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Abstract
In the differentially private partition selection
problem (a.k.a. private set union, private key
discovery), users hold subsets of items from an
unbounded universe. The goal is to output as
many items as possible from the union of the
users’ sets while maintaining user-level differen-
tial privacy. Solutions to this problem are a core
building block for many privacy-preserving ML
applications including vocabulary extraction in
a private corpus, computing statistics over cate-
gorical data and learning embeddings over user-
provided items. We propose an algorithm for this
problem, MaxAdaptiveDegree (MAD), which
adaptively reroutes weight from items with weight
far above the threshold needed for privacy to items
with smaller weight, thereby increasing the proba-
bility that less frequent items are output. Our algo-
rithm can be efficiently implemented in massively
parallel computation systems allowing scalability
to very large datasets. We prove that our algo-
rithm stochastically dominates the standard paral-
lel algorithm for this problem. We also develop
a two-round version of our algorithm, MAD2R,
where results of the computation in the first round
are used to bias the weighting in the second round
to maximize the number of items output. In ex-
periments, our algorithms provide the best results
among parallel algorithms and scale to datasets
with hundreds of billions of items, up to three
orders of magnitude larger than those analyzed by
prior sequential algorithms.

1. Introduction
The availability of large amounts of user data has been one
of the driving factors for the widespread adoption and rapid
development of modern machine learning and data analytics.
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Consider the example of a system releasing information
on the queries asked to a search engine over a period of
time (Korolova et al., 2009; Bavadekar et al., 2021). Such
a system can provide valuable insights to researchers and
the public (for instance on health concerns Bavadekar et al.
(2021)) but care is needed in ensuring that the queries output
do not leak private and sensitive user information.

In this paper, we focus on the problem of private partition
selection (Desfontaines et al., 2022; Gopi et al., 2020) which
models the challenge of extracting as much data as possible
from such a dataset while respecting user privacy. More
formally, the setting of the problem (which is also known as
private set union or private key discovery) is that each user
has a private subset of items (e.g., the queries issued by the
user) from an unknown and unbounded universe of items
(e.g., all strings). The goal is to output as many of the items
in the users’ sets as possible (i.e., the queries issues by the
users), while providing a strong notion of privacy—User-
level Differential Privacy (DP) (Dwork & Roth, 2014).

Private partition selection models many challenges beyond
the example above, including the problem of extracting the
vocabulary (words, tokens or n-gram) present in a private
corpus (Zhang et al., 2022; Kim et al., 2021). This task
is a fundamental prerequisite for many privacy-preserving
natural language processing algorithms (Wilson et al., 2019;
Gopi et al., 2020), including for training language mod-
els for sentence completion and response generation for
emails (Kim et al., 2021). Similarly, learning embedding
models over categorical data often requires to identify the
categories present in a private dataset (Ghazi et al., 2023;
2024). Partition selection underpins many other appli-
cations including analyzing private streams (Cardoso &
Rogers, 2022; Zhang et al., 2023), learning sparse his-
tograms (Boneh et al., 2021), answering SQL queries (Des-
fontaines et al., 2022) and sparsifying the gradients in the
DP SGD method (Ghazi et al., 2023). Unsurprisingly given
these applications, private partition selection algorithms
(Korolova et al., 2009) are a core building block of many
standard differentially private libraries e.g., PyDP (PyDP,
2024), Google’s DP Libraries (Google, 2024; Amin et al.,
2022), and OpenMined DP Library (OpenMined, 2024).

Real-world datasets for these applications can be mas-
sive, potentially containing hundreds of billions of data
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points, thus requiring algorithms for partition selection
that can be efficiently run in large-scale data process-
ing infrastructures—e.g., MapReduce (Dean & Ghemawat,
2004), Hadoop (Apache Software Foundation), Spark (Za-
haria et al., 2016). In our work, we design a highly par-
allelizable algorithm for this problem which requires con-
stant parallel rounds in the Massively Parallel Computing
model (Karloff et al., 2010) and does not assume to fit the
input in memory. This contrasts to prior algorithms such as
(Gopi et al., 2020; Carvalho et al., 2022) which all require
(with the key exception of the uniform weighting method
described below) to process all the data sequentially on a
single machine and assume storing the input in-memory
thus precluding efficient parallelization.

1.1. Weight and Threshold Approach

Before introducing our algorithm, we review the popular
weighting-based approach to partition selection which is
used in many algorithms (Korolova et al., 2009; Gopi et al.,
2020; Carvalho et al., 2022; Swanberg et al., 2023). This
approach is of interest in the context of large-scale data as
some of its variants can be parallelized efficiently (Korolova
et al., 2009; Swanberg et al., 2023).

Notice that differential privacy imposes to not output any
item which is owned by only a single user. However, it
is possible for a private algorithm to output items which
appear in many different sets. This intuition is at the basis
of the weighting-based algorithms.

Algorithms in this framework start by subsampling each
user’s set to bound the maximum number of items per user.
Then, these algorithms proceed by increasing, for each user,
the weight associated the items present in the user data. Fi-
nally, the algorithm adds Gaussian (or Laplace) noise to
the total accumulated weight of each item, and outputting
all items with noised weight above a certain threshold (Ko-
rolova et al., 2009; Gopi et al., 2020; Carvalho et al., 2022;
Swanberg et al., 2023). The amount of noise and value of
the threshold depends on the privacy parameters and cru-
cially on the sensitivity of the weighting function to the
addition or removal of any individual user’s set. Loosely
speaking, the contribution of each user to the item weights
must be bounded in order to achieve differential privacy.
Algorithms within this framework differ in the choice of
how to assign item weights, but in all designs the key goal
is that of limiting the sensitivity of the weighting function.

A basic strategy is uniform weighting (Korolova et al., 2009)
where each user contributes equal weight to each of the
items in their set. It is easy to bound the sensitivity of
this basic weighting and thus to prove differential privacy.
Because of its simplicity, the basic uniform weighting al-
gorithm is extremely parallelizable requiring only basic
counting operations over the items in the data.

Unfortunately, however, uniform weighting is lossy in that
it may overallocate weight far above the threshold to high
frequency items, missing an opportunity to boost the weight
of items closer to the decision boundary. This has inspired
the design of greedy weighting schemes such as (Gopi et al.,
2020; Carvalho et al., 2022) where each user’s allocations
depend on data of previously analyzed users. All of these
algorithms are inherently sequential and require memory
proportional to the items present in the data.

To our knowledge, the uniform weighting (Korolova et al.,
2009) is essentially the only known solution to the private
partition selection problem which is amenable to implemen-
tation in a massively parallel computation framework. The
sole exception is the scalable, iterative partition selection
(DP-SIPS) scheme of (Swanberg et al., 2023) which has
as core computation repeated invocations of the uniform
weighting algorithm.

1.2. Our Contributions

In this work, we design the first, adaptive, non-
uniform weighting algorithm that is amenable to mas-
sively parellel implementations. Our algorithm, called
MaxAdaptiveDegree (MAD), requires linear work in the
size of the input and can be implemented in a constant num-
ber of rounds in a parallel framework. From a technical
point of view, the algorithm is based on a careful rerouting
of overallocated weight to less frequent items, that together
with a delicate sensitivity analysis shows no privacy loss
compared to uniform weighting. This means that—given the
same privacy parameters—both algorithms utilize exactly
the same amount of noise and the same threshold (but our
algorithm can better allocate the weight). As a result, we are
able to prove that our algorithm stochastically dominates
the basic, uniform weighting strategy.

We extend our result to multiple rounds in
MaxAdaptiveDegreeTwoRounds (MAD2R), splitting
our privacy budget across the rounds, running MAD in
each round, and outputting the union of items found in
both rounds. Similar to DP-SIPS, in the second round,
we remove from the input any items found in the first
round (this is private by post-processing). By a careful
generalization of the privacy analysis of the weight and
threshold approach, we show that it is possible to also use
the noisy weights from the prior round. We leverage this in
two ways. First, we additionally remove items which have
very small weights from the first round–these have little
chance of being output in the second round. Second, we
bias the weighting produced by MAD in the second round to
further limit overallocation to items which received large
weights in the first round. The combination of these ideas
yields significant empirical improvements over both the
basic algorithm and DP-SIPS.
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In MAD, users with a too small or large of a cardinality (we
equivalently refer to this as the user’s degree) are labeled
non-adaptive: these users will add uniform weight to their
items (or biased weight in the case of MAD2R). The rest of
the users participate in adaptive reweighting with the pri-
vacy analysis making use of the upper bound on their degree.
Initially each of these users sends a small amount of weight
uniformly among their items (the total amount of weight
sent per user is bounded by 1 rather than the square root
of their degree, which is the case for the basic weighting
algorithm). Then, items with weight significantly above the
threshold are truncated to only have weight slightly above
the threshold (we do not want to truncate all the way to the
threshold as the added noise can decrease weights). The
weight removed via truncation is returned to each user pro-
portional to their initial contributions. Then, users reroute
a carefully chosen fraction of this “excess” weight back to
their items. Finally, users add additional uniform weight to
their items to make up for the small amount of weight that
was initially sent.

Bounding the sensitivity of MAD requires a careful analysis
and is significantly more involved than for basic weight-
ing. Several design choices made in our algorithm, such as
using an initial uniform weighting inversely proportional
to cardinality rather than square root of cardinality, using
a minimum and maximum adaptive degree, and choosing
the fraction of how much excess weight to reroute are all
required for the following theorem to hold. Furthermore, we
generalize the analysis of the weight and threshold paradigm
to allow us to use noisy weights from first round in biasing
weights in the second round of MAD2R. This biasing fur-
ther complicates the sensitivity analysis of MAD which we
address by putting limits on the minimum and maximum
bias.

Theorem 1.1 (Privacy, Informal version of Theorem B.1
and Corollary B.2). Using MAD as the weighting algorithm
achieves (ε, δ)-DP with the exact same noise and threshold
parameters as the basic algorithm. Running MAD in two
rounds with biases via MAD2R is (ε, δ)-DP.

Within MAD, items have their weight truncated if it exceeds
an “adaptive threshold” τ after adding the initial weights.
τ is set to be β standard deviations of the noise above the
true threshold that will be used to determine the output
where β ≥ 0 is a free parameter of the algorithm. By
design, before adding noise, every item which receives at
least weight τ in the basic algorithm will also receive weight
at least τ by MAD. Furthermore, the weights on all other
items will only be increased under MAD compared to the
basic algorithm. Taking the final step of adding noise, we
show the following theorem.

Theorem 1.2 (Stochastic Dominance, Informal version of
Theorem C.1). Let U be the set of items output when using

the basic algorithm and let U∗ be the set of items output
when using MAD as the weighting algorithm. Then, for items
i ∈ U and a free parameter β ≥ 0,

• If Pr(i ∈ U) < Φ(β), then Pr(i ∈ U∗) ≥ Pr(i ∈ U).

• Otherwise, Pr(i ∈ U∗) ≥ Φ(β).

where Φ is the standard Gaussian cdf.

Compared to the basic algorithm, MAD has a higher proba-
bility of outputting any item that does not reach the adaptive
threshold in its initial stage as it reroutes excess weight to
these items. The theorem shows that MAD stochastically
dominates the basic algorithm on these items. For the re-
maining items, they already have an overwhelming probabil-
ity of being output as their final weight before adding noise
is at least several standard deviations above the threshold
(this is quantitatively controlled by the parameter β). In
Appendix C, we also describe a simple, concrete family
of instances where MAD significantly improves upon the
baselines.

Finally, we conduct experiments on several publicly-
available datasets with up to 800 billions of (user, item) pairs
(up to three orders of magnitude larger than prior datasets
used in sequential algorithms). Our algorithm outperforms
scalable baselines and is competitive with the sequential
baselines.

1.3. Related Work

Our algorithms are in the area of privacy preserving algo-
rithms with differential privacy guarantee which is the de
facto standard of privacy (we refer to (Dwork & Roth, 2014)
for an introduction to this area). As we covered the appli-
cation and prior work on private partition selection in the
introduction, we now provide more details on the work most
related to our paper.

The differentially private partition selection problem was
first studied in (Korolova et al., 2009). They utilized the
now-standard approach of subsampling to limit the number
of items in each user’s set, constructing weights over items,
and thresholding noised weights to produce the output. They
proposed a version of the basic weighting algorithm which
uses the Laplace mechanism rather than the Gaussian mech-
anism. This algorithm was also used in (Wilson et al., 2020)
within the context of a private SQL system. The problem
received renewed study in (Gopi et al., 2020) where the au-
thors propose a generic class of greedy, sequential weighting
algorithms which empirically outperform basic weighting
(with either the Laplace or Gaussian mechanism). (Carvalho
et al., 2022) gave an alternative greedy, sequential weighting
algorithm which leverages item frequencies in cases where
each user has a multiset of items. (Desfontaines et al., 2022)
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analyzed in depth the optimal strategy when each user has
only a single item (all sets have cardinality one). This is
the only work that does not utilize the weight and thresh-
old approach, but it is tailored only for this special case.
The work most related to ours is DP-SIPS (Swanberg et al.,
2023) which proposes the first algorithm other than basic
weighting which is amenable to implementation in a paral-
lel environment. DP-SIPS splits the privacy budget over a
small number of rounds, runs the basic algorithm as a black
box each round, and iteratively removes the items found in
previous rounds for future computations. This simple idea
leads to large empirical improvements, giving a scalable
algorithm that has competitive performance with sequential
algorithms.

2. Preliminaries
Definition 2.1 (Differentially-Private Partition Selection).
In the differentially-private partition selection (a.k.a. private
set union or key selection) problem, there are n users with
each user u having a set Su of items from an unknown and
possibly infinite universe Σ of items: the input is of the form
S = {(u, Su)}u∈[n]. The goal is to output a set of items
U of maximum cardinality, such that U is a subset of the
union of the users’ sets U = ∪u∈[n]Su, while maintaining
user-level differentially privacy.

As standard in prior work (Korolova et al., 2009; Gopi et al.,
2020; Carvalho et al., 2022; Swanberg et al., 2023) we
consider the central differential privacy model, where the
input data is available to a curator that runs the algorithm
and wants to ensure differential privacy for the output of the
algorithm. We now formally define these notions.

Definition 2.2 (Neighboring Datasets). We say that two
input datasets S and S ′ are neighboring if one can be ob-
tained by removing a single user’s set from the other, i.e.,
S ′ = S ∪ {(v, Sv)} for some new user v.

Definition 2.3 (Differential Privacy (Dwork & Roth, 2014)).
A randomized algorithmM is (ε, δ)-differentially private,
or (ε, δ)-DP, if for any two neighboring datasets S and S ′
and for any possible subset of outputs O ⊆ {U : U ⊆ Σ},

Pr(M(S) ∈ O) ≤ eε · Pr(M(S ′) ∈ O) + δ.

Let Φ : R→ R be the standard Gaussian cumulative density
function.

Proposition 2.4 (Gaussian Mechanism (Balle & Wang,
2018)). Let f : D → Rd be a function with ℓ2 sensitiv-
ity ∆2. For any ε > 0 and δ ∈ (0, 1], the mechanism
M(x) = f(x) + Z with Z ∼ N (0, σ2I) is (ε, δ)-DP if

Φ

(
∆2

2σ
− εσ

∆2

)
− eεΦ

(
−∆2

2σ
− εσ

∆2

)
≤ δ.

Algorithm 1 Meta-algorithm for private partition selection.
WeightAndThreshold(S, ε, δ,∆0,ALG, h)
Input: User sets S = {(u, Su)}u∈[n], privacy parame-
ters (ε, δ), degree cap ∆0, weighting algorithm ALG, upper
bound on the novel ℓ∞ sensitivity, function h : N→ R
Output: Subset of the union of user sets U ⊆ U =
∪nu=1Su, noisy weight vector w̃ext

1: Select σ corresponding to the Gaussian Mechanism (Proposi-
tion 2.4) for (ε, δ/2)-DP with ∆2 = 1.

2: Set ρ← maxt∈[∆0] h(t) + σΦ−1
((

1− δ
2

)1/t)
3: for all u ∈ [n] do
4: if |Su| ≥ ∆0 then
5: Randomly subsample Su to ∆0 items. ▷ Cap user

degrees.
6: end if
7: end for
8: w ← ALG(S) ▷ Weights on items in U
9: w̃(i)← w(i) +N (0, σ2I) ▷ Add noise

10: U ← {i ∈ U : w̃(i) ≥ ρ} ▷ Apply threshold.

11: w̃ext(i)←

{
w̃(i) if i ∈ U
N (0, σ2I) if i ∈ Σ \ U

▷ The i ∈ Σ \ U part is only for privacy analysis (we only
ever query this vector on i ∈ U ).

12: return U, w̃ext

3. Weight and Threshold Meta-Algorithm
In this section, we formalize the weighting-based meta-
algorithm used in prior solutions to the differentially private
partition selection problem (Korolova et al., 2009; Gopi
et al., 2020; Carvalho et al., 2022; Swanberg et al., 2023).
Our algorithm MAD also falls within this high-level approach
with a novel weighting algorithm that is both adaptive and
scalable to massive data. We alter the presentation of the
algorithm from prior work in a subtle, but important, way
by having the algorithm release a noisy weight vector w̃ext

in addition to the normal set of items U . This allows us to
develop a two-round version of our algorithm MAD2R which
queries noisy weights from the first round to give improved
performance in the second round, leading to signficant em-
pirical benefit.

The weight and threshold meta-algorithm is given in Al-
gorithm 1. Input is a set of user sets S = {(u, Su)}u∈[n],
privacy parameters ε and δ, a maximum degree cap ∆0, and
a weighting algorithm ALG (which can itself take some op-
tional input parameters), and a function h : N→ R which
describes the sensitivity of ALG.

First, each user’s set is randomly subsampled so that the
size of each resulting set is at most ∆0 (the necessity of
this step will be further explicated). Then, the ALG takes
in the cardinality-capped sets and produces a set of weights
over all items in the union. Independent Gaussian noise
with standard deviation σ is added to each coordinate of the
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weights, and items with weight above a certain threshold ρ
are output. By construction, this algorithm will only ever
output items which belong to the true union, U ⊆ U , with
the size of the output depending on the number of items
with noised weight above the threshold.

For the sake of analysis (and not the implementation of the
algorithm), we diverge from prior work to return a vector
w̃ext of noisy weights over the entire universe Σ. This vector
is implicitly used in the proof of privacy for releasing the set
of items U , but it is never materialized as |Σ| is unbounded.
Within our algorithms, we will ensure that we only ever
query entries of this vector which belong to U , so we only
ever have to materialize those entries. Note, however, that
it would not be private to release w̃ as the output of a final
algorithm as the domain of that vector is exactly the true
union of the users’ sets.

The privacy of this algorithm depends on certain “sensitivity”
properties of ALG as well as our choice of σ and ρ. Consider
any pair of neighboring inputs S and S ′ = S ∪ {(v, Sv)},
let U and U ′ be the corresponding unions, and let w and
w′ be the item weights assigned by ALG on the two inputs,
respectively.

Definition 3.1. The ℓ2 sensitivity of a weighting algorithm
is defined as the smallest value ∆2 such that,

∆2 ≥
√∑

i∈U
(w′(i)− w(i))

2
+

∑
i∈U ′\U

w′(i)2.

Given bounded ℓ2 sensitivity, choosing the scale of noise σ
appropriately for the Gaussian mechanism in Proposition 2.4
ensures that outputting the noised weights on items in U
satisfies

(
ε, δ

2

)
-DP. So if we knew U , then the output of

the algorithm after thresholding would be private via post-
processing.

However, knowledge of the union U is exactly the problem
we want to solve. The challenge is that there may be items
in U ′ which do not appear in U . Let T = U ′ \ U be these
“novel” items with t = |T |. As long as the probability that
any of these items are output by the algorithm is at most δ

2 ,
(ε, δ)-DP will be maintained. Consider a single item i ∈ T
which has zero probability of being output by a weight and
threshold algorithm run on S but is given some weight w′(i)
when ALG is run on S ′. The item will be output only if after
adding the Gaussian noise with standard deviation σ, the
noised weight exceeds ρ. The probability that any item in
T is output follows from a union bound. In order to union
bound only over finitely many events, we rely on the fact
that t ≤ ∆0; this is why the cardinalities must be capped.
This motivates the second important sensitivity measure of
ALG.

Definition 3.2. The novel ℓ∞ sensitivity of a weighting al-
gorithm is parameterized by the number t = |T | of items

which are unique to the new user, and is defined as the small-
est value ∆∞(t) such that for all possible inputs {Su}nu=1

and new user sets Sv ,

∆∞(t) ≥ max
i∈T

w′(i).

Then, the calculation of ρ to obtain (ε, δ)-DP is obtained
based on the novel ℓ∞ sensitivity, δ, σ, and ∆0. This is
formalized in the following theorem whose proof is given
in Appendix B.

Theorem 3.3. Let S, (ε, δ),∆0,ALG, h be inputs to Algo-
rithm 1. If ALG has bounded ℓ2 and novel ℓ∞ sensitivities

∆2 ≤ 1 and ∆∞(t) ≤ h(t),

then releasing U, w̃ext satisfies (ε, δ)-DP.

4. Maximum Adaptive Degree Weighting
Our main result is an adaptive weighting algorithm
MaxAdaptiveDegree (MAD) which is amenable to par-
allel implementations and has the exact same ℓ2 and novel
ℓ∞ sensitivities as Basic. Therefore, within the weight
and threshold meta-algorithm, both algorithms utilize the
same noise σ and threshold ρ to maintain privacy. Our algo-
rithm improves upon Basic by reallocating weight from
items far above the threshold to other items.

We present the full algorithm in Algorithm 2. For sim-
plicity, we will first describe the “unbiased” version of
our algorithm where b, bmin, bmax are set to ones and
UserWeights(Su, b, bmin, bmax) is a vector of weights
over all items with 1/

√
|Su| for every i ∈ Su and zeros

in other coordinates. The algorithm takes two additional
parameters: a maximum adaptive degree dmax ∈ (1,∆0]
and an adaptive threshold τ = ρ + βσ for a free parame-
ter β ≥ 0. Users with set cardinalities greater than dmax

are set aside and contribute basic uniform weights to their
items at the end of the algorithm. The rest of the users
participate in adaptive reweighting. We start from a uniform
weighting where each user sends 1/|Su| weight to each of
their items. Items have their weights truncated to τ and
any excess weight is sent back to the users proportional to
the amount they contributed. Users then reroute a carefully
chosen fraction (depending on dmax) of this excess weight
across their items. Finally, each user adds 1/

√
|Su|− 1/|Su|

to the weight of each of their items.

Each of these stages requires linear work in the size of the
input, i.e. the sum of the sizes of the users sets. Furthermore,
each stage is straightforward to implement within a parallel
framework. As there are a constant number of stages, the
algorithm can be implemented with total linear work and
constant number of rounds.
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Algorithm 2 MAD(S, τ, dmax, b, bmin, bmax)
Input: User sets S = {(u, Su)}u∈[n], adaptive threshold τ ≥ 0, maximum adaptive degree dmax > 1, biases b : U → R,
minimum bias bmin ∈ [0.5, 1], maximum bias bmax ∈ [1,∞]
Output: w : U → R weighting of the items
1: Initialize weight vectors w,winit, wtrunc, wreroute with zeros.
2: Set reroute discount factor α = bmin − 1

2
√
dmax

.

3: Iadapt = {u ∈ [n] :
⌈

1
(bmin)2

⌉
≤ |Su| ≤ dmax} ▷ Only users with certain degrees act adaptively.

4: for all u ∈ Iadapt do
5: winit(i) += 1/|Su| ∀i ∈ Su ▷ Initial ℓ1 sensitivity bounded weights.
6: end for
7: r(i)← min

{
0, winit(i)−τ

winit(i)

}
for i ∈ U ▷ Fraction of weight that exceeds the threshold.

8:
9: wtrunc(i)← min{winit(i), τ} for i ∈ U ▷ Truncate weights above threshold.

10: for all u ∈ Iadapt do
11: eu ← (1/|Su|)

∑
i∈Su

r(i) ▷ Excess weight returns to each user proportional to their contribution.
12: wreroute(i) += αeu/dmax for i ∈ Su ▷ Reroute excess to items, discounted by α/dmax.
13: end for
14: w ← wtrunc + wreroute ▷ Total ℓ1 bounded adaptive weights.
15: wu

b ← UserWeights(Su, b, bmin, bmax) ∀u ∈ [n] ▷ See Algorithm 4.
16: for all u ∈ Iadapt do
17: w(i) += wu

b (i)− 1/|Su| for i ∈ Su ▷ Add ℓ2 bounded weight and subtract initial weights.
18: end for
19: for all u ∈ [n] \ Iadapt do
20: w(i) += wu

b (i) for i ∈ Su ▷ Add ℓ2 bounded weight for non-adaptive items.
21: end for
22: return w

4.1. MAD2R: Biased Weights in Multiple Rounds

This unbiased version of MAD directly improves on the basic
algorithm. We further optimize our algorithm by refining
an idea from the prior work of DP-SIPS (Swanberg et al.,
2023). In that work, the privacy budget is split across multi-
ple rounds with Basic used in each round. In each round,
items found in previous rounds are removed from the users’
sets, so that in early rounds, easy-to-output (loosely speak-
ing, high frequency) items are output, with more weight
being allocated to harder-to-output items in future rounds.
The privacy of this approach follows from post-processing:
we can freely use the differentially private output U from
early rounds to remove items in later rounds.

We propose MaxAdaptiveDegreeTwoRounds
(MAD2R) which as a starting point runs MAD in two rounds,
splitting the privacy budget as in DP-SIPS. As MAD
stochastically dominates Basic, this provides a drop-in
improvement. Our key insight comes from the modified
meta-algorithm we present in Section 3 which also outputs
the vector of noisy weights w̃ext. As long as the ALG
maintains bounded sensitivity, we are free to query the
noisy weights from prior rounds when constructing weights
in future rounds.

We leverage this by running in two rounds with the full
pseudocode given in Algorithm 5. In the first round, we run
the unbiased version of MAD described above to produce

outputs U1 = U as well as query access to w̃ext. We will
only ever query items in U , so we maintain w̃1 which is w̃ext

restricted to U without ever materializing w̃ext. Importantly
though, we never release w̃1 as a final output.

In the second round, we make three preprocessing steps
before running MAD. Let σ1 be the standard deviation of
the noise in the first round and ρ2 be the threshold in the
second round. For parameters Clb, Cub ≥ 0, Let w̃lb =
w̃1 −Clb · σ1 and w̃ub = w̃1 +Cub · σ1 be lower and upper
confidence bounds on the true item weights w1 in the first
round, respectively.

(a) (DP-SIPS) We remove items from users’ sets which
belong to U1.

(b) (Ours) We remove items i from users’ sets which
have weight significantly below the threshold where
w̃ub(i) < ρ2. If w̃ub(i) is very small, we have little
chance of outputting the item in the second round and
would rather not waste weight on those items. This
is particularly relevant for long-tailed distributions we
often see in practice where there are many elements
which appear in only one or a few users’ sets.

(c) (Ours) For items with w̃lb ≥ ρ2, we assign these items
biases b(i) = ρ2/w̃lb(i). Via UserWeights (Algo-
rithm 4), we (loosely) try to have each user contribute
a b(i) fraction of their normal 1/

√
|Su| weight while
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increasing the weights on unbiased items. As the lower
bound on these item weights is very large, we do not
need to spend as much of our ℓ2 budget on these items.
For technical reasons, in order to preserve the over-
all sensitivity of MAD, we must enforce minimum and
maximum bias parameters bmin ∈ [0.5, 1] and bmax ∈
[1,∞). The weights returned by UserWeights are
in the interval [bmin/

√
|Su|, bmax/

√
|Su] and have an ℓ2

norm of 1.

4.2. Privacy

We state the key lemmas that MAD, when used in the
WeightAndThreshold meta-algorithm, is (ε, δ)-DP.
The privacy of MAD2R then follows from basic composi-
tion, importantly using our generalized analysis in Section 3
which allows us to compute biased weights from the noisy
weights of the first round. The key technical challenge is
to bound the ℓ2 and novel ℓ∞ sensitivities of MAD. Given
space constraints, we defer the proofs to Appendix B.

Lemma 4.1 (Novel ℓ∞ sensitivity). Algorithm 2 has novel
ℓ∞ sensitivity bounded by ∆∞(t) ≤ bmax√

t
.

Lemma 4.2 (ℓ2 sensitivity). Algorithm 2 has ℓ2-sensitivity
upper bounded by 1.

4.3. Utility

In Theorem 1.2, we show that for any input, MAD’s per-
formance stochastically dominates Basic: the probability
that an item is output by Basic is upper bounded by the
probability it is output by MAD. We defer a formal statement
of Theorem 1.2 and its proof to Appendix C.

This result captures the worst-case behavior of MAD; it is
always at least as good as Basic. MAD can actually do
much better as it increases the weight on items below the
threshold τ . In Appendix C, we also show a instance where
MAD significantly improves upon Basic and DP-SIPS.

5. Experiments

Dataset Users Items Entries
Higgs 2.8 × 105 5.9 × 104 4.6 × 105

IMDb 5.0 × 104 2.0 × 105 7.6 × 106

Reddit 2.2 × 105 1.5 × 105 7.9 × 106

Finance 1.4 × 106 2.7 × 105 1.7 × 107

Wiki 2.5 × 105 6.3 × 105 1.8 × 107

Twitter 7.0 × 105 1.3 × 106 2.7 × 107

Amazon 4.0 × 106 2.5 × 106 2.4 × 108

Clueweb 9.6 × 108 9.4 × 108 4.3 × 1010

Common Crawl 2.9 × 109 1.8 × 109 7.8 × 1011

Table 1: Number of distinct users, distinct items, and total entries
(user, item pairs). The number of entries is the sum of the sizes of
all the users’ sets.

We now compare the empirical performance of MAD and
MAD2R against two parallel (Basic, DP-SIPS) and two
sequential algorithms (PolicyGaussian and GreedyUpdate)
for the partition selection. We observe that our algorithms
output most items (at parity of privacy parameter) among
the parallel algorithms for every dataset and across various
parameter regimes. Moreover, parallelization allows us to
analyze datasets with up to 800 billion entries, orders of
magnitude larger than sequential algorithms. In the rest of
the section, we describe the datasets, algorithms, and com-
putational setting, before presenting our empirical results.

5.1. Datasets

We consider 9 datasets with statistics detailed in Table 1.
First, we consider small-scale datasets that are suitable for
fast processing by sequential algorithms in a single-core
architecture. These includes, for the sake of replicabil-
ity, datasets used in prior works (Gopi et al., 2020; Car-
valho et al., 2022; Swanberg et al., 2023). These datasets
have up to 3 million distinct items and 300 million entries.
Higgs (Leskovec & Krevl, 2014) is a dataset of Tweets dur-
ing the discovery of the Higgs. IMDb (Maas et al., 2011)
is a dataset of movie reviews, Reddit (Gopi et al., 2020) is
a dataset of posts to r/askreddit, Finance (Aenlle) is
dataset of financial headlines, Wiki (Wijkhuizen) is a dataset
of Wikipedia abstracts, Twitter (Axelbrooke, 2017) is a
dataset of customer support tweets, and Amazon (McAuley
& Leskovec, 2013; Zhang et al., 2015) is a dataset of product
reviews. For each of these text-based datasets we replicate
prior methodology (Gopi et al., 2020; Carvalho et al., 2022)
where items represent the tokens used in a document and
each document corresponds to a user (in some datasets, ac-
tual users are tracked across documents, in which case, we
use combine the users’ documents into one document).

We also consider two very-large publicly-available datasets
Clueweb (Boldi et al., 2011) and Common Crawl1. The
latter has approximately 2 billion distinct items and 800
billion entries. This is 3 orders of magnitude larger than the
largest dataset used in prior work. Clueweb (Boldi et al.,
2011) is a dataset of web pages and their hyper-links, items
corresponds to the hyperlinks on a web page and each page
corresponds to a user. Common Crawl is a very-large text
dataset of crawled web pages often used in LLM research.

5.2. Algorithms and Parameters

We compare our results to both sequential and parallel al-
gorithms from prior work. The sequential algorithms we
compare against are PolicyGaussian (Gopi et al., 2020) and
GreedyUpdate (Carvalho et al., 2022). Like our algorithm,
both algorithms set an adaptive threshold τ greater than the

1https://www.commoncrawl.org/
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Dataset Parallel Algorithms Sequential Algorithms
MAD (ours) MAD2R (ours) Basic DP-SIPS PolicyGaussian GreedyUpdate

Higgs 1,807 (±13) 1,767 (±15) 1,791 (±18) 1,743 (±8) 1,923 (±18) 2,809 (±11)

IMDb 2,516 (±12) 3,369 (±19) 2,504 (±7) 3,076 (±16) 3,578 (±19) 1,363 (±11)

Reddit 4,162 (±19) 6,215 (±18) 4,062 (±21) 5,784 (±30) 7,170 (±39) 6,340 (±16)

Finance 12,759 (±16) 17,785 (±28) 12,412 (±50) 16,926 (±18) 20,100 (±49) 23,556 (±27)

Wiki 7,812 (±12) 10,554 (±41) 7,753 (±36) 9,795 (±21) 11,455 (±21) 4,739 (±14)

Twitter 9,074 (±23) 14,064 (±13) 8,859 (±22) 13,499 (±50) 15,907 (±30) 15,985 (±29)

Amazon 35,797 (±63) 67,086 (±59) 35,315 (±69) 66,126 (±57) 77,846 (±127) 86,841 (±95)

Clueweb 34,692,178 34,533,524 34,603,077 34,889,208 – –
Common Crawl 15,815,452 29,373,829 15,734,148 28,328,613 – –

Table 2: Comparison of output size of DP partition selection algorithms with ε = 1, δ = 10−5, and ∆0 = 100. A standard hyperparameter
setting is fixed for each algorithm, other than DP-SIPS, where the best result is taken from privacy splits [0.1, 0.9] and [0.05, 0.15, 0.8].
For smaller datasets, sequential algorithms are also reported as oracles and results are averaged over 5 trials with one standard deviation
reported parenthetically. For each dataset, the best parallel result is bolded and the best sequential result is underlined.

true threshold ρ. They try to maximize weight assigned
to items up to but not exceeding τ . PolicyGaussian goes
through each user set one by one and adds ℓ2 bounded
weight to minimize the ℓ2 distance between the current
weight and the all τ vector, w(i) = τ ∀i ∈ U . GreedyUp-
date goes through each user set one by one and increments
the weight of a single item in the set by one, choosing an
item whose weight is currently below τ .2 As observed be-
fore (Swanberg et al., 2023), sequential algorithms can have
arbitrary long adpativity chains (the processing of each user
can depend on all prior users processed) thus allowing larger
output sizes than parallel algorithms. This, however, comes
at the cost of not being parallelizable (as we observe in
our experiments on the larger datasets). The parallel base-
lines we compare against are Basic (Korolova et al., 2009;
Gopi et al., 2020) and DP-SIPS (Swanberg et al., 2023).
In DP-SIPS, the privacy budget is split into a distribution
over rounds. In each round, the basic algorithm is run with
the corresponding privacy budget. Items found in previous
rounds are removed from all user’s sets for the next rounds.

We make parameter choices which are consistent with prior
work and generally work well across datasets (see Ap-
pendix D for more parameter settings). Unless otherwise
specified, we use ε = 1, δ = 10−5, and ∆0 = 100.3 For
PolicyGaussian and GreedyUpdate, we set the β = 4 to
be the number of standard deviations of noise to add to the
base threshold to set the adaptive threshold. For DP-SIPS,
we take the best result of running with a privacy split of
[0.1, 0.9] and [0.05, 0.15, 0.8]4. For MAD and MAD2R, we

2Unlike all of the other algorithm, this algorithm does not do
a first step of bounding users’ degrees by ∆0 as it only assigns
weight to a single item per user by design.

3We report these privacy settings for consistency with prior
work in the literature, but observe the results are consistent across
various choices. For real production deployments on large-scale
sensitive data, δ is usually smaller.

4As this choice can have a significant effect on performance,
we choose the best-performing to give this baseline the benefit of
the doubt.

set dmax = 50 and β = 2. For MAD2R, we set the privacy
split of [0.1, 0.9], bmin = 0.5, bmax = 2, Clb = 1, and
Cub = 3.

5.3. Computing Details

We perform experiments in two different computational
settings. First we implement a sequential, in-memory ver-
sion of all algorithms (including the parallel ones) using
Python.For PolicyGaussian and GreedyUpdate we use the
Python implementations from prior work (Gopi et al., 2020;
Carvalho et al., 2022). This allows us to fairly test the scala-
bility of the algorithms not using parallelism. As we observe
next, this approach does not scale to the two largest datasets
we have (Clueweb, Common Crawl).

Then, we implement all parallel algorithms (MAD, MAD2R,
Basic, DP-SIPS) using C++ in a modern multi-machine
massively parallel computation framework in our institution.
This framework allows to use a fleet of shared (x86 64) ar-
chitecture machines with 2.45GHz clocks. The machines are
shared by several projects and can have up to 256 cores and
up to 512GB of RAM. The jobs are dynamically allocated
RAM, machines and cores depending on need and availabil-
ity. As we observe, all parallel algorithm are very scalable
and run on these huge datasets within 4 hours of wall-clock
time. On the other hand, both sequential algorithms cannot
exploit this architecture and could not complete in 16 hours
on the Clueweb dataset (we estimate they would take sev-
eral days to complete on the Common Crawl dataset even
assuming access to enough memory).

5.4. Results

Algorithm Comparison Table 2 displays the output size
of the DP partition selection algorithms (i.e., the number
of privatized items output). Among parallel algorithms,
MAD2R achieves the best result on seven out of nine datasets.
The two exceptions are the Higgs dataset, where MAD per-
forms the best, and the Clueweb dataset, where DP-SIPS
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performs the best. Both of these datasets have outlier statis-
tics (see Table 1): the average size of a user set in the Higgs
dataset is less than 2 and the number of unique items in
the Clueweb dataset is less than the number of users. Di-
rectly comparing MAD with Basic, MAD is always better,
corroborating our proof of stochastic dominance. Compar-
ing MAD2R with DP-SIPS, MAD2R is almost always signifi-
cantly better, by up to a factor of a 9.5% improvement on
the IMDb dataset.

On the small scale datasets where we can run sequential
algorithms, as expected from prior work (Swanberg et al.,
2023), one of the two sequential algorithms yield the best re-
sults across all algorithms with PolicyGaussian consistently
outperforming all parallel baselines. GreedyUpdate’s perfor-
mance is heavily dataset dependent, sometimes performing
the best and sometimes the worst out of all algorithms. This
is not a surprise as the sequential algorithms utilize much
more adaptivity than even our adaptive parallel algorithm at
the cost of limiting scalability. Our algorithm is still com-
petitive, never outputting fewer than 86% of the items of
PolicyGaussian (and outperforming GreedyUpdate on many
datasets). For massive datasets, where it is simply infeasible
to run the sequential algorithms, however MAD2R has the
best results of all parallel algorithms.

Figures comparing output sizes while varying ε, δ, ∆0, and
dmax are included in Appendix D. The relative performance
of the algorithms is the same across many choices.

Absolute Utility To understand the absolute utility of our
algorithms (as opposed to relative to other baselines), we
focus on the performance of MAD2R on the Reddit and Com-
mon Crawl datasets. In order to understand the performance
in a real deployment rather than compare baselines across
common parameter settings, we change the δ for the large
scale Common Crawl dataset to δ = 10−11.

On the Reddit dataset, MAD2R outputs 6,340 out of 143,556
unique items (4.4%). On the other hand, 98% of users
have at least one outputted item, and 45% of the entries
(user-item pairs) belong to an item which is output by our
algorithm. The relatively small overall fraction of items
output is due in part to the fact that the Reddit dataset has
58% singleton items (items only appearing in a single user’s
set). Any algorithm which outputs any singleton items is
not private, as it is leaking private information belonging
to a single user. For any algorithm with acceptable privacy
settings, outputting items with very small frequencies is
also simply not possible. In Figure 1a, we break down the
number of items total in the dataset and the number output
by MAD2R broken down by item frequency. Our algorithm
returns almost all of the items with frequency at least 100.

On the Common Crawl dataset, MAD2R outputs 16,551,550
out of 1,803,720,630 unique items (0.9%). On the other

hand, 99.9% of users have at least one outputted item and
97% of entries in the dataset belong to an item in output by
our algorithm. This dataset contains 61% singleton items,
and many low frequency items. In Figure 1b, we break
down the number of items total in the dataset and the num-
ber output by MAD2R broken down by item frequency. Our
algorithm returns an overwhelming fraction of items occur-
ing in at least 200 user sets on a dataset with billions of
users overall.
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Figure 1: Comparison by item frequency of the output size of
MAD2R to the total items on the Reddit and Common Crawl
datasets. Parameters ε = 1 and ∆0 = 100 are fixed with
δ = 10−5 for Reddit and δ = 10−11 for Common Crawl.

6. Conclusion
We introduce MAD and MAD2R, new parallel algorithms for
private partition selection which provide state-of-the-art re-
sults, scale to massive datasets, and provably outperform
baseline algorithms. Closing the remaining gap between
parallel and sequential algorithms remains an interesting
direction, as well as developing new ideas to adaptive route
weight to items below the privacy threshold while maintain-
ing bounded sensitivity. While we are able to prove ordinal
theoretical results (our algorithm is at least as good as an-
other), it is an open challenge to develop a framework where
we can prove quantitative results, perhaps comparing the
competitive ratio of a private partition selection algorithm
compared to some reasonably defined optimum.
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A. Algorithm Pseudocode
A.1. Basic Pseudocode

Algorithm 3 Basic
Input: User sets S = {(u, Su)}u∈[n]

Output: w : U → R weighting of the items

1: Initialize weight vector w with zeros
2: for all u ∈ [n] do
3: w(i) += 1/

√
|Su| for i ∈ Su ▷ Add basic ℓ2 bounded weight.

4: end for
5: return w

A.2. MAD and MAD2R Pseudocode

See Algorithm 2 in the main text for the pseudocode of MAD. Here, we include the pseudocode for the subroutine
UserWeights and our two-round algorithm MAD2R.

Algorithm 4 UserWeights(Su, b, bmin, bmax)
Input: User set Su ⊆ U , biases b : U → [0, 1], minimum bias bmin ∈ [0.5, 1], maximum bias bmax ∈ [1,∞]
Output: wb : Su → R weighting of the items

1: Initialize weight vector wb with zeros
2: Sbiased = {i ∈ Su : b(i) < 1}
3: Sunbiased = Su \ Sbiased

4: wb(i)← max{bmin,b(i)}√
|Su|

for i ∈ Sbiased ▷ Set biased weights, respecting min bias

5: wb(i)← min

{
bmax√
|Su|

,

√
1−

∑
i∈Sbiased

wb(i)2

|Sunbiased|

}
for i ∈ Sunbiased ▷ Allocate remaining ℓ2 budget, respecting max bias

6: while
∑

i∈Su
wb(i)

2 < 1 do

7: Ssmall ←
{
i ∈ Su : wb(i) <

1√
|Su|

}
8: C ← min

{
bmax/

√
|Su|

maxi∈Ssmall
wb(i)

,

√
1 +

1−
∑

i∈Su
wb(i)2∑

i∈Ssmall
wb(i)2

}
9: wb(i)← C · wb(i) for i ∈ Ssmall ▷ Increase small weights using remaining ℓ2 budget, respecting max bias

10: end while
11: return wb

12
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Algorithm 5 MAD2R(S, (ε1, δ1), (ε2, δ2),∆0, dmax, β, Clb, Cub, bmin, bmax)
Input: User sets S = {(u, Su)}u∈[n], privacy parameters (ε1, δ1) and (ε2, δ2), degree cap ∆0, maximum adaptive degree
dmax, adaptive threshold excess parameter β, lower bound constant Clb, upper bound constant Cub, minimum bias bmin,
maximum bias bmax

Output: Subset of the union of user sets U = ∪nu=1Su

1: For u ∈ [n], cap Su to at most ∆0 items by random subsampling
2: Select σr corresponding to the Gaussian Mechanism (Proposition 2.4) for (εr, δr/2)-DP with ∆2 = 1 for r ∈ {1, 2}.
3: Round 1
4: Set threshold ρ1 = maxt∈[∆0]

1√
t
+ σ1Φ

−1
((

1− δ
2

)1/t)
5: w1 ← MAD(S, ρ1 + βσ1, dmax,

−→
1 , 1, 1) ▷ Compute MAD (Algorithm 2) weights in the first round.

6: w̃1 ← w1 +N (0, σ2
1I) ▷ Add noise

7: U1 ← {i ∈ U : w̃1(i) ≥ ρ1} ▷ Apply threshold
8: Round 2
9: Set threshold ρ2 = maxt∈[∆0]

bmax√
t

+ σ2Φ
−1
((

1− δ
2

)1/t)
10: w̃lb ← max{0, w̃1 − Clb · σ1} ▷ Weight lower bound from Round 1
11: w̃ub ← w̃1 + Cub · σ1 ▷ Weight upper bound from Round 1
12: Ulow ← {i ∈ U : w̃ub < ρ2}
13: Su ← Su \ (U1 ∪ Ulow) for u ∈ [n] ▷ Remove items found in Round 1 or with a small upper bound on the weight

14: b← min
{
1, ρ2

w̃lb

}
▷ Bias weights to not overshoot threshold

15: w2 ← MAD(S, ρ2 + βσ2, dmax, b, bmin, bmax) ▷ Compute MAD (Algorithm 2) in the second round
16: w̃2 ← w2 +N (0, σ2

2I) ▷ Add noise
17: U2 ← {i ∈ U : w̃2(i) ≥ ρ2} ▷ Apply threshold
18: return U1 ∪ U2

13
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B. Proof of Privacy
B.1. Meta-algorithm

We start by proving the privacy of the meta-algorithm described in Section 3.

Proof of Theorem 3.3. Let wext : Σ→ R be an extension of the weight vector w returned by ALG where

wext(i) =

{
w(i) if i ∈ U
0 if i ∈ Σ \ U

.

Note that w̃ext is exactly the result of applying the Gaussian Mechanism to wext. Furthermore, the ℓ2 sensitivity (Defini-
tion 3.1) of computing wext is the same as that of w as items outside of U ′ do not contribute to the sensitivity as they are 0
regardless of whether the input is S or S ′. By the choice of σ according to Proposition 2.4 with ∆2 ≤ 1, releasing w̃ext is(
ε, δ

2

)
-DP.

The privacy of releasing U depends on our choice of the threshold ρ. We will first show that the probability that any of t
i.i.d. draws from a Gaussian random variable N (0, σ2) exceeds σΦ−1

((
1− δ

2

)1/t)
is exactly δ

2 . Let A be the bad event,

Y ∼ N (0, σ2), and Z ∼ N (0, 1):

Pr(A) = 1− Pr

(
Y ≤ σΦ−1

((
1− δ

2

)1/t
))t

= 1− Pr

(
Z ≤ Φ−1

((
1− δ

2

)1/t
))t

= 1− Φ

(
Φ−1

((
1− δ

2

)1/t
))t

= 1−
(
1− δ

2

)t/t

=
δ

2
.

By the condition that h(t) is an upper bound on ∆(t), the choice of ρ implies that, no matter how many items are novel
(unique to the new user in a neighboring dataset), the probability that any of them belong to U is at most δ

2 . Conditioned on
the release of w̃ext, releasing U is

(
0, δ

2

)
-DP. By basic composition, the overall release is (ε, δ)-DP, as required.

B.2. MADW and MADW2R

We now prove the privacy of our main algorithm by bounding its ℓ2 and novel ℓ∞ sensitivities.

Theorem B.1 (Privacy of MAD2R). Algorithm 5 is (ε1 + ε2, δ1 + δ2)-DP.

The rest of this section will be devoted to proving this theorem. We first state as a corollary that MAD run in a single round
without biases is also private.

Corollary B.2 (Privacy of MAD). Releasing the output U from Algorithm 1 run with unbiased MAD (Algorithm 2) as the
weighting algorithm and with h(t) = 1√

t
is (ε, δ)-DP.

Proof. This follows directly from Theorem B.1 by setting (ϵ1, δ1) = (ϵ, δ) and (ϵ2, δ2) = (0, 0).

To prove privacy, consider a weight vector w returned by Algorithm 2 for an input S = {(u, Su)}nu=1, τ, dmax, b, bmin, bmax

and the output w′ for an input S ′ = S ∪ {(v, Sv)}, τ, dmax, b
′, bmin, bmax which includes a new user v not in the original

input. Let dv be the degree of the new user. Let T = Sv \ ∪nu=1Su be the subset of items which appear only in Sv and not
in any of the original user sets, and let t = |T |. The vectors of biases b and b′ are defined on the set of items ∪nu=1Su and
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(∪nu=1Su) ∪ T respectively. We remind the notation used in Algorithm 2 for vector wv
b to denote the biased weight vector

the new user v computes by calling Algorithm 4, i.e. UserWeights.

Lemma B.3 (Novel ℓ∞ sensitivity with biases). Assume that the adaptive threshold is τ ≥ 1, and the maximum adaptive
degree is dmax ≥ 4. Then, Algorithm 2 has novel ℓ∞ sensitivity bounded by

∆∞(t) ≤ bmax√
t
.

where t = |T | is the cardinality of T , the set of novel items.

Proof. Unpacking Definition 3.2, it suffices to show that

max
i∈T

w′(i) ≤ bmax√
t
.

Note that this is trivially true if dv = |Sv| > dmax or dv <
⌈

1
(bmin)2

⌉
since v does not participate in adaptivity due to its

too low or high degree. We will proceed by assuming this is not the case.

Consider the final weight of an item i in the set of novel items T ⊆ Sv:

w′(i) = w′
trunc(i) + w′

reroute(i) + wv
b (i)− w′

init(i).

Note that for all novel items i ∈ T , w′
init(i) =

1
dv
≤ τ as v is the sole contributor to the weight of item i. Therefore, no

weight is truncated or rerouted from these items: w′
trunc(i) = w′

init(i) =
1
dv

. Expanding the definition of rerouted weight,

w′
reroute(i) =

αe′v
dmax

=
α

dmaxdv

∑
j∈Sv\T

r′(j)

=
α

dmaxdv

∑
j∈Sv\T

w′
init(j)− w′

trunc(j)

w′
init(j)

≤ α

dmaxdv
(dv − t)

=
α

dmax

(
1− t

dv

)
.

Finally, note that wv
b (i) ≤

bmax√
dv

by construction (this is the meaning of bmax).

We can bound w′(i) as

w′(i) = w′
trunc(i) + w′

reroute(i) + wv
b (i)− w′

init(i)

≤ 1

dv
+

α

dmax

(
1− t

dv

)
+

bmax√
dv
− 1

dv

=
α

dmax

(
1− t

dv

)
+

bmax√
dv

. (1)

In the rest of the proof, we will show that the upper bound Equation (1) is maximized when dv = t, i.e., when the first term
is zero. Recall that t ≤ dv ≤ dmax. Consider the partial derivative with respect to dv:

∂

∂dv

(
α

dmax

(
1− t

dv

)
+

bmax√
dv

)
=

α

dmax

t

d2v
− bmax

2d
3/2
v

.
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Consider the condition of the derivative being non-positive:

0 ≥ α

dmax

t

d2v
− bmax

2d
3/2
v

⇐⇒ bmax ≥
2αt

dmax

√
dv

⇐= bmax ≥
2α
√
t

dmax

⇐= bmax ≥
2α√
dmax

.

The final condition holds as α ≤ 1 and by the assumption that dmax ≥ 4. We note that bmax is always set to be at least
1. As the derivative is non-positive, the right side of Equation (1) is maximized when dv is minimized at dv = t. Then,
∆∞(t) ≤ bmax√

t
, as required.

Following we state some properties of the biased weights wb which will be helpful in the proof.

Lemma B.4. Let Su, b, bmin, bmax be valid inputs to Algorithm 4, and let wb be the weight vector returned by the algorithm.
Let d = |Su|. Then, the following hold:

• wb(i) = 0 for all i ∈ U \ Su

• bmin√
d
≤ wb(i) ≤ bmax√

d
for all i ∈ Su

• ∥wb∥2 ≤ 1

Proof. The first claim holds as the weight vector is initialized with zeros and only indices i ∈ Su are updated by the
algorithm.

To simplify the notation, we define d = |Su| = |Sbiased|+ |Sunbiased|. As b(i) ≤ 1 for all i ∈ U , the initial weights given
to items in Sbiased are between bmin√

d
and 1√

d
. We also know that 1√

d
≤ bmax√

d
. The sum of squares of these weights will thus

be between b2min|Sbiased|
d and |Sbiased|

d . Call this value k.

Weights of items in Sunbiased are given by

min

{
bmax√

d
,

√
1− k

|Sunbiased|

}

We show that the minimum of these two terms is at least 1√
d
≥ bmin√

d
. The first term is at least 1√

d
since bmax ≥ 1. To

observe the same for the second term, one should plugg in the upper bound of k ≤ |Sbiased|
d . By construction, the weights

are upper bounded by bmax√
d

. Furthermore, note that the sum of squares of the entire weight vector at this point is upper
bounded by 1. In particular, it is equal to 1 for the second term of the minimization:

k +
∑

i∈Sbiased

(
1− k

|Sunbiased|

)
= k + (1− k) = 1.

In the remainder of the algorithm, sum of the weights of items in Ssmall ⊆ Sunbiased may increase if the ℓ2 norm of the
weight vector is strictly less than 1. Consider the weights after any such update by a multiplicative factor C defined as

C = min

{
bmax/

√
d

maxi∈Ssmall
wb(i)

,

√
1 +

1−
∑

i∈Su
wb(i)2∑

i∈Ssmall
wb(i)2

}
.

Note that C > 1 by definition of Ssmall and the stopping criteria of the while loop. Therefore, none of the final weights will
be less than bmin√

d
. Consider the first case of the minimization. Any updated weight C · wb(i) for i ∈ Ssmall will be at most
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bmax√
d

as

bmax/
√
d

maxj∈Ssmall
wb(j)

· wb(i) ≤ max
i∗∈Ssmall

bmax/
√
d

wb(i∗)
wb(i

∗) = bmax/
√
d.

Now, consider the second case of the maximization. Then, the squared ℓ2 norm of the weight vector will be

∑
i∈Su\Ssmall

wb(i)
2 +

∑
i∈Ssmall

(
1 +

1−
∑

j∈Su
wb(j)

2∑
j∈Ssmall

wb(j)2

)
wb(i)

2 =

(∑
i∈Su

wb(i)
2

)
+

1−
∑
j∈Su

wb(j)
2

 = 1.

As C is taken to be the minimum of these two values, the final weight vector will satisfy all of the required bounds.

We will prove a useful fact that Algorithm 2 is monotone in the sense that weights when run on S ′ will only increase
compared to when run on only S. We apply this proposition in upper bounding the ℓ2 sensitivity of Algorithm 2 in
Lemma B.6.

Proposition B.5 (Monotonicity). For all i ∈ ∪u∈{1,...,n,v}Su,

w′
init(i) ≥ winit(i)

w′
trunc(i) ≥ wtrunc(i)

w′
reroute(i) ≥ wreroute(i).

Proof. Fix any item i. As all increments to the initial ℓ1 bounded weights are positive and non-adaptive,

w′
init(i) ≥ winit(i).

In fact, the two weights are either equal or differ by a factor of 1/dv depending on whether i ∈ Sv . The calculations of the
fraction of excess weight that exceeds the threshold, the truncated weights, the excess weight returned to each user, and the
rerouted weights are all monotonically non-decreasing with the initial weights. Therefore,

w′
trunc(i) ≥ wtrunc

and
w′

reroute(i) ≥ wreroute.

Lemma B.6 (ℓ2 sensitivity with biased weights). Algorithm 2 has ℓ2-sensitivity upper bounded by 1.

Proof. Note that this is trivially true by Lemma B.4 if |Sv| = dv > dmax or dv <
⌈

1
(bmin)2

⌉
since v does not participate

in adaptivity in this case. We will proceed by assuming this is not the case.

Our goal is to bound the ℓ2 norm of the difference ∆ = w′ − w, the difference in final weights with and without the new
user v. We will use the notation ∆subscript = w′

subscript − wsubscript. Note that ∆reroute = w′
reroute − wreroute is the

additional rerouted weight after adding user v and let ∆user = ∆−∆reroute be the rest of the difference. Note that ∆user

is dv-sparse and only has nonzero entries on Sv, the items of the new user. Our goal will be to bound the ℓ2 norms of
∆reroute and ∆user, thus bounding the ℓ2 sensitivity of the algorithm by triangle inequality.

We start by tracking the excess weight created by v which will be useful in bounding the ℓ2 norms of both ∆reroute and
∆user. It is the total amount of weight added by v to items that exceed the threshold5:

γ = ∥∆init −∆trunc∥1 (2)

(Note that this is not the same as e′v which is the amount of weight from v gets returned to reroute.)

5If if an item i only exceeds the threshold due to the addition of v, we only consider the allocated weight to i above the threshold.
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The total amount of weight that is returned to users to reroute is equal to the amount of weight truncated, i.e., the sum of
winit − wtrunc:

n∑
u=1

eu =

n∑
u=1

(1/|Su|)
∑
i∈Su

r(i)

=

n∑
u=1

(1/|Su|)
∑
i∈Su

max

{
0,

winit(i)− τ

winit(i)

}

=

n∑
u=1

(1/|Su|)
∑
i∈Su

winit(i)− wtrunc(i)

winit(i)

=

n∑
u=1

(1/|Su|)
∑
i∈Su

winit(i)− wtrunc(i)∑
w:i∈Sw

1/|Sw|

=
∑
i∈U

(winit(i)− wtrunc(i))
∑

u:i∈Su
1/|Su|∑

w:i∈Sw
1/|Sw|

=
∑
i∈U

winit(i)− wtrunc(i).

For notational parsimony, let ev = 0 (as v does not appear in the original input S). Note that eu is monotonically
increasing with winit: if any coordinate of the initial weight increases, the excess ratio of any user will never decrease. With
monotonicity of winit from Proposition B.5, it follows that w′

init − w′
trunc ≥ winit − wtrunc since the threshold τ in the

capping formula wtrunc(i)← min{winit(i), τ} stays the same after adding the new user. Consequently, we have:

γ = ∥(w′
init − w′

trunc)− (winit − wtrunc)∥1

=

(∑
i∈U ′

w′
init − w′

trunc

)
−

(∑
i∈U

winit − w′
trunc

)
=

∑
u∈{1,...,n,v}

e′u − eu.

Now, we will consider ∆reroute. Recall that |Su| ≤ dmax for all u participating in adaptivity. For all other users, the terms
eu and e′u are zero.

∥∆reroute∥1 =
∑

u∈{1,...,n,v}

∑
i∈Su

(α/dmax)(e
′
u − eu)

=
∑

u∈{1,...,n,v}

|Su|(α/dmax)(e
′
u − eu)

≤
∑

u∈{1,...,n,v}

α(e′u − eu)

= αγ.

Furthermore, we can bound the ℓ∞ norm of ∆reroute as:

w′
reroute(i)− wreroute(i) ≤ (α/dmax)

∑
u∈{1,...,n,v}

e′u − eu = αγ/dmax.

By Hölder’s inequality,

∥∆reroute∥2 ≤
√
∥∆reroute∥1∥∆reroute∥∞ =

√
α2γ2/dmax =

αγ√
dmax

. (3)

Consider the rest of the difference ∆user. For i ∈ Sv , a single coordinate of ∆user will be comprised of the sum

∆user(i) = ∆trunc(i) + wv
b (i)− 1/dv.
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Note that ∆trunc(i) ∈ [0, 1/dv], so
∆user(i) ∈ [wv

b (i)− 1/dv, w
v
b (i)] .

Furthermore, as ∆init(i) = 1/dv ,

∥∆user∥1 =
∑
i∈Sv

wv
b (i) + ∆trunc(i)−∆init(i) =

(∑
i∈Sv

wv
b (i)

)
− γ.

Let x : Sv → R and y : Sv → R be two sets of weights over Sv such that x(i) = wv
b (i) − 1/dv, y(i) ∈ [0, 1/dv], and∑

i∈Sv
x(i) + y(i) =

(∑
i∈Sv

wv
b (i)

)
− γ. Then,

∥∆user∥2 ≤ max
y
∥x+ y∥2

as any valid ∆user can be expressed as the sum of x and a choice of y satisfying the above constraints. Note that

∥y∥1 =

(∑
i∈Sv

wv
b (i)

)
− γ −

∑
i∈Sv

x(i) =

(∑
i∈Sv

wv
b (i)

)
− γ −

∑
i∈Sv

wv
b (i) + 1 = 1− γ

and by Hölder’s inequality,

∥y∥2 ≤
√
∥y∥1∥y∥∞ =

√
1− γ

dv
.

Then,

∥x+ y∥22 =
∑
i∈Sv

(wv
b (i)− 1/dv + y(i))

2

=
∑
i∈Sv

wv
b (i)

2 +
1

d2v
+ y(i)2 − 2wv

b (i)

dv
+ 2y(i) · wv

b (i)−
2y(i)

dv

= 1 +
1

dv
+ ∥y∥22 −

2

dv
· ∥wv

b ∥1 + 2⟨y, wv
b ⟩ −

2

dv
· ∥y∥1

≤ 1 +
1

dv
+

1− γ

dv
− 2

dv
· ∥wv

b ∥1 + 2⟨y, wv
b ⟩ −

2(1− γ)

dv

= 1 +
1 + 1− γ − 2(1− γ)

dv
− 2

dv
· ∥wv

b ∥1 + 2⟨y, wv
b ⟩

= 1 +
γ

dv
− 2

dv
· ∥wv

b ∥1 + 2⟨y, wv
b ⟩

Every y(i) can be written as 1/dv − z(i) for some non-negative residual z(i) with
∑

i∈Sv
z(i) = γ. So we continue the

above equations as follows:

∥x+ y∥22 ≤ 1 +
γ

dv
− 2

dv
· ∥wv

b ∥1 + 2⟨y, wv
b ⟩

= 1 +
γ

dv
− 2

dv
· ∥wv

b ∥1 +
2

dv
· ∥wv

b ∥1 − 2
∑
i∈Sv

z(i)wv
b (i)

= 1 +
γ

dv
− 2

∑
i∈Sv

z(i)wv
b (i)

≤ 1 +
γ

dv
− 2 · bmin√

dv
·
∑
i∈Sv

z(i)

= 1− 2bminγ√
dv

+
γ

dv
.
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The last inequality holds because Lemma B.4 implies that wv
b (i) ≥

bmin√
dv

. We conclude that:

∥∆user∥2 ≤

√
1− 2bminγ√

dv
+

γ

dv
.

We can now bound the ℓ2-sensitivity of the entire algorithm as

∥∆∥2 ≤ ∥∆reroute∥2 + ∥∆user∥2 ≤
αγ√
dmax

+

√
1− 2bmin · γ√

dv
+

γ

dv
.

As the expression − 2bmin√
dv

+ 1
dv

is increasing for dv ≥ 1
b2min

, the right hand side is maximized with dv = dmax:

∥∆∥2 ≤
αγ√
dmax

+

√
1− 2bmin · γ√

dmax

+
γ

dmax
.

Our goal is to choose α ∈ [0, 1] such that the right hand side is upper bounded by 1. We note that for γ = 0, the above
inequality proves this desired upper bound. For other cases, γ ∈ (0, 1], it is achieved when,

α ≤
√
dmax

γ

(
1−

√
1− 2bmin · γ√

dmax

+
γ

dmax

)
. (4)

By Lemma B.8 with C = 2bmin and using the restrictions dmax > 1 and 1
2 ≤ bmin ≤ 1, it suffices to choose

α = bmin −
1

2
√
dmax

. (5)

Proof of Theorem B.1. Note that both rounds of MAD2R (Algorithm 5) correspond to running the WeightAndThreshold
meta-algorithm (Algorithm 1) with privacy parameters (ε1, δ1) and (ε2, δ2), respectively. The only difference is that we only
materialize w̃1 rather than the entire vector w̃ext from the first round. The functionality of our algorithm would be equivalent
if we instead materialized the full vector as we only query weights on items in U and we never output the vector. Therefore,
we will invoke Theorem 3.3 twice and apply basic composition to prove the privacy of MAD2R. By Theorem 3.3, it suffices
to show that the ℓ2 and novel ℓ∞ sensitivities of the weight algorithm MAD are bounded by 1 and bmax√

t
, respectively. This

follows directly from Lemma B.3, and Lemma B.6.

B.3. Technical Lemma

Proposition B.7 (Taylor expansion of
√
1 + x as x→ 0).

lim
x→0

√
1 + x =

∞∑
n=0

∏n
k=1

(
3
2 − k

)
n!

xn.

Lemma B.8. For a constant 1 ≤ C ≤ 2, consider the following function of x parameterized by an auxiliary variable y:

f(x; y) =

√
y

x

(
1−

√
1− Cx
√
y
+

x

y

)
. (6)

For any y > 1,

inf
x∈(0,1]

f(x; y) =
C

2
− 1

2
√
y
.
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Proof. To minimize f , we will evaluate the function at any stationary points (in terms of x) as well as the boundaries x = 1
and x→ 0. Consider the derivative

d

dx
f(x; y) = −

√
y

x2

(
1−

√
1− Cx
√
y
+

x

y

)
+

√
y

x

 C√
y −

1
y

2
√
1− Cx√

y + x
y

 .

Let A =
√

1− Cx√
y + x

y . To look for stationary points and will set the derivative of f to zero:

d

dx
f(x; y) = 0 ⇐⇒ − 1

x
(1−A) +

C√
y −

1
y

2A
= 0 ⇐⇒ x

(
C
√
y
− 1

y

)
< 2A(1−A)

We expand A2 to get the simpler form:

Cx
√
y
− x

y
= 2A− 2

(
1− Cx
√
y
+

x

y

)
⇐⇒ 0 = 2A− 2 +

Cx
√
y
− x

y
= −A2 + 2A− 1 = −(A− 1)2

⇐⇒ A = 1.

From the definition of A,

A = 1 ⇐⇒ 1− Cx
√
y
+

x

y
= 1 ⇐⇒ Cx

√
y = x ⇐⇒ y =

1

C2
.

As C ≥ 1, in the parameter regime y > 1, f has no stationary points.

It remains to check the boundary point x = 1 and the function f in the limit as x→ 0. For x = 1, the claim is reduced to
this simple inequality:

√
y

(
1−

√
1− C
√
y
+

1

y

)
≥ C

2
− 1

2
√
y
⇐⇒ 2y

(
1−

√
1− C
√
y
+

1

y

)
≥ C
√
y − 1

⇐⇒ (2y − C
√
y + 1)2 ≥ 4y2

(
1− C
√
y
+

1

y

)
⇐⇒ 4y2 + C2y + 1− 4Cy

√
y + 4y − 2C

√
y ≥ 4y2 − 4Cy

√
y + 4y

⇐⇒ 1 + C2y − 2C
√
y ≥ 0

⇐⇒ (C
√
y − 1)2 ≥ 0

which holds for any value of y. In the rest of the proof, we focus on the limit as x→ 0.

Via the Taylor expansion of Proposition B.7,

lim
x→0

f(x; y) = lim
x→0

√
y

x

(
1−

∞∑
n=0

∏n
k=1

(
3
2 − k

)
n!

(
−Cx
√
y
+

x

y

)n
)

= lim
x→0

√
y

x

∞∑
n=1

−
∏n

k=1

(
3
2 − k

)
n!

(
−Cx
√
y
+

x

y

)n

.

Note that the coefficients in the summation are upper bounded in magnitude by 1 as the sequence of terms in the descending
factorial in the numerator is dominated by the sequence in the factorial in the denominator. We also note that the absolute
value of the coefficient of the first term is a constant, i.e. 1

2 . So, in the limit, the summation is dominated by the lowest order
terms with respect to x which correspond to n = 1. In this case, the coefficient is − 1

2 and the limit evaluates to

lim
x→0

f(x; y) =

√
y

x

(
Cx

2
√
y
− x

2y

)
=

C

2
− 1

2
√
y
.
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C. Utility
C.1. Stochastic Dominance Proof

Theorem C.1. Let β ≥ 0 be the parameter controlling the adaptive threshold excess. Let U be the set of items output when
using Basic as the weighting algorithm and let U∗ be the set of items output when using unbiased MAD as the weighting
algorithm. Then, for items i ∈ U ,

• If Pr(i ∈ U) < Φ(β), then Pr(i ∈ U∗) ≥ Pr(i ∈ U).

• Otherwise, Pr(i ∈ U∗) ≥ Φ(β).

Proof of Theorem C.1. Let w and w∗ be the weights produced by Basic and MAD, respectively. Let Iadapt = {u ∈ [n] :
|Su| ≤ dmax} be the items which participate in adaptive rerouting. For any item i ∈ U , we will consider it’s initial weight
under the adaptive algorithm:

w∗
init(i) =

∑
u∈Iadapt:i∈Su

1

|Su|
.

We will proceed by cases.

Case 1: w∗
init(i) ≤ τ . In this case, w∗(i) ≥ w(i). In the adaptive algorithm, no weight is truncated from the initial

weights, and so each user contributes to the final weight of an item 1√
|Su|

plus rerouted weight from other items. As the

weight on item i only increases for the adaptive algorithm compared to the basic algorithm, the probability of outputting i
also can only increase.

Case 2: w∗
init(i) > τ . In this case in the adaptive algorithm, the initial weight is truncated to τ , excess weight is rerouted,

and a final addition of 1√
|Su|
− 1

|Su| is added. As |Su| ≥ 1, the final weight w∗(i) ≥ τ . Then, i ∈ U∗ if the added Gaussian

noise does not drops the weight below the threshold ρ, i.e., if the noise is greater than or equal to

ρ− τ = ρ− (ρ+ βσ) = −βσ.

As the noise has zero mean and standard deviation σ, this probability is exactly 1− Φ(−β) = Φ(β).

C.2. Example showing a gap between MAD and Basic DP SIPS

While Theorem C.1 bounds the worst-case behavior of our algorithm compared to the basic algorithm, as MAD increases the
weight of items below τ compared to the basic algorithm, it will often have a larger output. We show a simple, explicit
example where our algorithm will substantially increase the output probability of all but one item.

Here, we demonstrate an explicit setting where MAD outperforms the baselines. There are n users each with degree 3 as well
as a single heavy item i∗ and m light items. Each user’s set is comprised of i∗ as well as two random light items. Under the
basic algorithm, each user will contribute 1/

√
3 to each of their items. Therefore, the weights under Basic are

w(i) =

{
n√
3

if i = i∗

2n√
3m

< 1.16n
m o.w.

.

On the other hand, assuming n >> τ , MAD will reroute almost all of the initial weight on the heavy item back to the users,
so each user will have excess weight approximately 1/3. For dmax = 3, we get discount factor α > 0.5. So, each user will
send approximately 1/18 weight to each of its items. The weights under MAD are

w(i) =

{
τ + n

18 if i = i∗

2n
m

(
1√
3
+ 1

18

)
< 1.27n

m o.w.
.

In this setting, our algorithm will assign close to 10% more weight to the light items (resulting in substantially higher
probability of output) compared to the basic algorithm. If n/m is close to the true threshold ρ, this gap will have a large
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effect on the final output size. We empirically validate this for n = 15,000,m = 1000, ε = 1, δ = 10−5. Our algorithm
returns 610 items on average. The basic algorithm returns 519 items while DP-SIPS with a privacy split of 5%, 15%, 80%
or 10%, 90% returns 332 or 514 items, respectively. In all cases, as expected, our algorithm has significantly higher average
output size.
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D. Additional Figures
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Figure 2: Comparison of output size across parallel algorithms while varying privacy parameter ε on the Reddit dataset. Other parameters
are fixed as described in Section 5 with a fixed privacy split of [0.1, 0.9] for DP-SIPS and MAD2R. The relative performance of algorithms
does not change with this parameter. Increasing ε significantly improves performance at the cost of privacy by lowering the required noise
and threshold.

10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 32000

3000

4000

5000

6000

7000

8000

9000

Ou
tp

ut
 S

ize

Basic
DP-SIPS
MAD
MAD2R

Figure 3: Comparison of output size across parallel algorithms while varying privacy parameter δ on a log-scale on the Reddit dataset.
Other parameters are fixed as described in Section 5 with a fixed privacy split of [0.1, 0.9] for DP-SIPS and MAD2R. The relative
performance of algorithms does not change with this parameter. Increasing δ significantly improves performance at the cost of privacy by
lowering the required noise and threshold.
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Figure 4: Comparison of output size across parallel algorithms while varying maximum set size parameter δ0 on the Reddit dataset. Other
parameters are fixed as described in Section 5 with a fixed privacy split of [0.1, 0.9] for DP-SIPS and MAD2R. The relative performance of
algorithms does not change with this parameter, and good results are achieved as long as it is not too small.
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Figure 5: Comparison of output size across parallel algorithms while varying the parameter dmax of our algorithms on the Reddit dataset.
As this parameter is only used by MAD and MAD2R, the performance of the baselines is fixed. Other parameters are fixed as described in
Section 5 with a fixed privacy split of [0.1, 0.9] for DP-SIPS and MAD2R. The performance of our algorithm is relatively insensitive to
this parameter.
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