


et al., 2018; Roznere and Quattrini Li, 2019; Skaff et al.,

2008) or complete absence of natural light, floating

particulates, blurriness, varying illumination, and lack of

features (Oliver et al., 2010)—for example, see

Figure 1—leaving an interesting gap to be investigated in

the current state-of-the-art.

In this work, we present a novel SLAM system, SVIn2,

targeted for underwater environments and easily adapt-

able for other domains—for example, indoor and

outdoor—by choosing a subset of different sensor con-

figurations including: visual (monocular, stereo camera,

or multi-camera), inertial (linear accelerations and an-

gular velocities), Digital Pipe Profiling Sonar (DPP-

sonar) (Imagenex Technology Corp, 2022)—that is, a

mechanical scanning profiling sonar—and/or water-depth

data. This makes our system versatile and applicable on-

board of different sensor suites and underwater vehicles.

We augmented the state-of-the-art visual-inertial state

estimation package OKVIS (Leutenegger et al., 2015) to

accommodate acoustic range data from a DPP-sonar in a

tightly-coupled non-linear optimization-based frame-

work. This augmentation improves the trajectory esti-

mate, especially when there is varying visibility

underwater, as the DPP-sonar provides robust informa-

tion about the presence of obstacles with accurate scale.

However, in long trajectories, drifts could accumulate

resulting in an erroneous trajectory. To account for drifts,

we introduced depth measurements from a water-pressure

sensor in the optimization process, loop-closing and

relocalization capabilities using the bag-of-words (BoW)

framework, and a more robust initialization process to

refine scale using water-depth measurements. These

additions enable the proposed approach to robustly and

accurately estimate the robot’s trajectory, where other

approaches have shown incorrect trajectories or complete

loss of localization.

To validate our proposed approach, first, we assessed

the performance of the proposed loop-closing method by

comparing it to other state-of-the-art systems on the

EuRoC micro-aerial vehicle (MAV) public dataset (Burri

et al., 2016), disabling the fusion of DPP-sonar and water-

pressure measurements in our system. Second, we tested

the proposed full system on several underwater datasets

obtained under a diverse set of conditions. More

specifically, underwater data—consisting of visual, in-

ertial, water depth, and acoustic range measurements—

have been collected using a custom-made sensor suite

(Rahman et al., 2018a) from different locales; further-

more, data were also collected by an Aqua2 underwater

vehicle (Dudek et al., 2005), including visual, inertial,

and water-depth measurements. The results on the un-

derwater datasets illustrate the loss of tracking and/or

failure to maintain consistent scale for other state-of-the-

art systems, while our proposed method maintains correct

scale without diverging. In the absence of ground truth

trajectories in underwater, we used COLMAP

(Schönberger et al., 2016)—an opensource Structure

from Motion (SfM) library—as a baseline for comparing

the performance of the proposed algorithm, SVIn2 (with

sonar and pressure sensor disabled) with other state-of-

the-art visual-inertial odometry/SLAM packages. Third,

we performed a 3D landmark-based validation to show

the estimation accuracy of SVIn2 using fiducial markers

(Fiala, 2005). Fourth, we tested our proposed system

using a recent public underwater dataset, named

AQUALOC (Ferrera et al., 2019). Fifth, we performed an

ablation study to observe the contribution of each sensor

to localization accuracy.

The contributions of this paper significantly extend the

preliminary results we presented in (Rahman et al., 2018b,

2019) with a more complete system description and addi-

tional experimental analysis, including an ablation study,

landmark-based validation, comparison with the SfM

package, and experiments on a public underwater dataset, as

briefly introduced above. The code is released opensource at

(Rahman, 2020).

The paper is structured as follows: the next section

discusses the current state-of-the-art on state estimation

underwater and above water. Section 3 provides an

overview of the proposed pipeline along with the ap-

proach developed for the image preprocessing step and

the notations used. Section 4 describes the mathematical

formulation and derivation of the tightly-coupled DPP-

sonar, stereo camera, inertial, and water-depth sensor

integration. Section 5 and Section 6 present the pose

initialization, and the loop-closure/relocalization step,

respectively. Experimental results from a publicly

available aerial dataset and a diverse set of challenging

underwater environments are presented in Section 7. We

then conclude this paper and discuss directions of

future work.

2. Related work

Researchers have studied the robot state estimation problem

for decades. Here, we highlight those specifically tailored

for underwater environments and the most recent ones on

visual-inertial state estimation. For a more complete

overview, the reader is encouraged to look at recent surveys

by Cadena et al. (2016) and Huang (2019).

Figure 1. Underwater cave in Quintana Roo, Mexico, where data

have been collected using an underwater stereo rig.
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2.1. Acoustic sensor based underwater

navigation

Paull et al. (2013) presented a review of the commonly used

sensors and general methods for AUV navigation and lo-

calization. More recently, Maurelli et al. (2021) discussed

active and passive localization techniques for AUVs. Sonar

(e.g., imaging sonar, scanning profiling sonar, and multi-

beam sonar) and/or camera are used to bound the odometry

drift from dead-reckoning system, that is, IMU or Doppler

Velocity Log (DVL).

Most of the underwater navigation algorithms

(Johannsson et al., 2010; Lee et al., 2005; Leonard and

Durrant-Whyte, 2012; Rigby et al., 2006; Snyder, 2010) are

based on acoustic sensors such as DVL and Ultra-Short

Baseline (USBL). DEPTHX (DEep Phreatic THermal

eXplorer) (Stone, 2007) designed by Stone Aerospace was

equipped with a number of sensors for mapping a cenote—a

vertical shaft filled with water (Gary et al., 2008)—in-

cluding an IMU, two depth sensors, a DVL, and 54 narrow

single-beam echosounders. Sunfish (Richmond et al.,

2018)—an underwater SLAM system using a multibeam

sonar, an underwater dead-reckoning system based on a

fiber-optic gyroscope (FOG) IMU, DVL, and pressure-

depth sensors—has been developed for autonomous un-

derwater cave exploration.

A number of works have tried to reduce the cost of the

underwater robot without requiring expensive DVL or

Inertial Navigation System (INS). Williams et al. (2000)

presented an EKF-based SLAM for an underwater robot

with a mechanical scanning sonar positioned to map the

horizontal plane. White et al. (2010) presented field ex-

periments for mapping and localization in ancient under-

water cisterns using a mechanical scanning sonar also

positioned to map the horizontal plane, using a particle filter.

Folkesson et al. (2007) used a blazed array forward-looking

sonar—composed of two sonar heads, one vertical and one

horizontal, giving a position in 3D for features detected by

both—for real-time feature tracking with a relatively lower-

cost AUV, without requiring DVL and expensive Inertial

Navigation System (INS). Building on top of the latter

work, Fallon et al. (2013) expanded the system to feature re-

acquisition. Mallios et al. (2016) demonstrated the first

results of an AUV performing limited penetration inside a

cave using a horizontally mounted scanning sonar as the

main sensor.

An imaging sonar based SLAM and 3D photomosaicing

algorithm has been proposed by Westman et al. (2018) and

Ozog et al. (2015), respectively. Teixeira et al. (2019)

presented dense reconstruction of underwater scenes us-

ing a multibeam sonar. McConnell et al. (2020) fused two

multibeam sonars, one placed horizontally and one verti-

cally, to address the uncertainty over the elevation angle.

Similarly, Joe et al. (2021) proposed a mapping sensor

configuration of multibeam sonar and profiling sonar ex-

ploiting the larger field-of-view covered by the first and the

narrow beam of the latter.

Early attempts for underwater localization with camera

were shown by Carreras et al. (2003), who presented a

landmark-based navigation. SLAM systems have been

studied with a downward-looking stereo camera (Eustice

et al., 2005, 2006) to map the Titanic. Corke et al. (2007)

compared underwater localization methods based on a

network of acoustic sensor nodes which are able to estimate

range between each other and based on vision, showing the

viability of using visual methods underwater in some

scenarios. Navigation and planning algorithms have been

proposed using cameras and imaging sonar for ship hull

inspection application with a Hovering Autonomous Un-

derwater Vehicle (HAUV) (Hong et al., 2019; Hover et al.,

2012). The same group also developed vision-only SLAM

system for the same application (Kim and Eustice, 2013;

Ozog and Eustice, 2014; Ozog et al., 2016). Recent work

fused stereo camera and DVL for underwater SLAM (Xu

et al., 2021).

Our work is in the direction of reducing the sensors

necessary for underwater SLAM, without requiring

DVL or expensive INS, as some of the works presented

above. We consider a different sensor configuration

where the mechanical scanning sonar is placed to map

the vertical plane, parallel to the image plane, so that

cave structures can be mapped, as will be discussed later

in the paper.

2.2. Visual-inertial state estimation

Vision is often combined with IMU for their complementary

characteristics: while cameras are exteroceptive sensors

capturing the external world, IMU provides information

about self-motion. In addition, combining vision with an

IMU can solve the scale issue in monocular vision-based

SLAM, as it can be used to estimate the motion between

camera frames. Gravity can also be estimated, which makes

two rotational degrees of freedom (DoF)—that is, absolute

pitch and roll—observable, providing another advantage of

integrating vision with IMU. In the following, we highlight

some of the state-of-the-art visual-inertial VIO and SLAM

methods. A class of state estimation approaches is based on

the Kalman Filter. Examples include the Multi-State

Constraint Kalman Filter (MSCKF) (Mourikis and

Roumeliotis, 2007)—which has been deployed in the un-

derwater domain (Shkurti et al., 2011b)—and its stereo

extension (Sun et al., 2018); ROVIO (Bloesch et al., 2017);

and REBiVO (Tarrio and Pedre, 2017). Another family of

methods optimizes the sensor states—typically within a

sliding window—formulating the problem as a graph op-

timization problem. Feature-based visual-inertial systems—

such as OKVIS (Leutenegger et al., 2015), Visual-Inertial

ORB-SLAM (Mur-Artal and Tardós, 2017), and ORB-

SLAM3 (Campos et al., 2021)—have an optimization

function that includes the IMU error term and the re-

projection error. The frontend tracking mechanism main-

tains a bounded window of keyframes and marginalizes

states and features which are never used again once out of

Rahman et al. 3



the window, to limit the computation required by the op-

timization. VINS-Mono (Qin et al., 2018) uses a similar

approach and maintains a minimum number of features for

each image. Existing features are tracked by Kanade–

Lucas–Tomasi (KLT) sparse optical flow algorithm in a

local window. While KLT sparse features allow VINS-

Mono to run in real-time on low-cost embedded systems,

this approach often results into tracking failure in chal-

lenging environments, for example, underwater environ-

ments with low visibility. In addition, for loop detection

additional features and their descriptors need to be com-

puted for keyframes. Delmerico and Scaramuzza (2018) did

a comprehensive comparison specifically monitoring re-

source usage by the different methods. A performance

evaluation of features for the underwater domain was

presented by Shkurti et al. (2011a) and by Quattrini Li et al.

(2016b), with a focus on shipwreck environments.

2.3. Why combining vision with acoustic sensor

for underwater environments

Vision-based underwater navigation is a difficult task due to

its highly unstructured nature. At the same time, camera is

one of the cheapest, small, light-weight, and energy-

efficient sensors, which provides rich and versatile infor-

mation about the surroundings. In our recent work (Joshi

et al., 2019), we compared the performance of open-source

visual-inertial systems in underwater datasets. The results

suggest that VO/VIO for both direct methods and feature-

based methods is challenging due to light and color at-

tenuation, blurriness, and floating particulates. Specifically,

for direct methods, the brightness constancy assumption is

often violated due to the frequent lighting variations. For

indirect methods, low contrast and particulates lead to

spurious features. Without the help of dead-reckoning, pure

VO frequently tends to lose track without motion prediction,

as it becomes difficult to track features reliably across

subsequent frames. Contrary to vision, sonar range mea-

surements are not affected by turbidity or light and color

attenuation, hence complementing the camera. DPP-sonar

improves the quality of 3D reconstruction by providing

features with scale which in turn helps in localization.

For robust tracking, visual-inertial state estimation

systems require proper initialization. ORB-SLAM with

IMU (Mur-Artal and Tardós, 2017) performs initialization

by first running a monocular SLAM to observe the pose and

then, IMU biases are estimated. VINS-Mono uses a loosely-

coupled sensor fusion method to align monocular vision

with inertial measurement for estimator initialization. In

addition to a good initialization, to mitigate the drift in

sliding window and marginalization-based state estimate,

loop closure—the capability of recognizing a place that was

seen before—is an important scheme. Currently ORB-

SLAM (Mur-Artal et al., 2015) and its extension with IMU

(Mur-Artal and Tardós, 2017) is one of the most reliable

feature-based SLAM systems that uses the bag-of-words

(BoW) approach for loop closure and relocalization. VINS-

Mono also uses the same technique. Another BoW-based

approach clustered a set of relevant regions, showing ro-

bustness to illumination change in areas that present sim-

ilarities (e.g., coral reef) (Maldonado-Ramı́rez et al., 2016).

Given the modularity of OKVIS in adding new sensors and

robustness in tracking in underwater environment, we de-

cided to extend OKVIS to include DPP-sonar data, water-

pressure measurements, loop closure capabilities, and a

more robust initialization with 2-step scale refinement using

water-depth, to specifically target underwater environments.

3. System overview and preliminaries

SVIn2 pipeline is depicted in Figure 2. The robot sensor

configuration can include camera (mono, stereo, or multi),

IMU, DPP-sonar, and a water-pressure sensor. The latter

Figure 2. Overview of the proposed approach, SVIn2; in yellow are the sensor feeds and their frequency; in green are the OKVIS

(Leutenegger et al., 2015) components; in blue are the components we introduced to handle acoustic range and water-depth data,

underwater visual effects, initialization, and loop closure and relocalization (Rahman et al., 2018b, 2019).
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two can be disabled to operate as a standard visual-inertial

system.

To cope with the challenges of underwater environments

described above, we augment the pipeline by adding an

optional image pre-processing step to improve feature de-

tection underwater. In particular, we use a contrast limited

adaptive histogram equalization (CLAHE) filter (Pisano

et al., 1998) in the image pre-processing step.

After the initialization of the SLAM system with IMU,

camera, and water-depth, the SLAM system uses images

to detect features and track them over time; IMU for

motion; and depth and DPP-sonar sensors—all of them

fed into a local optimization framework that minimizes

the error terms defined for each sensor. A bag-of-words

based loop closure mechanism corrects the drift accu-

mulated over time.

A sensor suite composed of a stereo camera, IMU,

pressure sensor, and a DPP-sonar with a field of view

covering 360◦ over a plane parallel to the image plane is

shown in Figure 3. The rationale to use the DPP-sonar in

that configuration is for mapping underwater cave struc-

tures. The following sections, after formally defining the

notation, symbols, and state representations used in the

subsequent parts of the paper, describe in detail the pro-

posed initialization, sensor fusion optimization, loop clo-

sure and relocalization steps.

3.1. Notations and states

We define the following coordinate frames for the complete

sensor suite: the i-th Camera Ci, IMU I, Depth (pressure) D,

DPP-sonar (acoustic range) S, and World W. A homoge-

neous transformation matrix XTY = [XRY |XpY] represents the

transformation between two arbitrary coordinate frames X

and Y, with rotation matrix XRY—the corresponding qua-

ternion is XqY—and position vector XpY. For example, X

and Y could be W and I, respectively, thus WTI identifies

the transformation matrix from IMU to World. XCY (q) is a

function that converts quaternion XqY to its equivalent

rotation matrix, XRY . The robot (R) state xR that the system

is estimating is defined as

xR ¼
h
Wp

T
I , Wq

T
I , Wv

T
I , b

T
g , b

T
a

iT
2R3 × SOð3Þ×R9 (1)

where WpI is the position, WqI is the attitude represented as a

quaternion, WvI is the linear velocity, all expressed in the

IMU reference frame I with respect to the world coordinate

W. The state vector also contains the gyroscopes and ac-

celerometers bias bg and ba.

For solving the state estimation problem, we define the

associated error-state vector in minimal coordinates. The

perturbation takes place in the tangent space of the state

manifold. The transformation from minimal coordinates to

tangent space can be done using a bijective mapping

(Blanco, 2010; Forster et al., 2017a; Leutenegger et al.,

2015) and the error for each component of the state vector

xR is

δχR ¼
h
δpT , δθT , δvT , δbT

g , δb
T
a

iT
2R15 (2)

where δθ2R3 is the minimal perturbation for rotation (can

be converted to its quaternion equivalent via exponential

mapping).

4. Tightly-coupled non-linear optimization

with sonar-visual-inertial-pressure

measurements

The proposed system fuses vision, acoustic range, inertial,

and water-pressure measurements within a tightly-coupled

non-linear optimization, where we define the cost function

as J(x), including the reprojection error er and the IMU error

eswith the addition of the DPP-sonar error et, and the water-

depth error eu

JðxÞ ¼
Xn

i¼1

XK

k¼1

X

j2J ði, kÞ

ei, j, k
T

r Pk
re

i, j, k
r þ

XK�1

k¼1

ek
T

s Pk
se

k
s

þ
XK�1

k¼1

ek
T

t Pk
t e

k
t þ

XK�1

k¼1

Pk
u

��eku
��2

(3)

where i denotes the camera index with landmark index j

observed in the kth camera frame. For example, in a stereo

camera system, n = 2, where left i = 1 and right i = 2 camera;

note that SVIn2 supports multi-camera systems with arbi-

trary n, starting from 1. Pk
r , P

k
s , P

k
t , and Pk

u represent the

information matrix (weights) of visual landmarks, IMU,

sonar range, and water-depth measurement for the kth frame,

respectively. Please note, visual landmarks, IMU, and sonar

measurements are vectors, while the depth measurement is a

scalar.

Intuitively, the IMU error term combines all acceler-

ometer and gyroscope measurements in between camera

measurements and represents the pose, speed, and bias

Figure 3. Custom-made sensor suite mounted on a dual DPV.

DPP-sonar scans around the sensor while the cameras see in

front. Please note, the setup is neutrally buoyant and balanced to

hover in place and upright without any support.
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error. The reprojection error captures the difference in pixels

between a keypoint measurement in camera coordinate

frameC and the corresponding landmark projection onto the

imaging plane according to the camera projection model.

Both reprojection and IMU error terms follow the formu-

lation of Leutenegger et al. (2015). The DPP-sonar error

describes the error between the acoustic range measurement

and the corresponding visual feature patch. Note that sonar

measurements provide additional points for a denser 3D

reconstruction. The depth error limits the error of the robot

position state in the gravity direction. The Google’s Ceres

Solver (Agarwal et al., 2015)—the non-linear optimization

framework—minimizes the cost function J(x) containing

such error terms to estimate the robot state xR in real-time.

For completeness, the next subsections discuss in detail

each error term.

4.1. IMU error term formulation

An IMU provides accelerometer and gyroscope readings.

Integration of these readings leads to a dead-reckoning

positioning system. The estimate from such an inte-

gration drifts quickly over time. Fusing dead-reckoning

with absolute positioning readings (for example, vision)

limits drifts. Below, we present the formulation of the

non-linear IMU kinematics and bias model; more spe-

cifically, the formulation of IMU kinematic model, the

linearized error-state model, and IMU measurement

error.

4.1.1. IMU kinematic model. We employ an IMU kinematic

model relating the raw gyroscope measurements, ωm and

raw accelerometer measurements, am from IMU to the real

angular velocity ω and the real linear acceleration a, at time

t, respectively, as

ωmðtÞ ¼ Iω ðtÞ þ bgðtÞ þ ngðtÞ

amðtÞ ¼ IaðtÞ þ baðtÞþIRW ðtÞWgþ naðtÞ (4)

In the above equation, the IMU measurements are taken

in its local frame, that is, I, which accounts for the gravity Wg

transformed with the rotation matrix IRW in the IMU ref-

erence frame, gyroscope bias bg, acceleration bias ba, and

additive noise. The additive noise both in acceleration

and gyroscope readings is assumed to be Gaussian white

noise with characteristics na ∼Nð03×1, σ2
a:I3×3Þ,

ng ∼Nð03×1, σ2
g:I3×3Þ, respectively. Similarly to the work

by Trawny and Roumeliotis (2005), we assume that the

noise is equal in all three spatial directions and that the

gyro and accelerometer biases are non-static and simu-

lated as a random walk process. The biases characteristics

are: nbg ∼Nð03×1, σ2
bg:I3×3Þ, nba ∼Nð03×1, σ2

ba:I3×3Þ. Fol-
lowing the formulation from Leutenegger et al. (2015),

the accelerometer bias is modeled as a bounded random

walk with time constant τ > 0, whereas the gyro bias is

modeled as random walk. The bias driving noise, that is,

nbg and nba, corresponds to the process noise, whereas the

rate noise, that is, nb and na, corresponds to the mea-

surement noise.

The differential equations that describe the

continuous-time IMU kinematics combined with bias

models are

I _qW ðtÞ ¼
1

2
V
�
ωmðtÞ � bgðtÞ � ngðtÞ

�
I
qW ðtÞ

_bgðtÞ ¼ nbgðtÞ

W _vIðtÞ ¼ WRIðtÞðamðtÞ � baðtÞ � naðtÞÞ�Wg

_baðtÞ ¼ �
1

τ
baðtÞ þ nbaðtÞ

W _pIðtÞ ¼ WvIðtÞ

(5)

where the matrix V is defined as

VðωÞ ¼
�bωc× ω

�ωT 0

� �
, bωc× ¼

0 �ωz ωy

ωz 0 �ωx

�ωy ωx 0

2

4

3

52 soð3Þ

4.1.2. Linearized error-state model. The continuous-time

linearized model of the error state takes the form of

δ _χR ¼

δ _p

δ _θ

δ _v

δ _bg

δ _ba

2

666666664

3

777777775

≈

0 0 I 0 0

0 �

�
ωm�bbg

�

×

0 � I 0

0 � bR
�
am�bba

�

×

0 � bR 0

0 0 0 0 0

0 0 0 0 �
1

τ
I

2

66666666666664

3

77777777777775

δp

δθ

δv

δbg

δba

2

666666664

3

777777775

þ

0 0 0 0

� I 0 0 0

0 � bR 0 0

0 0 I 0

0 0 0 I

2

666666664

3

777777775

ng

na

nbg

nba

2

666664

3

777775

¼FcðxRÞδχRþGcðxRÞn

(6)

where ð̂:Þ represents prediction and P.R× corresponds to the

skew-symmetric matrix associated with a vector.

Since the continuous-time system matrix Fc is constant

over the integration period, discrete-time linearized error

state transition matrix can be obtained by

FdðxR,ΔtÞ ¼ expðFcðxRÞΔtÞ
≈ I15 þ FcðxRÞΔt

(7)

where Δt is the integration time step. The covariance

propagation equation can be computed recursively by a
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first-order discrete-time covariance update, that is, with the

covariance W
p
R for the pth IMU measurement, it takes the

following form

W
pþ1
R ¼Fd

	
bxpR,Δt



W

p
RFd

	
bxpR,Δt


T

þGd

	
bxpR


QdGd

	
bxpR

T

Δt

(8)

where Qd ¼ diagðσ2
g:I3, σ

2
a:I3, σ

2
bg:I3, σ

2
ba:I3Þ is the diago-

nal matrix containing all the noise densities of the respective

processes.

4.1.3. IMU Measurement error formulation. We express

the IMU error term eks ðx
k
R, x

kþ1
R , zks Þ as a function of robot

states at time steps k and k + 1 (when the images are taken),

and all the IMU measurements zks , containing gyro and

accelerometer data in-between these time instances. We

assume an approximate normal conditional probability

density function f with zero mean and varianceWk
s , and the

associated conditional covarianceQðδbxkþ1
R jxkR, z

k
s Þ for given

robot states at camera measurements k and k + 1

f
�
eks jx

k
R, x

kþ1
R

�
≈N

�
0,Wk

s

�
(9)

Using the prediction equations, we can now formulate

the IMU error term as follows which is simply the difference

between the prediction based on the previous state and the

actual state

eks
�
xkR, x

kþ1
R , zks

�
¼

2

666666666666664

IR
k
W

�
Wbpkþ1

I � Wp
kþ1
I

�

2

�
Iq

k
WÄW

bqkþ1
I ÄWq

kþ1�1

I

�

1 : 3

IR
k
W

�
Wbvkþ1

I � Wv
kþ1
I

�

bb
kþ1

g � bkþ1
g

bb
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a � bkþ1
a

3

777777777777775

2R15

(10)

By applying the error propagation law, the associated

information matrix Pk
s is obtained by

Pk
s ¼ Wk

s

�1
¼

0

@ ∂eks

∂δbχkþ1

R

Q

�
δbxkþ1

R jxkR, z
k
s

�
∂eks

∂δbχkþ1

R

T

1

A
�1

(11)

4.1.2. Reprojection error formulation. The camera ob-

serves the visual features, which are used to update the

motion estimate of the robot. As in (Leutenegger et al.,

2015), these visual features are stereo-triangulated to create

the local map. With a window of a sparse set of the latest

camera frames/keyframes and their landmarks in the local

map, at first a 3D-2D matching is performed using pose

prediction from IMU to limit the search-space and then a

2D-2D matching takes place. In both matching steps,

outliers are rejected applying the chi-square test (3D-2D

matching) using IMU pose prediction and RANSAC.

The reprojection error is formulated as the difference

between the feature observation zi,j,k in image coordinates

and the projection of the corresponding 3D point Ci
pj on to

the image plane, where i is the camera index, and j is the 3D

landmark index which is visible in the kth image frame

ei, j, kr ¼ zi, j, k � hi

�
Ci
pj
�

(12)

here hi(�) denotes the camera projection model.

Assuming a perspective camera model, the feature

measurement with zero-mean, and Gaussian white noise,

ni,j,k is defined as

zi, j, k ¼
1

zi, j, k

"
xi, j, k

yi, j, k

#

þ ni, j, k (13)

2

664
xi, j, k

yi, j, k

zi, j, k

3

775 ¼ Ci
pj ¼ Ci

CIðqÞICW

�
qk
��

Wp
j � Wp

k
I

�
þ Ci

pI

(14)

The measurement Jacobian Hk is calculated as

Hk ¼ HprojCi
CIðqÞ

h
Hk

θ 03×9 Hk
p

i
(15)

Hproj, H
k
θ, and H

k
p are the Jacobian of the projection hi(.)

into the ith camera with respect to the landmark in the

homogeneous coordinates, orientation, and translation,

respectively

Hproj ¼
1

bzi, j, k

2

6666664

1 0 �
bxi, j, k

bzi, j, k

0 1 �
byi, j, k

bzi, j, k

3

7777775
(16)

Hk
θ ¼

��
ICW

�
bqk

� �
Wp

j � Wp
k
I

���

×

δθ (17)

Hk
p ¼ �ICW

�
bqk

�
(18)

4.3. DPP-sonar error term formulation

Acoustic range data, though sparser, provide robust infor-

mation about the presence of obstacles, where visual fea-

tures reside; thus DPP-sonar helps to correct the robot pose

estimate as well as to optimize the use of landmarks coming

from both vision and sonar. Due to the low visibility of

underwater environments, when it is hard to find visual

features, DPP-sonar provides features with accurate scale.

Rahman et al. 7



Figure 4 shows the visual-acoustic reconstruction using the

proposed approach.

The sonar range error follows the intuition that, when

the DPP-sonar detects any obstacle at some distance, the

visual features corresponding to the same obstacle will be

approximately at the same distance. Given the sensor

configuration shown in Figure 3, a particular challenge

arises: the DPP-sonar features are matched with the vi-

sual features after some time, due to the different field of

view covered by the two sensors—see Figure 5, where at

time k some features are detected by the camera; it takes

some time (until k + n) for the DPP-sonar to pass by these

visual features and thus obtain a related measurement. To

address this challenge, visual features detected in close

proximity to the DPP-sonar return are grouped together

to construct a patch. Then, to fuse range data from DPP-

sonar into the traditional VIO framework, the detected

visual patches in close proximity of each sonar point

introduce extra constraints: the distance of the sonar

point to the patch. Here, we assume that the visual-feature

based patch is small enough and approximately coplanar

with the DPP-sonar point. Figure 6 illustrates the relation

between DPP-sonar and visual features in the formulation

of the sonar error term.

Algorithm 1 shows how to calculate the range error ekt
given the robot position WpkI and the DPP-sonar measure-

ment zkt at time k. The DPP-sonar returns range r and

head_position θmeasurements, which are used to obtain each

sonar landmark Wl = [lx, ly, lz, 1] in homogeneous coordinates

by a geometric transformation in world coordinates

W l ¼
�
WTI ITS ½I3jr cosðθÞ, r sinðθÞ, 0�

T

S

�
(19)

Algorithm 1. DPP-sonar Range Error Algorithm

Input: Estimation of robot position WpkI at time k

Sonar measurement zkt ¼ ½r, θ� at time k

List of current visual landmarks, Lv

Distance threshold, Td
Output: Range error ekt at time k

/*Compute sonar landmark in world coordinates*/

1: W l ¼ ðWTI ITS ½I3jr cosðθÞ, r sinðθÞ, 0�TS Þ
/*Create list of visual landmarks around sonar

landmark*/

2: LS ¼ ˘
3: for ðevery li in LvÞ do

/*Compute Euclidean distance from visual landmark to

sonar landmark*/

4: dS ¼ kW l � lik
5: if (dS < Td) then

6: LS ¼ LS[li
7: end if

8: end for

9: br ¼
����WbpkI �meanðLSÞ

����
10: return r �br

The sonar range prediction is calculated using the lines

2–9 of Algorithm 1

br ¼
����Wbpk

I �meanðLSÞ

���� (20)

where LS is the subset of visual landmarks around the sonar

landmark and the range error term is formulated as the

difference between the two distances. Note that we ap-

proximate the visual patch with the centroid ðmeanðLSÞÞ, to
filter out noise on the visual landmarks.

Given the sonar measurement zkt , the error term

ekt ðWpkI , z
k
t Þ is used to correct the position Wp

k
I . We assume

an approximate normal conditional probability density

Figure 4. Sunken bus, Fantasy Lake Scuba Park, NC, USA. (left) Sample image of the data collected from inside the bus. (right) Top

view of the reconstruction. Yellow arrows represent the pose of the robot; green and red points derive from the visual and DPP-sonar

features, respectively.

Figure 5. The relationship between DPP-sonar range

measurement and stereo camera features. A visual feature

detected at time k is only detected by the DPP-sonar with a delay,

at time k + n, where n depends on the speed the sensor is moving.
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function f with zero mean and Wk
t variance, and the con-

ditional covariance Qðδbpk jzkt Þ, updated iteratively as new

sensor measurements are integrated

f
�
ekt jWp

k
I

�
≈N

�
0,Wk

t

�
(21)

The information matrix is

Pk
t ¼ Wk�1

t ¼

0

@ ∂ekt

∂δbpk
Q

�
δbpk

jzkt

�
∂ekt

∂δbpk

T

1

A
�1

(22)

The Jacobian can be derived by differentiating the ex-

pected range r measurement with respect to the robot

position

∂ekt

∂δbpk
¼

�
�lx þ Wpx

r
,
�ly þ Wpy

r
,
�lz þ Wpz

r

�
(23)

Water-depth error term formulation

The pressure sensor provides accurate depth measurements

based on the water pressure. Water-depth values are

extracted along the gravity direction which is aligned with

the z of the worldW—observable due to the tightly-coupled

IMU integration. The depth data at time k is given by

Wpz D
k ¼ dk � d0 (24)

More precisely, Wpz D
k ¼ ðdk � d0Þþ init disp from

IMU to account for the initial displacement along z axis

from IMU, which is the main reference frame used by visual

SLAM to track the sensor suite/robot.

With depth measurement zku, the depth error term

ekuðWpz I
k , zkuÞ can be calculated as the difference between the

robot position along the z direction and the depth data. The

error term can be defined as

eku
�
Wpz I

k , zku
�
¼


Wpz I

k � Wpz D
k
 (25)

The weight Pk
u is calculated using the noise variance of

the sensor following a similar approach as the sonar, and the

Jacobian is straight-forward to derive.

5. Initialization: Two-step scale refinement

Tightly-coupled non-linear systems require a robust and

accurate initialization for a successful state estimation, as

described in (Mur-Artal and Tardós, 2017; Qin et al., 2018).

Our comparative study of visual-inertial based state esti-

mation systems in (Joshi et al., 2019), for underwater en-

vironments, shows that most of the state-of-the-art systems

fail to initialize or make a wrong initialization leading to

divergence of the state estimation process. In this work, we

propose a method for robust initialization, which uses

camera, IMU, and depth estimate from the water-pressure

sensor. Using all these three sensors introduces constraints

on scale, allowing a more accurate estimation during ini-

tialization. While acoustic range measurements are used by

the tightly-coupled optimization, they have not been used

for initialization, because of the data association challenge

described in the previous section: if the robot is not moving,

there is no match between acoustic range and visual

features—see Figure 3. As such, if DPP-sonar were used for

initialization, considering the sensor configuration, there

would be a significant delay to initialize and an area would

be un-mapped until DPP-sonar and camera acquire a

common field-of-view.

The proposed initialization works as follows. First, the

system requires a minimum number of visual features to

track (in our experiments 15 worked well). This requirement

avoids the initialization in a featureless scenario, for ex-

ample, water with a few floating particulates as features.

Second, the initial scale from the stereo vision is refined in

two steps.

The first step uses the accurate depth measurement

provided by the pressure sensor to correct the initial scale

factor estimated from the camera. In particular, including a

Figure 6. DPP-sonar error formulation.
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scale factor s1, the transformation between camera Ci and

depth sensor D can be expressed as

Wpz D ¼ s1∗Wpz Ci
þ WRz Ci Ci

pD (26)

For frame k, solving the above equation for s1 provides

the first refinement r1 of the initial camera scale Wpr1Ci
, that

is

Wpr1Ci
¼ s1∗WpCi

(27)

The second step aligns the refined measurement from

camera in equation (27) with the IMU pre-integral values.

Similar to the first step, the transformation between camera

Ci and IMU I can be expressed as

WpI ¼ s2∗Wpr1Ci
þ WRCiCi

pI (28)

with scale factor s2.

On top of the two-step scale refinement, our method ap-

proximates initial velocity and gravity vector similarly to (Qin

et al., 2018). From the continuous formulation in Section, the

discrete prediction of the state from IMU measurements be-

tween two consecutive frames k and k + 1, considering a time

interval Δtk, kþ1 2 ½tk , tkþ1� can be written as

Wbpkþ1

I ¼ Wp
k
I þ Wv

k
IΔtk, kþ1 �

1

2 WgΔt
2
k, kþ1

þ WR
k
I α

kþ1
Ik

Wbvkþ1

I ¼ Wv
k
I � WgΔtk, kþ1 þ WR

k
I β

kþ1
Ik

(29)

Re-arranging equation (29) with respect to αkþ1
Ik

, βkþ1
Ik

which are IMU pre-integration terms representing the

motion between k and k + 1 within Δtk,k+1, results in

αkþ1
Ik

¼ IR
k
W

�
Wbpkþ1

I � Wp
k
I � Wv

k
I
Δtk, kþ1

þ
1

2 WgΔtk, kþ1
2

�

βkþ1
Ik

¼ IR
k
W

�
Wbvkþ1

I � Wv
k
I þ WgΔtk, kþ1

�
(30)

In equation (30), substituting Wbpkþ1
I and Wp

k
I by equation

(28), we can estimate χS ¼ ½vkI ,…, vkþn
I ,Wg, s2�

T
by solving

the linear least square problem in the following form

min
χS

X

k2K

���ẑkþ1
Sk

�Hkþ1
Sk

χS
��2

(31)

where ẑ
kþ1
Sk

¼
bαkþ1
Ik

� IR
k

WWR
kþ1
Ci

Ci
pkþ1
I þ IR

k
CiCi

pkI

bβ
kþ1

Ik

2

4

3

5

and Hkþ1
Sk

¼

�IΔtk, kþ1 0 1
2 IR

k
WΔtk, kþ1

2
IR

k
W

�
Wpr1Ci

kþ1 � Wpr1Ci

k
�

�I IR
k
WWR

kþ1
I IR

k
WΔtk, kþ1 0

" #

6. Loop-closing and relocalization

Any sliding window and marginalization based optimiza-

tion method suffers from drift on the pose estimate, which

accumulates over time. To eliminate this drift and to achieve

global consistency, we add a global optimization and re-

localization scheme. We adapt DBoW2 (Gálvez-López and

Tardós, 2012), a bag of binary words (BoW) place rec-

ognition module, and augment OKVIS for loop detection

and relocalization. The BoW database contains the de-

scriptors of the keypoints detected in each keyframe during

the local tracking. The loop closure step will use the existing

features detected during the tracking step.

Our method maintains a pose-graph representing the

connection between keyframes, where a node represents a

keyframe and an edge between two keyframes exists if the

matched keypoints ratio between them is more than 0.75.

Our experiments show that the resulting pose graph is

very sparse. Using such a graph, with each new keyframe,

the loop-closing module looks only for candidates in the

BoW database, which are outside the current marginal-

ization window and have a score greater than or equal to

that of the neighbor keyframes of the node checked in the

pose-graph. If a loop is detected, the method retains the

candidate with the highest score and adds a connection

between the current keyframe in the local window and the

loop candidate keyframe, with their feature correspon-

dences. Accordingly, the pose-graph is updated with loop

information. A 2D-2D descriptor matching and then a

geometric validation is performed via a 3D-2D matching

between the known landmark in the current window

keyframe and the loop candidate with outlier rejection by

PnP RANSAC.

The loop detection triggers the global relocalization

module, which performs an alignment between the current

keyframe pose in the local window with the pose of the loop

keyframe in the pose-graph. This alignment is communi-

cated to the windowed sonar-visual-inertial-pressure opti-

mization thread, as a drift correction. The estimate is further

improved with an additional optimization step—similar to

equation (3): the DPP-sonar and reprojection error terms are

calculated considering the matched landmarks with loop

candidate; see equation (32)

JðxÞ ¼
Xn

i¼1

XK

k¼1

X

j2Loopði, kÞ

ei, j, k
T

r Pk
re

i, j, k
r þ

XK�1

k¼1

ek
T

t Pk
t e

k
t

(32)

After loop detection, a 6-DoF (position and rotation, xT =

[xp, xq]) pose-graph optimization takes place over relative

constraints between poses to correct the drift. The relative

transformation between two poses Ti and Tj for current

keyframe i in the current window and keyframe j (either loop

candidate keyframe or connected keyframe) can be calculated

from ΔTij ¼ TjT
�1
i . The error term, ei, jxT between keyframes i

and j is formulated minimally in the tangent space
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ei, jxT ¼ ΔTij
bTi
bT
�1

j (33)

where ðb_Þ denotes the estimated values obtained from local

sonar-visual-inertial-depth optimization. The cost function

to minimize is given by

JðxTÞ ¼
X

i, j

ei, jxT
TPi, j

xT
ei, jxT þ

X

ði, jÞ2Loop

ρ
	
ei, jxT

TPi, j
xT
ei, jxT



(34)

where Pi, j
xT

is the information matrix set to identity, as in

(Strasdat, 2012), and ρ is the Huber loss function to down-

weigh any incorrect loops.

7. Experimental results

We validate SVIn2, the proposed state estimation system,

first on a standard dataset, to ensure that loop closure and the

initialization work also above water. During this validation,

SVIn2 is also compared to other state-of-the-art methods—

that is, VINS-Mono (Qin et al., 2018), the basic OKVIS

(Leutenegger et al., 2015), and the MSCKF (Mourikis and

Roumeliotis, 2007) implementation from the GRASP lab

(Research group of Prof. Kostas Daniilidis, 2018). Second,

we test the proposed approach on several different under-

water datasets collected with a custom-made sensor suite

(Rahman et al., 2018a) and an Aqua2 AUV (Dudek et al.,

2005). Third, we perform an ablation study to assess the

contribution of each sensor. Finally, we validate the pro-

posed approach using a publicly available underwater

dataset.

The experiments were run on a desktop computer with an

Intel i7-7700 CPU @ 3.6 GHz, 32 GB RAM, running

Ubuntu 16.04 and ROS Kinetic, and on an Intel NUC that is

on-board of the robots, with an Intel i3-6100U CPU @

2.3 GHz and 16 GB RAM.

7.1. Validation on visual-inertial benchmark

As standard benchmark dataset used by many visual-inertial

state estimation systems—including OKVIS (Stereo),

VINS-Mono, and MSCKF—we consider EuRoC dataset

(Burri et al., 2016), composed of sensor data collected with

an aerial drone. We disable water-depth and DPP-sonar

integration in our method and only assess the loop-closure

scheme, as such sensors are not available in EuRoC.

Following the current benchmarking practices, ground

truth and estimated trajectory are aligned, by minimizing the

least mean square errors between estimate/ground-truth

locations, which are temporally close, varying rotation and

translation (Umeyama, 1991). After such an alignment, the

error for each pair of ground truth/estimated pose is

calculated—the Absolute Trajectory Error (ATE). The Root

Mean Square Error (RMSE) of the ATE is calculated for the

translation—shown in Table 1 for several Machine Hall

sequences in the EuRoC dataset. For each package, every

sequence has been run 5 times and the best run (according to

RMSE) is taken. Our method shows reduced RMSE in

every sequence compared to OKVIS. This validates the

improvement of pose-estimation after loop-closing.

SVIn2 has also lower RMSE than MSCKF and comparable

results to VINS-Mono. Figure 7 shows the trajectories for

each method together with the ground truth for one of the

Machine Hall sequences.

More recently, ORB-SLAM3 (Campos et al., 2021),

Kimera (Rosinol et al., 2020), VI-DSO (Von Stumberg

et al., 2018) report even lower RMSE, with ORB-

SLAM3 showing the lowest in EuRoC dataset. As such, we

compared performance of SVIn2 with ORB-SLAM3 in the

underwater datasets.

Table 1. The best Absolute Trajectory Error (RMSE) in meters for each Machine Hall EuRoC sequence.

SVIn2 OKVIS(stereo) VINS-Mono MSCKF

MH 01 0.13 0.15 0.07 0.21

MH 02 0.08 0.14 0.08 0.24

MH 03 0.07 0.12 0.05 0.24

MH 04 0.13 0.18 0.15 0.46

MH 05 0.15 0.24 0.11 0.54

Figure 7. Trajectories on the MH 04 sequence of the EuRoC

dataset.
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7.2. Validation on underwater datasets

SVIn2 is tested on four different underwater datasets,

where DPP-sonar and water-depth sensors are available

and can be fused together with the visual-inertial data, to

fully exploit our system. After describing the datasets and

the experimental setup, we evaluate the trajectories. Since

there is no ground truth in unstructured underwater en-

vironments, we evaluate the performance first in com-

parison with a global bundle adjustment system,

COLMAP (Schönberger et al., 2016); and second using

fiducial tags placed in the environment. The tags are placed

securely in the environment and are observed multiple

times during the experiments.

7.2.1. Dataset description. The experimental data were

collected using a custom-made sensor suite (Rahman et al.,

2018a) (see Figure 3) and an Aqua2 robot (Dudek et al.,

2005). Both are equipped with a stereo camera, an IMU, and

a pressure sensor. The custom-made sensor suite addi-

tionally contains a DPP-sonar. More specifically, two USB-

3 uEye cameras in a stereo configuration provide data at

15 Hz; a MicroStrain 3DM-GX4-15 IMU generates inertial

data at 100 Hz; the Bluerobotics Bar30 pressure sensor

provides pressure data at 1 Hz; and an IMAGENEX 831L

mechanical scanning profiling sonar sensor acquires a full

360◦ scan every 4 s. An Intel NUC running Linux and ROS

consolidates all the data. A video light is attached to the

sensor suite unit to provide artificial illumination of the

scene. The DPP-sonar is mounted on top of the main unit

which contains the remaining electronics.

The datasets have been collected in three environments

with different characteristics:

· Bus: a sunken bus in Fantasy Lake (NC), where data

was collected by a diver with the custom-made un-

derwater sensor suite (Rahman et al., 2018a). The

diver started from outside the bus, performed a loop

around, entered in it from the back door, exited

across, and finished at the front-top of the bus. The

images are affected by haze, strong lighting varia-

tions, and low visibility.
· Cavern1 and Cavern2: a diver collected data with the

same underwater sensor suite from an underwater

cavern in Ginnie Springs (FL). The datasets contain

several loops, around one spot in Cavern1 and two

spots in Cavern2. The environment is characterized

by complete absence of natural light and is illumi-

nated by the video light attached to the sensor suite.
· Cemetery: an AUV—Aqua2 robot—collected data

over a fake underwater cemetery in Lake Jocassee

Table 2. The ATE RMSE in meters and the tracking duration as a percentage of the total trajectory for each underwater dataset compared

to the COLMAP estimated trajectory (the lowest RMSE and longest percentage tracking duration are shown in bold). SVIn2, OKVIS,

and ORB-SLAM3 all use stereo-inertial data; VINS-Mono uses monocular-inertial data. COLMAP only tracked the complete path for

Cavern1 and Cavern2, while tracked partially for Bus and Cemetery. All packages are tested both in the presence and absence of CLAHE

filter.

With CLAHE Without CLAHE

SVIn2 OKVIS VINS-Mono ORB-SLAM3 SVIn2 OKVIS VINS-Mono ORB-SLAM3

Bus (partial) 0.2092 0.5109 0.0742(part.) 1.6672(part.) 0.6822(part.) 0.7775(part.) 0.0747(part.) -

89% 100% 100% 21% 79% 70% 70% 20.8% 0%

Cavern1 0.1243 0.2089 1.0155(part.) 0.2523(part.) 0.1096 0.1154 0.8670 0.1553(part.)

100% 100% 100% 99% 85% 100% 100% 100% 94%

Cavern2 0.1722 0.3814 0.3464(part.) 2.4199(part.) 0.1237 0.3725 0.7839(part.) 0.3813(part.)

100% 100% 100% 26.7% 28.7% 100% 100% 93% 88%

Cemetery (partial) 0.2421 1.0868 1.2291 0.8143(part.) 0.6996(part.) 1.1026(part.) - 0.2165(part.)

97% 100% 100% 100% 86% 65.5% 65.5% 0% 30%

Figure 8. (a) The pre-processing result with CLAHE filter and (b) the corresponding raw image on fake cemetery dataset.
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(SC) and performed several loops around the

tombstones in a square pattern. The visibility, as well

as brightness and contrast, was very low.

7.2.2. Trajectory evaluation using COLMAP as a com-

parative baseline. Given the absence of GPS in underwater

environments and of a motion capture system that can work

in unstructured environments, we use COLMAP

(Schönberger et al., 2016), an open-source Structure-from-

Motion library, to generate comparative baseline trajectories

for each underwater dataset. Loop detection was enabled via

vocabulary tree search. COLMAP performs best among the

conventional state-of-the-art multi-view stereo algorithms,

as it uses tight integration of multiple techniques—for

example, robust neighbor view selection and incorpora-

tion of visibility constraints. COLMAP provides an esti-

mation on the shape of the trajectories; however, such

trajectories cannot be considered as absolute ground truth.

Even after introducing the stereo baseline constraint, we

observed that the global optimization reduced the re-

projection error, but did not converge. In addition, COL-

MAP could produce only partial trajectories for some of the

datasets due to the water turbidity, low visibility, and lack of

good features to track for a longer period in the scene—an

indication that vision-only state estimation for underwater

environments is not reliable. Therefore, we aligned the

estimated trajectories with scale for our system as well as

the other open-source visual-inertial packages with respect

to COLMAP and calculated ATE for each of them.

Table 2 shows the RMSE of the ATE for the different

underwater datasets both in the presence and absence of

CLAHE filter. MSCKF has been excluded from the table as

it failed to track in all of them. VINS-Mono and ORB-

SLAM3 could track only partially in most of the datasets

and the RMSE is reported only for that part of the trajectory.

SVIn2 has the lowest RMSE and tracks successfully in each

of the datasets. All four systems—SVIn2, OKVIS, VINS-

Mono, and ORB-SLAM3—have improved performance

(i.e., lower ATE RMSE and longer tracking duration) when

CLAHE is used for Bus and Cemetery datasets, while

CLAHE causes degradation of performance for Cavern1

and Cavern2 datasets. We observed that, CLAHE filter

improves the performance by helping in feature detection

and tracking (see Figure 8) in the presence of haze and low

contrast. Such datasets can be identified by checking if the

image histogram lies within a narrow region. We advise to

use CLAHE only for those datasets.

Figures 9–12 show the trajectories from SVIn2, OKVIS,

ORB-SLAM3, and VINS-Mono together with the trajec-

tories generated by COLMAP in the datasets just described.

For a fair comparison, when the trajectories were compared

against each other, DPP-sonar and pressure data were

disabled in SVIn2.

Figure 9 shows the results for the submerged bus dataset.

In particular, even using a histogram equalization or a

CLAHE filter, VINS-Mono lost track when the exposure

increased for quite some time and tracked only 21% of the

total duration—the reported RMSE is calculated for this

tracked part only. Without CLAHE, VINS-Mono produces

similar result as above. ORB-SLAM3 trajectory showed

high drift when the exposure increased and lost track just

after entering the bus from the back door, resulting in 79%

of tracking duration with CLAHE. It tried to re-initialize,

but it was not able to track successfully. Without CLAHE,

ORB-SLAM3 cannot track at all and loses track immedi-

ately after initialization. Even if the scale drifted, OKVIS

was able to track using a CLAHE filter in the image pre-

processing step. Without the filter, it lost track at the high

exposure location. Our proposed method was able to track,

detect, and correct the loop, successfully with CLAHE.

Without CLAHE, it tracked partially with a 70% duration.

In Cavern1—see Figure 10—VINS-Mono tracked suc-

cessfully the whole time. However, as can be noticed in

Figure 10(c), the scale was incorrect based on empirical

observations during data collection. ORB-SLAM3 lost

track two times, each for about 10–20 s, but was able to

relocalize. OKVIS instead produced a good trajectory, and

SVIn2 was also able to detect and close the loops. CLAHE

has not been used for any of the SLAM systems mentioned

above, including SVIn2: the water was clear and CLAHE

produces worse results.

In Cavern2—see Figure 11—VINS-Mono lost track at

the beginning, reinitialized, was able to track for some

time, and detected a loop, before losing track again. VINS-

Mono had even worse behavior if the images were pre-

processed with different filters. ORB-SLAM3 lost track

while taking a turn, and recovered using the relocalization

module—leading to a 88% total tracking duration. OKVIS

tracked well, but as drifts accumulated over time, it was not

able to join the current pose with a previous pose where a

loop was expected. SVIn2 was able to track and reduce the

drift in the trajectory with successful loop closure. CLAHE

has not been used in any systems for the same reason as for

Cavern1.

In the Cemetery dataset—see Figure 12—both VINS-

Mono and OKVIS were able to track with CLAHE, but

VINS-Mono was not able to reduce the drift in trajectory,

while SVIn2 (with CLAHE) was able to correct the loops.

Without the filter, none of the above systems works well.

ORB-SLAM3 was able to track partially, 86% of total

duration with CLAHE. Without the filter, ORB-SLAM3’s

tracking duration is 30%.

We also recorded the mean processing time per frame of

each SLAM system and reported the corresponding run-

time analysis in Table 3. The results show that SVIn2 has

comparable processing time with other SLAM systems,

despite the additional sensors. Note that OKVIS has a lower

processing time compared to others because it does not

perform any pose graph optimization or loop closure, re-

sulting in higher drift than the other SLAM systems.
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Figure 12. (a) Aqua2 in a fake cemetery, Lake Jocassee, SC, USAwith a 80 m trajectory; (b) trajectories from SVIn2 with visual, inertial,

and water-depth sensor (no DPP-sonar data has been used) shown in rviz; and (c) scale aligned trajectories with COLMAP

(comparative baseline), SVIn2 with DPP-sonar and water-depth disabled, OKVIS, VINS-Mono, and ORB-SLAM3 (CLAHE has been

used in all systems for improved visibility) are displayed.

Figure 9. (a) Submerged bus, Fantasy Lake, NC, USAwith a 53 m trajectory; (b) trajectories from SVIn2 with all sensors enabled shown

in rviz; and (c) scale aligned trajectories with COLMAP (comparative baseline), SVIn2 with DPP-sonar and water-depth disabled,

OKVIS, VINS-Mono, and ORB-SLAM3 (CLAHE has been used in all systems for improved visibility) are displayed.

Figure 10. (a) Cave environment, Ballroom, Ginnie Springs, FL, USA, with a unique loop covering a 87 m trajectory; (b) trajectories

from SVIn2 with all sensors enabled shown in rviz; and (c) scale aligned trajectories with COLMAP (comparative baseline),

SVIn2 with DPP-sonar and water-depth disabled, OKVIS, VINS-Mono, and ORB-SLAM3 (CLAHE has not been used in any of the

systems) are displayed.

Figure 11. (a) Cave environment, Ballroom, Ginnie Springs, FL, USA, with two loops in different areas covering a 155 m trajectory; (b)

trajectories from SVIn2 with all sensors enabled shown in rviz; and (c) scale aligned trajectories with COLMAP (comparative

baseline), SVIn2 with DPP-sonar and water-depth disabled, OKVIS, VINS-Mono, and ORB-SLAM3 (CLAHE has not been used in any

of the systems) are displayed.
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7.2.3. AR-tag based validation. In the absence of absolute

ground-truth, we used 3D landmark-based validation with

AR-tags (fiducial markers) to quantify the accuracy of our

SLAM method. More specifically, we observe how much

the pose of the AR-tags deviates from their mean over the

whole length of the trajectory: if the drift in trajectory is

corrected properly, we should observe the marker at the

same location in multiple visits during the whole experi-

ment. Note that the accuracy of pose of the marker is also

subject to the accuracy of relative pose estimation between

the marker and camera.

As for the experimental setup, only Cavern-2 dataset had

a set of six AR-tags printed on waterproof paper placed at a

fixed location in the cavern. The dataset contains five loops,

where the tags can be observed. To determine the relative

pose between camera and the tags, we used ROS

ar_track_alvar1 package with a very low error in marker

detection (five of the six tags were used due to a discol-

oration on the sixth tag). Once the relative pose information

from ar_track_alvar is obtained, the pose of the marker can

be obtained by a simple geometric transformation. For-

mally, WTk
M ¼ WTk

CiCi
Tk
M where WTk

M is the marker pose in

World coordinate frame W at time k, WT
k
Ci
is the pose of the

camera Ci in W at time k (produced by SLAM/odometry

system), and Ci
Tk
M is the relative transformation between

camera Ci and marker M at time k (produced by

ar_track_alvar).

Figure 13 shows the displacement from the mean po-

sition of the markers over the whole length of the trajectory

for each package plotted over time. The tag was detected at

five distinct instances. Table 4 shows the summary of the

standard deviation (SD) for translation and orientation

components. SVIn2 is the one with the lowest standard

deviation. This result indicates that SVIn2 produces the

most consistent estimation, sometimes even having a better

estimate compared to COLMAP.

In Figure 14, the poses from where the markers were

observed in SVIn2, OKVIS, VINS-Mono, and ORB-

SLAM3 together with the location of the markers (in ma-

genta) are shown. Figure 14(g) shows that, during the five

loops the tags appear together in SVIn2—indicating very

low drift in the trajectory. On the other hand, OKVIS

Table 3. Run-time comparison of SVIn2 with other SLAM

methods on a desktop computer with an Intel i7-7700 CPU @

3.6 GHz, 32 GB RAM.

Mean

processing time (ms)

SVIn2 (all sensors) 118

ORB-SLAM3 (stereo-in) 115

OKVIS (stereo) 57

VINS-Mono 198

Table 4. Standard deviation in translation and rotation for the detected tags and average distance error (lowest standard deviation is

marked in bold). CLAHE has not been used for any of the systems.

tx (m) ty (m) tz (m) Avg dist. error (m) Yaw, ψ (deg) Pitch, θ (deg) Roll, f (deg)

COLMAP 0.069 0.022 0.065 0.048 1.61 0.67 1.08

SVIn2 0.036 0.032 0.038 0.026 5.12 1.00 5.79

OKVIS (Stereo) 0.498 0.578 0.120 0.422 23.08 12.48 20.52

VINS-Mono 0.316 0.165 0.155 0.265 58.55 6.70 31.05

ORB-SLAM3 (Stereo-in) 0.464 1.365 0.693 0.837 54.52 34.26 11.57

Figure 13. Time versus displacement error of tags.
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(Figure 14(h)), VINS-Mono (Figure 14(i)), and ORB-

SLAM3 (Figure 14(j)) show higher error, with tags that are

spread around.

7.3. Ablation study

We performed two ablation studies on (1) the initialization

and (2) the SLAM system as a whole, looking at the impact

of the different sensors.

7.3.1. Initialization with different sensor configuration. We

study how different combinations of sensors affect the pose

estimation accuracy with our proposed initialization

method. To isolate the immediate initialization effect from

loop closure, in this analysis, we calculate the ATE RMSE

of SVIn2 compared to COLMAP within a small area rather

than the whole trajectory. In particular, we considered the

portion of the Cavern2 dataset, where two tags are placed at

a manually measured distance of approx. 7 m. Table 5

shows the Stereo setup to have the most impact in improving

the accuracy, while the pressure sensor provides a slight

improvement. The Stereo + Pressure combination has the

lowest RMSE.

7.3.2. SVIn2 with different combination of sensors and loop

closure. This section studies how the presence/absence of

different sensors and the loop-closure component affects

the pose estimation accuracy. As we don’t have an ab-

solute ground-truth trajectory underwater, we use the

displacement of the 3D landmarks (AR-tags) in the

Cavern2 dataset as a metric to evaluate the accuracy of

state estimation. Table 6 shows the average distance error

and standard deviation in each translation and rotation

component of the AR-tags with/without loop-closure

component, with/without DPP-sonar, and with/without

pressure sensor in SVIn2.

Figure 14. (a)–(e) trajectories from COLMAP, SVIn2, OKVIS, VINS-Mono, and ORB-SLAM3, respectively, with poses (solid circles

on the trajectories) from where the tags are observed and poses of the tags. The corresponding zoomed-in version (f)–(j).

Table 5. Ablation study for the initialization method using

COLMAP (lowest RMSE is marked in bold).

SVIn2 config ATE RMSE (m)

Mono 0.0401

Mono-pressure 0.0385

Stereo 0.0224

Stereo-pressure 0.0205

Table 6. Ablation Study using displacement of 3D landmarks as evaluation metric (lowest standard deviations are shown in bold).

Loop closure DPP-sonar Pressure sensor SD tx(m) SD ty(m) SD tz(m) Avg dist error (m)

SD yaw,

ψ(deg)

Pitch,

θ(deg)

Roll,

f(deg)

3 × × 0.0364 0.0325 0.0380 0.0261 5.1289 1.0040 5.7990

3 3 × 0.0277 0.0243 0.0257 0.0198 5.9044 1.3722 5.6155

3 × 3 0.0315 0.0307 0.0129 0.0313 6.0991 0.9450 6.4602

3 3 3 0.0312 0.0192 0.0223 0.0153 4.8941 1.3268 4.4823

× × × 0.4983 0.5788 0.1203 0.4221 23.0878 12.4848 20.5298

× 3 × 0.2778 0.5675 0.2454 0.2373 22.2291 12.4886 20.5340

× × 3 0.3951 0.6424 0.1580 0.2162 24.6572 12.4809 20.5273

× 3 3 0.3091 0.5726 0.1198 0.1248 22.4677 12.4797 20.5280
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Loop-closure (first 4 rows) has the most contribution

towards producing a drift-free trajectory. Nevertheless,

loop-closure + DPP-sonar + pressure sensor produces

the least average distance error. As the error terms by

DPP-sonar and pressure sensor create constraints only

for the translation components of the robot, the rota-

tional components (roll, pitch, yaw) are similar re-

gardless of the use of the DPP-sonar and/or the pressure

sensor.

Without loop-closure (last 4 rows), the contributions of

DPP-sonar and pressure sensor become more visible. Using

only the pressure sensor (second row from the bottom)

shows reduced error along Z-axis. DPP-sonar + pressure

sensor gives the least average distance error in absence of

loop-closing. The rotational components are also similar

regardless of using DPP-sonar and/or pressure sensor for the

same reason described above.

7.4. Validation on public underwater datasets

Ferrera et al. (2019) provided a set of underwater datasets

obtained close to the seabed, named AQUALOC, collected

by a Remotely Operated Vehicle (ROV) equipped with a

monocular monochromatic camera, a MEMS-IMU, and a

pressure sensor. Note that, while additional sensors could

improve SVIn2 performance as shown in the ablation

study, SVIn2 can work with different sensor configuration

up to the minimal requirement which is a monocular

camera and an IMU. Thus, SVIn2 is applicable in

AQUALOC.

The datasets are characterized by turbidity, backscat-

tering effect, and clouds of sediment stirred up by the

ROV—Figure 15 shows a representative picture of the sites.

COLMAP trajectories were also provided as “ground truth”

to compare and evaluate the performance of SLAM sys-

tems. Note that in a few sequences—for example, sequences

4, 6, and 7—the “ground truth” trajectories produced by

COLMAP are not continuous, providing partial information

on the camera poses. As the generated data were the result of

continuous motions of the ROV, the discontinuities repre-

sent failures of the COLMAP state estimation process. We

ran SVIn2 on the archaeological sites located at a depth of

approximately 270 m and 380 m. SVIn2 was able to

generate complete trajectories for all of the sequences

without losing track. The RMSE error was typically around

2% of its length, with the lowest in sequence 8 with an error

Table 7. The RMSE in meters and the error percentage over the full trajectory length for each AQUALOCArcheological sites sequences.

Note, the camera pose estimate from COLMAP in Sequence 4 is highly discontinuous and does seem to track a very small portion of the

trajectory, thus the RMSE is not calculated.

Sequence # 1 2 3 4 5

SVIn2 RMSE(m) 0.2311 2.4403 0.2801 –– 2.7213

Error % 2.0 3.79 2.617 –– 6.48

Sequence # 6 7 8 9 10

SVIn2 RMSE(m) 0.6085 1.0526 0.2465 1.5092 2.3710

Error % 1.91 0.86 0.59 2.30 2.83

Figure 15. A sample image from AQUALOC Archaeological

sites sequences (Ferrera et al., 2019), affected by sandy cloud,

low and repetitive texture, and lack of light and features.

Figure 16. SVIn2 trajectories and provided COLMAP-produced “ground truth” trajectories alignment for Archaeological sequences

4 and 6 (a)-(b), respectively, showing discontinuity in the provided GT. (c) Sequence 8, SVIn2 shows low RMSE, (d) Sequence 10,

SVIn2 shows high RMSE.
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of 0.5% and the highest in sequence 5 with 6.4%, as shown

in Table 7.

With COLMAP producing up to scale trajectories, we

scale align the estimated trajectories from SVIn2 and

provided ground truth for all the sequences in the archae-

ological sites datasets except for sequence 4, as the provided

“ground truth” for this dataset is highly discontinuous and

hence has been plotted with their own scale without any

RMSE calculation; see Figure 16.

In general, there is a need of robust public datasets to

validate state estimation systems in underwater

environments.

8. Conclusions and future work

This paper investigated the problem of Simultaneous Lo-

calization and Mapping in underwater environments,

combining visual, inertial, acoustic, and water-pressure

information. We focused on the design and development

of a robust and accurate system that exploits the comple-

mentarity of different sensors, so that robots can operate

autonomously in very harsh environments with robustness,

safety, and reliability to accomplish a task in real-time with

limited computational resources. The result is SVIn2—a

tightly-coupled keyframe-based SLAM system which

integrates all the above sensors and includes a robust

initialization method by two-step scale refinement,

loop-closure, and relocalization capabilities as a failure

recovery mechanism. We have released the code of our

system, which can work in different configurations, so that

other researchers can use it according to the available

sensors. Experimental results in challenging underwater

environments including both publicly available datasets and

collected underwater datasets prove the effectiveness of our

system. The VIO part of the proposed approach provided

improved performance on datasets collected with an in-

expensive action camera (Joshi et al., 2022) over ship-

wrecks and inside underwater caves.

Future extensions include, but are not limited to, inte-

gration of other sensors typically used underwater—for

example, DVL, USBL—cooperative localization and

mapping, and the ability to relocalize when tracking loss

happens. In the long term, SVIn2 will be used on AUVs

jointly together with planning—as done in a preliminary

path planner for AUVs (Xanthidis et al., 2020)—to enable

the safe operation of underwater vehicles, as those depicted

in Figure 17, in a variety of underwater environments.
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