 1 are used, while for sachs only marginal indepen-
dence statements are queried. Higher-order CI statements,
that is CI with larger size of conditioning sets, are not used
for pruning the skeleton (meaning the oracle always returns
NO).
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Figure 5: Estimated graph for the asia problem, obtained
with chatPC (stat. H0 =⊥⊥). Only information on CI state-
ments up to conditioning sets of size 1 is used.
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Figure 6: Causal graph for the sachs problem, obtained
with chatpC (stat. H0 =⊥⊥). Only information on marginal
independence statements is used.


