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Abstract

Foundation models have recently advanced zero shot time series forecasting, offer-1

ing the ability to generalize without task specific training. However, in healthcare2

settings, where data are highly heterogeneous, exhibit regime shifts, and often3

contain rare but clinically critical events, these models frequently underperform.4

We propose Retrieval Augmented Forecasting (RAF), a model agnostic framework5

that strengthens foundation model predictions. RAF constructs a bank of past6

trajectories, retrieves nearest neighbor continuations using Euclidean or Dynamic7

Time Warping similarity, and blends them with foundation model forecasts through8

a data driven weighting scheme. The method requires no architectural changes,9

making it readily deployable within existing clinical forecasting pipelines. Across10

physiological and epidemiological datasets, including vital signs and hospital ad-11

mission series, RAF consistently improves zero shot accuracy for four state of the12

art foundation models (Chronos, Lag Llama, MOMENT, and Toto). These gains13

highlight retrieval augmentation as a lightweight yet effective strategy for enhanc-14

ing the robustness and clinical utility of time series foundation models in health15

applications. GitHub repository: https://github.com/anonymous2608878/raf.16

1 Introduction17

Time series forecasting is a longstanding challenge in machine learning, central to domains such18

as healthcare, finance, and environmental monitoring [1, 2, 3]. Traditional approaches typically19

learn predictors from scratch for each dataset, limiting transferability and requiring substantial20

task specific tuning [3]. Recent advances in foundation models have enabled zero shot forecasting21

directly generating predictions for previously unseen series or tasks without retraining [4, 5]. These22

models, informed by large scale pretraining across heterogeneous domains, promise robustness to23

data variety, simplified operational workflows, and the ability to generalize across environments [6,24

4]. Notable examples, including Chronos[7], Lag Llama[8], MOMENT[9], and Toto[10], have25

demonstrated strong performance on diverse benchmarks [6]. However, zero shot foundation models26

can struggle with dataset specific dynamics, abrupt regime shifts, and rare events, particularly when27

in domain training data diverges from pretraining distributions [5, 11]. To bridge these gaps, retrieval28

augmentation has emerged as a powerful paradigm. Retrieval based methods ground predictions in29

relevant historical analogs, effectively blending the inductive biases of statistical and neural models30

with nonparametric memory [12, 11, 13, 14]. By supplementing model forecasts with continuations31

of similar past patterns, retrieval mechanisms have improved generalization and robustness, especially32

in settings with distributional shifts or unforeseen behaviors [12, 11].33

In this work, we propose Retrieval Augmented Forecasting (RAF), a model agnostic framework34

that enhances foundation model forecasts by blending them with neighbor based analogs retrieved35

from the training data. RAF requires no modifications to model architecture, is easily integrated36

into existing pipelines, and achieves consistently improved zero shot performance across multiple37

benchmarks. Our contributions add to the growing evidence that retrieval augmentation is a key38

ingredient for robust and adaptive time series foundation models [12, 13].39
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2 Methodology40

2.1 Problem Setup41

We study the univariate time series forecasting problem. Let42

y = (y1, y2, . . . , yT )

denote the historical series, where yt ∈ R. The objective is to forecast the next H steps,43

ŷT+1:T+H = (ŷT+1, . . . , ŷT+H).

Forecast accuracy is measured using mean absolute error (MAE), root mean squared error (RMSE),44

and mean absolute percentage error (MAPE).45

2.2 Dataset46

We evaluate RAF’s performance on a broad collection of real world datasets covering medical,47

epidemiological, and physiological domains. The physiological group includes Heart Rate, Respira-48

tion, Temperature, Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Glucose 1, and49

Glucose 2, which capture cardiovascular, respiratory, and metabolic activity at temporal resolutions50

ranging from seconds to minutes. The epidemiological group comprises Hospital Admission and ICU51

Admission, which track patient inflows during the COVID 19 pandemic. Collectively, these datasets52

exhibit heterogeneous temporal dynamics, including periodic rhythms, abrupt regime changes, and53

variable noise levels. Such diversity provides a rigorous and comprehensive basis for assessing RAF’s54

capacity to generalize across distinct application domains.55

2.3 Retrieval Augmented Forecasting (RAF)56

Our central contribution is a model agnostic retrieval augmentation mechanism that improves zero57

shot performance of foundation models. RAF supplements the forecast from a base model with58

information retrieved from similar historical patterns.59

2.3.1 Window Bank Construction60

Given a historical sequence y, we construct a window bank B of input output pairs using sliding61

windows of length L and horizon H:62

B = {(xi, zi) | xi = yi:i+L1, zi = yi+L:i+L+H1}.

Each input window is standardized via z score normalization,63

x̃i =
xiµ(xi)

σ(xi)
,

where µ(·) and σ(·) denote mean and standard deviation.64

2.3.2 Nearest Neighbor Retrieval65

At prediction time, the most recent context q = yTL+1:T is normalized and compared with stored66

windows using either Euclidean distance or Dynamic Time Warping (DTW):67

d(q̃, x̃i) =

{
DTW(q̃, x̃i), if DTW enabled,
∥q̃x̃i∥2, otherwise.

The k nearest neighbors are retrieved, and their future continuations {zi} are rescaled to match the68

mean and variance of q. The neighbor based forecast is then69

ŷNB =
1

k

k∑
i=1

αizi,

where scaling factor αi ensures variance alignment.70
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2.3.3 Blending with Base Forecasts71

Let ŷFM denote the forecast from a foundation model. RAF blends it with the neighbor forecast:72

ŷ = λŷFM + (1λ)ŷNB.

The blending parameter λ ∈ [0, 1] is tuned by grid search on a validation slice of the training set to73

minimize one step ahead error:74

λ∗ = argmin
λ∈Λ

∑
t

∣∣yt+1

(
λŷFM

t+1 + (1λ)ŷNB
t+1

)∣∣.
2.4 Foundation Models75

We apply RAF across four state of the art foundation models. Chronos is a transformer based temporal76

model pretrained on large scale time series data. Lag Llama is a lag based autoregressive model77

designed with efficient scaling properties. MOMENT is a masked modeling architecture tailored for78

multiscale forecasting tasks. Toto is a foundation model specialized for telemetry and irregularly79

sampled sequences. Each model is wrapped into a unified interface predict_fn(y,H) that produces80

ŷFM, and RAF is applied without altering the internal mechanisms of these models.81

3 Results82

We evaluate the impact of Retrieval Augmented Forecasting (RAF) across four foundation models:83

Chronos, Lag Llama, MOMENT, and Toto. Tables 1-3 report mean absolute error (MAE), root mean84

squared error (RMSE), and mean absolute percentage error (MAPE) across ten benchmark datasets.85

To facilitate cross dataset comparison, we additionally compute the average rank of each method.

Table 1: MAE Outcomes: Assessing Forecast Accuracy with and without RAF

Model Cardio Covid
Hospital

Covid
ICU DBP Glucose 1 Glucose 2 Heart Resp SBP Temp Avg.

Rank
Toto 3.52 321.46 43.42 8.69 8.48 7.35 9.24 1.60 13.00 0.37 3.1
RAF+Toto 3.62 315.26 43.18 9.03 8.34 7.24 9.39 1.54 12.95 0.38 2.9
Lag Llama 10.05 2735.99 978.39 8.90 24.56 7.40 10.15 1.67 12.38 0.39 5.4
RAF+Lag Llama 7.82 7059.47 1578.53 8.57 40.01 7.39 9.55 1.50 12.46 0.36 4.3
Chronos 4.16 238.39 34.95 10.20 12.33 8.15 9.71 1.60 13.12 0.39 4.8
RAF+Chronos 3.90 122.41 25.38 8.68 11.64 7.18 9.49 1.63 13.51 0.45 3.8
MOMENT 10.47 11580.28 1421.41 9.71 31.10 8.44 9.32 1.73 13.37 0.38 6.3
RAF+MOMENT 9.70 11533.08 1439.75 8.06 31.79 7.29 9.85 1.54 12.61 0.39 4.8

86

Table 1 summarizes mean absolute error (MAE) across datasets. RAF consistently improves the87

performance of Chronos, yielding substantial reductions on high variance series such as Hospital88

Admission and ICU Admission. For MOMENT, RAF provides gains on several physiological signals89

(e.g., diastolic blood pressure) but does not improve epidemiological series, with ICU Admission90

showing a slight degradation. For Toto, RAF produces modest yet consistent improvements across91

domains. Lag Llama also benefits in terms of average rank, though its performance on epidemiological92

datasets remains unstable. The rank analysis confirms overall effectiveness: RAF achieves better93

ranks than the baseline models, with Chronos moving from 4.8 to 3.8, MOMENT from 6.3 to 4.8,94

Toto from 3.1 to 2.9, and Lag Llama from 5.4 to 4.3.95

Table 2: RMSE Outcomes: Evaluating Model Stability across Datasets

Model Cardio Covid
Hospital

Covid
ICU DBP Glucose 1 Glucose 2 Heart Resp SBP Temp Avg.

Rank
Toto 4.07 425.37 49.81 10.63 9.59 8.91 10.56 2.07 15.01 0.55 4.0
RAF+Toto 4.25 430.35 48.41 10.90 9.43 8.84 10.67 1.99 14.84 0.54 3.6
Lag Llama 10.92 3133.95 1082.99 10.89 26.51 9.16 11.63 2.08 14.51 0.55 6.6
RAF+Lag Llama 8.76 7118.93 1640.34 10.33 40.89 9.31 11.05 1.94 14.87 0.53 4.6
Chronos 4.86 267.90 40.83 12.11 14.36 9.36 11.13 2.04 15.39 0.56 5.6
RAF+Chronos 4.55 155.44 30.25 10.33 13.08 9.35 10.81 2.07 15.93 0.61 5.0
MOMENT 11.41 11691.31 1436.08 11.32 32.94 10.15 10.68 2.11 15.84 0.55 7.8
RAF+MOMENT 10.67 11663.08 1459.58 9.98 34.66 8.99 11.16 2.00 14.85 0.55 4.8

Table 2 reports root mean squared error (RMSE) across datasets. The results align closely with the96

MAE analysis, demonstrating that RAF systematically enhances baseline models in terms of average97

rank. Chronos exhibits the most consistent improvement, while Toto records modest yet reliable98
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gains. MOMENT shows marked advancement, transitioning from the weakest baseline performance99

to a substantially stronger position when augmented with RAF. Lag Llama remains the most variable;100

although its error magnitudes fluctuate across datasets, its overall rank nonetheless improves from 6.6101

to 4.6. These findings suggest that RAF not only improves predictive accuracy but also contributes to102

greater stability across models with differing baseline characteristics.103

Table 3 reports MAPE, which captures relative forecasting accuracy. RAF substantially improves104

Chronos (average rank 5.1 → 3.6) and MOMENT (6.4 → 4.9). Toto exhibits marginal improvements,105

whereas Lag Llama continues to show mixed behavior. Importantly, the consistency of average106

rank improvements across metrics underscores that RAF provides a net accuracy benefit across107

heterogeneous datasets, with the strongest relative gains observed for Chronos.

Table 3: MAPE Outcomes: Relative Accuracy Gains through RAF Integration

Model Cardio Covid
Hospital

Covid
ICU DBP Glucose 1 Glucose 2 Heart Resp SBP Temp Avg.

Rank
Toto 4.52 6.14 5.74 11.29 4.59 8.29 14.56 10.04 10.64 1.01 3.3
RAF+Toto 4.63 6.07 5.71 11.78 4.51 8.15 14.83 9.82 10.60 1.04 3.2
Lag Llama 13.05 51.17 143.63 11.60 13.37 8.14 15.99 10.55 10.04 1.07 5.3
RAF+Lag Llama 10.20 125.49 225.84 11.13 21.82 8.12 15.16 9.45 10.32 0.99 4.1
Chronos 5.37 4.29 4.83 13.32 6.67 9.10 15.38 10.28 10.81 1.06 5.1
RAF+Chronos 4.99 2.16 3.37 11.23 6.30 7.83 15.12 10.09 10.97 1.21 3.6
MOMENT 13.59 203.39 196.52 12.61 16.89 9.51 14.69 10.85 11.00 1.04 6.4
RAF+MOMENT 12.61 203.16 201.39 10.49 17.26 8.20 15.42 9.58 10.31 1.05 4.9

108

Overall, the results show that RAF improves zero shot forecasting across all four evaluated foundation109

models. By coupling retrieval based historical continuations with foundation model predictions, RAF110

consistently lowers error rates and yields stronger average rankings. These relative gains highlight111

RAF’s effectiveness as a model agnostic augmentation strategy, demonstrating benefits for every112

baseline model considered. RAF consistently strengthens every foundation model we tested, proving113

itself a powerful augmentation for zero shot time series forecasting.114

4 Conclusion115

We presented Retrieval Augmented Forecasting (RAF), a model agnostic framework that system-116

atically enhances the zero shot performance of time series foundation models. By combining base117

forecasts with neighbor based continuations retrieved from historical trajectories, RAF achieves118

consistent improvements in accuracy across multiple state of the art models. These results underscore119

the value of retrieval as a lightweight mechanism for complementing large pretrained architectures120

without altering their internal design or requiring task specific training.121

Future research will extend the scope of RAF along several dimensions. An immediate direction is the122

evaluation of RAF in multivariate forecasting settings, where dependencies among variables introduce123

additional challenges. Beyond forecasting, RAF can be explored for other time series learning tasks124

such as classification, anomaly detection, and representation learning. Another promising direction125

is to study the interaction between retrieval augmentation and fine tuning, assessing whether RAF126

provides additive benefits when foundation models are adapted to specific domains.127
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