
Published as a conference paper at ICLR 2021

FIDELITY-BASED DEEP ADIABATIC SCHEDULING

Eli Ovits & Lior Wolf
Tel Aviv University

ABSTRACT

Adiabatic quantum computation is a form of computation that acts by slowly in-
terpolating a quantum system between an easy to prepare initial state and a final
state that represents a solution to a given computational problem. The choice
of the interpolation schedule is critical to the performance: if at a certain time
point, the evolution is too rapid, the system has a high probability to transfer to
a higher energy state, which does not represent a solution to the problem. On
the other hand, an evolution that is too slow leads to a loss of computation time
and increases the probability of failure due to decoherence. In this work, we train
deep neural models to produce optimal schedules that are conditioned on the prob-
lem at hand. We consider two types of problem representation: the Hamiltonian
form, and the Quadratic Unconstrained Binary Optimization (QUBO) form. A
novel loss function that scores schedules according to their approximated suc-
cess probability is introduced. We benchmark our approach on random QUBO
problems, Grover search, 3-SAT, and MAX-CUT problems and show that our ap-
proach outperforms, by a sizable margin, the linear schedules as well as alternative
approaches that were very recently proposed.

1 INTRODUCTION

Many of the algorithms developed for quantum computing employ the quantum circuit model, in
which a quantum state involving multiple qubits undergoes a series of invertible transformations.
However, an alternative model, called Adiabatic Quantum Computation (AQC) (Farhi et al., 2000;
McGeoch, 2014), is used in some of the leading quantum computers, such as those manufactured by
D-Wave Systems (Boixo et al., 2014). AQC algorithms can achieve quantum speedups over classical
algorithms (Albash & Lidar, 2018), and are polynomially equivalent to the quantum circuit model
(Aharonov et al., 2008).

In AQC, given a computational problem Q, e.g., a specific instance of a 3SAT problem, a physical
system is slowly evolved until a specific quantum state that represents a proper solution is achieved.
Each AQC run involves three components:

1. An initial Hamiltonian Hb, chosen such that its ground state (in matrix terms, the minimal
eigenvector of Hb) is easy to prepare and there is a large spectral gap. This is typically
independent of the specific instance of Q.

2. A final Hamiltonian Hp designed such that its ground state corresponds to the solution of
the problem instance Q.

3. An adiabatic schedule, which is a strictly increasing function s(t) that maps a point in time
0 ≤ t ≤ tf , where tf is total computation time, to the entire interval [0, 1] (i.e., s(0) = 0,
s(tf ) = 1, and s(t1) < s(t2) iff t1 < t2 and vice versa).

These three components define a single time-dependent HamiltonianH(t), which can be seen as an
algorithm for solving Q:

H(t) = (1− s(t)) · Hb + s(t) · Hp (1)

At the end of the adiabatic calculation, the quantum state is measured. The square of the overlap
between the quantum state and ground state of the final Hamiltonian, is the fidelity, and represents
the probability of success in finding the correct solution. An AQC algorithm that is evolved over
an insufficient time period (a schedule that is too fast) will have a low fidelity. Finding the optimal
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schedule, i.e., the one that would lead to a high fidelity and would keep the time complexity of the
algorithm minimal is, therefore, of a great value. However, for most problems, an analytical solution
for the optimal schedule does not exist (Albash & Lidar, 2018).

Attempts were made to optimize specific aspects of the adiabatic schedule by using iterative methods
(Zeng et al., 2015) or by direct derivations (Susa et al., 2018). Performance was evaluated by exam-
ining characteristics of the resulting dynamic (e.g. the minimum energy gap) and no improvement
was demonstrated on the full quantum calculation.

Previous attempts to employ AI for the task of finding the optimal schedule have relied on Rein-
forcement Learning (Lin et al., 2020; Chen et al., 2020). While these methods were able to find
schedules that are better than the linear path, they are limited to either learning one path for a fam-
ily of problems (without considering the specific instance) or to rerunning the AQC of a specific
instance Q multiple times in order to optimize the schedule.

In our work, supervised learning is employed in order to generalize from a training set of problems
and their optimal paths to new problem instances. Training is done offline and the schedule our
neural model outputs is a function of the specific problem instance. The problem instance is encoded
in our model either based on the final HamiltonianHp or directly based on the problem.

The suggested neural models are tested using several different problem types: Grover search prob-
lems, 3SAT and MAX-CUT problems, and randomized QUBO problems. We show that the evo-
lution schedules suggested by our model greatly outperform the naive linear evolution schedule,
as well as those schedules provided by the recent RL methods, and allow for much shorter total
evolution times.

2 BACKGROUND

The goal of the scheduling task is to find a schedule s(t) that maximizes the probability to get the
correct answer for instance Q, using Hb and Hp over an adiabatic quantum computer. The solution
to Q is coded as the lowest energy eigenstate ofHp.

In order to achieve the solution state with high probability, the system must be evolved “sufficiently
slowly”. The adiabatic theorem (Roland & Cerf, 2002; Albash & Lidar, 2018; Rezakhani et al.,
2009) is used to analyze how fast could this evolution be. It states that the probability to reach the
desired state at the end of the adiabatic calculation is 1− ε2 for ε << 1 if∣∣〈E1(t)| ddtH(t) |E0(t)〉

∣∣
g2(t)

≤ ε (2)

where the Dirac notation (Tumulka, 2009) is used1, E0(t) (E1(t)) is the ground state (first excited
state) of the time dependent Hamiltonian H(t), i.e., the eigenstates that corresponds to the lowest
(2nd lowest) eigenvalue, and g(t) is the time dependent instantaneous spectral gap between the
smallest and second smallest eigenvalues ofH(t).

Let tf be the total calculation time. let s(t) be an evolution schedule , such that s(0) = 0, s(tf ) = 1.
Applying the adiabatic condition for s(t), we get∣∣〈E1(s(t))| ds

dt
d
dsH(s(t)) |E0(s(t))〉

∣∣
g2(s(t))

≤ ε⇒ ds

dt
≤ ε g2(s)∣∣〈E1(s)| ddsH(s) |E0(s)〉

∣∣ (3)

we could solve for t(s) by integration to get

t(s) =
1

ε

s∫
0

∣∣〈E1(s)| ddsH(s) |E0(s)〉
∣∣

g2(s)
ds (4)

and the total required evolution time is

tf = t(s = 1) =
1

ε

1∫
0

∣∣〈E1(s)| ddsH(s) |E0(s)〉
∣∣

g2(s)
ds (5)

1See appendix A for the conventional matrix notation.
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We note that finding a numerical solution for eq 4 requires calculating the full eigenvalue decompo-
sition ofH(x).

2.1 MOST-RELATED WORK

Two recent contributions use deep learning in order to obtain, for a given tf , a schedule that outper-
form the linear schedule. Lin et al. (2020) suggest using deep reinforcement learning in order to find
an optimal schedule for each specific class of problems (e.g., 3SAT problems of a certain size). In
contrast, we study the problem of finding schedules for generic problem instances. They train and
benchmark their performance by simulating an adiabatic quantum computer, and scoring the com-
putation results for randomly chosen problem instances. Their results are generally better than the
naive linear schedule, and the solution produced by their neural network is somewhat transferable
for larger problem sizes.

Chen et al. (2020) also use RL to construct, given a tf , a schedule for 3SAT problems. The most
successful technique suggested is a Monte Carlo Tree Search (MCTS, Silver et al. (2016)), which
produces results that significantly outperform the linear schedule. This technique requires running
the adiabatic evolution process many times for each problem, in order to find a successful schedule.
An approach inspired by alpha-zero (Silver et al., 2018) is used to adapt the generic MCTS solution
to specific problem class, while requiring only a few additional rounds of the adiabatic process for
each new instance. In our method, we do not require any run given a new problem instance.

3 METHOD

We consider two types of deep neural models. The first model is designed to get the problem
Hamiltonian Hp as an input. For an n qubit problem, the problem Hamiltonian is generally of size
2n×2n. In this work, we consider problem Hamiltonians which are diagonal and can be represented
by vector of size 2n. This scenario covers both the Grover search problem and the 3SAT problem
we present in Sec. 4.

The second model is designed to get a quadratic unconstrained binary optimization (QUBO) problem
as an input. The QUBO problem has the following form:

x̄ = argminx(xTQx) , (6)

where x is a vector of binary variables and Q ∈ Rn×n defines the specific QUBO instance. The
QUBO problem is NP-Complete, and many types of common problems can be reduced to QUBO
(Glover et al., 2018). The QUBO formulation is of special interest in the context of adiabatic quan-
tum computing, since it allows a relatively easy mapping to real quantum annealing devices that do
not possess full qubit connectivity (Cruz-Santos et al., 2019).

A QUBO problem Q can be converted to the Hamiltonian form in the following fashion:

Hp =

n∑
i=1

Qii(
I + σiz

2
) +

∑
i6=j

Qij(
I + σiz

2
)(
I + σjz

2
) , (7)

where σiz is the Pauli matrix σz operating only on qubit i (Liboff, 2003). The resultingHp is of size
2n × 2n and is diagonal.

The prediction target of our models is the desired normalized schedule ŝ(t), which is defined over
the range [0, 1] as ŝ(t) = s(t/tf ). For the purpose of estimation, it is sampled at 100 points in
the interval t = [0, 1]. The representation of this schedule is given as a vector d ∈ [0, 1]99, which
captures the temporal derivative of the schedule. In other words, d is trained to hold the differences
between consecutive points on the path, i.e., element i is given by di = ŝ((i+ 1)/100)− ŝ(i/100).
Note that the sum of d is one.

3.1 UNIVERSALITY OF THE OPTIMAL SCHEDULE

The reason that we work with the normalized schedule is that the optimal evolution schedule is not
dependent upon the choice of tf . As shown next, for every time budget tf , the same normalized
schedule would provide the highest fidelity (neglecting decoherence).
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Let s1(t) : [0, tf ] → [0, 1] be a suggested evolution schedule, which outperforms a different sug-
gested schedule s2(t), for a specific tf = τ1, i.e. it achieves a greater fidelity at the end of the
schedule for a specific problem instance Q. Then, Thm. 1 shows that s1(t) outperforms s2(t) for
every possible choice of tf for the same problem Q.

Theorem 1. Let s1(t) and s2(t) be two monotonically increasing fully differentiable bijective func-
tions from [0, tf = τ1] to [0, 1]. Let Q be an optimization problem, and assume that s1(t) achieves a
greater fidelity than s2(t) at the end of a quantum adiabatic computation for Q with total evolution
time tf = τ1. Then, for any other choice tf = τ2, the scaled schedule s1( τ2τ1 t) will achieve a greater
fidelity than s2( τ2τ1 t) for an adiabatic computation over the same problem Q with total evolution time
tf = τ2.

The proof can be found in appendix B.

3.2 ARCHITECTURE

The model architectures are straightforward and no substantial effort was done to optimize them.
The Hamiltonian as input model has seven fully connected layers, with decreasing sizes: 4096,
2048, 2048, 1024, 512, and finally the output layer, which, as mentioned, is of size 99.

For the QUBO model, in which the input is a matrix, a two part architecture was used. In the first
part, five layers of 2D convolution was employed, with kernel size of 3 × 3, for 64 kernels. The
output from the convolution layers was then flattened to a vector of size 64n2, and fed to the second
part of the network, consisted of five fully connected layers, with decreasing dimensions of 2048,
1024, 1024, 512, and finally the output layer of size 99.

This output layers in both models are normalized to have a sum of one. For both models, the SELU
activation function Klambauer et al. (2017) was used for all layers, except the final layer, which used
the sigmoid (logistic) function.

3.3 A FIDELITY BASED LOSS FUNCTION

Let |ψ(t)〉 is the state of the quantum system at time t = stf . The fidelity of the QAC is given by
(Farhi et al., 2000)

psuccess = |〈E0(s = 1) |ψ(t = tf )〉|2 , (8)

where 〈E`(s = 1)| is the `-th eigenstate of the parameter dependent evolution Hamiltonian H(s),
such that 〈E0(s = 1)| is the ground state of the final HamiltonianHp. Finding 〈E0(s = 1)| requires
performing eigenvalue decomposition for Hp, which is equivalent to solving the original optimiza-
tion problem, and is done for the training set.

The quantum state |ψ(t)〉 is evolving according to the Schrödinger equation

i
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 (9)

A brute force approach for finding psuccess is to numerically solve the Schrödinger equation, see
appendix C. This full numerical calculation is, however, too intense to be practical. We next develop
an approximate method that would be easier to compute and still be physically meaningful. It is
based on the adiabatic local evolution speed limit from Eq. 3:

∣∣∣∣dsdt
∣∣∣∣ ≤ ε g2(s)∣∣〈E1(s)| ddsH(s) |E0(s)〉

∣∣ (10)

This inequality could be used as a local condition for convergence of any suggested path. We define

g2E(s) =
g2(s)∣∣〈E1(s)| ddsH(s) |E0(s)〉

∣∣ (11)

We would like to use the local condition to create a global convergence condition for a full suggested
path s(t), 0 ≤ t ≤ tf . To do so, we integrate both sides of Eq. 10 over the suggested schedule s.
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This integral represents a mean value of the local adiabatic condition, for every point in the suggested
schedule.

ε =

1∫
0

ds
dt

g2E(s)
ds (12)

We note that integrand is always positive (assuming s(t) is monotonically increasing). Recall that
the adiabatic theorem ties ε to the fidelity: ε =

√
1− psuccess. By defining the right hand side of

Eq.12 as our loss function, we ensure that any training process that minimizes Eq. 12 will maximize
the fidelity. Recall that the vector d that the network outputs is a vector of differences, therefore,
it approximates the local derivatives of the obtained path. Let ŝ∗ be the optimal normalized path,
which we estimate for each training sample. The loss function is, therefore, defined as:

L(d, ŝ∗) =

99∑
i=1

d2
i

g2E(ŝ∗(i/100))
(13)

The values of gE are precomputed along the optimal path ŝ∗ for efficiency. While the denominator
is obtained on points that do not correspond to the estimated path (the commutative sum of d), the
approximation becomes increasingly accurate at the estimated path appraoches the optimal one.

3.4 TRAINING DATA AND THE TRAINING PROCESS

In order to train the QUBO problem model, we produced a training dataset of 10,000 random QUBO
instances for each problem size: n = 6, 8, 10. The QUBO problems were generated by sampling
independently, from the normal distribution, each coefficient of the problem matrix Q. The entire
matrix Q was then multiplied by a single random normal variable.

We approximated an optimal evolution schedule for each problem, by calculating the full eigenvalue
decomposition ofHt as described in Sec 2. We also calculated the value of g(s(t)) for each problem.

For the model that uses the problem Hamiltonian as input, we used the same prepared QUBO prob-
lems, converted to the Hamiltonian form. In addition, we added another 500 cases of randomized
Hamiltonians with randomized values around distinct energy levels. For each Hamiltonian, We first
randomized an energy level between the following values: 0.5, 1, 1.5 or 2, and then randomized uni-
formly distributed values around the selected energy level. To each Hamiltonian we added a single
ground state with energy 0. This type of Hamiltonian is not commonly created by the random QUBO
creation process described above, but is more representative of binary optimization problems, and
specifically more closely resembles problem Hamiltonians for the Grover problem and the 3SAT
problem, which we later use to benchmark our model performance. We note that the Hamiltonian
for these specific problems in our test set are nevertheless different from our randomized problem
Hamiltonians, which highlights the generalization capability of our method.

The training was performed using the Adam optimizer (Kingma & Ba, 2014), with batches of size
200. Batch normalization (Ioffe & Szegedy, 2015) was applied during training. A uniform dropout
value of 0.1 is employed for all layers during the model training.

4 RESULTS

As a baseline to the loss L (Eq. 13) we use, we employed the Mean Squared Error (MSE) loss, for
which the model output was compared to the known optimal schedule from the dataset, which was
calculated in advance.

4.1 GROVER SEARCH

The Grover algorithm is a well-known quantum algorithm that finds with high probability the unique
input to a black box function that produces a particular output value, using just

√
N evaluations of

the function, where N is size of the search space. For an n qubit space, the search is over the set
{0, 1, .., 2n− 1}, making N = 2n. It is possible to reproduce the Grover speedup using an adiabatic
formulation, with the following problem Hamiltonian:

Hp = I − |m〉 〈m| , (14)
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where |m〉 is the state that represents the value we search. Roland & Cerf (2002) showed that for
this problem, a linear schedule does not produce quantum speedup over a classical algorithm, but
for a specific initial Hamiltonian Hb = I − |ψ0〉 〈ψ0|, for ψ0 as the maximal superposition state (a
sum of the states representing all values from 0 to N − 1), an optimal schedule could be derived
analytically to achieve a quadratic speedup. The optimal path is given by

ŝ(t) =
1

2
+

1

2
√
N − 1

tan
[
(2s− 1) tan−1

√
N − 1

]
(15)

In practice, the proposedHb is hard to physically realize, and a simpler initial Hamiltonian is used:

Hb =
1

2

n∑
i=1

I − σix , (16)

where σix is the Pauli matrix σx operating only on qubit i (Liboff, 2003).

We test our model’s performance by using the Grover problem Hamiltonian Hp as input for sev-
eral problem sizes. Different Grover problems are completely symmetrical, and are identical after
changing variables, so it is sufficient to use a single test case to test our model.

We benchmark our model’s performance by simulating AQC for multiple values of tf , and calcu-
lating the fidelity by measuring the overlap between the quantum state at the end of the adiabatic
evolution and the solution state.

We also show the convergence pattern for the fidelity (i.e. the overlap with the solution state, mea-
sured during the adiabatic evolution) for a single specific tf . For each problem size, we chose a
different tf , for which a full convergence (p > 0.95) is achieved with the evolution schedule sug-
gested by our model. We compare several suggested schedules: the path produced by training our
model using our novel loss function, the path produced by training our model using the MSE loss,
the linear path, and a numerically calculated optimal path. We also include the results reported by
Lin et al. (2020) for the same problem.

The results are reported in Fig. 1 for n = 6, 10, see appendix for n = 8. It is evident that our
model produces paths that are significantly superior to the linear path, and also outperforms Lin
et al. (2020). The advantage of the new loss function over the MSE loss is also clear.

Recall that for a Grover search with a certain n, Hp is a diagonal matrix of size 2n × 2n. To check
whether the model trained on n = 10 generalizes to larger search problems, we view the diagonal
ofHp for n′ > n as a 1D signal. This signal is smoothed by a uniform averaging mask of size 6 2n

′

2n ,
and subsampled to obtain a diagonal of size 2n.

The results are presented in Fig. 2. Evidently, the network trained for n = 10 achieves much better
results than the linear baseline for sizes n′ = 12, 14, 16. We also trained a network for n = 16. As
can be seen in Fig. 2(c), this network does achieve better fidelity than the smaller network. We note
that no significant changes were made to the network architecture, and the only difference is in the
size of the input layer. Appendix D presents results for the n = 16 network on n′ = 17, .., 20. Our
L-trained model achieves a much better fidelity than the linear schedule and the MSE baseline.

4.2 3SAT

In the 3-SAT problem, the logical statement consists of m clauses, Ci, such that each clause contain
a disjunction over three variables out of n binary variables. A solution to the 3SAT problem is
an assignment for the n variables that satisfies all m clauses. It is possible to construct a problem
Hamiltonian for each 3SAT problem, by taking a sum over all clauses

Hp =
1

2

m∑
i=1

I + σFi
z , (17)

where σFi
z is the Pauli matrix σz operating only on the state that represents the assignment

|a = {0, 1}, b = {0, 1}, c = {0, 1}〉 which produces False value for clause i. This Hamiltonian
counts the number of clauses which are not satisfied by each assignment, and its ground state cor-
responds to the eigenvalue 0 and represents the solution of the problem, for which all clauses are
satisfied.
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Figure 1: Results for Grover search over (a-c) n=6 or (d-f) n=10 qubits. (a) fidelity for tf = 75, and
(d) fidelity for tf = 425. (b,e) fidelity at time tf for multiple tf values. (c,f) suggested schedules.
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Figure 2: Fidelity for various tf values for Grover search problems of size n′ larger than the n = 10,
for which the network was trained. (a) n′ = 12, (b) n′ = 14, (c) n′ = 16. For n′ = 16, we also
present the result obtained by a network trained for solving n = 16.

We test our model’s performance, by randomizing 3SAT problems, and converting them to Hamil-
tonian form. Following Chen et al. (2020), we focus on 3SAT problems with a single solution, and
a number of clauses m = 3n. This type of 3SAT problems is considered difficult to solve with
adiabatic algorithms (Žnidarič, 2005).
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Figure 3: Fidelity for various tf values, over random 3SAT instances with m=3n clauses. Keep
note of the different time scale for each problem size, as larger problems require longer times to
converge. (a) n=8 qubits (b) n=11 qubits. For n = 11, we employ the test set of Chen et al. (2020)
and directly compare with their MCTS method.

We benchmark our model’s performance by simulating the adiabatic computation for multiple values
of tf and calculating the fidelity by measuring the overlap between the quantum state at the end of
the adiabatic evolution and the solution state.

In addition to the linear path and the paths obtained by training with eitherL or MSE, we also include
for n=11, the results for the schedules designed by MCTS (Chen et al., 2020). For this purpose, we
used the test data obtained by Chen et al. As can be seen in Fig. 3, our method outperform all
baselines. Note that the MCTS methdod was optimized, for each problem instance and for each tf
using tens AQC of runs on the specific test problem, while our method does not run on the test data.

As stated in Sec. 3.4, the Hamiltonian model is trained on 10,000 random QUBO problems and 500
random Hamiltonian problems. In Appendix E, we study the performance when the 500 random
samples are removed from the training set and when employing fewer training samples.

4.3 MAX-CUT

To further demonstrate the generalization capability of the trained model, our Hamiltonian model
for size n=10 is tested on random MAX-CUT problems. In a graph, a maximum cut is a partition of
the graph’s vertices into two complementary sets, such that the total edges weight between the sets
is as large as possible. Finding the maximum cut for a general graph is known to be an NP-complete
problem (MAX-CUT).

To generate random MAX-CUT problem instances, we choose a random subset of edges that con-
tains at least half of the edges of the fully connected graph. We then sample the weights of each
edge uniformly. When converting a MAX-CUT problem to the Hamiltonian form, n is the number
of vertices in the graph (Goto et al., 2019).

Fig. 4 presents the results of our our method for both with L and MSE, as well as the linear path.
The results were averaged over 50 runs and conducted for n = 10. As can be seen, our complete
method outperforms the baselines.

4.4 QUBO

To test our models with general QUBO problems, sets of random QUBO test problems of varying
difficulty are generated . Since the final energy gap of the corresponding problem Hamiltonian is
a critical parameter that determines the difficulty of the problem at hand (problems with a small
energy gap require much longer evolution schedules), we generated two sets of test problems. The
first has an energy gap of g ∼ 10 and the second has an energy gap of g ∼ 0.1. Varying the gap was
obtained by multiplying the random Q matrix by the required values of the gap.

We benchmark the model’s performance as in previous problems. However, in this case, we have
two alternatives models: the one the receives the matrix Q as input and the one that receives the
HamiltonianHp.
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Figure 4: Fidelity for various tf values, for random n = 10 MAX-CUT instances.

0 5 10 15 20 25 30
T

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob
ab
ili
ty
 o
f s
uc
ce
ss

H, MSE loss
H, our loss
QUBO, MSE loss
QUBO, our loss
Linear path

0 25 50 75 100 125 150 175 200
T

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob
ab
ili
ty
 o
f s
uc
ce
ss

H, MSE loss
H, our loss
QUBO, MSE loss
QUBO, our loss
Linear path

(a) (b)

Figure 5: Fidelity for various tf values, over random QUBO instances of size n=10. Keep note of
the different time scale for each problem, as problems with different energy gaps require different
times to converge. The energy gaps are (a) g ∼10, (b) g ∼0.1

We noticed that the process of creating samples of varying spectral gaps creates a mismatch in scale
with the training set problems. To compensate, we pre-process the inputs to the network models.
Specifically, for the model that has Q as input, we normalize the Frobenius norm of each Q such
that if it is larger than 60, we scale Q to have a norm of 60. Similarly for the model that accepts
Hp as input, we clip every value that is larger than 90 to be 90 (Q with high norms translate to
Hamiltonians with specific coeefieicents that are high). To clarify, this preprocessing is only applied
to the input to the models and does not change the problem we solve.

Our Results are presented at Fig. 5. As can be seen, our dedicated QUBO model (Q as input)
constructs successful schedules, outperforming all other models. The Hamiltonian model trained
with our loss obtains the second highest results. The advantage of the fidelity-based loss term is
evident in all cases.

For a further comparison between the L loss term and MSE, please refer to Appendix F.

5 CONCLUSIONS

Optimal scheduling of AQC tasks is the main way to reduce the time complexity for an emerging
class of quantum computes. While recent work has applied RL for this task, it either provided a
generic schedule for each class of problems or required running the exact computation that needs to
be solved multiple times. Our solution employs a separate training set, and at test time provides a
schedule that is tailored to the specific instance, without performing any runs. Remarkably, although
our training was performed for one type of problem (QUBO), it generalizes well to completely
different instances: Grover search, 3-SAT, and MAX-CUT. At the heart of our method lies a new
type of loss that maximizes the fidelity based on a new approximation of the success probability. Our
experiments demonstrate the effectiveness of our method, as well as its advantage over the recent
contributions.
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A CONVENTIONAL MATRIX NOTATION

For those not familiar with the Dirac notation, we repeat the equations in conventional matrix mul-
tiplication notation.

∣∣E1(t)>( ddtH)E0(t)
∣∣

g2(t)
≤ ε (2)

∣∣∣E1(s(t))
> ds

dt
d
dsH(s(t))E0(s(t))

∣∣∣
g2(s(t))

≤ ε⇒
∣∣∣∣dsdt
∣∣∣∣ ≤ ε g2(s)∣∣∣E1(s)

> d
dsH(s)E0(s)

∣∣∣ (3)

t(s) =
1

ε

s∫
0

∣∣∣E1(s)
> d
dsH(s)E0(s)

∣∣∣
g2(s)

ds (4)

tf = t(s = 1) =
1

ε

1∫
0

∣∣∣E1(s)
> d
dsH(s)E0(s)

∣∣∣
g2(s)

ds (5)

psuccess =
∣∣E0(s = 1)>ψ(t = tf )

∣∣2 (8)

i
d

dt
ψ(t) = H(t)ψ(t) (9)

∣∣∣∣dsdt
∣∣∣∣ ≤ ε g2(s)∣∣∣E1(s)

> d
dsH(s)E0(s)

∣∣∣ (10)

g2E(s) =
g2(s)∣∣∣E1(s)

> d
dsH(s)E0(s)

∣∣∣ (11)

Hp = I −mTm (14)
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B PROOF OF THM. 1

Theorem 1. Let s1(t) and s2(t) be two monotonically increasing fully differentiable bijective func-
tions from [0, tf = τ1] to [0, 1]. Let Q be an optimization problem, and assume that s1(t) achieves a
greater fidelity than s2(t) at the end of a quantum adiabatic computation for Q with total evolution
time tf = τ1. Then, for any other choice tf = τ2, the scaled schedule s1( τ2τ1 t) will achieve a greater
fidelity than s2( τ2τ1 t) for an adiabatic computation over the same problem Q with total evolution time
tf = τ2.

Proof. The adiabatic condition from Eq. 3 defines a local speed limit over the evolution schedule.
We define:

g2E(s) =
g2(s)∣∣〈E1(s)| ddsH(s) |E0(s)〉

∣∣ (18)

Then, for both schedules si (t) , i = 1, 2 the local adiabatic speed is
1

g2E (si (t))

dsi (t)

dt
= εi(t), 0 ≤ t ≤ τ1 (19)

We now consider a new tf = τ2. We use the same suggested schedules with a scaling factor a = τ1
τ2

:

sscaledi (t) = si (at) (20)

It is clear that sscaled1 (t = 0) = 0 and sscaled1 (t = τ2) = s1

(
τ1
τ2
τ2

)
= s1 (t = τ1) = 1, and the

same is true for sscaled2 (t). We calculate the new derivative

dsscaledi (t)

dt
= a

dsi (at)

dt
(21)

By multiplying Eq. 19 by factor a we can get for the new time axis 0 ≤ t ≤ τ2

a
1

g2E (si (at))

dsi (at)

dt
= a · εi(t) (22)

then, we can switch to the scaled schedules and finally

1

g2E
(
sscaledi (t)

) dsscaledi (t)

dt
= a · εi(t) = εscaledi (t) (23)

We now consider the fidelity for each evolution schedule. According to the adiabatic theorem,
the fidelity achieved at the end of the adiabatic evolution for each schedule is dependent solely on
the local adiabatic speeds εi (t). The resulting fidelity for the full path is then bounded by some
functional F : L2 → R which transforms all of the local adiabatic speeds to a single number.

pi ≥ 1−F
(
ε2i (t)

)
(24)

Following Roland & Cerf (2002), we assume a global maximum value
F [f (t)] = max (f (t)) (25)

pi ≥ 1−max
(
ε2i (t)

)
(26)

it is clear that for this choice of F ,
F [af (t)] = aF [f (t)] (27)

For any positive scalar a. It follows that the new values for fidelity for the scaled schedules are
bounded by

pnewi ≥ 1−F
(
a2ε2i (t)

)
= 1− a2F

(
ε2i (t)

)
(28)

We assumed p1 > p2, so F
(
ε21(t)

)
< F

(
ε22(t)

)
, and for any a it remains true that

a2F
(
ε21(t)

)
< a2F

(
ε22(t)

)
(29)

and therefore
pnew1 ≥ pnew2 (30)

We note that this holds true for many choices for F [f (t)], as long as
F [af (t)] = q (a)F [f (t)] (31)

for some monotonically increasing function q.
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C SOLVING THE SCHRÖDINGER EQUATION FOR THE ADIABATIC EVOLUTION

It is possibly numerically integrate and solve differential equation in Eq. 9, using the explicit evolu-
tion HamiltonianH(s) for every 0 < s < 1, and the boundary condition |ψ(t = 0)〉 = |E0(s = 0)〉,
where |E0(s = 0)〉 is the known ground state of the initial Hamiltonian Hb. This first order differ-
ential equation, could be solved numerically to obtain |ψ(t = tf )〉 in the following fashion:

1. Divide the time axis to M slices 1..M

2. For every time slice, findHm = H(s(t =
tf
M ·m))

3. Calculate the eigenvalue decomposition ofHm: eigenvectors Vi and eigenvalues Ei

4. Find the projection of the last quantum state |ψm−1〉 onto the eigenvectors space

|ψm−1〉 =

N∑
i=1

aiVi (32)

ai = 〈Vi, ψi−1〉 (33)

5. Evolve the quantum state according to

|ψm〉 =

N∑
i=1

eiEi·
tf
M · ai · Vi (34)

6. Repeat steps 2-5 until reaching tf

D ADDITIONAL GROVER SEARCH RESULTS

The results of Grover search for n = 8 qubits, for our model, as well as the method of Lin et al.
(2020) and other baselines are presented in Fig. 6.

D.1 n′ > n EXPERIMENTS FOR THE n = 16 MODEL

To demonstrate our approach’s ability to employ a model of a certain size for larger problems, we
present result for sizes n′ = 17, 18, 19, 20 using the model trained for n = 16.

The results are shown in Fig. 7. Our predicted schedule greatly outperforms the baseline linear
schedule, with even greater advantage for larger problem sizes. We also compare to the same Hamil-
tonian model, trained with the MSE loss. As can be seen, this model outperforms the linear model,
but is less effective than the model trained with L.

E ALTERNATIVE TRAINING SETS

The training set of the Hamiltonian model contains 10,000 random QUBO problems and 500 random
Hamiltonian problems, see Sec. 3.4. Fig. 8 depicts the effect of training on the first group only, i.e.,
on the Hamiltonian forms for the QUBO problems. This is shown for both the 3SAT problem and
the Grover problem. As can be seen, there is a relatively small drop in performance for the 3SAT
problems and a signifcant one for the Grover problem. Note that in both cases, we cannot compare
to the QUBO model. For the 3SAT problem, there is a polynomial overhead in size, when using the
QUBO form (Glover et al., 2018). For the Grover problem, the QUBO problem is undefined.

In another set of experiments, we varied the size of the training dataset. In addition to the 10000+500
samples (of the two types mentioned above), we employed sets of size 1000+62, 2500+125, and
5000+250. Fig. 9 presents the results for 3SAT problems. Evidently, adding more training samples
helps. However, there is, as expected, a diminishing returns effect. Note that the 3SAT problem is
not captured by neither the random Hamiltonians nor by the random QUBO problems. Therefore,
the success on these instances indicates a generalization capability.
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Figure 6: Model Results for Grover search over n=8 qubits. (a) fidelity for tf = 150. (b) fidelity for
multiple tf . (c) suggested schedules for one specific instance.

F COMPARING THE ALTERNATIVE LOSS TERMS

In this work, a novel loss function was presented, that allowed training neural networks with better
performance than standard losses. The suggested loss function is justified by our derivation in
Sec. 3.3. It is further supported by all experiments conducted and for both the Hamiltonian and the
QUBO networks.
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Figure 7: Fidelity for various tf values for Grover search problems of size n′ larger than the n = 16
for which the network was trained. (a) n′ = 17, (b) n′ = 18, (c) n′ = 19, (d) n′ = 20. Note the
different time scale for each problem size.
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Figure 8: Success probability when training with and without the random Hamiltonians. (a) 3SAT
problems of size n = 10. (b) The Grover problem of size n = 10.

To visually demonstrate the advantage of our loss function, we present a specific example. We
consider for a single 3SAT problem the optimal path and three variants of it. In the first, we add
random noise to s(t). in the second, we shift the optimal path by a constant. The third variant adds
a linear function of t to it. We also consider the path that was obtained by employing L or MSE, see
Fig. 10(a).

As can be seen in Fig. 10(b), the best path is the optimal one, followed by the path of our full method,
our method with MSE, and the optimal path with the added linear factor. As can be seen in Tab. 1,
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Figure 9: The effect of changing the size of the training set for 3SAT problems of size n = 10.
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Figure 10: (a) Six different paths that were compared for a single 3SAT problem. (b) The obtained
success probabilities.

our loss is predictive of the success probability, while the MSE is less so. Specifically, the MSE loss
assigns a relatively low loss to the optimal path with the added Gaussian noise, while our method
predicts that it would result in a low success probability.

To generalize this sample, we compare the ability of the two loss terms to identify the path that
would obtain a fidelity of 0.8 faster. This discrimination ability is visualized via a receiver operating
characteristic (ROC) curve.

A set of 250 test problems, randomized in a similar fashion to the training dataset of QUBO problems
with n = 8, was generated and its optimal path s∗ was computed. For each problem, two possible
schedules, s1 and s2, were randomized. Following Lin et al. (2020), who showed that the Fourier
spectrum is an effective representation for paths, we sample the coefficients of the paths in the
Fourier domain.

For each loss, we compute the score of the two paths with respect to the optimal path, and compute
the ratio of the score associated with s1 and the one associated with s2 . For our loss, this is given
as L(d1,s

∗)
L(d2,s∗) , where d1, d2 are the difference vectors obtained form the paths s1, s2, respectively. We

simulate both paths, and assign a label of 1 if s1 leads to the probability threshold on 0.8 faster than
s2, 0 otherwise.
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Table 1: The probability of success at a certain time point for each path presented in Fig. 10(a) and
the loss obtained by both MSE and L in comparison to the optimal path. The high value of 1.2353
is not a typo. It is a result of our loss penalizing jittery paths.

Path Probability of success at T = 45 MSE loss Our loss

Optimal with Gaussian noise 0.63 0.0029 1.2353
Optimal with a constant shift 0.77 0.0070 0.0119
Optimal with a linear shift 0.82 0.0043 0.0099
Our with the MSE loss 0.89 0.0014 0.0061
Our with L 0.91 0.0043 0.0010
Optimal 0.97 0 0
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Figure 11: ROC curves for identifying the better path out of two options, see text for details. The
red curve is for the L loss term and the blue for the MSE loss.

We compare the resulting ROC curve for L and for the MSE loss in Fig. 11. It is evident that the
suggested loss function is more discriminative of better paths than the the MSE loss.

G TRAINING DYNAMICS

In Fig. 12, we present the evolution of the training and validation losses during model training. This
is shown both for L and for the MSE loss for the Hamiltonian model of size n = 10.
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Figure 12: The loss of the training and validation sets during the training process of the n = 10
Hamiltonian model. (a) Training to optimize the loss term L. (b) Optimizing the MSE loss.
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