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Abstract

RNA-protein interactions play crucial roles in
cellular processes, from gene regulation to vi-
ral replication. While recent advances in struc-
ture prediction have revolutionized our ability to
model macromolecular complexes, achieving ac-
curate predictions of RNA-protein binding poses
remains challenging. In this work, we present
STRAND, a diffusion-based model for monomeric
RNA-protein complex refinement that builds upon
the success of DiffDock-PP in protein-protein
docking. Unlike traditional docking, we develop
STRAND as a modular extension to existing
RNA-Protein complex prediction tools to improve
their backbone predictions. We study the effect
of different transformations by training models to
learn either translation, rotation, torsion, or com-
binations of these during the diffusion process
and initialize the backward process with a com-
plex prediction at test time. Our experiments with
AlphaFold 3 and ProRNA3D-single reveal that
STRAND can improve the backbones of a large
fraction of RNA-protein complex predictions.

1. Introduction

RNA-protein interactions are fundamental to numerous cel-
lular processes, including transcriptional regulation, splic-
ing, and protein synthesis (Glisovic et al., 2008). Under-
standing these interactions at the structural level is cru-
cial for deciphering molecular mechanisms and developing
therapeutic interventions. While experimental techniques
like X-ray crystallography (Smyth & Martin, 2000), nu-
clear magnetic resonance spectroscopy (Hu et al., 2021),
or single-particle electron microscopy (cryo-EM) (Renaud
et al., 2018) provide valuable structural insights, they are
often time-consuming and resource-intensive.
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Recent breakthroughs in deep learning have revolutionized
structural biology, particularly with the advent of AlphaFold
3, which enables predictions of RNA-protein complexes
alongside other biological macromolecules (Abramson et al.,
2024). However, while deep learning methods have driven
progress in RNA secondary structure prediction (Sato et al.,
2021; Franke et al., 2024) and secondary structure- (Runge
etal., 2024; Patil et al., 2024) as well as 3D-based (Tan et al.,
2024; Joshi et al., 2025) RNA design, RNA 3D structure
prediction remains challenging (Bernard et al., 2025). This
challenge is compounded by the inherent flexibility of RNA
molecules (Hagerman, 1997; Franke et al., 2022) and the
diverse nature of RNA-protein binding interfaces (Re et al.,
2014).

The recent success of diffusion models in protein-protein
docking, particularly DiffDock-PP (Ketata et al., 2023), has
demonstrated the potential of these approaches in modeling
molecular interactions. However, these methods are specif-
ically designed for protein-protein interfaces and do not
account for the distinct characteristics of RNA molecules.

In this work, we present STRAND (STructure Refinement
of RNA-proteiN complexes via Diffusion), a novel diffusion-
based model that extends the capabilities of DiffDock-PP to
monomeric RNA-protein complexes. Our approach lever-
ages an RNA foundation model, RNA-FM (Chen et al.,
2022), to generate RNA sequence embeddings that capture
the unique properties of RNA molecules. We then com-
bine these RNA-specific features with the powerful diffu-
sion framework of DiffDock-PP. We train different models,
applying noise either on the translation level, the rotation
level, to torsion angles, or combinations of these across
thousands of experimentally validated RNA-Protein com-
plexes from the Protein Data Bank (PDB) (Burley et al.,
2017). Then, at test time, we use RNA-Protein complex
predictions from AlphaFold 3 (Abramson et al., 2024) or
ProRNA3D-single (Roche et al., 2024) as the initial com-
plex structure for the denoising process to refine the initial
predictions. With this approach, STRAND is capable of im-
proving many initial predictions, as indicated by improved
complex RMSD (cRMSD) scores. STRAND thus represents
a novel approach to RNA-protein complex refinement that
leverages recent advancements in 3D RNA-protein model-
ing, and we propose to use STRAND as a module on top of
existing RNA-protein complex prediction tools to enhance
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their predictions.
Our main contributions can be summarized as follows:

* We propose STRAND, a novel RNA-protein refine-
ment strategy that leverages the new modeling capa-
bilities of current state-of-the-art deep learning based
RNA-protein complex prediction approaches by di-
rectly improving their predictions. STRAND repre-
sents a modular extension to existing RNA-Protein
complex prediction approaches.

* We extend DiffDock-PP to the prediction of RNA-
Protein complexes using the embeddings of an RNA
foundation model, RNA-FM (Section 3).

e Our experiments reveal improvements in complex
structure prediction compared to the initial predictions
of AlphaFold 3 and ProRNA3D-single across a diverse
set of RNA-protein complexes from the PDB (Sec-
tion 4).

We show predictions of STRAND trained with translational
noise only that exemplify structural improvements together
with initial predictions of AlphaFold 3, superimposed on the
original PDB structure in Figure 1. Since we are reporting
early results of ongoing research and due to manuscript
preparations in progress, including STRAND, we currently
cannot make our source code publicly available. However,
we plan to publish STRAND open source in the future,
including all models and training pipelines alongside our
datasets.

2. Related Work

Besides exceptions (Kappel & Das, 2019; Delgado Blanco
et al., 2019), traditional approaches for the prediction of
RNA-protein complexes can generally be roughly divided
into two groups, free docking approaches (Pérez-Cano et al.,
2010; Setny & Zacharias, 2011; Huang et al., 2013; Guilhot-
Gaudeffroy et al., 2014; Tuszynska et al., 2015; Iwakiri
et al., 2016; Van Zundert et al., 2016; Arnautova et al.,
2018) and template-based docking approaches (Zheng et al.,
2016; Zhang et al., 2022). Here, we focus on deep learning
based methods for RNA-protein complex predictions, but
refer the interested reader to some excellent reviews of the
field (Nithin et al., 2018; Bheemireddy et al., 2022; Liu
etal., 2023).

Deep Learning based RNA-Protein Structure Prediction
After the remarkable success of AlphaFold 2 (Jumper et al.,
2021), predicting protein structures with nearly experimen-
tal accuracy, and its extension AlphaFold Multimer (Evans
et al., 2021) for the prediction of protein multimers, recent
deep learning approaches for the prediction of the struc-
ture of biological macromolecules extended their capabili-
ties to other molecular entities like DNA, RNA, and small
molecule ligands (Abramson et al., 2024; Krishna et al.,

2024; Baek et al., 2024; Roche et al., 2024). However,
while the quality of protein predictions is typically retained,
particularly modeling RNAs remains challenging (Das et al.,
2023; Bernard et al., 2025). This also transfers to predic-
tions of RNA-protein interactions, and new algorithms that
can improve the interaction prediction quality are highly
sought after.

Diffusion Models Diffusion generative models (DGMs)
have emerged as a powerful framework for modeling com-
plex probability distributions, offering advantages over
traditional likelihood-based and implicit generative ap-
proaches (Ketata et al., 2023). DGMs operate by defining a
diffusion process that gradually transforms the data distribu-
tion into a tractable prior. The key insight lies in learning
the score function — the gradient of the log probability den-
sity function V log p; (x)? — of this evolving distribution.
Once learned, this score function enables sampling from
the underlying probability distribution through established
algorithms (Song et al., 2020). The success of DGMs has
led to their widespread adoption in computational biology.
These applications span diverse tasks including conformer
generation (Jing et al., 2022; Xu et al., 2022; YanWang
et al., 2024; Fan et al., 2024; Park & Shen), molecule gener-
ation (Hoogeboom et al., 2022), RNA secondary structure
generation (Wang et al., 2025), and protein design (Trippe
et al., 2022; Liu et al., 2024). Particularly noteworthy are
their contributions to protein structure (Jing et al.; Watson
et al., 2023; Wu et al., 2024) and backbone generation (Yim
et al., 2023) as well as protein-protein docking (Ketata
et al., 2023), where they have demonstrated remarkable
capabilities in capturing complex structural relationships.
AlphaFold 3 utilizes a diffusion-based architecture to predict
the structures of various biomolecular complexes, including
proteins, nucleic acids, and small molecule ligands (Abram-
son et al., 2024).

In this work, we employ a new strategy that leverages the
recent advancements of deep learning models for structural
biology by directly utilizing their predictions. However, in
contrast to methods like ProRNA3D-single (Roche et al.,
2024), which is trained using RNA monomer predictions
from RhoFold (Shen et al., 2024) and protein monomer
predictions from ESMFold (Lin et al., 2023), STRAND is
trained directly on RNA-protein complexes of experimen-
tally validated structures from the PDB. This allows us to
use any RNA-protein structure as a starting point for the
backward diffusion process, including predictions, making
it independent of the underlying structure generation method
at test time.

3. Methods

In this section, we describe STRAND, our extension of
DiffDock-PP (Ketata et al., 2023) to model monomeric
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Figure 1. Example structure refinements for two AlphaFold 3 predictions for the PDB Ids 8EDJ and 7VKL using STRAND trained only
on translational noise. We show the predictions of AlphaFold 3 (blue) and STRANDy, (red) superimposed on the true PDB structure of
8EDIJ (left) and 7VKL (right). The true protein structure is shown in gray, the RNA in light blue. The RNA of the prediction is shown in

yellow.

RNA-protein complexes. Similar to Ketata et al. (2023), we
model proteins and RNA at the residue level in STRAND.
For the protein, we exactly follow Ketata et al. (2023), using
the same node features as used in DiffDock-PP that repre-
sent each residue by its type, the position of its a-carbon
atom, and the processed embeddings from ESM2 (Lin et al.,
2023). To enable processing of RNAs, we use similar node
features: the nucleotide type, the coordinates of the phos-
phate atoms to represent the backbone, and the embeddings
obtained from running RNA-FM (Chen et al., 2022). For
the diffusion process, we treat one molecular entity as the
receptor (the RNA) and apply noise to the other one (the
protein). In the following, we describe STRAND in more
detail with a focus on differences compared to DiffDock-PP.

3.1. STRAND

We denote X; € R3" as the ligand consisting of n residues
and X, € R3™ as the receptor with m residues. Ketata et al.
(2023) assigns the ligand/receptor based on residue length.
In contrast, we run the diffusion process on the protein, re-
gardless of the relative sizes. While this increases training
time due to longer molecules being diffused, it improves
stability during evaluation, where test set lengths differ from
those in training, thus we assign the protein X as the lig-
and. With X} € R3" and X3 € R3™ denoting the initial
positions in space of both ligand and receptor respectively,
the receptor is kept fixed (X2 = X3), and the task is to
predict the position of the ligand with respect to the recep-
tor. We define RNA-protein structure refinement as learning
the conditional probability distribution p(X; | X3), which
describes the possible ligand poses within a submanifold
M, given the receptor structure Xo. Following Ketata et al.
(2023), we avoid the inefficiencies arising from learning
DGMs on arbitrary submanifolds (Bortoli et al., 2022), us-
ing the framework of intrinsic diffusion models (Corso et al.,

2022).

Backbone Refinement via Diffusion Building on the
framework of Ketata et al. (2023), which is limited to rigid-
body transformations, we extend the approach by training
separate models for translation, rotation, torsion, and the
combinations rotation and translation, and rotation, transla-
tion, and torsion.

Formally, we introduce the 3D translation group 7'(3), the
3D rotation group SO(3), and associate changes in torsion
angles at each rotatable bond with a copy of the 2D rotation

group SO(2).

The translation operation A, : T/(3) x R3® — R3" is
naturally defined as:

Ap(r,x); =x;+1 , (1)

where x; € R? denotes the position of the ith backbone
residue.

The rotation operation Ay : SO(3) x R3" — R3" is de-
fined as:

Arot<Ra X)i = R(Xz — )_() —|— X N (2)

where X = % >, X; is the (unweighted) center of mass of
the ligand. This corresponds to a rotation around the center
of mass.

For torsion, we follow the definition introduced in Diff-
Dock (Corso et al., 2022), where changes in torsion an-
gles are disentangled from global rotations and translations.
In DiffDock’s approach, the ambiguity of torsion changes,
where the torsion angle around any bond (a;, b;) could be
updated by rotating the a; side, the b; side, or both, is re-
solved by defining the action of elements of SO(2)™ to
cause minimal perturbation (in an RMSD sense) to the struc-
ture.
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More precisely, let By, 0;(x) € R3" be any valid torsion
update by 6y, around the kth rotatable bond (ag, by). We
define Ayr : SO(2)™ x R3™ — R3" such that

Ator(ea X) = (3)
RMSDAIlign(x, (B1,01 0+ -0 By, 0)(x))
where @ = (04,...,0,,), and
RMSDAlign(x,x’) =
argmin ~ RMSD(x,x') . @

xTe{gx'|gESE(3)}

In words, all m torsion updates are applied in any order
before global RMSD alignment with the unmodified pose.

Now consider the product space P = T'(3) x SO(3) x
SO(2)™, and define A : P x R?*" — R3" as:

A((I‘, R, 0), X) = Atr (I‘, Arol (R; Ator(ea X))) : (5)

Using this formulation, the submanifold of ligand poses can
be described as:

M={A((r,R,0),X;)|(r,R,0) € P} . 6)

Following Corso et al. (2022), each mapping A(-, X;) is
a bijection, ensuring the existence of inverse maps. This
allows us to define a diffusion process over the full product
space [P to model the ligand pose distribution. In scenarios
where the model is trained specifically for rotation, we set
the translation vector r € T'(3) to the zero vector. Con-
versely, when training for translation only, we set the rota-
tion matrix R € SO(3) to the identity matrix I, indicating
the absence of rotation. When torsion is not modeled, we
restrict the ligand to be rigid by eliminating any rotatable
bonds.

Since each component of IP forms a product manifold, we de-
fine independent forward diffusion processes (Rodola et al.,
2019), where the score lies in the corresponding tangent
space (Bortoli et al., 2022). The forward SDE is given by:

do?(t)

dx =
x dt

dw 7

where 02, 02,, and o2, govern diffusion in 7'(3), SO(3),
and SO(2)™, respectively. Their joint effect governs diffu-
sion in P. The term dw denotes Brownian motion on the

respective manifolds.

Neural Architecture We adopt the architecture proposed
by Ketata et al. (2023), originally developed for pro-
tein—protein complexes. To account for the differences in

molecular composition and interaction dynamics between
protein—protein and protein-RNA complexes, we introduce
separate embedding layers for protein and RNA components.
Furthermore, we extend the original model to additionally
predict torsional scores, enabling finer-grained structural
modeling.

Training Details For training, we use all RNA and pro-
tein containing PDB samples with deposition date before
September 30, 2021, the training cutoff date of AlphaFold 3,
downloaded on January 3, 2025. While the natural choice
would be to collect monomeric RNA-protein complexes
only, we found that adding RNA-protein multimers dur-
ing training and using all chains of one molecular type as
the receptor and all others together as the ligand is ben-
eficial during training for all STRAND versions except
STRAND4rot+tor OUr Version using all transformations. We
speculate that this process might help to directly learn the
interactions of all chains in a single process. We train five
different models for backbone refinement, one for transla-
tion only (STRANDy;), one for rotation only (STRAND;),
one for torsion only (STRAND,,), and the combinations of
translation and rotation (STRAND ), as well as transla-
tion, rotation and torsion, and STRAND;+1ot+t0r- The mod-
els are trained on a single A40 GPU for roughly 5.75, 33,
6, 72, and 54 hours, respectively, using Adam. Please find
details about hyperparameter settings in Appendix A.

4. Experiments

To assess STRAND’s refinement capabilities, we initial-
ize STRAND with the predictions of two recently pro-
posed approaches for the modeling of monomeric RNA-
protein complexes, AlphaFold 3 (Abramson et al., 2024)
and ProRNA3D-single (Roche et al., 2024), and sample 40
new poses from the different models. For AlphaFold 3, we
always use sample-0 predictions as only small variance is
reported for the sampling from the diffusion model in Al-
phaFold 3 (Abramson et al., 2024). However, this aligns
with our preliminary experiments, where we also did not ob-
serve strong variance across seeds nor different samples of
AlphaFold 3. Predicted sequences are aligned to the ground
truth via Needleman-Wunsch (Needleman & Wunsch, 1970)
to handle misalignments. We report performance in terms
of complex RMSD (cRMSD), determined by superimpos-
ing the ground truth and predicted complex structures via
the Kabsch algorithm (Kabsch, 1976) and computing the
RMSD between all Ca and P coordinates following Ganea
et al. (2021).

Data For all our experiments with AlphaFold 3, we use
a randomly selected set of monomeric RNA-protein com-
plexes published in PDB after the AlphaFold 3 training
cutoff date to ensure independence from the training set. We
split the samples based on experimental techniques into a
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Table 1. RNA-protein backbone refinement results of STRAND for AlphaFold 3 predictions. We show results for the translation only
model STRANDy, the rotation only model STRAND;, the torsion only model STRAND,, and the combined versions STRAND 4ot
and STRAND irot+0r- Best performance is indicated in bold, equal best performance is additionally indicated by underlined scores.
Results are reported in terms of mean and median complex RMSD (cRMSD; lower is better) and percentage of samples below a certain
cRMSD threshold (ZA, SA, IOA; higher is better). We observe that STRAND .ot Shows the best performance on average, while at least
one of the STRAND models performs equally well or better than AlphaFold 3 across all metrics for both datasets. The worst performance

is observed for the models trained with torsion.

Complex RMSD () |

Methods X-Ray Non X-Ray

%<2A  %<SA  %<10A Median Mean %<2A %<S5A %<10A Median Mean
AlphaFold 3 34.29 85.71 100.00 220  3.09 19.57 45.65 63.04 7.15  10.86
STRANDy, 34.29 82.86 100.00 230  3.06 19.57 47.83 60.87 6.53 10.71
STRAND; 37.14 88.57 97.14 223 3.07 21.74 4348 63.04 6.80 10.69
STRAND, 28.57 85.71 100.00 2.71 3.29 4.35 41.30 63.04 7.13  11.08
STRAND 10t 42.86 82.86 100.00 216 297 17.39  45.65 60.87 6.87 1041
STRAND+rot+tor 3143 82.86 100.00 3.10 345 0.00  34.78 54.35 873 11.64

set of test structures derived from X-ray crystallography and
one with samples derived by other techniques like NMR
and cryo EM, and evaluate the refinement of AlphaFold
3 predictions on both splits. The datasets contain 35 and
46 samples for X-ray and non-X-ray, respectively. For the
refinement of ProRNA3D-single predictions, we only use
data from X-ray crystallography, but download an additional
set of 28 complexes from the PDB. The X-ray dataset for
evaluations with ProRNA3D-single then contains a total of
63 samples. For more details about the datasets, please see
Appendix B.

4.1. RNA-protein Complex Refinement with STRAND

In this section, we evaluate different STRAND models
trained for different transformations to assess their influence
on performance: the translation only model STRAND,, the
rotation only model STRAND,,, the torsion only model
STRAND,,, and the combined versions STRAND,;,.o; and
STRAND4rot4t0r-  As described in Section 3, we diffuse
over the protein, while the RNA is treated as the receptor.
We sample 40 poses for each task for each individual model.
The best sample is selected manually based on the complex
RMSD (cRMSD).

4.1.1. STRAND CAN IMPROVE ALPHAFOLD 3

We summarize the results for the AlphaFold 3 predictions
for the X-ray and non-X-ray derived monomeric complexes
from PDB and their refinement with STRAND in Table 1.

Single Transformations While AlphaFold 3 shows re-
markable prediction quality on the X-ray data with a mean
cRMSD of 3.09 and 100% of the predictions being below a
cRMSD of 10A, we still see some improvements when ap-

plying STRAND to these strong predictions. For the models
trained for single transformations, two out of three models
improve the mean performance (STRAND,, with 3.06A and
STRAND,,, with 3.07A) while the model trained with tor-
sion achieves a slightly higher mean cRMSD of 3.29A. In
addition, we observe remarkable increases by 2.85% of
the percentage of complexes predicted below a cRMSD
of 2A and by 2.86% for complexes below 5A, with only
slightly worse median performance (2.23A and 2.20A for
STRAND,, and AlphaFold 3, respectively) for structure
refinement done via STRAND,,,. Generally, we observe
improvements for 48.5% and 40% of the X-ray modeling
tasks for the individual models STRAND,, and STRAND,;,
respectively (see also Figures 2, 3, and 4 for results on
individual tasks).

For the non-X-ray data, we generally observe worse predic-
tions of AlphaFold 3 with only roughly 60% of the predic-
tions being below a cRMSD of 10A. However, the trends
observed for the different STRAND versions are also con-
firmed for non-X-ray samples. Again, STRAND,.,; achieves
the highest percentage of predictions below 2A (2.17% im-
provement) and achieves the lowest mean cRMSD of all
single transformation models (10.69A for STRAND,.,; com-
pared to 10.86A for AlphaFold 3) while the torsion only
model shows the highest mean cRMSD of 11.08A. Remark-
ably, the model trained with translation only achieves the
highest percentage of predictions below a cRMSD of 5A, a
2.18% improvement over AlphaFold 3. Overall, the three
models can improve 63%, 63% and 26% of the individ-
ual tasks for STRAND,;, STRAND,,, and STRAND,,, re-
spectively. We show visualizations for the performance on
individual samples in Figures 7, 8, and 9 in Appendix C.2.

Generally, the model trained only with torsion performs
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Table 2. RNA-protein backbone refinement results of STRAND for ProRNA3D-single predictions on PDB structures validated by X-ray
crystallography. We show results for the translation only model STRANDy, the rotation only model STRAND;, the torsion only model
STRANDy, and the combined versions STRAND 4ot and STRAND r4ro410r- Results are reported in terms of mean and median complex
RMSD (cRMSD; lower is better) and percentage of samples below a certain cRMSD threshold (2A, SA, 10A; higher is better). We
observe that all methods improve the prediction quality of ProRNA3D-single on average, with the largest improvement observed by
STRAND:4roc. Remarkably, the models trained with torsion can improve the mean cRMSD of the ProRNA3D-single predictions.

Methods Complex RMSD (A) +

%<2A  %<5A %<10A Median Mean
ProRNA3D-single 4.76 36.51 57.14 8.09 12.02
STRAND,, 14.29 39.68 58.73 8.22 11.52
STRAND;, 12.70 39.68 60.32 690 11.30
STRAND;,; 3.17 34.92 57.14 8.18 12.01
STRAND 40t 12.70 38.10 58.73 725 11.19
STRAND;trot+tor 7.94 38.10 58.73 770 11.49

worse than the other two models. We speculate that the
reason for this is that torsion only affects the internal RNA
coordinates but not its general positioning with respect to the
protein. Consequently, changes in overall complex RMSD
through changes in the torsion angles can typically only be
marginal. This can also be observed in Figure 4 and Figure 9
for the performance on individual samples, where the effect
on cRMSD by changes in torsion angles is much smaller
compared to the other transformations (compare e.g. with
Figure 3) and further supported visually in Figure 1, where
the large differences in cRMSD result from repositioning
the two structures with respect to each other, while the local
structures remain unchanged.

Combined Transformations We also trained two mod-
els with combinations of transformations, STRAND ;o
trained with translation and rotation, and STRAND ;1 ot4t0r
trained with a combination of all the individual transforma-
tions. As shown in Table 1, we observe further improve-
ments when combining the best-performing single transfor-
mations. Specifically, STRANDy.; achieves the lowest
mean cRMSDs of 2.97A and 10.41A for X-ray and non-X-
ray samples, respectively. Furthermore, STRAND 1ot im-
proves the percentage of samples below a cRMSD of 2A by
8.57% and achieves also the lowest median cRMSD across
all methods on the X-ray dataset. In contrast, the additional
training for torsion seems to hurt performance in general,
as STRAND . rot+tor achieves the worst performance across
all the different STRAND versions, while STRAND 410t
can improve 42% of the individual AlphaFold 3 predictions
on the X-ray dataset and 63% of the AlphaFold predictions
on the non-X-ray dataset. Please find plots for the perfor-
mance on individual tasks for the combined models for
the STRAND refinements of AlphaFold 3 predictions in
Appendix C.1 and C.2.

4.1.2. STRAND cAN IMPROVE PRORNA3D-SINGLE

To assess the performance of STRAND for a different pre-
dictor than AlphaFold 3, we decide to use the recently pro-
posed ProRNA3D-single (Roche et al., 2024), which reports
remarkable results for monomeric RNA-protein complex
predictions. Please find an overview of the results for the
X-ray dataset in Table 2. Remarkably, we observe that all
versions of STRAND improve over ProRNA3D-single in
terms of mean cRMSD. The general trend that training with
translation, rotation, and the combination of both leads to
the best results, as observed for STRAND refinement of
AlphaFold 3 predictions, is also confirmed for ProRNA3D-
single. However, the improvements appear more substantial:
For predictions below a cRMSD of 2A we observe an im-
provement of 9.53% and 7.94% for the translation only
model and both the rotation and rotation+translation mod-
els, respectively. In addition, we find improvements for
the predictions below SA and 10A for all models except
the torsion-only version of STRAND, which is on par with
ProRNA3D-single for predictions below 10A and slightly
worse for the percentage of samples below a cRMSD of 5A.
For ProRNA3D-single, we also observe the strongest im-
provements, with decreased cRMSD scores for 84%, 77.7%,
and 84% of the targets for STRAND;, STRAND,,, and
STRANDot, respectively. Please find visualizations for
individual modeling tasks in Appendix C.3.

For our subsequent experiments and analysis we decide to
use the translation only model STRANDy,, the rotation only
model STRAND,; and their combination STRAND ;. as
these showed remarkable refinement capabilities for both
AlphaFold 3 and ProRNA3D-single.
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Table 3. RNA-protein backbone refinement results of STRAND for AlphaFold 3 non-X-ray predictions using sample selection with a
trained confidence model. We show results for STRAND;;, STRAND, and the combined version STRANDy..o.. Best performance is
indicated in bold, equal best performance is indicated by underlined scores. Results are reported in terms of mean and median cRMSD
(lower is better) after sample selection with the confidence model for STRAND compared to the cRMSD achieved by the initial AlphaFold

3 prediction.

Complex RMSD (A) |
Methods Top 1 Top 5 Top 10 Top 20
Median Mean Median Mean Median Mean Median Mean
AlphaFold 3 7.15 10.86 - - - - - -
STRAND,, 681 11.59 6.78 10.75 6.78 10.67 6.58 10.58
STRAND,, 7.24  11.56 7.03  10.73 7.03  10.51 6.80 10.27
STRAND 1ot 7.15 12.81 695 11.15 6.95 10.94 6.94 1048

4.2. Sample Selection for STRAND Predictions

In the previous section, we observe remarkable refine-
ment capabilities of STRAND, improving AlphaFold 3 and
ProRNA3D-single predictions across all datasets and met-
rics. However, the sample selection in our initial study was
done manually based on the cRMSD across 40 samples
drawn from the individual STRAND models. Selecting the
best sample from a set of predictions is a challenging task.
We decide to follow Ketata et al. (2023) and train a con-
fidence model based on the predictions of STRAND .
However, in contrast to Ketata et al. (2023), we do not train
a classifier to select samples below a certain ligand RMSD
threshold (5A for Ketata et al. (2023)) but directly train a
regression model for the prediction of ligand RMSDs. In
addition, we cannot train our confidence model at the same
scale as Ketata et al. (2023) due to compute limitations; we
only use 3% of the training samples compared to Ketata
et al. (2023) and train the confidence model for 60 hours on
a single A40 GPU. One advantage of STRAND is that we
can always fall back to the initial structure predictions of
AlphaFold 3 or ProRNA3D-single in case STRAND cannot
improve the prediction, since we are only doing refinement.
Therefore, we include the initial predictions in the set of sam-
ples of the different STRAND versions, essentially ranking
41 instead of 40 samples per complex prediction task with
the confidence model. Following Corso et al. (2022), we
evaluate the confidence model in terms of topl, top5, as well
as additional top10, and top20 performance, where topN
refers to selecting the most accurate pose out of the N high-
est ranked predictions by the confidence model. In the fol-
lowing, we discuss the sample selection results for the three
best models STRAND,;, STRAND,, and STRAND ;.

4.2.1. SELECTION FOR ALPHAFOLD 3 REFINEMENTS

We show the results for the sample selection for STRAND
using the confidence model for the refined predictions of
AlphaFold 3 on non-X-ray data in Table 3. The results

for X-ray data can be found in Table 10 in Appendix C.1.
Generally, we observe that the confidence model can se-
lect strong samples well for the non-X-ray dataset (see Ta-
ble 3). STRAND;, already improves the AlphaFold 3 me-
dian performance for the top1 selected sample (6.81A and
7.15A for STRAND, and AlphaFold 3, respectively), while
both other STRAND versions perform equally well or only
slightly worse in terms of median cRMSD. From top5 on-
wards, all STRAND versions consistently show lower me-
dian cRMSDs, while STRAND,, and STRAND,,, also out-
perform AlphaFold 3 in terms of mean performance. How-
ever, sample selection on the X-ray dataset appears more
challenging. None of the STRAND versions can improve
AlphaFold 3 performance for topl and top5 selected sam-
ples, while STRAND; is the only model that can improve
AlphaFold 3 mean performance for top10 selection with
equal median cRMSD. However, for top20 selection, we
still observe improvements with STRAND across all mod-
els for mean and median cRMSDs, except for STRAND,,
with slightly higher mean cRMSD but the lowest median
cRMSD.

We attribute the difference in sample selection performance
between the non-X-ray and the X-ray dataset to the overall
high prediction quality of AlphaFold 3 and the STRAND
refinements across all samples of the X-ray dataset. Distin-
guishing very good from good predictions seems to be much
harder than selection for the non-X-ray examples, where
we observed higher cRMSDs for the initial AlphaFold 3
predictions in general.

4.2.2. SELECTION FOR PRORNA3D-SINGLE
REFINEMENTS

The results for the sample selection for STRAND refine-
ments of ProRNA3D-single predictions are shown in Ta-
ble 4. Generally, both STRAND;;o¢ and STRAND,
achieve similar performance, with STRAND;.;o; perform-
ing best, achieving the lowest mean and median cRMSDs
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Table 4. RNA-protein backbone refinement results of STRAND for ProRNA3D-single predictions for X-ray data using sample selection
with a trained confidence model. We show results for STRAND,,, STRAND;, and the combined version STRANDy.o;. Best performance
is indicated in bold. Results are reported in terms of mean and median cRMSD (lower is better) after sample selection with the confidence
model for STRAND compared to the cRMSD achieved by the initial ProRNA3D-single prediction.

Complex RMSD (A) |
Methods Top 1 Top 5 Top 10 Top 20
Median Mean Median Mean Median Mean Median Mean
ProRNA3D-single 8.09 12.02 - - - - - -
STRAND,, 8.95 12.37 8.77 11.88 877 11.75 8.10 11.42
STRAND;, 8.34 1241 8.02 11.78 8.02 11.66 7.68 11.34
STRAND 4101 8.38 12.08 711 11.74 6.88 11.32 6.88 11.22

from top3 selection onwards (7.11A and 8.09A median,
11.74A and 12.02A mean cRMSD for STRAND ;.o top5
selection and ProRNA3D-single, respectively), while being
only slightly worse than ProRNA3D-single for the top1 se-
lected sample. While STRAND;, can similarly reduce the
mean cRMSD compared to ProRNA3D-single from top5 se-
lection onwards, it cannot achieve a lower median cRMSD.

5. Discussion, Limitations & Future Work

In this work, we introduce Structure refinement of RNA-
protein complexes via diffusion (STRAND), a novel ap-
proach for monomeric RNA-protein complex refinement.
We leverage the capabilities of current deep learning ap-
proaches for structural biology that can model different
molecule types and complexes of these and combine it with
the powerful diffusion framework of DiffDock-PP. Our new
method successfully refines monomeric RNA-protein com-
plex predictions by enhancing docking positions, showing
remarkable improvements in structure quality when applied
to AlphaFold 3 and ProRNA3D-single predictions.

With our analysis using different individual transformations
and their combinations, we show that simple rotation and
translation of the initial predictions can often already lead
to improvements, indicating that the 3D structure predictors
might often generally misplace the protein with respect to
the RNA when modeling their interaction. This is further
supported by our finding that the local refinement via torsion
angles does not lead to substantial improvements, although
torsion angle refinement generally comes with its own addi-
tional challenges, and the training of the models, including
torsion, might require further development, specifically re-
garding noise schedules. However, we think that our results
provide new insights that could help to develop stronger 3D
RNA-protein structure prediction tools in the future, which
would also be beneficial for new refinement methods.

Our experiments for sample selection show that it is gen-
erally possible to select strong samples by training a con-

fidence model for ligand RMSD prediction. We think that
direct prediction of ligand RMSD could be beneficial over
training a classifier to select samples below a certain ligand
RMSD threshold, as implemented in DiffDock-PP. How-
ever, we follow Ketata et al. (2023) and optimize the ligand
RMSD, which might not be optimal. It would be interesting
to analyze the results when optimizing e.g. for cRMSD
directly. Nevertheless, our selection model already shows
remarkable results, although we train only on a fraction
of the data used by Ketata et al. (2023) due to compute
limitations.

Limitations However, despite notable improvements in
performance, our approach also has limitations. Our re-
finement currently only involves backbone atoms similar to
DiffDock-PP. However, it would be generally preferable to
refine full-atom structures. Additionally, we are bound by
the length limitations of the foundation models for obtaining
sequence embeddings. We currently limit the length to 1022
residues. Furthermore, selecting the best sample remains
challenging. We note, however, that our confidence model is
currently trained on a relatively small set of complexes, and
we expect improved performance when scaling the training
to larger amounts of data.

Future Work For the future, we mainly plan to address
the current limitations. Most importantly, we would like
to further analyze the inclusion of torsion angle refinement
and scale the data for training the confidence model for
sample selection. Also, optimizing the confidence model
for cRMSD instead of ligand RMSD would be a natural next
step. In addition, we are currently developing a full-atom
version of STRAND with diffusion over the RNA instead
of the protein.

We believe that our novel refinement approach bears large
potential for the community, potentially enabling high pre-
diction quality of monomeric RNA-protein complexes in
the future.
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A. Hyperparameters

Table 5. Hyperparameters of the Tensor Product Score Model.

Parameter Value
Max Ligand Radius 5
Receptor Max Radius 30
Cross Max Distance 80
Dynamic Max Cross True
Cross Cutoff Weight 3
Cross Cutoff Bias 40
Center Max Distance 30
Spherical Harmonics (Imax) 2
Node Features (ns) 16
Vector Features (nv) 4
Scale by Sigma True
Number of Conv Layers 4
Dropout Rate 0
Batch Normalization False
Edge Features 4
Distance Embedding Dim 32
Cross Distance Embedding Dim 32
Sigma Embedding Dim 32
LM Embedding Dim 640
Hidden Features 3 *ns
Gaussian Smearing Start 0.0
Gaussian Smearing Stop 5.0
Sinusoidal Max Positions led
Embedding Scale 10000

Table 6. Other Hyperparameters.

Parameter Value
Batch Size STRAND,, 4
Batch Size STRAND,, 24
Batch Size STRAND,, 12
Batch Size STRAND ;4101 12

Batch Size STRAND 4rot+tor 12
Number of Nearest Neighbors 30
Optimizer Adam
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B. Data Insights

B.1. Statistics of the three sets used in the evaluation of structure refinement.

Table 7. RNA and Protein Residue Statistics for Different Evaluation Sets.

X-ray Non-X-ray ProRNA3D-single

Num samples 35 46 63
RNA

Max Length 84.0 828.0 270.0

Min Length 3.0 5.0 3.0

Median Length 6.0 25.5 10.0

Mean length 12.9 96.0 35.0
Protein

Max length 816.0 1017.0 850.0

Min Length 75.0 100.0 82.0

Median Length  167.0 669.5 388.0

Mean Length ~ 289.7 572.3 416.3

B.2. Statistics train, validation, and test splits used in training and evaluating the diffusion model.

Table 8. RNA and Protein Residue Statistics for Train, Validation, and Test Sets (all three combined).

Train Val Test

RNA
Max Length 829.0 706 240
Min Length 1.0 2 14

Median Length  22.0 21.0 68.0
Mean Length 59.0 60.88 79.0

Protein
Max Length 1022 1007 999
Min Length 14 61 75

Median Length 411.0 416.0 374.0
Mean Length 449.5 484.0 423.6
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Table 9. RNA and Protein Residue Statistics for Train, Validation, and Test Sets used in STRAND rot+tor-
Train Val Test

RNA
Max Length 1012 924 950
Min Length 2.0 2 2

Median Length 118 119.5 114.5
Mean Length 150.86 148.76  118.68

Protein
Max Length 1015 823 476
Min Length 2 50 51

Median Length 155 126.5 152.5
Mean Length 449.65 196.26 178.321
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C. Additional Results

C.1. Improving AlphaFold 3 Prediction for X-Ray Structures

Table 10. RNA-protein backbone refinement results of STRAND for AlphaFold 3 X-ray predictions using sample selection with a trained
confidence model. We show results for STRAND,;, STRAND; and the combined version STRAND . Best performance is indicated
in bold, equal best performance is indicated by underlined scores. Results are reported in terms of mean and median cRMSD (lower

is better) after sample selection with the confidence model for STRAND compared to the cRMSD achieved by the initial AlphaFold 3
prediction.

Complex RMSD (A) |
Methods Top 1 Top 5 Top 10 Top 20
Median Mean Median Mean Median Mean Median Mean
AlphaFold 3 220 3.09 - - - - - -
STRAND,, 278  3.94 239 357 230 347 211  3.15
STRAND, 3.64 446 222 330 220 290 220 2.83

STRAND 1ot 2.84 448 245  3.60 229 334 212 290

B AF3 GT cRMSD
[ STRAND-tr Min Diffused cRMSD

Complex-RMSD (A)

o
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Figure 2. Per sample cRMSD of AlphaFold 3 predictions on X-ray data and the corresponding prediction of STRAND. We show results
of the translation-only model STRANDj,.
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Figure 3. Per sample cRMSD of AlphaFold 3 predictions on X-ray data and the corresponding prediction of STRAND. We show results
of the rotation-only model STRAND;.
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Figure 4. Per sample cRMSD of AlphaFold 3 predictions on X-ray data and the corresponding prediction of STRAND. We show results
of the torsion-only model STRANDy.
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Figure 5. Per sample cRMSD of AlphaFold 3 predictions on X-ray data and the corresponding prediction of STRAND. We show results
of the combined model of translation and rotation STRAND o
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Figure 6. Per sample cRMSD of AlphaFold 3 predictions on X-ray data and the corresponding prediction of STRAND. We show results
of the combined model for translation, rotation, and torsion STRANDrot+tor-
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C.2. Improving AlphaFold 3 Prediction for Non-X-Ray Structures
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Figure 7. Per sample cRMSD of AlphaFold 3 predictions on non-X-ray data and the corresponding prediction of STRAND. We show
results of the translation-only model STRAND,.
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Figure 8. Per sample cRMSD of AlphaFold 3 predictions on non-X-ray data and the corresponding prediction of STRAND. We show
results of the rotation-only model STRAND; .

18



STRAND: Structure Refinement of RNA-Protein Complexes via Diffusion

B AF3 GT cRMSD
0 STRAND-tor Min Diffused cRMSD

)

201

Complex-RMSD (A

% . > D, £ D D20 D RO DO R LG P A P DD PD DO
SEE R R S R R e

PDB Id

Figure 9. Per sample cRMSD of AlphaFold 3 predictions on non-X-ray data and the corresponding prediction of STRAND. We show
results of the torsion only model STRAND;.
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Figure 10. Per sample cRMSD of AlphaFold 3 predictions on non-X-ray data and the corresponding prediction of STRAND. We show
results of the combined model of translation and rotation STRAND ot
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Figure 11. Per sample cRMSD of AlphaFold 3 predictions on non-X-ray data and the corresponding prediction of STRAND. We show
results of the combined model of translation, rotation, and torsion STRAND rot+tor-
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C.3. Improving ProRNA3D-single Predictions
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Figure 12. Per sample cRMSD of ProRNA3D-single predictions on X-ray data and the corresponding prediction of STRAND. We show
results of the translation-only model STRAND,.
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Figure 13. Per sample cRMSD of ProRNA3D-single predictions on X-ray data and the corresponding prediction of STRAND. We show
results of the rotation-only model STRAND; .
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Figure 14. Per sample cRMSD of ProRNA3D-single predictions on X-ray data and the corresponding prediction of STRAND. We show
results of the torsion-only model STRANDo;.
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Figure 15. Per sample cRMSD of ProRNA3D-single predictions on X-ray data and the corresponding prediction of STRAND. We show
results of the combined model for translation and rotation STRAND 4o
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Figure 16. Per sample cRMSD of ProRNA3D-single predictions on X-ray data and the corresponding prediction of STRAND. We show
results of the combined model for translation, rotation, and torsion STRANDrtrot+tor-

21



