

A FINE-GRAINED APPROACH TO EXPLAINING CATASTROPHIC FORGETTING OF INTERACTIONS IN CLASS-INCREMENTAL LEARNING

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 This paper explains catastrophic forgetting in class incremental learning (CIL)
 014 from a novel perspective of interactions (non-linear relationship) between differ-
 015 ent input variables. Specifically, we make the first attempt to explicitly identify
 016 and quantify which interactions *w.r.t.* previous classes that are forgotten and pre-
 017 served over incremental steps, and reveal their distinct behaviors, so as to provide
 018 a more fine-grained explanation of catastrophic forgetting. Based on the forgot-
 019 ten interactions, we provide a unified explanation for the effectiveness of some
 020 classical CIL methods in mitigating catastrophic forgetting, *i.e.*, these methods all
 021 reduce the forgetting of interactions *w.r.t.* previous classes, particularly those of
 022 low complexities, although these methods are originally designed based on differ-
 023 ent intuitions and observations. Intrigued by this, we further propose a simple-
 024 yet-efficient method with theoretical guarantees to investigate the role of low-
 025 complexity interactions in the resistance of catastrophic forgetting, and discover
 026 that low-order interaction serves as an effective factor in resisting catastrophic
 027 forgetting. *The code will be released if the paper is accepted.*

1 INTRODUCTION

030 Deep neural networks (DNNs) have been widely used in class incremental learning to solve a com-
 031 mon real-world problem of learning new classes continually. However, they often suffer from cata-
 032 strophic forgetting, *i.e.*, directly training the DNN to learn new classes will erase the knowledge of
 033 previous classes and result in a decline in performance. Thus, previous research mainly focused
 034 on proposing various CIL methods to mitigate catastrophic forgetting, such as regularization-based
 035 methods (Li & Hoiem, 2017; Zhao et al., 2020), memory-based methods (Zhou et al., 2023b; Lopez-
 036 Paz & Ranzato, 2017; Chaudhry et al., 2019), expansion-based methods (Yan et al., 2021; Wang
 037 et al., 2022; Zheng et al., 2025), and *etc.*

038 However, less attention has been devoted to explaining catastrophic forgetting, and existing studies
 039 typically employed accuracy-based metrics for explanation. For example, Chaudhry et al. (2018);
 040 Wang et al. (2024) computed the difference between the highest test accuracy on a previous task and
 041 the final test accuracy to measure the forgetting of this task. Lopez-Paz & Ranzato (2017) calculated
 042 the average accuracy drop of all previous tasks to evaluate the DNN’s forgetting in the continual
 043 learning process. Whereas, these accuracy-based metrics can only provide a coarse-grained expla-
 044 nation for the **outcome** of the catastrophic forgetting, *i.e.*, the decline in the classification accuracy,
 045 but they fail to provide a fine-grained understanding of its underlying **cause**, *i.e.*, what knowledge is
 046 forgotten or preserved and to what extent during CIL.

047 Thus, unlike previous studies, this paper aims to provide a detailed explanation for catastrophic
 048 forgetting from a new perspective, by defining and extracting the knowledge encoded in an incre-
 049 mentally learned DNN, quantifying its forgetting of old knowledge over incremental steps, and
 050 summarizing its distinct property.

051 However, **how to explicitly mathematically define the knowledge¹ encoded in the DNN still remains**
 052 **a challenge.** To this end, **Ren et al. (2024a; 2023a) have derived a set of theorems as mathe-**

053 ¹Please see Appendix B for related works on extracting knowledge of the DNN.

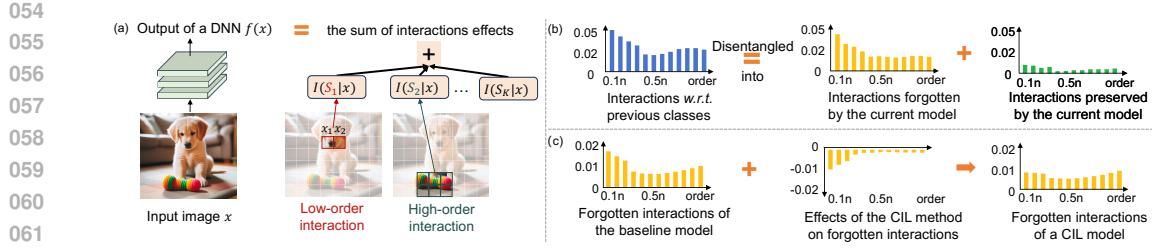


Figure 1: (a) The network output of a certain input sample is proven to be the sum of interaction effects. Each interaction refers to an AND relationship between a set of input variables. (b) We identify and quantify interactions of previous classes that are forgotten and preserved over incremental steps to detailedly explain catastrophic forgetting. (c) We use forgotten interactions to explain the shared mechanism of different CIL methods in mitigate catastrophic forgetting, *i.e.*, reducing the forgetting of interactions of previous classes, particularly low-order interactions.

mathematical evidence to faithfully take countable interactions between different input variables to represent uncountable knowledge encoded by the DNN. Specifically, given a sample x , a DNN usually does not employ each single input variable of x independently for prediction. Instead, the DNN lets each input variable interact with each other to form a certain pattern for inference. For a better understanding, let us consider the toy example in Fig. 1. The DNN encodes the interaction between two image patches in $S = \{x_1, x_2\}$ to form a *dog nose* pattern. Each interaction represents an AND relationship between variables in S . That is, only when all two variables in S are all present, the *dog nose* interaction is activated, and make a numerical effect $I(S)$ on the network output. The masking² of any patch in S will deactivate this *dog nose* interaction, and removes its numerical effect $I(S)$.

More crucially, let us randomly mask this input sample x in different ways to generate different masked samples $\{x_{\text{masked}}\}$, by randomly masking some input variables and keeping other variables unchanged. Ren et al. (2024a; 2023a) have proven that people can use a few interactions to accurately approximate the DNN’s outputs on all these masked samples $f(x_{\text{masked}})$, as shown in Fig. 1, which serves as mathematical evidence to justify the convincingness of considering above interactions to represent the knowledge encoded by the DNN for inference.

Surprisingly, we find interactions can explain different aspects of catastrophic forgetting, which may help both practitioners and theoreticians gain some new insights into the learning dynamics of an incrementally trained DNN. Specifically, this paper aims to answer the following three questions.

(1) How to identify what is forgotten in class incremental learning. To address this, given a current step t and a previous step $k \in \{1, 2, \dots, t-1\}$, we propose metrics to disentangle the interaction of each complexity encoded by the previous DNN f_k (incrementally trained from steps 1 to k) into interaction components forgotten and preserved by the current DNN f_t . As shown in Fig. 1 (b), a large number of interactions *w.r.t.* previous classes are forgotten, particularly those of low complexity, while only a small number are preserved, ultimately resulting in catastrophic forgetting. This quantitative finding provide more direct and concrete evidence to support the widely accepted qualitative claim that the erasure of a large amount of knowledge *w.r.t.* previous classes leads to catastrophic forgetting (Zhou et al., 2024a), compared to previous accuracy-based metrics. Notably, the complexity (or *order*) of an interaction is defined as the number of variables involved in this interaction S . As Fig. 1 shows, a low-order interaction usually represents the simple AND relationship between a few variables.

(2) How to explain the effectiveness of different CIL methods in mitigating catastrophic forgetting in a unified view. Based on the above disentangled forgotten interactions, we compare and discover a clear difference between the DNN trained with a certain CIL method to mitigate catastrophic forgetting (abbreviated as the *CIL model*) and the DNN trained solely with the cross-entropy loss, without any anti-forgotten method (abbreviated as the *baseline model*). As shown in Fig. 1 (c), Fig. 3, and Fig. 4, different CIL methods all share a common mechanism that they all make the the CIL model reduce the forgetting of interactions *w.r.t.* previous classes, particularly the forgetting of low-order interactions, to resist catastrophic forgetting, although they are originally designed based on different observations and intuitions. Thus, our paper makes the **first** attempt to **unify** the effectiveness of different anti-forgotten CIL methods in a single theoretic system.

108 **(3) What role low-order interactions play in the resistance of catastrophic forgetting.** To investigate this, we propose a simple-yet-efficient method to penalize an incrementally learned DNN
 109 from encoding low-orders, and compare its stability to that of a DNN encoding low-order interactions,
 110 where the stability refers to the DNN’s ability to resist catastrophic forgetting (Wang et al.,
 111 2024). In experiments, we discover that low-order interactions may, to some extent, serve as an
 112 effective factor for resisting catastrophic forgetting.
 113

114 **Contributions** of this paper are summarized as follows. (1) We make the first attempt to disentangle
 115 and quantify the forgotten interactions of different complexities in the incremental learning
 116 process, so as to provide a detailed explanation for catastrophic forgetting. (2) We reveal the unified
 117 mechanism of different CIL methods in mitigating catastrophic forgetting. (3) We explain the role
 118 of low-order interactions in resisting catastrophic forgetting.
 119

120 2 PRELIMINARIES: USING INTERACTIONS TO REPRESENT KNOWLEDGE IN 121 DNNs

123 Although there is no consensus on the definition of knowledge encoded by a DNN so far, Ren
 124 et al. (2024a; 2023a) have proven a set of properties to mathematically justify why we can take
 125 interactions to represent knowledge in a DNN.
 126

127 **Definition of interactions.** Given a trained DNN f , let $\mathbf{x} \in \mathbb{R}^n$ denote an input sample consisting of
 128 n input variables totally, and $N = \{1, 2, \dots, n\}$ denote the indices of all variables. The input variable
 129 can be defined differently depending on the task, e.g., it can represent an image patches for image
 130 classification or a word/token for text classification. Let $f(\mathbf{x}) \in \mathbb{R}$ represent the scalar network
 131 output or a certain output dimension of the DNN. Note that people can apply different settings for
 132 $f(\mathbf{x})$. Here, we follow (Ren et al., 2024a; Li & Zhang, 2023; Ren et al., 2023a) to set $f(\mathbf{x})$ as the
 133 confidence of predicting \mathbf{x} to the ground-truth category y^{truth} in multi-category classification tasks.
 134

$$f(\mathbf{x}) = \log \left(p(y = y^{\text{truth}} | \mathbf{x}) / (1 - p(y = y^{\text{truth}} | \mathbf{x})) \right), \quad (1)$$

136 Then, Ren et al. (2023a) employed the Harsanyi dividend (Harsanyi, 1963), a typical metric in game
 137 theory, to quantify the numerical effect of the interaction between variables inside a subset $S \subseteq N$
 138 on the network output f .
 139

$$I(S|\mathbf{x}) = \sum_{\mathbf{U} \subseteq S} (-1)^{|S|-|\mathbf{U}|} \cdot f(\mathbf{x}_{\mathbf{U}}), \quad (2)$$

140 where $\mathbf{x}_{\mathbf{U}}$ denotes a masked sample crafted by masking² input variables in $N \setminus \mathbf{U}$ and keeping
 141 variables in \mathbf{U} unchanged. Thus, $f(\mathbf{x}_{\mathbf{U}})$ represents the network output on the masked sample $\mathbf{x}_{\mathbf{U}}$.
 142

143 **Understanding of interactions.** Each interaction refers to an AND relationship between variables
 144 in the subset S . For instance, let us consider the interaction inside the subset $S = \{x_1, x_2\}$ shown in
 145 Fig. 1, which forms a semantic pattern of *dog nose*. Only when all two input variables in S are all
 146 present, the nose interaction is triggered, and contribute a numerical effect $I(S|\mathbf{x})$ on the network
 147 output. Otherwise, the masking of any variable will break the nose interaction, and remove the
 148 numerical effect $I(S|\mathbf{x})$, i.e., $I(S|\mathbf{x}) = 0$.
 149

150 **Faithfulness of the interaction-based explanation.** The following four properties serve as con-
 151 vincing evidence that interactions can faithfully represent knowledge encoded by a DNN, rather
 152 than a mathematical formulation without clear meanings, since the inference logic of the DNN can
 153 be well explained by interactions.
 154

155 **(1) Sparsity property.** Given a sample $\mathbf{x} \in \mathbb{R}^n$, a DNN theoretically can encode at most 2^n different
 156 interactions³ w.r.t. 2^n different subsets $S \subseteq N$. However, Ren et al. (2024a) have proven that a well-
 157 trained DNN for classification usually encode very sparse salient interactions, which has also been
 158 widely observed on various DNNs for different tasks (Ren et al., 2023a;b; Zhou et al., 2024b; Cheng
 159 et al., 2024; Ren et al., 2025). We also observe this on DNNs trained for CIL (cf. Appendix G).
 160

161 ²In practice of masking input variables in $N \setminus \mathbf{U}$, people commonly use baseline values $\{b_i\}$ to replace their
 162 original values (Ancona et al., 2019; Covert et al., 2020; Ren et al., 2024a), i.e., setting $x_i = b_i$ if $i \in N \setminus \mathbf{U}$.
 163

164 ³We follow the method in (Li & Zhang, 2023; Ren et al., 2023a) to accelerate the computation of interactions
 165 of each input sample, which takes only a few seconds with a single NVIDIA 4090 GPU. Please see Appendix H
 166 for computation details and specific time costs.
 167

162 **Theorem 1** (Sparsity property, proven in (Ren et al., 2024a)). *Given an input sample $\mathbf{x} \in \mathbb{R}^n$, let*
 163 $\Omega_{\text{salient}} = \{S | S \subseteq N, |I(S|\mathbf{x})| \geq \tau\}$ *denote a set of salient interactions whose absolute value exceeds a*
 164 *threshold τ . If the DNN can generate relatively smooth inference outputs $f(\mathbf{x}_T)$ on masked samples⁴,*
 165 *then the size of the set $|\Omega_{\text{salient}}|$ is proven to have an upper bound of $\mathcal{O}(n^\kappa/\tau)$, where κ is an intrinsic*
 166 *parameter for the smoothness of the network function $f(\cdot)$. Empirically, κ is usually within the*
 167 *range of [1.9, 2.2] (Ren et al., 2024b), thus $|\Omega_{\text{salient}}|$ is much less than 2^n .*

168 **(2) Universal matching property.** Theorem 2 proves that we can use a few salient interactions in
 169 Ω_{salient} to universally match network outputs $f(\mathbf{x}_S)$ on all 2^n masked samples.

171 **Theorem 2** (Universal matching property, proven in (Ren et al., 2023a)). *The network output $f(\mathbf{x}_S)$*
 172 *on each masked sample $\{\mathbf{x}_S | \forall S \subseteq N\}$ is proven to be well mimicked by the sum of interaction effects.*

$$f(\mathbf{x}_S) = \sum_{U \subseteq S} I(U|\mathbf{x}) \approx \sum_{U \subseteq S \& U \in \Omega_{\text{salient}}} I(U|\mathbf{x}). \quad (3)$$

176 **(3) Transferability property.** Li & Zhang (2023) has observed that DNNs with different archi-
 177 tectures learned under the same training strategy for the same task usually encode similar sets of
 178 interactions for inference.

179 **(4) Discrimination property.** Li & Zhang (2023) has discovered that interactions usually exhibit
 180 considerable discrimination power, *i.e.*, the same interactions extracted from different samples usu-
 181 ally pushes the DNN towards the classification of the same category.

182 **Complexity of the interaction.** The complexity (or *order*) of an interaction is defined as the number
 183 of variables involved in this interaction S (Ren et al., 2023a; 2024a), *i.e.*, order = $|S|$. As Fig. 1
 184 shows, a low-order interaction represents simple AND relationship between a few variables, while
 185 a high-order interaction refers to complex AND relationship between numerous variables.

3 EXPLAINING CATASTROPHIC FORGETTING USING INTERACTIONS

190 Let us first revisit the class incremental learning, which aims to train a DNN on data that arrives
 191 incrementally with new classes (Rebuffi et al., 2017). Specifically, given a sequence of T steps
 192 $\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_T\}$ without overlapping classes, the t -th step $\mathcal{D}_t = \{(\mathbf{x}_{j,t}, y_{j,t})\}_{j=1}^{N_t}$ contains N_t
 193 tuples of input samples $\mathbf{x}_{j,t} \in \mathbb{R}^n$ and its corresponding label $y_{j,t}$. Then, class incremental learning
 194 is to optimize the DNN to minimize the average loss of all classes, where the data from previous
 195 training steps is not available or restricted during the current training step (Zhou et al., 2024a).

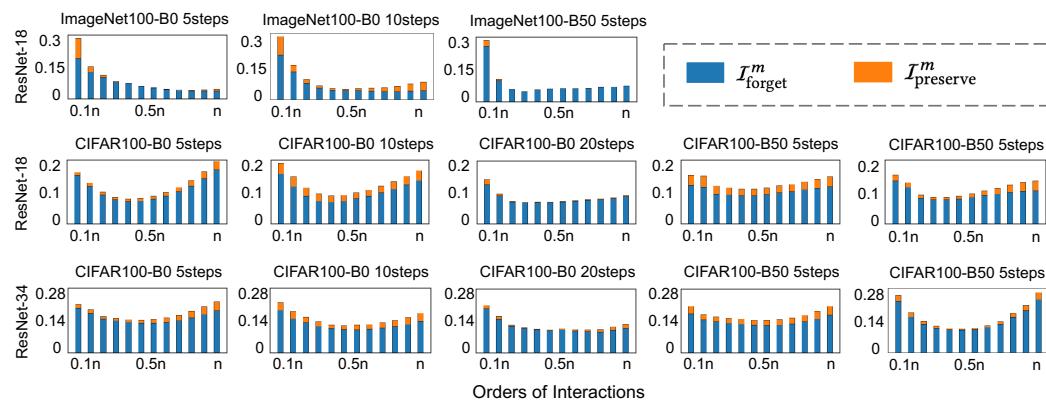
196 Owing to the guaranteed faithfulness of the interaction, we use interactions to (i) quantify what
 197 knowledge is forgotten and preserved throughout the CIL process in Section 3.1, (ii) provide a
 198 unified understanding of the effectiveness of different CIL methods in Section 3.2, and (iii) reveal
 199 the crucial role of low-order interactions in mitigating catastrophic forgetting in Section 3.3.

3.1 QUANTIFYING FORGOTTEN INTERACTIONS IN CIL

203 In this section, we make the first attempt to quantitatively identify which interactions used for the
 204 inference of previous classes are forgotten over incremental steps and ultimately lead to catastrophic
 205 forgetting, while accuracy-based forgetting metrics (Chaudhry et al., 2018; Wang et al., 2024) fail
 206 to reveal what is forgotten and to what extent, limiting deeper insights into catastrophic forgetting.

207 To this end, given a current step t and a previous step $k \in \{1, \dots, t-1\}$, we consider that the DNN
 208 f_k , trained incrementally on $\{\mathcal{D}_i\}_{i=1}^k$, encodes richest interactions relevant to the inference of \mathcal{D}_k .
 209 However, these interactions are gradually forgotten over incremental steps, with some preserved and
 210 utilized by subsequent DNNs $\{f_t\}$ for classification. Explicitly speaking, let us use $\mathcal{I}^m(S|\mathbf{x}_k, f_k) \triangleq$
 211 $|I^m(S|\mathbf{x}_k, f_k)|$ to quantify the strength of the m -order interaction $I^m(S|\mathbf{x}_k, f_k)$ of the sample $\mathbf{x}_k \in$
 212 \mathcal{D}_k encoded by the DNN f_k . We propose the following two metrics to disentangle $\mathcal{I}^m(S|\mathbf{x}_k, f_k)$
 213 into interaction components preserved $\mathcal{I}_{\text{preserve}}^{(k,t),m}(S|\mathbf{x}_k)$ and forgotten $\mathcal{I}_{\text{forget}}^{(k,t),m}(S|\mathbf{x}_k)$ by the current
 214 DNN f_t , where $\mathcal{I}_{\text{preserve}}^{(k,t),m}(S|\mathbf{x}_k)$ quantifies the preserved interaction shared by both f_t and f_k , and

⁴This is formulated by three common mathematical conditions. Please see Appendix G for details.

Figure 2: The forgotten ($\mathcal{I}_{\text{forget}}^m$) and preserved ($\mathcal{I}_{\text{preserve}}^m$) interactions w.r.t. previous classes.

$\mathcal{I}_{\text{forget}}^{(k,t),m}(S|\mathbf{x}_k)$ measures the interaction encoded in f_k but later forgotten by f_t .

$$\begin{aligned} \mathcal{I}_{\text{preserve}}^{(k,t),m}(S|\mathbf{x}_k) &= \Gamma_k^t(S|\mathbf{x}_k) \cdot \min(\mathcal{I}^m(S|\mathbf{x}_k, f_k), \mathcal{I}^m(S|\mathbf{x}_k, f_t)), \\ \mathcal{I}_{\text{forget}}^{(k,t),m}(S|\mathbf{x}_k) &= \mathcal{I}^m(S|\mathbf{x}_k, f_k) - \mathcal{I}_{\text{preserve}}^{(k,t),m}(S|\mathbf{x}_k), \end{aligned} \quad (4)$$

where $\mathcal{I}^m(S|\mathbf{x}_k, f_k)$ and $\mathcal{I}^m(S|\mathbf{x}_k, f_t)$ denote the strength of m -order interaction extracted from the input sample $\mathbf{x}_k \in \mathcal{D}_k$ encoded by the DNNs f_k and f_t , respectively, which is calculated based on Eq. (1) and Eq. (2), and $|S| = m$. $\Gamma_k^t(S|\mathbf{x}_k) = \mathbb{1}((\mathcal{I}^m(S|\mathbf{x}_k, f_k) \cdot \mathcal{I}^m(S|\mathbf{x}_k, f_t)) > 0)$ measures whether the interaction $\mathcal{I}^m(S|\mathbf{x}_k, f_t)$ has the same effect as the interaction $\mathcal{I}^m(S|\mathbf{x}_k, f_k)$, where $\mathbb{1}(\cdot)$ is the indicator function. If $\mathcal{I}^m(S|\mathbf{x}_k, f_t)$ and $\mathcal{I}^m(S|\mathbf{x}_k, f_k)$ have opposite effects, then the preserved interaction $\mathcal{I}_{\text{preserve}}^{(k,t),m}(S|\mathbf{x}_k) = 0$, indicating the current DNN f_t completely forgets the m -order interaction learned at the step k . Otherwise, the preserved interaction is quantified as the shared component $\mathcal{I}_{\text{preserve}}^{(k,t),m}(S|\mathbf{x}_k) = \min(\mathcal{I}^m(S|\mathbf{x}_k, f_k), \mathcal{I}^m(S|\mathbf{x}_k, f_t))$.

Hence, based on Eq. (4), we can identify which interactions of each complexity w.r.t. previous steps k are forgotten or preserved during the entire T -step class-incremental learning process, as well as quantifying their exact amounts, as follows.

$$\begin{aligned} \mathcal{I}_{\text{forget}}^m &= \frac{1}{T-2} \sum_{t=2}^T \left(\frac{1}{t-1} \sum_{k=1}^{t-1} \mathbb{E}_{\mathbf{x}_k \in \mathcal{D}_k} \mathbb{E}_{S \subseteq N, |S|=m} [\mathcal{I}_{\text{forget}}^{(k,t),m}(S|\mathbf{x}_k)] \right), \\ \mathcal{I}_{\text{preserve}}^m &= \frac{1}{T-2} \sum_{t=2}^T \left(\frac{1}{t-1} \sum_{k=1}^{t-1} \mathbb{E}_{\mathbf{x}_k \in \mathcal{D}_k} \mathbb{E}_{S \subseteq N, |S|=m} [\mathcal{I}_{\text{preserve}}^{(k,t),m}(S|\mathbf{x}_k)] \right). \end{aligned} \quad (5)$$

Experiments. We conducted experiments to explain how an incrementally trained DNNs forgot and preserved interactions w.r.t. previous classes. Notably, we focused on the conventional CIL setting, where catastrophic forgetting was typically more pronounced. To this end, we followed settings in (Rebuffi et al., 2017; Hou et al., 2019) to incrementally train ResNet-18 and ResNet-34 models (He et al., 2016) on the CIFAR-100 dataset (Krizhevsky et al., 2009), and ResNet-18 model on the ImageNet-100 dataset (Rebuffi et al., 2017) under different class splits. Specifically, we employed two widely-used class splits to train DNNs. First, we followed (Rebuffi et al., 2017) to equally divide all classes of the CIFAR-100 dataset into 5, 10, and 20 incremental steps (denoted as **CIFAR100-B0**), and all classes of the ImageNet-100 dataset into 5 and 10 incremental steps (denoted as **ImageNet100-B0**). Second, we followed (Hou et al., 2019) to allocate half of the total classes to the first step, and further equally divide the rest classes of the CIFAR-100 dataset into 5 and 10 incremental steps, and divide the remaining classes of the ImageNet-100 dataset into 5 incremental steps. These settings were referred to as **CIFAR100-B50** and **ImageNet100-B50**, respectively. Please see Appendix H for more experimental details.

Fig. 2 reports the forgotten $\mathcal{I}_{\text{forget}}^m$ (blue bars) and preserved $\mathcal{I}_{\text{preserve}}^m$ (orange bars) interactions of different orders m . We discovered that for each incrementally learned DNN, $\mathcal{I}_{\text{forget}}^m$ consistently exceeded $\mathcal{I}_{\text{preserve}}^m$. Explicitly speaking, the strength of forgotten interactions was on average approximately 6 times that of preserved interactions, indicating that the DNN suffered severe forgetting of a large number of interactions w.r.t. previous classes in CIL. This phenomenon echoed and provided

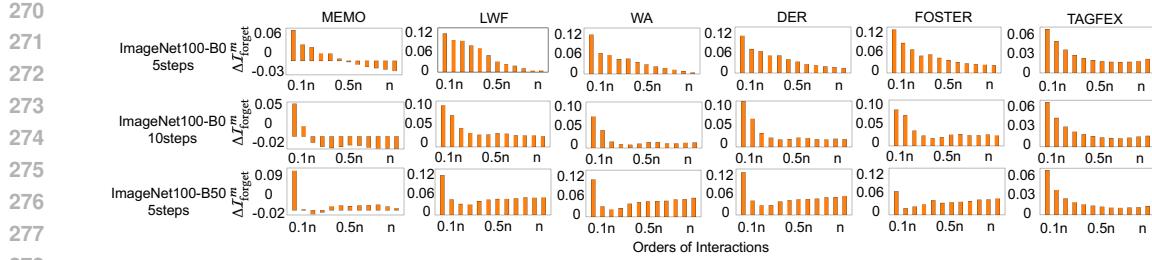


Figure 3: The difference in forgotten interactions $\Delta\mathcal{I}_{\text{forget}}^m$ w.r.t. previous classes between the CIL model and the baseline model, both incrementally trained on the ImageNet-100 dataset.

concrete quantitative support for the widely accepted qualitative claim that the erasure of a large amount of knowledge w.r.t. previous classes resulted in catastrophic forgetting (Zhou et al., 2024a).

Besides, we also observed from Fig. 2 that the incrementally learned DNN was prone to forgetting relatively more low-order interactions w.r.t. previous classes, which indicated that these low-order interactions were relatively more easily forgotten in class incremental learning. In comparison, we found that different DNNs exhibited relatively different tendencies in preserving interactions.

3.2 A UNIFIED EXPLANATION FOR CIL METHODS

In this section, we use forgotten interactions to provide a **unified** explanation for the effectiveness of different CIL methods in mitigating catastrophic forgetting, *i.e.*, whether and how differently designed CIL methods help the DNN resist the forgetting of such interactions.

To this end, let us consider two DNNs f_{base} and f_{CIL} , sharing the same architecture and both incrementally trained on $\{\mathcal{D}_i\}_{i=1}^T$. Among them, f_{CIL} is trained with a certain CIL method (*e.g.*, TagFex (Zheng et al., 2025)) to resist catastrophic forgetting, which is abbreviated as the **CIL model**. In comparison, f_{base} is trained merely with the cross-entropy loss, without any anti-forgetting methods, which is abbreviated as the **baseline model**. Then, we compare the difference between m -order interactions w.r.t. previous classes forgotten by the CIL model $\mathcal{I}_{\text{forget,CIL}}$ with those forgotten by the baseline model $\mathcal{I}_{\text{forget,base}}$, to explain the effectiveness of the CIL model in mitigating catastrophic forgetting.

$$\Delta\mathcal{I}_{\text{forget}}^m = \mathcal{I}_{\text{forget,base}}^m - \mathcal{I}_{\text{forget,CIL}}^m, \quad (6)$$

where $\mathcal{I}_{\text{forget,CIL}}$ and $\mathcal{I}_{\text{forget,base}}$ are computed based on Eq. (5) with $f_k = f_{k,\text{base}}$, $f_t = f_{t,\text{base}}$ for the baseline model and $f_k = f_{k,\text{CIL}}$, $f_t = f_{t,\text{CIL}}$ for the CIL model, respectively. A positive value of $\Delta\mathcal{I}_{\text{forget}}^m$ indicates the CIL model forgets fewer m -order interactions w.r.t previous classes than the baseline model, and vice versa.

Experiments. To explain the effectiveness of CIL methods, we trained ResNet-18 and ResNet-34 models on CIFAR-100 dataset, and learned ResNet-18 model on ImageNet-100 dataset under different class splits in Section 3.1 for class incremental learning. Considering existing CIL methods could be divided into different categories (Liang & Li, 2023), we picked several classical and open-sourced CIL methods for each category to ensure the generality of our explanation, *i.e.*, LWF (Li & Hoiem, 2017) and WA (Zhao et al., 2020) for regularization-based, MEMO (Zhou et al., 2023b) for memory-based, DER (Yan et al., 2021), FOSTER (Wang et al., 2022), and TagFex (Zheng et al., 2025) for expansion-based, and DS-AL (Zhuang et al., 2024) for analytic-learning-based. Thus, for each DNN, we trained 8 versions based on PyCIL (Zhou et al., 2023a), including a baseline model learned merely with cross-entropy loss, and 7 CIL models trained with different CIL methods.

Fig. 3 and Fig. 4 reports the difference in forgotten interactions $\Delta\mathcal{I}_{\text{forget}}^m$ between the CIL model and the baseline model. We discovered that the CIL model mitigated the forgetting of interactions $\mathcal{I}_{\text{forget,CIL}}^m$ w.r.t. previous classes compared to the baseline model, *i.e.*, $\mathbb{E}_m[\Delta\mathcal{I}_{\text{forget}}^m] > 0$. Interestingly, such a phenomenon was shared by different CIL models, although they were not originally designed for this purpose, but based on different intuitions and observations. Moreover, this shared phenomenon was also observed in a different CIL scenario, *i.e.*, audio-visual CIL with autoencoders (Pian et al., 2023), supporting its generality (cf. Appendix D for details). Thus, this shared phenomenon provided a unified understanding for the effectiveness of different CIL methods, *i.e.*, all making the incrementally learned DNN forget less interactions w.r.t. previous classes to mitigate

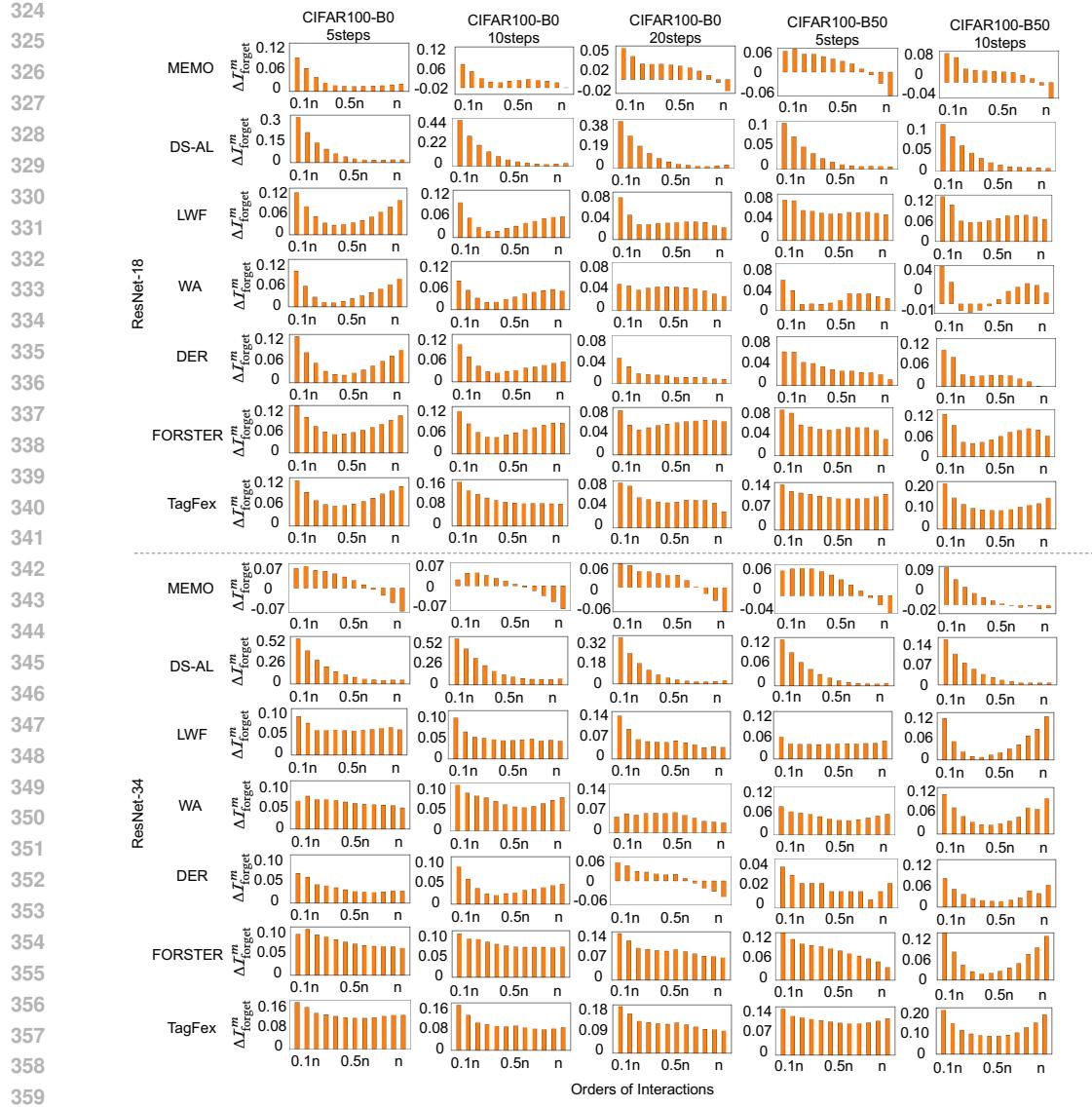


Figure 4: The difference in forgotten interactions $\Delta I_{\text{forget}}^m$ w.r.t. previous classes between the CIL model and the baseline model, both incrementally trained on the CIFAR-100 dataset.

catastrophic forgetting, which also partially echoed the conclusion in Section 3.1 that the forgetting of old interactions I_{forget}^m could result in catastrophic forgetting.

Besides, we also observed another phenomenon that these CIL methods all made the DNN significantly mitigate the forgetting of low-order interactions, *i.e.*, low-order $\Delta I_{\text{forget}}^m$ was consistently positive, and generally larger than that of higher orders. This indicated CIL models usually forgot significantly fewer low-order interactions than the baseline model, which could be intuitively understood as follows. Low-order interactions usually represented local and common features with considerable generalization power (Zhou et al., 2024b), and high-order interactions (usually global features) were usually constructed by low-order interactions. Thus, low-order interactions learned in previous steps could not only contribute to the inference of previous data, but also generalize and combine with low-order interactions newly learned in the current step to form high-order interactions for current data inference.

Notably, the CIL model trained with MEMO often forgot more high-order interactions w.r.t. previous classes than the baseline model, *i.e.*, $\Delta I_{\text{forget}}^m < 0$ for high order m . This might be because MEMO made the DNN learn more new high-order interactions w.r.t. current classes, as shown in Fig. 7 of Appendix E, where we proposed a new metric to quantify the learning of new interactions at each step. Please refer to Appendix E for detailed discussion and results.

378 3.3 EXPLORING THE ROLE OF LOW-ORDER INTERACTIONS IN RESISTING CATASTROPHIC
379 FORGETTING
380

381 Intrigued by the above shared phenomenon that different CIL methods all forget significantly fewer
382 low-order interactions, in this section, we further explore the role of low-order interactions in CIL.
383 To this end, we propose a simple-yet-efficient method to investigate whether low-order interactions
384 have a potential influence on the resistance of catastrophic forgetting, *i.e.*, checking whether the
385 stability of an incrementally trained DNN significantly decreases when we prevent it from encoding
386 low-order interactions, where the stability measures its ability to resist catastrophic forgetting (Wang
387 et al., 2024). This provides new insights into CIL.

388 Specifically, we design a loss function to force the DNN to encode interactions of specific orders.
389 According to the *universal matching property* in Theorem 2, the network output f can be decom-
390 posed into the sum of interaction effects of varying orders. Thus, let us first focus on the network
391 output change $\Delta f(m_1, m_2)$ between different masked samples $\{\mathbf{x}_{S_1}\}$ and $\{\mathbf{x}_{S_2}\}$, which serves as the
392 foundation for designing the loss function.

$$393 \Delta f(m_1, m_2) = \mathbb{E}_{S_1, S_2} [f(\mathbf{x}_{S_2}) - f(\mathbf{x}_{S_1})], \quad \emptyset \subseteq S_1 \subsetneq S_2 \subseteq N, |S_1| = m_1 n, |S_2| = m_2 n, \quad (7)$$

394 where subsets S_1 and S_2 are randomly sampled from all input variables N , containing $m_1 n$ and $m_2 n$
395 variables, respectively, such that $\emptyset \subseteq S_1 \subsetneq S_2 \subseteq N$, and $0 \leq m_1 \leq m_2 \leq 1$. Then, we have proven
396 that the output change $\Delta f(m_1, m_2)$ mainly encodes interactions of $[0, m_2 n]$ orders, as follows.

397 **Theorem 3** (proven in Appendix C). *The change of the network output $\Delta f(m_1, m_2)$ is proven to be
398 decomposed into interaction effects of different orders.*

$$400 \Delta f(m_1, m_2) = \sum_{m=0}^n w^{(m)} \cdot \mathbb{E}_{S \subseteq N, |S|=m} [I(S|\mathbf{x})], \\ 401 w^{(m)} = \begin{cases} C_{m_2 n}^m - C_{m_1 n}^m, & m \leq m_1 n, \\ C_{m_2 n}^m, & m_1 n < m \leq m_2 n, \\ 0, & m_2 n < m \leq n. \end{cases} \quad (8)$$

404 In this way, based on Theorem 3, we propose the following loss function to prevent the DNN from
405 using $[0, m_2 n]$ -order interactions encoded in $\Delta f(m_1, m_2)$ for inference, thereby penalizing the en-
406 coding of these interactions. Explicitly speaking, we maximized the classification cross entropy
407 $L_{\text{inter}}(m_1, m_2)$ based on $\Delta f(m_1, m_2)$, in order to make $\Delta f(m_1, m_2)$ non-discriminative.

$$409 L_{\text{inter}}(m_1, m_2) = -\mathbb{E}_{\mathbf{x}} \left[\sum_{c=1}^C [p(\hat{y} = c | \Delta f_c(m_1, m_2, \mathbf{x})) \cdot \log(p(\hat{y} = c | \Delta f_c(m_1, m_2, \mathbf{x})))] \right], \quad (9)$$

411 where $\Delta f_c(m_1, m_2, \mathbf{x}) = f_c(\mathbf{x}_{S_2}) - f_c(\mathbf{x}_{S_1})$ represents the change of the logits *w.r.t.* the category c . C
412 and \hat{y} are referred to as the total number of classes and the predicted label, respectively. We compute
413 the probability $p(\hat{y} = c | \Delta f_c(m_1, m_2, \mathbf{x}))$ of classifying the input sample \mathbf{x} to a certain category c by
414 feeding the vector $[\Delta f_1(m_1, m_2, \mathbf{x}), \Delta f_2(m_1, m_2, \mathbf{x}), \dots, \Delta f_C(m_1, m_2, \mathbf{x})]$ into the softmax layer.

415 Thus, we minimize the following loss function L to train a DNN, forcing it to use interaction of
416 specific orders for classification, where $L_{\text{classification}}$ is employed as the cross-entropy loss in practice,
417 and the positive constant α is used to balance two loss terms.

$$418 L(m_1, m_2) = L_{\text{classification}} - \alpha \cdot L_{\text{inter}}(m_1, m_2). \quad (10)$$

420 **Experiment 1: investigating effects of the loss** $L_{\text{inter}}(m_1, m_2)$. Before explaining the role of m -
421 order interactions in mitigating catastrophic forgetting, we first examine whether $L(m_1, m_2)$ could
422 prevent the incrementally learned DNN from encoding interactions of specific orders. To this end,
423 we trained ResNet-18 and ResNet-34 models on CIFAR-100 dataset under different class splits in
424 Section 3.1 for CIL. For each DNN, we trained three versions, including a normally trained DNN
425 without any interaction penalization by setting $\alpha = 0$ (*i.e.*, the baseline model in Section 3.2), and
426 two DNNs trained with $\alpha = 1.0$ to penalize interactions of specific orders, setting $m_1 = 0, m_2 =$
427 0.3 and $m_1 = 0.7, m_2 = 1.0$ in $L(m_1, m_2)$, respectively. This training process is summarized in
428 Algorithm 1 of Appendix H.

429 Fig. 5 reports the average interaction strength \mathcal{I}^m of each DNN, $\mathcal{I}^m = \mathbb{E}_{\mathbf{x}} \mathbb{E}_{S \subseteq N, |S|=m} [I^m(S|\mathbf{x})]$.
430 We discovered that $L_{\text{inter}}(m_1, m_2)$ could successfully prevent DNNs from encoding $[m_1 n, m_2 n]$ -order
431 interactions, instead of $[0, m_2 n]$ -orders. That is, when discouraging the DNN to encode interac-
432 tions $[0, 0.3n]$ orders (or $[0.7n, n]$ orders), the interaction strength $I^{(m)}$ of $[0, 0.3n]$ orders (or $[0.7n, n]$

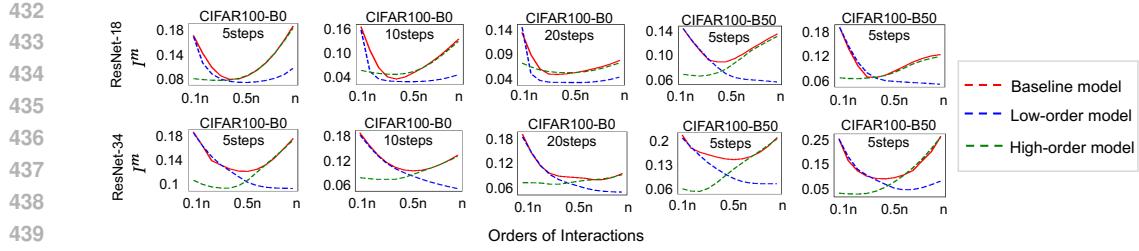


Figure 5: The distribution of interaction strength I^m of the baseline model, the low-order model, and the high-order model.

Table 1: The stability difference ΔFM_{low} between the low-order model and the baseline model, as well as ΔFM_{high} between the high-order model and the baseline model.

Model	Metric	CIFAR100-B0 5 steps	CIFAR100-B0 10 steps	CIFAR100-B0 20 steps	CIFAR100-B50 5 steps	CIFAR100-B50 10 steps
ResNet-18	ΔFM_{low}	0.08	0.08	0.06	0.02	0.16
	ΔFM_{high}	0.22	0.21	0.24	0.23	0.31
ResNet-34	ΔFM_{low}	0.10	0.05	0.08	0.14	0.08
	ΔFM_{high}	0.22	0.30	0.28	0.30	0.34

orders) were significantly decreased, compared to the baseline model. Thus, we named the DNN trained to penalize $[0, 0.3n]$ -order interactions **high-order model** for simplicity, as it mainly encoded high-order interactions. Accordingly, the DNN trained to penalize $[0.7n, n]$ -order interactions was termed the **low-order model**.

Experiment 2: exploring the role of low-order interactions in mitigating catastrophic forgetting. To this end, we compared the stability of the baseline model with that of DNNs trained to penalize interactions of specific orders. Specifically, we used the Forgetting Measure metric FM (Chaudhry et al., 2018; Wang et al., 2024) to evaluate the stability of an incrementally learned DNN, which quantified the average decline in the performance on each previous step k .

$$FM = \mathbb{E}_{k=1}^{T-1} [\max_{i \in \{1, \dots, T-1\}} (Acc^{(k,i)} - Acc^{(k,T)})], \quad (11)$$

where $Acc^{(k,i)}$ denoted the classification accuracy evaluated on the data \mathcal{D}_k by the DNN f_i incrementally trained over i steps. A large FM value implied low stability of the DNN, *i.e.*, low capacity in resisting catastrophic forgetting.

Table 2 illustrated the stability difference ΔFM_{low} between the low-order model f_{low} and the baseline model f_{base} , as well as ΔFM_{high} between the high-order model f_{high} and the baseline model f_{base} , *i.e.*, $\Delta FM_{\text{low}} = FM(f_{\text{low}}) - FM(f_{\text{base}})$ and $\Delta FM_{\text{high}} = FM(f_{\text{high}}) - FM(f_{\text{base}})$. We discovered that ΔFM_{high} was consistently larger than ΔFM_{low} , which indicated that compared to the baseline model, the stability of the high-order model was much worse than that of the low-order model. Thus, preventing the DNN from encoding low-order interactions could significantly harm its stability in resisting catastrophic forgetting, which suggested low-order interactions might, to some extent, be an effective factor for mitigating catastrophic forgetting.

Additionally, we also observed a similar phenomenon based on different CIL models introduced in Section 3.2, *i.e.*, penalizing the learning of low-order interactions in the CIL model could significantly reduce its stability. Please refer to Appendix F for experimental results.

4 CONCLUSION AND DISCUSSION

In this paper, we make the first attempt to use interactions to provide a detailed explanation for catastrophic forgetting in class incremental learning, by quantifying the forgotten and preserved interactions of different complexities *w.r.t.* previous classes, explaining the effectiveness of different CIL methods in a unified view, and proposing a loss with theoretical guarantees to investigate the role of low-order interactions in resisting catastrophic forgetting.

Our work provides avenues for future exploration, such as applying our explanation to analyze other CIL problems (*e.g.*, the stability-plasticity trade-off) and other CIL settings (cf. Appendix D for a preliminary case on audio-visual CIL), which is theoretically feasible. We hope our explanation can serve as a theoretical foundation and shed new light on class incremental learning.

486 ETHICS AND REPRODUCIBILITY STATEMENT
487488 This paper identifies and quantifies what is forgotten in class incremental learning, and provides a
489 unified explanation for the effectiveness of different CIL methods, from the perspective of interactions.
490 There are no ethical issues with this paper.491 Besides, we have provided proofs for the theoretical results in Appendix C, and provided experimen-
492 tal details in Section 3.1, Section 3.2, Section 3.3, and Appendix H. The code will be released
493 when the paper is accepted.494
495 REFERENCES
496497 Julius Adebayo, Justin Gilmer, Michael Muellly, Ian Goodfellow, Moritz Hardt, and Been Kim.
498 Sanity checks for saliency maps. *Advances in neural information processing systems*, 31, 2018.500 Marco Ancona, Cengiz Oztireli, and Markus Gross. Explaining deep neural networks with a poly-
501 nomial time algorithm for shapley value approximation. In *International Conference on Machine*
502 *Learning*, pp. 272–281. PMLR, 2019.503 David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
504 Quantifying interpretability of deep visual representations. In *Proceedings of the IEEE conference*
505 *on computer vision and pattern recognition*, pp. 6541–6549, 2017.506 Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
507 walk for incremental learning: Understanding forgetting and intransigence. In *Proceedings of the*
508 *European conference on computer vision (ECCV)*, pp. 532–547, 2018.509 Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
510 Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
511 learning. *arXiv preprint arXiv:1902.10486*, 2019.513 Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks
514 like that: deep learning for interpretable image recognition. *Advances in neural information*
515 *processing systems*, 32, 2019.516 Xu Cheng, Lei Cheng, Zhaoran Peng, Yang Xu, Tian Han, and Quanshi Zhang. Layerwise change
517 of knowledge in neural networks. In *ICML*, 2024.519 Ian Covert, Scott M Lundberg, and Su-In Lee. Understanding global feature contributions with
520 additive importance measures. *Advances in Neural Information Processing Systems*, 33:17212–
521 17223, 2020.522 Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers. *Advances in*
523 *neural information processing systems*, 30, 2017.524 Huiqi Deng, Na Zou, Mengnan Du, Weifu Chen, Guocan Feng, Ziwei Yang, Zheyang Li, and
525 Quanshi Zhang. Unifying fourteen post-hoc attribution methods with taylor interactions. *IEEE*
526 *Transactions on Pattern Analysis and Machine Intelligence*, 46(7):4625–4640, 2024. doi:
527 10.1109/TPAMI.2024.3358410.529 Virgil Griffith and Christof Koch. Quantifying synergistic mutual information. In *Guided self-*
530 *organization: inception*, pp. 159–190. Springer, 2014.531 John C Harsanyi. A simplified bargaining model for the n-person cooperative game. *International*
532 *Economic Review*, 4(2):194–220, 1963.534 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
535 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
536 770–778, 2016.537 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
538 Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
539 constrained variational framework. In *International Conference on Learning Representations*,
2017. URL <https://openreview.net/forum?id=Sy2fzU9gl>.

540 Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
 541 incrementally via rebalancing. In *Proceedings of the IEEE/CVF conference on computer vision*
 542 and pattern recognition, pp. 831–839, 2019.

543 Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
 544 Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
 545 (tcav). In *International conference on machine learning*, pp. 2668–2677. PMLR, 2018.

546 Artemy Kolchinsky, Brendan D. Tracey, and Steven Van Kuyk. Caveats for information bottleneck
 547 in deterministic scenarios. In *International Conference on Learning Representations*, 2019. URL
 548 <https://openreview.net/forum?id=rke4HiAcY7>.

549 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 550 2009.

551 Boqi Li, Youjun Wang, and Weiwei Liu. Towards understanding catastrophic forgetting in two-layer
 552 convolutional neural networks. In *Forty-second International Conference on Machine Learning*,
 553 2025.

554 Mingjie Li and Quanshi Zhang. Does a neural network really encode symbolic concepts? In
 555 *International conference on machine learning*, pp. 20452–20469. PMLR, 2023.

556 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis*
 557 and machine intelligence

558 and machine intelligence, 40(12):2935–2947, 2017.

559 Yan-Shuo Liang and Wu-Jun Li. Adaptive plasticity improvement for continual learning. In *Pro-
 560 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7816–
 561 7825, 2023.

562 Dongrui Liu, Huiqi Deng, Xu Cheng, Qihan Ren, Kangrui Wang, and Quanshi Zhang. Towards
 563 the difficulty for a deep neural network to learn concepts of different complexities. *Advances in
 564 Neural Information Processing Systems*, 36:41283–41304, 2023.

565 David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
 566 *Advances in neural information processing systems*, 30, 2017.

567 Weiguo Pian, Shentong Mo, Yunhui Guo, and Yapeng Tian. Audio-visual class-incremental learn-
 568 ing. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 7799–
 569 7811, 2023.

570 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 571 Incremental classifier and representation learning. In *Proceedings of the IEEE conference on*
 572 *Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.

573 Jie Ren, Die Zhang, Yisen Wang, Lu Chen, Zhanpeng Zhou, Yiting Chen, Xu Cheng, Xin Wang,
 574 Meng Zhou, Jie Shi, et al. Towards a unified game-theoretic view of adversarial perturbations and
 575 robustness. *Advances in Neural Information Processing Systems*, 34:3797–3810, 2021.

576 Jie Ren, Mingjie Li, Qirui Chen, Huiqi Deng, and Quanshi Zhang. Defining and quantifying the
 577 emergence of sparse concepts in dnns. In *Proceedings of the IEEE/CVF conference on computer*
 578 *vision and pattern recognition*, pp. 20280–20289, 2023a.

579 Jie Ren, Xinhao Zheng, Jiyu Liu, Andrew Lizarraga, Ying Nian Wu, Liang Lin, and Quanshi Zhang.
 580 Monitoring primitive interactions during the training of dnns. In *Proceedings of the AAAI Con-
 581 ference on Artificial Intelligence*, volume 39, pp. 20183–20191, 2025.

582 Qihan Ren, Huiqi Deng, Yunuo Chen, Siyu Lou, and Quanshi Zhang. Bayesian neural networks
 583 avoid encoding complex and perturbation-sensitive concepts. In *International Conference on*
 584 *Machine Learning*, pp. 28889–28913, 2023b.

585 Qihan Ren, Jiayang Gao, Wen Shen, and Quanshi Zhang. Where we have arrived in proving the
 586 emergence of sparse interaction primitives in dnns. In *The Twelfth International Conference on*
 587 *Learning Representations*, 2024a.

594 Qihan Ren, Junpeng Zhang, Yang Xu, Yue Xin, Dongrui Liu, and Quanshi Zhang. Towards the
 595 dynamics of a DNN learning symbolic interactions. In *The Thirty-eighth Annual Conference on*
 596 *Neural Information Processing Systems*, 2024b. URL <https://openreview.net/forum?id=dIHxwKjXRE>.

598 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
 599 use interpretable models instead. *Nature machine intelligence*, 1(5):206–215, 2019.

600

601 Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
 602 Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. *arXiv preprint*
 603 *arXiv:1606.04671*, 2016.

604 Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Bren-
 605 dan Daniel Tracey, and David Daniel Cox. On the information bottleneck theory of deep
 606 learning. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id=ry_WPG-A-.

607

608 Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
 609 tion. *arXiv preprint arXiv:1703.00810*, 2017.

610

611 Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chenliang Xu. Audio-visual event localization
 612 in unconstrained videos. In *Proceedings of the European conference on computer vision (ECCV)*,
 613 pp. 247–263, 2018.

614 Seiya Tokui and Issei Sato. Disentanglement analysis with partial information decomposition. In
 615 *International Conference on Learning Representations*, 2022.

616

617 Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Foster: Feature boosting and com-
 618 pression for class-incremental learning. In *European conference on computer vision*, pp. 398–414.
 619 Springer, 2022.

620 Maorong Wang, Nicolas Michel, Ling Xiao, and Toshihiko Yamasaki. Improving plasticity in online
 621 continual learning via collaborative learning. In *Proceedings of the IEEE/CVF Conference on*
 622 *Computer Vision and Pattern Recognition*, pp. 23460–23469, 2024.

623 Xin Wang, Jie Ren, Shuyun Lin, Xiangming Zhu, Yisen Wang, and Quanshi Zhang. A unified
 624 approach to interpreting and boosting adversarial transferability. In *ICLR*, 2021.

625

626 Paul L Williams and Randall D Beer. Nonnegative decomposition of multivariate information. *arXiv*
 627 *preprint arXiv:1004.2515*, 2010.

628 Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class
 629 incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 630 *recognition*, pp. 3014–3023, 2021.

631

632 Quanshi Zhang, Xin Wang, Jie Ren, Xu Cheng, Shuyun Lin, Yisen Wang, and Xiangming Zhu.
 633 Proving common mechanisms shared by twelve methods of boosting adversarial transferability.
 634 *arXiv preprint arXiv:2207.11694*, 2022.

635 Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia. Maintaining discrimination and
 636 fairness in class incremental learning. In *Proceedings of the IEEE/CVF conference on computer*
 637 *vision and pattern recognition*, pp. 13208–13217, 2020.

638

639 Bowen Zheng, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Task-agnostic guided feature ex-
 640 pansion for class-incremental learning. In *Proceedings of the Computer Vision and Pattern Recog-
 641 nition Conference*, pp. 10099–10109, 2025.

642

643 Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, and De-Chuan Zhan. Pycil: a python toolbox for class-
 644 incremental learning. *SCIENCE CHINA Information Sciences*, 66(9):197101, 2023a. doi: <https://doi.org/10.1007/s11432-022-3600-y>.

645

646 Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars:
 647 Towards memory-efficient class-incremental learning. In *The Eleventh International Confer-
 648 ence on Learning Representations*, 2023b. URL <https://openreview.net/forum?id=S07feAlQHgM>.

648 Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Class-
649 incremental learning: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
650 46(12):9851–9873, 2024a.

651
652 Huilin Zhou, Hao Zhang, Huiqi Deng, Dongrui Liu, Wen Shen, Shih-Han Chan, and Quanshi Zhang.
653 Explaining generalization power of a dnn using interactive concepts. In *Proceedings of the AAAI*
654 *Conference on Artificial Intelligence*, volume 38, pp. 17105–17113, 2024b.

655 Huijing Zhuang, Run He, Kai Tong, Ziqian Zeng, Cen Chen, and Zhiping Lin. Ds-al: A dual-
656 stream analytic learning for exemplar-free class-incremental learning. In *Proceedings of the AAAI*
657 *Conference on Artificial Intelligence*, volume 38, pp. 17237–17244, 2024.

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A THE USE OF LARGE LANGUAGE MODELS
703704 Large language models (LLMs) are used exclusively for language polishing, and are not employed
705 for information retrieval, discovery, or research ideation.
706707 B RELATED WORK
708709 **Class incremental learning.** Previous research related to class incremental learning primarily fo-
710 cused on proposing different effective methods to address the challenge of catastrophic forgetting,
711 which could be further categorized into the following three types by Liang & Li (2023). Specifically,
712 the *regularization-based methods* (Li & Hoiem, 2017; Zhao et al., 2020) mainly added a regularization
713 constraint to the network’s weight updates to prevent important network parameters of previous
714 steps from changing too much. The *memory-based methods* (Zhou et al., 2023b; Lopez-Paz & Ran-
715 zato, 2017; Chaudhry et al., 2019) usually constructed a memory buffer to preserve knowledge of
716 previous steps. The *expansion-based methods* (Yan et al., 2021; Wang et al., 2022; Rusu et al.,
717 2016) dynamically expanded the network architecture for each new step to mitigate catastrophic
718 forgetting. Despite their effectiveness, whether these methods share a common mechanism for mit-
719 igating catastrophic forgetting still remains unclear. Thus, this paper aims to use interactions to
720 explain this shared mechanism.721 However, less attention has been given to explaining catastrophic forgetting, and existing works
722 commonly utilized accuracy-based metrics for explanation. Specifically, Chaudhry et al. (2018) cal-
723 culated the difference between the highest past accuracy on a certain previous task and the accuracy
724 on the same task evaluated by the current DNN to evaluate the forgetting of the DNN, which was
725 further modified by Wang et al. (2024) to measure the proportion of performance the DNN forgot.
726 Lopez-Paz & Ranzato (2017) computed the average change in accuracy on a previous task after
727 training on a new task to measure the DNN’s forgetting in the continual learning process. However,
728 these accuracy-based metrics failed to reveal the intrinsic reason behind catastrophic forgetting, be-
729 cause they could not explain and identify which knowledge *w.r.t.* previous classes was forgotten and
730 preserved in incremental learning process. Thus, they could only offer a coarse-grained explanation,
731 leaving the fine-grained dynamics of knowledge preservation and erasure unexplored. To this end,
732 we quantify the forgotten interactions of different complexities to provide deep insights into the core
733 factors driving catastrophic forgetting.734 Notably, the recent work (Li et al., 2025) has provided a theoretical analysis of catastrophic forget-
735 ting in a two-layer CNN, using a multi-view data model to disentangle different types of features
736 and further tracking how these features changes during binary-classification task incremental learn-
737 ing. They discover that the existence of catastrophic forgetting is due to the larger signal of the
738 task-specific feature compared to the general feature, which echoes our finding that more low-order
739 interactions are forgotten during CIL in Section 3.1. Beyond the above similar conclusion, we fur-
740 ther make the **first** attempt to use interactions to provide a unified understanding of different CIL
741 methods, *i.e.*, reducing the forgetting of low-order interactions, and propose a simple-yet-efficient
742 method to verify the primary role of low-order interactions in mitigating catastrophic forgetting.743 **Interaction-based explanations of DNNs.** Although DNNs have achieved remarkable perfor-
744 mances on different tasks, their underlying decision-making process still remains opaque and unin-
745 terpretable to humans, potentially introducing risks. Thus, explainable AI has received increasing
746 attention in recent years, and post-hoc explanations of DNNs is a typical direction of it. How-
747 ever, the disappointing view of the faithfulness of post-hoc explanations of DNNs has existed for
748 years (Adebayo et al., 2018; Rudin, 2019). Fortunately, Ren et al. (2024a); Li & Zhang (2023); Ren
749 et al. (2023a) have proposed the interaction metric based on game theory as a new perspective to an-
750alyze the inference logic of a DNN, and the faithfulness of taking interactions as primitive inference
751 patterns of the DNN has been mathematically ensured by a series of theorems, which also served as
the the theoretical foundation of this paper.752 Thus, a line of research has employed interactions to formulate and define concepts encoded
753 by a DNN (Ren et al., 2024a; 2023a), to mathematically explain the representation capacity of
754 DNNs (Zhou et al., 2024b; Liu et al., 2023; Ren et al., 2021; 2024b), to unify the common mech-
755 anism behind various attribution methods (Deng et al., 2024), and explain the shared mechanism
behind different transferability-boosting methods (Wang et al., 2021; Zhang et al., 2022). Thus, this

756 paper further develops the above interaction theory system by using interactions to provide detailed
 757 explanations for catastrophic forgetting in class incremental learning, *i.e.*, quantifying the explicit
 758 forgotten knowledge, explaining the shared mechanism of classical CIL methods, and summarizing
 759 the effective factor for mitigating catastrophic forgetting.

760 **Comparison between interactions and the partial information decomposition.** Both interactions
 761 and partial information decomposition (PID) (Tokui & Sato, 2022; Williams & Beer, 2010; Griffith
 762 & Koch, 2014) aim to perform a disentanglement to explain the DNN, but they differ in what they
 763 decompose, how the decomposition is carried out, and what the decomposed components represent.
 764

765 Specifically, PID decomposes the mutual information between the latent representation and the
 766 ground-truth generative factors into different information components based on the information
 767 theory, under the assumption that the true generative factors are available for each data point. This
 768 decomposition measures how much information of the generative factor is exclusively contained by
 769 a single latent representation and how much is shared by multiple latent representations.

770 In comparison, the interaction, representing the AND relationship among different input variables
 771 of an input sample, disentangle the network output into different interaction effects based on game
 772 theory, *i.e.*, $f(\mathbf{x}) = \sum_{S \subseteq N} I(S|\mathbf{x})$. This decomposition enables a detailed explanation for the
 773 inference logic of the DNN, because it attributes the output to the effects of different interactions.
 774 More crucially, the faithfulness of interactions is theoretically ensured by the sparsity property in
 775 Theorem 1 and universal-matching property in Theorem 2. Thus, we use interactions to quantify
 776 and identify which complexities of knowledge are preserved, forgotten, and newly learned during
 777 CIL, so as to provide a more fine-grained explanation for catastrophic forgetting.

778 **Quantifying the knowledge encoded in DNNs.** Explaining and quantifying the precise amount of
 779 knowledge in a DNN still remains a significant challenge in the field of explainable AI. A series of
 780 prior works used the mutual information between input variables and network outputs/intermediate-
 781 layer features to quantify the knowledge (Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Higgins
 782 et al., 2017), but accurately measuring the mutual information was difficult (Kolchinsky et al., 2019).

783 Besides, other studies often employed human-annotated semantic concepts (Bau et al., 2017; Kim
 784 et al., 2018) or automatically learned concepts (Chen et al., 2019) to explain the knowledge encoded
 785 in the DNN, but these works lacked a mathematically guaranteed boundary that precisely defined
 786 the scope of each concept or knowledge. Thus, these studies could not quantify the exact amount
 787 of forgotten/preserved knowledge during incremental learning procedure. In comparison, the theo-
 788 retically verifiable interactions allow us to represent knowledge as primitive inference patterns. In
 789 this way, we can explicitly quantify how many interactions *w.r.t.* previous steps are forgotten and
 790 preserved during class incremental learning, so as to provide detailed explanations for catastrophic
 791 forgetting.

792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 **C PROOF OF THEOREM 3**
 811

812 Theorem 3. *The change of the network output $\Delta f(m_1, m_2)$ is proven to be decomposed into inter-*
 813 *action effects of different orders.*

814

$$\Delta f(m_1, m_2) = \sum_{m=0}^n w^{(m)} \cdot \mathbb{E}_{S \subseteq N, |S|=m} [I(S|\mathbf{x})],$$

815

$$w^{(m)} = \begin{cases} C_{m_2 n}^m - C_{m_1 n}^m, & m \leq m_1 n, \\ C_{m_2 n}^m, & m_1 n < m \leq m_2 n, \\ 0, & m_2 n < m \leq n. \end{cases} \quad (12)$$

816

817 *Proof.* The difference in network outputs between different randomly masked samples is repre-
 818 *sented as:*

819

$$\begin{aligned} \Delta f(m_1, m_2) &= \mathbb{E}_{\substack{S_1, S_2: \emptyset \subseteq S_1 \subseteq S_2 \subseteq N \\ |S_1|=m_1 n, |S_2|=m_2 n}} [f(\mathbf{x}_{S_2}) - f(\mathbf{x}_{S_1})], \\ &= \mathbb{E}_{\substack{S_2 \subseteq N, \\ |S_2|=m_2 n}} [f(\mathbf{x}_{S_2})] - \mathbb{E}_{\substack{S_1 \subseteq N, \\ |S_1|=m_1 n}} [f(\mathbf{x}_{S_1})] \end{aligned} \quad (13)$$

820

821 where subsets S_1 and S_2 are randomly sampled from the universal set N , $0 \leq m_1 \leq m_2 < 1$.

822 Then, according to the Theorem 2, the first term in Eq.(2) can be re-written as follows, where
 823 $S_1 \subseteq N, |S_1| = m_1 n$.

824

$$\begin{aligned} \mathbb{E}[f(\mathbf{x}_{S_1})] &= \mathbb{E}_{S_1} [\sum_{S \subseteq S_1} I(S|\mathbf{x})] \\ &= \mathbb{E}_{S_1} [\sum_{m=0}^{m_1 n} \sum_{S \subseteq S_1, |S|=m} I(S|\mathbf{x})] \\ &= \sum_{m=0}^{m_1 n} \mathbb{E}_{S_1} [C_{m_1 n}^m \mathbb{E}_{S \subseteq S_1, |S|=m} [I(S|\mathbf{x})]] \\ &= \sum_{m=0}^{m_1 n} C_{m_1 n}^m \mathbb{E}_{S_1} [\mathbb{E}_{S \subseteq S_1, |S|=m} [I(S|\mathbf{x})]], \end{aligned} \quad (14)$$

825

826 Similarly, we can obtain,

827

828

$$\mathbb{E}[f(\mathbf{x}_{S_2})] = \sum_{m=0}^{m_2 n} C_{m_2 n}^m \mathbb{E}_{S_2} [\mathbb{E}_{S \subseteq S_2, |S|=m} [I(S|\mathbf{x})]], \quad (15)$$

829

830 where $S_2 \subseteq N, |S_2| = m_2 n$. Note that $\mathbb{E}_{S_1} \mathbb{E}_{S \subseteq S_1, |S|=m} [I(S|\mathbf{x})]$ is averaged over all subsets
 831 $S_1 \subseteq N$ and $\mathbb{E}_{S_2} \mathbb{E}_{S \subseteq S_2, |S|=m} [I(S|\mathbf{x})]$ is averaged over subsets $S_2 \subseteq N$. Then, we can prove,

832

$$\begin{aligned} \mathbb{E}_{S_1} [\mathbb{E}_{S \subseteq S_1, |S|=m} [I(S|\mathbf{x})]] &= \mathbb{E}_{S_2} [\mathbb{E}_{S \subseteq S_2, |S|=m} [I(S|\mathbf{x})]] \\ &= \mathbb{E}_{S \subseteq N, |S|=m} [I(S|\mathbf{x})]. \end{aligned} \quad (16)$$

833

834 Specifically, let us first consider $\mathbb{E}_{S_1} [\mathbb{E}_{S \subseteq S_1, |S|=m} [I(S|\mathbf{x})]]$, which can be re-written as follows.

835

$$\begin{aligned} \mathbb{E}_{S_1} [\mathbb{E}_{S \subseteq S_1, |S|=m} [I(S|\mathbf{x})]] &= \sum_{S_1 \subseteq N, |S_1|=m_1 n} \frac{1}{\binom{n}{m_1 n}} \left[\frac{1}{\binom{m_1 n}{m}} \sum_{S \subseteq S_1, |S|=m} I(S|\mathbf{x}) \right] \\ &= \sum_{S \subseteq N, |S|=m} I(S|\mathbf{x}) \left[\sum_{S_1 \supseteq S, |S_1|=m_1 n} \frac{1}{\binom{n}{m_1 n}} \cdot \frac{1}{\binom{m_1 n}{m}} \right] \quad \%swaping the order of summation \\ &= \sum_{S \subseteq N, |S|=m} I(S|\mathbf{x}) \frac{\binom{n-m}{m_1 n-m}}{\binom{n}{m_1 n} \cdot \binom{m_1 n}{m}} \\ &= \sum_{S \subseteq N, |S|=m} I(S|\mathbf{x}) \frac{\binom{n-m}{m_1 n-m}}{\binom{n}{m} \cdot \binom{n-m}{m_1 n-m}} \quad \%using the combinatorial identity \\ &= \sum_{S \subseteq N, |S|=m} I(S|\mathbf{x}) \frac{1}{\binom{n}{m}} \\ &= \mathbb{E}_{S \subseteq N, |S|=m} [I(S|\mathbf{x})]. \end{aligned} \quad (17)$$

864 Similarly, $\mathbb{E}_{S_2}[\mathbb{E}_{S \subseteq S_2, |S|=m}[I(S|\mathbf{x})]]$ can be re-written as follows.
 865

$$\begin{aligned}
 866 \mathbb{E}_{S_2}[\mathbb{E}_{S \subseteq S_2, |S|=m}[I(S|\mathbf{x})]] &= \sum_{S_2 \subseteq N, |S_2|=m_2n} \frac{1}{\binom{n}{m_2n}} \left[\frac{1}{\binom{m_2n}{m}} \sum_{S \subseteq S_2, |S|=m} I(S|\mathbf{x}) \right] \\
 867 &= \sum_{S \subseteq N, |S|=m} I(S|\mathbf{x}) \left[\sum_{S_2 \supseteq S, |S_2|=m_2n} \frac{1}{\binom{n}{m_2n}} \cdot \frac{1}{\binom{m_2n}{m}} \right] \\
 868 &= \sum_{S \subseteq N, |S|=m} I(S|\mathbf{x}) \frac{\binom{n-m}{m_2n-m}}{\binom{n}{m_2n} \cdot \binom{m_2n}{m}} \\
 869 &= \sum_{S \subseteq N, |S|=m} I(S|\mathbf{x}) \frac{\binom{n-m}{m_2n-m}}{\binom{n}{m} \cdot \binom{n-m}{m_2n-m}} \\
 870 &= \sum_{S \subseteq N, |S|=m} I(S|\mathbf{x}) \frac{1}{\binom{n}{m}} \\
 871 &= \mathbb{E}_{S \subseteq N, |S|=m}[I(S|\mathbf{x})].
 \end{aligned} \tag{18}$$

880 Thus, we can obtain $\mathbb{E}_{S_1}[\mathbb{E}_{S \subseteq S_1, |S|=m}[I(S|\mathbf{x})]] = \mathbb{E}_{S_2}[\mathbb{E}_{S \subseteq S_2, |S|=m}[I(S|\mathbf{x})]] = \mathbb{E}_{S \subseteq N, |S|=m}[I(S|\mathbf{x})]$,
 881 when $m < m_1n < m_2n$. Thus, the output change $\Delta f(m_1, m_2)$ can be rewritten as follows:

$$\begin{aligned}
 882 \Delta f(m_1, m_2) &= \mathbb{E}_{S_1, S_2: \emptyset \subseteq S_1 \subset S_2 \subseteq N} [f(\mathbf{x}_{S_2}) - f(\mathbf{x}_{S_1})] \\
 883 &= \mathbb{E}_{S_2 \subseteq N, |S_2|=m_2n} [f(\mathbf{x}_{S_2})] - \mathbb{E}_{S_1 \subseteq N, |S_1|=m_1n} [f(\mathbf{x}_{S_1})] \\
 884 &= \sum_{m=0}^{m_2n} C_{m_2n}^m \mathbb{E}_{S_2}[\mathbb{E}_{S \subseteq S_2, |S|=m}[I(S|\mathbf{x})]] - \sum_{m=0}^{m_1n} C_{m_1n}^m \mathbb{E}_{S_1}[\mathbb{E}_{S \subseteq S_1, |S|=m}[I(S|\mathbf{x})]] \\
 885 &= \sum_{m=0}^n w^{(m)} \mathbb{E}_{S \subseteq N, |S|=m}[I(S|\mathbf{x})],
 \end{aligned} \tag{19}$$

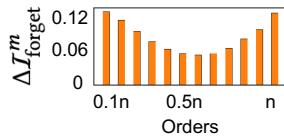
886 where

$$w^{(m)} = \begin{cases} C_{m_2n}^m - C_{m_1n}^m, & m \leq m_1n, \\ C_{m_2n}^m, & m_1n < m \leq m_2n, \\ 0, & m_2n < m \leq n. \end{cases} \tag{20}$$

887 Thus, Theorem 3 is proven. \square
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918 **D MORE RESULTS ON VERIFYING THAT THE CIL METHOD MAKES THE DNN
919 FORGET LESS INTERACTIONS OF PREVIOUS CLASSES
920**

921 In this section, we conducted experiments on another scenario of CIL, *i.e.* audio-visual CIL, to
922 verify the generality of our explanation. Specifically, we followed settings in (Pian et al., 2023) to
923 train two versions of autoencoders (VideoMAE for video and AudioMAE for audio) on the audio-
924 visual dataset AVE (Tian et al., 2018) for 4 incremental steps, including a baseline model and a CIL
925 model trained with iCaRL (Rebuffi et al., 2017). Fig. 6 shows the difference in forgotten interactions
926 $\Delta\mathcal{I}_{\text{forget}}^m$ of different orders m between the CIL model and the baseline model, which also verified
927 our conclusion that the CIL method makes the DNN forget less interactions for previous classes to
928 mitigate catastrophic forgetting, *i.e.*, $\mathbb{E}_m[\Delta\mathcal{I}_{\text{forget}}^m] > 0$, supporting the generality of our conclusion.
929



930 **Figure 6: The difference in forgotten interactions $\Delta\mathcal{I}_{\text{forget}}^m$ w.r.t. previous classes between the CIL
931 model and the baseline model, both trained on the AVE dataset for audio-visual class-incremental
932 learning.**

933 **E EXPLAINING WHY MEMO MAKES THE DNN FORGET MORE HIGH-ORDER
934 INTERACTIONS**

935 In this section, we explain the observation that MEMO (Zhou et al., 2023b) makes its corresponding
936 CIL model forget more high-order interactions in Fig. 4 and Fig. 3, compared to the baseline
937 model. We consider that the CIL model trained by MEMO forgets more high-order interaction *w.r.t.*
938 previous steps, in order to learn new interactions *w.r.t.* current classes.

939 To this end, we first use interactions to quantify the learning of new interactions of each complexity
940 for the inference of current classes. Specifically, given an input sample $\mathbf{x}_t \in \mathcal{D}_t$ and the DNN f_t in-
941 crementally learned from steps 1 to t , the strength of m -order newly learned interaction $\mathcal{I}_{\text{new}}^{(t),m}(S|\mathbf{x}_t)$
942 is defined as the interaction encoded in f_t but not encoded in the previous DNN f_{t-1} .

$$\begin{aligned} 943 \forall S \subseteq N, |S| = m, \quad \mathcal{I}_{\text{new}}^{(t),m}(S|\mathbf{x}_t) &= \mathcal{I}^m(S|\mathbf{x}_t, f_t) - \mathcal{I}_{\text{share}}^{(t),m}(S|\mathbf{x}_t), \\ 944 \mathcal{I}_{\text{share}}^{(t),m}(S|\mathbf{x}_t) &= \Gamma_{t-1}^t(S|\mathbf{x}_t) \cdot \min(\mathcal{I}^m(S|\mathbf{x}_t, f_t), \mathcal{I}^m(S|\mathbf{x}_t, f_{t-1})), \end{aligned} \quad (21)$$

945 where $\mathcal{I}^m(S|\mathbf{x}_t, f_t) \triangleq |\mathcal{I}^m(S|\mathbf{x}_t, f_t)|$ denotes the strength of the m -order interaction $\mathcal{I}^m(S|\mathbf{x}_t, f_t)$ ex-
946 tracted from the sample $\mathbf{x}_t \in \mathcal{D}_t$. $\mathcal{I}_{\text{share}}^{(t),m}(S|\mathbf{x}_t)$ represents the m -order interaction shared by f_{t-1} and
947 f_t . $\Gamma_{t-1}^t(S|\mathbf{x}_t) = \mathbb{1}((\mathcal{I}^m(S|\mathbf{x}_t, f_t) \cdot \mathcal{I}^m(S|\mathbf{x}_t, f_{t-1})) > 0)$ measures whether the m -order interaction
948 $\mathcal{I}^m(S|\mathbf{x}_t, f_t)$ encoded by the current DNN f_t has the same effect as $\mathcal{I}^m(S|\mathbf{x}_t, f_{t-1})$ encoded by the
949 previous DNN f_{t-1} , where $\mathbb{1}(\cdot)$ is the indicator function. If $\mathcal{I}^m(S|\mathbf{x}_t, f_t)$ and $\mathcal{I}^m(S|\mathbf{x}_t, f_{t-1})$ have
950 opposite effects, then the shared interaction $\mathcal{I}_{\text{share}}^{(t),m}(S|\mathbf{x}_t) = 0$. Otherwise, the shared interaction is
951 quantified as $\mathcal{I}_{\text{share}}^{(t),m}(S|\mathbf{x}_t) = \min(\mathcal{I}^m(S|\mathbf{x}_t, f_t), \mathcal{I}^m(S|\mathbf{x}_t, f_{t-1}))$.

952 Then, we compare the difference in newly learned interactions $\Delta\mathcal{I}_{\text{learn}}^m$ between the baseline model
953 and the CIL model trained by MEMO, in order to check whether the CIL model trained by MEMO
954 learns more new high-order interactions than the baseline model.

$$\begin{aligned} 955 \Delta\mathcal{I}_{\text{learn}}^m &= \mathcal{I}_{\text{learn,CIL}}^m - \mathcal{I}_{\text{learn,base}}^m \\ 956 \mathcal{I}_{\text{learn,base}}^m &= \mathbb{E}_{t=2}^T \mathbb{E}_{\mathbf{x}_t \in \mathcal{D}_t} \mathbb{E}_{\substack{S \subseteq N, \\ |S|=m}} [\mathcal{I}_{\text{new,base}}^{(t),m}(S|\mathbf{x}_t)] \\ 957 \mathcal{I}_{\text{learn,CIL}}^m &= \mathbb{E}_{t=2}^T \mathbb{E}_{\mathbf{x}_t \in \mathcal{D}_t} \mathbb{E}_{\substack{S \subseteq N, \\ |S|=m}} [\mathcal{I}_{\text{learn,CIL}}^{(t),m}(S|\mathbf{x}_t)], \end{aligned} \quad (22)$$

958 where $\mathcal{I}_{\text{learn,CIL}}^{(t),m}(S|\mathbf{x}_t)$ denotes the new interactions *w.r.t.* the current step t learned by the CIL model,
959 which is obtained by applying $f_t = f_{t,CIL}$ to compute Eq. (21). Accordingly, $\mathcal{I}_{\text{learn,base}}^{(t),m}(S|\mathbf{x}_t)$ repre-

sents the new interactions learned by the baseline model, which is obtained by applying $f_t = f_{t,\text{base}}$ to calculate Eq. (21). Thus, a positive value of $\Delta I_{\text{learn}}^m$ indicates that the CIL model learns more m -order interactions w.r.t new classes.

Fig. 7 shows that the CIL model trained by MEMO usually learns more high-order interactions w.r.t. current classes, compared to the baseline model. This may partially explain MEMO makes its corresponding CIL model forget more high-order interactions w.r.t. previous classes.

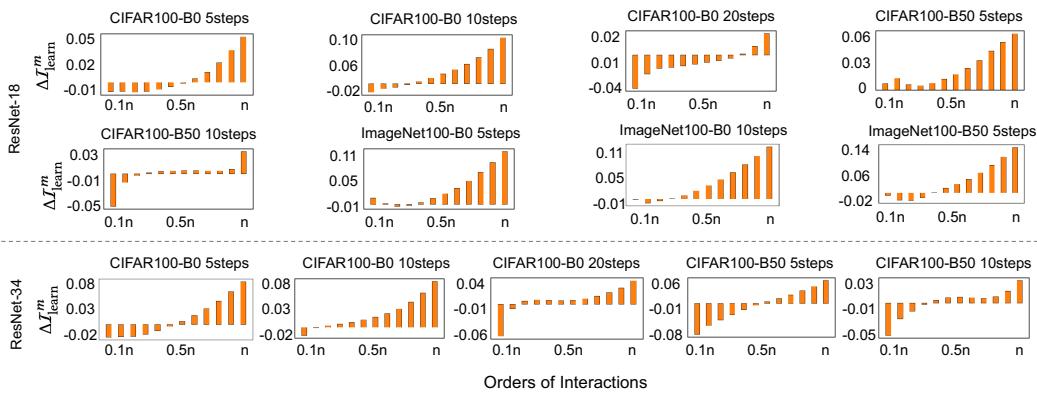


Figure 7: The difference in newly learned interactions $\Delta I_{\text{learn}}^m$ between the baseline model and the CIL model trained by MEMO.

1026 F MORE RESULTS ON EXPLORING THE ROLE OF LOW-ORDER INTERACTIONS
1027

1028 In this section, we conducted experiments to explore the role of low-order interactions in the re-
1029 sistance of catastrophic forgetting. To this end, we trained ResNet-18 and ResNet-34 models
1030 on CIFAR-100 datasets under different class splits in Section 3.1 for class incremental learning.
1031 For each DNN, we trained three versions, including one using a specific CIL method without
1032 any interaction penalization (*i.e.*, $\alpha = 0$, the CIL model introduced in Section 3.2), and two
1033 others with the same CIL method but applying interaction penalization ($\alpha = 1.0$), by setting
1034 $m_1 = 0, m_2 = 0.3$ and $m_1 = 0.7, m_2 = 1.0$ in $L(m_1, m_2)$, respectively. For simplicity, we
1035 named the CIL model trained to penalize $[0, 0.3n]$ -order ($[0.7n, n]$ -order) interactions **high-order**
1036 (**low-order**) **CIL model**, as it mainly encoded high-order (low-order) interactions. Then, we com-
1037 pared the stability difference $\Delta FM_{CIL, low}$ between the low-order CIL model $f_{low, CIL}$ and the CIL
1038 model f_{CIL} , as well as $\Delta FM_{CIL, high}$ between the high-order CIL model $f_{CIL, high}$ and the CIL model
1039 f_{CIL} , *i.e.*, $\Delta FM_{CIL, low} = FM(f_{CIL, low}) - FM(f_{CIL})$ and $\Delta FM_{CIL, high} = FM(f_{CIL, high}) - FM(f_{CIL})$.
1040

1041 Table 2 illustrated that $\Delta FM_{CIL, high}$ was consistently larger than $\Delta FM_{CIL, low}$, which indicated that
1042 the compared to the CIL, model, the stability of high-order CIL models was much worse than that
1043 of the low-order CIL model. Thus, preventing the DNN from encoding low-order interactions could
1044 significantly harm its stability in resisting catastrophic forgetting, which suggested that low-order
1045 interactions might, to some extent, be an effective factor for mitigating catastrophic forgetting.
1046

Model	Metric	CIFAR100-B0	CIFAR100-B0	CIFAR100-B0	CIFAR100-B50
		5 steps	10 steps	20 steps	5 steps
ResNet-18	$\Delta FM_{MEMO, low}$	0.08	0.07	0.08	0.02
	$\Delta FM_{MEMO, high}$	0.17	0.16	0.20	0.13
ResNet-34	$\Delta FM_{MEMO, low}$	0.18	0.1	0.10	0.10
	$\Delta FM_{MEMO, high}$	0.30	0.26	0.23	0.15
ResNet-18	$\Delta FM_{LWF, low}$	0.20	0.11	0.06	0.15
	$\Delta FM_{LWF, high}$	0.32	0.25	0.29	0.33
ResNet-34	$\Delta FM_{LWF, low}$	0.07	0.08	0.09	0.04
	$\Delta FM_{LWF, high}$	0.16	0.21	0.23	0.18
ResNet-18	$\Delta FM_{DER, low}$	0.15	0.09	0.07	0.06
	$\Delta FM_{DER, high}$	0.32	0.28	0.19	0.24
ResNet-34	$\Delta FM_{DER, low}$	0.07	0.12	0.15	0.07
	$\Delta FM_{DER, high}$	0.18	0.26	0.42	0.34
ResNet-18	$\Delta FM_{FOSTER, low}$	0.02	0.05	0.05	0.09
	$\Delta FM_{FOSTER, high}$	0.21	0.25	0.21	0.30
ResNet-34	$\Delta FM_{FOSTER, low}$	0.04	0.07	0.14	0.08
	$\Delta FM_{FOSTER, high}$	0.13	0.29	0.23	0.26

1062 Table 2: The stability difference $\Delta FM_{CIL, low}$ between the low-order CIL model and the CIL model,
1063 as well as $\Delta FM_{CIL, high}$ between the high-order CIL model and the CIL model.
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081

G SPARSITY OF INTERACTIONS

1082
1083
1084
1085
1086
1087
1088
1089

Given an input sample \mathbf{x} with n input variables, among all 2^n possible interactions, Ren et al. (2024a) have proven that the number of interactions with salient effects on the network output is $\mathcal{O}(n^\kappa/\tau)$ under three common mathematical conditions. First, the DNN does not encode interactions of extremely high orders. Second, the average classification confidence monotonically decreases as more input variables are masked, which is computed on $\{\mathbf{x}_T \mid |T| = n - k\}$ by masking different random sets of k input variables. Third, the decreasing speed of the average confidence is polynomial. κ is empirically within the range of [1.9, 2.2] Ren et al. (2024b). This indicates that the number of salient interactions is much less than 2^n , *i.e.*, the interactions are sparse.

1090
1091
1092
1093
1094
1095
1096

To this end, we conducted experiments on incrementally trained DNNs introduced in Section 3.1 to examine whether interactions satisfy the sparsity property in real applications. Fig. 8 shows all the interaction effects encoded by the incrementally trained DNN on different input samples. We discovered that only a few interactions have salient interactions effects $|I(S|\mathbf{x})|$ on the network output, while the effects of all other interactions are negligible, *w.r.t.* $|I(S|\mathbf{x})| \approx 0$. This finding was consistent with the conclusion found by Ren et al. (2024a), *i.e.*, interactions encoded by a DNN were usually very sparse.

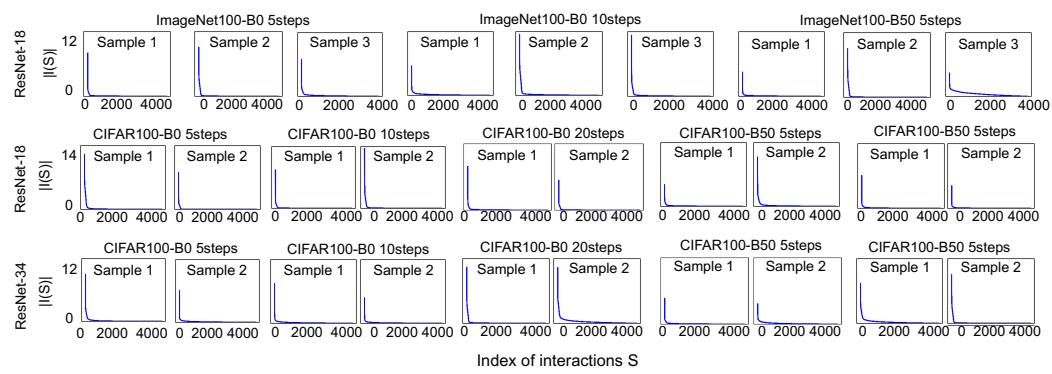
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
11081109
1110
1111

Figure 8: Interactions in descending order of the interaction strength .

1112
1113

H EXPERIMENTAL DETAILS

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128

In this paper, we follow settings in (Li & Zhang, 2023; Ren et al., 2024a; Liu et al., 2023) to compute interactions. Considering the computational cost of calculating and extracting all 2^n interactions is intolerable in real implementation, we follow the method in (Li & Zhang, 2023; Ren et al., 2024a) to annotate and select a set of image patches as input variables to reduce the computation cost. Specifically, given an image in the CIFAR-100 dataset, we follow (Li & Zhang, 2023; Ren et al., 2023a) to divide it into small patches of size 4×4 , resulting in a total of 8×8 image patches, and further select $n = 12$ patches from 6×6 image patches located in the center of the image as input variables to calculate interactions, because Li & Zhang (2023); Ren et al. (2024a) consider the DNN mainly used foreground information to make inference. Similarly, for each image in the ImageNet-100 dataset, we follow (Liu et al., 2023) to divide it into small patches of size 28×28 , resulting in a total of 8×8 image patches, and further select $n = 12$ patches from 6×6 image patches located in the center of the image as input variables to calculate interactions. Thus, we calculate totally $2^{12} = 1024$ interactions for each input image, which costs only 2.55 seconds per image in CIFAR-100 on ResNet-18 and 2.91 seconds on ResNet-34, and 12.37 seconds per image in ImageNet-100 on ResNet-18, using the single NVIDIA 4090 GPU.

1129
1130
1131
1132
1133

Besides, to generate the masked sample \mathbf{x}_T , we follow the widely used setting in (Dabkowski & Gal, 2017; Li & Zhang, 2023; Ren et al., 2024a; Liu et al., 2023) to set the baseline value of each variable b_i as the mean value of this variable across all samples in image classification to mask each input variable in $N \setminus T$. Meanwhile, given each incrementally trained DNN f , we follow (Li & Zhang, 2023; Ren et al., 2024a; Liu et al., 2023) to set $f(\mathbf{x})$ in Eq. (2) of the main paper as the confidence of predicting \mathbf{x} to the ground-truth category y^{truth} , $f(\mathbf{x}) = \log \frac{p(y=y^{\text{truth}}|\mathbf{x})}{1-p(y=y^{\text{truth}}|\mathbf{x})}$, to com-

pute each interaction $I(S|\mathbf{x})$. Considering outputs of DNNs trained using different methods usually have different scales. In this way, interactions encoded in different DNNs computing based on their network outputs will have different scales, which may affect the comparison. To eliminate this impact, we follow (Cheng et al., 2024) to normalize each interaction $I(S|\mathbf{x})$ encoded by the DNN f as $I(S|\mathbf{x}) \leftarrow I(S|\mathbf{x})/\mathbb{E}_{\mathbf{x}}[|f(\mathbf{x}) - f(\mathbf{x}_\emptyset)|]$, where \mathbf{x}_\emptyset represents the sample with all input variables masked to baseline values. Thus, according to Theorem 2 that $f(\mathbf{x}) - f(\mathbf{x}_\emptyset) = \sum_{S \subseteq N, S \neq \emptyset} I(S|\mathbf{x})$, the total amount of interactions $\sum_{S \subseteq N, S \neq \emptyset} I(S|\mathbf{x})$ encoded by DNNs trained at different step using different methods are kept at the same magnitude, which make interactions comparable across models.

1143 Additionally, we follow training settings in (Zhou et al., 2024a) to use SGD with an initial learning
 1144 rate of 0.1 and momentum of 0.9 to train DNNs introduced in Section 2 for class incremental learn-
 1145 ing based on PyTorch and PyCIL⁵ (Zhou et al., 2023a). In Section 2.4, we trained DNNs to encode
 1146 interactions of specific orders based on Eq. (11), where we set $m_1 = 0, m_2 = 0.3$ and $\alpha = 1.0$ in
 1147 $L(m_1, m_2)$ to train high-order DNNs, and set $m_1 = 0.7, m_2 = 1.0$ and $\alpha = 1.0$ to train low-order
 1148 DNNs. This training process was roughly summarized in Algorithm 1 for a better understanding.
 1149 We will release the code if the paper is accepted.

Algorithm 1 Training the DNN to encode interactions of specific orders.

Input: Training dataset $\mathcal{D}_{\text{train}}$, interaction orders m_1 and m_2 , coefficient α , epoch number E

1153 **Output:** a trained DNN f

```

1154 1: Initialize parameters of  $f$ 
1155 2: for  $e = 1$  to  $E$  do
1156 3: Initialize  $L_{\text{inter}}(m_1, m_2) = 0$  and  $L_{\text{classification}} = 0$ 
1157 4: for  $(x, y) \in \mathcal{D}_{\text{train}}$  do
1158 5: Compute the network output change  $\Delta f(m_1, m_2, x)$  based on Eq. (8)
1159 6: Compute the loss  $L_{\text{inter}}(m_1, m_2, x) = -\sum_{c=1}^C [p(\hat{y} = c | \Delta f(m_1, m_2, x)_c) \cdot \log(p(\hat{y} = c | \Delta f(m_1, m_2, x)_c))]$ 
1160 7: Compute the classification loss  $L_{\text{classification}}(x) = \text{CrossEntropy}(x, y)$ 
1161 8: Compute  $L_{\text{inter}}(m_1, m_2) += L_{\text{inter}}(m_1, m_2, x)$ ,  $L_{\text{classification}} += L_{\text{classification}}(x)$ 
1162 9: end for
1163 10: Compute  $L_{\text{inter}}(m_1, m_2) / = |\mathcal{D}_{\text{train}}|$ ,  $L_{\text{classification}} / = |\mathcal{D}_{\text{train}}|$ 
1164 11: Compute the loss  $L(m_1, m_2) = L_{\text{classification}} - \alpha \cdot L_{\text{inter}}(m_1, m_2)$  based on Eq. (11)
1165 12: Compute the gradient of the loss  $L(m_1, m_2)$  to update parameters of  $f$ 
1166 13: end for

```

⁵PyCIL is an open-sourced python tool box to implement CIL.