

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON THE DIMINISHING RELIABILITY OF REFERENCE-FREE MEMORIZATION DETECTION IN MODERN DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion models have been observed to memorize and regurgitate portions of their training data, which raises potential copyright and privacy concerns. To quantify and mitigate this phenomenon, various reference-free metrics that operate without training data access have become an effective tool for detecting memorization in text-to-image systems. As diffusion models expand beyond the familiar text-to-image paradigm to encompass multi-modal and multi-stage training for 3D and video synthesis, the reliability of existing detection methods in these novel domains remains unclear. In this work, (1) We find that metric efficacy declines when applied to models that are fine-tuned in multiple stages from a text-to-image base to support additional modalities, where more varied training protocols may obscure memorization signals from existing detection techniques. (2) We demonstrate that these metrics have limited reliability in distinguishing between successful and failed memorization mitigation attempts, risking false judgments in model sanitization efforts. (3) We trace this performance degradation to violations of assumptions underlying current detection frameworks and conduct factorized analysis. Our findings call for caution when applying existing memorization detection metrics beyond text-to-image models and point toward the need for more robust evaluation methods tailored to a wider range of emerging diffusion models with diverse training protocols.

1 INTRODUCTION

The remarkable success of diffusion models in generating high-quality images has been accompanied by growing concerns about their ability to unintentionally reproduce memorized training data (Carlini et al., 2023; Somepalli et al., 2023a; 2024). This could lead to the reproduction of copyrighted content, the leakage of sensitive information, and privacy violations of users who have contributed to the training data. These risks have motivated extensive research into memorization detection methods, with *reference-free* approaches attracting particular interest for their practicality, as they can operate without access to training data. Among these, methods leveraging the discrepancy between conditional and unconditional denoising trajectories of classifier-free guidance (CFG) (Ho & Salimans, 2022) have been embraced for their low computational cost and impressive efficacy (Wen et al., 2023; Jeon et al., 2024; Chen et al., 2025a; Ma et al., 2025).

Diffusion models have rapidly evolved beyond the standard text-to-image (T2I) applications for which these detection methods were developed and validated. More recent systems increasingly employ complex designs, including multi-stage training procedures (Shi et al., 2023; Yang et al., 2025), multi-modal loss objectives (Wang et al., 2023a), domain-specific regularization (Lin et al., 2025), and alternative parameterizations or schedulers (Karras et al., 2022). These methodological advances underpin diverse applications: video generation models use joint training on image and video data (Yan et al., 2024; Wang et al., 2023a), 3D-aware models incorporate geometric constraints or spatial priors (Kant et al., 2024; Li et al., 2023a), and safety-critical applications often demand post-hoc concept removal through unlearning (Gandikota et al., 2023; Kumari et al., 2023). Despite the transformation in the diffusion models research landscape, the evaluation of the effectiveness of memorization detection procedures is still largely focused on vanilla text-to-image models. It is

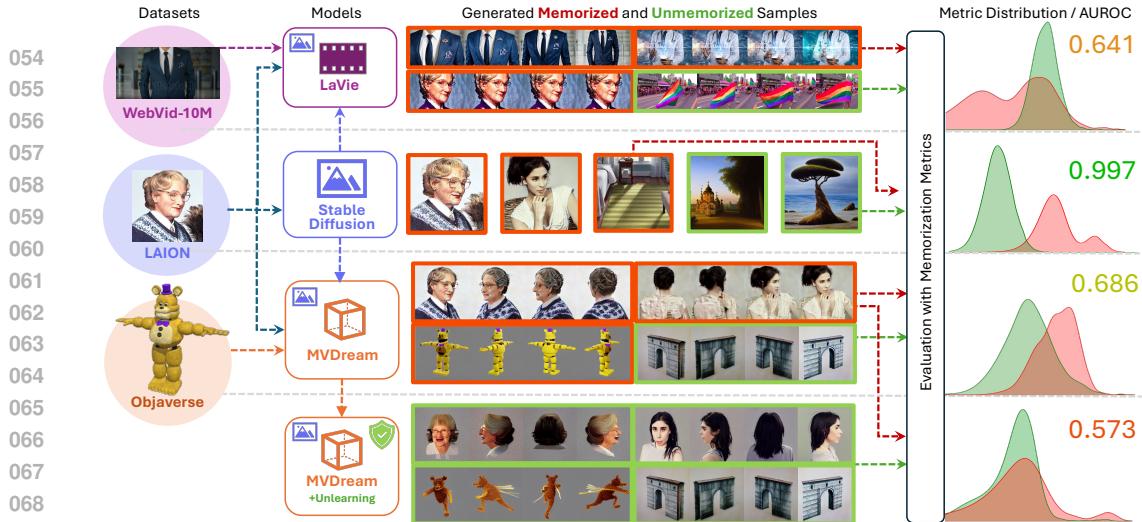


Figure 1: Memorization detection becomes more challenging in diffusion models with more varied training protocols. Detection metrics that work well on **Stable Diffusion** show decreased performance on its downstream models (i.e. weight initialization) like **LaVie**, **MVDream**, and models modified through unlearning techniques. This is reflected by the increased overlap between the distribution of the values of the metric used to distinguish **memorized** (red) and **unmemorized** (green) samples and thus, reduced detection AUROC scores.

therefore unclear whether these procedures remain effective across this wider variety of diffusion models, or if additional research efforts are required to produce more general detection procedures.

In this work, we systematically evaluate reference-free memorization detection methods across modern multi-modal diffusion models to address this critical gap. We demonstrate that complex training protocols can obscure memorization signals, potentially undermining the reliability of existing detection techniques. Our contributions are as follows:

1. **Widening metric efficacy evaluation.** We observe systematically reduced memorization detection efficacy across multi-modal DMs (Sec. 3.2), suggesting that complex training may blur memorization signals and affect detection reliability across different domains and training stages.
2. **Identifying unlearning evaluation challenges.** We find these metrics exhibit reduced reliability when distinguishing successful and failed sample removal attempts (Sec. 3.3), thus compromising the assessment of model sanitization efforts.
3. **Factorized analysis.** We link specific design choices of models’ training protocols to potential violations of assumptions underlying existing memorization metrics (Sec. 4.4). Through measurements (Sec. 4.3) and controlled experiments (Sec. 5), we demonstrate how certain design choices common among modern multi-stage DMs could affect metric efficacy in predictable ways.

Our work reveals training complexity as a fundamental challenge for memorization detection. We conclude with recommendations for developing training-aware detection strategies and highlight the urgent need for robust verification methods in safety-critical applications.

2 RELATED WORK

2.1 DETECTING MEMORIZATION IN DIFFUSION MODELS.

Memorization phenomena in diffusion models have been extensively studied through extraction attacks (Carlini et al., 2023; Somepalli et al., 2023a), which directly reproduce training samples, and membership inference attacks (Wu et al., 2022; Hu & Pang, 2023; Pang et al., 2023), which reveal whether a given example was part of the training set. These findings confirm that text-to-image (T2I) diffusion models, and, specifically, Stable Diffusion (SD) (Rombach et al., 2022) variants can expose training content and thus pose copyright and privacy risks. Although prior work has begun exploring memorization in other modalities such as medical imaging (Rahman et al., 2024; Dar et al., 2023; 2024b; 2025; 2024a) and video synthesis (Chen et al., 2024b), systematic evaluation across the increasingly prevalent multi-stage, multi-modal training pipelines of modern DMs remains limited.

108 Among the various memorization detection strategies, reference-free approaches (Ren et al., 2024;
 109 Carlini et al., 2023; Hintersdorf et al., 2024; Ma et al., 2025; Brokman et al., 2025) are espe-
 110 cially attractive because they do not require access to the original training data. In particular, CFG
 111 discrepancy-based methods (Wen et al., 2023; Jeon et al., 2024; Chen et al., 2025a), those that com-
 112 pare conditional and unconditional generation trajectories, have shown strong performance for T2I
 113 models. In Sec.3.2, we extend the evaluation of this class of metrics beyond the popular image
 114 domain, providing a more systematic assessment of their effectiveness on multi-modal DMs trained
 115 through multiple stages.

116

117 2.2 MITIGATING MEMORIZATION IN DIFFUSION MODELS.

118

119 In response to growing concerns related to the impact of training data extraction, interventions to
 120 mitigate memorization risks have been developed across various stages of the model development
 121 lifecycle. These approaches can be broadly categorized into pre-emptive and post-hoc strategies.

122 **Pre-emptive Mitigation.** Data-centric approaches that aim to limit the presence of replicated sam-
 123 ples to reduce the likelihood of extraction, including semantic deduplication (Abbas et al., 2023) and
 124 curation of datasets complying with copyright law (Gokaslan et al., 2023). Training-time strategies
 125 include compositionally isolated training (Golatkar et al., 2023), despecification guidance (Chen
 126 et al., 2024a), and replication-aware architectures (Li et al., 2024b).

127 **Post-Training Mitigation.** Post-training approaches offer practical advantages: they apply to de-
 128 ployed models, require no training data access, and enable targeted content removal without retrain-
 129 ing. These methods include concept ablation (Kumari et al., 2023), gradient-based erasure (Zhang
 130 et al., 2023; Wu et al., 2024a), scalable batch removal (Fan et al., 2023; Lu et al., 2024), attention
 131 reweighting (Ren et al., 2024), token masking (Chen et al., 2025a), neuron suppression (Hintersdorf
 132 et al., 2024), and guided sampling (Dong et al., 2023).

133 Given their utility for model sanitization, ease of adoption, and flexibility, post-training methods rep-
 134 resent powerful tools for ensuring model safety. However, realizing this potential requires accurate
 135 evaluation to confirm that memorized content has actually been removed. This challenge motivates
 136 our experiments in Sec. 3.3, which evaluate whether reference-free metrics can reliably assess the
 137 effectiveness of memorization mitigation techniques.

138

139 3 EVALUATION

140

141 To complement prior work in Sec. 2.2, which has largely focused on T2I models and to address the
 142 open question of whether those findings generalize to a wider range of diffusion models with more
 143 diverse training protocols, we conduct a two-part evaluation: (1) In Sec. 3.2, we assess the per-
 144 formance of five prominent reference-free memorization metrics across three naturally multi-stage
 145 trained 3D and video diffusion models that deviate from the standard T2I LDM paradigm. (2) In
 146 Sec. 3.3, we evaluate the capability of these metrics to reliably evaluate twelve post-training memo-
 147 rization mitigation techniques reviewed in Sec. 2.2 and Apx. B.3.

148

149 We begin by describing how we collected sets of high-risk training samples that are likely to be
 150 memorized across three datasets in Sec. 3.1.1 (further details in Apx. A.2), and by briefly reviewing
 151 three families of reference-free memorization metrics (further details in Apx. B.2).

152

153 3.1 PRELIMINARIES: DATA AND METRICS

154

155 3.1.1 HIGH-RISK TRAINING SAMPLE COLLECTION.

156

157 We consider two types of memorization described by Webster et al. (2023) and widely adopted in
 158 the memorization literature (Wen et al., 2023; Jeon et al., 2024). *Verbatim Memorization* refers to
 159 the model reproducing training samples with minimal or no variation, often at the pixel level or
 160 under only trivial transformations such as resizing or compression. *Template Memorization* refers
 161 to the model reproducing a structural or compositional layout from the training data while varying
 162 superficial local details such as textures, colors, or minor object attributes. In our setting, for video
 163 and 3D DMs, the distinction between these categories becomes blurred: in WebVid10M (Bain et al.,
 164 2021), large numbers of stock videos share the same motion or scene template with only small

162 differences, while in Objaverse (Deitke et al., 2023), identical mesh geometries are frequently paired
 163 with different textures. Given this prevalence of ambiguous cases, we treat both forms jointly.
 164

165 For **LAION**, we use the established benchmark from Webster (2023), consisting of 500 prompts
 166 known to elicit memorized images and 500 non-memorizing prompts, though we relabel samples
 167 since only a subset of memorization can be retained and transferred to downstream models. For
 168 newly acquired memorization from domain-specific fine-tuning on **Objaverse** and **WebVid-10M**,
 169 we establish a reproducible pipeline to identify samples with many **near-duplicates** in language
 170 and/or visual modalities, making them prone to memorization. For each high-risk prompt identified,
 171 we perform inference across four random seeds. The resulting generated outputs then go through a
 172 semi-automated labelling process to establish a reliable ground truth for evaluation. The complete
 173 pipeline for both high-risk sample collection and labelling is detailed in Appendix A.2.
 174

3.1.2 REFERENCE-FREE MEMORIZATION METRICS.

175 We evaluate the AUROC of nine metrics spanning three categories, each exploiting different signals
 176 that distinguish memorized samples from their non-memorized counterparts. Complete definitions
 177 and implementation details are provided in Appendix B.2.
 178

179 We begin with **score-based** metrics for memorization detection. These methods explicitly or im-
 180 plicitly measure the sharpness, curvature, or shape of the learned probability landscape to detect
 181 memorization. In particular, the first four metrics in this group share a common mechanism: they
 182 quantify the discrepancy between conditional and unconditional diffusion trajectories, positing that
 183 memorized samples exhibit stronger prompt dominance over noise influence. The latter two metrics
 184 assess the intrinsic properties of the sample’s location on the manifold without relying on an un-
 185 conditional baseline, yet remain closely related as they probe the same underlying geometric structure.
 186

- 187 • **Noise Difference Norm (NDN)** (Wen et al., 2023): measures the magnitude of difference between
 188 conditional and unconditional noise predictions $D = \frac{1}{T} \sum_{t=1}^T \|\epsilon_\theta(x_t, t, e_p) - \epsilon_\theta(x_t, t, e_\emptyset)\|_2$, where
 189 x_t is the noisy latent at timestep t , e_p is the conditional text embedding for prompt p , and e_\emptyset is the
 190 unconditional (empty) text embedding.
- 191 • **Hessian Eigenvalue Difference (HED)** (Jeon et al., 2024): approximates differences in Hessian
 192 eigenvalue magnitudes between conditional and unconditional score functions using directional fi-
 193 nite differences. Large magnitude differences indicate regions where conditioning creates sharp,
 194 localized probability peaks, which are characteristic of memorized content. We measure them at
 195 three DDIM timesteps ($t_{\text{DDIM}} \in \{50, 20, 1\}$).
- 196 • **Bright Ending (BE)** (Chen et al., 2025a): a spatially-aware variant of NDN that uses cross-
 197 attention weights to the final prompt token as a localization mask, computing the attention-weighted
 198 noise difference norm to identify regions where memorization may be occurring.
- 199 • **SSIM of Noise Differences** (Hintersdorf et al., 2024): computes the Structural Similarity Index
 200 (SSIM) Wang et al. (2004) between noise differences across random seeds, where higher SSIM
 201 values indicate more consistent denoising trajectories and hence, stronger memorization.
- 202 • **InvMM** (Ma et al., 2025): measures memorization by inverting a sensitive latent noise distribution
 203 that can replicate the target image, quantified as the minimum KL divergence between this inverted
 204 distribution and the standard Gaussian prior. While distinct from score-based, it is fundamentally
 205 coupled to the score function’s geometry.
- 206 • **pLaplace** (Brokman et al., 2025): employs the p -Laplacian operator to measure the intrinsic cur-
 207 vature of the learned probability landscape, similarly to HED (Jeon et al., 2024).

208 We next evaluate **diversity-based** metrics, which measure the semantic or visual consistency across
 209 multiple generations from the same prompt, where low diversity indicates memorization:
 210

- 211 • **Median SSCD** (Hintersdorf et al., 2024): computes median cosine similarity between SSCD em-
 212 beddings across multiple generations from the same prompt.
- 213 • **Tiled ℓ_2 (TL2)** (Carlini et al., 2023): evaluates minimum pairwise distance between tiled image
 214 patches across different seeds.
- 215 • **SSIM of Noise Differences** (Hintersdorf et al., 2024) also falls into this category.

Finally, we include **attention-based** metrics that analyse how memorization impact cross-attention pattern characteristics:

- **Cross-Attention Entropy (CAE)** (Ren et al., 2024): quantifies the dispersion of cross-attention weights to identify memorization with two variants: (i) *Global CAE-D* and (ii) *Layer-wise CAE-E*. This metric builds on the observation that memorized samples maintain concentrated attention on trigger tokens while while non-memorization progressively shifts attention towards the beginning token, serving as a robust indicator of memorization.
- **Bright Ending (BE)** (Chen et al., 2025a) can also be considered a member of this category.

3.2 METRIC EFFICACY ON NATURALLY TRAINED MODELS

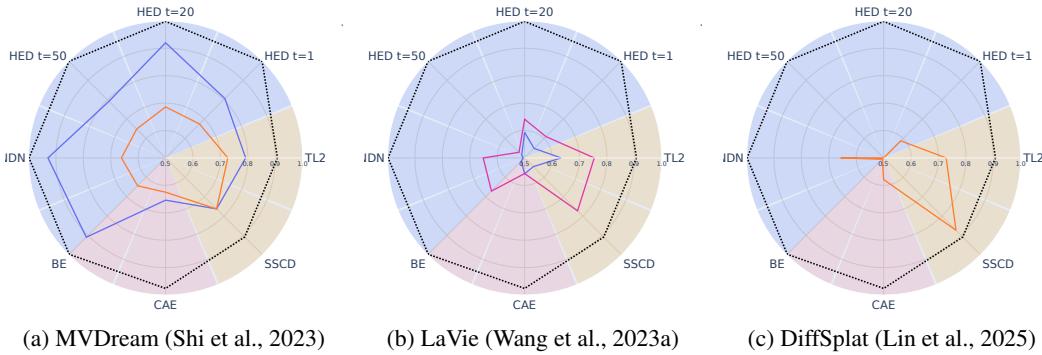


Figure 2: Metric AUROC on naturally trained multi-stage DMs. Each radial axis corresponds to a memorization metric defined in Appendix B.2. Higher values (larger radii) indicate better separation between memorized and non-memorized samples. Solid coloured lines indicate AUROC on **LAION**, **Objaverse** and **WebVid-10M**, which exhibit notable degradation compared to the SD 1.4 baseline (dotted grey lines).

Setup. In our first set of experiments, we evaluate the efficacy of reference-free metrics across three diffusion models: MVDream (Shi et al., 2023), LaVie (Wang et al., 2023a), and DiffSplat (Lin et al., 2025). All three have a SD backbone, meaning they may inherit memorized samples from the original LAION training data, while also potentially acquiring new memorized samples from their respective domain-specific fine-tuning datasets. Their training protocols involve multi-stage learning, joint-modality training, or domain-specific regularizations (more details in Appendix A.1.1).

Results. Fig. 2 shows consistent metric AUROC degradation across all three models compared to the standard text-to-image (SD 1.4) baseline (gray dotted line). Most metrics exhibit substantially reduced ability to distinguish memorized from non-memorized content, suggesting that complex training protocols can systematically obscure the signals these metrics rely on. For models with significant memorization from both pre-training and fine-tuning stages (MVDream and LaVie), metric performance varies inconsistently across the two data sources. This suggests that memorization signals may differ depending on when and how the content was learned during training. In contrast, DiffSplat shows no significant transferred memorization from the LAION pre-training stage. Two factors likely contribute to this observation: (1) the modality gap between images and native 3D Gaussian Splats is substantially larger than that between images and multi-view images or multi-frame videos, and (2) strong domain-specific regularization is applied during fine-tuning. This suggests that fine-tuning with task-specific regularizers that diverge from the original training objective may unintentionally mitigate inherited memorization.

3.3 METRIC EFFICACY FOR MITIGATION EVALUATION.

Setup. An important application for these metrics is the evaluation of memorization mitigation strategies, where a metric is required to reliably confirm whether a sample has been successfully erased from a model. We test this capability by applying twelve different post-hoc memorization mitigation methods (see Table 6 for a summary and Appendix B.3 for a brief review) to MVDream (Shi et al., 2023), on both **inherit memorized samples from LAION** and **newly acquired memorized samples from Objaverse**. We then use the same set of metrics to assess the outcome and

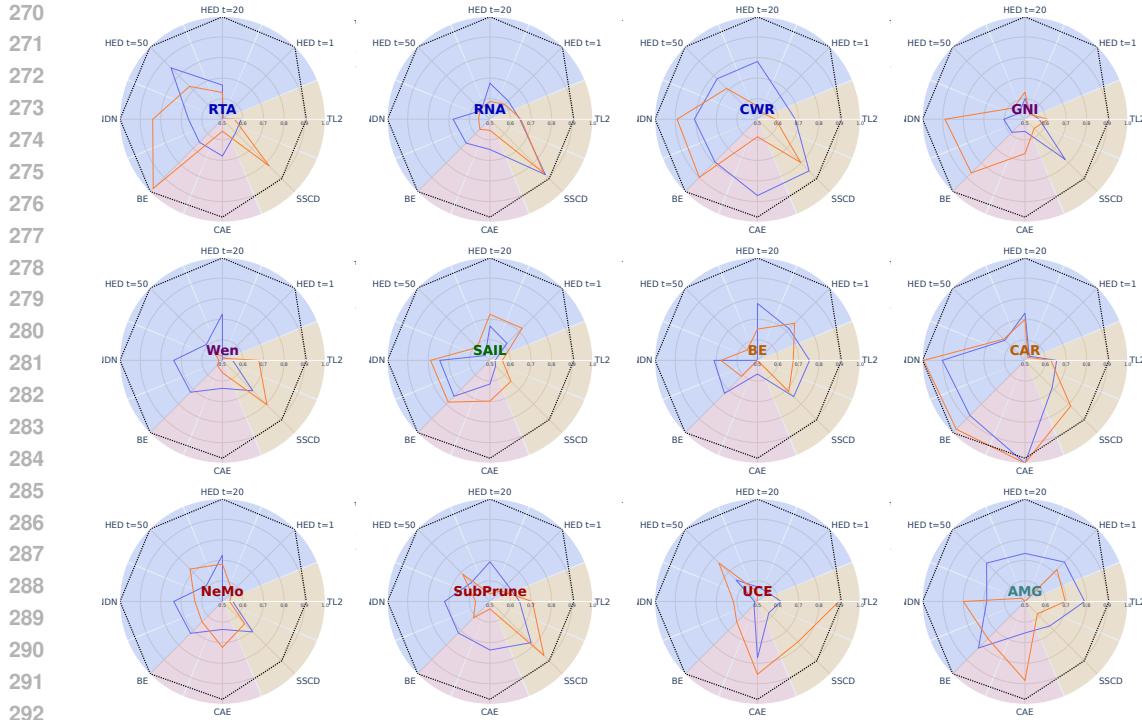


Figure 3: Metric AUROC for memorization mitigation evaluation. Each radial plot corresponds to a different mitigation method in Table 6, where font colours indicate method categorization. Memorization metrics are marked around the periphery. Coloured lines indicate [inherited memorized samples from LAION pre-training](#) and [newly acquired memorized samples from Objaverse](#) with the gray dotted circle marking the SD 1.4 baseline performance. Higher values indicate stronger ability to distinguish between classes. The widespread shrinkage from baseline shows that most metrics cannot reliably evaluate memorization removal.

plot their AUROC, assessing their capability of differentiating successfully unlearned concepts from original memorized samples and unsuccessful attempts where memorization persists.

Results. As shown in Figure 3, the results reveal concerning limitations in the evaluation of memorization mitigation methods: reference-free metrics often fail to reliably distinguish between successful and unsuccessful concept removal attempts. In many cases, their discriminative ability is even worse than on naturally trained models, suggesting that certain mitigation methods may further obscure detection signals. A few exceptions occur in “white-box” settings, where the metric itself (typically via attention manipulation) is explicitly targeted as part of the mitigation objective. These findings have important implications, as unreliable evaluation can lead to false judgments about a model’s memorization behaviours and the efficacy of sanitization efforts.

4 DISCUSSIONS

The previous sections demonstrate that the efficacy of reference-free memorization metrics declines on models with varied training protocols. To provide a principled explanation for this phenomenon, we leverage the geometric frameworks pioneered by Jeon et al. (2024); Kamkari et al. (2024); Ross et al. (2025); Buchanan et al. (2025). Our analysis examines how novel training designs cause models to diverge from the framework’s core assumptions, in turn explaining the observed drop in detection accuracy. For the remainder of largely empirical metrics not covered by this framework, we provide a speculative discussion in Appendix B.2.

Our analysis proceeds as follows: in Sec. 4.1, we review the geometric framework by Jeon et al. (2024) and identify its key theoretical assumptions in Sec. 4.2. We then empirically measure the degree to which these assumptions are met on production-scale models in Sec. 4.3. Finally, in Sec. 4.4, we connect the observed violations to specific training design choices.

324 4.1 GEOMETRIC FRAMEWORK FOR MEMORIZATION
325

326 We briefly revise the framework developed by Jeon et al. (2024), which identifies geometric prop-
327 erties of the model’s learned probability landscape as a prominent memorization indicators. Let
328 $D_t^2 = \|\epsilon_\theta(x_t, e_p) - \epsilon_\theta(x_t, e_\emptyset)\|_2^2$ denote NDN at timestep t , where $\epsilon_\theta(x_t, e_p)$ and $\epsilon_\theta(x_t, e_\emptyset)$ are the
329 conditional and unconditional noise predictions for a noisy latent x_t corrupted with noise ϵ_t .

330 From a geometric perspective, these noise predictions correspond to *score functions*. Here $p_t(\cdot|c)$
331 and $p_t(\cdot)$ denote the conditional and unconditional distributions of x_t at timestep t .
332

$$333 s_\theta(x_t, e_p) = -\frac{\epsilon_\theta(x_t, e_p)}{\sqrt{1 - \bar{\alpha}_t}} = \nabla_{x_t} \log p_t(x_t|c); \quad s_\theta(x_t, e_\emptyset) = -\frac{\epsilon_\theta(x_t, e_\emptyset)}{\sqrt{1 - \bar{\alpha}_t}} = \nabla_{x_t} \log p_t(x_t). \quad (1)$$

335 Their Hessians capture local curvature:
336

$$337 H_c(x_t) = \nabla_{x_t}^2 \log p_t(x_t|c); \quad H_u(x_t) = \nabla_{x_t}^2 \log p_t(x_t). \quad (2)$$

338 We also define the *local covariance matrices* of the conditional and unconditional distributions at
339 timestep t as
340

$$341 \Sigma_{t,c} = \text{Cov}_{p_t(\cdot|c)}[x_t], \quad \mu_c = \mathbb{E}_{p_t(\cdot|c)}[x_t]; \quad \Sigma_t = \text{Cov}_{p_t(\cdot)}[x_t], \quad \mu = \mathbb{E}_{p_t(\cdot)}[x_t]. \quad (3)$$

342 where μ_c and μ are the corresponding means.
343

Memorization as Geometric Sharpness. Jeon et al. (2024) theorize that memorized samples cor-
344 respond to sharp, isolated peaks in the probability landscape, characterized by: (i) large negative
345 eigenvalues ($\lambda_{\text{mem}} \ll \lambda_{\text{unmem}} < 0$), (ii) high curvature concentration ($\text{tr}(H_c^2) \gg \text{tr}(H_u^2)$), and (iii)
346 separable eigenvalue distributions between memorized and unmemorized samples.
347

Unifying Sharpness, NDN and BE Metrics. The squared score difference can be expressed as:
348

$$349 350 \mathbb{E}[D_t^2] = \mathbb{E}[\|s_\theta(x_t, e_p) - s_\theta(x_t, e_\emptyset)\|^2] \propto \mathbb{E}[\text{tr}((H_c - H_u)^2)] \approx \sum_{i=1}^d \frac{(\lambda_{i,c} - \lambda_{i,u})^2}{\lambda_{i,c}} \quad (4)$$

352 which, under a local Gaussian approximation, reduces to the normalized differences of eigenval-
353 ues where $\lambda_{i,c}$ and $\lambda_{i,u}$ are eigenvalues of H_c and H_u , and d stands for the dimensionality of the
354 latent space. Since ϵ_θ and s_θ are linearly related, NDN (Wen et al., 2023) and localized variants
355 like BE (Chen et al., 2025a) similarly reflect the underlying differential curvature as Hessian-based
356 sharpness metrics proposed by Jeon et al. (2024).
357

358 4.2 CORE ASSUMPTIONS FOR RELIABLE DETECTION
359

360 The geometric framework described in Sec. 4.1 (and by extension, the CFG-based metrics built upon
361 it) relies on a set of specific structural assumptions about the model’s learned probability landscape.
362 When modern diffusion model training deviates from these conditions, the framework may lose its
363 explanatory power, undermining the reliability of memorization detection methods built upon it.
364 Table 1 summarizes these key assumptions, which we test empirically in the following sections. We
365 further discuss how these assumptions support the framework of Jeon et al. (2024) in Apx. ??.
366

Table 1: Core assumptions underlying CFG discrepancy-based memorization detection methods.

Assumption	Formulation	Interpretation
(A1) Unbiased Score Estimation	$\mathbb{E}[s_\theta(x_t, c) - \nabla_{x_t} \log p_t(x_t c)] = 0$	Score functions accurately reflect probability gradients
(A2) Gaussian Local Structure	$\mathbb{E}[\ s_\theta(x_t, c)\ ^2] = -\text{tr}(H_c(x_t))$	Local probability distributions approximate Gaussian
(A3) Sharpness Persistence	$\{\lambda_i\}_{T-1}$ patterns correlate with later timesteps	Memorization signals persist through reverse process
(A4) Covariance Commutativity	$\Sigma_t \Sigma_{t,c} = \Sigma_{t,c} \Sigma_t$ and $\mu = \mu_c$	Cond and uncond covariances have aligned eigenspaces
(A5) Mean-Field Gaussian Prior	$x_T \sim \mathcal{N}(0, I)$	Unstructured, isotropic starting point for generation
(A6) Boundary Regularity	$\lim_{\ x\ \rightarrow \infty} p(x)s(x) = 0$; $\mathbb{E}[\ s(x)\ ^2] < \infty$	Score func vanish at infinity with finite second moments

374 4.3 EMPIRICAL VALIDATION VIA ASSUMPTION DIAGNOSTIC MEASUREMENTS
375

376 Having established the core assumptions of the geometric framework in Sec. 4.2, we now empirically
377 investigate whether they hold in practice for the models evaluated in Sec. 3. By measuring the
degree to which each model satisfies these assumptions, we can explore the relationship between

assumption compliance and the observed efficacy of memorization detection metrics. We apply diagnostic measurements (Table 2) to all models evaluated in Section 3 and report results in Table 3. Detailed definitions and implementation notes for each diagnostic are provided in Appendix C.2.

Table 2: Core geometric assumptions and their corresponding measurable proxies. The rightmost column indicates whether higher (\uparrow) or lower (\downarrow) values reflect stronger adherence to the assumption.

Assumption	Diagnostic Measurements	Method	Δ
(A1) Unbiased Score Estimation	Score Matching Consistency	$(1 + \nabla \cdot s + 0.5 s ^2 / s)^{-1}$ with Hutchinson's estimator.	\uparrow
(A2) Gaussian Local Structure	Score-Curvature Pearson Corr.	Pearson's r between $\ s_\theta(x_t, c)\ ^2$ and $-\text{tr}(H_c(x_t))$.	\uparrow
(A3) Sharpness Persistence	Temporal Autocorrelation	Temporal autocorrelation of Hessian magnitudes across timesteps.	\uparrow
(A4) Covariance Commutativity	Eigenspace Alignment	Mean singular value of the inner product of $\mathbf{V}_c^T \mathbf{V}_u$.	\uparrow
(A5) Mean-Field Gaussian Prior	Gaussian Prior p -value	Kolmogorov-Smirnov test of initial latents against $\mathcal{N}(0, I)$.	\uparrow
(A6) Boundary Regularity	Score Explosion Indicator	Ratio of max to mean noise prediction magnitude.	\downarrow

Table 3: Assumption diagnostic measurements across diffusion models. Each row evaluates how well an assumption (A1)-(A6) is satisfied using its corresponding diagnostic measurement. Columns represent different models. The final row shows HED AUROC scores. Green shading indicates better assumption adherence.

Assumption	SD 1.4	LaVie	SD 1.5	MVDream	DiffSplat
(A1) Unbiased Score Estimation	0.496 ± 0.004	0.319 ± 0.044	0.497 ± 0.004	0.411 ± 0.007	0.447 ± 0.007
(A2) Gaussian Local Structure	0.940 ± 0.037	0.748 ± 0.017	0.940 ± 0.037	0.403 ± 0.017	-0.820 ± 0.128
(A3) Sharpness Persistence	0.374 ± 0.055	0.120 ± 0.015	0.374 ± 0.055	0.240 ± 0.0403	0.339 ± 0.108
(A4) Covariance Commutativity	0.819 ± 0.028	0.626 ± 0.054	0.816 ± 0.033	0.763 ± 0.050	0.436 ± 0.014
(A5) Mean-Field Gaussian Prior	0.812 ± 0.215	0.800 ± 0.263	0.812 ± 0.215	0.796 ± 0.247	0.774 ± 0.183
(A6) Boundary Regularity	0.011 ± 0.003	0.025 ± 0.002	0.012 ± 0.002	0.006 ± 0.002	0.002 ± 0.001
HED AUROC	0.998	0.641	0.997	0.686	0.588

Table 3 presents the diagnostic measurements (mean \pm standard deviation) for each assumption (rows) across the different models (columns). The final row reports HED metric AUROC scores, enabling a direct comparison between the degree of assumption satisfaction and detection efficacy. For the baseline SD model variants, the diagnostics show generally good adherence to the theoretical assumptions. This provides evidence for the validity of the geometric framework on standard text-to-image models. In contrast, models with more varied training protocols exhibit more noticeable deviations. LaVie, for instance, shows systematically weaker adherence to assumptions (A1)-(A4), and this degradation is associated with a substantial drop in its AUROC score. MVDream shows a similar, though less pronounced, pattern of assumption violation and performance decline. This suggests that the training procedures used for these multi-modal models may alter the underlying geometry of the probability landscape in ways that violate the framework's prerequisite conditions.

4.4 POTENTIAL IMPACT OF DESIGN CHOICES ON METRIC EFFICACY

Building on the finding that varied training protocols correlate with assumption violations and reduced detection performance, we conduct a factorized analysis. We identify four common design choices in modern diffusion models and map them to the potential deviations from the core assumptions outlined in Table 1. Each design choice, while advancing generative capabilities, can inadvertently violate the assumptions that CFG discrepancy-based metrics rely upon.

Table 4: A non-exhaustive mapping between design choices (columns) and potential assumption violations (rows). Each \times indicates that at least one implementation of a design choice can violate the assumption.

Assumption	(D1) Non-Standard Objectives	(D2) Multi-Stage Distribution Shift	(D3) Non-Monotonic Schedulers	(D4) Structured or Biased Priors
(A1) Unbiased Score Estimation	\times			\times
(A2) Gaussian Local Structure	\times	\times	\times	\times
(A3) Sharpness Persistence		\times	\times	
(A4) Covariance Commutativity		\times	\times	\times
(A5) Mean-Field Gaussian Prior				\times
(A6) Boundary Regularity		Generally not violated by reasonably trained and converged model.		

(D1) Non-Standard Objectives. Adding auxiliary losses, such as the geometric regularizers of DiffSplat (Lin et al., 2025), forces the model to optimize beyond pure score matching. As the model

432 is no longer estimating solely the data log-probability, score estimates may become biased (A1).
 433 This can also distort local geometry (A2) by imposing structures not implied by the data likelihood.
 434

435 **(D2) Multi-Stage Distribution Shift.** Fine-tuning a model on a new domain (e.g., images \rightarrow videos
 436 for LaVie Wang et al. (2023a) and images \rightarrow 3D for MVDream Shi et al. (2023)) alters the inherited
 437 probability landscape in ways that need not be uniform. Such shifts can weaken local Gaussianity
 438 (A2) and disturb the alignment of conditional and unconditional curvature directions, thereby af-
 439 fecting sharpness persistence (A3) and covariance eigenspace alignment (A4). These effects may
 440 depend on the extent and stage of the shift, suggesting that violations of geometric assumptions can
 441 emerge in complex and potentially non-monotonic patterns as a function of intervention strength.
 442

443 **(D3) Non-Monotonic Schedulers.** Novel schedulers (Karras et al., 2022) that induce non-
 444 monotonic noise levels can alter the trajectory of the reverse process. Such changes may destab-
 445 ilize memorization signals across timesteps, with possible effects on sharpness persistence (A3),
 446 eigenspace alignment (A4), and local Gaussian structure (A2).
 447

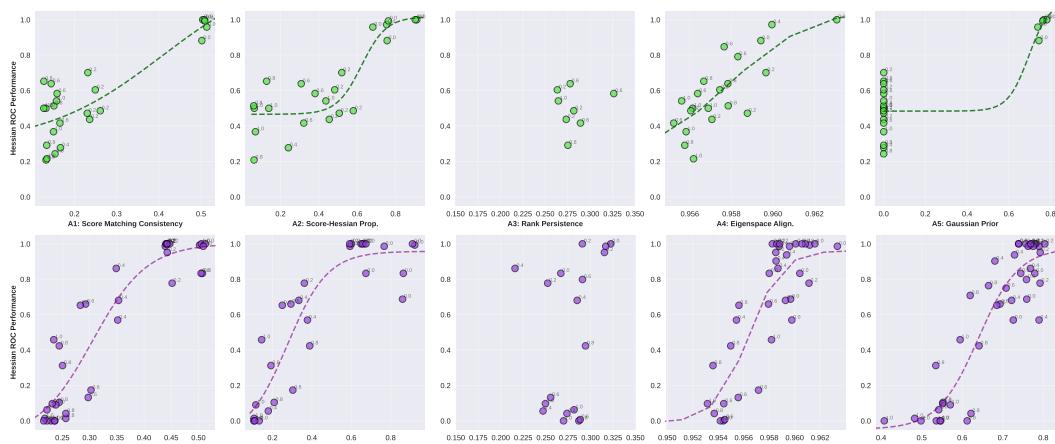
448 **(D4) Structured or Biased Priors.** Non-isotropic initializations directly violate (A5) but can also
 449 interact with other assumptions. Priors with *spatial structures* (e.g., 3D object-centricity (Kant
 450 et al., 2024; Li et al., 2023a)) or *frequency structures* (Rahaman et al., 2019)) may introduce distinct
 451 geometric fingerprints, the nature of which we examine in controlled settings (Fig. 4).
 452

453 5 CONTROLLED EXPERIMENTS

454 While the empirical analysis in Sections 3–4 demonstrates potential effects of complex training
 455 protocols on metric reliability, real models often incorporate multiple design choices simultaneously,
 456 making it difficult to isolate individual contributions. To better understand these effects, we conduct
 457 controlled experiments targeting the four design choices (D1)–(D4) identified in Section 4.4. We
 458 investigate (1) how each design choice affects model adherence to geometric assumptions, and (2)
 459 how assumption violations correlate with detection performance degradation.
 460

461 **Experimental Setup.** All experiments train diffusion models using CIFAR-10 (Krizhevsky et al.,
 462 2009) with identical UNet architectures. We create memorized samples by duplicating randomly
 463 selected images 100 times each with instance-specific prompts (“a high-resolution photograph of
 464 CIFAR image #ID”), alongside unmemorized images with generic class prompts (“a photograph of
 465 a CLASS”). This protocol follows established observations (Carlini et al., 2023; Somepalli et al.,
 466 2023a) that training data duplication and highly specific prompts promote memorization. Each
 467 configuration is repeated across 5 random seeds.
 468

469 **Evaluation Protocol.** For each model, we quantify adherence to geometric assumptions using proxy
 470 tests from Table 2 and metric efficacy using AUROC of the HED metric (Jeon et al., 2024), which
 471 directly embodies the geometric framework and shares similar trends as other CFG-based metrics.
 472



473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 Figure 4: Detection performance under interventions targeting (D4) structured prior. Top: spatial radial-decay
 priors. Bottom: frequency-biased priors. Each point represents a trained model, plotting Hessian metric AU-
 ROC (y-axis) against adherence to a specific geometric assumption (x-axis). Relationships between metric
 performance and assumption adherence mirror Table 4, Column (D4).

486 **Results and Analysis.** Our controlled experiments, which we focus here on Structured Priors (D4)
 487 for brevity (see Appendix D for D1-D3), reveal how specific design choices could degrade detection
 488 performance by violating a subset of assumptions. Both prior types exhibit similar high-level
 489 patterns of impact: they strongly affect adherence to (A1), (A2), and (A5), while having a compar-
 490 atively minimal impact on (A3). On the contrary, their (A4) behaviours diverge. The correlation
 491 between metric performance and A4 adherence is much stronger for frequency-biased priors than
 492 for spatial priors. **Spatial biases** (top row) cause a milder degradation in AUROC, with the worst-
 493 performing models still achieving scores above 0.2. In contrast, **frequency biases** (bottom row)
 494 induce a far more brittle and catastrophic collapse, with many models failing completely.

495 Beyond these (D4)-specific observations, the results also highlight two broader patterns shared
 496 across all interventions. First, the **assumptions are interdependent**, with a single design choice
 497 often causing a cascade of violations. Second, the relationships between adherence and perfor-
 498 mance are often strongly **non-linear** and exhibit a sharp threshold effect with a “step-function”-like
 499 relationship. These qualitative trends support our central hypothesis, though we note that inherent
 500 noise in our proxy measurements makes precise cross-intervention quantitative comparisons chal-
 501 lenging.

502 **6 CONCLUSIONS**

503

504 In this work, we have extended the evaluation of reference-free memorization detection methods to
 505 modern multi-modal diffusion models and find consistent degradation in their efficacy (Sec. 3.2) and
 506 that they cannot serve as reliable evaluation tools for memorization mitigation efforts (Sec. 3.3). To
 507 understand this phenomenon, we link metric degradation to violations of assumptions underlying
 508 existing detection frameworks (Sec. 4.4). We validate these insights through observational mea-
 509 surements (Sec. 4.3) on large-scale DMs as well as controlled experiments (Sec. 5), demonstrating
 510 how different training protocol modifications violate assumptions underlying theoretical efficacy
 511 guarantees and thus affect detection performance in predictable ways. Future work might explore
 512 training-aware detection strategies or develop alternative theoretical frameworks tailored for com-
 513 plex training regimes. Our work represents an initial step toward understanding how memorization
 514 detection scales to increasingly sophisticated generative models. We hope these insights contribute
 515 to ongoing efforts to develop reliable safety tools for emerging diffusion architectures.

516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES
541

542 Amro Kamal Mohamed Abbas, Kushal Tirumala, Daniel Simig, Surya Ganguli, and Ari S Mor-
543 cos. Semdedup: Data-efficient learning at web-scale through semantic deduplication. *ICLRW*,
544 2023.

545 Vishal Asnani, John Collomosse, Tu Bui, Xiaoming Liu, and Shruti Agarwal. Promark: Proactive
546 diffusion watermarking for causal attribution. In *Proceedings of the IEEE/CVF Conference on*
547 *Computer Vision and Pattern Recognition (CVPR)*, pp. 10802–10811, June 2024.

548 Max Bain, Arsha Nagrani, GÜl Varol, and Andrew Zisserman. Frozen in time: A joint video and
549 image encoder for end-to-end retrieval. In *Proceedings of the IEEE/CVF International Conference*
550 *on Computer Vision (ICCV)*, pp. 1728–1738, 2021.

552 Jonathan Brokman, Amit Giloni, Omer Hofman, Roman Vainshtein, Hisashi Kojima, and Guy
553 Gilboa. Identifying memorization of diffusion models through p-laplace analysis. In *International*
554 *Conference on Scale Space and Variational Methods in Computer Vision*, pp. 295–307. Springer,
555 2025.

556 Sam Buchanan, Druv Pai, Yi Ma, and Valentin De Bortoli. On the edge of memorization in
557 diffusion models, 2025. URL <https://arxiv.org/abs/2508.17689>.

559 Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramèr.
560 Membership inference attacks from first principles. *CoRR*, abs/2112.03570, 2021. URL <https://arxiv.org/abs/2112.03570>.

562 Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer,
563 Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models.
564 *USENIX*, 2023.

566 Stephen Casper, Zifan Guo, Shreya Mogulothu, Zachary Marinov, Chinmay Deshpande, Rui-
567 Jie Yew, Zheng Dai, and Dylan Hadfield-Menell. Measuring the success of diffusion models at
568 imitating human artists. *arXiv:2307.04028*, 2023.

569 Ruchika Chavhan, Ondřej Bohdal, Yongshuo Zong, Da Li, and Timothy Hospedales. Memorized
570 images in diffusion models share a subspace that can be located and deleted. *arXiv preprint*
571 *arXiv:2406.18566*, 2024.

573 Chen Chen, Daochang Liu, and Chang Xu. Towards memorization-free diffusion models. *CVPR*,
574 2024a.

575 Chen Chen, Enhuai Liu, Daochang Liu, Mubarak Shah, and Chang Xu. Investigating memo-
576 rization in video diffusion models, 2024b. URL <https://openreview.net/forum?id=RFZV2tOWYw>.

579 Chen Chen, Daochang Liu, Mubarak Shah, and Chang Xu. Exploring local memorization in dif-
580 fusion models via bright ending attention, 2025a. URL <https://arxiv.org/abs/2410.21665>.

582 Yunhao Chen, Shujie Wang, Difan Zou, and Xingjun Ma. Extracting training data from uncondi-
583 tional diffusion models, 2025b. URL <https://arxiv.org/abs/2410.02467>.

585 Yingqian Cui, Jie Ren, Yuping Lin, Han Xu, Pengfei He, Yue Xing, Wenqi Fan, Hui Liu, and
586 Jiliang Tang. Ft-shield: A watermark against unauthorized fine-tuning in text-to-image diffusion
587 models. *arXiv:2310.02401*, 2023.

588 Salman U Hassan Dar, Isabelle Ayx, Marie Kapusta, Theano Papavassiliu, Stefan O Schoenberg,
589 and Sandy Engelhardt. Effect of training epoch number on patient data memorization in uncon-
590 ditional latent diffusion models. *BVMW*, 2024a.

592 Salman U1 Hassan Dar, Arman Ghanaat, Jannik Kahmann, Isabelle Ayx, Theano Papavassiliu,
593 Stefan O Schoenberg, and Sandy Engelhardt. Investigating data memorization in 3d latent diffu-
594 sion models for medical image synthesis. *MICCAI*, 2023.

594 Salman Ul Hassan Dar, Marvin Seyfarth, Jannik Kahmann, Isabelle Ayx, Theano Papavassiliu,
 595 Stefan O Schoenberg, and Sandy Engelhardt. Unconditional latent diffusion models memorize
 596 patient imaging data. *arXiv:2402.01054*, 2024b.

597

598 Salman Ul Hassan Dar, Marvin Seyfarth, Isabelle Ayx, Theano Papavassiliu, Stefan O. Schoen-
 599 berg, Robert Malte Siepmann, Fabian Christopher Laqua, Jannik Kahmann, Norbert Frey, Bettina
 600 Baeßler, Sebastian Foersch, Daniel Truhn, Jakob Nikolas Kather, and Sandy Engelhardt. Uncon-
 601 ditional latent diffusion models memorize patient imaging data: Implications for openly sharing
 602 synthetic data, 2025. URL <https://arxiv.org/abs/2402.01054>.

603

604 Giannis Daras, Alexandros G Dimakis, and Constantinos Daskalakis. Consistent diffusion meets
 605 tweedie: Training exact ambient diffusion models with noisy data. *arXiv:2404.10177*, 2024.

606

607 Matt Deitke, Austin Stone, Song Han, Charles Herrmann, Alexander Ku, Daniel Morris, Eric
 608 VanderBilt, Eric VanderBilt, Zhen Wang, Yizhou Zhang, et al. Objaverse: A universe of anno-
 609 tated 3d objects. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 Recognition (CVPR)*, pp. 13142–13153, 2023.

610

611 Peiran Dong, Song Guo, Junxiao Wang, Bingjie Wang, Jiewei Zhang, and Ziming Liu. Towards
 612 test-time refusals via concept negation. *NeurIPS*, 2023.

613

614 Jan Dubiński, Antoni Kowalcuk, Stanisław Pawlak, Przemysław Rokita, Tomasz Trzciński, and
 615 Paweł Morawiecki. Towards more realistic membership inference attacks on large diffusion mod-
 616 els. *WACV*, 2024.

617

618 Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
 619 powering machine unlearning via gradient-based weight saliency in both image classification and
 620 generation. *ICLR*, 2023.

621

622 Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, and Tao Jiang. A probabilistic
 623 fluctuation based membership inference attack for diffusion models. *arXiv:2308.12143*, 2024.

624

625 Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts
 626 from diffusion models. *ICCV*, 2023.

627

628 Rohit Gandikota, Hadas Orgad, Yonatan Belinkov, Joanna Materzynska, and David Bau. Unified
 629 concept editing in diffusion models. *WACV*, 2024.

630

631 Kristian Georgiev, Joshua Vendrow, Hadi Salman, Sung Min Park, and Aleksander Madry. The
 632 journey, not the destination: How data guides diffusion models. *arXiv:2312.06205*, 2023.

633

634 Aaron Gokaslan, A. Feder Cooper, Jasmine Collins, Landan Seguin, Austin Jacobson, Mihir
 635 Patel, Jonathan Frankle, Cory Stephenson, and Volodymyr Kuleshov. Commoncanvas: An open
 636 diffusion model trained with creative-commons images. *NeurIPS*, 2023.

637

638 Aditya Golatkar, Alessandro Achille, Ashwin Swaminathan, and Stefano Soatto. Training data
 639 protection with compositional diffusion models. *arXiv:2308.01937*, 2023.

640

641 Xiangming Gu, Chao Du, Tianyu Pang, Chongxuan Li, Min Lin, and Ye Wang. On memorization
 642 in diffusion models. *arXiv:2310.02664*, 2023.

643

644 Dominik Hintersdorf, Lukas Struppek, Kristian Kersting, Adam Dziedzic, and Franziska
 645 Boenisch. Finding nemo: Localizing neurons responsible for memorization in diffusion mod-
 646 els. In *NeurIPS*, 2024.

647

648 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL <https://arxiv.org/abs/2207.12598>.

649

650 Seunghoo Hong, Juhun Lee, and Simon S Woo. All but one: Surgical concept erasing with model
 651 preservation in text-to-image diffusion models. *AAAI*, 2024.

652

653 Hailong Hu and Jun Pang. Loss and likelihood based membership inference of diffusion models.
 654 *ISC*, 2023.

648 Chao Huang, Susan Liang, Yunlong Tang, Li Ma, Yapeng Tian, and Chenliang Xu. Fresca:
 649 Unveiling the scaling space in diffusion models. *arXiv preprint arXiv:2504.02154*, 2025.
 650

651 Matthew Jagielski, Om Thakkar, Florian Tramer, Daphne Ippolito, Katherine Lee, Nicholas Car-
 652 lini, Eric Wallace, Shuang Song, Abhradeep Guha Thakurta, Nicolas Papernot, et al. Measuring
 653 forgetting of memorized training examples. *ICLR*, 2022.

654 Aryan Janolkar. Outliers memorized last: Trends in memorization of diffusion models based on
 655 training distribution and epoch. *OpenReview*, 2023.
 656

657 Dongjae Jeon, Dueun Kim, and Albert No. Understanding memorization in generative models
 658 via sharpness in probability landscapes. *arXiv preprint arXiv:2412.04140*, 2024.

659 Marco Jiralerpong, Joey Bose, Ian Gemp, Chongli Qin, Yoram Bachrach, and Gauthier Gidel.
 660 Feature likelihood score: Evaluating the generalization of generative models using samples.
 661 *NeurIPS*, 2023.

662 Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization in
 663 diffusion models arises from geometry-adaptive harmonic representation. *ICLR*, 2024.

664 Hamidreza Kamkari, Brendan Leigh Ross, Rasa Hosseinzadeh, Jesse C. Cresswell, and Gabriel
 665 Loaiza-Ganem. A geometric view of data complexity: Efficient local intrinsic dimension estima-
 666 tion with diffusion models. In *ICML 2024 Workshop on Structured Probabilistic Inference and*
 667 *Generative Modeling*, Vienna, Austria, 2024. URL <https://icml.cc/virtual/2024/36980>.

668 Yash Kant, Ziyi Wu, Michael Vasilkovsky, Guocheng Qian, Jian Ren, Riza Alp Guler, Bernard
 669 Ghanem, Sergey Tulyakov, Igor Gilitschenski, and Aliaksandr Siarohin. Spad: Spatially aware
 670 multiview diffusers. *arXiv preprint arXiv:2402.05235*, 2024.

671 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
 672 diffusion-based generative models, 2022. URL <https://arxiv.org/abs/2206.00364>.

673 Fei Kong, Jinhao Duan, RuiPeng Ma, Heng Tao Shen, Xiaofeng Zhu, Xiaoshuang Shi, and Kaidi
 674 Xu. An efficient membership inference attack for the diffusion model by proximal initialization.
 675 *ICLR*, 2023.

676 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 677 2009.

678 Nupur Kumari, Bingliang Zhang, Sheng-Yu Wang, Eli Shechtman, Richard Zhang, and Jun-Yan
 679 Zhu. Ablating concepts in text-to-image diffusion models. *ICCV*, 2023.

680 Roberto Leotta, Oliver Giudice, Luca Guarnera, and Sebastiano Battiato. Not with my name!
 681 inferring artists' names of input strings employed by diffusion models. *ICIP*, 2023.

682 Chenghao Li, Dake Chen, Yuke Zhang, and Peter A Beerel. Mitigate replication and copying in
 683 diffusion models with generalized caption and dual fusion enhancement. *ICASSP*, 2024a.

684 Chenghao Li, Yuke Zhang, Dake Chen, Jingqi Xu, and Peter A. Beerel. Loyaldiffusion: A dif-
 685 fusion model guarding against data replication, 2024b. URL <https://arxiv.org/abs/2412.01118>.

686 Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun Luan, Yinghao Xu, Yicong Hong, Kalyan
 687 Sunkavalli, Greg Shakhnarovich, and Sai Bi. Instant3d: Fast text-to-3d with sparse-view gen-
 688 eration and large reconstruction model, 2023a. URL <https://arxiv.org/abs/2311.06214>.

689 Puheng Li, Zhong Li, Huishuai Zhang, and Jiang Bian. On the generalization properties of diffu-
 690 sion models. *NeurIPS*, 2023b.

691 Senmao Li, Joost van de Weijer, Fahad Khan, Qibin Hou, Yaxing Wang, et al. Get what you want,
 692 not what you don't: Image content suppression for text-to-image diffusion models. *ICLR*, 2024c.

702 Xiang Li, Qianli Shen, and Kenji Kawaguchi. Va3: Virtually assured amplification attack on
 703 probabilistic copyright protection for text-to-image generative models. *CVPR*, 2024d.
 704

705 Yunxing Liao. *Dataset Deduplication with Datamodels*. PhD thesis, MIT, 2022.
 706

707 Chenguo Lin, Panwang Pan, Bangbang Yang, Zeming Li, and Yadong Mu. Diffsplat: Re-
 708 purposing image diffusion models for scalable gaussian splat generation. *arXiv preprint*
 709 *arXiv:2501.16764*, 2025.

710 Yixin Liu, Chenrui Fan, Yutong Dai, Xun Chen, Pan Zhou, and Lichao Sun. Toward robust
 711 imperceptible perturbation against unauthorized text-to-image diffusion-based synthesis. *CVPR*,
 712 2024.

713 Zhenguang Liu, Chao Shuai, Shaojing Fan, Ziping Dong, Jinwu Hu, Zhongjie Ba, and Kui Ren.
 714 Harnessing frequency spectrum insights for image copyright protection against diffusion models,
 715 2025. URL <https://arxiv.org/abs/2503.11071>.

716 Shilin Lu, Zilan Wang, Leyang Li, Yanzhu Liu, and Adams Wai-Kin Kong. Mace: Mass concept
 717 erasure in diffusion models. *arXiv:2403.06135*, 2024.

718

719 Ge Luo, Junqiang Huang, Manman Zhang, Zhenxing Qian, Sheng Li, and Xinpeng Zhang. Steal
 720 my artworks for fine-tuning? a watermarking framework for detecting art theft mimicry in text-
 721 to-image models. *arXiv:2311.13619*, 2023.

722

723 Jian Ma, Junhao Liang, Chen Chen, and Haonan Lu. Subject-diffusion: Open domain personal-
 724 ized text-to-image generation without test-time fine-tuning. *arXiv:2307.11410*, 2023.

725

726 Zhe Ma, Qingming Li, Xuhong Zhang, Tianyu Du, Ruixiao Lin, Zonghui Wang, Shouling Ji, and
 727 Wenzhi Chen. An inversion-based measure of memorization for diffusion models. In *Proceedings*
 728 *of the IEEE/CVF International Conference on Computer Vision*, pp. 16959–16969, 2025.

729

730 Ranjita Naik and Besmira Nushi. Social biases through the text-to-image generation lens. *AIES*,
 731 pp. 786–808, 2023.

732

733 Ali Naseh, Jaechul Roh, and Amir Houmansadr. Memory triggers: Unveiling memorization in
 734 text-to-image generative models through word-level duplication. *arXiv:2312.03692*, 2023.

735

736 Zixuan Ni, Longhui Wei, Jiacheng Li, Siliang Tang, Yueling Zhuang, and Qi Tian. Degeneration-
 737 tuning: Using scrambled grid shield unwanted concepts from stable diffusion. *ACM MM*, 2023.

738

739 Yan Pang, Tianhao Wang, Xuhui Kang, Mengdi Huai, and Yang Zhang. White-box membership
 740 inference attacks against diffusion models. *arXiv:2308.06405*, 2023.

741

742 William Peebles and Saining Xie. Scalable diffusion models with transformers. *ICCV*, 2023.

743

744 Bao Pham, Gabriel Raya, Matteo Negri, Mohammed J. Zaki, Luca Ambrogioni, and Dmitry Kro-
 745 tov. Memorization to generalization: Emergence of diffusion models from associative memory,
 746 2025. URL <https://arxiv.org/abs/2505.21777>.

747

748 Yiting Qu, Xinyue Shen, Xinlei He, Michael Backes, Savvas Zannettou, and Yang Zhang. Unsafe
 749 diffusion: On the generation of unsafe images and hateful memes from text-to-image models.
 750 *SIGSAC*, 2023.

751

752 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 753 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 754 models from natural language supervision. *ICML*, 2021.

755

756 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht,
 757 Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks, 2019. URL
 758 <https://arxiv.org/abs/1806.08734>.

759

760 Aimon Rahman, Malsha V Perera, and Vishal M Patel. Frame by familiar frame: Understanding
 761 replication in video diffusion models. *arXiv:2403.19593*, 2024.

756 Jie Ren, Yixin Li, Shenglai Zen, Han Xu, Lingjuan Lyu, Yue Xing, and Jiliang Tang. Un-
 757 veiling and mitigating memorization in text-to-image diffusion models through cross attention.
 758 *arXiv:2403.11052*, 2024.

759

760 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 761 resolution image synthesis with latent diffusion models. *CVPR*, 2022.

762

763 Brendan Leigh Ross, Hamidreza Kamkari, Tongzi Wu, Rasa Hosseinzadeh, Zhaoyan Liu, George
 764 Stein, Jesse C. Cresswell, and Gabriel Loaiza-Ganem. A geometric framework for understanding
 765 memorization in generative models, 2025. URL <https://arxiv.org/abs/2411.00113>.

766

767 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 768 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. *CVPR*,
 2023.

769

770 Shawn Shan, Jenna Cryan, Emily Wenger, Haitao Zheng, Rana Hanocka, and Ben Y Zhao. Glaze:
 771 Protecting artists from style mimicry by text-to-image models. *USENIX*, 2023.

772

773 Yichun Shi, Peng Wang, Jianglong Ye, Long Mai, Kejie Li, and Xiao Yang. Mvdream: Multi-view
 774 diffusion for 3d generation. *arXiv preprint arXiv:2308.16512*, 2023.

775

776 Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffu-
 777 sion art or digital forgery? investigating data replication in diffusion models. *CVPR*, 2023a.

778

779 Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Under-
 780 standing and mitigating copying in diffusion models. *NeurIPS*, 2023b.

781

782 Gowthami Somepalli, Anubhav Gupta, Kamal Gupta, Shramay Palta, Micah Goldblum, Jonas
 783 Geiping, Abhinav Shrivastava, and Tom Goldstein. Measuring style similarity in diffusion mod-
 784 els. *arXiv:2404.01292*, 2024.

785

786 Saeid Asgari Taghanaki and Joseph Lambourne. Detecting generative parroting through overfit-
 787 ting masked autoencoders. *arXiv:2403.19050*, 2024.

788

789 Shuai Tang, Zhiwei Steven Wu, Sergul Aydore, Michael Kearns, and Aaron Roth. Membership
 790 inference attacks on diffusion models via quantile regression. *arXiv:2312.05140*, 2023.

791

792 Hanyu Wang, Yujin Han, and Difan Zou. On the discrepancy and connection between memoriza-
 793 tion and generation in diffusion models. In *ICML 2024 Workshop on Foundation Models in the*
 794 *Wild*, Vienna, Austria, 2024a. URL <https://icml.cc/virtual/2024/39441>.

795

796 Lijin Wang et al. Property existence inference against generative models. *USENIX*, 2024b.

797

798 Yaohui Wang, Xinyuan Wang, Weikang Chen, Bo Liu, Yuan-Chen Li, Yong-Jin Li, Chung-Ching
 799 Hsieh, James Ku, Wen-Yen Liu, Yi-Ting Chen, et al. Lavie: High-quality video generation with
 800 cascaded latent diffusion models. *arXiv preprint arXiv:2309.15103*, 2023a.

801

802 Zhenting Wang, Chen Chen, Lingjuan Lyu, Dimitris N Metaxas, and Shiqing Ma. Diagnosis:
 803 Detecting unauthorized data usages in text-to-image diffusion models. *ICLR*, 2023b.

804

805 Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error
 806 visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612, 2004.
 807 doi: 10.1109/TIP.2003.819861.

808

809 Ryan Webster. A reproducible extraction of training images from diffusion models.
 810 *arXiv:2305.08694*, 2023.

811

812 Ryan Webster, Julien Rabin, Loic Simon, and Frederic Jurie. On the de-duplication of laion-2b.
 813 *arXiv:2303.12733*, 2023.

814

815 Yuxin Wen, Yuchen Liu, Chen Chen, and Lingjuan Lyu. Detecting, explaining, and mitigating
 816 memorization in diffusion models. *ICLR*, 2023.

810 Yuxin Wen, Yangsibo Huang, Tom Goldstein, Ravi Kumar, Badih Ghazi, and Chiyuan
 811 Zhang. Quantifying cross-modality memorization in vision-language models. *arXiv preprint*
 812 *arXiv:2506.05198*, 2025.

813 Jing Wu, Trung Le, Munawar Hayat, and Mehrtash Harandi. Erasediff: Erasing data influence in
 814 diffusion models. *arXiv:2401.05779*, 2024a.

815 Xiaoyu Wu, Jiaru Zhang, and Steven Wu. Revealing the unseen: Guiding personalized diffusion
 816 models to expose training data, 2024b. URL <https://arxiv.org/abs/2410.03039>.

817 Yixin Wu, Ning Yu, Zheng Li, Michael Backes, and Yang Zhang. Membership inference attacks
 818 against text-to-image generation models. *arXiv:2210.00968*, 2022.

819 Tianwei Xiong, Yue Wu, Enze Xie, Zhenguo Li, and Xihui Liu. Editing massive concepts in
 820 text-to-image diffusion models. *arXiv:2403.13807*, 2024.

821 Wen Yan, He Hong, Weizhi Liu, Zirui Pan, Jiawei Chen, Yushan Zhang, Chang Liu, and Jie
 822 Tang. Cogvideox: Text-to-video diffusion models with an expert transformer. *arXiv preprint*
 823 *arXiv:2401.09598*, 2024.

824 Ling Yang, Ye Tian, Bowen Li, Xincheng Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang.
 825 Mmada: Multimodal large diffusion language models. *arXiv preprint arXiv:2505.15809*, 2025.

826 Mingyang Yi, Jiacheng Sun, and Zhenguo Li. On the generalization of diffusion model.
 827 *arXiv:2305.14712*, 2023.

828 Eric Zhang, Kai Wang, Xingqian Xu, Zhangyang Wang, and Humphrey Shi. Forget-me-not:
 829 Learning to forget in text-to-image diffusion models. *arXiv:2303.17591*, 2023.

830 Yang Zhang, Teoh Tze Tzun, Lim Wei Hern, Haonan Wang, and Kenji Kawaguchi. On copyright
 831 risks of text-to-image diffusion models. *arXiv:2311.12803*, 2024.

832 Mengnan Zhao, Lihe Zhang, Tianhang Zheng, Yuqiu Kong, and Baocai Yin. Separable multi-
 833 concept erasure from diffusion models. *arXiv:2402.05947*, 2024a.

834 Min Zhao, Hongzhou Zhu, Chendong Xiang, Kaiwen Zheng, Chongxuan Li, and Jun Zhu. Iden-
 835 tifying and solving conditional image leakage in image-to-video diffusion model. *arXiv preprint*
 836 *arXiv:2406.15735*, 2024b.

837 Junlei Zhou, Jiashi Gao, Ziwei Wang, and Xuetao Wei. Copyscope: Model-level copyright in-
 838 fringement quantification in the diffusion workflow. *arXiv:2311.12847*, 2023.

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **Large Language Models Usage Statement.** LLMs were used to polish writing and format tables.
 865

866 A ADDITIONAL NOTES ON EVALUATED MULTI-STAGE DMs

869 A.1 TRAINING AND INFERENCE DETAILS OF EVALUATED MULTI-STAGE DMs

871 A.1.1 TRAINING PROTOCOLS

872 MVDream (Shi et al., 2023) employs a multi-modal training strategy that fine-tunes SD 1.5 and 2.1
 873 on both 2D and 3D data. The model trains jointly on the Objaverse dataset (800K 3D objects, each
 874 with 4 orthogonal rendered views) and a subset of LAION images. During second-stage training,
 875 LAION data is sampled with 30% probability and treated as standard 2D text-to-image generation
 876 by disabling 3D attention mechanisms and camera embeddings. For 3D data, the original 2D self-
 877 attention layers are inflated into 3D cross-view attention layers with inherited weights, while camera
 878 parameters are embedded via a 2-layer MLP and injected into time embeddings. This creates an
 879 implicit task weighting of approximately 30% image generation and 70% multi-view 3D generation
 880 through the sampling strategy.

881 LaVie (Wang et al., 2023a) implements joint image-video training to prevent catastrophic forgetting
 882 when extending SD 1.4 backbone to video generation. The model trains on WebVid10M for video
 883 data and LAION for image data using an explicit weighted objective:

$$884 \mathcal{L} = \mathbb{E}[\|\epsilon - \epsilon_\theta(\xi(v_t), t, c_v)\|^2] + \alpha \mathbb{E}[\|\epsilon - \epsilon_\theta(\xi(x_t), t, c_I)\|^2]$$

885 The first term represents video loss and the second represents image loss with weighting factor
 886 α . Images are concatenated along the temporal axis to form multi-frame sequences, but temporal
 887 attention mechanisms are disabled for image portions of the batch. The architecture incorporates
 888 temporal self-attention layers with rotary positional encoding to capture video dynamics while pre-
 889 serving 2D generation capabilities.

890 These two models deviate from standard single-task LDM training through weighted multi-modal
 891 objectives that combine different data modalities (2D/3D for MVDream, image/video for LaVie)
 892 within the same training process, creating complex conditioning environments that stay away from
 893 the ideal environment for CFG discrepancy-based memorization metrics.

894 In contrast, DiffSplat (Lin et al., 2025) uses explicit domain-specific regularization during second-
 895 stage training. Built on SD v1.5, DiffSplat generates 3D Gaussian splats by fine-tuning the pre-
 896 trained T2I model with a composite objective:

$$897 \mathcal{L}_{\text{DiffSplat}} := \lambda_{\text{diff}} \cdot \mathcal{L}_{\text{diff}} + \lambda_{\text{render}} \cdot w_r(t) \cdot \mathcal{L}_{\text{render}}(D_{\phi_d}(F_\psi(\tilde{z}, t)))$$

898 where $\mathcal{L}_{\text{diff}}$ is the standard diffusion loss on splat latents (Gaussian splat properties encoded into the
 899 VAE latent space) and

$$900 \mathcal{L}_{\text{render}}(\mathcal{G}) := \frac{1}{V} \sum_{v=1}^V (\mathcal{L}_{\text{MSE}}(I_v, I_v^{\text{GT}}) + \lambda_p \cdot \mathcal{L}_{\text{LPIPS}}(I_v, I_v^{\text{GT}}) + \lambda_\alpha \cdot \mathcal{L}_{\text{MSE}}(M_v, M_v^{\text{GT}}))$$

901 is a 3D rendering loss designed to enforce geometric consistency across arbitrary viewpoints. This
 902 rendering loss includes perceptual loss components and mask losses to reduce translucent artifacts,
 903 regularizing the predictor away from pure noise prediction toward 3D-coherent splat generation.

908 Table 5: Default Inference Hyperparameters of Evaluated DMs.

910 Hyperparameter	MVDream	LaVie	DiffSplat
911 Scheduler	DDIM	DDIM	DDIM
912 Inference Steps	50	50	20
913 Guidance Scale	7.5	7.5	7.5
914 View/Frames	4	16	4

915 A.1.2 A BRIEF REMARK ON MEMORIZATION BIAS

916 Memorization bias refers to the tendency and extent to which a diffusion model reproduces training
 917 data rather than generating novel content. Unlike simple binary classification (memorized vs.

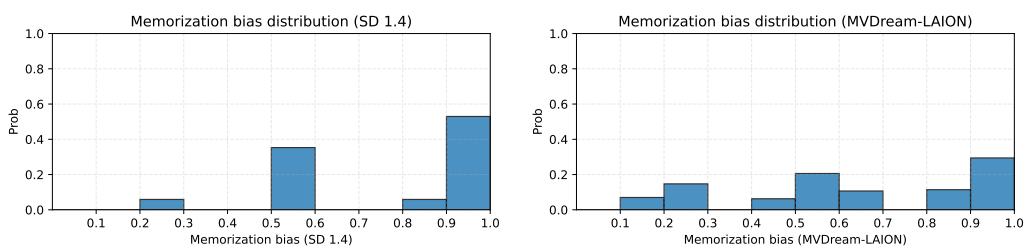
918 not memorized), we observe that memorization exists along multiple dimensions that significantly
 919 impact detection accuracy.
 920

921 We identify three relatively orthogonal dimensions for characterizing memorization bias, ordered by
 922 increasing resolution from finest to most coarse:

923 **Aspect 1: Sample-Level Memorization Intensity.** Following Webster et al. (Webster et al., 2023)
 924 we have qualitatively defined *Verbatim Memorization* and *Template Memorization* Sec. 3. Template
 925 memorization represents a transition between memorization and generalization with both types of
 926 behaviours present and tends to be more challenging to detect and represents a less “intense” form of
 927 memorization (Chen et al., 2025a).

928 **Aspect 2: Prompt-Level Memorization Consistency.** This measures how consistently a model
 929 memorizes the same content across different random seeds for a given prompt. Prompt with most
 930 seeds producing memorized outputs represent strong, consistent memorization that can be triggered
 931 by a variety of seeds. In contrast, sporadic memorization that is only triggered by specific prompt-
 932 seed combinations is considered weaker and more challenging to detect. Metrics that rely on cross-
 933 seed diversity (e.g., LPIPS between different seeds) are more likely to fail when memorization is
 934 inconsistent, as the model occasionally “escapes” to generate diverse, non-memorized outputs.

935 **Aspect 3: Dataset-Level Memorization Prevalence.** The overall proportion of memorized samples
 936 in the training dataset creates a class imbalance problem for detection. This prevalence is influenced
 937 by data (repetition, presence of outliers, overly specific prompts, or templated content) and model
 938 (over-parameterization, insufficient regularization, or architectural choices that increase overfitting
 939 susceptibility) characteristics.



940
 941 Figure 5: Memorization bias distributions comparing single-stage (SD 1.4, left) and multi-stage (MVDream-
 942 LAION, right) diffusion models. Memorization bias measures the proportion of seeds that trigger memorization
 943 for a given prompt. For inherited memorization from pre-trained datasets, there is a slight reduction in mem-
 944 orization bias. For newly acquired memorization from the second-stage dataset, memorization bias remains
 945 comparable to single-stage models.
 946

947 **Observation 1: Comparable Per-Prompt Memorization Rates (Aspect 1).** For inherited mem-
 948 orization from pre-trained datasets (e.g., LAION), there is a slight reduction in memorization bias.
 949 The second-stage training appears to weaken, though not eliminate, the memorization tendencies
 950 established during pre-training. For newly acquired memorization from the second-stage dataset
 951 (e.g., Objaverse), memorization bias remains comparable to single-stage models. When a prompt
 952 triggers memorization, it typically does so consistently across seeds in both cases. The more pro-
 953 nounced differences between model types emerge along Aspect 2 (memorization intensity), which
 954 we discuss next.

955 **Observation 2: The Memorization-Generalization Continuum (Aspect 2).** In multi-stage mod-
 956 els for video and 3D generation, the boundary between memorization and generalization becomes
 957 blurred. We observe a continuum where memorized content exhibits generalization-like behaviors,
 958 making detection particularly challenging. This continuum manifests through multiple mechanisms,
 959 including but not limited to:

960 (1) *Inherited Memorization with Multi-Modal Transformation.* When models like MVDream and
 961 LaVie fine-tune pretrained 2D models, they inherit memorized content from the base model but
 962 transform it through the new modality:

963 • **Many-to-one memorization:** Multiple memorized 2D images are merged, interpolated, or
 964 blended into a single multi-view or video generation

- **View/frame imputation:** Missing viewpoints or temporal frames are hallucinated by the model, creating the appearance of generalization while the core structure remains memorized
- **Modal adaptation:** A memorized 2D composition is adapted to 3D or temporal constraints, introducing variations while preserving identifying features

(2) *High Prevalence of Templated Content in Training Data.* The second-stage training datasets (Objaverse for MVDream, WebVid-10M for LaVie) inherently encourage template memorization:

- **WebVid-10M:** Contains stock videos sharing identical templates, with only superficial variations (e.g., different flags)
- **Objaverse:** Includes identical 3D mesh geometries paired with different textures/materials, which are treated as separate training samples but share the same underlying structure

This creates an environment where template memorization is not just common but structurally encouraged by the data. Metrics that rely on diversity or cross-seed variation are particularly vulnerable when memorization and generalization coexist within the same generation, such as:

- Templated videos with temporal dilation/contraction, or minor variations in lighting, camera motion, or object motion.
- 3D generations that memorizes mesh geometry with varied textures.
- Multi-view generations that interpolate between multiple memorized images while maintaining cross-view consistency.

These samples are *memorized* in the sense that they reproduce distinctive, identifying features from training data, but they simultaneously exhibit *generalization* behaviours (variation, diversity, interpolation).

A.2 FURTHER DETAILS ON HIGH-RISK SAMPLE COLLECTION PIPELINE

We establish a reproducible pipeline to identify high-risk samples from the following datasets with many **near-duplicates** in either or both language and visual modalities, and are thus more prone to memorization. Importantly, while the process is selective in order to focus evaluation on samples most likely to exhibit memorization, it does not intentionally bias towards particular styles, creators, or semantic trends, and the same procedure could be applied to any dataset split.

- **LAION:** We use the established benchmark from Webster (2023), which consists of 500 prompts known to elicit memorized images and 500 non-memorizing prompts. This benchmark has been widely used in prior works (Wen et al., 2023; Jeon et al., 2024) for SD memorization evaluation.
- **Objaverse:** Since models trained on Objaverse use different captioning approaches (Cap3D, concatenated object names and tags, or a mixture of both), this selection process is primarily based on the *visual modality* to ensure consistency across captioning variations. (1) *Stratification* using LVIS classes and metadata tags associated with high memorization risk (e.g., popular cultural content); (2) *Geometric similarity detection* within high-risk clusters using objective mesh descriptors (volume, vertex count, surface area) and Wasserstein-1 distance matching, targeting the common pattern where identical meshes are paired with different textures; (3) *Validation* via SSIM-based and feature-based matching with training asset renderings, followed by manual confirmation to remove false positives.
- **WebVid-10M:** Since WebVid-10M exhibits high caption-video agreement (similarity in the language modality is strongly correlated with similarity in the visual modality), we initiate this process from the *language/caption modality* to efficiently identify near-duplicate content. (1) *Caption clustering:* Filter by normalized Levenshtein distance (>0.85) to detect near-duplicate textual descriptions, which yields 24,781 initial clusters with 408,670 samples; (2) *Visual diversity filtering:* to remove clusters with high intra-cluster CLIP feature variance, ensuring retained clusters are visually similar and thus prone to being memorized; (3) *Content filtering:* to exclude abstract (kaleidoscope-like) or texture-like clips that do not have strong semantic association with their captions; (4) *Manual confirmation* to verify automated selections.

1026 **Ground Truth Validation for Multi-Modal Memorization.** Establishing reliable ground truth labels
 1027 for memorization requires a rigorous methodology to minimize labeling errors. Our approach
 1028 consists of a two-stage pipeline: an automated candidate selection phase followed by manual ver-
 1029 ification. The automated first pass is designed to systematically identify a comprehensive set of
 1030 potential memorization events. For 3D assets from Objaverse, we render each training item from
 1031 eight azimuth angles, while for videos from WebVid10M, we undersample each clip into sixteen
 1032 keyframes. We then compute similarity scores between these references and the generated content.
 1033 This process utilizes a dual-metric framework to capture both structural correspondence (SSIM)
 1034 and semantic alignment (CLIP embeddings). To maximize recall and ensure no potential cases are
 1035 missed, candidates are flagged for manual review if they surpass a lenient, pre-determined threshold
 1036 on either of the similarity metrics. Furthermore, by taking the maximum similarity score across all
 1037 view-to-view or frame-to-frame comparisons, our method remains sensitive to partial reproductions
 1038 and temporal transformations (e.g. temporal reversal, speed changes, zooming in), which are com-
 1039 mon signatures of memorization. Finally, all automatically identified candidates are subjected to
 1040 manual validation involving multiple human annotators, ensuring the reliability and accuracy of the
 1041 final ground truth labels.
 1042

1043 B EXTENDED BACKGROUND AND RELATED WORKS

1044 B.1 MEMORIZATION IN DIFFUSION MODELS.

1045 Memorization behaviors in visual diffusion models have been extensively studied primarily through
 1046 extraction attacks (EA) and membership inference attacks (MIA). EAs (Carlini et al., 2021;
 1047 Somepalli et al., 2023a; Carlini et al., 2023; Qu et al., 2023; Leotta et al., 2023; Naik & Nushi,
 1048 2023; Zhang et al., 2024; Li et al., 2024d; Webster et al., 2023; Webster, 2023; Liao, 2022; Chen
 1049 et al., 2025b; Wu et al., 2024b; Daras et al., 2024; Wen et al., 2025) show that both specific and
 1050 implicit user prompts can elicit content closely resembling training data, including copyrighted or
 1051 sensitive visual content. MIAs further probe memorization risks by determining whether particular
 1052 inputs were seen during training. These include white-box methods that exploit gradients and inter-
 1053 nal loss dynamics (Hu & Pang, 2023; Pang et al., 2023; Tang et al., 2023; Kong et al., 2023) and
 1054 black-box approaches that analyze statistical properties of outputs (Wu et al., 2022; Fu et al., 2024;
 1055 Dubiński et al., 2024). Beyond these direct attack methods, similarity retrieval techniques employ
 1056 feature extraction and distance metrics to identify matches between generated content and train-
 1057 ing data (Radford et al., 2021; Zhou et al., 2023; Rahman et al., 2024), detecting both content and
 1058 stylistic replication (Casper et al., 2023; Somepalli et al., 2024). Additional strategies include wa-
 1059 termarking approaches that embed forensic signals in training data (Wang et al., 2023b; Cui et al.,
 1060 2023; Luo et al., 2023; Asnani et al., 2024) and personalized replication studies through subject-
 1061 specific fine-tuning (Ruiz et al., 2023; Ma et al., 2023), which raise important ethical and attribution
 1062 questions (Shan et al., 2023; Liu et al., 2024).
 1063

1064 **Root Cause Analysis.** Insufficient training diversity (Gu et al., 2023) and data dupli-
 1065 cation (Somepalli et al., 2023b; Li et al., 2024a) have been identified as primary drivers of mem-
 1066 orization. Other factors such as prompt specificity (Naseh et al., 2023; Chen et al., 2024a), out-
 1067 of-distribution characteristics (Janolkar, 2023), deterministic samplers (Yi et al., 2023), and model
 1068 capacity (Peebles & Xie, 2023; Chen et al., 2024a) also influence memorization extent. New evalua-
 1069 tion metrics such as Feature Likelihood Divergence (Jiralerpong et al., 2023; Jagielski et al., 2022)
 1070 and creativity measures have been introduced to quantify various memorization aspects. Theoretical
 1071 investigations span information theory (Yi et al., 2023; Li et al., 2023b), cognitice science (Pham
 1072 et al., 2025), harmonic analysis (Kadkhodaie et al., 2024), geometric (Wang et al., 2024a; Kamkari
 1073 et al., 2024; Jeon et al., 2024; Ross et al., 2025; Buchanan et al., 2025), and data attribution frame-
 1074 works (Georgiev et al., 2023; Liu et al., 2025; Taghanaki & Lambourne, 2024; Wang et al., 2024b).
 1075

1076 While this body of work provides valuable insights into memorization mechanisms, evaluation ef-
 1077 forts have predominantly focused on standard text-to-image architectures, particularly Stable Diffu-
 1078 sion variants. Notable exceptions include recent investigations of medical imaging modalities (Rah-
 1079 man et al., 2024; Dar et al., 2023; 2024b; 2025; 2024a) and video diffusion models (Zhao et al.,
 2024b). However, systematic evaluation of memorization detection methods across the increasingly
 prevalent multi-stage, multi-modal training protocols that characterize modern diffusion systems

1080 remains limited. This represents an important gap as these complex training regimes may fundamentally alter the memorization patterns that detection methods were designed to identify.
 1081
 1082

1083 B.2 MEMORIZATION DETECTION 1084

1085 We briefly review SoTA reference-free memorization metrics used in our evaluation, categorized
 1086 into three families: score-based, diversity-based, and cross-attention-based.
 1087

1088 B.2.1 SCORE-BASED METRICS 1089

1090 **Noise Difference Norm (NDN).** Wen et al. (2023) proposes to quantify how text conditioning over-
 1091 powers initial noise influence during generation as a proxy for memorization. For text prompt em-
 1092 bedding e_p and null embedding e_\emptyset :

$$1093 D = \frac{1}{T} \sum_{t=1}^T \|p_\theta(x_t, e_p) - p_\theta(x_t, e_\emptyset)\|_2 \quad (5)$$

1096 Larger values indicate prompt dominance over noise, signaling memorization. Huang et al. (2025)
 1097 also demonstrates this term’s utility in frequency-selective controllable editing tasks. Chen et al.
 1098 (2025a) have proposed a localized variant that masks the standard noise difference norm with the
 1099 attention map of the final token.

1100 **Sharpness via Hessian Eigenvalue Difference (HED).** Jeon et al. (2024) explore the geometry of
 1101 the model’s learned probability distribution, where memorized samples correspond to sharp peaks in
 1102 the probability landscape. They approximate differences in Hessian eigenvalue magnitudes between
 1103 conditional and unconditional score functions using directional finite differences. For latents x_t at
 1104 timestep t , computes a normalized perturbation $\Delta x = \delta \cdot \frac{s_\theta(x_t, c) - s_\theta(x_t, \emptyset)}{\|s_\theta(x_t, c) - s_\theta(x_t, \emptyset)\|}$ with $\delta = 10^{-3}$ in the
 1105 CFG discrepancy direction, then measures the response magnitudes $\|s_\theta(x_t + \Delta x, c) - s_\theta(x_t, c)\|$ and
 1106 $\|s_\theta(x_t + \Delta x, \emptyset) - s_\theta(x_t, \emptyset)\|$. Under the local Gaussian assumption, this approximates the
 1107 squared eigenvalue differences $\sum_i \frac{(\lambda_i - \lambda_{i,c})^2}{\lambda_{i,c}}$ where $\lambda_i, \lambda_{i,c}$ are eigenvalues of the unconditional
 1108 and conditional Hessian matrices $H_u(x_t), H_c(x_t)$. Large magnitude differences indicate regions
 1109 where conditioning creates sharp, localized probability peaks characteristic of memorized content.
 1110

1111 **Bright Ending (BE).** (Chen et al., 2025a) identifies memorized samples through unusually high
 1112 attention on final prompt tokens, reflecting collapsed focus onto trigger concepts rather than dis-
 1113 tributed feature composition. This can be considered a spatially aware version of NDN where the
 1114 noise difference maps are multiplied by a memorization mask extracted via BE:
 1115

$$1116 LD = \frac{1}{T} \sum_{t=1}^T \|(\varepsilon_\theta(x_t, e_p) - \varepsilon_\theta(x_t, e_\emptyset)) \circ \mathbf{m}\|_2 \Big/ \left(\frac{1}{N} \sum_{i=1}^N m_i \right) \quad (6)$$

1119 where N is the number of elements in the mask \mathbf{m} . Attention scores are directly as weights. The
 1120 result is normalized by the mean of the attention weights \mathbf{m} .
 1121

1122 **InvMM.** Ma et al. (2025) propose an inversion-based approach that characterizes memorization
 1123 through the tractability of mapping a data sample back to the Gaussian prior. The core premise is that
 1124 memorized samples are easier to invert into a high-likelihood latent region compared to generalized
 1125 samples. InvMM quantifies this by optimizing a variational distribution $q_\phi(z|x)$ to reconstruct the
 1126 target image x , and then measuring the KLD from the standard prior:

$$1127 M_{\text{Inv}}(x) = \min_{\phi} D_{\text{KL}}(q_\phi(z|x), \mathcal{N}(0, I)). \quad (7)$$

1129 **p -Laplace.** Brokman et al. (2025) introduce a generalization of curvature analysis using the p -
 1130 Laplacian operator to identify memorization. Similarly to HED (which relates to the 2-Laplacian),
 1131 the p -Laplace metric allows for tuning the sensitivity to the gradient magnitude, offering a non-linear
 1132 measure of how the probability density concentrates around a sample.
 1133

$$\Delta_p \log p(x) = \nabla \cdot (|\nabla \log p(x)|^{p-2} \nabla \log p(x)). \quad (8)$$

1134
1135

B.2.2 DIVERSITY-BASED MEOMRIZATION METRICS

1136
1137

Both Carlini et al. (2023) and Hintersdorf et al. (2024) propose to measure diversity across different seeds for the same prompt, where low diversity typically indicates memorization tendencies.

1138

1139
1140
1141

SSIM of Noise Differences. Hintersdorf et al. (2024) observe that a model’s denoising process is “seed-agnostic” or consistent across seeds for memorized prompts. Let x_T be the initial noise image for prompt y . Compute the *noise-difference image*

1142

1143
1144

$$\delta = p_\theta(x_T, T, y) - x_T.$$

Generate $\delta^{(i)}$ and $\delta^{(j)}$ from two seeds i and j , then evaluate

1145
1146
1147

$$\text{SSIM}\left(\delta^{(i)}, \delta^{(j)}\right) = \frac{(2\mu_i\mu_j + C_1)(2\sigma_{ij} + C_2)}{(\mu_i^2 + \mu_j^2 + C_1)(\sigma_i^2 + \sigma_j^2 + C_2)}. \quad (9)$$

1148

A higher score indicates a seed-insensitive, hence memorised trajectory.

1149

1150
1151
1152

Median SSCD. For images $\{I_1, I_2, \dots, I_n\}$ generated from the same prompt using different seeds, Hintersdorf et al. (2024) computed pairwise cosine similarities between SSCD embeddings. Let $\phi(I_i)$ denote the SSCD embedding of image I_i , the similarity between the two images is:

1153
1154
1155

$$\text{sim}(I_i, I_j) = \frac{\phi(I_i) \cdot \phi(I_j)}{\|\phi(I_i)\| \|\phi(I_j)\|} \quad (10)$$

1156

The diversity metric is the median of all pairwise similarities:

1157

1158

$$\text{Diversity}_{\text{SSCD}} = \text{median}\{\text{sim}(I_i, I_j) : 1 \leq i < j \leq n\} \quad (11)$$

1159

1160
1161
1162

Tiled ℓ_2 (TL2). Carlini et al. (2023) divide each image into non-overlapping 128×128 tiles and compute pairwise distances. For images I_i and I_j , let $T_k^{(i)}$ and $T_k^{(j)}$ denote their k -th tiles respectively. The tiled distance between two images is:

1163
1164
1165

$$d_{\text{tiled}}(I_i, I_j) = \frac{1}{K} \sum_{k=1}^K \|T_k^{(i)} - T_k^{(j)}\|_2 \quad (12)$$

1166

1167

where K is the total number of tiles. The diversity metric is the minimum pairwise distance:

1168
1169

$$\text{Diversity}_{\ell_2} = \min\{d_{\text{tiled}}(I_i, I_j) : 1 \leq i < j \leq n\} \quad (13)$$

1170

1171
1172

Potential Failure Modes in Novel DMs. Diversity-based metrics are relatively more robust across varied training protocols; however, a noticeable shrinkage in separability still occurs. We identified two potential causes:

1173

1174
1175
1176

(1) Data-induced ambiguity: As noted in Sec. 3.1, the datasets themselves often contain clusters of near-duplicates. For instance, WebVid10M has stock videos sharing a scene template with minor differences, and Objaverse pairs identical meshes with different textures. A model correctly learns to reproduce this entire cluster of variations. Consequently, a memorized generation may exhibit high diversity that simply reflects the concept’s inherent variance in the training data.

1177

1178
1179
1180

(2) Training-induced variance: Multi-modal domains have many more degrees of freedom and often lack a single canonical representation. Training protocols exploit this via data augmentation; for instance, 3D models are trained with varied camera angles (and often without canonical azimuths), while video models use temporal augmentations like shifting or flipping. This teaches the model to reproduce a memorized concept with these variations across seeds, artificially inflating the diversity of memorized samples and making them appear less stable and more like novel generations.

1181

1182

B.2.3 CROSS-ATTENTION-BASED METRICS

1183
1184

Cross-Attention Entropy (CAE). (Ren et al., 2024) This approach quantifies the dispersion of cross-attention scores to detect memorization. Two metric variants are introduced.

1188 The first global variant, CAE- D , captures the phenomenon where memorized samples maintain
 1189 dispersed attention on summary and prompt tokens during the later denoising steps ($t \rightarrow 0$), whereas
 1190 non-memorized samples concentrate attention on the beginning token. This is calculated as:
 1191

$$1192 D = \frac{1}{T_D} \sum_{t=0}^{T_D-1} E_t + \frac{1}{T_D} \sum_{t=0}^{T_D-1} |E_t^{summary} - E_T^{summary}|$$

1195 where T_D represents the number of final steps considered (e.g., $T/5$), E_t is the standard Shannon
 1196 entropy, and $E^{summary}$ is the entropy calculated specifically on summary tokens.

1197 The second local variant, CAE- $E_{t=T}^l$, computes the entropy the very first diffusion step ($t = T$) as
 1198

$$1199 1200 1201 E_{t=T}^l = \sum_{i=1}^N -\bar{a}_i^l \log(\bar{a}_i^l)$$

1202 where \bar{a}_i^l denotes the averaged attention score of the i -th token on the l -th layer at step T . Al-
 1203 though the polarity of this metric may vary across diffusion timesteps t , model layers l , and attention
 1204 heads (such that higher values in some layers correspond to memorized content and lower values to
 1205 unmemorized content) this metric generally preserves strong separability between memorized and
 1206 unmemorized samples across most layers, serving as a robust indicator of memorization.

1207 Certain layers exhibit greater discriminative power in distinguishing memorized from non-
 1208 memorized content, with the optimal layer being dataset-dependent. Following the original work,
 1209 we adopt the local variant CAE- E at $t = T$ using the 4th layer for evaluation, while also reporting
 1210 results for the best-performing layer.

1211 **Bright Ending (BE).** (Chen et al., 2025a) also belongs to this category.

1212 **Potential Failure Modes in Novel DMs.** The performance degradation of attention-based metrics
 1213 can likely be attributed to architectural and representational shifts. These metrics assume memoriza-
 1214 tion is linked to certain attention patterns (e.g. concentrated, low-entropy pattern) on specific prompt
 1215 tokens (e.g. the last token). However, many multi-stage models are built by fundamentally alter-
 1216 ing their attention mechanisms to support new modalities. This includes (1) architectural changes,
 1217 such as MVDream inflating 2D self-attention layers into 3D cross-view ones or LaVie incorporating
 1218 temporal self-attention; (2) the injection of additional conditioning signals like camera embeddings,
 1219 task-level prefixes Kant et al. (2024), task-level postfixes Shi et al. (2023), or other geometric inputs.
 1220 This enriched conditioning complicates the attention landscape.

1223 B.3 MEMORIZATION MITIGATION.

1224 In response to growing concerns about memorization behaviors, interventions to mitigate memo-
 1225 rization risks have been developed across various stages of the model development lifecycle. These
 1226 approaches can be broadly categorized into preemptive and post-training strategies.

1227 **Preemptive Mitigation.** Data-centric approaches aim to limit exposure to replicable content before
 1228 training begins, including semantic deduplication (Abbas et al., 2023) and copyright-safe dataset
 1229 curation (Gokaslan et al., 2023). Training-time architectural strategies include compositionally iso-
 1230 lated training (Golatkar et al., 2023), despecification guidance (Chen et al., 2024a), and replication-
 1231 aware architectures like LoyalDiffusion (Li et al., 2024b).

1232 **Post-Training Mitigation.** Post-training approaches offer several practical advantages: they can
 1233 be applied to already-deployed models, do not require access to original training data, and can
 1234 target specific problematic content without full retraining. Early unlearning methods like Concept
 1235 Ablation (Kumari et al., 2023), Forget-Me-Not (Zhang et al., 2023), and ErasedDiff (Wu et al.,
 1236 2024a) modify internal model representations to erase learned associations. Scalable approaches
 1237 enable batch concept removal (Fan et al., 2023; Zhao et al., 2024a; Hong et al., 2024; Lu et al., 2024),
 1238 while recent work explores regularization-based suppression (Ni et al., 2023) and multi-concept
 1239 editing (Xiong et al., 2024; Gandikota et al., 2024). Inference-time techniques provide additional
 1240 flexibility through perturbation, attention reweighting (Ren et al., 2024), token masking (Chen et al.,
 1241 2025a), neuron suppression (Hintersdorf et al., 2024; Chavhan et al., 2024), and guided sampling

1242 methods (Li et al., 2024c; Dong et al., 2023). While these approaches require no model modification,
 1243 their effectiveness can vary with prompt complexity and adversarial inputs.
 1244

1245 Given their practical advantages, post-training mitigation methods represent a critical component of
 1246 modern diffusion model safety pipelines. This motivates our focus on evaluating the robustness of
 1247 reference-free detection metrics as evaluation tools for post-training memorization mitigation.
 1248

1249 Table 6: Post-Training Memorisation Mitigation Methods evaluated in this work.

1250 Acronym	1251 Method	1252 Category
1252 RTA	1253 Random Token Addition (Somepalli et al., 2023b)	Perturbation, token space
1253 RNA	1254 Random Number Addition (Somepalli et al., 2023b)	Perturbation, token space
1254 CWR	1255 Caption Word Repetition (Somepalli et al., 2023b)	Perturbation, token space
1255 GNI	1256 Gaussian Noise Injection (Somepalli et al., 2023b)	Perturbation, embedding space
1256 Wen	1257 Wen’s Mitigation (Wen et al., 2023)	Perturbation, embedding space
1257 SAIL	1258 Sharpness-Aware InitiaLization (Jeon et al., 2024)	Initial Noise Optimization
1258 BE	1259 Bright Ending Mitigation (Chen et al., 2025a)	Attention Adjustment
1259 CAR	1260 Cross Attention Reweighting (Ren et al., 2024)	Attention Adjustment
1260 NeMo	1261 Neurons responsible for meMorization (Hintersdorf et al., 2024)	Model Editing
1261 SubPrune	1262 Subspace Pruning (Chavhan et al., 2024)	Model Editing
1262 UCE	1263 Unified Concept Editing (Gandikota et al., 2024)	Model Editing
1263 AMG	1264 Anti-Memorization Guidance (Chen et al., 2024a)	Guided Sampling

1262 B.3.1 MEMORIZATION MITIGATION METHODS AND IMPLEMENTATION DETAILS.

1263 We briefly reviewed the memorization mitigation methods evaluated in Sec. 3.3. Below, we provide
 1264 a more detailed description of their mechanisms and our implementation.
 1265

1266 The first four of the evaluated methods are simple, metric-agnostic perturbations introduced by
 1267 (Somepalli et al., 2023b). These methods do not require knowledge of the detection metric and
 1268 instead aim to disrupt memorization by altering the input prompt or embedding.
 1269

1270 **Random Token Addition (RTA).** This metric-agnostic perturbation method disrupts memorized
 1271 text-image associations by injecting random tokens into input prompts. We randomly select token
 1272 IDs between 1000-40000 from the tokenizer vocabulary and insert them at arbitrary positions within
 1273 the prompt string, adding 4 random tokens per prompt by default.
 1274

1275 **Random Number Addition (RNA).** RNA creates distribution shift from training data by append-
 1276 ing random numerical values to prompts. The implementation generates random integers between
 1277 0 and 1,000,000 and inserts them at random positions, adding 10 random numbers per prompt to
 1278 effectively move prompts out of the training distribution.
 1279

1280 **Caption Word Repetition (CWR).** This approach alters token frequency distribution by repeating
 1281 existing words within prompts. We split prompts into words, randomly select from the existing vo-
 1282 cabulary, and insert them at random positions, performing 10 repetitions per prompt to significantly
 1283 change prompt structure while maintaining semantic content.
 1284

1285 **Gaussian Noise Injection (GNI).** GNI disrupts memorized embedding patterns by adding Gaus-
 1286 sian noise directly to text embeddings. We apply noise $\epsilon \sim \mathcal{N}(0, \sigma^2)$ with standard deviation
 1287 $\sigma = 0.5$ to the text embedding tensor after encoding but before cross-attention computation.
 1288

1289 **Wen’s Perturbation.** This metric-aware approach perturbs the text embedding in a targeted man-
 1290 ner (Wen et al., 2023). It is an optimization-based technique that uses gradient descent to iter-
 1291 atively modify the embedding. The objective is to minimize the global noise difference norm (D),
 1292 which is the core signal used by the NDN detection metric. Our implementation uses Adam op-
 1293 timizer and performs a fixed number of optimization steps on the embedding minimizing the loss
 1294 $L = \|\epsilon_\theta(x_t, t, c) - \epsilon_\theta(x_t, t, \emptyset)\|_2$ before the main denoising process begins. c represents the per-
 1295 turbed embedding. This metric-aware approach optimizes text embeddings by minimizing the mag-
 1296 nitude of conditional noise predictions.
 1297

1296 **Sharpness-Aware Initialization (SAIL).** SAIL Jeon et al. (2024) is an initial noise optimization
 1297 technique that seeks to find a starting latent vector x_T that is situated in a "non-sharp" region of
 1298 the probability landscape, thus avoiding pathways that lead to memorized outputs. SAIL optimizes
 1299 the initial noise x_T to find latents that lead to less memorized outputs. Implementation follows
 1300 Algorithm 2 from the original paper, using finite differences to estimate score function sharpness.
 1301 The optimization objective is $L = \|s_\delta(x_T + \delta \cdot \frac{s_\delta(x_T)}{\|s_\delta(x_T)\|}) - s_\delta(x_T)\|^2 + \alpha\|x_T\|^2$ where $s_\delta =$
 1302 $\epsilon_\theta(x_t, t, c) - \epsilon_\theta(x_t, t, \emptyset)$.
 1303

1304 **Bright Ending (BE) Mitigation.** BE Chen et al. (2025a) uses attention maps to identify regions
 1305 likely to contain memorized content and minimizes noise differences in those areas. Implemen-
 1306 tation collects cross-attention maps from down-sampling blocks during denoising, averages across
 1307 attention heads, and creates masks highlighting high-attention regions. The optimization objective
 1308 is $L = \frac{\|\text{mask} \odot (s_\delta)\|_2}{\text{mean}(\text{mask}) + 10^{-6}}$ where \odot denotes element-wise multiplication.
 1309

1310 **Cross-Attention Reweighting (CAR).** This attention-adjustment method operates during infer-
 1311 ence by directly manipulating cross-attention scores (Ren et al., 2024). It first identifies tokens that
 1312 are likely triggers for memorization by analyzing their attention concentration (entropy). During
 1313 generation, it then suppresses the attention scores corresponding to these trigger tokens, effectively
 1314 reducing their influence on the final output without altering the model's weights.
 1315

1316 **NeMo.** This model-editing technique deactivates memorization-responsible neurons at inference
 1317 time Hintersdorf et al. (2024). For memorized prompts, we identify candidate neurons in cross-
 1318 attention value-projection layers based on outlier activations (z-score against non-memorized base-
 1319 line) and high activation levels (top-k). We iteratively expand the suppression set until memorization
 1320 score (max pairwise SSIM of initial noise differences) falls below a threshold.
 1321

1322 **Subspace Pruning (SubPrune).** This is an offline model-editing approach that permanently re-
 1323 moves weights deemed responsible for memorization (Chavhan et al., 2024). It operates on the
 1324 principle that memorized samples share a common activation subspace. This method identifies
 1325 weight subspaces in FFN layers critical for memorization and sets them to zero. Our implemen-
 1326 tation targets the second linear layer in feed-forward networks `ff.net.2`, computes saliency scores
 1327 $S = |W| \cdot \|H\|$ where W are weights and H are activations, and prunes weights where memo-
 1328 rized activations exceed null prompt activations. Sparsity level set to 0.1% of total weights in our
 1329 evaluation.
 1330

1331 **Unified Concept Editing (UCE).** UCE is an offline model-editing technique that modifies the
 1332 weights of key and value projection matrices in cross-attention layers to erase concepts (Gandikota
 1333 et al., 2024). UCE uses a closed-form update equation to solve for new weights. This update aims
 1334 to map an "erase" concept embedding to a "guide" concept's output, while optionally preserving the
 1335 model's behavior on other specified concepts. UCE modifies cross-attention weights using closed-
 1336 form updates to erase specific concepts while preserving others. Implementation targets `to_k` and
 1337 `to_v` layers in cross-attention blocks, applying the update rule $W_{\text{new}} = (\lambda W_{\text{old}} + \sum_i \alpha_i v_i^* c_i^T)(\lambda I +$
 1338 $\sum_i \alpha_i c_i c_i^T)^{-1}$ where c_i are concept embeddings and v_i^* are target outputs. Default regularization
 1339 $\lambda = 0.5$ with erase/preserve scales of 1.0.
 1340

1341 **Anti-Memorization Guidance (AMG):** Chen et al. (2024a) have proposed a guided sampling
 1342 method that prevents memorization by steering the generation process away from training data ex-
 1343 emplars. AMG uses nearest neighbour search to detect potential memorization during sampling and
 1344 steers generation away from training data. Implementation employs CLIP embeddings to build a
 1345 training data index, computes cosine similarity between generated images and training examples,
 1346 and applies classifier guidance when similarity exceeds threshold. The guidance term modifies the
 1347 score function to reduce likelihood of generating near-duplicates of training images.
 1348

1349 B.3.2 MEASURING CFG DISCREPANCY-BASED METRICS WITH AMG.

1350 To correctly measure various flavours of CFG discrepancy-based metrics on guided trajectories such
 1351 as AMG (Chen et al., 2024a), we define an *effective conditional prediction*, $\tilde{p}_\theta(x_t, e_p)$, that accounts
 1352 for our additional guidance term, g_{AMG} .
 1353

1350 The final noise prediction, $\tilde{\epsilon}_\theta$, which incorporates both the standard Classifier-Free Guidance (CFG)
 1351 and our AMG term, is given by:
 1352

$$1353 \quad \tilde{\epsilon}_\theta(x_t, e_p, e_\emptyset) = p_\theta(x_t, e_\emptyset) + w \cdot (p_\theta(x_t, e_p) - p_\theta(x_t, e_\emptyset)) + g_{\text{AMG}} \quad (14)$$

1354 where w is the guidance scale.
 1355

1356 Our goal is to find an effective conditional prediction $\tilde{p}_\theta(x_t, e_p)$ that, when substituted into the
 1357 standard CFG formula, yields this same $\tilde{\epsilon}_\theta$:
 1358

$$1358 \quad \tilde{\epsilon}_\theta(x_t, e_p, e_\emptyset) = p_\theta(x_t, e_\emptyset) + w \cdot (\tilde{p}_\theta(x_t, e_p) - p_\theta(x_t, e_\emptyset)) \quad (15)$$

1360 By equating (14) and (15), we can solve for $\tilde{p}_\theta(x_t, e_p)$. The unconditional term $p_\theta(x_t, e_\emptyset)$ cancels,
 1361 leaving:
 1362

$$1363 \quad w \cdot (\tilde{p}_\theta(x_t, e_p) - p_\theta(x_t, e_\emptyset)) = w \cdot (p_\theta(x_t, e_p) - p_\theta(x_t, e_\emptyset)) + g_{\text{AMG}} \\ 1364 \quad \tilde{p}_\theta(x_t, e_p) - p_\theta(x_t, e_\emptyset) = (p_\theta(x_t, e_p) - p_\theta(x_t, e_\emptyset)) + \frac{g_{\text{AMG}}}{w}$$

1366 This yields the expression for the effective conditional prediction, which correctly isolates the guid-
 1367 ance term as an additive modification to the original conditional prediction, scaled inversely by the
 1368 guidance weight:
 1369

$$1370 \quad \tilde{p}_\theta(x_t, e_p) = p_\theta(x_t, e_p) + \frac{g_{\text{AMG}}}{w} \quad (16)$$

1371 C FURTHER DETAILS ON ASSUMPTIONS AND PROXY MEASUREMENTS

1373 This section supplements Sec. 4.3 by providing more details about the connection between assump-
 1374 tions and geometric framework and implementation details of the diagnostic measurements.
 1375

1376 C.1 HOW ASSUMPTIONS SUPPORT THE GEOMETRIC FRAMEWORK

1378 Various score-based metrics can be connected through a chain of approximate equivalences, which
 1379 are also linked to their efficacy and generalizability.
 1380

$$1381 \quad \underbrace{\mathbb{E}[\|s_\theta(x, c) - s_\theta(x)\|^2]}_{\text{NDN, BE, DiffSSIM}} \stackrel{\text{A1}}{\approx} \underbrace{\mathbb{E}[\|s(x, c) - s(x)\|^2]}_{\text{True Score Difference}} \stackrel{\text{A2}}{\approx} \underbrace{\text{tr}[(H - H_c)^2 \Sigma_c]}_{\text{Curvature Trace}} \stackrel{\text{A2+A4}}{\approx} \underbrace{\sum_i \frac{(\lambda_i - \lambda_{i,c})^2}{\lambda_{i,c}}}_{\text{Eigenvalue Gaps (HED)}} \quad (17)$$

1386 Consider a diffusion process along timesteps $t \in [0, T]$ from clean data x_0 to noisy latent x_T , where
 1387

- 1389 • $p_t(x_t)$: unconditional distribution of noisy latent x_t
- 1390 • $p_t(x_t|c)$: conditional distribution given prompt/conditioning c
- 1391 • $s_t(x_t) = \nabla_{x_t} \log p_t(x_t)$: unconditional score function (true)
- 1392 • $s_t(x_t, c) = \nabla_{x_t} \log p_t(x_t|c)$: conditional score function (true)
- 1393 • $s_\theta(x_t), s_\theta(x_t, c)$: model's estimated score functions

1395 **Geometric Quantities.** The Hessian of the log-density encodes local curvature:
 1396

$$1397 \quad H_t(x_t) = \nabla_{x_t}^2 \log p_t(x_t) = \left[\frac{\partial^2 \log p_t}{\partial x_i \partial x_j} \right]_{i,j=1}^d, \quad (18)$$

$$1399 \quad H_{t,c}(x_t) = \nabla_{x_t}^2 \log p_t(x_t|c). \quad (19)$$

1401 Under Gaussian assumptions, these relate to covariance matrices. For $x \sim \mathcal{N}(\mu, \Sigma)$:
 1402

$$1403 \quad \log p(x) = -\frac{1}{2}(x - \mu)^\top \Sigma^{-1}(x - \mu) + \text{const}, \quad (20)$$

1404 giving:

$$\nabla_x \log p(x) = -\Sigma^{-1}(x - \mu), \quad (21)$$

$$\nabla_x^2 \log p(x) = -\Sigma^{-1}. \quad (22)$$

1405 A core detection signal is the difference between conditional and unconditional scores:

$$\Delta s_t(x_t, c) = s_t(x_t, c) - s_t(x_t). \quad (23)$$

1406 The NDN metric (Wen et al., 2023) aggregates this over timesteps:

$$\text{NDN} = \frac{1}{T} \sum_{t=1}^T \|\epsilon_\theta(x_t, t, c) - \epsilon_\theta(x_t, t, \emptyset)\|^2, \quad (24)$$

1407 where ϵ_θ denotes the noise prediction network. Since ϵ_θ and s_θ are linearly related via:

$$s_\theta(x_t, c) = -\frac{\epsilon_\theta(x_t, t, c)}{\sigma_t}, \quad (25)$$

1408 the NDN can be expressed in terms of score differences.

1409 For a Gaussian $x \sim \mathcal{N}(\mu, \Sigma)$:

$$\log p(x) = -\frac{1}{2}(x - \mu)^\top \Sigma^{-1}(x - \mu) + \text{const}, \quad (26)$$

1410 which gives:

$$s(x) = \nabla_x \log p(x) = -\Sigma^{-1}(x - \mu), \quad (27)$$

$$H(x) = \nabla_x^2 \log p(x) = -\Sigma^{-1}. \quad (28)$$

1411 **Quadratic Forms.** For $x \sim \mathcal{N}(\mu, \Sigma)$ and symmetric matrix A :

$$\mathbb{E}[(x - \mu)^\top A(x - \mu)] = \text{tr}(A\Sigma). \quad (29)$$

1412 *Proof:* Let $z = x - \mu \sim \mathcal{N}(0, \Sigma)$. Then $\mathbb{E}[z^\top Az] = \sum_{i,j} A_{ij} \mathbb{E}[z_i z_j] = \sum_{i,j} A_{ij} \Sigma_{ij} = \text{tr}(A\Sigma)$.

1413 **Assumptions Revisited.** We re-state all six key assumptions that will be invoked in subsequent
1414 proofs.

1415 **Assumption (A1)** (Unbiased Score Estimation). *For all x_t , c , and t :*

$$\mathbb{E}[s_\theta(x_t, c) - s_t(x_t, c)] = 0, \quad (30)$$

1416 *where the expectation is over the stochasticity in the trained model (if any). Equivalently, s_θ is an
1417 unbiased estimator of the true score.*

1418 **Assumption (A2)** (Gaussian Local Structure). *At relevant timesteps $t \in \mathcal{T}$, the distributions are
1419 approximately Gaussian:*

$$p_t(x_t) \approx \mathcal{N}(\mu_t, \Sigma_t), \quad (31)$$

$$p_t(x_t | c) \approx \mathcal{N}(\mu_{t,c}, \Sigma_{t,c}), \quad (32)$$

1420 *where the approximation error is small enough that Eqs. 27–28 hold to sufficient precision.*

1421 **Assumption (A3)** (Sharpness Persistence Across Timesteps). *Let $\mathcal{E}_t = \{\lambda_i^{(t)}\}_{i=1}^d$ denote the spectrum
1422 (ordered eigenvalues) of $H_t(x_t)$ or $H_{t,c}(x_t)$. The distinguishability between memorized and
1423 non-memorized samples, as measured by differences in \mathcal{E}_t , persists over the interval $t \in [t_{\min}, T]$
1424 used for detection.*

1425 **Assumption (A4)** (Covariance Commutativity and Mean Equality). *For relevant timesteps: The
1426 covariance matrices commute: $\Sigma_t \Sigma_{t,c} = \Sigma_{t,c} \Sigma_t$. The means coincide: $\mu_t = \mu_{t,c}$.*

1427 **Assumption (A5)** (Mean-Field Gaussian Prior). *The initial latent follows a standard normal distribution:*

$$x_T \sim \mathcal{N}(0, I_d), \quad (33)$$

1428 *where I_d is the d -dimensional identity matrix.*

1429 **Assumption (A6)** (Boundary Regularity). *The score function satisfies regularity conditions: (1)
1430 Vanishing boundary condition: $\lim_{\|x\| \rightarrow \infty} p(x)s(x) = 0$; (2) Finite second moment: $\mathbb{E}[\|s(x)\|^2] < \infty$.*

1458
1459

C.1.1 ASSUMPTION A1: BRIDGING MODEL OUTPUTS TO THEORY

1460
1461
1462

Assumption (A1) enables the first approximation in Eq. 17. All theoretical results (Lemmas 1–3) are derived for *true* score functions $s(x)$. To apply these results to practical metrics computed from model outputs $s_\theta(x)$, we require:

1463
1464

Under Assumption (A1):

1465
1466

$$\mathbb{E}_\theta[\|s_\theta(x, c) - s_\theta(x)\|^2] \approx \mathbb{E}[\|s(x, c) - s(x)\|^2]. \quad (34)$$

1467
1468

Biased score estimations (e.g., due to non-standard training objectives) weaken the connection between measured quantities and the theoretical geometric quantities.

1469
1470

C.1.2 ASSUMPTION A2: ENABLING ANALYTICAL TRACTABILITY

1471

((A2)) is a primary assumptions that enables approximate equivalence in Eq. 4. In particular:

1472
1473

1. Explicit forms for score and Hessian (Eq. 27–28)
2. Closed-form expectations via Eq. 29
3. The second and third approximations in Eq. 17

1474
1475
1476

These three key lemmas rely on (A2) in the following ways:

1477
1478**Lemma 1: Relating Score Norm to Hessian Trace**1479
1480
1481

Lemma 1 (Score Norm and Hessian Trace). *For $x \sim \mathcal{N}(\mu, \Sigma)$:*

1482
1483

$$\mathbb{E}[\|s(x)\|^2] = -\text{tr}(H(x)) = \text{tr}(\Sigma^{-1}). \quad (35)$$

1484
1485

Proof. **Step 1 [Invokes A2]:** Under Gaussianity, $s(x) = -\Sigma^{-1}(x - \mu)$ and $H(x) = -\Sigma^{-1}$.

1486

Step 2: Compute squared norm:

1487
1488

$$\|s(x)\|^2 = (x - \mu)^\top \Sigma^{-2}(x - \mu). \quad (36)$$

1489
1490
1491
1492
1493
1494

Step 3: Apply Eq. 29 with $A = \Sigma^{-2}$:

1495
1496
1497

$$\mathbb{E}[\|s(x)\|^2] = \text{tr}(\Sigma^{-2}\Sigma) = \text{tr}(\Sigma^{-1}) = -\text{tr}(H(x)). \quad (37)$$

□

1498
1499
1500

Interpretation. This lemma converts measurable first-order information ($\|s(x)\|^2$) into second-order geometric information ($\text{tr}(H)$), revealing the distribution’s average curvature.

1501

Lemma 2: Higher-Order Curvature

1502

Lemma 2 (Score-Hessian Product Norm). *For $x \sim \mathcal{N}(\mu, \Sigma)$:*

1503
1504

$$\mathbb{E}[\|H(x)s(x)\|^2] = -\text{tr}((H(x))^3) = \text{tr}(\Sigma^{-3}). \quad (38)$$

1505

Proof. **Step 1 [Invokes A2]:** $H(x) = -\Sigma^{-1}$, $s(x) = -\Sigma^{-1}(x - \mu)$.

1506

Step 2: $H(x)s(x) = \Sigma^{-2}(x - \mu)$, so $\|H(x)s(x)\|^2 = (x - \mu)^\top \Sigma^{-4}(x - \mu)$.

1507

Step 3: Apply Eq. 29:

1508
1509

$$\mathbb{E}[\|H(x)s(x)\|^2] = \text{tr}(\Sigma^{-3}) = -\text{tr}(H^3). \quad (39)$$

□

1510
1511

Interpretation. This measures how rapidly the score changes, quantifying "sharpness" of the probability landscape.

1512 **Lemma 3: CFG Discrepancy Decomposition**1513 **Lemma 3** (CFG Discrepancy Decomposition). *For $x \sim \mathcal{N}(\mu, \Sigma)$ and $x|c \sim \mathcal{N}(\mu_c, \Sigma_c)$:*

1515
$$\mathbb{E}_{x \sim p(x|c)} [\|s(x, c) - s(x)\|^2] = \|H(\mu - \mu_c)\|^2 + \text{tr}[(H - H_c)^2 \Sigma_c], \quad (40)$$

1516 where $H = -\Sigma^{-1}$ and $H_c = -\Sigma_c^{-1}$.

1519 *Proof.* **Step 1 [Invokes A2]:** Under Gaussianity:

1520
$$s(x) = -\Sigma^{-1}(x - \mu), \quad s(x, c) = -\Sigma_c^{-1}(x - \mu_c). \quad (41)$$

1522 **Step 2:** Write the score difference in terms of $(x - \mu_c)$:

1524
$$s(x, c) - s(x) = -\Sigma_c^{-1}(x - \mu_c) + \Sigma^{-1}(x - \mu) \quad (42)$$

1525
$$= -\Sigma_c^{-1}(x - \mu_c) + \Sigma^{-1}(x - \mu_c + \mu_c - \mu) \quad (43)$$

1527
$$= (\Sigma^{-1} - \Sigma_c^{-1})(x - \mu_c) + \Sigma^{-1}(\mu_c - \mu). \quad (44)$$

1529 Define $\Delta H = \Sigma^{-1} - \Sigma_c^{-1} = -(H - H_c)$ and $\Delta \mu = \mu_c - \mu$.

1530 **Step 3:** Compute squared norm:

1532
$$\|s(x, c) - s(x)\|^2 = \|\Delta H(x - \mu_c) + \Sigma^{-1}\Delta\mu\|^2 \quad (45)$$

1533
$$= (x - \mu_c)^\top (\Delta H)^2 (x - \mu_c) + 2(x - \mu_c)^\top \Delta H \Sigma^{-1} \Delta \mu + \|\Sigma^{-1} \Delta \mu\|^2. \quad (46)$$

1535 **Step 4:** Take expectation with $x \sim \mathcal{N}(\mu_c, \Sigma_c)$:

1537
$$\mathbb{E}[\|s(x, c) - s(x)\|^2] \quad (47)$$

1538
$$= \text{tr}[(\Delta H)^2 \Sigma_c] + 0 + \|\Sigma^{-1}(\mu_c - \mu)\|^2 \quad (48)$$

1540
$$= \text{tr}[(H - H_c)^2 \Sigma_c] + \|H(\mu - \mu_c)\|^2, \quad (49)$$

1541 where we used $(\Delta H)^2 = (H - H_c)^2$ and $\Sigma^{-1} = -H$. \square

1543 Together with (A2), (A4) establishes the rightmost approximate equivalence in Eq. 17.

1545 C.1.3 ASSUMPTION A3: ENABLING EARLY DETECTION

1547 Lemmas 1–3 and Proposition C.1.4 provide **static, per-timestep** results. Assumption (A3) extends 1548 these to **trajectory-level predictions**.

1549 Let \mathcal{S}_t denote the distribution of geometric signatures (eigenvalue spectra, NDN values, HED values) 1550 at timestep t . Assumption (A3) requires:

1552
$$\text{Corr}(\mathcal{S}_t^{\text{mem}}, \mathcal{S}_0^{\text{mem}}) \geq \rho_{\min} > 0 \quad \text{for all } t \in [t_{\min}, T]. \quad (50)$$

1554 (A3) provides temporal correlation of geometric signatures, ensuring $t = 50$ measurements predicts 1555 whether the final output at $t = 0$ is memorized.

1556 C.1.4 ASSUMPTION A4: ENABLING EIGENVALUE INTERPRETATION

1558 Assumption (A4) simplifies the trace term in Lemma 3 into interpretable eigenvalue differences, 1559 completing the third \approx in Eq. 17.

1561 Under Assumptions (A2) and (A4):

1562
$$\mathbb{E}_{x \sim p(x|c)} [\|s(x, c) - s(x)\|^2] = \sum_{i=1}^d \frac{(\lambda_i - \lambda_{i,c})^2}{\lambda_{i,c}}, \quad (51)$$

1564 where λ_i and $\lambda_{i,c}$ are eigenvalues of Σ^{-1} and Σ_c^{-1} .

29

1566 *Proof. Step 1 [Invokes A4 - Mean Equality]:* Since $\mu = \mu_c$, the mean term vanishes:
 1567

$$1568 \quad \mathbb{E}[\|s(x, c) - s(x)\|^2] = \text{tr}[(H - H_c)^2 \Sigma_c]. \quad (52)$$

1570 **Step 2 [Invokes A4 - Commutativity]:** Since $\Sigma \Sigma_c = \Sigma_c \Sigma$, they share eigenbasis Q :
 1571

$$1572 \quad \Sigma = Q \text{diag}(1/\lambda_1, \dots, 1/\lambda_d) Q^\top, \quad \Sigma_c = Q \text{diag}(1/\lambda_{1,c}, \dots, 1/\lambda_{d,c}) Q^\top. \quad (53)$$

1573 **Step 3:** The Hessians are:
 1574

$$1575 \quad H = -Q \text{diag}(\lambda_1, \dots, \lambda_d) Q^\top, \quad H_c = -Q \text{diag}(\lambda_{1,c}, \dots, \lambda_{d,c}) Q^\top. \quad (54)$$

1577 **Step 4:** Compute:
 1578

$$1579 \quad (H - H_c)^2 = Q \text{diag}((\lambda_1 - \lambda_{1,c})^2, \dots, (\lambda_d - \lambda_{d,c})^2) Q^\top. \quad (55)$$

1581 **Step 5:** The trace becomes:
 1582

$$1583 \quad \text{tr}[(H - H_c)^2 \Sigma_c] \quad (56)$$

$$1584 \quad = \text{tr}[Q \text{diag}((\lambda_i - \lambda_{i,c})^2) \cdot \text{diag}(1/\lambda_{i,c}) Q^\top] \quad (57)$$

$$1585 \quad = \sum_{i=1}^d \frac{(\lambda_i - \lambda_{i,c})^2}{\lambda_{i,c}}. \quad (58)$$

1588 \square
 1589

1590 (A4) guarantees that:
 1591

- 1592 • Each term $\frac{(\lambda_i - \lambda_{i,c})^2}{\lambda_{i,c}}$ measures the **normalized curvature gap** in direction i
 1593
- 1594 • **Memorization signature:** $\lambda_{i,c} \gg \lambda_i$ (conditional distribution is sharper)
 1595
- 1596 • The sum aggregates across all directions, detecting samples with sharp conditional peaks
 1597

Without commutativity, the trace does not simplify to eigenvalue differences. Instead:
 1598

$$1599 \quad \text{tr}[(H - H_c)^2 \Sigma_c] = \sum_{k,j} (\lambda_k - 1)^2 w_{k,j}, \quad (59)$$

1600 where $w_{k,j}$ are misalignment weights. This requires **generalized eigenvalue analysis**, losing the
 1601 clean directional interpretation.
 1602

1604 C.1.5 ASSUMPTION A5: ENSURING RELIABLE INITIALIZATION

1605 Assumption (A5) ensures Assumption (A2) holds **most accurately at $t = T$** .
 1606

1607 If $x_T \sim \mathcal{N}(0, \Sigma)$ with $\Sigma \neq I$ (e.g., in models with structured priors), the regularizer $\|x_T\|^2$ is
 1608 misspecified. The correct form would be:
 1609

$$1610 \quad \alpha \|x_T\|_{\Sigma^{-1}}^2 = \alpha x_T^\top \Sigma^{-1} x_T. \quad (60)$$

1611 C.1.6 ASSUMPTION A6: PROVIDING TECHNICAL RIGOR

1613 Assumption (A6) serves two purposes:
 1614

- 1615 1. **Enables generalization:** Lemma 1 can be extended beyond Gaussianity
 1616
- 1617 2. **Tolerance bound:** Quantifies permissible deviation from A2

1618 **Lemma 4** (Generalized Score-Hessian Identity). *For x with density $p(x)$ satisfying Assumption (A6):*
 1619

$$1620 \quad \mathbb{E}[\|s(x)\|^2] = -\mathbb{E}[\text{tr}(H(x))]. \quad (61)$$

1620 *Proof.* **Step 1:** Write $\mathbb{E}[\|s(x)\|^2] = \sum_i \int s_i(x)^2 p(x) dx$ where $s_i = \partial_i \log p$.

1621 **Step 2:** Use $s_i(x)p(x) = \partial_i p(x)$:

1623
$$\int s_i(x)^2 p(x) dx = \int s_i(x) \partial_i p(x) dx. \quad (62)$$

1625 **Step 3 [Invokes A6]:** Integrate by parts:

1626
$$= \underbrace{[s_i(x)p(x)]_{-\infty}^{\infty}}_{=0 \text{ by A6}} - \int p(x) \partial_i s_i(x) dx = -\mathbb{E}[\partial_i s_i(x)]. \quad (63)$$

1631 **Step 4:** Recognize $\partial_i s_i = H_{ii}$:

1633
$$\mathbb{E}[\|s(x)\|^2] = -\sum_i \mathbb{E}[H_{ii}(x)] = -\mathbb{E}[\text{tr}(H(x))]. \quad (64)$$

1636 \square

1637 For non-Gaussian $p(x)$, the approximation error can be estimated by:

1639
$$\epsilon_{\text{Gauss}} = |\mathbb{E}[\text{tr}(H(x))] - \text{tr}(-\Sigma^{-1})|. \quad (65)$$

1640 Assumption (A6) ensures this remains bounded via $\mathbb{E}[\|s(x)\|^2] < \infty$.

1643 C.2 IMPLEMENTATION AND SENSITIVITY ANALYSIS OF DIAGNOSTIC MEASUREMENTS

1645 To empirically test the validity of the geometric assumptions listed in Table 1, we implement measurable proxies that translate each assumption into a computable statistic. These diagnostics follow 1646 the framework of Jeon et al. (2024) and are designed to check whether the structural conditions 1647 required for the equivalence relationships in Eq. (4) remain approximately satisfied in practice. Below, 1648 we detail the implementation of each proxy.

1650 Additionally, since these metrics are noisy and have many hyperparameter choices, we also provide 1651 sensitivity analysis with respect to measurement-specific hyperparameter choices on SD 1.4.

1653 **(A1) Unbiased Score Estimation.** The assumption requires that the model’s estimated score function 1654 matches the gradient of the log-density in expectation:

1656
$$\mathbb{E}[s_\theta(x, c) - \nabla_x \log p(x|c)] = 0.$$

1657 We measure *score matching consistency* using Hutchinson’s trace estimator:

1659
$$\mathcal{D}_{\text{A1}} = \left(1 + \left| \nabla \cdot s_\theta(x) + \frac{1}{2} \|s_\theta(x)\|^2 \right| \Big/ \|s_\theta(x)\| \right)^{-1}.$$

1661 High values indicate low bias, ensuring the validity of measurements.

1663 Table 7: Proxy Measure Sensitivity Analysis for \mathcal{D}_{A1} . The Hutchinson trace estimator converges with very few 1664 random vectors, with negligible gain beyond $n = 5$ and are consistent across timestep selection variants. The 1665 choice between Gaussian and Rademacher random vectors has minimal impact.

Test	Hyperparameter	\mathcal{D}_{A1}	Test	Hyperparameter	\mathcal{D}_{A1}
Number of Random Vectors	$n=1$	0.4994 ± 0.0086	RV Distribution	Gaussian	0.4996 ± 0.0036
	$n=2$	0.4983 ± 0.0031		Rademacher	0.4996 ± 0.0022
	$n=3$	0.4987 ± 0.0041	Timestep Selection	$\{0, 2, \dots, 48\}$	0.4986 ± 0.0039
	$n=5$	0.4999 ± 0.0037		$\{47, 48, 49\}$	0.4760 ± 0.0220
	$n=10$	0.5002 ± 0.0027		$\{0, 1, 2\}$	0.5031 ± 0.0021
	$n=20$	0.5002 ± 0.0031		$\{24, 25, 26\}$	0.4993 ± 0.0040
	$n=30$	0.4991 ± 0.0030		$\{12, 25, 37\}$	0.4988 ± 0.0037
	$n=50$	0.4993 ± 0.0024		$\{8, 16, 25, 33, 41\}$	0.4997 ± 0.0031

Table 8: Proxy Measure Sensitivity Analysis for \mathcal{D}_{A2} (Score-Hessian Correlation). Default configuration is every 10 steps, Pearson correlation, 50 eigenvalues, all timesteps. Strided measurements tend to be robust and less noisy. Behaviours with respect to timestep ranges are expected: Gaussianity holds more strongly in earlier stages but weakens as the distribution sharpens into the complex, non-Gaussian data manifold.

Test	Hyperparameter	\mathcal{D}_{A2}	Test	Hyperparameter	\mathcal{D}_{A2}
Timestep Interval	every 1	0.708±0.172	Top- k Eigenvalues	Correlation Method	Pearson 0.981±0.011
	every 2	0.923±0.042		Spearman	0.988±0.021
	every 5	0.976±0.016		10	0.957±0.029
	every 10	0.994±0.006		20	0.974±0.005
	every 20	1.000±0.001		50	0.980±0.010
Timestep Range	all	0.979		100	0.980±0.013
	early $t \in [35, 49]$	0.995		200	0.979±0.012
	mid $t \in [15, 35]$	0.982		500	0.980±0.011
	late $t \in [0, 15]$	0.893			

(A2) Gaussian Local Structure. Assuming local Gaussianity implies a direct proportionality between score-norm and curvature magnitude. We evaluate this via the Pearson correlation:

$$\mathcal{D}_{A2} = \text{corr}(\|s_\theta(x, c)\|^2, -\text{tr}(H_c(x))).$$

This tests whether the identity in Lemma 4.1, originally derived for Gaussian densities, holds approximately for the learned distributions.

(A3) Sharpness Persistence. This assumption states that curvature patterns separating memorized and non-memorized samples persist along the reverse trajectory. We measure the temporal predictability of the curvature landscape through *temporal autocorrelation*. We first construct a spatio-temporal matrix $M \in \mathbb{R}^{T \times N}$ from the Hessian magnitudes. Each spatial feature (column) is then standardized to isolate its unique *evolution pattern* independent of absolute magnitude. We then compute the autocorrelation across several time lags τ , aggregating scores by taking the median correlation across all positions for each lag to ensure robustness. A high final score, averaged across lags, indicates a stable and predictable evolution, upholding the assumption.

Table 9: Proxy Measure Sensitivity Analysis for \mathcal{D}_{A3} (Sharpness Rank Persistence). Default configuration: Jaccard metric with lags (1, 2, 4), all timesteps.

Test	Hyperparam.	\mathcal{D}_{A3}	Test	Hyperparam.	\mathcal{D}_{A3}
Temporal Autocorr:	lag=1	0.324±0.012	Jaccard: Lag Config	lag_1	0.098±0.021
	lag=2	0.320±0.012		lag_1.2	0.096±0.022
	lag=3	0.316±0.013		lag_1.2.4	0.095±0.022
	Max Lag	0.306±0.014		lag_1.3.5	0.093±0.022
	lag=10	0.268±0.016		lag_2.4.8	0.090±0.022

Alternatively, we examined *Hotspot Jaccard Persistence* by measuring the stability of the *locations* of the highest-curvature regions (eigenvalue "hotspots"). We identify the set of dimensions corresponding to the top- q eigenvalues at different timesteps and compute their Jaccard similarity. High similarity indicates that the model's focus on specific geometric directions is stable. This is sensitive to the quantile hyperparameter q .

(A4) Covariance Eigenspace Alignment. Lemma 4.2 requires conditional and unconditional covariance matrices to commute, with aligned eigenspaces. We measure the average singular value of their eigenspace overlap:

$$\mathcal{D}_{A4} = \frac{1}{d} \sum_{i=1}^d \sigma_i(V_c^\top V_u),$$

where V_c and V_u are eigenvector matrices of $\Sigma_{t,c}$ and Σ_t , and $\sigma_i(\cdot)$ denote singular values. Higher \mathcal{A}_{eig} indicates stronger commutativity.

(A5) Mean-Field Gaussian Prior. While we can trivially validate the implementation of the initial noise generator, a numerical diagnostic provides a more rigorous and quantitative verification of this property. The assumption $x_T \sim \mathcal{N}(0, I)$ underlies both early-step detection and the SAIL

1728
1729 Table 10: Proxy Measure Sensitivity Analysis for \mathcal{D}_{A4} (Eigenspace Alignment). Default configura-
1730 tion: 20 samples, 1000 features, 50 eigenvalues.

Test	Hyperparam	Mem	Non-Mem	Test	Hyperparam	Mem	Non-Mem
N Samples	5	0.089 \pm 0.113	0.423 \pm 0.079	N Features	100	0.453 \pm 0.214	0.871 \pm 0.039
	10	0.107 \pm 0.116	0.433 \pm 0.079		500	0.184 \pm 0.170	0.571 \pm 0.081
	15	0.111 \pm 0.117	0.414 \pm 0.079		1000	0.113 \pm 0.122	0.414 \pm 0.086
	<u>20</u>	0.109 \pm 0.115	0.403 \pm 0.086		2000	0.063 \pm 0.073	0.257 \pm 0.069
	30	0.114 \pm 0.126	0.414 \pm 0.085		5000	0.028 \pm 0.035	0.124 \pm 0.043
	50	0.144 \pm 0.146	0.469 \pm 0.097				

1737
1738 objective. We test adherence by comparing empirical initial latents against the Gaussian prior with
1739 a Kolmogorov–Smirnov (KS) test, yielding a p -value:

1740
1741
$$\mathcal{D}_{A5} = \text{KS}(\{x_T\}, \mathcal{N}(0, I)).$$

1742
1743 Table 11: A5 Sensitivity Analysis: Default option are underlined.

Gaussianity Test		Subsample Fraction		Pooling	
Kolmogorov-Simonov	0.8124 \pm 0.22	5%	0.7679 \pm 0.16	Overall	0.8124 \pm 0.22
Shapiro-Wilk	0.5695 \pm 0.23	10%	0.7473 \pm 0.19	Channels (avg)	0.7846 \pm 0.21
Anderson-Darling	0.7527 \pm 0.10	25%	0.7190 \pm 0.26	Blocks (avg)	0.7861 \pm 0.19
Jarque-Bera	0.4540 \pm 0.30	50%	0.8171 \pm 0.21		
D'Agostino-P.	0.4541 \pm 0.30	100%	0.8124 \pm 0.22		

1750
1751 **(A6) Boundary Regularity.** The integration-by-parts arguments used in Jeon et al. (2024) require
1752 $p(x)s(x) \rightarrow 0$ as $\|x\| \rightarrow \infty$ and finite $\mathbb{E}\|s(x)\|^2$. To detect violations, we compute a *score explosion*
1753 *indicator*:

1754
1755
$$\mathcal{D}_{A6} = \frac{\max_x \|s_\theta(x)\|}{\mathbb{E}_x[\|s_\theta(x)\|]}.$$

1756 Values close to one indicate stable score magnitudes, while large ratios signal potential divergence,
1757 undermining the trace–score identity beyond Gaussian settings.1758 Together, these diagnostics allow us to empirically evaluate whether the assumptions underpinning
1759 Lemmas 4.1-4.3 hold in practice. As shown in Table 4, weaker adherence (e.g., in LaVie) corre-
1760 lates with degraded detection AUROC, confirming that deviation from these regularity assumptions
1761 contribute to reduced metric efficacy.1762
1763

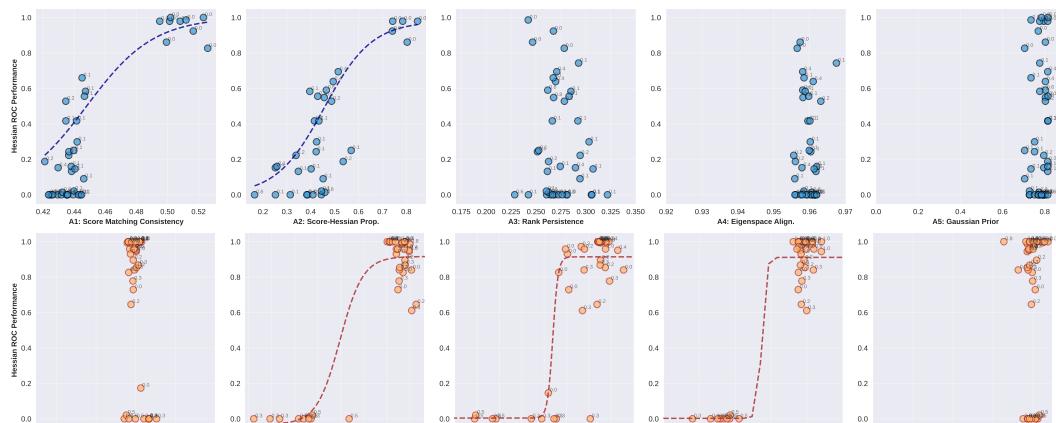
D EXTENDED CONTROLLED EXPERIMENTS

1764
1765 In Sec. 5, we presented results from controlled experiments targeting structured priors (D4). This
1766 appendix provides the full experimental details for all four design choices (D1-D4), illustrating how
1767 specific training protocols can systematically violate the geometric assumptions that memorization
1768 detection metrics rely upon.1769
1770 **(D1) Non-Standard Objectives** To simulate the effect of auxiliary loss terms, we design an ex-
1771 periment that directly targets (A1) Unbiased Score Estimation. We introduce a penalty term to the
1772 standard diffusion loss that systematically biases the model's score predictions. Specifically, the
1773 loss function is modified to $\mathcal{L} = \mathcal{L}_{LDL} + \lambda \cdot \mathbb{E}[\text{ReLU}(\|\epsilon_{\text{pred}}\| - 0.7\|\epsilon_{\text{target}}\|)]$, which encourages
1774 the model to under-predict the magnitude of the noise. By training a series of models with varying
1775 penalty strengths $\lambda \in \{0.0, \dots, 1.0\}$, we create a controlled degradation of the (A1) assumption. The
1776 results, shown in the top row of Fig. 6 (blue plots), confirm a strong correlation. As our diagnostic
1777 for (A1) Score Matching Consistency decreases (indicating a greater violation), the Hessian ROC
1778 performance consistently degrades, demonstrating the critical dependence of the metric on unbiased
score estimates.1779
1780 **(D2) Multi-Stage Distribution Shift** To model the fine-tuning process common in multi-modal
1781 systems, we implement a two-stage protocol where a baseline model trained on CIFAR-10 is sub-
sequently fine-tuned on MNIST data (resized and converted to RGB). The degree of distribution
S=shift is controlled by a parameter $\lambda \in [0, 1]$ that dictates the proportion of MNIST data in the

1782 training mix. This setup is designed to induce violations in (A2) Gaussian Local Structure and
 1783 (A4) Covariance Commutativity by warping the learned probability landscape. Unlike the other
 1784 targeted interventions, this experiment did not yield a clear, monotonic relationship between the de-
 1785 gree of distribution shift (λ) and the measured assumption violations or the final metric performance.
 1786 Sharpness persistence (A3) and covariance commutativity (A4) are most fragile under partial shifts
 1787 (60–80% MNIST), where mixed distributions misalign geometry, but they partly recover once train-
 1788 ing is dominated by the new modality. This suggests that while distribution shifts are a contributing
 1789 factor to metric failure in real-world models, the interaction is complex; the model’s adaptation to a
 1790 new domain does not appear to be a simple linear interpolation, and the geometric consequences are
 1791 less predictable, warranting further investigation.

1792 **(D3) Non-monotonic Schedulers and Alternative Parameterization** To investigate the impact of
 1793 the denoising path itself, we train models using `EulerDiscreteScheduler` as opposed to a
 1794 baseline `DDPMScheduler`. This modification alters the dynamics of the reverse process, which
 1795 is hypothesized to disrupt the temporal consistency of geometric features, thereby violating (A3)
 1796 Sharpness Persistence and (A4) Covariance Commutativity. The results, shown in the bottom row
 1797 of Fig. 6 (orange plots), reveal a dramatic effect. Models trained with the Euler scheduler ex-
 1798 hibit a catastrophic drop in detection performance, which is strongly correlated with severe vi-
 1799 olations of several geometric assumptions, particularly (A2) Score-Hessian Proportionality and (A4)
 1800 Eigenspace Alignment. The sharp, “step-function” like relationship in these plots indicates that
 1801 certain schedulers can induce a regime change that fundamentally breaks the geometric conditions
 1802 required for the detection metric to function.

1803 **(D4) Structured Priors** This experiment, detailed in Sec. 5 of the main text, directly violates (A5)
 1804 Mean-Field Gaussian Prior. We train and evaluate models using initial noise x_T that has an imposed
 1805 structure: either spatial (radial decay patterns) or frequency-based (low-pass filtered noise). The
 1806 strength of this structure is controlled by a parameter λ . As shown in the main text, this direct
 1807 violation of (A5) and its resulting downstream effects on other assumptions correlate strongly with
 1808 a degradation in detection performance.



1827 Figure 6: Detection performance (Hessian ROC) versus assumption adherence under controlled interventions.
 1828 **Top Row (Blue):** Models trained with a **(D1) Non-Standard Objective** show a clear correlation between
 1829 degraded (A1) consistency and lower ROC performance. **Bottom Row (Orange):** Models trained with a **(D3)**
 1830 **Alternative Scheduler** exhibit a catastrophic drop in performance, linked to severe violations of (A2) and (A4).
 1831 Each point represents a trained model.

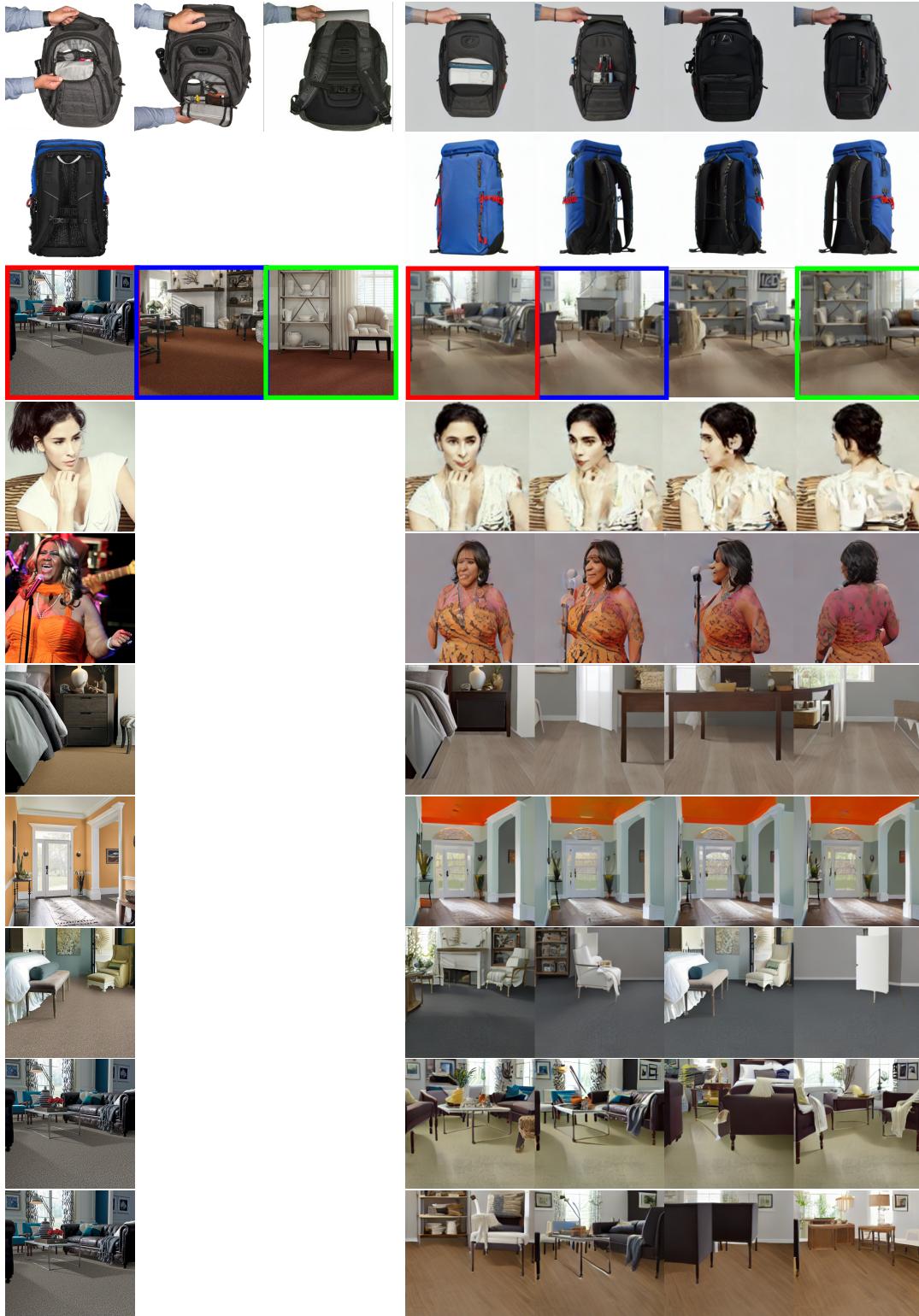
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
E ADDITIONAL VISUALS

Figure 7: Examples of memorized samples inherited by MVDream from SD pre-training stage.

Figure 8: Examples of memorized samples generated by LaVie from both training stages.

Figure 9: Examples of memorized samples generated by DiffSplat from the Objaverse training stage.

