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ABSTRACT

This paper explains catastrophic forgetting in class incremental learning (CIL)
from a novel perspective of interactions (non-linear relationship) between differ-
ent input variables. Specifically, we make the first attempt to explicitly identify
and quantify which interactions w.r.t. previous classes that are forgotten and pre-
served over incremental steps, and reveal their distinct behaviors, so as to provide
a more fine-grained explanation of catastrophic forgetting. Based on the forgot-
ten interactions, we provide a unified explanation for the effectiveness of some
classical CIL methods in mitigating catastrophic forgetting, i.e., these methods all
reduce the forgetting of interactions w.r.t. previous classes, particularly those of
low complexities, although these methods are originally designed based on differ-
ent intuitions and observations. Intrigued by this, we further propose a simple-
yet-efficient method with theoretical guarantees to investigate the role of low-
complexity interactions in the resistance of catastrophic forgetting, and discover
that low-order interaction serves as an effective factor in resisting catastrophic
forgetting. The code will be released if the paper is accepted.

1 INTRODUCTION

Deep neural networks (DNNs) have been widely used in class incremental learning to solve a com-
mon real-world problem of learning new classes continually. However, they often suffer from catas-
trophic forgetting, i.e., directly training the DNN to learn new classes will erase the knowledge of
previous classes and result in a decline in performance. Thus, previous research mainly focused
on proposing various CIL methods to mitigate catastrophic forgetting, such as regularization-based
methods (Li & Hoiem, 2017; Zhao et al., 2020), memory-based methods (Zhou et al., 2023b; Lopez-
Paz & Ranzato, 2017; Chaudhry et al., 2019), expansion-based methods (Yan et al., 2021; Wang
et al., 2022; Zheng et al., 2025), and etc.

However, less attention has been devoted to explaining catastrophic forgetting, and existing studies
typically employed accuracy-based metrics for explanation. For example, Chaudhry et al. (2018);
Wang et al. (2024) computed the difference between the highest test accuracy on a previous task and
the final test accuracy to measure the forgetting of this task. Lopez-Paz & Ranzato (2017) calculated
the average accuracy drop of all previous tasks to evaluate the DNN’s forgetting in the continual
learning process. Whereas, these accuracy-based metrics can only provide a coarse-grained expla-
nation for the outcome of the catastrophic forgetting, i.e., the decline in the classification accuracy,
but they fail to provide a fine-grained understanding of its underlying cause, i.e., what knowledge is
forgotten or preserved and to what extent during CIL.

Thus, unlike previous studies, this paper aims to provide a detailed explanation for catastrophic
forgetting from a new perspective, by defining and extracting the knowledge encoded in an incre-
mentally learned DNN, quantifying its forgetting of old knowledge over incremental steps, and
summarizing its distinct property.

However, how to explicitly mathematically define the knowledge1 encoded in the DNN still remains
a challenge. To this end, Ren et al. (2024a; 2023a) have derived a set of theorems as mathe-

1Please see Appendix B for related works on extracting knowledge of the DNN.
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Figure 1: (a) The network output of a certain input sample is proven to be the sum of interaction
effects. Each interaction refers to an AND relationship between a set of input variables. (b) We iden-
tify and quantify interactions of previous classes that are forgotten and preserved over incremental
steps to detailedly explain catastrophic forgetting. (c) We use forgotten interactions to explain the
shared mechanism of different CIL methods in mitigate catastrophic forgetting, i.e., reducing the
forgetting of interactions of previous classes, particularly low-order interactions.

matical evidence to faithfully take countable interactions between different input variables to
represent uncountable knowledge encoded by the DNN. Specifically, given a sample x, a DNN
usually does not employ each single input variable of x independently for prediction. Instead, the
DNN lets each input variable interact with each other to form a certain pattern for inference. For a
better understanding, let us consider the toy example in Fig. 1. The DNN encodes the interaction
between two image patches in S = {x1, x2} to form a dog nose pattern. Each interaction repre-
sents an AND relationship between variables in S. That is, only when all two variables in S are
all present, the dog nose interaction is activated, and make a numerical effect I(S) on the network
output. The masking2 of any patch in S will deactivate this dog nose interaction, and removes its
numerical effect I(S).

More crucially, let us randomly mask this input sample x in different ways to generate different
masked samples {xmasked}, by randomly masking some input variables and keeping other variables
unchanged. Ren et al. (2024a; 2023a) have proven that people can use a few interactions to accu-
rately approximate the DNN’s outputs on all these masked samples f(xmasked), as shown in Fig. 1,
which serves as mathematical evidence to justify the convincingness of considering above interac-
tions to represent the knowledge encoded by the DNN for inference.

Surprisingly, we find interactions can explain different aspects of catastrophic forgetting, which may
help both practitioners and theoreticians gain some new insights into the learning dynamics of an
incrementally trained DNN. Specifically, this paper aims to answer the following three questions.

(1) How to identify what is forgotten in class incremental learning. To address this, given a
current step t and a previous step k ∈ {1, 2, · · · , t − 1}, we propose metrics to disentangle the
interaction of each complexity encoded by the previous DNN fk (incrementally trained from steps
1 to k) into interaction components forgotten and preserved by the current DNN ft. As shown in
Fig. 1 (b), a large number of interactions w.r.t. previous classes are forgotten, particularly those
of low complexity, while only a small number are preserved, ultimately resulting in catastrophic
forgetting. This quantitative finding provide more direct and concrete evidence to support the widely
accepted qualitative claim that the erasure of a large amount of knowledge w.r.t. previous classes
leads to catastrophic forgetting (Zhou et al., 2024a), compared to previous accuracy-based metrics.
Notably, the complexity (or order) of an interaction is defined as the number of variables involved
in this interaction S. As Fig. 1 shows, a low-order interaction usually represents the simple AND
relationship between a few variables.

(2) How to explain the effectiveness of different CIL methods in mitigating catastrophic for-
getting in a unified view. Based on the above disentangled forgotten interactions, we compare and
discover a clear difference between the DNN trained with a certain CIL method to mitigate catas-
trophic forgetting (abbreviated as the CIL model) and the DNN trained solely with the cross-entropy
loss, without any anti-forgetting method (abbreviated as the baseline model). As shown in Fig. 1
(c), Fig. 3, and Fig. 4, different CIL methods all share a common mechanism that they all make the
the CIL model reduce the forgetting of interactions w.r.t. previous classes, particularly the forget-
ting of low-order interactions, to resist catastrophic forgetting, although they are originally designed
based on different observations and intuitions. Thus, our paper makes the first attempt to unify the
effectiveness of different anti-forgetting CIL methods in a single theoretic system.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(3) What role low-order interactions play in the resistance of catastrophic forgetting. To in-
vestigate this, we propose a simple-yet-efficient method to penalize an incrementally learned DNN
from encoding low-orders, and compare its stability to that of a DNN encoding low-order interac-
tions, where the stability refers to the DNN’s ability to resist catastrophic forgetting (Wang et al.,
2024). In experiments, we discover that low-order interactions may, to some extent, serve as an
effective factor for resisting catastrophic forgetting.

Contributions of this paper are summarized as follows. (1) We make the first attempt to disen-
tangle and quantify the forgotten interactions of different complexities in the incremental learning
process, so as to provide a detailed explanation for catastrophic forgetting. (2) We reveal the unified
mechanism of different CIL methods in mitigating catastrophic forgetting. (3) We explain the role
of low-order interactions in resisting catastrophic forgetting.

2 PRELIMINARIES: USING INTERACTIONS TO REPRESENT KNOWLEDGE IN
DNNS

Although there is no consensus on the definition of knowledge encoded by a DNN so far, Ren
et al. (2024a; 2023a) have proven a set of properties to mathematically justify why we can take
interactions to represent knowledge in a DNN.

Definition of interactions. Given a trained DNN f , let x ∈ Rn denote an input sample consisting of
n input variables totally, andN = {1, 2, · · · , n} denote the indices of all variables. The input variable
can be defined differently depending on the task, e.g., it can represent an image patches for image
classification or a word/token for text classification. Let f(x) ∈ R represent the scalar network
output or a certain output dimension of the DNN. Note that people can apply different settings for
f(x). Here, we follow (Ren et al., 2024a; Li & Zhang, 2023; Ren et al., 2023a) to set f(x) as the
confidence of predicting x to the ground-truth category ytruth in multi-category classification tasks.

f(x) = log
(
p(y = ytruth|x)/(1− p(y = ytruth|x))

)
, (1)

Then, Ren et al. (2023a) employed the Harsanyi dividend (Harsanyi, 1963), a typical metric in game
theory, to quantify the numerical effect of the interaction between variables inside a subset S ⊆ N
on the network output f .

I(S|x) =
∑

U⊆S
(−1)|S|−|U| · f(xU ), (2)

where xU denotes a masked sample crafted by masking2 input variables in N \ U and keeping
variables in U unchanged. Thus, f(xU ) represents the network output on the masked sample xU .

Understanding of interactions. Each interaction refers to an AND relationship between variables
in the subset S. For instance, let us consider the interaction inside the subset S = {x1, x2} shown in
Fig. 1, which forms a semantic pattern of dog nose. Only when all two input variables in S are all
present, the nose interaction is triggered, and contribute a numerical effect I(S|x) on the network
output. Otherwise, the masking of any variable will break the nose interaction, and remove the
numerical effect I(S|x), i.e., I(S|x) = 0.

Faithfulness of the interaction-based explanation. The following four properties serve as con-
vincing evidence that interactions can faithfully represent knowledge encoded by a DNN, rather
than a mathematical formulation without clear meanings, since the inference logic of the DNN can
be well explained by interactions.

(1) Sparsity property. Given a sample x ∈ Rn, a DNN theoretically can encode at most 2n different
interactions3 w.r.t. 2n different subsets S ⊆ N . However, Ren et al. (2024a) have proven that a well-
trained DNN for classification usually encode very sparse salient interactions, which has also been
widely observed on various DNNs for different tasks (Ren et al., 2023a;b; Zhou et al., 2024b; Cheng
et al., 2024; Ren et al., 2025). We also observe this on DNNs trained for CIL (cf. Appendix G).

2In practice of masking input variables inN \U , people commonly use baseline values {bi} to replace their
original values (Ancona et al., 2019; Covert et al., 2020; Ren et al., 2024a), i.e., setting xi = bi if i ∈ N \ U .

3We follow the method in (Li & Zhang, 2023; Ren et al., 2023a) to accelerate the computation of interactions
of each input sample, which takes only a few seconds with a single NVIDIA 4090 GPU. Please see Appendix H
for computation details and specific time costs.
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Theorem 1 (Sparsity property, proven in (Ren et al., 2024a)). Given an input sample x ∈ Rn, let
Ωsalient = {S|S ⊆ N, |I(S|x)| ≥ τ} denote a set of salient interactions whose absolute value exceeds a
threshold τ . If the DNN can generate relatively smooth inference outputs f(xT ) on masked samples4,
then the size of the set |Ωsalient| is proven to have an upper bound of O(nκ/τ), where κ is an intrinsic
parameter for the smoothness of the network function f(·). Empirically, κ is usually within the
range of [1.9, 2.2] (Ren et al., 2024b), thus |Ωsalient| is much less than 2n.

(2) Universal matching property. Theorem 2 proves that we can use a few salient interactions in
Ωsalient to universally match network outputs f(xS) on all 2n masked samples.

Theorem 2 (Universal matching property, proven in (Ren et al., 2023a)). The network output f(xS)
on each masked sample {xS |∀S ⊆ N} is proven to be well mimicked by the sum of interaction effects.

f(xS) =
∑

U⊆S
I(U |x) ≈

∑
U⊆S&U∈Ωsalient

I(U |x). (3)

(3) Transferability property. Li & Zhang (2023) has observed that DNNs with different archi-
tectures learned under the same training strategy for the same task usually encode similar sets of
interactions for inference.

(4) Discrimination property. Li & Zhang (2023) has discovered that interactions usually exhibit
considerable discrimination power, i.e., the same interactions extracted from different samples usu-
ally pushes the DNN towards the classification of the same category.

Complexity of the interaction. The complexity (or order) of an interaction is defined as the number
of variables involved in this interaction S (Ren et al., 2023a; 2024a), i.e., order = |S|. As Fig. 1
shows, a low-order interaction represents simple AND relationship between a few variables, while
a high-order interaction refers to complex AND relationship between numerous variables.

3 EXPLAINING CATASTROPHIC FORGETTING USING INTERACTIONS

Let us first revisit the class incremental learning, which aims to train a DNN on data that arrives
incrementally with new classes (Rebuffi et al., 2017). Specifically, given a sequence of T steps
D = {D1,D2, · · · ,DT } without overlapping classes, the t-th step Dt = {(xj,t, yj,t)}Nt

j=1 contains Nt
tuples of input samples xj,t ∈ Rn and its corresponding label yj,t. Then, class incremental learning
is to optimize the DNN to minimize the average loss of all classes, where the data from previous
training steps is not available or restricted during the current training step (Zhou et al., 2024a).

Owing to the guaranteed faithfulness of the interaction, we use interactions to (i) quantify what
knowledge is forgotten and preserved throughout the CIL process in Section 3.1, (ii) provide a
unified understanding of the effectiveness of different CIL methods in Section 3.2, and (iii) reveal
the crucial role of low-order interactions in mitigating catastrophic forgetting in Section 3.3.

3.1 QUANTIFYING FORGOTTEN INTERACTIONS IN CIL

In this section, we make the first attempt to quantitatively identify which interactions used for the
inference of previous classes are forgotten over incremental steps and ultimately lead to catastrophic
forgetting, while accuracy-based forgetting metrics (Chaudhry et al., 2018; Wang et al., 2024) fail
to reveal what is forgotten and to what extent, limiting deeper insights into catastrophic forgetting.

To this end, given a current step t and a previous step k ∈ {1, · · · , t− 1}, we consider that the DNN
fk, trained incrementally on {Di}ki=1, encodes richest interactions relevant to the inference of Dk.
However, these interactions are gradually forgotten over incremental steps, with some preserved and
utilized by subsequent DNNs {ft} for classification. Explicitly speaking, let us use Im(S|xk, fk) ,
|Im(S|xk, fk)| to quantify the strength of the m-order interaction Im(S|xk, fk) of the sample xk ∈
Dk encoded by the DNN fk. We propose the following two metrics to disentangle Im(S|xk, fk)

into interaction components preserved I(k,t),m
preserve (S|xk) and forgotten I(k,t),m

forget (S|xk) by the current
DNN ft, where I(k,t),m

preserve (S|xk) quantifies the preserved interaction shared by both ft and fk, and

4This is formulated by three common mathematical conditions. Please see Appendix G for details.
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Figure 2: The forgotten (Imforget) and preserved (Impreserve) interactions w.r.t. previous classes.

I(k,t),m
forget (S|xk) measures the interaction encoded in fk but later forgotten by ft.

I(k,t),m
preserve (S|xk) = Γtk(S|xk) ·min(Im(S|xk, fk), Im(S|xk, ft)),

I(k,t),m
forget (S|xk) = Im(S|xk, fk)− I(k,t),m

preserve (S|xk),
(4)

where Im(S|xk, fk) and Im(S|xk, ft) denote the strength of m-order interaction extracted from the
input sample xk ∈ Dk encoded by the DNNs fk and ft, respectively, which is calculated based on
Eq. (1) and Eq. (2), and |S| = m. Γtk(S|xk) = 1((Im(S|xk, fk)·Im(S|xk, ft)) > 0) measures whether
the interaction Im(S|xk, ft) has the same effect as the interaction Im(S|xk, fk), where 1(·) is the
indicator function. If Im(S|xk, ft) and Im(S|xk, fk) have opposite effects, then the preserved inter-
action I(k,t),m

preserve (S|xk) = 0, indicating the current DNN ft completely forgets the m-order interaction
learned at the step k. Otherwise, the preserved interaction is quantified as the shared component
I(k,t),m

preserve (S|xk) = min(Im(S|xk, fk), Im(S|xk, ft)).

Hence, based on Eq. (4), we can identify which interactions of each complexity w.r.t. previous steps
k are forgotten or preserved during the entire T -step class-incremental learning process, as well as
quantifying their exact amounts, as follows.

Imforget =
1

T − 2

∑T

t=2

(
1

t− 1

∑t−1

k=1
Exk∈DkES⊆N,|S|=m

[
I(k,t),m

forget (S|xk)
])

,

Impreserve =
1

T − 2

∑T

t=2

(
1

t− 1

∑t−1

k=1
Exk∈DkES⊆N,|S|=m

[
I(k,t),m

preserve (S|xk)
])

.

(5)

Experiments. We conducted experiments to explain how an incrementally trained DNNs forgot
and preserved interactions w.r.t. previous classes. Notably, we focused on the conventional CIL
setting, where catastrophic forgetting was typically more pronounced. To this end, we followed
settings in (Rebuffi et al., 2017; Hou et al., 2019) to incrementally train ResNet-18 and ResNet-
34 models (He et al., 2016) on the CIFAR-100 dataset (Krizhevsky et al., 2009), and ResNet-18
model on the ImageNet-100 dataset (Rebuffi et al., 2017) under different class splits. Specifically,
we employed two widely-used class splits to train DNNs. First, we followed (Rebuffi et al., 2017)
to equally divide all classes of the CIFAR-100 dataset into 5, 10, and 20 incremental steps (denoted
as CIFAR100-B0), and all classes of the ImageNet-100 dataset into 5 and 10 incrementally steps
(denoted as ImageNet100-B0). Second, we followed (Hou et al., 2019) to allocate half of the total
classes to the first step, and further equally divide the rest classes of the CIFAR-100 dataset into
5 and 10 incrementally steps, and divide the remaining classes of the ImageNet-100 dataset into
5 incrementally steps. These settings were referred to as CIFAR100-B50 and ImageNet100-B50,
respectively. Please see Appendix H for more experimental details.

Fig. 2 reports the forgotten Imforget (blue bars) and preserved Impreserved (orange bars) interactions of
different orders m. We discovered that for each incrementally learned DNN, Imforget consistently
exceeded Impreserve. Explicitly speaking, the strength of forgotten interactions was on average approx-
imately 6 times that of preserved interactions, indicating that the DNN suffered severe forgetting of
a large number of interactions w.r.t. previous classes in CIL. This phenomenon echoed and provided

5
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Figure 3: The difference in forgotten interactions ∆Imforget w.r.t. previous classes between the CIL
model and the baseline model, both incrementally trained on the ImageNet-100 dataset.

concrete quantitative support for the widely accepted qualitative claim that the erasure of a large
amount of knowledge w.r.t. previous classes resulted in catastrophic forgetting (Zhou et al., 2024a).

Besides, we also observed from Fig. 2 that the incrementally learned DNN was prone to forgetting
relatively more low-order interactions w.r.t. previous classes, which indicated that these low-order
interactions were relatively more easily forgotten in class incremental learning. In comparison, we
found that different DNNs exhibited relatively different tendencies in preserving interactions.

3.2 A UNIFIED EXPLANATION FOR CIL METHODS

In this section, we use forgotten interactions to provide a unified explanation for the effectiveness
of different CIL methods in mitigating catastrophic forgetting, i.e., whether and how differently
designed CIL methods help the DNN resist the forgetting of such interactions.

To this end, let us consider two DNNs fbase and fCIL, sharing the same architecture and both in-
crementally trained on {Di}Ti=1. Among them, fCIL is trained with a certain CIL method (e.g.,
TagFex (Zheng et al., 2025)) to resist catastrophic forgetting, which is abbreviated as the CIL model.
In comparison, fbase is trained merely with the cross-entropy loss, without any anti-forgetting meth-
ods, which is abbreviated as the baseline model. Then, we compare the difference between m-order
interactions w.r.t. previous classes forgotten by the CIL model Iforget,CIL with those forgotten by the
baseline model Iforget,base, to explain the effectiveness of the CIL model in mitigating catastrophic
forgetting.

∆Imforget = Imforget,base − Imforget, CIL, (6)

where Iforget,CIL and Iforget,base are computed based on Eq. (5) with fk = fk,base, ft = ft,base for the
baseline model and fk = fk,CIL, ft = ft,CIL for the CIL model, respectively. A positive value of
∆Imforget indicates the CIL model forgets fewer m-order interactions w.r.t previous classes than the
baseline model, and vice versa.

Experiments. To explain the effectiveness of CIL methods, we trained ResNet-18 and ResNet-
34 models on CIFAR-100 dataset, and learned ResNet-18 model on ImageNet-100 dataset under
different class spilts in Section 3.1 for class incremental learning. Considering existing CIL methods
could be divided into different categories (Liang & Li, 2023), we picked several classical and open-
sourced CIL methods for each category to ensure the generality of our explanation, i.e., LWF (Li
& Hoiem, 2017) and WA (Zhao et al., 2020) for regularization-based, MEMO (Zhou et al., 2023b)
for memory-based, DER (Yan et al., 2021), FOSTER (Wang et al., 2022), and TagFex (Zheng et al.,
2025) for expansion-based, and DS-AL (Zhuang et al., 2024) for analytic-learning-based. Thus, for
each DNN, we trained 8 versions based on PyCIL (Zhou et al., 2023a), including a baseline model
learned merely with cross-entropy loss, and 7 CIL models trained with different CIL methods.

Fig. 3 and Fig. 4 reports the difference in forgotten interactions ∆Imforget between the CIL model
and the baseline model. We discovered that the CIL model mitigated the forgetting of interactions
Imforget, CIL w.r.t. previous classes compared to the baseline model, i.e., Em[∆Imforget] > 0. Interest-
ingly, such a phenomenon was shared by different CIL models, although they were not originally
designed for this purpose, but based on different intuitions and observations. Moreover, this shared
phenomenon was also observed in a different CIL scenario, i.e., audio-visual CIL with autoen-
coders (Pian et al., 2023), supporting its generality (cf. Appendix D for details). Thus, this shared
phenomenon provided a unified understanding for the effectiveness of different CIL methods, i.e.,
all making the incrementally learned DNN forget less interactions w.r.t. previous classes to mitigate

6
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Figure 4: The difference in forgotten interactions ∆Imforget w.r.t. previous classes between the CIL
model and the baseline model, both incrementally trained on the CIFAR-100 dataset.

catastrophic forgetting, which also partially echoed the conclusion in Section 3.1 that the forgetting
of old interactions Imforget could result in catastrophic forgetting.

Besides, we also observed another phenomenon that these CIL methods all made the DNN sig-
nificantly mitigate the forgetting of low-order interactions, i.e., low-order ∆Imforget was consistently
positive, and generally larger than that of higher orders. This indicated CIL models usually forgot
significantly fewer low-order interactions than the baseline model, which could be intuitively un-
derstood as follows. Low-order interactions usually represented local and common features with
considerable generalization power (Zhou et al., 2024b), and high-order interactions (usually global
features) were usually constructed by low-order interactions. Thus, low-order interactions learned
in previous steps could not only contribute to the inference of previous data, but also generalize and
combine with low-order interactions newly learned in the current step to form high-order interactions
for current data inference.

Notably, the CIL model trained with MEMO often forgot more high-order interactions w.r.t. previous
classes than the baseline model, i.e., ∆Imforget < 0 for high order m. This might be because MEMO
made the DNN learn more new high-order interactions w.r.t. current classes, as shown in Fig. 7 of
Appendix E, where we proposed a new metric to quantify the learning of new interactions at each
step. Please refer to Appendix E for detailed discussion and results.
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3.3 EXPLORING THE ROLE OF LOW-ORDER INTERACTIONS IN RESISTING CATASTROPHIC
FORGETTING

Intrigued by the above shared phenomenon that different CIL methods all forget significantly fewer
low-order interactions, in this section, we further explore the role of low-order interactions in CIL.
To this end, we propose a simple-yet-efficient method to investigate whether low-order interactions
have a potential influence on the resistance of catastrophic forgetting, i.e., checking whether the
stability of an incrementally trained DNN significantly decreases when we prevent it from encoding
low-order interactions, where the stability measures its ability to resist catastrophic forgetting (Wang
et al., 2024). This provides new insights into CIL.

Specifically, we design a loss function to force the DNN to encode interactions of specific orders.
According to the universal matching property in Theorem 2, the network output f can be decom-
posed into the sum of interaction effects of varying orders. Thus, let us first focus on the network
output change ∆f(m1,m2) between different masked samples {xS1} and {xS2}, which serves as the
foundation for designing the loss function.

∆f(m1,m2)=ES1,S2 [f(xS2)− f(xS1)], ∅ ⊆ S1 ( S2 ⊆ N, |S1| = m1n, |S2| = m2n, (7)

where subsets S1 and S2 are randomly sampled from all input variables N , containing m1n and m2n
variables, respectively, such that ∅ ⊆ S1 ( S2 ⊆ N , and 0 ≤ m1 ≤ m2 ≤ 1. Then, we have proven
that the output change ∆f(m1,m2) mainly encodes interactions of [0,m2n] orders, as follows.
Theorem 3 (proven in Appendix C). The change of the network output ∆f(m1,m2) is proven to be
decomposed into interaction effects of different orders.

∆f(m1,m2) =
∑n

m=0
w(m) · ES⊆N,|S|=m[I(S|x)],

w(m) =

 Cmm2n − C
m
m1n, m ≤ m1n,

Cmm2n, m1n < m ≤ m2n,
0, m2n < m ≤ n.

(8)

In this way, based on Theorem 3, we propose the following loss function to prevent the DNN from
using [0,m2n]-order interactions encoded in ∆f(m1,m2) for inference, thereby penalizing the en-
coding of these interactions. Explicitly speaking, we maximized the classification cross entropy
Linter(m1,m2) based on ∆f(m1,m2), in order to make ∆f(m1,m2) non-discriminative.

Linter(m1,m2) = −Ex

[∑C

c=1
[p(ŷ = c|∆fc(m1,m2,x)) · log(p(ŷ = c|∆fc(m1,m2,x)))]

]
, (9)

where ∆fc(m1,m2,x) = fc(xS2)−fc(xS1) represents the change of the logits w.r.t. the category c. C
and ŷ are referred to as the total number of classes and the predicted label, respectively. We compute
the probability p(ŷ = c|∆fc(m1,m2,x)) of classifying the input sample x to a certain category c by
feeding the vector [∆f1(m1,m2,x),∆f2(m1,m2,x), · · · ,∆fC(m1,m2,x)] into the softmax layer.

Thus, we minimize the following loss function L to train a DNN, forcing it to use interaction of
specific orders for classification, where Lclassification is employed as the cross-entropy loss in practice,
and the positive constant α is used to balance two loss terms.

L(m1,m2) = Lclassification − α · Linter(m1,m2). (10)

Experiment 1: investigating effects of the loss Linter(m1,m2). Before explaining the role of m-
order interactions in mitigating catastrophic forgetting, we first examine whether L(m1,m2) could
prevent the incrementally learned DNN from encoding interactions of specific orders. To this end,
we trained ResNet-18 and ResNet-34 models on CIFAR-100 dataset under different class splits in
Section 3.1 for CIL. For each DNN, we trained three versions, including a normally trained DNN
without any interaction penalization by setting α = 0 (i.e., the baseline model in Section 3.2), and
two DNNs trained with α = 1.0 to penalize interactions of specific orders, setting m1 = 0,m2 =
0.3 and m1 = 0.7,m2 = 1.0 in L(m1,m2), respectively. This training process is summarized in
Algorithm 1 of Appendix H.

Fig. 5 reports the average interaction strength Im of each DNN, Im = ExES⊆N,|S|=m[|Im(S|x)|].
We discovered that Linter(m1,m2) could successfully prevent DNNs from encoding [m1n,m2n]-order
interactions, instead of [0,m2n]-orders. That is, when disencouraging the DNN to encode interac-
tions [0, 0.3n] orders (or [0.7n, n] orders), the interaction strength I(m) of [0, 0.3n] orders (or [0.7n, n]
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Figure 5: The distribution of interaction strength Im of the baseline model, the low-order model,
and the high-order model.

Table 1: The stability difference ∆FMlow between the low-order model and the baseline model, as
well as ∆FMhigh between the high-order model and the baseline model.

Model Metric CIFAR100-B0
5 steps

CIFAR100-B0
10 steps

CIFAR100-B0
20 steps

CIFAR100-B50
5 steps

CIFAR100-B50
10 steps

ResNet-18 ∆FMlow 0.08 0.08 0.06 0.02 0.16
∆FMhigh 0.22 0.21 0.24 0.23 0.31

ResNet-34 ∆FMlow 0.10 0.05 0.08 0.14 0.08
∆FMhigh 0.22 0.30 0.28 0.30 0.34

orders) were significantly decreased, compared to the baseline model. Thus, we named the DNN
trained to penalize [0, 0.3n]-order interactions high-order model for simplicity, as it mainly encoded
high-order interactions. Accordingly, the DNN trained to penalize [0.7n, n]-order interactions was
termed the low-order model.

Experiment 2: exploring the role of low-order interactions in mitigating catastrophic forget-
ting. To this end, we compared the stability of the baseline model with that of DNNs trained
to penalize interactions of specific orders. Specifically, we used the Forgetting Measure metric
FM (Chaudhry et al., 2018; Wang et al., 2024) to evaluate the stability of an incrementally learned
DNN, which quantified the average decline in the performance on each previous step k.

FM = ET−1
k=1 [maxi∈{1,··· ,T−1}(Acc

(k,i) −Acc(k,T ))], (11)

where Acc(k,i) denoted the classification accuracy evaluated on the data Dk by the DNN fi incre-
mentally trained over i steps. A large FM value implied low stability of the DNN, i.e., low capacity
in resisting catastrophic forgetting.

Table 2 illustrated the stability difference ∆FMlow between the low-order model flow and the baseline
model fbase, as well as ∆FMhigh between the high-order model fhigh and the baseline model fbase, i.e.,
∆FMlow = FM(flow) − FM(fbase) and ∆FMhigh = FM(fhigh) − FM(fbase). We discovered that
∆FMhigh was consistently larger than ∆FMlow, which indicated that compared to the baseline model,
the stability of the high-order model was much worse than that of the low-order model. Thus,
preventing the DNN from encoding low-order interactions could significantly harm its stability in
resisting catastrophic forgetting, which suggested low-order interactions might, to some extent, be
an effective factor for mitigating catastrophic forgetting.

Additionally, we also observed a similar phenomenon based on different CIL models introduced in
Section 3.2, i.e., penalizing the learning of low-order interactions in the CIL model could signifi-
cantly reduce its stability. Please refer to Appendix F for experimental results.

4 CONCLUSION AND DISCUSSION

In this paper, we make the first attempt to use interactions to provide a detailed explanation for
catastrophic forgetting in class incremental learning, by quantifying the forgotten and preserved
interactions of different complexities w.r.t. previous classes, explaining the effectiveness of different
CIL methods in a unified view, and proposing a loss with theoretical guarantees to investigate the
role of low-order interactions in resisting catastrophic forgetting.

Our work provides avenues for future exploration, such as applying our explanation to analyze other
CIL problems (e.g., the stability-plasticity trade-off) and other CIL settings (cf. Appendix D for a
preliminary case on audio-visual CIL), which is theoretically feasible. We hope our explanation can
serve as a theoretical foundation and shed new light on class incremental learning.
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ETHICS AND REPRODUCIBILITY STATEMENT

This paper identifies and quantifies what is forgotten in class incremental learning, and provides a
unified explanation for the effectiveness of different CIL methods, from the perspective of interac-
tions. There are no ethical issues with this paper.

Besides, we have provided proofs for the theoretical results in Appendix C, and provided experi-
mental details in Section 3.1, Section 3.2, Section 3.3, and Appendix H. The code will be released
when the paper is accepted.
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A THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) are used exclusively for language polishing, and are not employed
for information retrieval, discovery, or research ideation.

B RELATED WORK

Class incremental learning. Previous research related to class incremental learning primarily fo-
cused on proposing different effective methods to address the challenge of catastrophic forgetting,
which could be further categorized into the following three types by Liang & Li (2023). Specifically,
the regularization-based methods (Li & Hoiem, 2017; Zhao et al., 2020) mainly added a regulariza-
tion constraint to the network’s weight updates to prevent important network parameters of previous
steps from changing too much. The memory-based methods (Zhou et al., 2023b; Lopez-Paz & Ran-
zato, 2017; Chaudhry et al., 2019) usually constructed a memory buffer to preserve knowledge of
previous steps. The expansion-based methods (Yan et al., 2021; Wang et al., 2022; Rusu et al.,
2016) dynamically expanded the network architecture for each new step to mitigate catastrophic
forgetting. Despite their effectiveness, whether these methods share a common mechanism for mit-
igating catastrophic forgetting still remains unclear. Thus, this paper aims to use interactions to
explain this shared mechanism.

However, less attention has been given to explaining catastrophic forgetting, and existing works
commonly utilized accuracy-based metrics for explanation. Specifically, Chaudhry et al. (2018) cal-
culated the difference between the highest past accuracy on a certain previous task and the accuracy
on the same task evaluated by the current DNN to evaluate the forgetting of the DNN, which was
further modified by Wang et al. (2024) to measure the proportion of performance the DNN forgot.
Lopez-Paz & Ranzato (2017) computed the average change in accuracy on a previous task after
training on a new task to measure the DNN’s forgetting in the continual learning process. However,
these accuracy-based metrics failed to reveal the intrinsic reason behind catastrophic forgetting, be-
cause they could not explain and identify which knowledge w.r.t. previous classes was forgotten and
preserved in incremental learning process. Thus, they could only offer a coarse-grained explanation,
leaving the fine-grained dynamics of knowledge preservation and erasure unexplored. To this end,
we quantify the forgotten interactions of different complexities to provide deep insights into the core
factors driving catastrophic forgetting.

Notably, the recent work (Li et al., 2025) has provided a theoretical analysis of catastrophic forget-
ting in a two-layer CNN, using a multi-view data model to disentangle different types of features
and further tracking how these features changes during binary-classification task incremental learn-
ing. They discover that the existence of catastrophic forgetting is due to the larger signal of the
task-specific feature compared to the general feature, which echoes our finding that more low-order
interactions are forgotten during CIL in Section 3.1. Beyond the above similar conclusion, we fur-
ther make the first attempt to use interactions to provide a unified understanding of different CIL
methods, i.e., reducing the forgetting of low-order interactions, and propose a simple-yet-efficient
method to verify the primary role of low-order interactions in mitigating catastrophic forgetting.

Interaction-based explanations of DNNs. Although DNNs have achieved remarkable perfor-
mances on different tasks, their underlying decision-making process still remains opaque and unin-
terpretable to humans, potentially introducing risks. Thus, explainable AI has received increasing
attention in recent years, and post-hoc explanations of DNNs is a typical direction of it. How-
ever, the disappointing view of the faithfulness of post-hoc explanations of DNNs has existed for
years (Adebayo et al., 2018; Rudin, 2019). Fortunately, Ren et al. (2024a); Li & Zhang (2023); Ren
et al. (2023a) have proposed the interaction metric based on game theory as a new perspective to an-
alyze the inference logic of a DNN, and the faithfulness of taking interactions as primitive inference
patterns of the DNN has been mathematically ensured by a series of theorems, which also served as
the the theoretical foundation of this paper.

Thus, a line of research has employed interactions to formulate and define concepts encoded
by a DNN (Ren et al., 2024a; 2023a), to mathematically explain the representation capacity of
DNNs (Zhou et al., 2024b; Liu et al., 2023; Ren et al., 2021; 2024b), to unify the common mech-
anism behind various attribution methods (Deng et al., 2024), and explain the shared mechanism
behind different transferability-boosting methods (Wang et al., 2021; Zhang et al., 2022). Thus, this
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paper further develops the above interaction theory system by using interactions to provide detailed
explanations for catastrophic forgetting in class incremental learning, i.e., quantifying the explicit
forgotten knowledge, explaining the shared mechanism of classical CIL methods, and summarizing
the effective factor for mitigating catastrophic forgetting.

Comparison between interactions and the partial information decomposition. Both interactions
and partial information decomposition (PID) (Tokui & Sato, 2022; Williams & Beer, 2010; Griffith
& Koch, 2014) aim to perform a disentanglement to explain the DNN, but they differ in what they
decompose, how the decomposition is carried out, and what the decomposed components represent.

Specifically, PID decomposes the mutual information between the latent representation and the
ground-truth generative factors into different information components based on the information the-
ory, under the assumption that the true generative factors are available for each data point. This
decomposition measures how much information of the generative factor is exclusively contained by
a single latent representation and how much is shared by multiple latent representations.

In comparison, the interaction, representing the AND relationship among different input variables
of an input sample, disentangle the network output into different interaction effects based on game
theory, i.e., f(x) =

∑
S⊆N I(S|x). This decomposition enables a detailed explanation for the

inference logic of the DNN, because it attributes the output to the effects of different interactions.
More crucially, the faithfulness of interactions is theoretically ensured by the sparsity property in
Theorem 1 and universal-matching property in Theorem 2. Thus, we use interactions to quantify
and identify which complexities of knowledge are preserved, forgotten, and newly learned during
CIL, so as to provide a more fine-grained explanation for catastrophic forgetting.

Quantifying the knowledge encoded in DNNs. Explaining and quantifying the precise amount of
knowledge in a DNN still remains a significant challenge in the field of explainable AI. A series of
prior works used the mutual information between input variables and network outputs/intermediate-
layer features to quantify the knowledge (Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Higgins
et al., 2017), but accurately measuring the mutual information was difficult (Kolchinsky et al., 2019).

Besides, other studies often employed human-annotated semantic concepts (Bau et al., 2017; Kim
et al., 2018) or automatically learned concepts (Chen et al., 2019) to explain the knowledge encoded
in the DNN, but these works lacked a mathematically guaranteed boundary that precisely defined
the scope of each concept or knowledge. Thus, these studies could not quantify the exact amount
of forgotten/preserved knowledge during incremental learning procedure. In comparison, the theo-
retically verifiable interactions allow us to represent knowledge as primitive inference patterns. In
this way, we can explicitly quantify how many interactions w.r.t. previous steps are forgotten and
preserved during class incremental learning, so as to provide detailed explanations for catastrophic
forgetting.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C PROOF OF THEOREM 3

Theorem 3. The change of the network output ∆f(m1,m2) is proven to be decomposed into inter-
action effects of different orders.

∆f(m1,m2) =
∑n

m=0
w(m) · ES⊆N,|S|=m[I(S|x)],

w(m) =

 Cmm2n − C
m
m1n, m ≤ m1n,

Cmm2n, m1n < m ≤ m2n,
0, m2n < m ≤ n.

(12)

Proof. The difference in network outputs between different randomly masked samples is repre-
sented as:

∆f(m1,m2) = E S1,S2:∅⊆S1(S2⊆N
|S1|=m1n,|S2|=m2n

[f(xS2)− f(xS1)],

= E S2⊆N,
|S2|=m2n

[f(xS2)]− E S1⊆N,
|S1|=m1n

[f(xS1)]
(13)

where subsets S1 and S2 are randomly sampled from the universal set N , 0 ≤ m1 ≤ m2 < 1.

Then, according to the Theorem 2, the first term in Eq.(2) can be re-written as follows, where
S1 ⊆ N, |S1| = m1n.

E[f(xS1)] = ES1 [
∑

S⊆S1

I(S|x)]

= ES1 [
∑m1n

m=0

∑
S⊆S1,|S|=m

I(S|x)]

=
∑m1n

m=0
ES1 [Cmm1nES⊆S1,|S|=m[I(S|x)]]

=
∑m1n

m=0
Cmm1nES1 [ES⊆S1,|S|=m[I(S|x)]],

(14)

Similarly, we can obtain,

E[f(xS2)] =
∑m2n

m=0
Cmm2nES2 [ES⊆S2,|S|=m[I(S|x)]], (15)

where S2 ⊆ N, |S2| = m2n. Note that ES1ES⊆S1,|S|=m[I(S|x)] is averaged over all subsets
S1 ⊆ N and ES2

ES⊆S2,|S|=m[I(S|x)] is averaged over subsets S2 ⊆ N . Then, we can prove,

ES1 [ES⊆S1,|S|=m[I(S|x)]] = ES2 [ES⊆S2,|S|=m[I(S|x)]]

= ES⊆N,|S|=m[I(S|x)].
(16)

Specifically, let us first consider ES1 [ES⊆S1,|S|=m[I(S|x)]], which can be re-written as follows.

ES1 [ES⊆S1,|S|=m[I(S|x)]] =
∑

S1⊆N,|S1|=m1n

1(
n

m1n

) [
1(

m1n
m

) ∑
S⊆S1,|S|=m

I(S|x)]

=
∑

S⊆N,|S|=m

I(S|x)[
∑

S1⊇S,|S1|=m1n

1(
n

m1n

) · 1(
m1n
m

) ] %swaping the order of summation

=
∑

S⊆N,|S|=m

I(S|x)

(
n−m

m1n−m

)(
n

m1n

)
·
(
m1n
m

)
=

∑
S⊆N,|S|=m

I(S|x)

(
n−m

m1n−m

)(
n
m

)
·
(
n−m

m1n−m

) %using the combinatorial identity

=
∑

S⊆N,|S|=m

I(S|x)
1(
n
m

)
= ES⊆N,|S|=m[I(S|x)].

(17)
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Similarly, ES2 [ES⊆S2,|S|=m[I(S|x)]] can be re-written as follows.

ES2 [ES⊆S2,|S|=m[I(S|x)]] =
∑

S2⊆N,|S2|=m2n

1(
n

m2n

) [
1(

m2n
m

) ∑
S⊆S2,|S|=m

I(S|x)]

=
∑

S⊆N,|S|=m

I(S|x)[
∑

S2⊇S,|S2|=m2n

1(
n

m2n

) · 1(
m2n
m

) ]

=
∑

S⊆N,|S|=m

I(S|x)

(
n−m

m2n−m

)(
n

m2n

)
·
(
m2n
m

)
=

∑
S⊆N,|S|=m

I(S|x)

(
n−m

m2n−m

)(
n
m

)
·
(
n−m

m2n−m

)
=

∑
S⊆N,|S|=m

I(S|x)
1(
n
m

)
= ES⊆N,|S|=m[I(S|x)].

(18)

Thus, we can obtain ES1 [ES⊆S1,|S|=m[I(S|x)]] = ES2 [ES⊆S2,|S|=m[I(S|x)]] = ES⊆N,|S|=m[I(S|x)],
when m < m1n < m2n. Thus, the output change ∆f(m1,m2) can be rewritten as follows:

∆f(m1,m2) = ES1,S2:∅⊆S1⊂S2⊆N [f(xS2)− f(xS1)]

= ES2⊆N,|S2|=m2n[f(xS2)]− ES1⊆N,|S1|=m1n[f(xS1)]

=
∑m2n

m=0
Cmm2nES2 [ES⊆S2,|S|=m[I(S|x)]]−

∑m1n

m=0
Cmm1nES1 [ES⊆S1,|S|=m[I(S|x)]]

=
∑n

m=0
w(m)ES⊆N,|S|=m[I(S|x)],

(19)
where

w(m) =

 Cmm2n − C
m
m1n, m ≤ m1n,

Cmm2n, m1n < m ≤ m2n,
0, m2n < m ≤ n.

(20)

Thus, Theorem 3 is proven.
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D MORE RESULTS ON VERIFYING THAT THE CIL METHOD MAKES THE DNN
FORGET LESS INTERACTIONS OF PREVIOUS CLASSES

In this section, we conducted experiments on another scenario of CIL, i.e. audio-visual CIL, to
verify the generality of our explanation. Specifically, we followed settings in (Pian et al., 2023) to
train two versions of autoencoders (VideoMAE for video and AudioMAE for audio) on the audio-
visual dataset AVE (Tian et al., 2018) for 4 incremental steps, including a baseline model and a CIL
model trained with iCaRL (Rebuffi et al., 2017). Fig. 6 shows the difference in forgotten interactions
∆Imforget of different orders m between the CIL model and the baseline model, which also verified
our conclusion that the CIL method makes the DNN forget less interactions for previous classes to
mitigate catastrophic forgetting, i.e., Em[∆Imforget] > 0, supporting the generality of our conclusion.

0.12

0.06

0
0.1n    0.5n            n

Orders

Figure 6: The difference in forgotten interactions ∆Imforget w.r.t. previous classes between the CIL
model and the baseline model, both trained on the AVE dataset for audio-visual class-incremental
learning.

E EXPLAINING WHY MEMO MAKES THE DNN FORGET MORE HIGH-ORDER
INTERACTIONS

In this section, we explain the observation that MEMO (Zhou et al., 2023b) makes its correspond-
ing CIL model forget more high-order interactions in Fig. 4 and Fig. 3, compared to the baseline
model. We consider that the CIL model trained by MEMO forgets more high-order interaction w.r.t.
previous steps, in order to learn new interactions w.r.t. current classes.

To this end, we first use interactions to quantify the learning of new interactions of each complexity
for the inference of current classes. Specifically, given an input sample xt ∈ Dt and the DNN ft in-
crementally learned from steps 1 to t, the strength ofm-order newly learned interaction I(t),m

new (S|xt)
is defined as the interaction encoded in ft but not encoded in the previous DNN ft−1.

∀S ⊆ N, |S| = m, I(t),mnew (S|xt) = Im(S|xt, ft)− I(t),mshare (S|xt),

I(t),mshare (S|xt) = Γtt−1(S|xt) ·min(Im(S|xt, ft), Im(S|xt, ft−1)),
(21)

where Im(S|xt, ft) , |Im(S|xt, ft)| denotes the strength of the m-order interaction Im(S|xt, ft) ex-
tracted from the sample xt ∈ Dt. I(t),m

share (S|xt) represents them-order interaction shared by ft−1 and
ft. Γtt−1(S|xt) = 1((Im(S|xt, ft) · Im(S|xt, ft−1)) > 0) measures whether the m-order interaction
Im(S|xt, ft) encoded by the current DNN ft has the same effect as Im(S|xt, ft−1) encoded by the
previous DNN ft−1, where 1(·) is the indicator function. If Im(S|xt, ft) and Im(S|xt, ft−1) have
opposite effects, then the shared interaction I(t),m

share (S|xt) = 0. Otherwise, the shared interaction is
quantified as I(t),m

share (S|xt) = min(Im(S|xt, ft),Im(S|xt, ft−1)).

Then, we compare the difference in newly learned interactions ∆Imlearn between the baseline model
and the CIL model trained by MEMO, in order to check whether the CIL model trained by MEMO
learns more new high-order interactions than the baseline model.

∆Imlearn = Imlearn,CIL − Imlearn, base

Imlearn,base = ETt=2Ext∈Dt
ES⊆N,
|S|=m

[I(t),mnew, base(S|xt)]

Imlearn,CIL = ETt=2Ext∈Dt
ES⊆N,
|S|=m

[I(t),mlearn,CIL(S|xt)],

(22)

where I(t),mlearn,CIL(S|xt) denotes the new interactions w.r.t the current step t learned by the CIL model,

which is obtained by applying ft = ft,CIL to compute Eq. (21). Accordingly, I(t),mlearn,base(S|xt) repre-
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sents the new interactions learned by the baseline model, which is obtained by applying ft = ft,base
to calculate Eq. (21). Thus, a positive value of ∆Imlearn indicates that the CIL model learns more
m-order interactions w.r.t new classes.

Fig. 7 shows that the CIL model trained by MEMO usually learns more high-order interactions w.r.t.
current classes, compared to the baseline model. This may partially explain MEMO makes its
corresponding CIL model forget more high-order interactions w.r.t. previous classes.

R
es

N
et

-1
8

CIFAR100-B0 5steps
0.05

0.02

-0.01
0.1n        0.5n           n

CIFAR100-B0 10steps
0.10

0.06

-0.02
0.1n        0.5n           n

CIFAR100-B0 20steps
0.02

0.01

-0.04
0.1n        0.5n           n

CIFAR100-B50 5steps
0.06

0.03

0
0.1n        0.5n           n

CIFAR100-B50 10steps
0.03

-0.01

-0.05
0.1n        0.5n           n

0.11

0.05

-0.01
0.1n        0.5n           n

0.11

0.05

-0.01
0.1n        0.5n           n

0.14

0.06

-0.02
0.1n        0.5n           n

ImageNet100-B50 5stepsImageNet100-B0 10stepsImageNet100-B0 5steps

Orders of Interactions

R
es

N
et

-3
4

CIFAR100-B0 5steps
0.08

0.03

-0.02
0.1n        0.5n           n

CIFAR100-B0 10steps
0.08

0.03

-0.02
0.1n        0.5n           n

CIFAR100-B0 20steps
0.04

-0.01

-0.06
0.1n        0.5n           n

CIFAR100-B50 5steps
0.06

-0.01

-0.08
0.1n        0.5n           n

CIFAR100-B50 10steps
0.03

-0.01

-0.05
0.1n        0.5n           n

Figure 7: The difference in newly learned interactions ∆Imlearn between the baseline model and the
CIL model trained by MEMO.
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F MORE RESULTS ON EXPLORING THE ROLE OF LOW-ORDER INTERACTIONS

In this section, we conducted experiments to explore the role of low-order interactions in the re-
sistance of catastrophic forgetting. To this end, we trained ResNet-18 and ResNet-34 models
on CIFAR-100 datasets under different class splits in Section 3.1 for class incremental learning.
For each DNN, we trained three versions, including one using a specific CIL method without
any interaction penalization (i.e., α = 0, the CIL model introduced in Section 3.2), and two
others with the same CIL method but applying interaction penalization (α = 1.0), by setting
m1 = 0,m2 = 0.3 and m1 = 0.7,m2 = 1.0 in L(m1,m2), respectively. For simplicity, we
named the CIL model trained to penalize [0, 0.3n]-order ([0.7n, n]-order) interactions high-order
(low-order) CIL model, as it mainly encoded high-order (low-order) interactions. Then, we com-
pared the stability difference ∆FMCIL, low between the low-order CIL model flow, CIL and the CIL
model fCIL, as well as ∆FMCIL, high between the high-order CIL model fCIL, high and the CIL model
fCIL, i.e., ∆FMCIL, low = FM(fCIL, low)− FM(fCIL) and ∆FMCIL, high = FM(fCIL, high)− FM(fCIL).

Table 2 illustrated that ∆FMCIL, high was consistently larger than ∆FMCIL, low, which indicated that
the compared to the CIL, model, the stability of high-order CIL models was much worse than that
of the low-order CIL model. Thus, preventing the DNN from encoding low-order interactions could
significantly harm its stability in resisting catastrophic forgetting, which suggested that low-order
interactions might, to some extent, be an effective factor for mitigating catastrophic forgetting.

Model Metric CIFAR100-B0
5 steps

CIFAR100-B0
10 steps

CIFAR100-B0
20 steps

CIFAR100-B50
5 steps

ResNet-18 ∆FMMEMO, low 0.08 0.07 0.08 0.02
∆FMMemo,high 0.17 0.16 0.20 0.13

ResNet-34 ∆FMMEMO,low 0.18 0.1 0.10 0.10
∆FMMEMO,high 0.30 0.26 0.23 0.15

ResNet-18 ∆FMLWF, low 0.20 0.11 0.06 0.15
∆FMLWF,high 0.32 0.25 0.29 0.33

ResNet-34 ∆FMLWF, low 0.07 0.08 0.09 0.04
∆FMLWF, high 0.16 0.21 0.23 0.18

ResNet-18 ∆FMDER, low 0.15 0.09 0.07 0.06
∆FMDER, high 0.32 0.28 0.19 0.24

ResNet-34 ∆FMDER, low 0.07 0.12 0.15 0.07
∆FMDER, high 0.18 0.26 0.42 0.34

ResNet-18 ∆FMFOSTER, low 0.02 0.05 0.05 0.09
∆FMFOSTER, high 0.21 0.25 0.21 0.30

ResNet-34 ∆FMFOSTER, low 0.04 0.07 0.14 0.08
∆FMFOSTER, high 0.13 0.29 0.23 0.26

Table 2: The stability difference ∆FMCIL, low between the low-order CIL model and the CIL model,
as well as ∆FMCIL, high between the high-order CIL model and the CIL model.
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G SPARSITY OF INTERACTIONS

Given an input sample x with n input variables, among all 2n possible interactions, Ren et al.
(2024a) have proven that the number of interactions with salient effects on the network output is
O(nκ/τ) under three common mathematical conditions. First, the DNN does not encode interac-
tions of extremely high orders. Second, the average classification confidence monotonically de-
creases as more input variables are masked, which is computed on {xT ||T | = n − k} by masking
different random sets of k input variables. Third, the decreasing speed of the average confidence is
polynomial. κ is empirically within the range of [1.9, 2.2] Ren et al. (2024b). This indicates that the
number of salient interactions is much less than 2n, i.e., the interactions are sparse.

To this end, we conducted experiments on incrementally trained DNNs introduced in Section 3.1
to examine whether interactions satisfy the sparsity property in real applications. Fig. 8 shows all
the interaction effects encoded by the incrementally trained DNN on different input samples. We
discovered that only a few interactions have salient interactions effects |I(S|x)| on the network
output, while the effects of all other interactions are negligible, w.r.t. |I(S|x)| ≈= 0. This finding
was consistent with the conclusion found by Ren et al. (2024a), i.e., interactions encoded by a DNN
were usually very sparse.
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Figure 8: Interactions in descending order of the interaction strength .

H EXPERIMENTAL DETAILS

In this paper, we follow settings in (Li & Zhang, 2023; Ren et al., 2024a; Liu et al., 2023) to compute
interactions. Considering the computational cost of calculating and extracting all 2n interactions is
intolerable in real implementation, we follow the method in (Li & Zhang, 2023; Ren et al., 2024a)
to annotate and select a set of image patches as input variables to reduce the computation cost.
Specifically, given an image in the CIFAR-100 dataset, we follow (Li & Zhang, 2023; Ren et al.,
2023a) to divide it into small patches of size 4 × 4, resulting in a total of 8 × 8 image patches,
and further select n = 12 patches from 6 × 6 image patches located in the center of the image as
input variables to calculated interactions, because Li & Zhang (2023); Ren et al. (2024a) consider
the DNN mainly used foreground information to make inference. Similarly, for each image in the
ImageNet-100 dataset, we follow (Liu et al., 2023) to divide it into small patches of size 28 × 28,
resulting in a total of 8 × 8 image patches, and further select n = 12 patches from 6 × 6 image
patches located in the center of the image as input variables to calculated interactions. Thus, we
calculate totally 212 = 1024 interactions for each input image, which costs only 2.55 seconds per
image in CIFAR-100 on ResNet-18 and 2.91 seconds on ResNet-34, and 12.37 seconds per image
in ImageNet-100 on ResNet-18, using the single NVIDIA 4090 GPU.

Besides, to generate the masked sample xT , we follow the widely used setting in (Dabkowski &
Gal, 2017; Li & Zhang, 2023; Ren et al., 2024a; Liu et al., 2023) to set the baseline value of each
variable bi as the mean value of this variable across all samples in image classification to mask each
input variable in N \ T . Meanwhile, given each incrementally trained DNN f , we follow (Li &
Zhang, 2023; Ren et al., 2024a; Liu et al., 2023) to set f(x) in Eq. (2) of the main paper as the
confidence of predicting x to the ground-truth category ytruth, f(x) = log p(y=ytruth|x)

1−p(y=ytruth|x) , to com-
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pute each interaction I(S|x). Considering outputs of DNNs trained using different methods usually
have different scales. In this way, interactions encoded in different DNNs computing based on their
network outputs will have different scales, which may affect the comparison. To eliminate this im-
pact, we follow (Cheng et al., 2024) to normalize each interaction I(S|x) encoded by the DNN f
as I(S|x)← I(S|x)/Ex[|f(x)− f(x∅)|], where x∅ represents the sample with all input variables
masked to baseline values. Thus, according to Theorem 2 that f(x)−f(x∅) =

∑
S⊆N,S 6=∅ I(S|x),

the total amount of interactions
∑
S⊆N,S 6=∅ I(S|x) encoded by DNNs trained at different step us-

ing different methods are kept at the same magnitude, which make interactions comparable across
models.

Additionally, we follow training settings in (Zhou et al., 2024a) to use SGD with an initial learning
rate of 0.1 and momentum of 0.9 to train DNNs introduced in Section 2 for class incremental learn-
ing based on PyTorch and PyCIL5 (Zhou et al., 2023a). In Section 2.4, we trained DNNs to encode
interactions of specific orders based on Eq. (11), where we set m1 = 0,m2 = 0.3 and α = 1.0 in
L(m1,m2) to train high-order DNNs, and set m1 = 0.7,m2 = 1.0 and α = 1.0 to train low-order
DNNs. This training process was roughly summarized in Algorithm 1 for a better understanding.
We will release the code if the paper is accepted.

Algorithm 1 Training the DNN to encode interactions of specific orders.
Input: Training dataset Dtrain, interaction orders m1 and m2, coefficient α, epoch number E
Output: a trained DNN f

1: Initialize parameters of f
2: for e = 1 to E do
3: Initialize Linter(m1,m2) = 0 and Lclassification = 0
4: for (x, y) ∈ Dtrain do
5: Compute the network output change ∆f(m1,m2,x) based on Eq. (8)
6: Compute the loss Linter(m1,m2,x) = −

∑C
c=1[p(ŷ = c|∆f(m1,m2,x)c) · log(p(ŷ =

c|∆f(m1,m2,x)c))]
7: Compute the classification loss Lclassification(x) = CrossEntropy(x, y)
8: Compute Linter(m1,m2)+ = Linter(m1,m2,x), Lclassification+ = Lclassification(x)
9: end for

10: Compute Linter(m1,m2)/ = |Dtrain|, Lclassification/ = |Dtrain|
11: Compute the loss L(m1,m2) = Lclassification − α · Linter(m1,m2) based on Eq. (11)
12: Compute the gradient of the loss L(m1,m2) to update parameters of f
13: end for

5PyCIL is an open-sourced python tool box to implement CIL.
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