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Abstract

We propose a novel approach for learning causal
response representations. Our method aims to ex-
tract directions in which a multidimensional out-
come is most directly caused by a treatment vari-
able. By bridging conditional independence testing
with causal representation learning, we formulate
an optimisation problem that maximises the evi-
dence against conditional independence between
the treatment and outcome, given a conditioning
set. This formulation employs flexible regression
models tailored to specific applications, creating
a versatile framework. The problem is addressed
through a generalised eigenvalue decomposition.
We show that, under mild assumptions, the distri-
bution of the largest eigenvalue can be bounded
by a known F -distribution, enabling testable con-
ditional independence. We also provide theoret-
ical guarantees for the optimality of the learned
representation in terms of signal-to-noise ratio
and Fisher information maximisation. Finally, we
demonstrate the empirical effectiveness of our ap-
proach in simulation and real-world experiments.
Our results underscore the utility of this framework
in uncovering direct causal effects within complex,
multivariate settings.

1 INTRODUCTION

Representation learning has been a foundational tool in
modern machine learning, enabling models to automatically
extract features from high-dimensional data (Bengio et al.,
2013; LeCun et al., 2015). However, traditional approaches
often fail to capture the causal mechanisms that underlie
data generation, leading to poor generalisation under data
distribution shifts. To address these shortcomings, causal
representation learning (CRL) has emerged as a crucial

approach to integrate causality into representation learn-
ing (Schölkopf et al., 2021). By learning representations that
reflect the causal structure of the data, models can become
more robust to distribution shifts and provide better causal
insights for downstream tasks. This enables the modelling
of intervention effects and the construction of counterfac-
tuals, allowing for the analysis of questions that classical
statistical models may struggle with, such as estimating the
effects of policies. CRL has often been used to describe the
recovery of ground-truth latent causal variables, in this work
we adopt a broader perspective, focusing on the extraction
of causally meaningful features from multi-dimensional, un-
structured data—even in the absence of a single identifiable
latent causal model—to enable inference for downstream
tasks.

A key focus of causal inference literature is understanding
how variables influence one another along different path-
ways (Pearl, 2014). Of particular interest to this work is
the direct effect of a cause on an outcome variable while
controlling for confounders and mediators (Pearl, 2022).
Studying direct effects rather than total effects is essential
for several reasons. For instance, it allows isolating specific
mechanisms in science, such as assessing the effect of green-
house gas emissions on local temperature while controlling
for natural climate variations (that emissions may also influ-
ence). Finally, it helps disentangle immediate effects from
delayed downstream effects, which may have a longer-term
impact on the outcome.

When the outcome is multi-dimensional, identifying a sub-
space where the causes maximally influence it can bene-
fit various tasks. In these cases, it is often impractical to
observe how each dimension’s distribution is shifted by
the intervention. Therefore, it is of interest to examine this
shift in a lower-dimensional space (e.g., 1-D or 2-D). This
approach can also help discover simple, low-dimensional
representations that capture relevant information about the
intervention’s effect. Additionally, it can help disentangle
the direction in which the outcome is affected by the inter-
vention from the direction where the distribution remains
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unchanged. We will demonstrate that this has important im-
plications in different application domains with a focus on
climate change attribution.

While considerable work has focused on learning repre-
sentations for confounder adjustment in causal effect es-
timation (Louizos et al., 2017), modelling representations
of causes (Arjovsky et al., 2020; Peters et al., 2016), or
uncovering latent causal graphs (Locatello et al., 2019),
the representation of effects remains largely underexplored.
Here, we aim to bridge this gap by learning a mapping of the
response variable through the maximisation of a conditional
independence statistic. Under certain structural assumptions,
the method identifies the direction in which the effect of
interventions is most observable. By using conditional ex-
pectation estimators, it adapts to different data types through
various regression models.

2 PRELIMINARY

Let X ∈ Rp, Y ∈ Rd, and Z ∈ Rr be three random
vectors with density function p(x, y, z) and assume that
their joint distribution is absolutely continuous with respect
to the Lebesgue measure. We also assume that X and Z are
known causes of Y , but the relation between X and Z is
left unspecified, allowing it to be a confounder, a mediator,
or both. We aim to identify the component of Y that is
most directly caused by X , by finding w that maximises the
causal relationship between X and w⊤Y . In the following,
we clarify key terms related to the concepts of direct effect
and conditional independence. We begin by considering
James Woodward’s manipulationist definition (Woodward,
2005) of a direct cause:

A necessary and sufficient condition for X to be
a direct cause of Y with respect to some variable
set [Z] is that there be a possible intervention
on X that will change Y (or the probability dis-
tribution of Y ) when all other variables in [Z]
besides X and Y are held fixed at some value by
interventions.

The distribution of Y under intervention is called the direct
effect (DE) of X on Y . For simplicity, we assume that the
effects of X and Z on Y are additive, as formalised in the
model assumption in Sec. 4. Thus, DE can be written as:

DE(x) = p(Y |do(X = x), do(Z = z)). (1)

The variable Y under the intervention do(X = x) is denoted
as Y x. We note that under the assumption of additivity, the
direct effect is equivalent to the natural direct effect (see
Pearl, 2009, section 4.5). In some contexts, it is described
in terms of conditional expectation—referred to as the ex-
pected direct effect (EDE) (see Pearl, 2009, section 4.5.4).

However, we avoid this reduction, as the (conditional) ex-
pectation masks valuable information needed to identify
the direction in which Y is most caused by X , namely Y ’s
noise structure. Additionally, the term Gradient DE (GDE)
will be used to denote the vector of the partial derivative of
Eq. (1) with respect to x, capturing how small variations in
the intervention affect Y . In some cases, the Gradient Direct
Effect (GDE) lies in a subspace Rq ⊂ Rd, meaning that the
distribution P (Y |do(X = x)) is affected by the interven-
tion only in this subspace, while the remaining dimensions
of the space are unaffected. We refer to this as the direct
effect subspace (DES). Our work focuses on recovering this
reduced space, with its basis ordered by the variance in Y
explained by X , while controlling for Z, analogous to how
Principal Component Analysis (PCA) identifies directions
of maximum variance in a random vector.

We now summarise conditional independence testing, which
plays an important role in our work. We say that X is condi-
tionally independent of Y given Z, denoted X ⊥⊥ Y | Z, if
for all x ∈ Rp, y ∈ Rd, and z ∈ Rr, p(y | x, z) = p(y | z),
or equivalently, p(x, y | z) = p(x | z)p(y | z). This
means that, given Z, X adds no additional information
about Y . Let P denote the joint distribution of (X,Y, Z)
such that P ∈ P if X ⊥⊥ Y | Z holds (the null hypothesis),
and P ∈ Q if X ̸⊥⊥ Y | Z (the alternative hypothesis).
A Conditional Independence Test (CIT) is formulated as
H0 : P ∈ P vs. H1 : P ∈ Q. Given i.i.d. observations
X ∈ Rn×p, Y ∈ Rn×d, and Z ∈ Rn×r, we use a statistic
Tn(X,Y,Z), and reject H0 when Tn deviates sufficiently
from its expected distribution under P ∈ P .

2.1 INTRODUCTORY EXAMPLE

Through a simple example, we demonstrate that EDE is
generally suboptimal for distinguishing Y distributions un-
der different interventions and that strategically maximising
a CIT statistic may be more effective. Let us consider the
simple linear model Y = bX + cZ + N with Y ∈ Rd,
X ∈ R, Z ∈ Rp, and N ∈ Rd. Let also Σ denote the
covariance matrix of Y x. The relationship between X and
Z is not relevant in this context, as we focus on the inter-
vention distribution Y x, and such an intervention breaks the
statistical association between X and Z.

In a linear model, the Gradient EDE is given by the weight
vector b for interventions on X (Peters et al., 2017, ex.
6.42), often called the direct effect. This means that the
distribution of Y is only shifting along the b⃗ axis when
intervening on X (see Fig. 1). The most common approach
to find b is by analysing the weights of X in the conditional
expectation E[Y |X,Z]. Alternatively, b can be obtained by
maximising the partial correlation between X and w⊤Y
given Z. When N is isotropic, the vector w that maximises
this partial correlation is indeed b. Since partial correlation
is used in CITs, through Fisher’s Z transformation (Fisher,



Figure 1: Illustration of the linear model from Sec. 2.1 with b = (1, 1)⊤ and Σ = (4, 0; 0, 1/2), showing the one-sigma
ellipsoid for Y 0 and Y 1. For one-dimensional X , Y x shifts along b, but projection along b is suboptimal. In contrast,
projection along Σ−1b is optimal, with (Σ−1b,b⊥) forming a natural basis for the intervention space, where the first axis
captures the intervention effect and the second contains no information.

1915), which applies the arctanh function to the partial
correlation, the Gradient EDE can be recovered by finding
the direction that maximises a CIT statistic for w⊤Y .

However, when the noise N is non-isotropic, b may not
be optimal for isolating the causal effect of X on Y . In
this case, the direction b may align too closely with the
noise structure of Y , making the intervention’s effect less
discernible. While regression-based approaches fail to ac-
count for the noise structure, CIT statistics balance signal
detection (the effect of the intervention) and noise reduction
to obtain optimal power. For non-isotropic noise, it can be
shown that the most discriminative direction for the inter-
vention is Σ−1b. While EDE generally fails, maximising
the partial correlation recovers this optimal direction. This
illustrates how identifying the direction in which Y max-
imises a conditional independence statistic can effectively
uncover the subspace of Y most caused by X .

This example is illustrated in Fig. 1, where we observe that
projection along Σ−1b improves the separability of dis-
tributions under different interventions (here X = 0 and
X = 1). A natural basis for representing interventions on
Y is then (Σ−1b,b⊥), where the first vector captures all
information about the intervention, and the second contains
no information. These axes need not be orthogonal. Under
favorable conditions, such as a rapid decay in the eigenval-
ues of the covariance matrix Σ, the noise in the distribution
of Y along the optimal direction Σ−1b diminishes as the
dimensionality increases, concentrating the distribution’s
mass in a single point and achieving optimal separability of
the intervention distributions.

2.2 RELATED WORK

Although the idea of learning representations of effects of
causes is, to our knowledge, novel, there are important con-
nections between our work and other fields. It intersects two
key areas of statistical learning: conditional independence
testing and causal representation learning. Below, we sum-

marise the most relevant results in these and other relevant
fields.

Conditional Independence Testing: A variety of methods
address this problem, broadly classified into nonparametric
and parametric approaches. Nonparametric methods, like
kernel-based tests (Zhang et al., 2011), nearest-neighbour
methods (Runge, 2018), and mutual information-based
tests (Fukumizu et al., 2008), offer flexibility but are com-
putationally expensive. Regression-based approaches (Shah
and Peters, 2018b) test residual dependencies or whether
X improves prediction of Y given Z (Chow, 1960). Para-
metric methods, such as partial canonical correlation anal-
ysis (CCA) (Rao, 1969), assume linearity and Gaussianity,
providing computational efficiency at the cost of strong as-
sumptions. While these methods balance complexity, power,
and robustness, they do not explicitly recover an optimal
subspace for testing, though they may indirectly solve an
optimisation problem that achieves this, as we will demon-
strate.

Causal Representation Learning (CRL): CRL (Schölkopf
et al., 2021) aims to learn representations that capture causal
mechanisms, enhancing generalisation, interpretability, and
robustness. Leveraging invariance across environments (Ar-
jovsky et al., 2020), recent methods focus on learning repre-
sentations for confounders or predictors to estimate causal
effects (Yao et al., 2018; Yang et al., 2021; Locatello et al.,
2019), with some extending to temporal data (Lachapelle
et al., 2022; Lippe et al., 2022). Recent work from Saengky-
ongam et al. (2023) shows how CRL is a promising avenue
for out-of-distribution generalisation. While prior work tar-
gets confounder or predictor representations, our method
focuses on causal effect representation of the outcome, fill-
ing a gap in previous approaches.

Connections to Signal Detection: Our framework relates
to signal detection (Macmillan, 2002; Kay, 1998, 1993),
aiming to identify a deterministic signal X in noisy obser-
vations Y = X +N . In climate science, this is addressed
by the “optimal fingerprint” (Hasselmann, 1993), which



maximises the signal-to-noise ratio of a linear projection of
observations. This enables a direct test for the detection of
climate change while recovering a useful climate pattern.

Sufficient Dimensionality Reduction (SDR): There are
also similarities with the SDR framework (Globerson and
Tishby, 2003; Fukumizu et al., 2009), which aims to find a
sufficient statistic w⊤X such that p(Y |X) = p(Y |w⊤X).
The reduced space therefore contains all the relevant infor-
mation in X to predict Y . Our work focuses on finding a
sufficient statistic specifically for the DE, to know, a sub-
space that retains all relevant information about the DE.

3 LEARNING FRAMEWORK

Our goal is to identify the components of Y that are most
caused by X , conditional on Z, assuming all confounders
C ⊆ Z are observed and the causal relationship X → Y
is known. Specifically, we aim to find a subspace of Y
that encapsulates all information about interventions on
X . To achieve this, we represent the subspace as a linear
transformation, Ỹ = W⊤Y ∈ Rq, where W ∈ Rd×q.
For simplicity, we focus on the case where q = 1, and
identify a vector w ∈ Rd such that w⊤Y ∈ R captures the
maximum amount of information that a one-dimensional
representation of Y can convey about the intervention on X .
The case for q > 1 is discussed in Section A.3.

3.1 MAXIMISATION OF A CIT STATISTIC

We propose a class of learning algorithms that maximise a
CIT statistic to find w, following the optimisation problem:

w⋆ = argmaxw T (X,w
⊤Y, Z). (2)

Here, X , w⊤Y , and Z are treated as random variables, as
we consider a population version of the test statistic. This
formulation provides theoretical guarantees for recovering
the latent structure (see Sec. 4.1) and the optimality of the
learned representation in terms of Fisher information. We
denote T the population loss and Tn its empirical counter-
part.

Building on this idea, we propose a flexible frame-
work based on nested predictive models of Y . This ap-
proach assesses conditional independence by analysing
the residuals from two regression models. The restricted
model regresses Y on Z alone, while the full model in-
cludes both X and Z. Conditional independence is eval-
uated by comparing the residuals of these models, with-
out assuming a specific functional form between X and
Y . This flexibility makes the framework broadly appli-
cable across various settings, accommodating complex,
nonlinear relationships between variables. Let us define
R2

full(w) = E
[
(w⊤Y − E[w⊤Y |X,Z])2

]
and R2

res(w) =

E
[
(w⊤Y − E[w⊤Y |Z])2

]
as the population mean squared

error when predicting w⊤Y from the full model (including
both X and Z) and the restricted model (including only Z),
respectively. A straightforward way of enforcing conditional
dependence–maximising the distance between p(y|x, z) and
p(y|z)–is to maximise the distance between the residuals of
the full regression model and the restricted one. This leads
to the simple loss function:

TS(X,Y, Z;w) = R2
res(w)−R2

full(w). (3)

Under the null hypothesis, both regression models have
equal predictive power, but the full model, with more de-
grees of freedom, yields smaller residuals. This can also
be viewed through an information theory perspective, de-
tailed further in Sec. A.1. However, this loss function is
unbounded with respect to w; thus, it is necessary to impose
additive constraints on w to avoid trivial solutions. The most
straightforward way to constrain the loss is to limit w to be
a unit norm vector, i.e., ∥w∥ = 1. We show in Lemma B.1
in supplementary material that this approach recovers the
EDE and is thus suboptimal for non-isotropic noises.

Another approach, is to constrain the full residuals to be
fixed, leading to the following loss function:

TF (X,Y, Z;w) =
R2

res(w)−R2
full(w)

R2
full(w)

. (4)

In the context of a linear Gaussian SCM, this statistic can be
interpreted as an F-test between nested models (aka Chow
test (Chow, 1960)), which is commonly used for variable se-
lection (Hocking, 1976) or causal discovery (Nogueira et al.,
2022). When the conditioning set Z consists of the past
values of Y , the empirical version of TF corresponds to the
statistic of the well-known Granger causality test (Granger,
1969). In this context, the maximisation of TF with respect
to w leads to a causal representation method known as
Granger PCA (Varando et al., 2022). This further empha-
sises how maximising a conditional independence testing
statistic can be leveraged to uncover the direction in which
Y is most strongly caused by X . Another possible con-
straint is grounded in detection theory (Macmillan, 2002;
Kay, 1993). Considering that Y can be decomposed into
a signal term S (variance related to X) and a noise term
N (variance related to Z and Y ’s intrinsic noise), we con-
strain the variance of w⊤N . Assuming that the signal and
noise are additive in Y , this constraint relates to constrain-
ing R2

noise = E[(w⊤Y − E[w⊤Y | X,Z = 0])2]. We thus
propose the loss function:

TD =
R2

res(w)−R2
full(w)

R2
noise(w)

. (5)

It will be shown in Sec. 4.1 that this formulation is optimal
under certain structural assumptions.

Canonical Correlation Analysis (CCA) (Hotelling, 1992)
and its partial variant Rao (1969) also seek a subspace that



captures reduced information between X and Y (condi-
tioning on Z in partial CCA), enabling (conditional) inde-
pendence testing. In Sec. A.2, we demonstrate that partial
CCA aligns with our framework by interpreting it as the
maximisation of a conditional independence statistic.

3.2 EMPIRICAL ESTIMATORS

We now present the practical optimisation procedure to es-
timate w⋆. Given observation (or design) matrices X ∈
Rn×p, Y ∈ Rn×d, and Z ∈ Rn×r, we now present empiri-
cal estimators for wS , wF and wD.

Similarly, we assume that we have two estimators
ĝfull(X,Z) and ĝres(Z) for the conditional expectations
E[Y | X,Z] and E[Y | Z], respectively. The learning algo-
rithms employed to estimate these conditional expectations
are not restricted, allowing users to tailor them based on their
assumptions about the relationships within the data and their
prior knowledge. We denote by Σ̂full, Σ̂res, and Σ̂noise the
sample covariance matrices of the residuals from the full and
restricted models, as well as the noise covariance. The three
population losses can be maximised by solving the general
eigenvalue problem M̂w = λN̂w, where M̂ = Σ̂res−Σ̂full
and N corresponds to the constraints on w: N̂ = I for TS ,
N̂ = Σ̂full for TF , and N̂ = Σ̂noise for TD. Given ran-
dom realisations of (X,Y, Z), the population matrices M
and N are random, typically following a Wishart distribu-
tion. Under this condition, the first eigenvalue of the GEV
problem, denoted by Λ1, is also random. Upon observing
data (X,Y,Z), the empirical covariances M̂ and N̂ are
fixed, and we obtain a realisation λ1 of Λ1 with correspond-
ing eigenvector w1. We denote the eigen-pairs (λS ,wS),
(λF ,wF ), and (λD,wD) as those corresponding to the first
eigenvalues for the losses TS , TF , and TD, respectively.

An algorithm for the estimation of the eigen-pairs is avail-
able in Algo. 1. The convergence properties of these estima-
tors are presented in Th. B.10 in the supplementary materi-
als. Additional details on the estimation of the conditional
expectations, as well as the estimation of other components
and the stability of the solution, can be found in Section
A.3.

4 THEORETICAL GUARANTEES

In this section, we discuss the theoretical properties of the
maximisation of the statistics introduced earlier. We con-
sider the distribution of (X,Y, Z) ∼ P entailed within the
following Structural Causal Model (SCM):

Y := bϕ(X) + ψ(Z) +Ny, (6)

where ϕ(x) : Rp → R, ψ(z) : Rr → Rd, b ∈ Rd and with
Ny ∼ N (0,Σ). Again, the relationship between X and Z
is left undefined as applying do(X) breaks any statistical

Algorithm 1: Direct Effect Analysis Algorithm
Input: Data matrices X, Y, Z, components K,

solver ∈ {TS , TF , TD}, learning algorithms
gres, gfull.

Output: Matrix W = [w1, . . . ,wK ]
1 Initialize W← [ ], Y(1) ← Y
2 for k = 1 to K do
3 Train ĝres, ĝfull using (Y(k),X,Z)

4 Nres ← Y(k) − ĝres(Z)
5 Nfull ← Y(k) − ĝfull(X,Z)
6 if solver == TD then
7 Nnoise ← Y(k) − ĝfull(X,0)
8 Compute Σres,Σfull, and (if TD) Σnoise from

residuals.
9 M̂← Σres −Σfull

10 N̂← I (if TS), N̂← Σfull (if TF ), N̂← Σnoise (if
TD).

11 Solve GEV: M̂w = λN̂w, normalize and append
wk to W.

12 Y(k+1) ← Y(k) −
∑k
i=1 Y

(k)wiw
⊤
i

13 return W

dependencies that existed in the observational setting. We
denote by Σψ(z) the covariance of ψ(Z). For the remain-
der of this section, we assume that the intervention ϕ(x)
is bounded. Concretely, we assume that X goes threw an
information bottleneck of dimension one. The vector b thus
gives the direction of the causal effect as intervention on X
will shift along axis b. Note that if ϕ(x) is linear, it corre-
sponds to the Gradient EDE. All the proofs are given in Sec.
B in supplementary materials.

The notion of the "direction most caused by" an interven-
tion is ambiguous when considering the full distribution
rather than just its mean, as in EDE. We seek a direction
along which interventions on X induce the most significant
changes in the distribution of Y , capturing the overall distri-
bution shift rather than relying solely on mean effects. To
quantify this, we analyze the signal-to-noise ratio (SNR)
and Fisher information, which serve as natural measures of
intervention-induced variation. In the Gaussian case, where
distributions are fully characterized by their first two mo-
ments, these measures provide a principled way to identify
the most affected direction. Given our generative model,
we show that our algorithm optimally identifies directions
that maximize SNR, effectively separating interventional
distributions. Furthermore, under the assumption that ϕ(x)
is linear and that noise is gaussian, we prove that these
directions also maximize the Fisher information of w⊤Y
with respect to the intervention, ensuring the most effective
disentanglement of Y under infinitesimal intervention shifts.



4.1 CAUSAL EFFECT REPRESENTATION

To better understand the properties of the different learn-
ing algorithms, it is useful to decompose the interven-
tion distribution Y x into a signal term and a noise term
Y x = S(x) + N where S(x) = bϕ(x) represents the
EDE, a non-random component of Y x, and the noise term
is given by N = ψ(Z) + Ny, which remains random.
We define the SNR of the transformed variable w⊤Y x =
w⊤S(x) +w⊤N as

γ2(w) =
(w⊤S(x))2

w⊤ΣNw
, (7)

where ΣN is the covariance matrix of the noise term. No-
tably, when the conditioning set Z is accounted for, the
noise covariance ΣN simplifies to Σ. In this case, the op-
timality results that will be established for wD also apply
to wF . We now present some optimality results related to
the SNR. This metric is tied to an optimal representation be-
cause, as the SNR increases, the distribution becomes more
concentrated around the signal S(x) Thus, the direction that
maximises the SNR is the one for which small perturbations
of the intervention are most observable. We thus say that
a weight vector w is optimal if it maximises γ2(w). For
general noise structures, wD is shown to be optimal.

Proposition 4.1 (General optimality). Assuming P is en-
tailed in the SCM in (6), we have that wD is optimal.

Under stronger assumptions – isotropy of the noises – both
wS and wF are shown to be optimal.

Proposition 4.2 (Optimality under isotropic noise). Assum-
ing that P is entailed in the SCM in (6) and that ΣN is
isotropic, we have that both wS and wD are optimal. More-
over, if Σ is also isotropic, then wF is also optimal.

This proposition implies that when the effects of X and Z
are assumed to be separable, wD is optimal in the sense that
it maximises the SNR.

We now present different guarantees for the learned rep-
resentation, demonstrating that in the large-dimensional
regime, and under specific conditions on the characteris-
tics of b, Σ, and Σψ(z), the signal-to-noise ratio improves
as the dimensionality of Y increases, such that the signal of
w⊤Y completely dominates its noise.

Proposition 4.3 (Noise term behavior). Let ∥b∥2 =
o (ν1(d)), b⊤(Σ + Σψ(z))b = o (ν2(d)), b⊤Σ−1b =

o (ν3(d)), b⊤(Σ−1 +Σ−1Σψ(Z)Σ
−1)b = o (ν4(d)), and

b⊤(Σ+Σψ(z))
−1b = o (ν5(d)). Here νi denotes the rates

of growth with regard to d.

Assume the distribution P follows the structural causal
model in Eq. 6, and the following conditions hold: 1.

limd→∞
ν1(d)
ν2(d)

→ ∞, 2. limd→∞
ν2
3 (d)
ν4(d)

→ ∞ and 3.
limd→∞ ν5(d)→∞.

The following convergence properties hold: γ2(wS)→∞
if condition 1 holds, γ2(wF ) → ∞ if condition 2 holds,
γ2(wD)→∞ if condition 1, 2 or 3 holds.

In general, the above conditions reflect the fact that b is un-
aligned with Σ, meaning that large values of b correspond to
small values of Σ and Σψ(Z). This relationship can also be
interpreted in terms of the growth of the largest eigenvalue
of Σ or of ∥b∥2, independently. All of these conditions
are related to the observation that as the dimensionality in-
creases, Y x’s distribution contains ’more signal’ relative to
its noise level. This phenomenon occurs, for example, when
the sources of noise are limited and the resolution of the
observations is increased. We provide further details and in-
sights on these assumptions in Sec. A.4. As discussed above,
a strong SNR indicates that the recovered signal is closer to
the information bottleneck ϕ(x). More importantly, it also
implies better separability of the distributions of Y x along
the projected axis. This can be formalised by considering
the Fisher information of w⊤Y x with respect to x, given
by:

Iw(x) = E
[
U(x)U(x)⊤

]
,

with U(x) = ∇x logP (w⊤Y | do(X = x)) denoting the
score function. We now show that for linear models, the
Fisher information and the SNR of w⊤Y x are equivalent
up to a positive scaling factor.

Proposition 4.4 (Equivalence between Fisher information
and SNR). Consider a SCM as described in (6), and let
the intervention function be ϕ(x) = v⊤x, where v ∈ Rd.
Then, the SNR is proportional to the Fisher Information of
the intervention, i.e. Iw(x) = αγ2(w) with α ∈ R+.

Applying this result to TD, we obtain an optimality guaran-
tee in terms of Fisher information.

Corollary 4.5. Under the assumptions of Prop. 4.4, the op-
timal solution wD maximises the Fisher information Iw(x).

A similar result to Prop. 4.3 can also be derived for Fisher
information under the assumption of a linear effect of X
on Y . Thus, the optimality conditions for recovering the
bottleneck structure ϕ(x) translate into conditions for the
discriminative power of the learned representation. In this
setting, maximising the SNR is equivalent to maximising the
Fisher information, which quantifies the sensitivity of the
projected distribution to changes in the intervention parame-
ter. This can be better understood by examining the relation-
ship between Fisher information and the Kullback-Leibler
divergence (see A.1). Specifically, it measures the distance
between parametric distributions, where in this case, the
parameter corresponds to the intervention value. For linear



models, TD is optimal as it maximises the distributional
divergence induced by infinitesimal perturbations of the in-
tervention. This enhances the discriminative power of the
learned representation across different interventions. More-
over, higher Fisher information indicates that the learned
representation retains more information about the interven-
tion.

4.2 TESTING THE PRESENCE OF A DIRECT
EFFECT

We now explore a direct implication of our problem formula-
tion. Since we are maximising a test statistic for conditional
independence testing, we can derive the distribution of the
loss function under the null hypothesis. Consequently, one
can reject the hypothesis of conditional independence at
level α if the value of the loss function, specifically the
largest eigenvalue λ1, exceeds a critical threshold.

Proposition 4.6 (Distribution of λF under conditional in-
dependence). Let the distribution P be induced by the
SCM in (6) with linear assignments and Gaussian noise,
and assume p = q = 1. Under the null hypothesis
H0 : X ⊥⊥ Y | Z, the largest root ΛF is F -distributed
such that (dfn/dfd)ΛF ∼ F (dfd, dfn) where dfn = d
and dfd = n− p− r − 1.

Finding the distribution of ΛD is more challenging. Instead,
we establish an upper bound on ΛD’s distribution, allowing
the distribution of ΛF to serve as a proxy for computing
upper bounds on the p-values of ΛD.

Proposition 4.7 (Upper bound on ΛD under conditional
independence). Under similar assumptions as in Prop 4.6
we have under the null hypothesis H0 : X ⊥⊥ Y | Z that
P (ΛD ≥ λD|H0) ≤ P (ΛF ≥ λD|H0).

Testing is straightforward by rejecting the null hypothesis if
(dfd/dfn)λ1 deviates sufficiently from F (dfn, dfd). This
property is useful for testing whether the learned representa-
tion (Sec. 4.1) captures a meaningful effect of X on Y .

5 EXPERIMENTS

In this section, we present the results of our extensive simu-
lation experiments designed to support our theoretical find-
ings. Additionally, we provide a straightforward use case
from climate science detection and attribution to illustrate
the practical relevance of our approach. The code for all
experiments is available at this github repository.

Figure 2: Correlation between w⊤Y and ϕ(X) as d in-
creases. TD consistently outperforms all methods, recover-
ing ϕ(X) as d grows, provided that b faster than Σ. When
TF , TS or PCA are not visible, they are overlapped by TD.
See Fig. 4 for the (5, 95) percentiles.

5.1 SIMULATION EXPERIMENTS

We simulate data from a linear SCM with Gaussian noise,
where Z acts as a confounder for both X and Y (6).

Nx,Nz ∼ N (0, I),

Ny ∼ N (0,Σ),

Z := Nz,

X := fa(C
⊤Z) +Nx,

Y := ub⊤fa(Γ
⊤X) + vfa(D

⊤Z) + wNy.

(8)

The noise terms Nx and Nz are independent. For the nonlin-
ear case, we define fa(z) := exp(−z2/2) sin(az), where
a controls nonlinearity. In the linear case, fa is set to the
identity. The coefficients Γ,b,C,D are uniformly sampled
from [0, 1]. We run 10 repetitions for each sample size n
and dimension d, reporting median values and quartiles. The
scalars u, v and w allow us to balance the weights of the
effect of X , Z and of the noise Ny .

Causal Effect Representation We assess the perfor-
mance of our algorithm in recovering the direct effect of
X on Y , modeled as fa(Γ⊤X). The recovery is tested
as d increases and with varying noise structures. We set
p = r = 10, and use n = 2000 samples for robust eval-
uation. Performance is evaluated by the absolute correla-
tion between w⊤Y and fa(Γ⊤X), comparing nested mod-
els (TS , TF , TD) against PCA and partial CCA (pCCA)

https://github.com/homerdurand/DEA_2025


Figure 3: Power of the test for α = 0.05. A detailed experiments with different values α is available in Fig. 10

as baselines. To understand the contexts where learning
algorithms may fail to fully recover ϕ(X), we consider
various configurations of Σ and b. We set Σ to be di-
agonal and explore four sets of entries for Diag(Σ) and
b: (1, . . . , i, . . . , d), (1, . . . , 1), (1, . . . , 1/i, . . . , 1/d), and
(1, . . . , 1/i2, . . . , 1/d2). Our main observation is that when
b grows slowly relative to Σ, none of the methods fully
recover the signal. Specifically, pCCA tends to converge to
a correlation of approximately 0.75, as it only recovers the
part of ϕ(X) independent of Z—the signal correlated with
ψ(Z) is regressed out from both residuals before regres-
sion. This behavior is clearer in Appendix figure 8, where
X and Z are simulated as independent variables, and pCCA
can recover ϕ(X). Additionally, we observe that TF and
TD outperform TS when b grows too slowly relative to the
noise. Both TF and TD effectively control the variance con-
tributions from Σ, resulting in better performance in these
challenging contexts (figure 2 in appendix). We analyse re-
covery across various noise configurations for Σ: Diagonal,
Full-rank, and Low-rank (rank = 10). We also test three
weighting schemes: equal, strong_N_Y, and strong_Z, set-
ting (u, v, w) in (8) by (1/3, 1/3, 1/3), (0.1, 0.1, 0.8), and
(0.1, 0.8, 0.1), respectively. As shown in Appendix figure
5, TD consistently outperforms other methods, with corre-
lation approaching 1 as d increases. Similar trends are ob-
served in nonlinear and high-dimensional cases (Appendix
figures 7, 6).

Level and Power of the Test We assume that the data are
generated from a linear SCM with Gaussian noise, where
fa(Z) = Z and set p = r = q = 1. Our analysis com-
pares tests based on the optimisation of TF and TD against
four common conditional independence (CI) tests: partial
CCA (Rao, 1969), the Generalised Covariance Measure
(GCM) (Shah and Peters, 2018b), Fisher’s Z test (Kalisch
and Bühlman, 2007), and the Kernel Conditional Indepen-
dence (KCI) test (Zhang et al., 2012). The primary focus
is on test performance with respect to sample size and Y ’s
dimensionality. All tests maintain valid control of false pos-
itives when d < n (see figure 11), ensuring effective Type I
error control. However, for test power (see figure 3), Fisher’s
Z and KCI show lower performance, especially for small
samples and large d, due to their broader hypothesis set
P , which includes potentially nonlinear relationships. Tests
based on TF , TD and pCCA leverage Y ’s dimensionality,
show better performance with higher dimensions for fixed

sample sizes. This contrasts with Fisher’s Z, which perfor-
mance does not increases with d.

5.2 REAL-WORLD EXPERIMENTS

We present two real-world climate detection and attribution
experiments: the first leverages the algorithm’s ability to
learn disentangled representations, and the second applies
TD to test causal effects.

Separating internal climate variability from the exter-
nally forced response. We evaluate the ability of our
method to disentangle internal climate variability from the
externally forced response using temperature fields from
CESM2 historical climate simulations (Danabasoglu et al.,
2020). Use of the optimal projection wD is compared
against two commonly used baselines in climate science:
Detrending and Dynamical Adjustment (Sippel et al., 2019).
To achieve this, we model internal variability using Sea
Level Pressure (SLP) as a proxy and estimate the externally
forced response using a smoothed version of the Global
Mean Temperature (GMT). TD learns a projection that iso-
lates the internal component of temperature fluctuations
while preserving their dynamical structure. Once trained,
the model allows us to separate the forced and internal com-
ponents of temperature fields. Figure 12 presents the mean
squared error (MSE) for trend estimation across different
algorithms. TD performs comparably to Detrending for re-
constructing forced trends but performs better in recovering
internal variability trends, providing better worst-case con-
trol. The spatial distribution of estimated internal trends
(Figures 13 and 14) further highlights that both methods
capture large-scale patterns but tend to underestimate trends
in polar regions. Additionally, Figure 15 illustrates that TD
effectively reconstructs the forced response across differ-
ent locations, although both TD and Detrending struggle in
highly variable regions. Overall, our approach provides a
principled framework for disentangling forced and internal
climate variability.

Climate change attribution. In this experiment, we ex-
amine the direct effects of external forcing and investigate
whether external forcing factors—such as aerosols, CO2,
CH4, and land use have a direct effect on the annual mean
temperature field (Yfactual). Using 50 historical climate sim-



Table 1: Performance comparison of different approaches
for detecting various effects. Bold values indicate the lowest
Type II Error and Type I Error at level 5%.

Effect Approach Type II Err. Type I Err.

CO2 DEA 0.00 0.00
GMT Reg 0.06 0.30
EOF 0.06 0.30

CH4 DEA 0.52 0.00
GMT Reg 0.70 0.30
EOF 0.74 0.26

Aerosol DEA 0.00 0.04
GMT Reg 0.76 0.24
EOF 0.76 0.24

Land Use DEA 0.00 0.14
GMT Reg 0.36 0.64
EOF 0.74 0.26

ulations from CESM2, we compute counterfactual temper-
ature fields (Ycounterfactual), following the methodology de-
scribed in Eq. 36 in the supplementary materials. We ap-
ply the algorithm TD to test for the significance of each
forcing (X) while controlling for the effects of the others
(Z). Our results are compared to two common approaches
in climate attribution (Lean and Rind, 2008): regression-
based tests where forcings are assessed for their significance
in predicting climate patterns, specifically Global Mean
Temperature (spatial average) and the first Empirical Or-
thogonal Function (EOF) of the climate field. The findings
demonstrate that our method effectively controls type I error
(when applied to Yfactual) and type II error (when applied to
Ycounterfactual) and outperforms the other approaches. These
results highlight the potential of our method in attributing
causal effects of external forcing, with implications for its
use in analysing observational data, such as the ERA5 or
HADCRUT datasets.

6 CONCLUSION

This paper proposes a novel framework for recovering the di-
rect effect of low-rank interventions in multivariate response
variables. Our approach combines conditional independence
testing and causal representation learning, enabling robust
estimation of direct causal effects in multivariate settings.
We showed that the choice of test statistic T significantly
influences algorithm performance, with different choices
yielding varying effectiveness. Notably, the learning algo-
rithm that controls noise variance exhibits stronger theoret-
ical guarantees and improved performance in simulations,
even in nonlinear settings. Our results highlight that perfor-
mance depends on noise matrix assumptions, particularly as
dimensionality d increases, leading to better discriminative

power of intervention distributions. Furthermore, the loss
function serves as a statistic in CI tests, allowing us to assess
whether X significantly affects Y while enhancing inter-
pretability. Our approach ensures robustness in multivariate
settings and enables extensions to other CI test statistics and
regression models, fostering broader applicability. Future
work will derive the distribution of the optimal learning loss
under null and alternative hypotheses to enhance test power.
We will also explore nonlinear representations via projec-
tion into a reproducing kernel Hilbert space and assess cases
where the effects of X and Z on Y are not linearly separa-
ble. Additionally, we aim to further investigate this problem
from an information-geometric perspective.
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A FURTHER METHODOLOGICAL DETAILS

We provide some further details and intuitions about our approach, starting by giving some insights it has with information
theory.

A.1 AN INFORMATION THEORY PERSPECTIVE ON NESTED MODELS TEST MAXIMISATION

In an information-theoretic framework (Thomas and Joy, 2006), the nested models residuals (3) can be interpreted as
measures of uncertainty—quantified by entropy—regarding Y given X and Z. The proposed statistic then aims to maximise
the conditional mutual information

I(X;w⊤Y | Z) = H(w⊤Y | Z)−H(w⊤Y | Z,X),

where H(w⊤Y | Z) and H(w⊤Y | Z,X) denote the corresponding conditional entropies. This aligns with the well-
established connection between conditional mutual information, causality, and conditional independence (Janzing et al.,
2013).

Moreover, Proposition 4.4 establishes that, in the linear case with information bottleneck, maximising the signal-to-noise
ratio (SNR) is equivalent to maximizing Fisher information. This implies that the proposed algorithm optimally distinguishes
between the interventional distributions p(Y | do(X = x)) and p(Y | do(X = x+ δx)), improving their separability under
small interventions. This follows from the well established connection between Fisher information and the Kullback–Leibler
divergence.

Proposition A.1. Let P (Y | x) be a probability distribution over Y parameterised by x ∈ Rd. Consider a small
perturbation δx such that P (Y | x+ δx) remains close to P (Y | x). Then, the Kullback–Leibler divergence between these
two distributions admits the following second-order expansion:

DKL(P (Y | x) ∥P (Y | x+ δx)) =
1

2
δx⊤I(x)δx+O(∥δx∥3),

where I(x) is the Fisher information matrix, given by

Iw(x) = E
[
U(x)U(x)⊤

]
,

with U(x) = ∇x logP (w⊤Y | X = x) denoting the score function.

The proof is provided in Appendix B.4.

This result formalises the intuition that our algorithm identifies a subspace that maximally separates distributions under
infinitesimal intervention perturbations, enhancing their distinguishability.

A.2 PARTIAL CORRELATION ANALYSIS AS THE MAXIMISATION OF A CONDITIONAL
INDEPENDENCE TEST STATISTIC

We briefly outline how the partial Canonical Correlation Analysis (CCA) test, originally introduced by Rao (1969), can be
interpreted within our framework. Specifically, we show that it can be viewed as the maximisation of a partial correlation
test between w⊤Y and X when adjusted for Z.

Let the population residuals after regressing out Z be defined as:

Rx(v) = v⊤X − E[v⊤X | Z],
Ry(w) = w⊤Y − E[w⊤Y | Z].

Assuming a linear relationship between X and Y , the conditional independence statistic can be expressed as:

TC(X,Y, Z;w,v) = artanh(corr(Rx(v), Ry(w))). (9)

Under the null hypothesis of conditional independence, and assuming that Rx and Ry are linearly related and follow a
Gaussian distribution, it can be shown that TC is asymptotically normally distributed. Since the artanh function is monotonic,
maximising the CIT statistic is equivalent to maximizing the partial correlation test statistic.



It also share similarities to the statistic proposed in (Shah and Peters, 2018a), with the key difference being the normali-
sation used. While Shah and Peters (2018a) proposed a statistic based on the covariance of the residuals normalised by
the variance of their product, we normalise by the product of the variances of the residuals, resulting in a correlation
coefficient. Although the approach in (Shah and Peters, 2018a) is known to have power against alternatives under very weak
assumptions—specifically, that the convergence rate of the estimators of the conditional expectations results in an error
product rate of o(n−1)—it is less straightforward to derive explicit formulations for v and w from their method.

Empirical estimator for partial CCA We are given two unbiased estimators f̂x(Z) and f̂y(Z) of respectively E[X|Z]
and E[Y |Z]. We denote by R̂x and R̂y the (empirical) residuals obtained from the predictions of X and Y, respectively
R̂x = X− f̂x(Z) and R̂y = Y− f̂y(Z). Similarly, the maximisation of the loss can be obtained via a generalised eigenvalue
decomposition

Σ̂⊤
RxRy

Σ̂−1
Ry

Σ̂RxRy
w = λΣ̂Ry

w, (10)

where Σ̂RxRy is the sample covariance of R̂x and R̂y , and Σ̂Ry is the sample covariance of R̂y .

A.3 EMPIRICAL ESTIMATORS

We provide additional details regarding our estimators, focusing on three key aspects: the estimation of conditional
expectations, the extraction of multiple components, and the stability of the solutions obtained through the Generalised
Eigenvalue (GEV) problem.

Estimation of the Conditional Expectation We have, so far, assumed the availability of unbiased estimators for the
conditional expectations E[Y |X,Z] and E[Y |Z]. In practice, these estimators should be selected based on domain-specific
knowledge. In our case, we use the OLS estimator for the linear case and random forests for the nonlinear case.

Further Components Until now, we have considered the case where q = 1, assuming that the dimensionality of the direct
effect of X on Y is rank one. In a manner analogous to the power iteration method (Mises and Pollaczek-Geiringer, 1929),
we can extract additional components by employing a deflation technique.

Stability of the Solution The stability of the solutions is influenced by the covariance matrices Σ̂full and Σ̂Ry
, which may

be ill-conditioned due to the characteristics of the noise term NY . This can complicate the GEV resolution. To mitigate this
issue, we use a regularisation strategy that modifies the covariance matrices as Σ̂full + δI, and Σ̂Ry

+ δI, where δ is a
small constant (typically 10−8) that stabilises the smallest eigenvalues.

Optimising the regularisation parameter more effectively might be crucial in the context of high-dimensional response
variables. A promising approach could be the Ledoit-Wolf regularisation strategy, as proposed by Ledoit and Wolf (2004).

Complexity The computational complexity of the Direct Effect Analysis algorithm scales with the number of components
(K), the number of samples (n), and the dimensionality of the variables (d). Let the training complexities of the conditional
expectation models gres and gfull be O(wres(n, d, r)) and O(wfull(n, d, r)), respectively. Then, the overall complexity is

O
(
K

(
wres(n, d, r) + wfull(n, d, r) + nd2 +Kd3

))
.

Here, the first two terms account for training the conditional expectation estimators, the third term corresponds to computing
the residual covariance matrix, and the final term arises from solving the generalized eigenvalue (GEV) problem.

A.4 NOISE TERM BEHAVIOR

The conditions outlined in Proposition 4.3 may initially seem complex, so we provide a more intuitive explanation here. In
many practical scenarios, improving the signal-to-noise ratio becomes crucial as the dimensionality of Y increases, which
can occur when enhancing image resolution or adding sensors. Higher-dimensional data provides a richer representation of
the system, enabling better separation of signal and noise and improving inference accuracy.



Example. In climate science, we analyze global temperature patterns using climate observations. Let Y represent the
observed temperature field and NY represent the observational errors arising from sensor limitations or model imperfections.
The function ϕ(X) may capture internal climate variability (e.g., El Niño), while ψ(Z) represents external forcing (e.g.,
greenhouse gas emissions). Increasing data granularity—through higher-resolution climate models, more sensors, or longer
historical records—enhances the detectability of systematic climate responses while averaging out transient noise. As a
result, the signal-to-noise ratio improves, making it easier to discern causal relationships and understand climate drivers.

The key insight is that algorithm performance depends on the structure of b and its interaction with noise terms. Performance
improves when signal variance increases (∥b∥2 grows with d) in directions where noise covariances Σ and Σψ(Z) are small.
We can for example think about the simple case where the eigenvalue of the covariance matrix ΣN decay quadractically as
d increases and where b = (1, . . . , 1). The estimator TD is optimal in that it maximises the signal-to-noise ratio under mild
conditions (see Proposition 4.1). Convergence issues arise only in rare cases where b, Σ, and Σψ(Z) decay at similar rates,
as illustrated in Figure 2.

While these guarantees hold in the idealised population setting with infinite data, real-world applications often involve
limited samples. In such cases, the theoretical insights may not directly translate into robust performance, necessitating
regularisation techniques to prevent overfitting and improve estimation reliability in small datasets.

B PROOFS

We now provide proof of our main theoretical results. As this will be useful for most of the theoretical development, we first
get a result for the first eigenvector of each optimisation problem.

B.1 AUXILIARY LEMMA

Lemma B.1. Let wS , wF , and wD denote the first eigenvectors associated with the optimisation problems in Eq. (3), Eq.
(4), and Eq. (5), respectively. The following properties hold:

1. The eigenvector wS is proportional b, i.e., wS ∝ b, when maximizing Eq. (3). In the linear case it corresponds to the
Gradient EDE.

2. The eigenvector wF is proportional to the direction of the inverse covariance-weighted true causal effect, i.e., wF ∝
Σ−1b, when maximizing Eq. (4).

3. The eigenvector wD is proportional to the inverse of the sum of the covariances of the noise and confounding variables,
i.e., wD ∝ (Σ+Σψ(Z))

−1b, when maximizing Eq. (5).

Proof. Recall the definitions:

R2
full(w) = E[(w⊤Y − E[w⊤Y |X,Z])2],
R2

res(w) = E[(w⊤Y − E[w⊤Y |Z])2],
R2

noise(w) = E[(w⊤Y − E[w⊤Y | X,Z = 0])2].

From the model Y x = bϕ(x) + ψ(Z) +Ny , we derive:

R2
full(w) = w⊤Σw,

R2
res(w) = w⊤Σw + ϕ(x)2w⊤bb⊤w,

R2
noise(w) = w⊤Σw +w⊤Σψ(Z)w.

The difference between the residual and full terms is:

R2
res(w)−R2

full(w) = ϕ(x)2w⊤bb⊤w.

Each optimisation problem for TS , TF , and TD corresponds to a generalised eigenvalue problem of the form N−1M, where
M = ϕ(x)2bb⊤ is rank-1. Therefore, the first eigenvector w1 is proportional to N−1b. The optimal solutions are:



1. wS ∝ b for Eq. (3),

2. wF ∝ Σ−1b for Eq. (4),

3. wD ∝ (Σ+Σψ(Z))
−1b for Eq. (5).

B.2 SIGNAL-TO-NOISE OPTIMALITY

Proposition B.2 (General optimality). Assuming P is entailed in the SCM in Eq. (6), we have that wD is optimal.

Proof. Recall that the optimal detector loss is defined as:

TD =
R2

res(w)−R2
full(w)

R2
noise(w)

=
ϕ(x)2w⊤bb⊤w

w⊤Σw +w⊤Σψ(Z)w
.

Using the results from Theorem B.1, the signal-to-noise ratio is given by:

γ2(w) =
(w⊤S(x))2

w⊤ΣNw
= ϕ(x)2

w⊤bb⊤w

w⊤(Σ+Σψ(Z))w
,

where we note that ψ(Z) and Ny are assumed to be independent.

This completes the proof.

Proposition B.3 (Optimality under isotropic noise). Assuming that P is entailed in the SCM in Eq. (6) and that ΣN is
isotropic, we have that both wS and wD are optimal. Moreover, if Σy is also isotropic, then wF is also optimal.

Proof. The proof follows straightforwardly from the assumption that ΣN = Σϕ(z) +Σ is isotropic. Under this assumption,
the constraint w⊤(Σϕ(z) +Σ)w is equivalent to the constraint ∥w∥ = 1. Therefore, the loss function TD simplifies to the
form of TS . As a consequence, the optimality of wD stated in Prop. 4.1 implies the optimality of wS .

Similarly, when both ΣN and Σy are isotropic, we observe that TF becomes equivalent to TS . Since it has been established
that if ΣN is isotropic, wS is optimal, we conclude that wF is also optimal.

B.3 NOISE TERM BEHAVIOR

Proposition B.4 (Noise Term Behavior). Let ∥b∥2 = o (ν1(d)), b⊤(Σ + Σψ(z))b = o (ν2(d)), b⊤Σ−1b = o (ν3(d)),
b⊤(Σ−1 +Σ−1Σψ(Z)Σ

−1)b = o (ν4(d)), and b⊤(Σ+Σψ(z))
−1b = o (ν5(d)).

Assume that ϕ(X) ∈ R, the distribution P follows the structural causal model in 6, and the following conditions hold:

1. limd→∞
ν1(d)
ν2(d)

→∞,

2. limd→∞
ν2
3 (d)
ν4(d)

→∞,

3. limd→∞ ν5(d)→∞.

Under these conditions, the following convergence properties hold:

1. γ2(wS)→∞ if condition 1) holds,

2. γ2(wF )→∞ if condition 2) holds,

3. γ2(wD)→∞ if condition 1), 2), or 3) holds.



Proof. Recalling that we have

R2
full(w) = w⊤Σw (11)

R2
res(w)−R2

full(w) = ϕ(x)2w⊤bb⊤w (12)

R2
noise = w⊤Σw +w⊤Σψ(Z)w (13)

Substituting these into the signal-to-noise ratio in Eq. (7), we obtain:

γ2(wS) =
∥b∥2ϕ(x)2

b⊤Σb+ b⊤Σψ(Z)b
, (14)

γ2(wF ) =
(b⊤Σ−1b)2ϕ(x)2

b⊤Σ−1b+ b⊤Σ−1Σψ(Z)Σ−1b
, (15)

γ2(wD) = b⊤(Σ+Σψ(Z))
−1bϕ(x)2. (16)

The convergence properties of the signal-to-noise ratio follow directly from these formulations, assuming ϕ(x) is bounded.
Since wD maximises the SNR, if either wS or wF has an SNR that grows to infinity, then the SNR of wD will also tend to
infinity.

B.4 EQUIVALENCE OF SIGNAL-TO-NOISE RATIO AND FISHER INFORMATION

Proposition B.5 (Equivalence between Fisher Information and SNR). Consider a SCM as described in (6), and let the
intervention function be ϕ(x) = v⊤x, where v ∈ Rd. Then, the SNR is proportional to the Fisher Information of the
intervention, i.e. Iw(x) = αγ2(w) with α ∈ R+.

Proof. Let w⊤Y x ∼ N (w⊤µ(x),w⊤ΣNw) denote the distribution of w⊤Y x.

The log-likelihood for the intervention is given by:

log p(Y | do(X = x)) = C − 1

2
w⊤(Y − µ(x))⊤(w⊤(Σψ(z) +Σ)w)−1(Y − µ(x))w,

where C is a constant relative to x.

The informant U(x) is the derivative of the log-likelihood with respect to x:

∂

∂x
log p(Y | do(X = x)) =

1

2
µ′(x)⊤(w⊤Σw)−1(Y − µ(x))w.

The Fisher information Iw(x) is the variance of the informant. Since the informant at the maximum likelihood has mean
zero (see Lehmann and Casella, 2006, section 6), we write:

Iw(x) = E[U(x)U(x)⊤]

= E
[
µ′(x)⊤(w⊤Σw)−1(Y − µ(x))ww⊤(Y − µ(x))⊤(w⊤Σw)−1µ′(x)

]
.

Using the fact that E[(Y − µ(x))(Y − µ(x))⊤] = Σ, we obtain:

Iw(x) = w⊤µ′(x)(w⊤Σw)−1µ′(x)w.

Since µ(x) = bv⊤x, we have µ′(x) = bv. Additionally, Σ = Σψ(z) +Σ. Substituting these expressions into the Fisher
information formula, we get:

Iw(x) = w⊤bv⊤(w⊤(Σψ(z) +Σ)w)−1vb⊤w

=
w⊤bv⊤vb⊤w

w⊤(Σψ(z) +Σ)w

=
∥v∥22
ϕ(x)2

γ2(w).



Proposition B.6. Let P (Y | x) be a probability distribution over Y parameterised by x ∈ Rd. Consider a small
perturbation δx such that P (Y | x+ δx) remains close to P (Y | x). Then, the Kullback–Leibler divergence between these
two distributions admits the following second-order expansion:

DKL(P (Y | x) ∥P (Y | x+ δx)) =
1

2
δx⊤I(x)δx+O(∥δx∥3),

where I(x) is the Fisher information matrix, given by:

Iw(x) = E
[
U(x)U(x)⊤

]
.

With U(x) = ∇x logP (w⊤Y | X = x) the informant (or score) function.

Proof sketch. Assuming P (Y | x) is smooth in x, we approximate it to its second order Taylor expansion:

logP (Y | x+ δx) = logP (Y | x) + δx⊤∇x logP (Y | x) +
1

2
δx⊤∇2

x logP (Y | x)δx+O(∥δx∥3).

The KL divergence is defined as:

DKL(P (Y | x) ∥P (Y | x+ δx)) = EY∼P (Y |x)

[
log

P (Y | x)
P (Y | x+ δx)

]
.

Substituting into the KL divergence and using the property that EY∼P (Y |x)[∇x logP (Y | x)] = 0, the first-order term
vanishes (see Lehmann and Casella, 2006, section 6), leaving:

DKL(P (Y | x) ∥P (Y | x+ δx)) = −1

2
EY∼P (Y |x)

[
δx⊤∇2

x logP (Y | x)δx
]
+O(∥δx∥3).

Since the Fisher information matrix is defined as I(x) = −E[∇2
x logP (Y | x)], we obtain:

DKL(P (Y | x) ∥P (Y | x+ δx)) =
1

2
δx⊤I(x)δx+O(∥δx∥3).

B.5 DISTRIBUTION OF LEADING EIGENVALUES UNDER CONDITIONAL INDEPENDENCE
HYPOTHESIS

Proposition B.7 (Distribution of λF under conditional independence). Let the distribution P be induced by the SCM in
(6) with linear assignments and Gaussian noise, and assume p = q = 1. Under the null hypothesis H0 : X ⊥⊥ Y | Z, the
largest root λF is F -distributed such that (dfn/dfd)λF ∼ F (dfd, dfn) where dfn = d and dfd = n− p− r − 1.

Proof sketch. It can easily be shown that R̂2
full and R̂2

res follows χ2 distributions of respectively d(n − p − r − 1) and
d(n − p − r − 1) degrees of freedom as they are computed as sums of squared Gaussian distributions. Their ratio can
thus be shown to follow an F distribution with degrees of freedom dfn = d and dfd = n − p − r − 1. As the weights
related to Z are frozen when getting R̂2

noise, we have that it follows a χ2 with d(n − p − 1) degrees of freedom. Thus
ΛD ∼ F (p, n− p− 1).

We refer reader to the distribution of Roy’s largest root, the Chow test (Chow, 1960) or the generalised linear hypothesis test
(see e.g. Anderson (1958) chapter 7) as similar problems have been widely studied in the multivariate statistics literature
(Anderson, 2003; Bilodeau and Brenner, 1999).

Proposition B.8 (Upper Bound on ΛD Under Conditional Independence). Under similar assumptions as in Prop 4.6 we
have under the null hypothesis H0 : X ⊥⊥ Y | Z that P (ΛD ≥ λD|H0) ≤ P (ΛF ≥ λD|H0).



Proof sketch. As the conditioning set in the computation of root squared errors R2
noise is larger than of R2

full, the empirical
residuals R2

noise are always larger than R2
full thus we have that

R2
res −R2

full

R2
noise

≤ R2
res −R2

full

R2
full

.

Hence, we have for any λD that P (ΛD ≥ λD|H0) ≤ P (ΛF ≥ λD|H0) under the null hypothesis H0 : X ⊥⊥ Y |Z.

Note that by using this upper bound we tend to lose power in the test procedure but we still control type I errors (we reject
less than we would optimally do) and thus the test is valid. Further research should aim at discovering a better approximation
for the distribution ΛD.

B.6 CONVERGENCE RATES

We first introduce an important theorem that will be useful for the proof.

Theorem B.9 (Davis-Kahan theorem (Davis and Kahan, 1970)). Let λ(1) − λ(2) = δ > 0 where λ(1) > λ(2) ≥ · · · ≥ λ(d)
be the eigenvalues of Σ and λ̂(1) − λ̂(2) = δ̂ > 0 where λ̂(1) > λ̂(2) ≥ · · · ≥ λ̂(d) be the eigenvalues of Σ̂ and let W and
Ŵ their corresponding eigenvectors. We have that

∥ sinΘ(W,Ŵ)∥op ≤
∥Σ− Σ̂∥op

maxj(|λ̂j−1 − λj |, |λ̂j+1 − λj |)
(17)

where Θ is a distance between subspaces. Similarly, for any j we have that ∥ŵj −wj∥ ≤
√
2 sinΘ(wj , ŵj).

We show that under common assumptions, specifically that there are two unbiased estimators ĝfull and ĝres with convergence
rates κ1(n) and κ2(n), the estimators proposed in Eq. (3) are consistent with their population counterparts. Furthermore, we
demonstrate that their convergence rate typically depends on the convergence rates κ1(n) and κ2(n).

Proposition B.10 (Convergence Rate of F-Test Based Losses). Assume the following conditions hold:

1. E ∥ĝfull(Xi,Zi)− E[Yi | Xi,Zi]∥2 = oP (κ1(n)),

2. E ∥ĝres(Zi)− E[Yi | Zi]∥2 = oP (κ2(n)),

3. λM1 − λM2 = δM > 0, where λM1 > λM2 ≥ · · · ≥ λMd are the eigenvalues of M,

4. λN1 − λN2 = δN > 0, where λN1 > λN2 ≥ · · · ≥ λNd are the eigenvalues of N,

5. E ∥Y − E[Y | X,Z]∥2 ≤ Nfull and E ∥Y − E[Y | Z]∥2 ≤ Nres.

Let w1 be the optimal solution to Eq. (3), Eq. (4), or Eq. (5), and let ŵ be the empirical solution to their respective empirical
estimators. Under the given conditions, we have the following convergence result:

E
[
∥w1 − ŵ∥22

]
= o

(√
κ1(n) +

√
κ2(n)

)
. (18)

Proof. Similar to what was done for the empirical estimators, the population loss can be written as an eigenvalue decom-
position problem N−1M, where M = Σres −Σfull, and N depends on the loss used. For simplicity, we consider N = I,
which leads to the convergence result for the simple loss in Eq. (3). A similar reasoning can be applied to the convergence of
the two other losses.

Let us first decompose Σ̂res as follows:

Σ̂res =
1

n

n∑
i=1

(Yi − ĝres(Zi))(Yi − ĝres(Zi))⊤ (19)

=
1

n

n∑
i=1

(Yi − gres(Zi) + gres(Zi)− ĝres(Zi)) (Yi − gres(Zi) + gres(Zi)− ĝres(Zi))⊤ (20)

=
1

n

n∑
i=1

N⊤
y,iNy,i +

2

n

n∑
i=1

N⊤
y,i (gres(Zi)− ĝres(Zi)) +

1

n

n∑
i=1

(gres(Zi)− ĝres(Zi))⊤ (gres(Zi)− ĝres(Zi))

(21)



where Ny,i is the population residual (noise) of sample i.

We now aim to bound ∥Σ− Σ̂∥F . Using the previous notation, we have:

∥Σ− Σ̂∥F ≤ ∥Σ−
1

n

n∑
i=1

N⊤
y,iNy,i∥F +

2

n

n∑
i=1

∥N⊤
y,i(gres(Zi)− ĝres(Zi))∥F (22)

+ ∥ 1
n

n∑
i=1

(gres(Zi)− ĝres(Zi))⊤(gres(Zi)− ĝres(Zi))∥F (23)

≤ A+B + C. (24)

We first handle the term C:

E[C] ≤ 1

n

n∑
i=1

E
[
∥(gres(Zi)− ĝres(Zi))⊤(gres(Zi)− ĝres(Zi))∥F

]
(25)

≤ 1

n

n∑
i=1

E
[
∥(gres(Zi)− ĝres(Zi))∥22

]
(26)

≤ C1κ1(n) by assumption (1). (27)

Next, for the term B:

E[B] ≤ 1

n

n∑
i=1

E
[
∥N⊤

y,i(gres(Zi)− ĝres(Zi))∥F
]

(28)

≤ 1

n

n∑
i=1

E [∥Ny,i∥]E [∥(gres(Zi)− ĝres(Zi))∥2] (29)

≤ Nres
√
C1

√
κ1(n) by assumptions (1) and (5). (30)

For the term A, by the Strong Law of Large Numbers, there exists a constant C3 such that:

E[A] ≤ C3√
n
.

Therefore, we obtain the bound:

E
[
∥Σ− Σ̂∥op

]
≤ Nres

√
C1

√
κ1(n) + C1κ1(n) +

C3√
n
.

Similarly, an equivalent reasoning gives:

E
[
∥Σ− Σ̂∥op

]
≤ Nfull

√
C2

√
κ2(n) + C2κ2(n) +

C4√
n

using assumptions (2) and (5).

Finally, applying the Davis-Kahan theorem, we have:

E
[
∥w1 −wS∥22

]
≤
√
2
E
[
∥Σres − Σ̂res∥F

]
+ E

[
∥Σfull − Σ̂full∥F

]
δM

(31)

≤
√
2
Nfull

√
C2

√
κ2(n) + C2κ2(n) +

C4√
n
+Nres

√
C1

√
κ1(n) + C1κ1(n) +

C3√
n

δM
(32)

= o(
√
κ1(n) +

√
κ2(n)), (33)

assuming that κ1(n) and κ2(n) decrease no faster than o(1/n), which is typically the case for most of the regression
algorithms. This conclude the proof.



Figure 4: Correlation between w⊤Y and ϕ(X) as d increases. TD consistently outperforms all methods, recovering ϕ(X)
as d grows, provided that b faster than Σ. Columns are indexed by as A, B, C, D and rows by 1, 2, 3, 4.

C EXPERIMENTS

C.1 SIMULATION EXPERIMENTS

The data are generated according to the following SCM:

Nx,Nz ∼ N (0, I),

Ny ∼ N (0,Σ),

Z := Nz,

X := fa(C
⊤Z) +Nx,

Y := ub⊤fa(Γ
⊤X) + vfa(D

⊤Z) + wNy.

(34)

Causal effect representation Comparing how the different learning algorithms behave in different noise contexts seems
relevant. Primarily, we can observe in the setting Strong_N_Y low_rank (Fig. 5) that the increase in performance using TF



Figure 5: Experiments with different noise structure (Σ being diagonal, full rank and low rank) and scaling factors ((u, v, w)
as (1/3, 1/3, 1/3), (0.1, 0.1, 0.8), and (0.1, 0.8, 0.1) for equal, Strong_N_Y and Strong_Z). Overall, learning algorithm TD
performs better and tends to converge.

and TD is due to the low-rank structure of the noise. The overall better performance of TD over TF and pCCA is due to the
correlation between X and Z.

To better understand the behaviour of our algorithms, we conducted experiments in two additional settings:

1. High-dimensional setting: We conducted a similar experiment under different conditions on b and Σ, increasing the
dimensionality. In this case, however, we significantly reduced the sample size to n = 100, such that as d grows, we
obtain n < d.

2. Nonlinear setting: Again, we conducted a similar experiment with different conditions on b and Σ. Still, here we
applied a nonlinear mapping fa(z) := exp(−z2/2) sin(az) with a ∈ {1, 2, 3}. We use a random forest algorithm with
100 trees as an estimator of the conditional expectation.

3. X independent of Z setting: We conducted experiments to clarify the discrepancy of performance between pCCA
and TD by generating the data such that X and Y are independent.

4. Non gaussian noises: We conducted an experiment similar to the original experiment proposed in section 5 but
considering uniform and exponential noises.

In the high-dimensional setting, as shown in Fig. 6, we observe results that are very similar to those in the large-sample
setting, with one key difference: when Σ increases rapidly with d (row 1), and d > n, the model performance drops
significantly to near zero and when b is growing to slowly compared to σ (σ = [1, 1/d] and b = [1/d, 1/d2]). It would
be interesting to further evaluate how the regularisation parameter (see Section A.3) might improve performance in this
specific case. However, in this setting, ensuring algorithmic convergence is particularly challenging, as the signal strength is
constrained by the number of available samples. As a result, the SNR is unlikely to grow unbounded unless the inherent
noise in the data is minimal.

Interestingly, in the nonlinear setting, the learning algorithm TD is still able to recover ϕ(X) in most cases. In contrast, other
algorithms show greater difficulty in achieving convergence under these conditions. This highlights the potential of learning
algorithm TD to recover direct effects, even in complex nonlinear settings effectively.

We also conducted an experiment where X and Z were generated as independent variables to highlight the potential
advantages of our learning algorithms. In this case, we observed that partial CCA (pCCA) could recover the latent structure



Figure 6: High dimensional experiment using 100 samples for training. As observed in the last row, all algorithms fail to
recover the signal when the noise variance increases rapidly and the number of samples falls below the outcome dimension.



Figure 7: Experiments with nonlinear map fa and with different noise structure (Σ being diagonal, full rank and low rank)
and scaling factors ((u, v, w) as (1/3, 1/3, 1/3), (0.1, 0.1, 0.8), and (0.1, 0.8, 0.1) for equal, Strong_N_Y and Strong_Z).
Overall, the learning algorithm TD performs better and tends to converge.



Figure 8: Experiment where X ⊥⊥ Z. When the dependence between X and Z is removed, the pCCA algorithm performs
similarly to TD. This highlights the effectiveness of our approach in scenarios with confounding or mediation effects.

similarly to the other algorithms. This result highlights the robustness of TD, as it remains stable across different structural
relationships between X and Y , reinforcing its applicability in both confounded and mediated settings.

The experiments with both exponential and uniform noise, shown in Figure 9, demonstrate that the convergence behavior of
the algorithms remains consistent across Gaussian, exponential, and uniform noise types. This aligns with our theoretical
convergence guarantees presented in Section 4.1, which are noise-agnostic by design.

Hypothesis testing For a test to be valid, it must control the Type I error rate. Specifically, if we test at level α, then under
the null hypothesis H0, the probability of rejecting H0 should be less than or equal to α. In Fig. 11, we observe that all the
methods control the Type I error reasonably accurately.



Figure 9: Uniform noise (left) and exponential noise (right).

C.2 REAL-WORLD EXPERIMENTS

Separating internal climate variability from the externally forced response. This experiment aims to assess the
performance of our learning algorithms in disentangling internal climate variability from the forced response to external
factors, such as greenhouse gas (GHG) emissions or solar radiation. For this analysis, we focus on temperature fields. We
use M = 50 members from the CESM2 historical climate simulations (Danabasoglu et al., 2020), covering 1880 to 2014.
The variables under consideration are Sea Level Pressure (SLP) and Temperature (T), with monthly data yielding 1669
samples per member. The detrended SLP field is treated as a proxy for internal variability (Z ∈ R648). In contrast, the
temperature field (Y ∈ R648) serves as the response variable of interest. The temperature for member i, at location j, and
time t, is denoted by Y (i)

j (t).

As a proxy for climate external forcing, we use a smoothed version (5-year moving average) of the Global Mean Temperature
(GMT), which is computed as a spatial average of the temperature field (X ∈ R):

X(t) =
1

years× 12

years×12∑
τ=1

1

d

d∑
j=1

Yj(t− τ) (35)

where d represents the number of spatial locations.

The climate-forced response, Yforced, is calculated as the ensemble mean over all simulation members, Y (i):

Yforced,j(t) =
1

M

M∑
i=1

Y
(i)
j (t) and Y

(i)
internal,j(t) = Y

(i)
j (t)− Yforced,j(t), (36)

where Yinternal represents the true internal variability of Y after removing the climate-forced component.

The Direct Effect (DEA) algorithm (employing TD) is applied as follows: We train DEA using the triplet
{GMT (t), T (t), SLP (t)}years×12

t=1 as realisations of (X,Y, Z), where GMT serves as the climate external forcing proxy
(X), T represents the temperature response variable, and SLP is a proxy for the internal climate variability (Z). Once the
model is trained, we project the data onto the null space of the vector b, denoted as b⊥, to recover the internal variability
component Ŷinternal. This projection isolates the portion of the temperature field that is not correlated with the external
forcing, allowing us to separate the forced and internal components effectively. Finally, we compute the climate-forced
response as Ŷforced = Y − Ŷinternal, which provides an estimate of the temperature response attributed to external forcing
alone.

We compare our learning algorithm with two common approaches used in climate science:



Figure 10: Power of the different methods. TD, TF , and pCCA generally exhibit better performance compared to the other
approaches. This is partly because they rely on linear Gaussian models, which constrain the alternative hypotheses, thereby
improving the power of these tests.

Figure 11: Type I error control. We can observe that all methods have a good control of type I error except the Fisher Z test,
which has a poor control in low sample high dimensional settings.



(a) Forced response trends (b) Internal variability trends

Figure 12: Mean Squared Error (MSE) of different algorithms in reconstructing (a) internal climate variability trends and (b)
forced response trends. The Direct Effect Analysis (DEA) algorithm, using the basis (Σ−1b,b⊥), i.e. TD algorithm, is
compared to Detrending and Dynamical Adjustment (two most common approaches for separating internal from external
climate variability). Overall, DEA and Detrending perform better. DEA outperforms Detrending for internal variability trend
estimation but has a higher median MSE for forced trend reconstruction. However, DEA provides better worst-case control
in this case.

1. Detrending: A simple linear model predicts Y from X , providing an estimate of the climate-forced response, Ŷforced,
and the dynamical component as Ŷinternal = Y − Ŷforced.

2. Dynamical Adjustment (Sippel et al., 2019): A model is trained using both X (GMT) and Z (SLP). Predictions are
made by setting Z to zero, isolating the dynamical component.

We compute trends for the dynamical components (Yinternal, Ŷinternal, Yforced, and Ŷforced) over 20-year periods. The performance
of the methods is evaluated using the following metrics:

• 20-year trends MSEs: MSEs for the trends of the three methods are shown in Fig. 12 (a) for forced trends and (b) for
internal variability trends. The boxplots display the MSE distributions across different simulation members.

• 20-year trends maps (internal variability): Internal variability trends are compared spatially in Fig. 13 for DEA and
Fig. 14 for Detrending to better understand model biases.

• 20-year trends time series (forced response): Forced response trends are compared over time, with time series for
DEA and Detrending plotted for randomly selected locations in Fig. 15.

We train the algorithms (DEA, Detrending, Dynamical Adjustment), extract latent structures Ŷforced = w⊤Y , and compare
the trends of the last 20 years of Ŷforced and Yforced. Figure 12 shows that DEA performs similarly to Detrending but
outperforms Dynamical Adjustment.

A qualitative evaluation of the trend maps generated by DEA (Figure 13) shows that the algorithm captures the warming
and cooling patterns. However, both DEA and Detrending tend to underestimate trends in polar regions where temperature
trends are generally stronger.

Figure 15 shows that both Detrending and DEA effectively capture the forced response trends. However, in regions where
the forced response exhibits high variability (e.g., at d = 30 or d = 493, typically located in polar regions), both methods
struggle to fully capture this variability. This may be due to the smoothing of GMT in the external forcing, but this
observation warrants further investigation, as these regions of high variability may also reflect model artefacts. Further
exploration of these phenomena is needed.



Figure 13: Trends of the reconstructed internal climate variability using the DEA algorithm. The algorithm captures general
warming and cooling patterns but underestimates trends in the North Pole and overestimates them in Western America.



Figure 14: Trends of the reconstructed internal climate variability using the Detrending algorithm. The algorithm captures
general warming and cooling patterns but underestimates trends in the poles and overestimates trends in Western America
and Indonesia.



Figure 15: Comparison of original observations Y and the reconstructed climate-forced response Ŷforced at 16 randomly
selected locations for both DEA and Detrending.
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