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Abstract

Covariate selection for causal inference based on
the causal graph commonly aims for unbiasedness
and asymptotic efficiency of the causal effect es-
timator. When the sample size is finite, these ap-
proaches can lead to results that are suboptimal in
terms of the Mean Squared Error (MSE). We aim
to find the adjustment set that is optimal in terms
of MSE, taking into account the joint distribution
of the causal variables and the sample size. We
present examples where the MSE-optimal adjust-
ment set differs from the optimal adjustment set,
depending on the sample size. To find the MSE-
optimal adjustment set, we introduce a sample size
criterion that compares two adjustment sets in lin-
ear Gaussian models. We develop graphical criteria
to reduce the search space for this adjustment set
based on the causal graph. In preliminary experi-
ments, we show that the estimated MSE-optimal
adjustment set can outperform the optimal adjust-
ment set in finite sample size settings, and performs
competitively in larger sample size settings.

1 INTRODUCTION

Causal inference from observational data is an important but
challenging task. Various methods have been proposed for it,
including propensity score methods [Rosenbaum and Rubin,
1983], matching [Stuart, 2010], instrumental variables [An-
grist et al., 1996], regression discontinuity design [Imbens
and Lemieux, 2008], and double machine learning [Cher-
nozhukov et al., 2018]. One of the most straightforward and
popular approaches is covariate adjustment. For this, one
needs to select a set of covariates to adjust for. Naturally,
this raises the question: which covariates should we select
for the best causal effect estimate?

For the pre-selection of covariates, a graphical represen-

tation of the causal relations is often used [Pearl, 1993,
Shpitser et al., 2010, Rotnitzky and Smucler, 2019, Henckel
et al., 2022]. So far, methods based on causal graphs focus
on valid adjustment sets. A set of covariates K is a valid
adjustment set if a covariate adjustment estimator τ̂K re-
turns an unbiased estimate of the true causal effect under
correct model specification. However, in finite sample size
settings, the variance may dominate the bias, such that an
invalid adjustment set may be more suitable for estimation.
Figure 1 shows two examples where invalid adjustment sets
outperform the unbiased optimal adjustment set O [Henckel
et al., 2022, Rotnitzky and Smucler, 2019] in terms of MSE.
In the following, we describe how to find the adjustment set
that is optimal in terms of MSE.

2 FINDING MSE-OPTIMAL SETS

The MSE of an estimator can be decomposed into its squared
bias and variance. Whether an adjustment set is valid and
hence unbiased, can be determined from the causal graph
alone, e.g. with the back-door criterion [Pearl, 1993], which
is sufficient for unbiasedness, or with a necessary and suf-
ficient criterion developed by Shpitser et al. [2010] and
Perković et al. [2018]. Previously, optimality criteria have
focused on valid adjustment sets. We consider a different
notion of optimality.

2.1 DIFFERENT OPTIMALITY CRITERIA

The optimal adjustment set O is the adjustment set with
minimal asymptotic variance among all valid adjustment
sets. It was first defined for ordinary least squares (OLS)
estimation in linear causal graphical models [Henckel et al.,
2022] and later extended to non-parametric models [Rot-
nitzky and Smucler, 2019]. The optimal adjustment set O
consists of the parents of mediators that are not themselves
mediators or the treatment, where mediators are defined to
also include the outcome [Guo et al., 2023].
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Figure 1: Two toy examples of causal modelsM1 andM2 and the Root-Mean Squared Error (RMSE) of the OLS estimator
τ̂ of the causal effect τ of A on Y inM1 andM2, using different adjustment sets (10000 random seeds per set and sample
size). The variables inM1 andM2 are linear Gaussian distributed with a variance of 1 and a mean of 0. Depending on the
sample size, a different adjustment set than O = {O1, O2} gives the lowest RMSE. The dashed line shows the sample size
for which C1 outperforms O1 and {O1, O2} outperforms F2 respectively, as calculated with our sample size criterion.

While previous work is restricted to valid adjustment sets,
we consider all possible adjustment sets, including invalid
ones. We aim to find the adjustment setK that gives the most
accurate average treatment effect estimator τ̂K in terms of
MSE for a given causal modelM and sample size n, which
we call the MSE-optimal adjustment set On(M, τ̂). We
focus on the setting whereM is linear Gaussian and τ̂ is
the OLS estimator. In relation to the optimal adjustment
set O, we conjecture that the MSE-optimal adjustment set
On(M, τ̂) converges to the optimal adjustment set O as
the sample size n approaches infinity, given that the graph
corresponding to the modelM is faithful.

2.2 SAMPLE SIZE CRITERION

As demonstrated in Figure 1, the adjustment set that yields
the lowest MSE can depend on the sample size. We present
a criterion to compare two adjustment sets K and L for
treatment effect estimation given a linear Gaussian model
M and sample size n, based on their asymptotic variances
ν(·) [Henckel et al., 2022], squared biases B2(·) and set
sizes | · |:

n <
ν(L)−

(
n−|L|−3
n−|K|−3

)
ν(K)

B2(τ̂K)−B2(τ̂L)
+ |L|+ 3. (1)

If the sample size criterion holds when B2(τ̂K) is larger
than B2(τ̂L), the expected MSE of τ̂K is lower than of τ̂L.

2.3 GRAPHICAL CRITERIA

For linear Gaussian causal models and the OLS estima-
tor, we propose two conjectures about variables or variable
combinations that can be excluded from On(M, τ̂), solely
based on the graph G. Our first graphical criterion concerns
the exclusion of single variables. For example, in the graph
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G3 shown in Figure 2, the variables I1, I2, and I3 can never
be in On(M, τ̂), as it would always be better to adjust for
O1 or O2 instead. Our second criterion concerns the exclu-
sion of variable combinations. If there are two variables Vi
and Vj , such that one is d-separated from the outcome Y ,
given the other variable and the treatment A, then at most
one of them can be in On(M, τ̂). E.g. in the graph ofM2

from Figure 1, F1 is d-separated from Y given A and O1,
such that F1 and O1 can never both be in On(M, τ̂).

3 EXPERIMENTS

We estimate the expected MSE of the OLS treatment ef-
fect estimator τ̂K for each adjustment set K to find the
estimated MSE-optimal adjustment set Ôn(M, τ̂). Table 1
shows that Ôn(M, τ̂) outperforms O in small sample sizes,
and performs competitively in larger sample sizes.

Table 1: Comparison of MSE for O and Ôn(M, τ̂) with
M2 from Figure 1, 10000 random seeds.

Sample Size O (Mean ± SD) Ôn (Mean ± SD)

10 0.2789 (0.2789) 0.2440 (0.5172)
50 0.0317 (0.0317) 0.0293 (0.0441)
100 0.0154 (0.0154) 0.0146 (0.0208)
500 0.0029 (0.0029) 0.0032 (0.0043)

1000 0.0015 (0.0015) 0.0016 (0.0022)
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