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Reproducibility Summary

Scope of Reproducibility — The paper presents a novel DE approach using Thompson Sam‐
pling and Bandit theory, TS‐DE. Our reproducibility study aims to confirm the 5 main
claimsof the original paper, including sublinear Bayesian regret, improvedperformance
compared to basic DE, robustness to mutation rate changes, initial diversification, and
the concentration of the population to the optimal value in later iterations, and iterative
distribution shift towards optimal population fitness. Finally, we provide a reproducible
environment to support themain claims of the original paper alongwith the source code
of the proposed approach and all experiments, comprehensive documentation, and unit
tests.

Methodology —Nocodewas available beforehand for this article, thuswe re‐implemented
the proposed approach by meticulously following the comprehensive explanations of
the process in the original article. The experiments were run on a personal computer.

Results —We managed to reproduce all the experiments supporting the main claims of
the original article. Additionally, we add uncertainty quantification to the results as
we believe this is a crucial part to confirm any of the claims. Finally, we present the
exploration‐exploitation trade‐off experiment in a more robust manner leveraging the
nucleotide diversity metric to gain additional insight into how the proposed algorithm
works.

What was easy —With comprehensive explanations in the original article, it was relatively
easy to rewrite the main concepts from pseudo‐code to Python code. Experiments were
clearly explained with all the necessary hyperparameters.

What was difficult — Since no source code was available, every detail missing from the
original article resulted in additional research and trial and error experimentation. To
conclude, we recommend several improvements to the authors of the studied paper that
could additionally improve the quality of their outstanding contribution. Some of the
recommendations include better explanations of how the optimal solution is calculated,
on which population the PCA is fitted, how to use θ∗ and θ̃, and lastly improved docu‐
mentation on how the basic DE was implemented.

Communication with original authors —We contacted the original authors on multiple occa‐
sions during the development of our reproducibility study but got no response.

Copyright © 2023 L. Žontar, released under a Creative Commons Attribution 4.0 International license.
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[Re] Bandit Theory and Thompson Sampling-guided Directed Evolution for Sequence Optimization

1 Introduction

In this reproducibility challenge, we aim to independently verify the claimsmade in the
studied paper regarding the effectiveness of a novelmachine learning‐assisted approach
forDirected Evolution (DE), awet‐labmethod used for discovering novel protein designs.
The authors proposed a Thompson Sampling‐guided Directed Evolution (TS‐DE) frame‐
work for sequence optimization, where the sequence‐to‐function mapping is unknown
and querying a single value is subject to costly and noisy measurements.
We plan to reproduce the experiments presented in the original paper, where the au‐
thors tested their approach on a simulated population of protein sequences represented
as binary motifs, corresponding to favorable and unfavorable sites, respectively. The
authors demonstrated that the TS‐DE approach, leveraging bandit learning and Thomp‐
son sampling, reaches a nearly optimal regret bound and outperforms the basic DE ap‐
proach by converging faster and being more robust to mutation rate scheduling.
In addition to reproducing the results, we aim to improve the original results by includ‐
ing uncertainty quantification, more accurately 95% confidence intervals, and showing
how population diversity evolves over iterations of the TS‐DE approach.

2 Scope of reproducibility

In this reproducibility study, we set out to rigorously validate the claims made by the
authors in their original paper regarding the sublinear and nearly optimal regret bound
of the proposed approach. Our primary objective is to replicate the key experiments
presented in the original article and extend the evaluation to further test the efficacy of
the proposed method.
First, we list the main claims that the authors make in the original paper:

• Claim 1: TS‐DE reaches sublinear regret bound that decreases with the number of
sequences in the population.
In the original paper, the claim is formally proven in Section 5.2. The experiment is shown
in the left-hand side of Figure 6.1.

• Claim 2: TS‐DE outperforms the basic DE when evaluating average population fit‐
ness.
The experiment that supports this claim is shown on the right-hand side of Figure 6.1 in
the original article.

• Claim 3: TS‐DE is less sensitive to mutation scheduling than the basic DE.
The experiment that supports this claim is shown on the right-hand side of Figure 6.1 in
the original article.

• Claim4: In TS‐DE the populationfitness distribution shifts towards optimal during
evolution.
The experiment that supports this claim is shown on the right-hand side of Figure 6.2 in
the original article.

• Claim 5: TS‐DE first diversifies and then concentrates around the optimal solution.
The experiment that supports this claim is shown in the left-hand side of Figure 6.2 in the
original article.

Note that all claims were tested on a simulated dataset of zeros and ones, corresponding
to unfavorable and favorable sites, respectively.
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3 Methodology

The work we attempt to reproduce does not provide any source code and the authors
were unresponsive to our attempts to further discuss the article. Hence we decided
to reproduce the studied paper leveraging the thorough documentation of the process
provided in the article. Although we did not have access to the original source code, we
made every effort tomatch the implementation as described in the paper. No additional
documentation and no GPUs were used in the process of reproducing the studied paper.
Themain focus of our reproducibility workwas to review the validity of the claimsmade
in the original study. Our primary focuswas to test whetherwe can confirm those claims
by carefully following the procedure proposed in the main article.
In addition to testing the original claims, we deliver the source code of the original arti‐
cle to the broader research community. To ensure the code is accessible and usable by
others, we include comprehensive documentation and unit tests.

3.1 Model descriptions
Our reproducibility work includes the implementation and evaluation of two Directed
Evolution (DE) algorithms, TS‐DE and the basic DE. Both aim to optimize utility of the
population. The proposed TS‐DE algorithmenhances the performance by incorporating
the posterior update of the utility function parametrization, effectively incorporating
learning from historical feedback data to drive the posterior toward the optimal θ∗.

Parameters: Basic DE —

• d ‐ Number of protein motifs in a sequence.

• S0 ‐ Initial population consisting ofM candidate sequences.

• θ∗ ‐ optimal θ ‐ parametrization of the linear Bayesian utility model for which we
aim to optimize the protein design.

• µ ‐ Mutation rate, ∈ (0, 1) ‐ a function of T .

• σ ‐ Standard deviation used in noisy feedback evaluation in Assumption 3.5 in the
original article.

• T ‐ Number of iterations we run in the TS‐DE (or basic DE) algorithm.

• f ‐ Protein utility function that we are trying to maximize. The function includes
a parameter theta that we are optimizing.

Parameters: TS-DE — All the parameters as in the Basic DE. Additionally, TS‐DE requires a
few parameters more:

• M ‐ Population size.

• λ ‐ Scalar that controls the trade‐off between exploitation and exploration in the
optimization process.

3.2 Datasets
All experiments use binary datasets, populations of sequences, where the initial pop‐
ulation consists of all zeros. The only case where the initial population is randomly
initialized and consists of both zeros and ones is the case where we are testing the basic
DE approach with mutation rate µ = 0 to ensure the test case is non‐trivial. Datasets
differ from experiment to experiment due to different parameters d (sequence length)
andM (population size).
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3.3 Hyperparameters
Hyperparameters were carefully documented in the original article. Since our goal was
to test the validity of the claims in the original article, we focused on testing the given
hyperparameter values.
When testing the claim whether TS‐DE outperforms the basic DE, authors did not pro‐
vide the value of the population size. M = 40 was manually chosen. Figure 5 uses the
same setup as Figures 3 and 4.

3.4 Experimental setup and code
We constructed our experiments bymeticulously following the comprehensive explana‐
tions of the process in the original article. Moreover, we provide uncertainty quantifi‐
cation in all experiments to be more convinced in the validity of the claims we test. For
this reason, we run all experiments 100 times to be able to get 95% confidence intervals
in all the experiments. Confidence intervals are calculated using bootstrapping.
In the experimental setup, we use three different measures to support the proposed
claims:

1. Bayesian regret: defined in the original article. In the article it is rather unclear
which θ is used where, which is why we rewrite the definition here:

BayesRGT (T,M) = E

[
T∑

t=1

M∑
i=1

(fθ̃t(x
∗)− fθ∗(xt,i))

]

2. Average population fitness, where fitness is defined as f(x) = θ · x. θ∗ is used as θ
in all our experiments.

3. Nucleotide diversity [1]: measures polymorphic population diversity. The metric
is adapted to our definition of sequences using binary protein motifs. Note that
xi and xj are frequencies of i‐th and j‐th sequences and πij is the number of sites
where those sequences differ. Definition:

π =
M

M − 1

∑
i,j

xixjπij

Source code is available on GitHub.

3.5 Computational requirements
All the experimentation was done on a Lenovo Thinkpad X1 with the following specifi‐
cations:

• Windows 11 Pro

• Processor: 11th Gen Intel(R) Core(TM) i7‐1165G7, 2.80GHz

• RAM: 32GB

Additionally, we provide required CPU time for each of the experiments in Section 4.

4 Results

Our reproducibility study successfully reproduced the experiments supporting themain
claims of the original paper. We observe significant differences in our results, likely due
to missing specifics from the original source code. Despite that our conclusions align
with the original article. We are unable to talk about howprecisewewere in reproducing
the original article due to missing source code.
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Figure 1. Population accumulated Bayesian re‐
gret evolving over iterations of the TS‐DE pro‐
cess. We test multiple population sizesM .

Figure 2. Average fitness evolution comparing
TS‐DE and the basic DE approach. With each
approach we test different parameters µ

4.1 Results reproducing original paper

Bayesian regret evolution with varying population sizes — (CPU time: ≈ 15min) supports Claim
1. As shown in Figure 1, we see that Bayesian regret curves converge to sublinear regret
bound which is the main claim of the original article. We also note that asM increases
the Bayesian regret decreases. This supports the claim made with the left‐hand side
in Figure 6.1 in the original article. To show how certain we can be in confirming the
claim, we include uncertainty quantification in our reproduced experiment. Results
show that asM decreases so does the size of the confidence intervals and our certainty
in the validity of the claim increases.

Average fitness evolution: TS-DE vs. basic DE — (CPU time: ≈ 17min) supports Claims 2 and
3. In this task, we verify the claim that TS‐DE outperforms the basic DE in convergence
speed. Our results, shown in Figure 2, confirm the claim. To reduce randomness effects
and increase certainty in our results, we averaged 100 runs of the experiment and found
that the results supported the original study. We also observed that the basic DE ismuch
more sensitive to mutation rate scheduling than TS‐DE, which is consistent with the
original article’s findings.

Fitness distribution shift — (CPU time: ≈ 3min) supports Claim 4. This experiment supports
the claim that fitness distribution shifts towards the optimal value over iterations. While
the authors tested the claim on just a single evaluation, our experiment was run on 100
evaluations to make the claim validity more robust. Additionally, different time steps
were used in the process due to differences between the original and reproduced results.

Population evolution: diversification and convergence — (CPU time: < 1min) supports Claim 5.
In this task, we focus on reproducing the evolution trajectory of a population. Our end
goal is to visualize multiple snapshots of high‐dimensional populations and map them
to 2D space using KDE density contour plot. With this plot, we support the claim from
the original article and show how TS‐DE balances the exploration‐exploitation trade‐off
using initial diversification followed by approaching and concentrating on the optimal
solution. Figure 3 shows how the population first diversifies in steps t = 5, t = 10, and
then converges to the optimal solution in steps t = 20, t = 35.
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Figure 3. Population evolution shown as KDE
density contour plot of population mapped to
2D space using PCA method.

Figure 4. TS‐DE shifting population fitness dis‐
tribution towards optimal value over iterations
of the TS‐DE process.

4.2 Results beyond original paper

Population evolution: diversification and convergence — (CPU time: ≈ 4min) supports Claim 5.
While the left‐hand side in Figure 6.2 in the original article well represents how TS‐DE
balances the exploration‐exploitation trade‐off, we decided to test this claim in a more
robust environment by running 100 evaluations instead of just one. We decided that it
might be interesting to show population evolution in terms of diversity as can be seen
in Figure 5. In the plot, we see how population diversity first increases gradually and
then starts to decrease as the population converges toward the optimal solution.

Figure 5. Population diversity evolution over iterations of the TS‐DE process. We show the
exploration‐exploitation trade‐off progress.

5 Discussion

To conclude, we were able to support all the claims of the paper and provide the source
code in addition with comprehensive documentation and test cases. Additionally, we
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managed to include uncertainty quantification in all the results. We also included a
metric for nucleotide diversity (adapted for binary sequences of protein motifs) with
which we attempt to clarify the exploration‐exploitation trade‐off in TS‐DE.

5.1 What was easy
The authors’ pseudo‐codewas clearlywritten and the general conceptswere easily trans‐
latable into Python code. Pseudo‐code is written for multiple substeps and functions
defined in the article. The notation in the article is clearly understood with some pre‐
knowledge of Bayesian statistics. The authors also did a very good job of document‐
ing the pseudo‐code with explanations and listing the hyperparameters used in experi‐
ments.

5.2 What was difficult
Even though pseudo‐code was clearly written and explained, we want to stress the im‐
portance of sharing the source code and thoroughly documenting the experiments. Even
a simple parameter, such as the seed of the random number generation process, can
make it impossible to perfectly reproduce the results. Not sharing the source code re‐
sults in the need to include every single detail in the article. We list some recommenda‐
tions to authors to make the article more easily reproducible:

1. In most experiments, authors show the maximal value or the optimal solution,
however, it is unclear both how this is calculated. To reproduce the results, we
would want to state the optimal solution or explain the process of how the optimal
solution was retrieved. In our experiments, the optimal θ∗ is sampled from the
definition in Assumption 3.2 in the studied paper.

2. Asmentioned before, wewould recommend adding the complete hyperparameter
setup for Figure 6.2. The M definition is missing in the original article. We used
M = 40.

3. To reproduce the right‐hand side of Figure 6.2 in the original article, it would be
beneficial to learn what data was used to fit PCA to the population in the experi‐
ment. In our experiment, we used all the sequences from all the populations that
were generated in the optimization process.

4. Additionally, we noted that the Bayesian regret definition does not include where
to use θ∗ and where to use θ̃. Even though this is derived later in the article in the
proof of the regret bound in 5.2, we would recommend making this part clearer
for the reader.

5. While authors write down the main differences between TS‐DE and the basic DE,
it would help to include the full definition with pseudo‐code. Alternatively, the
authors could publish the source code for the basic DE as well.

5.3 Communication with original authors
We contacted the original authors on multiple occasions during our attempts to repro‐
duce the studied article, however, there was no response.
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