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ABSTRACT

Open vocabulary models (e.g. CLIP) have shown strong performance on zero-shot
classification through their ability generate embeddings for each class based on
their (natural language) names. Prior work has focused on improving the accuracy
of these models through prompt engineering or by incorporating a small amount
of labeled downstream data (via finetuning). In this paper, we aim to tackle clas-
sification problems with coarsely-defined class labels. We propose Classification
with Hierarchical Label Sets (or CHiLS), an alternative strategy that proceeds in
three steps: (i) for each class, produce a set of subclasses, using either existing
label hierarchies or by querying GPT-3; (ii) perform the standard zero-shot CLIP
procedure as though these subclasses were the labels of interest; (iii) map the pre-
dicted subclass back to its parent to produce the final prediction. Across numerous
datasets (with implicit semantic hierarchies), CHiLS leads to improved accuracy
yielding gains of over 30% in situations where known hierarchies are available
and more modest gains when they are not. CHiLS is simple to implement within
existing CLIP pipelines and requires no additional training cost.

1 INTRODUCTION

Recently, machine learning researchers have become captivated by the remarkable capabilities of
pretrained open vocabulary models (Radford et al., 2021; Wortsman et al., 2021; Jia et al., 2021;
Gao et al., 2021; Pham et al., 2021; Cho et al., 2022; Pratt et al., 2022). These models, like CLIP
(Radford et al., 2021) and ALIGN (Jia et al., 2021), learn to map images and captions into shared
embedding spaces such that images are close in embedding space to their corresponding captions
but far from randomly sampled captions. The resulting models can then used to assess the relative
compatibility of a given image with an arbitrary set of textual “prompts”. Notably, Radford et al.
(2021) observed that by inserting each class name directly within a natural language prompt, one can
then use CLIP embeddings to assess the compatibility of an images with each among the possible
classes. Thus, open vocabulary models are able to perform zero-shot image classification, and do so
with high rates of success (Radford et al., 2021; Zhang et al., 2021b).

Despite the documented successes, the current interest in open vocabulary models poses a new ques-
tion: How should we represent our classes for a given problem in natural language? As class
names are now part of the inferential pipeline (as opposed to mostly an afterthought in traditional
scenarios) for models like CLIP in the zero-shot setting, CLIP’s performance is now directly tied
to the descriptiveness of the class “prompts” (Santurkar et al., 2022). While many researchers have
focused on improving the quality of the prompts into which class names are embedded (Radford
et al., 2021; Pratt et al., 2022; Zhou et al., 2022b;a; Huang et al., 2022), surprisingly little attention
has been paid to improving the richness of the class names themselves. This can be particularly
crucial in cases where class names are not very informative or are too coarsely-defined to match the
sort of descriptions that might arise in natural captions. Consider, for an example, the classes “large
man-made outdoor things” and “reptiles” in the CIFAR20 dataset (Krizhevsky, 2009).

In this paper, we introduce a new method to tackle zero-shot classification with CLIP models
for problems with coarsely-defined class labels. We refer to our method as Classification with
Hierarchical Label Sets (CHiLS for short). Our method utilizes a hierarchical map to convert each
class into a list of subclasses, performs normal CLIP zero-shot prediction across the union set of
all subclasses, and finally uses the inverse mapping to convert the subclass prediction to the requi-
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Figure 1: (Left) Standard CLIP Pipeline for Zero-Shot Classification. For inference, a standard
CLIP takes in input a set of classes and an image where we want to make a prediction and makes a
prediction from that set of classes. (Right) Our proposed method CHiLS for leveraging hierarchical
class information into the zero-shot pipeline. We map each individual class to a set of subclasses,
perform inferences in the subclass space (i.e., union set of all subclasses), and map the predicted
subclass back to its original superclass.

site superclass. We additionally include a reweighting step wherein we leverage the raw superclass
probabilities in order to make our method robust to less-confident predictions at the superclass and
subclass level.

We evaluate CHiLS on a wide array of image classification benchmarks with and without available
hierarchical information. In the former case, leveraging preexisting hierarchies leads to strong ac-
curacy gains across all datasets. In the latter, we show that rather than enumerating the hierarchy by
hand, using GPT-3 to query a list of possible subclasses for each class (whether or not they are actu-
aly present in the dataset) still leads to consistent improved accuracy over raw superclass prediction.
We summarize our main contributions below:

• We propose CHiLS, a new method for improving zero-shot CLIP performance in scenarios with
ill-defined and/or overly general class structures, which requires no labeled data or training time
and is flexible to both existing and synthetically generated hierarchies.

• We show that CHiLS consistently performs as well or better than standard practices in situations
with only synthetic hierarchies, and that CHiLS can achieve up to 30% accuracy gains when
ground truth hierarchies are available.

2 RELATED WORK

2.1 TRANSFER LEARNING

While the focus of this paper is to improve CLIP models in the zero-shot regime, there is a large
body of work exploring improvements to CLIP’s few-shot capabilities. In the standard fine-tuning
paradigm for CLIP models, practitioners discard the text encoder and only use the image embeddings
as inputs for some additional training layers. This however, leads to certain problems.

One particular line of work on improving the fine-tuned capabilities of CLIP models leverages model
weight interpolation. Wortsman et al. (2021) proposes to linear interpolate the weights of a fine-
tuned and a zero-shot CLIP model to improve the fine-tuned model under distribution shifts. This
idea is extended by Wortsman et al. (2022) into a general purpose paradigm for ensembling models’
weights in order to improve robustness. Ilharco et al. (2022) then builds on both these works and
puts forth a method to “patch” fine-tuned and zero-shot CLIP weights together in order to avoid
the issue of catastrophic forgetting. Among all the works in this section, our paper is perhaps most
similar to this vein of work (albeit in spirit), as CHiLS too seeks to combine two different predictive
methods. Ding et al. (2022) also tackles catastrophic forgetting, though they propose an orthogonal
direction and fine-tune both the image encoder and the text encoder, where the latter draws from a
replay vocabulary of text concepts from the original CLIP database.
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There is another line of work that seeks to improve CLIP models by injecting a small amount of
learnable parameters into the frozen CLIP backbone. This has been commonly achieved through
the adapter framework (Houlsby et al., 2019) from parameter-efficient learning; specifically, in Gao
et al. (2021) they fine-tune a small number of additional weights on top of the encoder blocks, which
is then connected with the original embeddings through residual connections. Zhang et al. (2021a)
builds on this method by removing the need for additional training and simply uses a cached model.
In contrast to these works, Jia et al. (2022) forgoes the adapter framework when using a Vision
Transformer backbone for inserting learnable “prompt” vectors into the transformer’s input layers,
which shows superior performance over the aforementioned methods.

Additionally, some have looked at circumventing the entire process of prompt engineering. Zhou
et al. (2022a) and Zhou et al. (2022b) tackle this by treating the tokens within each prompt as learn-
able vectors, which are then optimized within only a few images per class. Huang et al. (2022)
echoes these works, but instead does not utilize any labeled data and learns the prompt represen-
tations in an unsupervised manner. Zhai et al. (2022) completely forgoes the notion of fine-tuning
in the first place, instead proposing to reframe the pre-training process as only training a language
model to match a pre-trained and frozen image model. In all the above situations, some amount of
data, whether labeled or not, is used in order to improve the predictive accuracy of the CLIP model.

2.2 ZERO-SHOT PREDICTION

The field of Zero-Shot Learning (ZSL) has existed well before the emergence of open vocabularly
models, with its inception traced to Larochelle et al. (2008). With regards to non-CLIP related
methods, the ZSL paradigm has shown success in improving multilingual question answering (Kuo
& Chen, 2022) with large language models (LLMs), and also in image classification tasks where
wikipedia-like context is used in order to perform the classification without access to the training
labels (Bujwid & Sullivan, 2021; Shen et al., 2022).

With CLIP models, ZSL success has been found in a variety of tasks. Namely, Zhang et al. (2021b)
expands the CLIP 2D paradigm for 3D point clouds. Tewel et al. (2021) shows that CLIP models can
be retrofitted to perform the reverse task of image-to-text generation, and Shen et al. (2021) likewise
display’s CLIP’s ability to improve performance on an array of Vision&Language tasks. Both Yu
et al. (2022) and Cho et al. (2022) expand CLIP’s zero-shot abilities through techniques drawn from
reinforcement learning (RL), with the former using CLIP for the task of audio captioning. Gadre
et al. (2022) similarly works with the RL literature and retrofits CLIP to improve the embodied AI
task of object navigation without any additional training. Zeng et al. (2022) shows the capabilities
of composing CLIP-like models and LLMs together to extend the zero-shot capabilities to tasks like
assitive dialogue and open-ended reasoning. Unlike our work here, these prior directions mostly
focus on generative problems or, in the case of Bujwid & Sullivan (2021) and Shen et al. (2022),
require rich external knowledge databases to employ their methods.

In the realm of improving CLIP’s zero-shot capabilities for image classification, we particularly note
the contemporary work of Pratt et al. (2022). Here, authors explore using GPT-3 to generate rich
textual prompts for each class rather than using preexisting prompt templates, and show improve-
ments in zero-shot accuracy across a variety of image classification baselines. In another work, Ren
et al. (2022) proposes leveraging preexisting captions in order to improve performance, though this
is restricted to querying the pre-training set of captions. In contrast, our work explores a comple-
mentary direction of leveraging hierarchy in class names to improve zero-shot performance of CLIP.
with a fixed set of preexisting prompt templates.

2.3 HIERARCHICAL CLASSIFICATION

Our present work is related to the domain of Hierarchical Classification (Silla & Freitas, 2010), i.e.
classification tasks when the set of labels can be arranged in a DAG-like class hierarchy. Methodolo-
gies from this domain have been extensively used for multi-label classification (Dimitrovski et al.,
2011; Liu et al., 2021; Chalkidis et al., 2020), and recent works have shown that this paradigm can
aid in zero-shot learning by attempting to uncover hierarchical relations between classes (Chen et al.,
2021; Mensink et al., 2014) and/or leveraging existing hierarchical information during training (Yi
et al., 2022; Cao et al., 2020). Our line of inquiry is orthogonal to these approaches, as CHiLS is
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Algorithm 1 Classification with Hierarchical Label Sets (CHiLS)

input : data point x, class labels C, prompt function T, label set mapping G, CLIP model f
1: Set Csub ← ∪ci∈CG(ci) ▷ Union of subclasses for subclass prediction

2: ŷsub = σ(f(x,T(Csub))) ▷ Subclass probabilities

3: ŷsup = σ(f(x,T(C))) ▷ Superclass probabilities

4: for i = 1 to |C| do
5: Sci = G(ci)
6: for sci,j ∈ Sci do
7: ŷsub[sci,j ] = ŷsub[sci,j ] ∗ ŷsup[ci]

▷ Combining subclass and superclass prediction probability
8: end for
9: end for

output : G−1(argmax ŷsub)

easily composable into standard CLIP pipelines, only models unseen class hyponyms (rather than
relationships between known classes), and requires no training of hierarchical embeddings.

3 PROPOSED METHOD

In this paper, we are primarily concerned with the problem of zero-shot image classification in CLIP
models (see App. B for an introduction to CLIP and relavent terminology). For CLIP models, zero-
shot classification involves using both a pretrained image encoder and a pretrained text encoder (see
the left part of Figure 1). To perform a zero-shot classification, we need a predefined set of classes
written in natural language. Let C = {c1, c2, . . . , ck} be such a set. Given an image and set of
classes, each class is embedded within a natural language prompt (through some function T(·)) to
produce a “caption” for each class (e.g. one standard prompt mentioned in Radford et al. (2021) is
“A photo of a {}.”). These prompts are then fed into the text encoder and after passing the image
through the image encoder, we calculate the cosine similarity between the image embedding and
each class-prompt embedding. These similarity scores form the output “logits” of the CLIP model,
which can be passed through a softmax to generate the class probabilities.

As noted in Section 2, previous work has focused on improving the T(·) for each class label ci.
With CHiLS, we instead focus on the complementary task of directly modifying the set of classes C
when C is ill-formed or overly general, while keeping T(·) fixed. Our method involves into two main
steps: (1) using hierarchical information to perform inference across subclasses, and (2) leveraging
raw superclass probabilities to combine the best of subclass and superclass prediction probabilities.

3.1 ZERO-SHOT PREDICTION WITH HIERARCHICAL LABEL SETS

Our method CHiLS slightly modifies the standard approach for zero-shot CLIP prediction. As each
class label ci represents some concept in natural language (e.g. the label “dog”), we acquire a
subclass set Sci = {sci,1, sci,2, . . . , sci,mi

} through some mapping function G, where each sci,j is
a linguistic hyponym, or subclass, of ci (e.g. corgi for dogs) and mi is the size of the set Sci .

Given a label set Sci for each class, we proceed with the standard process for zero-shot prediction,
but now using the union of all label sets as the set of classes. Through this, CHiLS will now produce
its guess for the most likely subclass. We then leverage the inverse mapping function G−1 to coarse-
grain our prediction back into the corresponding superclass. Our method is detailed more formally
in Algorithm 1.

In our work, we experiment with two scenarios: (i) when hierarchy information is available and can
be readily queried; and (ii) when hierarchy information is not available and the label set for each
class must be generated, which we do so by prompting GPT-3.

3.2 REWEIGHTING PROBABILITIES WITH SUPERCLASS CONFIDENCE

While the above method is able to effectively utilize CLIP’s ability to identify relatively fine-grained
concepts, by predicting on only subclass labels we lose any positive benefits of the superclass label,
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Dataset Superclass CHiLS Accuracy CHiLS Accuracy
Accuracy (Existing Map) (GPT-3 Map)

Nonliving26 79.82 90.67 (+10.85) 81.51 (+1.69)
Living17 91.08 93.80 (+2.72) 91.43 (+0.35)
Entity13 77.46 92.59 (+15.13) 78.11 (+0.65)
Entity30 70.32 88.87 (+18.55) 71.75 (+1.43)
CIFAR20 59.54 85.30 (+25.76) 65.90 (+6.36)
Food-101 91.82 N/A 91.73 (−0.09)
Fruits-360 60.47 60.87 (+0.40) 62.17 (+1.70)
Fashion1M 45.78 N/A 47.44 (+1.66)
Fashion-MNIST 68.50 N/A 70.85 (+2.35)
LSUN-Scene 88.20 N/A 88.97 (+0.77)
Office31 89.13 N/A 89.37 (+0.24)
OfficeHome 88.85 N/A 88.76 (−0.09)
ObjectNet 53.10 85.34 (+32.24) 53.52 (+0.42)
EuroSAT 62.10 N/A 62.40 (+0.30)
RESISC45 72.13 N/A 72.52 (+0.40)

Table 1: Zero-shot accuracy performance across image benchmarks with superclass labels (base-
line), CHiLS with existing hierarchy (whenever available), and CHiLS with GPT-3 generated hier-
archy. CHiLS improves classification accuracy in all situations with given label sets and all but 2
datasets with GPT-3 generated label sets.

and performance may vary widely based on the quality of the subclass labels. Given recent evidence
(Minderer et al., 2021; Kadavath et al., 2022) that large language models (like the text encoder in
CLIP) are well-calibrated and generally predict correct labels with high probability, we modify our
initial algorithm to leverage this behavior and utilize both superclass and subclass information. We
provide empirical evidence of this property in Appendix A.

Specifically, we include an additional reweighting step within our main algorithm (see lines 4-9 in
Algorithm 1). Here, we reweight each set of subclass probabilities by its superclass probability.
Heuristically, as the prediction is now taken as the argmax over products of probabilities, large
disagreements between subclass and superclass probabilities will be down-weighted (especially if
one particular superclass is confident) and subclass probabilities will be more important in cases
where the superclass probabilities are roughly uniform. We show ablations on the choice of the
reweighting algorithm in Section 4.4.

4 EXPERIMENTS

In this section, we first lay out the experimental set-up. We then discuss, in order, the efficacy of our
proposed method in situations with available class hierarchy information and in situations without
any preexisting hierarchy. After these main results, we present a series of ablations over various
design choices showing where our method is robust and what might be crucial for its performance.

4.1 SETUP

Datasets. As we are primarily concerned with improving zero-shot CLIP performance in situa-
tions with ill-formed and/or semantically coarse class labels, we test our method on the follow-
ing image benchmarks: the four BREEDS imagenet subsets (living17, nonliving26, entity13, and
entity30) (Santurkar et al., 2021), CIFAR20 (the coarse-label version of CIFAR100) (Krizhevsky,
2009), Food-101 (Bossard et al., 2014), Fruits-360 (Mureşan & Oltean, 2018), Fashion1M (Xiao
et al., 2015), Fashion-MNIST (Xiao et al., 2017), LSUN-Scene (Yu et al., 2015), Office31 (Saenko
et al., 2010), OfficeHome (Venkateswara et al., 2017), ObjectNet (Barbu et al., 2019), EuroSAT
(Helber et al., 2019; 2018), and RESISC45 (Cheng et al., 2017). These datasets constitute a wide
range of different image domains and include datasets with and without available hierarchy informa-
tion. Additionally, the chosen datasets vary widely in the semantic granularity of their classes, from
overly general cases (CIFAR20) to settings with a mixture of general and specific classes (Food-101,
OfficeHome). We also examine CHiLS’s robustness to distribution shift within a dataset by aver-
aging all results for the BREEDS datasets, Office31, and OfficeHome across different shifts (see
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Appendix H for more information). We additionally modify the Fruits-360 and ObjectNet datasets
to create existing taxonomies. More details for dataset preparation are detailed in Appendix H.

Model Architecture. Unless otherwise specified, we use the ViTL/14@336px backbone (Radford
et al., 2021) for our CLIP model, and used DaVinci-002 (with temperature fixed at 0.7) for all abla-
tions involving GPT-3. For the choice of the prompt embedding function T(·), for each dataset we
experiment (where applicable) with two different functions: (1) Using the average text embeddings
of the 75 different prompts for each label used for ImageNet in Radford et al. (2021), where the
prompts cover a wide array of captions and (2) Following the procedure that Radford et al. (2021)
puts forth for more specialized datasets, we modify the standard prompt to be of the form “A photo
of a {}, a type of [context].”, where [context] is dataset-dependent (e.g. “food” in the case of food-
101). In the case that a custom prompt set exists for a dataset, as is the case with multiple datasets
that the present work shares with Radford et al. (2021), we use the given prompt set for the latter
option rather than building it from scratch. For each dataset, we use the prompt set that gives us the
best baseline (i.e. superclass) zero-shot performance. More details are in Appendix C.

Choice of Mapping Function G. In our experiments, we primarily look at how the choice of the
mapping function G influences the performance of CHiLS. In Section 4.2, we focus on the datasets
with available hierarchy information. Here, G and G−1 are simply table lookups to find the list of
subclasses and corresponding superclass respectively. In Section 4.3, we explore situations in which
the true set of subclasses in each superclass is unknown. In these scenarios, we use GPT-3 to generate
our mapping function G. Specifically, given some label set size m, superclass name class-name,
and optional context (which we use whenever using the context-based prompt embedding), we query
GPT-3 with the prompt:

Generate a list of m types of the following [context]: class-name

The resulting output list from GPT-3 thus defines our mapping G from superclass to subclass. Unless
otherwise specified, we fix m = 10 for all datasets. Additionally, in 4.4 we explore situations in
which hierarchical information is present but noisy, i.e. the label set for each superclass contains the
true subclasses and erroneous subclasses that are not present in the dataset.

4.2 LEVERAGING AVAILABLE HIERARCHY INFORMATION.

We first concern ourselves with the scenario in which there is hierarchy information already avail-
able (or readily accessible) for a given dataset. In this situation, the set of subclasses for each
superclass is exactly specified and correct (i.e. every image within each superclass falls into one of
the subclasses). We emphasize that here we do not need information about which example belongs
to which subclass, we just need a mapping of superclass to subclass. For example, each class in the
BREEDS dataset living17 is made up of 4–8 ImageNet subclasses at finer granularity (e.g. “parrot”
includes “african grey” and “macaw”).

Results In Table 1, we can see that our method performs better than using the baseline superclass
labels alone across all 7 of the datasets with available hierarchy information, in some cases leading
to +15% improvement in predictive accuracy.

4.3 CHILS IN UNKNOWN HIERARCHY SETTINGS

Though we have seen considerable success in situations with access to the true hierarchical struc-
ture, in some real-world settings our dataset may not include any available information about the
subclasses within each class. In this scenario, we turn to using GPT-3 to approximate the hierarchi-
cal map G (as specified in Section 4.1). It is important to note that GPT-3 may sometimes output
suboptimal label sets, most notably in situations where GPT-3 chooses the wrong wordsense or when
GPT-3 only lists modifiers on the original superclass (e.g. producing the list [red, yellow,
green] for types of apples). In order to account for these issues in an out-of-the-box fashion, we
automatically append the superclass name (if not already present) to each generated subclass label,
and also include the superclass itself within the label set. For a controlled analysis about the effect
of including the superclass itself in the label set, see Appendix D.
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Label: wolf
 Superclass: fox

CHiLS: wolf (chanco)

CHiLS+
Superclass-

living17

Label: Downcoat
 Superclass: Windbreaker

CHiLS: Downcoat (Trench coat)

fashion1M

Label: falafel
 Superclass: crab cakes

CHiLS: falafel (chickpea falafel)

food-101

Label: salamander
 Superclass: salamander

CHiLS: salamander (Fire salamander)

CHiLS+
Superclass+

living17

Label: Dress
 Superclass: Dress

CHiLS: Dress (Aline)

fashion1M

Label: beef tartare
 Superclass: beef tartare

CHiLS: beef tartare (veal tartare)

food-101

Label: snake
 Superclass: lizard

CHiLS: lizard (skink)

CHiLS-
Superclass-

living17

Label: Chiffon
 Superclass: T-Shirt

CHiLS: T-Shirt (Tank Top)

fashion1M

Label: baklava
 Superclass: panna cotta

CHiLS: cannoli (dessert cannoli)

food-101

Label: monkey
 Superclass: monkey
CHiLS: ape (baboon)

CHiLS-
Superclass+

living17

Label: Sweater
 Superclass: Sweater

CHiLS: Vest (sweater Vest)

fashion1M

Label: spaghetti bolognese
 Superclass: spaghetti bolognese
CHiLS: lasagna (sauce lasagna)

food-101

Figure 2: Selected examples of behavior differences between the superclass performance (which is
our baseline) and CHiLS performance across three different datasets. (Upper left): CHiLS is correct,
superclass prediction is not. (Lower left): Both correct. (Upper right): Both wrong. (Lower Right):
superclass prediction is correct, CHiLS is not.
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74.49

72.67

74.42

73.22

Figure 3: (Left) Average accuracy across datasets for superclass prediction, CHiLS (ours), and
CHiLS without the reweighting step. While when given the true hierarchy omitting the reweight-
ing step can slightly boost performance beyond CHiLS, in situations without the true hierarchy
the reweighting step is crucial to improving on the baseline accuracy. (Right) Average accuracy
across datasets with GPT-generated label sets for different reweighting algorithms. Using aggre-
gate subclass probabilities for reweighting performs noticeably worse than our initial method and
reweighting in superclass space. CHiLS too only performs slightly worse than the contrived best
possible union of subclass and superclass predictions.

Results In this setting, our method is still able to beat the baseline performance in most datasets,
albeit with lower accuracy gains (see Table 1). Thus, while knowing the true subclass hierarchy can
lead to large accuracy gains, it is enough to simply enumerate a list of possible subclasses for each
class with no prior information about the dataset in order to improve the predictive accuracy. In
Figure 2, we show selected examples to highlight CHiLS’s behavior across three datasets.

4.4 ABLATIONS

Is Reweighting Necessary? Though the reweighting step in CHiLS is motivated by the evidence
that CLIP generally assigns higher probability to correct predictions rather than incorrect ones (see
Appendix A for empirical verification), it is not immediately clear whether it is truely necessary.
Averaged across all documented datasets, in Figure 3 (left) we show that in the true hierarchy set-
ting, not reweighting the subclass probabilities can actually slightly boost performance (as the label
sets are adequately tuned to the distribution of images). However, in situations where the true hier-
archy is not present, omitting the reweighting step puts accuracy below the baseline performance.
We attribute this difference in behavior to the fact that reweighting multiplicatively combines the
superclass and subclass predictions, and thus if subclass performance is sufficient on its own (as
is the case when the true hierarchy is available) then combining it with superclass predictions can
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Dataset Superclass CHiLS Accuracy CHiLS Accuracy
Accuracy (Existing Map) (Existing Map + Noise)

nonliving26 79.82 90.67 (+10.85) 89.48 (+9.66)
living17 91.08 93.80 (+2.72) 92.47 (+1.39)
entity13 77.46 92.59 (+15.13) 90.34 (+12.88)
entity30 70.32 88.87 (+18.55) 87.56 (+17.24)

Table 2: CHiLS zero-shot accuracy when G includes all subclasses in the ImageNet hierarchy de-
scended from the respective root node. Even in the presence of noise added to the true label sets,
CHiLS is able to make large accuracy gains.

cause the model to more closely follow the behavior of the underperforming superclass predictor.
Thus, as not having the true hierarchy is considerably more likely in the wild, the reweighting step
is imperative to utilizing CHiLS to its fullest.

Different Reweighting Strategies We too experimented on whether the initial reweighting al-
gorithm is the optimal method for combining superclass and subclass predictions. Namely, we
investigated whether superclass probabilities could be replaced by the sum over the matching sub-
class probabilities, and whether we can aggregate subclass probabilities and reweight them with the
matching superclass probabilities (i.e. performing the normal reweighting step but in the space of su-
perclasses). In Figure 3 (right) we show that replacing the superclass probabilities in the reweighting
step with aggregate subclass probabilities removes any accuracy gains from CHiLS, but that doing
the reweighting step in superclass space does maintain CHiLS accuracy performance. This suggests
that the beneficial behavior of CHiLS may be due to successfully combining two different sets of
class labels. We also display the upper bound for combining superclass and subclass prediction
(i.e. the accuracy when a datum is correctly labeled if the superclass or subclass predictions are
correct) in purple, which we note is impossible in practice, and observe that even the best possible
performance is not much higher than the performance of CHiLS.

Noisy Available Hierarchies While the situation described in Section 4.3 is the most probable in
practice, we additionally investigate the situation in which the hierarchical information is present
but overestimates the set of subclasses. For example, the scenario in which a dataset with the class
“dog” includes huskies and corgis, but CHiLS is provided with huskies, corgis, and Labradors as
possible subclasses, with the last being out-of-distribution. To do this, we return to the BREEDS
datasets presented in Santurkar et al. (2021). As the BREEDS datasets were created so that each
class contains the same number of subclasses (which are ImageNet classes), we modify G such that
the label set for each superclass corresponds to all the ImageNet classes descended from that node
in the hierarchy (see Appendix G for more information). As we can see in Table 2, CHiLS is able to
improve upon the baseline performance even in the presence of added noise in each label set.

Label Set Size In previous works investigating importance of prompts in CLIP’s performance,
it has been documented that the number of prompts used can have a decent effect on the overall
performance (Pratt et al., 2022; Santurkar et al., 2022). Along this line, we investigate how the
size of the subclass set generated for each class effects the overall accuracy by re-running our main
experiments with varying values of m (namely, 1, 5, 10, 15, and 50). In Figure 4 (right), there is
little variation across label set sizes that is consistent over all datasets, though m = 1 has a few very
low performing outliers due to the extremely small label set size. We observe that the optimal label
set size is context-specific, and depends upon the total number of classes present and the semantic
granularity of the classes themselves. Individual dataset results are available in Appendix E.

Model Size In order to examine whether the performance of CHiLS only exists within the best
performing CLIP backbone (e.g. ViT-L/14@336), we measure the average relative change in ac-
curacy performance between CHiLS and the baseline superclass predictions across all datasets for
an array of different CLIP models. Namely, we investigate the RN50, RN101, RN50x4, ViT-B/16,
ViT-B/32, and ViT-L/14@336 CLIP backbones (see Radford et al. (2021) for more information on
the model specifications). In Figure 4 (left), we show that across the 6 specified CLIP backbones,
CHiLS performance leads to relatively consistent relative accuracy gains, with a slight (but not con-
fidently significant) trend showing improved performance for the ResNet backbones over the ViT
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Figure 4: (Left) Average relative change between CHiLS and baseline for true mapping and GPT-
3 generated mapping. Across changes in CLIP backbone size and structure, the effectiveness of
CHiLS at improving performance only varies slightly. (Right) Average relative accuracy change
from the baseline to CHiLS (across all datasets), for varying label set sizes. In all, there is not much
difference in performance across label set sizes.

backbones, which is to be expected given their worse base capabilities. This shows that CHiLS’s
benefits are not an artifact of large model size.

Alternative Aggregating Methods While CHiLS is based on a set-based mapping approach for
subclasses and a linear averaging for prompt templates (based on Radford et al. (2021)’s proce-
dure), we experimented with two alternative ensembling methods for different parts of the CHiLS
pipeline: (1) Using a linear average of subclass embeddings rather than the set-based mapping (that
is, every superclass’s text embedding is the average across all subclass embeddings, each themselves
averaged across every prompt template) and (2) Using a set-based mapping for prompt templates
rather than a linear average (i.e. instead of averaging across prompt templates, predict across each
prompt template separately at inference time and then use embedded class to map back to the set of
superclasses). Note in the latter case we only experiment with how this effects superclass prediction
(where each class maps to a set of the dataset’s chosen prompt embeddings), as using set-based
ensembling for both prompts and subclasses within CHiLS quickly becomes computationally ex-
pensive. In Figure 6 (in Appendix F), we see that using our initial aggregation methods (i.e. linear
averaging for prompts and set mappings for subclasses) achieves greater accuracy.

5 CONCLUSION

In this work, we demonstrated that the zero-shot image classification capabilities of CLIP models
can be improved by leveraging hierarchical information for a given set of classes. When hierarchical
structure is available in a given dataset, our method shows large improvements in zero-shot accuracy,
and even when subclass information isn’t explicitly present, we showed that we can leverage GPT-3
to generate subclasses for each class and still improve upon the baseline (superclass) accuracy.

We remark that CHiLS may be quite beneficial to practitioners using CLIP as an out-of-the-box im-
age classifier. Namely, we show that in scenarios where the class labels may be ill-formed or overly
coarse, even without existing hierarchical data accuracy can be improved with a fully automated
pipeline (via querying GPT-3), yet CHiLS is flexible enough that any degree of hand-crafting label
sets can be worked into the zero-shot pipeline. Our method has the added benefit of being both
completely zero-shot (i.e. no training or fine-tuning necessary) and is resource efficient.

Limitations and Future Work As with usual zero-shot learning, we don’t have a way to validate
the performance of our method. Additionally, we recognize that CHiLS is suited for scenarios in
which a semantic hierarchy most likely exists, and thus may not be particularly useful in classifica-
tion tasks where the classes are already decently fine-grained. We believe that this limitation will
not hinder the applicability of our method, as practitioners would know if their task contains any la-
tent semantic hierarchy and thus choose to use our method or not a priori. Given CHiLS’s empirical
successes, we hope to perform more investigation to develop an understanding of why CHiLS is able
to improve zero-shot accuracy and whether there is a more principled way of reconciling superclass
and subclass predictions.
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REPRODUCIBLITY STATEMENT

The source code for reproducing the work presented here is available at https://github.com/
anonOpenReview1/clip-hierarchy. We implement our method in PyTorch (Paszke et al.,
2017) and provide an infrastructure to run all the experiments to generate corresponding results.
We have stored all models and logged all hyperparameters and seeds to facilitate reproducibility.
Additionally, all necessary data preprocessing details are present in Appendix H.
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APPENDIX

A EMPIRICAL EVIDENCE OF CLIP CONFIDENCE
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Figure 5: Distribution of argmax probabilities across ImageNet BREEDS datasets for correctly and
incorrectly classified data points, with the diamonds representing average probability for each class.
Correctly classified probabilities are on average higher than the misclassified probabilities.

The motivation behind the reweighting step of CHiLS primarily comes from the heuristic that LLMs
make correct predictions with high estimated probabilities assigned to them (Kadavath et al., 2022),
and that CLIP models themselves are well-calibrated (Minderer et al., 2021). However, we also
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verify whether there is some evidence of this behavior in CLIP models. Given that the output of a
CLIP model is a probability distribution over the provided classes, we care specifically about the
probability of the argmax class (i.e. the predicted class) when the model is correct and when it is
incorrect. Across the BREEDS datasets for the standard ImageNet domain, in Figure 5 we show the
distribution of the correct and incorrect argmax probabilities for each class (i.e. for each class ci, we
show the output probabilties for ci when it was correctly classified and the output probabilities of
the predicted classes when the true class is ci). Whenever CLIP is correct, the associated probability
is on average much higher than the probabilities associated with misclassification.
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B CLIP PRIMER

Open Vocabulary models (as termed in Pham et al. (2021)) refer to models that are able to classify
images by associating them with natural language descriptions of each class. These models are
“open” in the sense that they are to predict on an arbitrary vocabulary of descriptions (as opposed
to a fix set), thus allowing for arbitrary-way image classification. Popular open vocabulary models
include the model of focus CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) as examples.

Contrastive Language Image Pretraining (CLIP) is a family of open vocabulary models, and the
focus of the present work. CLIP, which is comprised of a text encoder and an image encoder that
project into the same latent space, is trained in the following way: Given a set of image-caption pairs
(e.g. a photo of a dog with the caption “a photo of a dog.”), CLIP is trained to predict which caption
goes with which image as a contrastive learning objective by comparing the similarity between each
image embedding and each caption embedding.

At inference time (in the zero-shot setting), a naı̈ve method for image classification (which is the
initial baseline tried in Radford et al. (2021)) involves simply passing in the list of class names for a
given dataset, and calculating the similarity between a particular image embedding and each one of
these class embeddings. However, Radford et al. (2021) found that by taking a cue from the recent
literature on prompt engineering for large language models (Gao et al., 2020), CLIP can perform
significantly better as a zero-shot predictor if each class name is included in a natural language
prompt that resembles some sort of image caption (as that is what CLIP was trained on). As an
example, the standard baseline prompt mentioned is “A photo of a {}.”. In our work, we define a
prompt (or prompt template, which we use interchangeably) as any caption-like phrase in natural
language that a class name can be injected into.

C ADDING CONTEXT TO PROMPTS AND GPT-3 QUERIES

Dataset [context] Prompt Set Used

Nonliving26 N/A ImageNet
Living17 N/A ImageNet
Entity13 N/A ImageNet
Entity30 N/A ImageNet
CIFAR20 N/A ImageNet
Food-101 “food” Dataset-Specific
Fruits-360 “fruit” Dataset-Specific
Fashion1M “article of clothing” Dataset-Specific

Fashion-MNIST “article of clothing” ImageNet
LSUN-Scene N/A ImageNet

Office31 “office supply” Dataset-Specific
OfficeHome “office supply” ImageNet
ObjectNet N/A ImageNet
EuroSAT N/A Dataset-Specific

RESISC45 N/A Dataset-Specific

Table 3: Context tokens and prompt sets used for each dataset.

In order to disentangle the effect that well-formed prompt templates have on the success of CHiLS,
for each dataset (besides the BREEDS datasets and ObjectNet as they are already semantically
similar to ImageNet) we compare the ImageNet 75 classes against a dataset-specific set of prompt
templates. In the case of EuroSAT, RESISC45, CIFAR20 and Food-101, we directly use the prompt
template set from Radford et al. (2021). For LSUN-Scene, we use the prompt template set for
SUN397 (Xiao et al., 2010), as the two datasets are semantically similar. For the rest of the datasets
not yet mentioned (namely Fruits360, Fashion1M, Fashion-MNIST, Office31, and OfficeHome) we
add the [context] marker into the standard prompt template as mentioned in Section 4.1. The prompt
sets themselves can be directly found in the code implementation for this project.
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For the GPT-3 Query with additional context, we add the respective [context] token to the query
if the dataset-specific prompt template is used. Note that we did not create [context] tokens for
EuroSAT, LSUN-Scene, or RESISC45 despite testing dataset-specific prompt templates, as there did
not seem to be a concise semantic label to describe the classes in these datasets. In Table 3, we list
the dataset, the [context] token (if applicable), and the final prompt set used for all the experiments.
Here, we found that while dataset-specific prompts often improved baseline performance, they were
not gauranteed to improve performance, as in both Fasion-MNIST and OfficeHome the general
ImageNet prompt set performed better.

D INCLUDING SUPERCLASS LABELS IN LABEL SETS

Dataset CHiLS Accuracy CHiLS Accuracy CHiLS Accuracy CHiLS Accuracy
(Existing Map) (Existing Map+) (GPT-3 Map) (GPT-3 Map+)

Nonliving26 90.67 (+10.85) 89.80 (+9.98) 81.46 (+1.63) 81.51 (+1.69)
Living17 93.80 (+2.72) 93.62 (+2.54) 91.30 (+0.22) 91.43 (+0.35)
Entity13 92.59 (+15.13) 92.06 (+14.60) 76.97 (−0.48) 78.11 (+0.65)
Entity30 88.87 (+18.55) 87.29 (+16.97) 71.80 (+1.48) 71.75 (+1.43)
CIFAR20 85.30 (+25.76) 81.40 (+21.86) 65.70 (+6.16) 65.90 (+6.36)
Food-101 N/A N/A 91.63 (−0.19) 91.73 (−0.09)
Fruits-360 60.87 (+0.40) 60.63 (+0.16) 62.48 (+2.01) 62.17 (+1.70)
Fashion1M N/A N/A 47.51 (+1.73) 47.44 (+1.66)
Fashion- N/A N/A 67.82 (−0.98) 70.85 (+2.35)MNIST
LSUN-Scene N/A N/A 88.80 (+0.60) 88.97 (+0.77)
Office31 N/A N/A 86.58 (−2.71) 89.37 (+0.24)
OfficeHome N/A N/A 87.88 (−0.97) 88.76 (−0.09)
ObjectNet 85.34 (+32.24) 81.30 (+28.20) 51.23 (−2.07) 53.52 (+0.42)
EuroSAT N/A N/A 62.21 (+0.11) 62.40 (+0.30)
RESISC45 N/A N/A 71.64 (-0.48) 72.52 (+0.40)

Table 4: Zero-Shot Accuracy Performance across benchmarks, controlling for the presence of the
superclass label within each respective label set. In the existing map case, adding the superclass
labels removes some of the performance gains of the raw existing map. In the GPT-3 Map case,
adding the superclass is crucial to maintaining performance in most datasets

With CHiLS when the existing map is not available, we append the superclass name to each label
set to account for possible noise in the GPT-generated label set. In Table 4, we show the effect
that this inclusion has in both the existing map and GPT-map cases. Note that in the main paper,
columns 1 and 4 correspond to the main results (i.e. no superclass labels in existing maps and su-
perclass labels in GPT-3 maps). In both cases, the presence of the superclass label more effectively
strikes a balance between subclass and superclass predictions. In the existing map case, this actually
hurts performance, as the subclass labels are optimal in the given dataset. In the GPT-3 map case,
while there are some datasets where removing the superclass label improves performance (namely
Fruits360 and Entity30), in ever other case removing the superclass label hurts performance, some-
times by multiple percentage points.
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E LABEL SET ABLATION ACCURACY

Dataset CHiLS CHiLS CHiLS CHiLS CHiLS
(m = 1) (m = 5) (m = 10) (m = 15) (m = 50)

Nonliving26 80.05 (+0.23) 81.12(+1.30) 81.51 (+1.69) 81.79 (+1.97) 79.60 (−0.20)
Living17 91.47 (+0.39) 92.69 (+1.61) 91.43 (+0.35) 91.55 (+0.48) 91.52 (+0.45)
Entity13 76.75 (−0.70) 78.15 (+0.70) 78.11 (+0.65) 78.42 (+0.96) 75.82 (−1.63)
Entity30 72.25 (+1.93) 71.47 (+1.15) 71.75 (+1.43) 73.38 (+3.06) 70.18 (−0.14)
CIFAR20 63.61 (+4.02) 64.95 (+5.41) 65.90 (+6.36) 62.80 (+3.26) 63.72 (+4.13)
Food-101 91.57 (−0.25) 91.75 (−0.07) 91.73 (−0.09) 91.51 (−0.31) 91.58 (−0.24)
Fruits-360 61.18 (+0.47) 62.33 (+1.86) 62.17 (+1.70) 62.51 (+2.04) 61.19 (+0.48)
Fashion1M 38.57 (−7.21) 45.77 (−0.01) 47.55 (+1.66) 46.93 (+1.15) 41.98 (−3.80)
Fashion- 67.16 (−1.34) 70.93 (+2.44) 70.84 (+2.35) 69.09 (+0.60) 69.98 (+1.49)MNIST
LSUN-Scene 87.20 (−1.00) 86.33 (−1.87) 88.97 (+0.77) 86.80 (−1.40) 85.60 (−2.60)
Office31 89.46 (+0.36) 88.08 (−1.05) 89.37 (+0.24) 89.03 (−0.10) 90.23 (+1.10)
OfficeHome 88.06 (−0.79) 89.12 (+0.27) 88.76 (−0.09) 89.06 (+0.21) 88.39 (−0.46)
ObjectNet 50.12 (−2.98) 53.29 (+0.18) 58.19 (+0.42) 57.66 (+4.56) 58.19 (+5.09)
EuroSAT 62.59 (+0.49) 62.21 (+0.10) 62.40 (+0.30) 62.89 (+0.79) 61.39 (−0.71)
RESISC45 73.19 (+1.06) 72.05 (−0.08) 72.52 (+0.40) 72.50 (+0.38) 70.61 (−1.52)

Table 5: Accuracy across different label set sizes generated by GPT-3, with best performing label set
size in each row bolded. In general, there is no consistent trend related to label set size and zero-shot
performance across datasets.

Table 5 displays the raw accuracy scores for CHiLS across different label set sizes.

F ALTERNATIVE AGGREGATION RESULTS

60 65 70 75 80 85
Average Accuracy

CHiLS (GPT Map,
 linear averaging)

CHiLS (GPT Map, 
set-based class mapping)

CHiLS (True Map,
 linear averaging)

CHiLS (True Map, 
set-based class mapping)

Superclass (set-based
prompt mapping)

Superclass (linear
prompt averaging)

72.40

74.42

81.86

85.35

71.00

72.28

Figure 6: Average accuracy across datasets for varying aggregative methods on both the prompt
and subclass steps of the zero-shot pipeline. In general, linear averaging for subclasses performs
worse than our proposed set-based method, while linear averaging for prompts (for raw superclass
prediction) performs better thant using a set-based mapping.

Figure 6 displays the results of our ablation on alternative ways to aggregate subclasses and prompts.
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G NOISY AVAILABLE HIERARCHY DETAILS

The ImageNet (Deng et al., 2009) dataset itself includes a rich hierarchical taxonomy, where every
class is a leaf node of the hierarchy. In the original BREEDS (Santurkar et al., 2021) work, the
authors modify the structure slightly in order to place concepts at semantically-similar levels of
granularity at the same depth, and additional restrict the number of subclasses within each of the
BREEDS datasets in order to balance the data. Thus, it is possible for each BREEDS dataset to
use the dataset with its superclasses and restricted set of subclasses but provide CHiLS with all the
subclass labels present in the ImageNet hierarchy for each superclass (i.e. all leaf nodes descended
from each superclass node). In Table 7, we display a subset of the living17 BREEDS dataset class
structure with the original subclasses and the ImageNet subclasses. Observe that in some cases,
there are many subclass labels provided to CHiLS than is present in the data.

H DATASET DETAILS

Dataset Domains

BREEDS ImageNet, ImageNet-Sketch, ImageNetv2, ImageNet-c
{Fog-1, Contrast-2, Snow-3, Gaussian Blur-4, Saturate-5}

Office31 Amazon, DSLR, webcam
OfficeHome Clipart, Art, Real World, Product

Table 6: Domains used for BREEDS, Office31, and OfficeHome.

CHiLS Across Domain Shifts For each of the BREEDS datasets (Santurkar et al., 2021), Office31
(Saenko et al., 2010), and OfficeHome (Venkateswara et al., 2017), all results presented are the
average over different domains. The specific domains used are show in Table 6.

Fruits-360 For zero-shot classification with CLIP models, Fruits-360 (Mureşan & Oltean, 2018)
in its raw form is somewhat ill-formed from a class name perspective, as there are classes only
differentiated by a numeric index (e.g. “Apple Golden 1” and “Apple Golden 2”) and classes at
mixed granularity (e.g. “forest nut” and “hazelnut” are separate classes even though hazelnuts are a
type of forest nut). We thus manually rename classes using the structure laid out in Table 9, which
results in a 59-way superclass classification problem, with 102 ground-truth subclasses.

ObjectNet The ObjectNet dataset (Barbu et al., 2019) has partial overlap (113 classes) with the
ImageNet (Deng et al., 2009) hierarchical class structure. From this subset of ObjectNet, we use the
BREEDS hierarchy (Santurkar et al., 2021) to generate a coarse-grained version of ObjectNet that
is shown in Table 8. In this 11-way classification task, the true subclasses are the original ObjectNet
classes.
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Superclass Original BREEDS subclasses All ImageNet subclasses

salamander European fire salamander, common
newt, eft, spotted salamander

European fire salamander, common
newt, eft, spotted salamander, ax-
olotl

turtle loggerhead, leatherback turtle, mud
turtle, terrapin

loggerhead, leatherback turtle, mud
turtle, terrapin, box turtle

lizard common iguana, American
chameleon, agama, frilled lizard

banded gecko, common iguana,
American chameleon, whiptail,
agama, frilled lizard, alligator
lizard, Gila monster, green lizard,
African chameleon, Komodo
dragon

snake thunder snake, ringneck snake, dia-
mondback, sidewinder

thunder snake, ringneck snake, hog-
nose snake, green snake, king
snake, garter snake, water snake,
vine snake, night snake, boa con-
strictor, rock python, Indian cobra,
green mamba, sea snake, horned
viper, diamondback, sidewinder

spider black and gold garden spider, barn
spider, garden spider, black widow

black and gold garden spider, barn
spider, garden spider, black widow,
tarantula, wolf spider

grouse black grouse, ptarmigan, ruffed
grouse, prairie chicken

black grouse, ptarmigan, ruffed
grouse, prairie chicken

parrot African grey, macaw, sulphur-
crested cockatoo, lorikeet

African grey, macaw, sulphur-
crested cockatoo, lorikeet

crab Dungeness crab, rock crab, fiddler
crab, king crab

Dungeness crab, rock crab, fiddler
crab, king crab

Table 7: Subset of living17 class hierarchy, showing the difference between the original BREEDS
subclasses and the ImageNet subclasses used for the ablation in Section 4.4: Noisy Available Hier-
archies.

Table 9: Mapping from original class names to new subclass and superclasses for Fruits-360.

Original Class Cleaned Subclass Cleaned Superclass

Apple Braeburn braeburn apple apple
Apple Crimson Snow crimson snow apple apple

Apple Golden 1 golden apple apple
Apple Golden 2 golden apple apple
Apple Golden 3 golden apple apple

Apple Granny Smith granny smith apple apple
Apple Pink Lady pink lady apple apple

Apple Red 1 red apple apple
Apple Red 2 red apple apple
Apple Red 3 red apple apple

Apple Red Delicious red delicious apple apple
Apple Red Yellow 1 red yellow apple apple
Apple Red Yellow 2 red yellow apple apple

Apricot apricot apricot
Avocado avocado avocado

Avocado ripe avocado avocado
Banana banana banana

Banana Lady Finger lady finger banana banana
Banana Red red banana banana

Beetroot beetroot beetroot
Blueberry blueberry blueberry

Cactus fruit cactus fruit cactus fruit

20



Under review as a conference paper at ICLR 2023

Cantaloupe 1 melon melon
Cantaloupe 2 melon melon
Carambula star fruit star fruit
Cauliflower cauliflower cauliflower

Cherry 1 cherry cherry
Cherry 2 cherry cherry

Cherry Rainier rainier cherry cherry
Cherry Wax Black black cherry cherry
Cherry Wax Red red cherry cherry

Cherry Wax Yellow yellow cherry cherry
Chestnut nut nut

Clementine orange orange
Cocos cocos cocos
Corn corn corn

Corn Husk corn husk corn husk
Cucumber Ripe cucumber cucumber

Cucumber Ripe 2 cucumber cucumber
Dates date date

Eggplant eggplant eggplant
Fig fig fig

Ginger Root ginger root ginger root
Granadilla granadilla passion fruit
Grape Blue blue grape grape
Grape Pink pink grape grape

Grape White white grape grape
Grape White 2 white grape grape
Grape White 3 white grape grape
Grape White 4 white grape grape
Grapefruit Pink pink grapefruit grapefruit

Grapefruit White white grapefruit grapefruit
Guava gauva gauva

Hazelnut nut nut
Huckleberry huckleberry huckleberry

Kaki kaki persimmon
Kiwi kiwi kiwi

Kohlrabi kohlrabi kohlrabi
Kumquats kumquat kumquat

Lemon lemon lemon
Lemon Meyer meyer lemon lemon

Limes lime lime
Lychee lychee lychee

Mandarine orange orange
Mango mango mango

Mango Red red mango mango
Mangostan mangostan mangostan
Maracuja maracuja passion fruit

Melon Piel de Sapo melon melon
Mulberry mulberry mulberry
Nectarine nectarine nectarine

Nectarine Flat flat nectarine nectarine
Nut Forest forest nut nut
Nut Pecan pecan nut nut
Onion Red red onion onion

Onion Red Peeled red onion onion
Onion White white onion onion

Orange orange orange
Papaya papaya papaya

Passion Fruit passion fruit passion fruit
Peach peach peach
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Peach 2 peach peach
Peach Flat flat peach peach

Pear pear pear
Pear 2 pear pear

Pear Abate abate pear pear
Pear Forelle forelle pear pear
Pear Kaiser kaiser pear pear

Pear Monster monster pear pear
Pear Red red pear pear

Pear Stone stone pear pear
Pear Williams williams pear pear

Pepino pepino pepino
Pepper Green green pepper pepper

Pepper Orange orange pepper pepper
Pepper Red red pepper pepper

Pepper Yellow yellow pepper pepper
Physalis groundcherry groundcherry

Physalis with Husk groundcherry groundcherry
Pineapple pineapple pineapple

Pineapple Mini mini pineapple pineapple
Pitahaya Red dragon fruit dragon fruit

Plum plum plum
Plum 2 plum plum
Plum 3 plum plum

Pomegranate pomegranate pomegranate
Pomelo Sweetie pomelo pomelo

Potato Red red potato potato
Potato Red Washed red potato potato

Potato Sweet sweet potato potato
Potato White white potato potato

Quince quince quince
Rambutan rambutan rambutan
Raspberry raspberry raspberry
Redcurrant redcurrant redcurrant

Salak salak snake fruit
Strawberry strawberry strawberry

Strawberry Wedge strawberry strawberry
Tamarillo tamarillo tamarillo
Tangelo tangelo tangelo

Tomato 1 tomato tomato
Tomato 2 tomato tomato
Tomato 3 tomato tomato
Tomato 4 tomato tomato

Tomato Cherry Red cherry tomato tomato
Tomato Heart heart tomato tomato

Tomato Maroon maroon tomato tomato
Tomato Yellow yellow tomato tomato

Tomato not Ripened unripe tomato tomato
Walnut nut nut

Watermelon melon melon
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Table 8: Class Structure for ObjectNet experiments.

Superclass Subclasses (Original ObjectNet)

garment {Dress, Jeans, Skirt, Suit jacket,
Sweater, Swimming trunks, T-shirt}

soft furnishings {Bath towel, Desk lamp, Dishrag or hand towel,
Doormat, Lampshade, Paper towel, Pillow}

accessory
{Backpack, Dress shoe (men), Helmet, Necklace,

Plastic bag, Running shoe, Sandal, Sock,
Sunglasses, Tie, Umbrella, Winter glove}

appliance {Coffee/French press, Fan, Hair dryer, Iron (for clothes),
Microwave, Portable heater, Toaster, Vacuum cleaner}

equipment
{Cellphone, Computer mouse, Keyboard, Laptop (open),

Monitor, Printer, Remote control, Speaker,
Still Camera, TV, Tennis racket, Weight (exercise)}

furniture {Bench, Chair}
toiletry {Band Aid, Lipstick}

wheeled vehicle {Basket, Bicycle}
cooked food {Bread loaf}

produce {Banana, Lemon, Orange}
beverage {Drinking Cup}
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