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ABSTRACT

Achieving group-robust generalization in the presence of spurious correlations re-
mains a significant challenge, particularly when bias annotations are unavailable.
Recent studies on Class-Conditional Distribution Balancing (CCDB) reveal that
spurious correlations often stem from mismatches between the class-conditional
and marginal distributions of bias attributes. They achieve promising results by ad-
dressing this issue through simple distribution matching in a bias-agnostic manner.
However, CCDB approximates each distribution using a single Gaussian, which is
overly simplistic and rarely holds in real-world applications. To address this lim-
itation, we propose a novel Multi-stage data-Selective reTraining strategy (MST),
which describes each distribution in greater detail using the hard confusion matrix.
Building on these finer descriptions, we propose a fine-grained variant of CCDB,
termed FG-CCDB, which enhances distribution matching through more precise
confusion-cell-wise reweighting. FG-CCDB learns sample weights from a global
perspective, effectively mitigating spurious correlations without incurring sub-
stantial storage or computational overhead. Extensive experiments demonstrate
that MST serves as a reliable proxy for ground-truth bias annotations and can be
seamlessly integrated with bias-supervised methods. Moreover, when combined
with FG-CCDB, our method performs on par with bias-supervised approaches
on binary classification tasks and significantly outperforms them in highly biased
multi-class and multi-shortcut scenarios.

1 INTRODUCTION

Neural networks trained with standard Empirical risk minimization (ERM)|Vapnik](1998) often suf-
fer from spurious correlations: shortcuts that are predictive of the target class in the training data
but irrelevant to the true underlying classification function LaBonte et al.|(2023b). Samples exhibit-
ing such spurious correlations typically dominate the training distribution and form the majority
groups, while samples with different or conflicting correlations constitute the minority groups Rad-
ford et al.| (2021). This imbalance across groups is also referred to as biased data, which results
in poor ERM performance on the minority ones, sometimes even no better than random guessing
Shah et al.| (2020). Spurious correlations are prevalent in many high-stakes applications, including
toxic comments identification [Borkan et al.| (2019), medical diagnosis (Castro et al.[(2020), and au-
tonomous driving [Pourkeshavarz et al.| (2024)), where both robustness and fairness are critical but
overlooked by conventional methods. Take the traffic sign classification task as a vivid example
Liu et al|(2023), in which the training data exhibits a strong bias: 99% of stop signs appear in
red, whereas stop signs of other colors are rare and constitute a minority group Beery et al.| (2018).
Consequently, the classifier relies on the red color as a shortcut for recognizing stop signs, ignoring
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the textual “stop” features. This leads to biased predictions and poor generalization when the color
cue is absent or misleading. |Arjovsky et al.[(2019);|Geirhos et al.[(2020); Beery et al.|(2018). These
challenges underscore the urgent need to develop classification methods that remain reliable across
diverse data subgroups, especially in the presence of spurious correlations.

One of the most effective strategies for improving robustness against spurious correlations is to re-
train models using group-balanced subsets derived from bias annotations [Kirichenko et al.| (2023).
However, given the massive scale of modern datasets, manually labeling bias attributes is often pro-
hibitively expensive, which motivates the development of annotation-free alternatives. Recent stud-
ies have shown that models trained with naive ERM tend to favor biased solutions, which generalize
poorly to minority groups — offering a “free lunch” for bias modeling Pezeshki et al.| (2024)); |Puli
et al.| (2023). Accordingly, various methods have been developed to identify misclassified samples
as belonging to minority groups. These approaches either explicitly highlight such samples or im-
plicitly simulate group-balancing during the debiasing process to enhance group robustness|LaBonte
et al.[(2023a); Pezeshki et al.|(2024)); |Li et al.[(2023a); Liu et al.|(2021). However, they often rely on
empirically chosen hyperparameters to control the upweighting of minority groups, which can easily
lead to overemphasis on these groups and, in turn, degrade performance on the majority ones. As a
result, held-out annotations are often required for effective hyperparameter tuning. Recent research
on Class-conditional distribution balancing (CCDB) [Zhao et al.| (2025) reveals that spurious cor-
relations arise from the mismatches between class-conditional and marginal distributions (usually
caused by bias cues), and addresses it by reweighting samples to minimize the mutual information
between bias cues and class labels without hyperparameter searching. However, CCDB performs
coarse distribution matching by treating each distribution as a single Gaussian, which rarely holds in
real-world applications. In practice, instances within the same class often exhibit multi-modal dis-
tributions due to hidden bias cues. Thus, this coarse matching fails to capture intra-class variations,
leaving residual spurious correlations unaddressed.

To resolve these limitations, we propose a fine-grained distribution matching technique based
on CCDB, termed Fine-Grained Class-Conditional Distribution Balancing (FG-CCDB), which
achieves stronger mitigation of spurious correlations without relying on bias annotations. Our ap-
proach is developed from two key perspectives: (i) Fine-grained distribution description. Inspired
by the “free lunch” phenomenon in ERM — where models tend to overfit to spurious correlations —
we introduce a Multi-stage data-Selective reTraining strategy (MST) for bias characterization, which
capable of tackling multi-shortcuts by relate the hard confusion matrix to bias-aligning and conflict-
ing partitions, and employing a multi-stage, data-selective retraining strategy to enhance the relia-
bility of these partition assignments, which iteratively refines predictions from the overfitted model.
This process yields a confusion matrix that approximates the ground-truth group partition when
spurious correlations arise from a single shortcut. (i¢) Fine-grained distribution matching. Build-
ing on the confusion matrix identified by MST, we extend CCDB into a fine-grained formulation,
termed Fine-Grained Class-Conditional Distribution Balancing (FG-CCDB). It provides a discrete
multi-modal approximation of both class-conditional and marginal distributions, enabling precise
mode-wise alignment and thus more thorough mitigation of spurious correlations than the original
CCDB. The main contributions of this work are as follows: (i) We propose an annotation-free
bias exploration method with multi-stage refinement, based on model overfitting, which generalizes
beyond singular shortcut and serves as a reliable alternative to human annotations. (¢¢) We intro-
duce FG-CCDB, a lightweight and scalable debiasing method that enables fine-grained mode-wise
reweighting and is well-suited for multi-class classification and multi-shortcut mitigation. (i¢¢) Ex-
tensive experiments show that our method matches or surpasses bias-supervised baselines, achieving
strong performance without requiring bias annotations.

2 RELATED WORK
The related work is structured around the two core aspects of our contribution.

2.1 BIAS EXPLORATION

Primary approaches define bias as texture Bahng et al.| (2020), background |[Venkataramani et al.
(2024), or image style|Li et al.|(2025)—features presumed irrelevant to class labels. These methods
often rely on tailored architectures or training schemes to detect specific bias cues Hong & Yang
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(2021), but generalize poorly to unknown biases. To overcome this, recent data-driven strategies
interpret bias as group imbalance or latent substructures. Some methods, like JTT |[Liu et al.| (2021)),
LfF|Nam et al.|(2020), and RIDGE [Pezeshki et al.|(2024)), identify bias via consistently misclassified
(hard) samples under ERM. Others rely on model disagreement, e.g., DebiAN [Li et al.| (2022b)
iteratively trains a bias “discoverer” alongside a main classifier, XRM [Pezeshki et al.| (2024) uses
a pair of biased auxiliary models to generate pseudo group labels across the training set, DDB
Ciranni et al.| (2025) utilizes a diffusion model to generate bias-aligned data, which amplifies the
bias reliance. Other methods, such as GEORGE |Sohoni et al.| (2020), apply unsupervised feature
clustering to decompose each class into latent subgroups. Few of these methods conduct a thorough
evaluation on the quality of bias prediction. Another trend leverages vision-language models (e.g.,
CLIP Radford et al.|(2021))) to infer explainable bias attributes Jain et al.[(2023); |Kim et al.| (2024));
Wiles et al.| (2022), though they are constrained by predefined vocabularies and may miss unexpected
biases.

2.2 BIAS MITIGATION

Bias annotation dependent. With the assistance of bias annotations, a variety of methods have been
developed to mitigate spurious correlations. GroupDRO [Sagawa et al.| (2020) groups data based on
class and bias annotations and optimizes for the worst-group performance. DFR [Kirichenko et al.
(2023)) improves robustness by retraining only the last layer using a small, balanced validation set.
MAPLE [Zhou et al.| (2022) uses a measure based on validation set with explicit bias annotations to
reweight training samples. LISA|Yao et al.| (2022) utilizes data augmentation technique to encourage
bias-invariant features. Though effective, relying on costly bias annotations limits their scalability
in real applications.

Bias-conflicting samples dependent. To mitigate spurious correlations without manual annotation,
recent studies often leverage disagreements among auxiliary models to identify bias-conflicting sam-
ples and focus learning on them.Nam et al.| (2020); [Liu et al.| (2023); |Chu et al.| (2021)); |Liu et al.
(2021). To better identify bias-conflicting samples, SELF [LaBonte et al.| (2023b)) proposes to split
the training data and applying early stopping for effective bias-conflicting detection. uLA |Tsirig-
otis et al.[(2023b) leverages pretrained self-supervised models to extract bias-relevant information.
DPR [Han et al.| (2024) uses the Generalized cross-entropy loss [Nam et al.| (2020) to amplify model
bias. However, these methods rely on empirically tuned parameters—often requiring a split of an-
notated subsets—and their simple binary partitioning into bias-aligned and bias-conflicting samples
is insufficient to fully capture the structure of bias, ultimately limiting generalization.

Bias-agnostic. Beyond bias-aware techniques, several bias-agnostic approaches have emerged, mo-
tivated by diverse perspectivesPuli et al.|(2023); Jain et al.|(2024). MASKTUNE|Asgari et al.| (2022),
ExMap |Chakraborty et al.[(2024), and DaC |Noohdani et al.| (2024) reduce reliance on spurious fea-
tures by identifying bias-related regions via heatmaps, which restricts their applicability to the image
domain. Stable learning approachesZhang et al.|(2021); |Yu et al.| (2023) treat spurious correlations
as effects of unknown confounders and attempt to mitigate them by decorrelating features, though
this is difficult to achieve in practice. GERNE |Asaad et al.| (2025) leverages the gradient differences
between two batches to identify a debiasing direction, along which the model is optimized. CCDB
Zhao et al. (2025) seeks to mitigate spurious correlations by minimizing the mutual information
between spurious features and class labels via distribution matching. Although effective, its coarse
matching strategy limits generalization performance.

3 OUR METHOD

Our work builds on the existing method CCDB, which attributes spurious correlations to distribution
mismatches and addresses them through sample reweighting without requiring bias annotations.
However, CCDB performs distribution matching in a relatively coarse manner by modeling each
distribution as a single Gaussian. To enable more accurate alignment—and thereby more effective
spurious correlations elimination—we propose a fine-grained extension. Specifically, we introduce
a multi-stage data-selective retraining strategy (MST) that characterizes bias structure via the hard
confusion matrix, allowing for a discrete multi-modal description of each distribution. Based on
these multi-modal distributions, we develop Fine-Grained Class-Conditional Distribution Balancing
(FG-CCDB), which performs alignment at the mode level.
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We consider the task of predicting a label y € Y, = {1,...,C} based on an input x € X, X C
R?. Following prior work, we define a shortcut as an explainable attribute (e.g., color, background)
that is spuriously correlated with class labels and highly predictive, and focus on a more general
setting in which each data point (x, y) may be associated with one or more shortcuts. Motivated by
Tsirigotis et al.| (2023al), we use an auxiliary biased model to predict the bias label s € S, which
share the same label space as vy, i.e., |S| = |V|. Note that our goal is for s to capture general and
harmful bias information that humans may not preconceive |Li et al.| (2022b), rather than only phys-
ically interpretable attributes. The value s represents spurious signals that an ERM model prefers
over core features and that consequently cause evaluation failures. s = 7 denotes all spurious cues
that cause samples from other classes to be misclassified as class i. These cues may correspond to
interpretable shortcuts, combinations of multiple shortcuts, or entangled, uninterpretable patterns.
By combining s and y, we partition the dataset into modes M = S x ), which exactly corre-
sponde to the hard confusion matrix. When the bias corresponds to a single shortcut, this reduces to
conventional group partitions. To distinguish our data partitioning approach from traditional group-
based methods, we refer to the partitions derived from the confusion matrix as modes. Accordingly,
diagonal entries represent majority (bias-aligning) modes, and off-diagonal entries correspond to
minority (bias-conflicting) modes. With the confusion matrix, one can infer a discrete multi-modal
approximation of both the class-conditional and marginal distributions over bias information. The
goal is twofold: (¢) to train a biased model that can effectively explore the underlying bias cues;
(7%) to train a debiased model that invariant to bias information and achieves uniform performance
across all modes.

3.1 BIAS EXPLORATION THROUGH OVERFITTING

In this section, we introduce the proposed multi-stage data-selective retraining (MST) technique
and demonstrate its compatibility with existing bias-supervised methods. It is well established that,
in the presence of spurious correlations, ERM tends to overfit to majority groups in training data,
leading to an over-reliance on bias cues and poor generalization to minority groups. Recent studies
LaBonte et al.|(2023b); Tsirigotis et al.[(2023b) have made preliminary attempts to exploit this over-
fitting behavior to mitigate spurious correlations, revealing that the predictions of overfitted models
are strongly aligned with bias cues. Furthermore, [Lee et al.|(2023); (Ciranni et al.[ (2025) find that
removing bias-conflicting samples improves bias prediction and point out that, in principle, if all
bias-conflicting samples were removed, one could train a bias-capturing model that provides ideal
learning signals for debiasing. Inspired by these insights, we propose a multi-stage framework for
refined bias prediction, which further leverages model overfitting and serves as an approximate sub-
stitute for human annotations. The overall framework consists of two basic stages (Figure Eka)(b)):
initial bias learning and bias enhancement learning. The first stage extracts primary bias patterns,
while the second amplifies them in the model’s predictions, yielding a reliable bias predictor.

Initial bias learning. Given an accessible train dataset D := {(x;,y;)}Y; of N samples and C
classes. Following prior works|Zhao et al.|(2025); LaBonte et al.| (2023b)); Pezeshki et al.|(2024), we
explore bias information by randomly splitting D into two subsets Dy and D, where D; contains
a fraction ~y of the original data (Figure [[(a), left). We then perform naive ERM on D; to train a
biased model fg,, which typically performs well on majority groups but poorly on minority groups.
Unlike prior worksLaBonte et al.[(2023b); [Pezeshki et al.| (2024), which use 95%/50% of the data
for biased training, our goal is to maximize the model’s alignment with bias cues to better reveal
underlying spurious correlations. As demonstrated in our experiments (Figure [3[right)), a smaller
proves more effective for bias exploration, with v = 10% emerging as a sweet spot. Since the data is
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Figure 2: (a) The framework of our FG-CCDB (b) The joint distribution J of bias and class labels
estimated by our method. (c) Toy example to show how FG-CCDB differs from group balancing.

randomly split, some samples from minority modes inevitably participate in training, which weakens
the model’s tendency to align its predictions with bias cues (Figure [T{a) right). To counteract this
effect, we introduce a subsequent amplification stage.

Bias enhancement learning. Amplifying bias in model predictions is non-trivial. Our key idea
is to guide the bias prediction model to focus exclusively on majority modes, i.e., to construct a
training subset D; that contains little to no samples from minority modes. This idea of removing
bias-conflicting samples has been shown to effectively amplify bias in prior work Lee et al.|(2023);
Ciranni et al.| (2025). Such a setup forces the model to overfit to the majority modes and align more
strongly with the corresponding bias cues, thereby behaving like a bias predictor and exhibiting
near-zero generalization ability on minority modes. To achieve this, we introduce a data selection
procedure based on the predictions of fg,, forming an extremely biased subset D}, on which a more
biased model is trained. Specifically, for each sample (x;, y;) in D, we infer the softmax output as
h; = fo, (x;). Within each class, we select the top /3 fraction of samples (3 € [0, 1]) with the highest
prediction confidence (measured by h;), and aggregate them to form D]. In our experiments, we
find that 8 = 50% offers a stable and reliable choice. Since fg, is biased toward majority modes,
the high-confidence samples are more likely to come from those modes. Consequently, D} filters
out most minority mode instances and is thus more biased than D;. (Figure [I(b) left). We then
train a new biased model fg, using naive ERM on D). The resulting model serves as the final bias
predictor to produce bias labels for D. Combined with the target class labels, the resulting hard
confusion matrix yields estimated mode partitions over the space |S| x |)|, which can serve as a
proxy for group annotations in bias-supervised methods (Figure [T[b) right).

Notably, the “Bias enhancement learning” stage can be repeated to further improve bias prediction
accuracy. Only the biased model from the final repetition is used to generate bias labels. As shown in
the experiments(FigurdT|c)), a single iteration already achieves performance comparable to existing
methods, while further iterations lead to gradually converging performance with diminishing gains.

3.2 FINE-GRAINED CLASS-CONDITIONAL DISTRIBUTION BALANCING

In this section, we present the Fine-grained Class-Conditional Distribution Balancing (FG-CCDB)
approach. With the hard confusion matrix obtained via MST, FG-CCDB improves both the quality
of distribution matching and the efficiency of sample reweighting.

The original CCDB proposes to mitigate spurious correlations by directly minimizing the mutual in-
formation between bias cues and target classes, which is achieved by aligning each class-conditional
distribution with the marginal distribution, while simultaneously balancing class proportions — a
generalization to traditional class balancing technique. Specifically, the objective is to minimize:

)

where [Z] denotes the latent feature (with gradients detached) extracted by the biased model prior to
the fully connected layer, which predominantly captures bias cues. w denotes the sample weights to
be optimized, and Dky,[-||-] refers to the Kullback-Leibler divergence Kullback & Leibler (1951).
Since the true distributions associated with z and y are unknown, CCDB approximates them us-
ing single Gaussian, which is insufficient for complex data with inherently multi-modal structures.
Moreover, CCDB’s sample-level reweighting requires storing and processing feature representations
for the entire dataset, incurring additional computational cost.

L, =1(Z,y) — H(y) = Ep, () Dxv[pw (@|y) [p(E)] + Ep,, () log pw (y)

Our work adopts the same objective as Equation [I] To overcome the aforementioned limitations,
we derive a discrete multi-modal approximation of both class-conditional and marginal distributions
from the hard confusion matrix, which enables localized, mode-wise distribution matching and leads
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to more accurate and scalable reweighting. As shown in Figure 2] (a), we represent the confusion
matrix as M € RE*¢ | where M, ; denotes the number of samples belonging to mode (s,y) =
(i, 4), Thus, the joint distribution over (z,y) is approximated with a discretized version over modes
(s,y), which is characterized by matrix J € R“*“ with J; ; = M]\';'j represents the probability of
a sample belonging to mode (s,y) = (i, ), IV is the total number of training samples. By design,
we define a class-conditional distribution matrix P € R¢*¢ such that the j-th column P. ; encodes
p(z|ly = 7), and a marginal distribution vector ¢ € R that captures p(z). Both P and q are
computed directly from J as follows: 3

. def ; def
plaly=)RP j==2—  plz)mg=) I )
J

i
Figure 2] (b) shows the joint distribution matrix J estimated by our MST across four datasets. Clear
spurious correlations are observed, as evidenced by the strong diagonal elements (aligned along the
yellow line), which indicate a high dependency between labels and bias cues. To eliminate these
spurious correlations and minimize equation} we introduce mode-level weighting parameter W €
RE*C to adjust each class-conditional distribution so that it aligns with the marginal distribution. A
straightforward solution for W is,

W q;

1,] T Pl’j 9
Note, equation achieves exact distribution matching, i.e., W. ; © P. ; = g, meaning that all class-
conditional distributions are reweighted to align with the same marginal distribution g, where ®
denotes the Hadamard product. For a given mode (s,y) = (i,5), assuming uniform contribution
from its samples, the corresponding savrr‘l/_ple weight is,
— 27 Y 4 —

W j M., , fori,j =1, ,C 4)
Note that beyond distribution matching, Equationd]inherently solved the class imbalance issue: the
mode with more samples gets smaller weights. As a result, FG-CCDB simultaneously minimizes
both terms in Equation[I} These weights are subsequently used during debiasing to reweight training
samples according to their mode identities.

fori,j=1,---,C 3)

It is worth noting that our distribution matching fundamentally differs from conventional group bal-
ancing (see example in Figurd2{c)): (i) Unlike group balancing, which aims to reduce differences
across all entries in the mode matrix, our method focuses solely on aligning the class-conditional
distributions—i.e., reducing the variation among columns in P—while preserving intra-column im-
balance. This allows for more flexible training by merely minimizing mutual information rather
than enforcing strict equality. (:¢) By minimizing the divergence between conditional and marginal
distributions, our method and CCDB implicitly achieve “covariate balance” from the view of causal
inference, specifically, by finding a reweighting that makes the confounder (bias) independent of
the treatment (core feature), ultimately forcing the statistical model to rely solely on core features
for inference Neall (2020). (i:¢) Simple scale balancing between majority and minority modes is
insufficient for generalization, as majority modes typically exhibit greater diversity. Our method
applies a more aggressive reweighting strategy. For example, the ratio between the largest and
smallest mode weights in FG-CCDB reaches 1000, compared to just 100 in conventional group bal-
ancing. Compared to CCDB, our sample reweighting approach offers several key advantages: (1)
It performs distribution matching across multiple localized regions defined by the confusion matrix,
enabling more precise alignment and more thorough removal of spurious correlations; (#¢) The sam-
ple weights are computed efficiently in closed form, without requiring any iterative optimization;
(#17) Instead of assigning weights individually to each sample, FG-CCDB assigns a shared weight
to samples within the same mode, resulting in negligible computational and memory overhead.

After completing MST and FG-CCDB, we train a debiased model f4 by incorporating sample
weights into the data sampling process using PyTorch’s “torch.utils.data. WeightedRandomSampler”
following |Zhao et al.| (2025)). Unless otherwise specified, we refer to the entire procedure as FG-
CCDB for brevity. A full algorithm of the proposed method is provided in Appendix [A]

4 EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our method from five perspectives: () We con-
duct experiments on real-world binary classification benchmarks with either single or multiple short-
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Table 1: Classification performance on real-world datasets. We report the average test accuracy(%)
and std.dev. over 5 random seeds. Best bias-agnostic results in bold.

Methods Bias label _ Waterbirds _ CelebA . _CivilComments
Train  Val iid. WGA ii.d. WGA iid. WGA
GroupDRO Yes Yes 93.50 91.40 92.90 88.90 84.2 73.7
DFR Yes Yes 94.20+04 92.90+02 91.30+03 88.30+1.1 87.2403 70.1+0.8
LfF No Yes 97.50 75.20 86.00 77.20 68.2 50.3
JTT No Yes 93.60 86.00 88.00 81.10 83.3 64.3
LC No Yes - 90.50+1.1 - 88.10+038 - 70.30+1.2
SELF No Yes - 93.00+03 - 83.90+0.9 - 79.10+2.1
DaC No Yes 95.3+04 92.3+04 91.4+1.1 81.9+07 - -
ERM No No 97.30 72.60 95.60 47.20 81.6 66.7
MASKTUNE No No 93.00+0.7 86.40+1.9 91.30+0.1 78.00+1.2 - -
uLA No No 91.50+0.7 86.10+1.5 93.90+0.2 86.50+3.7 - -
XRM No No 90.60 86.10 91.0 88.5 83.5 70.1
DebiAN No No 90.80 78.19 84.0 529 - -
DDB No No - 90.34 - - - -
GERNE No No - 89.88+0.67 - 74.24+251 - 63.10+0.22
CCDB No No 92.59+010  90.48+028 | 90.08+0.19  85.2740.28 83.60+0.21 75.00+0.26
FG-CCDB No No 92.50+052  90.56+024 | 89.71+054  89.22+0.19 | 86.99+0.14  78.52+042

Table 2: Results on UrbanCars.

Table 3: Ablation study on four datasets.

Methods Bias label| 1.D. | Gap due to shortcuts(?T) Methods Waterbirds CelebA cMNIST|cCIFAR10
® |Train Val| Acc | BG CoObj BG+CoObj iid.  WGA | iid. WGA | iid. iid.
GroupDRO| Yes Yes| 91.6 |-10.9 -3.6 -16.4 GroupDRO| 93.50  91.40 | 9290 88.90 | 84.20 | 57.32
JTT No Yes|959[-8.1 -13.3  -40.1 GroupDRO
DaC NO NO 9817 _3.78 _9.78 _58.58 -MST 90.82i0.05 88.471035 88.69i0.|5 85.211002 84.07;&022 55.7310,54
ERM | No Nol976-153 -112 692 DFR |94.20-01 92.90:02[91.30.401 88.30401| -
ExMap No No - -59 99 -30.7 DFR-MST 92.53+05091.49 072 88.80+020 85.87 02 = =
DebiAN No No 980 —14.9 -10.5 -69.0 FG-CCDB ‘92.50+05290.56A024 89.71 054 89.22+0.19(98.21 +0.02| 78.06-+030
DDB | No No86.39/-1.85 -0.52  -0.12 FG-CCDB 4 54 1110176015 93.14201089.09012|98.26 10| 78.53:05
FG-CCDB| No No (92.98|-4.17 -7.37  -4.9 -Sup

cuts, such as Waterbirds [Zhou et al.| (2022), CelebA Zhou et al.| (2022), CivilComments |Koh et al.
(2021)), and UrbanCars |L1 et al.| (2023b) to validate the overall effectiveness of our method; (77)
We further evaluate our method on challenging multi-class datasets, including cMNIST [Li et al.
(2022a) and cCIFAR10Hendrycks & Dietterich| (2018)) to assess its robustness under highly biased
conditions; (24¢) To evaluate the reliability of the bias cues explored by MST, we compare them with
ground-truth bias annotations and analyze the effects of repeating the “bias enhancement learning”
procedure; (iv) we conduct an ablation study to demonstrate that each technical component (MST
and FG-CCDB) makes a distinct and independent contribution to the final performance. (v) Finally,
we analyze the effects of hyperparameters (- and /3) on the performance of MST.

For all datasets, we adopt the same train-validation-test split following |Liu et al.| (2021); |Tsirigotis
et al.| (2023b) for fair comparison. Results are averaged over 5 random seeds, and for each seed,
the best-performing model (the one with the highest worst-class accuracy on the validation set)
is selected [Tsirigotis et al.| (2023b). Unless otherwise stated, we repeat the “bias enhancement
learning” process three times for FG-CCDB. See the appendix for the detailed experimental setup.

Compared methods. To demonstrate the superiority of our method in addressing spurious correla-
tions and its potential to serve as an approximate substitute for bias-supervised methods, we compare
it with both bias-supervised and bias-agnostic techniques. GroupDRO|Sagawa et al.|(2020) and DFR
Kirichenko et al.|(2023) are fully bias-supervised during both training and validation, and serve as
strong baselines. LfF|Nam et al.|(2020), JTT [Liu et al.|(2021), LC|Liu et al.|(2023)), DaC [Noohdani
et al.{(2024)), and SELF LaBonte et al.|(2023b) rely on pseudo-bias supervision during training, but
still require bias annotations during validation to achieve optimal performance. In contrast, ERM,
ulL.A |Tsirigotis et al.| (2023b)), MASKTUNE |Asgari et al.| (2022), XRM [Pezeshki et al.| (2024), De-
biAN, ExMap, DDB |Ciranni et al.| (2025), GERNE |Asaad et al.| (2025)), and CCDB [Zhao et al.
(2025), similar to our method, are entirely bias-agnostic throughout both training and validation.

4.1 BINARY CLASSIFICATION WITH A SINGLE OR MULTIPLE SHORTCUTS

The results on real-world binary classification with a single shortcut are shown in TableI] Although
i.i.d. performance reflects overall accuracy, it can mask disparities across groups. In contrast, worst-
group accuracy (WGA) directly measures robustness by focusing on the most challenging subpop-
ulations. With bias annotations available during both training and validation, GroupDRO and DFR



Published as a conference paper at ICLR 2026

Table 4: Results on cMNIST and cCIFAR10 with various bias-conflicting ratios in the training set.
The test accuracy(%) is averaged over 5 random seeds.The best results are indicated in bold.

Bias label cMNIST cCIFAR10
Train Val| 0.5% 1% 2% 5% 0.5% 1% 2% 5%
GroupDRO | Yes Yes| 63.12 68.78 76.30 84.20 33.44 38.30 45.81 57.32
LfF No Yes|52.50+243 61.89+497 71.034244 80.57+3.84|28.57+130 33.07+0.77 39.91+030 50.27+1.56
LC No Yes|71.25+3.17 82.25+2.11 86.21+1.02 91.16+0.97 | 34.56+0.69 37.34+069 47.81+2.00 54.55+1.26
DaC No Yes| 5324 75.02 87.60 94.70 21.01 28.01 36.56 51.06
ERM No No [35.19+349 52.09+2.88 65.8643.59 82.17+0.74 | 23.08+1.25 25.82+033 30.06+0.71 39.42+0.64
uLA No No [75.13+078 81.80+1.41 84.79+1.10 92.79+0.85|34.39+1.14 62.49+0.74 63.88+1.07 74.49+058
GERNE No No |77.25+0.17 83.98+026 87.41+031 90.98+0.13 | 39.90+048 45.60+0.23 50.19+0.18 56.53+0.32
CCDB No No [83.20+2.17 87.95+159 91.024028 96.37+0.25|55.07+085 63.28+046 67.78+0.78 74.64+0.34
FG-CCDB| No No |89.02+045 94.93+0.17 96.18+0.19 98.21+0.02 | 55.2840.54 64.66+0.48 71.69+0.31 78.060.30

Methods

demonstrate strong generalization performance on the worst group, serving as a challenging upper
bound. In contrast, methods that only use bias annotations during validation show a bit inferior per-
formance. The situation becomes more challenging when access to bias annotations is not permitted.
In this case, existing bias-agnostic methods consistently fall short of the supervised upper bound on
at least one of the datasets. Remarkably, SELF, CCDB and our method surpass the supervised upper
bound on CivilComments by a large margin. This is because they apply stronger upweighting to the
minority groups/modes. Among all compared methods, including those with full supervision, our
method consistently achieves the best or competitive WGA across all three datasets, highlighting its
effectiveness in eliminating the need for human annotations.

Table?| presents the results on UrbanCars with multiple shortcuts: background (BG) and co-
occurring object (CoObj). The in-distribution accuracy(I.D. Acc) and gap-related metrics are
adopted from |Li et al.| (2023b)(See appendix for details). The BG/CoObj/BG+CoObj Gap is the
drop in accuracy between mean and cases when only the BG/CoObj/BG+CoObj is uncommon. A
smaller drop indicates better generalization. On average, BG+CoODbj is the most challenging one and
most compared methods suffer a significant drop on it. GroupDRO can mitigate multiple shortcuts;
however, they require access to labels of both shortcuts. Although DDB shows the smallest over-
all drops across all bias-conflicting scenarios, its base I.D. Acc is the lowest among all compared
methods. Overall, our method consistently achieves the best balance between high I.D. Acc and
small drops compared to other bias-agnostic methods (particularly on the challenging BG+CoObj
generalization). It performs comparably to, or better than, methods that rely on bias annotations.
These results confirm that our approach provides a general framework for handling multi-shortcut
scenarios. Please refer to Appendix [D]|for more details.

4.2 MULTI-CLASS CLASSIFICATION UNDER EXTREME SPURIOUS CORRELATIONS

In this section, we use the synthetic datasets cMNIST and cCIFARI1O0 to evaluate the effectiveness
of our method under challenging multi-class settings with extreme spurious correlations. For each
dataset, we vary the ratio of bias-conflicting samples in the training set to control the strength of
spurious correlations and evaluate performance on a completely unbiased test set. Following Tsirig-
otis et al.|(2023b), the bias-conflicting ratios are set to {0.5%, 1%, 2%, 5%} for both datasets, where
0.5% indicates an extremely biased scenario. The generalization accuracies are reported in Table
We observe that: (¢) On both datasets, our method consistently achieves the best performance. In
particular, it outperforms the second-best method by a large margin on cMNIST; (i) On cCIFAR10,
the improvements become more pronounced as the bias-conflicting ratio increases (i.e., at 2% and

5%).

A comparison of the results in Table[T|and Table A reveals a phenomenon similar to that reported in
Zhao et al.[(2025): bias-supervised methods tend to perform well on basic binary classification tasks,
whereas bias-agnostic methods are relatively more effective in complex multi-class classification
scenarios. In contrast, CCDB demonstrates strong performance across both scenarios. With fine-
grained distribution matching, FG-CCDB further boosts performance over CCDB by a significant
margin, highlighting the effectiveness of more thorough spurious correlations elimination.

To demonstrate the effectiveness of FG-CCDB in mitigating spurious correlations, we analyze
how sample reweighting influences the correlation between feature dimensions and class/bias in-
formation, as shown in Figure 3(left). We compute the correlation of each feature dimension with
class/bias information, and visualize their distributions using box plots [Zhao et al.[ (2025)). Before
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sample reweighting, strong spurious correlations in the training data lead the biased model fg, to
rely heavily on bias-related features, with most dimensions exhibiting high correlation with bias and
low correlation with class. After applying FG-CCDB weights on features from fg,, the correlation
with bias drops significantly, while the correlation with class increases. Moreover, after debiasing
training on the reweighted data, this shift toward class-relevant features is further amplified, con-
firming that FG-CCDB effectively reduces the model’s reliance on spurious features.

4.3 THE QUALITY OF BIAS EXPLORATION

In this section, we evaluate the effectiveness of MST by measuring its mode-prediction F1-score,
precision, and recall against the ground-truth annotations. Results regarding the smallest-mode are
shown in Figure{b). Since our method progressively filters out bias-conflicting samples, it retains
far fewer such samples than XRM and JTT, achieving the highest F1-score across the four datasets.
This confirms the principle that removing bias-conflicting samples improves bias prediction. JTT
misidentifies a large number of majority samples as belonging to the smallest-mode(low precision).
In contrast, XRM tends to misidentify minority-modes samples as majority modes(low recall). With
multi-stage refinement, our method achieving the best overall performance. As discussed in Section
[3] repeating the “bias enhancement learning” process can further improve both bias prediction ac-
curacy and consequently mode prediction accuracy. To validate this claim, we conduct experiments
with different numbers of repetitions. The mode prediction performance across varying repetition
counts are shown in Figure @fa). The dashed lines represent the standard accuracy across all modes,
while the solid lines show the recall for each individual mode. We observe that repetition has a
particularly strong effect on minority groups (highlighted in bold), as evidenced by the significant
improvement in their recall with more repetitions. Please refer to Appendix Figure[§]for convergence
results with additional repetitions.

Figure [Ifc) shows the final WGA for classification as repetition increases. Notably, performance
improves substantially after the first repetition and then plateaus, especially on cMNIST and CelebA,
suggesting that a single repetition is often sufficient to achieve satisfactory performance.

4.4 ABLATION STUDY

Our method comprises two core technical modules: MST and FG-CCDB, which together demon-
strate superior performance. In this section, we integrate these modules with existing methods and
observe the resulting performance improvements to verify the effectiveness and versatility of our
approach, as detailed below.

(7) To assess the effectiveness of MST, we replace ground-truth annotations in bias-supervised meth-
ods, i.e., GroupDRO and DFR, with bias predictions generated by MST. This results in their unsu-
pervised counterparts, denoted as GroupDRO-MST and DFR-MST, respectively. The results are
reported at the top of Table [3] Remarkably, the generalization performance of these unsupervised
variants is comparable to their supervised versions using human annotations. Although the bias pre-
dictions are not perfect, they are sufficiently accurate to identify most minority modes, confirming
the effectiveness of our MST as an approximate substitute for human bias annotations.

(i7) To evaluate the effectiveness of FG-CCDB independently of MST, we replace the predicted
bias with human annotations, resulting in a supervised version, FG-CCDB-sup. The results are
reported at the bottom of Table 3] When bias annotations are available, FG-CCDB-sup further
boosts performance, achieving results comparable to existing supervised methods on Waterbirds,
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Figure 4: (a) The mode prediction accuracy along the repeating of the “bias enhancement learning”
procedure; (b) Smallest-mode F1-score, precision, and recall compare with existing methods.

Table 5: The F1-score of the smallest-mode prediction under different top high-confidence ratio (.

cCIFAR10(5%) | Waterbirds | CelebA | UrbanCars
Bias-align ratio 95.00% 94.97% 51.72% 90.25%
8 =30% 0.65 0.53 0.32 0.47
B =50% 0.72 0.64 0.47 0.62
B ="70% 0.79 0.67 0.40 0.64

and outperforming them on the others, especially in multi-class settings. This justified our statement
on a more aggressive reweighting and indicates that FG-CCDB is a more effective strategy than
naive group balancing for handling spurious correlations. Moreover, the performance gap between
FG-CCDB-sup and the original FG-CCDB is marginal, further confirming the effectiveness of our
method in reducing reliance on human bias annotations.

4.5 HYPERPARAMETER ANALYSIS

In this section, we evaluate the effect of the hyperparameters  for “Initial Bias Learning” and
for selecting top high-confidence samples on MST’s final performance. The results are presented in
Figure [3|right) and Table 5}

The hyperparameter ~y controls the proportion of samples selected for training the initial bias model.
Intuitively, a smaller v leads to stronger overfitting to bias cues and thus greater reliance on them.
As expected, the results in Figure [3(right) show that when v < 0.2, both prediction accuracy and
smallest-mode recall remain high. However, as v increases to 0.5, the performance drops signifi-
cantly. We find that v = 0.1 serves as a sweet spot, while also saving computation compared to
v =0.2.

Fl-score with 8 € {30%,50%,70%} are reported in Table [5| The hyperparameter 5 controls the
proportion of top high-confidence samples selected to filter out bias-conflicting samples and amplify
the model’s bias. Intuitively, this value relates to the smallest bias-aligned ratio across classes,
as shown in the first row of Table [5} Except for CelebA, whose ratio is slightly above 50%, all
other datasets have ratios exceeding 90%. Accordingly, 5 = 50% serves as a reasonable middle-
ground choice. For CelebA, which has a relatively low bias-aligned ratio, 3 = 50% achieves the
best performance; whereas for datasets with ratios exceeding 90%, both 8 = 50% and 8 = 70%
yield high Fl-scores, with 3 = 70% performing the best. Intuitively, when bias annotations are
unavailable, selecting the top 50% high-confidence samples is likely to capture the bias-aligned
subset while excluding bias-conflicting samples.

5 CONCLUSIONS

In this paper, we address the challenge of robust group generalization under spurious correlations
without requiring bias annotations. Following the distribution matching paradigm, we propose a
method that integrates a reliable bias prediction module with fine-grained class-conditional distri-
bution matching. Our approach demonstrates strong performance on real-world datasets with single
or multiple shortcuts, as well as highly biased multi-class datasets, often matching or outperforming
methods that rely on human-provided group annotations. By leveraging the model’s overfitting be-
havior, our method offers a novel alternative to traditional group balancing strategies and effectively
reduces reliance on manual supervision. However, its effectiveness may be limited in scenarios
where the overfitting signal fails to capture bias cues—for example, in CelebA, which has only one
minority group, or in CivilComments, where majority groups dominate one class while minority
groups appear in another. These settings present different spurious correlation patterns that weaken
the overfitting signal used for bias prediction. Addressing this limitation remains an important di-
rection for future research.
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A THE ALGORITHM OF OUR PROPOSED METHOD

The complete procedure of our proposed FG-CCDB is summarized in Algorithm [I] It consists of
three stages: bias exploration, sample weight inference, and unbiased classifier training.

Algorithm 1 Fine-grained class-conditional distribution balancing (FG-CCDB)

Input: Randomly initialized network fg, and fg, for bias prediction, fg for unbiased classifica-
tion; training set D, validation set D,,.

Output: unbiased classifier fg.

#Stagel: bias exploration via multi-stage data-selective retraining

1: Randomly sample a subset D; from D with proportion v (y = 10%).

2: Train fg, on D; using ERM.

3: Select the top 3 (8 = 50%) most biased samples from D to form an extremely biased subset
Di.

4: Train fg, on D using ERM.

5: use fg, to infer bias labels for all samples in D , and modeling joint distribution via hard
confusion matrix.

# Stage2: Sample weight inference

6: Infer class-conditional and marginal distribution over the bias cues using equation2]

7: Compute sample weights using Equation3] and §] from the main manuscript.

# Stage 3: Unbiased classifier training

8: Train classifier f4 on reweighted samples using standard ERM.

9: Select the best-performing fg based on the highest worst-class accuracy on the validation set
D,.

B EXPERIMENTAL SETUP

Datasets. The experiments are conducted on five benchmark datasets known to exhibit spurious
correlations. Waterbirds, CelebA, CivilComments, and UrbanCars are real-world datasets in which
each class is spuriously correlated with background, gender, certain demographic identities, or a
combination of multiple shortcuts respectively. cMNIST and cCIFAR10 are synthetic ten-way clas-
sification tasks, where each class is spuriously linked to a specific color or noise pattern. For all
datasets, we adopt the same train-validation-test split following [Liu et al.[ (2021); [Tsirigotis et al.
(2023b)) for fair comparison.

Training setup. For fair comparison, we adopt model architectures following |Tsirigotis et al.
(2023b)); [LaBonte et al.[ (2023b)): a 3-hidden layer MLP for cMNIST, ResNet18 |[He et al.| (2016)
For cCIFAR10, ResNet50 [He et al.| (2016) for Waterbirds and CelebA, and BERT |Devlin et al.
(2019) for CivilComments. ResNetl18 and ResNet50 are pretrained on ImageNet-1K, and BERT
is pretrained on Book Corpus and English Wikipedia. No data augmentation is applied to cM-
NIST and CivilComments, while simple augmentations (random cropping and horizontal flipping)
are used to the remaining datasets, following |/Ahuja et al.| (2021). This ensures that the improve-
ments we observed are attributed to the proposed methodology, rather than to data augmentations
that could potentially nullify the bias attribute. For our method, both the initial bias learning and the
bias enhancement learning span 20 epochs, and the final unbiased learning involves 5000 iterations
across all datasets. Results are averaged over 5 random seeds, and for each seed, the best-performing
model (the one with the highest worst-class accuracy on the validation set [Tsirigotis et al.| (2023b))
is selected. Unless otherwise stated, we repeat the “bias enhancement learning” process three times
for FG-CCDB.

On Hyperparameters. All experiments were conducted on a single NVIDIA A40 GPU. The hy-
perparameters and optimization settings for the MST and FG-CCDB modules on each dataset are
summarized in Table @ Both modules share the same batch size, scheduler, optimizer, and opti-
mizer hyperparameters. For cMNIST and CivilComments, no data augmentation is applied to either
module, while for the remaining datasets, simple data augmentations (i.e., ResizedCrop and Hor-
izontalFlip) are applied only for the FG-CCDB module. All stages in MST are trained with the
same Epoch number. In contrast to CCDB, our MST framework consists of at least two stages:
the first stage provides an initial bias prediction, which is further refined by the subsequent stages.
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The experimental results in the main manuscript (see Figurg3|right)) show that selecting the pa-
rameter v within the range of 1% < v < 20% has a negligible impact on the final performance.
Accordingly, we set v = 10% across all datasets to ensure strong performance while maintaining
low computational cost.

Table 6: The optimization setup for our FG-CCDB.

Dataset Optimizer Scheduler =~ LR  Batch size Weight decay {Epoch,Iter} ~ Augmentation
cMNIST Adam  None 1x1072 256 1x107*  {20,5000} 0.1 None
cCIFAR10 Adam None 1x107° 256 1x107*  {20,5000} 0.1 ResizedCrop, HorizontalFlip
Waterbirds Adam None 1x107% 256 1x107*  {20,5000} 0.1 ResizedCrop, HorizontalFlip

CelebA Adam None 1x107° 256 1x107*  {20,5000} 0.1 ResizedCrop, HorizontalFlip
CivilComments| AdlamW  Linear 1 x 1072 16 1x107*  {20,5000} 0.1 None
Waterbirds CelebA ¢MNIST cCIFAR10(5%)
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Figure 5: The distribution of the sample weights assigned by FG-CCDB within each mode on four
datasets.

C THE SAMPLE WEIGHTS INFERRED BY OUR FG-CCDB

To assess whether our distribution-matching approach, FG-CCDB, effectively distinguishes minor-
ity modes from majority ones and assigns appropriate sample weights in the singular shortcut case,
we analyze the distribution of inferred sample weights across different modes. The results on four
datasets are summarized in Figure[5] with the minority modes highlighted in bold. As expected, sam-
ples from the majority modes are assigned low weights, typically concentrated below 0.01, while
samples from minority modes receive significantly higher weights, clustered around 1. These results
demonstrate that FG-CCDB successfully differentiates between majority and minority modes, and
up-weights the latter in a balanced manner, aligning both class-conditional and marginal distribu-
tions.

D ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS FOR URBANCARS

For UrbanCars, the class label corresponds to the car type (country or urban), while the spurious
attributes consist of two shortcuts: the background (BG) and the co-occurring object (CoObj), both
of which are also labeled as country or urban. The ground-truth group partition of the training
data is shown in Figurd6] The majority groups contain urban car images combined with urban
backgrounds (e.g., alleys) and urban co-occurring objects (e.g., fire plugs), and vice versa for country
car images. The remaining combinations constitute the minority groups. As shown in |[Li et al.
(2023b)), mitigating spurious correlations in datasets with multiple shortcuts presents a Whac-A-
Mole dilemma: mitigating one shortcut often amplifies the model’s reliance on the others.

Evaluation Metrics for the UrbanCars Dataset. Compared to datasets with a single shortcut, four
new metrics are proposed for multi-shortcut scenarios to better evaluate performance across different
shortcut combinations.

(?) In-Distribution Accuracy (I.D. Acc): This metric computes the weighted average of per-group
accuracies, where the weights are proportional to each group’s frequency in the training set (i.e., its
correlation strength, as shown in Figurd6). Following the “average accuracy” definition in [Sagawal
et al.| (2020), it reflects model performance when no group shift occurs.
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Table 7: Classification performance on multi-shortcuts UrbanCars. In addition to our worst-group
accuracy, the measurements following |L1 et al.| (2023b) are also provided.

. L. = Gap due to shortcut Urbancar(BG) Urbancar(CoObj) Urbancar
Methods | Given Condition | LD. Ace —5 pccot)j BG+CoObj || Mean WGA Mean woA Mean WGA
LfF Yes 972 -11.6 -18.4 -63.2 - - - - - -
JTT Yes 95.9 -8.1  -133 -40.1
DebiAN No 98.0 -149  -10.5 -69.0 - - - -
ExMap No - -5.9 -9.9 -30.7 932 71.4 932 79.2 - -
FG-CCDB None 92.98 -4.17  -7.37 -4.9 91.04+004 87.84+0212 | 93.08+0.14 90.24+028 | 88.56+030 81.28+39

(47) BG Gap: The drop in accuracy from the I.D. Acc to the accuracy on groups where the back-
ground (BG) is uncommon but the co-occurring object (CoObj) remains common (cf. the first yellow
column in Figurd6).

(#i7) CoObj Gap: The drop in accuracy from the I.D. Acc to the accuracy on groups where the CoObj
is uncommon but the BG remains common (cf. the second yellow column in Figurdf).

(iv) BG+CoObj Gap: The drop in accuracy from the I.D. Acc to the accuracy on groups where both
BG and CoObj are uncommon (cf. the red column in Figurd).

BG Gap and CoObj Gap measure the model’s robustness to distribution shifts caused by each indi-
vidual shortcut. BG+CoObj Gap evaluates robustness in the most challenging scenario, where both
shortcuts are absent.

Common BG Uncommon BG Common BG Uncommon BG
Common CoObj Common CoObj | Uncommon CoObj | Uncommon CoObj
Frequency 90.25% 0.25%
-
<
o
=
<
=
=]
-
I
(o]
g
=]
=
Q
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Figure 6: Unbalanced groups in the UrbanCars training set based on two shortcuts: background and
co-occurring object (the figure is adopted from |Li et al.|(2023b)))

Following [Chakraborty et al.| (2024), two variants of UrbanCars are constructed: (i) UrbanCars
(BG), where only the background object serves as the spurious attribute; (¢¢) UrbanCars (CoObyj),
where only the co-occurring object serves as the spurious attribute.

We compare the worst-group accuracy (WGA) on these two variants plus the original one, as shown
in Tablg7] Our method achieves significantly higher WGA than ExMap on both variants, further
confirming our claim that FG-CCDB captures bias information through mode partitioning in a more
general manner. This makes it applicable to both singular and multiple shortcut scenarios.

E ADDITIONAL DISCUSSIONS

R1W1: How iterative bias amplification improves minority-mode recall

In addition to our experimental results, the validation of MST is supported by the following research
findings: (¢) Easy-to-learn property of bias attributes|Nam et al.|(2020). ERM tend to overfit spurious
correlations only when they are “easier” to learn than the desired core features. This property has
been successfully exploited in many debiasing methods Nam et al.| (2020); |Pezeshki et al.| (2024);
LaBonte et al.| (2023b); Zhao et al.[(2025));|Lee et al.|(2023) to detect and highlight underrepresented
bias-conflicting samples. Thus, the initial step of MST is well motivated. (i¢) Removing bias-
conflicting samples improves bias prediction. Prior works [Lee et al| (2023); |Ciranni et al.| (2025)
show that even a small number of bias-conflicting samples can severely degrade the estimation
of bias-aligned vs. bias-conflicting partitions. In principle, if all bias-conflicting samples were
removed, one could train a bias-capturing model that provides ideal learning signals for debiasing.
These methods obtain a bias-amplified model either by explicitly removing bias-conflicting samples
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Table 8: The F1-score of the smallest-mode prediction under different top high-confidence ratio 5.

cCIFAR10(5%) | Waterbirds | CelebA | UrbanCars
Bias-align ratio 95.00% 94.97% 51.72% 90.25%
B8 =30% 0.65 0.53 0.32 0.47
8 =50% 0.72 0.64 0.47 0.62
B8 ="70% 0.79 0.67 0.40 0.64
Adaptive 0.76 0.69 0.43 0.66

or by generating only bias-aligning samples. Our MST shares the same core insight but adopts a
different mechanism: we use a multi-stage bias amplification process that progressively filters out
bias-conflicting samples by selecting those with the highest confidence. (i7¢) Bias-aligned samples
tend to have higher confidence. As revealed in |Lee et al.| (2023), bias attributes are easier to learn
than intrinsic attributes; thus, ERM model assigns higher predicted probabilities to bias-aligned
samples. This phenomenon has also been effectively used in works on GCE [Zhang & Sabuncu
(2018). Therefore, selecting top-confidence samples at each stage in MST is an effective strategy
for filtering out bias-conflicting samples.

R1Q1: Why fix the top-50% high-confidence samples per-class for bias enhancement?

We denote by [ the ratio used to select the top high-confidence samples for brevity. Our choice of
B = 50% is based on a practical and widely observed property of spurious-correlation datasets. In
typical settings, within each class, the bias-aligned partition is larger than the bias-conflicting parti-
tion; otherwise, spurious correlations would not arise, as pointed out in Ciranni et al.| (2025). This
implies that the bias-aligned partition occupies more than 50% of the samples in that class. Table
summarizes the smallest bias-aligned ratio across classes for each dataset. Except for CelebA, which
has a value only slightly above 50%, the other datasets have ratios exceeding 90%. Therefore, when
bias annotations are unavailable, selecting the top 50% high-confidence samples is highly likely
to capture the bias-aligned partition while excluding bias-conflicting samples. We emphasize that
this is an empirical principle rather than a strict theoretical guarantee. However, it is consistently
supported by prior works on spurious correlations and by our empirical results.

To further address potential concerns regarding 5 = 50%, we conduct experiments with alternative
proportions (30% and 70%) and an adaptive version based on class-wise confidence distributions
(assigning higher 3 to classes with higher average confidence). The F1-scores are shown in Table
Clearly, 8 = 50% represents a reasonable middle-ground option. For CelebA, which has a low
bias-aligned ratio, 8 = 50% performs best, whereas for datasets with bias-aligned ratios above 90%,
B = 70% yields the best performance. The adaptive strategy is primarily effective when the data
exhibits noticeable class imbalance. We consider further exploration of this approach as promising
future work.

R2W1: How iterative bias amplification improves minority-mode recall
Please refer to RIW1.
R2W2: comparison with recent label-free debiasing methods

We incorporate comparisons with recent label-free debiasing methods: DDB |Ciranni et al.| (2025)),
DaC |[Noohdani et al.| (2024), and GERNE |Asaad et al.| (2025). DDB utilizes a diffusion model to
generate bias-aligned data, which amplifies the bias reliance of the bias model and provides useful
information for the debiasing process. DaC identifies the causal components of images using class
activation maps from models trained with ERM. It then intervenes on the images by combining these
components and retrains the model on the augmented data. Both DDB and DaC are specifically de-
signed for image data. GERNE assumes that the difference between the gradients of two batches
captures a debiasing direction and optimizes the model along this direction. The results are sum-
marized in Tablel, Table2 and Table4. Although DaC uses bias annotations during validation, its
performance on CelebA remains significantly lower than ours. Our method demonstrates substantial
advantages over GERNE and DDB across CelebA, CivilComments, and the multi-shortcut Urban-
Cars dataset. Notably, on UrbanCars, while DDB exhibits the smallest overall drops across different
bias-conflicting scenarios, its base .D. accuracy is the lowest among all compared methods.

R2W3: The performance on multi-bias scenarios The experiments on multi-bias (multi-shortcut)
scenarios may have been overlooked. We conducted experiments on the UrbanCars dataset, which
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contains multiple shortcuts (i.e., background and co-occurring objects). The corresponding results
and discussion can be found in Section 4.1 and Table 2.

Overall, our method consistently achieves the best balance between high I.D. accuracy and minimal
drops compared to other bias-agnostic methods, particularly on the challenging BG+CoObj gener-
alization. It performs comparably to — or better than — methods that rely on bias annotations.
These results confirm that our approach provides a general framework for handling multi-shortcut
scenarios.

R2W4: whether FG-CCDB can compensate for imperfect bias predictions

We have shown the performance of FG-CCDB under different mode partition qualities in Figure
[[fc), which may have been overlooked. By observing Figure 4(a), we find that repetition has a
particularly strong effect on minority groups: performance increases significantly after the first rep-
etition and then gradually converges. Accordingly, in Figure[I|c), the WGA obtained by subsequent
FG-CCDB shows a similar trend: it jumps from a relatively low accuracy after the first repetition and
then gradually converges to a stable value. We conclude that: (z) When MST provides poor mode
partitioning (“repeat0”), the errors are significant, and FG-CCDB is affected by these errors, result-
ing in relatively low WGA. (7¢) When MST provides acceptable mode partitioning (with a repetition
count of 1 or higher), the WGA of FG-CCDB increases and shows only marginal improvement with
further repetitions, even though the mode partition quality continues to improve. This indicates that
FG-CCDB can compensate for imperfect mode partitions once the partition quality is sufficiently
high.

R2Q1: how well the MST matches human labels? performance comparison results with the
latest methods

Please refer to R3W3 and R3W4 for a quantitative evaluation of MST’s performance. Please refer
to R2ZW2 for a comparison with the latest label-free and generative model-based methods.

R3W1: Definition of ‘mode’ and whether major biases are captured by MST

We define the “mode” (s,y) as a black-box concept because our goal is for s to capture general
and harmful bias information that humans may not preconceive |Li et al.| (2022b), rather than only
physically interpretable attributes. The value s represents spurious signals that an ERM model
prefers over core features and that consequently cause evaluation failures. We do not aim to model
spurious attributes are not preferred by ERM and therefore do not lead to generalization errors. In
this sense, model mistakes serve as indicators of harmful spurious correlations. Regarding the type
of bias we focus on, we clarify that our model is unlikely to fail to capture such harmful bias
cues. The reasons are as follows.

First, extensive prior works Nam et al.| (2020); [Pezeshki et al.| (2024); LaBonte et al.[|(2023b); [Zhao
et al.| (2025)); Lee et al.| (2023) operate under the widely accepted assumption that naive ERM tends
to misclassify or produce low-confidence predictions on bias-conflicting samples. These studies
demonstrate that ERM naturally learns spurious correlations, providing reliable learning signals for
debiasing.

Second, for stronger theoretical grounding, we connect our idea to the Equal Opportunity Fairness
(EOF) criterion [Li et al.|(2022b); |[Hardt et al.| (2016) and show that our method is equivalent to find
the bias cues that cause a classifier’s predictions to strongly violate this fairness criterion, as detailed
below.

Formally, a classifier f satisfies EOF criterion if:
Pr{y=k[s=0,y=k} =Pr{g =k|ls=1,y =k} (5)

where the LHS and RHS are the true positive rates (TPR) for negative (s = 0) and positive (s = 1)
groups in target class k € {1...K}. As noted in Li et al.| (2022b), a significant TPR discrepancy
between groups indicates that classifier f contains bias regarding s.

In our setting without bias annotations, we train an overfitted ERM and use its predictions s as a
general bias cues. Specifically, given a dataset D with spurious correlations, where minority groups
are non-empty and target labels are correct, we train an ERM model f on a small random subset of
D and evaluate it on the full dataset, obtaining accuracy a.
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* If a = 100%, TPRs for each (s,y) pair resemble Figure [/a). This implies that bias cues
are not preferred and f likely relies exclusively on core features. No debiasing is needed.

 If a < 100%, overfitting occurs, though to different degrees. The TPRs within each class
show severe violations of the EOF criterion (e.g., Figure b) for class k = 0, Pr{g =
0]s =0,y = 0} > Pr{§ = 0|s # 0,y = 0}), indicating that f indeed captures and relies
on the bias encoded in s.

Thus, in principle, as long as a < 100%, our method leveraging ERM overfitting reliably cap-
tures harmful implicit bias cues. Unlike |Li et al.|(2022b)), our approach directly identifies cues that
maximally violate EOF without requiring interleaving optimization.

a=100% Vi a<100%
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Figure 7: The hard confusion matrix and the TPRs. Take a 3-class classification task as an example,
with each class contains 100 samples.

R3W2: The hyperparameter choices in MST

In fact, we have conducted ablation studies on ~ in Figure 3(right) and discussed it in Section
4.4, which may have been overlooked. To further validate its robustness across datasets and bias
strengths, we include additional results on UrbanCars. These results consistently show that v =
10% serves as a sweet spot for maximizing the smallest-mode recall. Please refer to R1Q1 for our
discussion regarding the use of the top 50% high-confidence samples.

R3W3: On MST’s ability to capture complex biases in multi-shortcut scenarios

As we have pointed out in R3W1, we focus only on biases that are harmful — i.e., those that
cause ERM models to overfit and make incorrect predictions — and our goal is to correct them. If
the model overfits to “noise or irrelevant features” rather than physically interpretable biases, we
treat such noise or irrelevant features as harmful bias and aim to balance them to improve ERM
performance.

As demonstrated in Line 156 of the main manuscript, our model captures spurious cues that lead
to overfitting and, consequently, incorrect predictions. These cues may correspond to interpretable
shortcuts, combinations of multiple shortcuts, or entangled, uninterpretable patterns. Therefore,
when multiple competing biases exist, MST can reveal the full bias structure, representing multiple
competing biases within a single bias cue.

We have conducted experiments in Section 4.1 (Table 2) to demonstrate the effectiveness of our
method in complex multi-shortcut scenarios, which may have been overlooked. For example, in Ur-
banCars, there are two competing shortcuts (background and co-occurring objects) and our method
exhibits substantially less bias towards any specific background, co-object, or their combination,
even outperforming methods that rely on multiple shortcut annotations.

Additionally, we compare the Recall of bias-conflicting modes on UrbanCars obtained by XRM,
JTT, and our MST in Table 0] The results show that even under multi-shortcut conditions, our
method successfully identifies bias-conflicting samples covering all minority groups, whereas XRM
fails to capture group (0, 1, 1), and JTT fails to capture groups (0, 1,0), (0,1,1), and (1,1,0).
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Table 9: Recall of minority groups in UrbanCars predictions by MST, XRM, and JTT. Group
(e1,€e2,e3): ex = 0/1 indicates urban/country car, e; = 0/1 indicates urban/country object, and
es = 0/1 indicates urban/country background.

(0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0)

MST | 45.79% | 58.42% | 70.00% | 100.00% | 64.55% | 28.57%

XRM | 41.05% | 30.51% | 0.00% 60.00% | 10.12% | 14.06%
JTT 0.53% 0.00% 0.00% 10.00% 0.53% 0.00%

R3W4: Quantitative Comparison of MST with XRM and DebiAN.

The comparison with XRM and DebiAN on final debiasing performance was already provided in
Table 1 and Table 2 of the main manuscript (Section 4.1), which may have been overlooked. Simi-
larly, the comparison with XRM and JTT on bias capturing was already presented in Figure4(b) and
discussed in section 4.3, which also may have been overlooked. Theoretically, XRM trains its biased
model on a random half of the training data, which contains far more bias-conflicting samples than
ours, resulting in lower precision and recall on the smallest-mode. A similar explanation accounts
for JTT’s poor recall. DebiAN uses an alternating training scheme, where the classifier gradually
mitigates biases during the discovery phase, making it difficult for its discoverer to reliably predict
biases; therefore, we do not include DebiAN in the bias-capturing comparison.

To provide a more comprehensive evaluation, we have additionally included the F1-score in Figure
4(b). Our method consistently achieves the highest F1-score.

R3WS5: Fl-score to evaluate MST mode partitions.
Please refer to R3W4 for quantitative evaluation of MST-generated mode partitions.

The effect of the MST’s prediction quality on the subsequent FG-CCDB was already provided in
Figurel(c) and may have been overlooked. Please refer to R2ZW4 for a detailed discussion.

R3Q1: on further subdivision within modes or continuous weights.

We appreciate the reviewer’s insightful suggestion. While a mode may contain potential substruc-
tures, our assumption of intra-mode homogeneity is not a theoretical requirement but a practical
approximation, motivated by the following: (¢) the “mode” definition is conditioned on both the
predicted bias and the label (s, y). The auxiliary bias model partitions data according to the most
dominant spurious patterns revealed by ERM overfitting. This ensures that samples assigned to the
same mode share the most influential bias cues, which is sufficient for effective reweighting. In
practice, these dominant bias cues account for the majority of generalization errors, while finer-
grained variations within a mode have only marginal influence. (¢¢) Empirically, uniform per-mode
weighting is stable and effective. We experimented with an alternative design (i.e., entropy-based
intra-mode splitting that divides each mode into high-entropy and low-entropy subsets) but found it
introduced noise and degrades performance. For example, on Waterbirds, WGA drops from 90.56%
to 89.90%, and on cCIFAR10 with an extremely small bias-conflicting portion (the smallest group
contains only 19 samples), performance drops from 55.28% to 50.18%. This suggests that finer
intra-mode partitioning requires additional sub-bias cues to correctly guide matching, which are
unavailable under the current setting.

FG-CCDB focuses on mode-level bias amplification guided by dominant shortcuts. Incorporating
a more detailed internal structure is beyond the scope of this work. We therefore consider mode-
level homogeneity a reasonable and empirically validated design trade-off, with finer-grained mode
modeling left as future work.

R3Q2: Performance curves over additional iterations to demonstrate MST convergence.

We provide the mode partition and WGA results with additional repetition counts in Figure 8] The
results show that when the number of repetitions exceeds 3, the improvement in mode-partition
accuracy slows down and eventually converges to a stable point. Correspondingly, the WGA remains
nearly unchanged once the repetition count is greater than 2.

This behavior is expected. As repetitions progresses, bias-conflicting samples are gradually filtered
out, causing the bias-aligned ratio of the selected training subset to increase and eventually stabilize.
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Figure 8: Mode prediction recall (left) and WGA under varying mode prediction quality (right)
across repetitions of the “bias enhancement learning” procedure..

Table 10: The computation cost of compared Table 11: The running time (hour) of MST, evaluated

methods on cCIFAR10. on a single NVIDIA A40 GPU.
Our ERM uLA cCIFAR10 Waterbirds CelebA UrbanCars
Bias discovery 80 epochs NA 500 epoch MST 0.27h 0.35h 1.26h 0.14h
Debiasing {5000 iters~28 epochs|300 epoch|500 epochs

Once the learned bias model reaches a stable level of bias reliance, further top-confidence selection
no longer changes the bias-aligned ratio, and the mode partition consequently remains unchanged.

R3Q3: Computational cost of MST.

To avoid misunderstanding, uLA is also a two stage method. Compared to single-stage training
methods like ERM, the additional training time mainly comes from MST. However, this overhead
is acceptable in practical applications for the following reasons: (¢) In each MST stage, we use only
10%, 50%, 50%, and 50% of the training data, which significantly reduces the computational burden.
(i7) We observe that the ERM model already exhibits strong bias reliance in the early training phase
— a phenomenon widely reported in prior works. Therefore, we set a small number of epochs for
each MST stage. The main computation cost are compared in Table [T0] and the running-time of
MST is summarize in Table [TT]
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