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Abstract
Typed entailment graphs try to learn the en-001
tailment relations between predicates from text002
and model them as edges between predicate003
nodes. The construction of entailment graphs004
usually suffers from severe sparsity and unrelia-005
bility of distributional similarity. We propose a006
two-stage method, Entailment Graph with Tex-007
tual Entailment and Transitivity (EGT2). EGT2008
learns the local entailment relations by recog-009
nizing the textual entailment between template010
sentences formed by typed CCG-parsed pred-011
icates. Based on the generated local graph,012
EGT2 then uses three novel soft transitivity013
constraints to consider the logical transitivity014
in entailment structures. Experiments on bench-015
mark datasets show that EGT2 can well model016
the transitivity in entailment graph to alleviate017
the sparsity, and leads to significant improve-018
ment over current state-of-the-art methods.019

1 Introduction020

Entailment, as an important relation in natural lan-021

guage processing (NLP), is critical to correct se-022

mantic understanding and natural language infer-023

ence (NLI). Entailment relation has been widely024

applied in different NLP tasks such as Question025

Answering, Machine Translation and Knowledge026

Graph Completion. While coming across a ques-027

tion that "Which medicine cures the infection?",028

one can recognize the information "Griseofulvin is029

preferred for the infection," in the corpus and appro-030

priately write down the answer with the knowledge031

that "is preferred for" entails "cures" when their032

arguments are medicines and diseases, although033

the surface form of predicate "cures" does not ex-034

actly appear in the corpus. There are many ways035

to present one question, and it is impossible to036

handle them without understanding the entailment037

relations behind the predicates. Previous works038

about entailment focus on Recognizing Textual En-039

tailment (RTE), and recently reach relatively good040

performance in detecting entailment relations with041

[medicine] is prefer-

red for [disease]

[medicine] 

cures [disease]

[medicine] is 

effective for [disease]

[medicine] is 

related to [disease]

[medicine] 

causes [disease]

t1=medicine

t2=disease

Figure 1: A simple example of entailment graph with
types medicine and disease. The dashed line repre-
sents a missing entailment recovered by considering the
transitivity constraint (red) based on the two premise
entailment between three boldfaced predicates.

the transformer-based language models (He et al., 042

2020; Raffel et al., 2020; Schmitt and Schütze, 043

2021). 044

By modeling typed predicates as nodes and 045

entailment relations as directed edges, the 046

Entailment Graph (EG) is a powerful and 047

well-established form to contain the context- 048

independent entailment relations between predi- 049

cates and the global features of entailment infer- 050

ence, such as paraphrasing and transitivity. As EGs 051

are able to help reasoning without additional con- 052

texts or resource, they can be seen as a special type 053

of structural knowledge in natural language. Fig- 054

ure 1 shows a simple example of entailment graph 055

about two types of arguments, Medicine and Dis- 056

ease. Generally speaking, the entailment graphs 057

are built based on a three-step process: extracting 058

predicate pairs from corpus, building local graphs 059

with locally computed entailment scores, and mod- 060

ifying graphs with global methods. 061

However, existing methods of entailment graphs 062

face different problems in both local and global 063

stages. The Distributional Inclusion Hypothesis 064

(DIH) about entailment assumes that given a predi- 065

cate (relation) p, it can be replaced in any context 066

by another predicate (relation) q if and only if p 067

entails q (Geffet and Dagan, 2005). Most of local 068

methods in previous works are guided by DIH and 069
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thus use the distributional co-occurrence in corpus,070

including named entities, entity pairs and contexts,071

as the features to compute the entailment scores as072

local models. By processing different entailment073

relations of predicate pairs independently, the lo-074

cally built graphs suffer from severe data sparsity.075

The data sparsity means that many correct entail-076

ment relations between predicates are not indicated077

as edges in the graphs while the two predicates do078

not co-occur in the corpus. Furthermore, local mod-079

els often have flaws for logical irrationality, which080

signifies the disobedience of predicates under some081

logical rules, especially transitivity.082

To overcome the problem faced by local models,083

different global approaches are used to take the in-084

teractions and dependencies between entailment re-085

lations into consideration. The global dependency086

firstly implemented is the logical transitivity, which087

implies that predicate a entails predicate c if there088

is another predicate b making both "a entails b"089

and "b entails c" hold simultaneously. Berant et al.090

(2011) uses the Integer Linear Programming (ILP)091

to ensure the transitivity constraints on the entail-092

ment graphs, which is not scalable on large graphs093

with thousands of nodes. Hosseini et al. (2018)094

models the structural similarity across graphs and095

paraphrasing relations within graphs to learn the096

global consistence, but does not achieve high per-097

formance due to the lack of high-quality local098

graphs and the transitivity modeling.099

In order to deal with the problems in local and100

global stage, we propose a novel entailment graph101

learning approach, Entailment Graph with Textual102

Entailment and Transitivity (EGT2). EGT2 builds103

high-quality local entailment graphs by inputting104

predicates as sentences into a transformer-based105

language model fine-tuned on RTE task to avoid106

the unreliability of distributional scores, and mod-107

els the global transitivity on them by designed soft108

constraints losses, which alleviates the data sparsity109

and is available on large-scale local graphs. Our110

key insight is that the entailment relation a → c111

correctly implied by transitivity is based on two112

conditions: (1) the appropriate constraint scalable113

on large graphs containing rich information, and (2)114

the reliability of local graphs offering the premise115

a → b and b → c, which is impractical in distri-116

butional approaches, but maybe available by the117

models well-behaved on RTE tasks. The inputting118

sentences are formed without contexts, which make119

our method accessible to those predicates not ap-120

pearing in the corpus. The transitivity implication 121

is confined to entailment relations with high confi- 122

dence, which improves the quality of implied edges 123

and cuts down the computational overheads. In a 124

word, this paper makes the following contributions: 125

• It presents a new approach based on textual en- 126

tailment to scoring the predicate pairs on local 127

entailment graphs, which is reliable without 128

distributional features and valid for arbitrary 129

predicate pairs. 130

• It presents three meticulously designed global 131

soft constraint loss functions to model the tran- 132

sitivity between entailment relations and al- 133

leviate the data sparsity of local approaches, 134

which are available on large-scale entailment 135

graphs. 136

• The results of extensive experiments on stan- 137

dard benchmarks show that our model, EGT2, 138

significantly outperforms previous approaches 139

of learning entailment graphs. 140

2 Related Work 141

Based on DIH, previous works extract feature vec- 142

tors for typed predicates to compute the local dis- 143

tributional similarities. The set of entity argument 144

pair strings, like "Griseofulvin-infection" in the 145

example of Section 1, are used as the features 146

weighted by Pointwise Mutual Information (Be- 147

rant et al., 2015; Hosseini et al., 2018). Given two 148

feature vectors of predicates, different local simi- 149

larity scores, like cosine similarity, Lin (Lin, 1998), 150

DIRT (Lin and Pantel, 2001), Weeds (Weeds and 151

Weir, 2003) and Balanced Inclusion (Szpektor and 152

Dagan, 2008), are calculated as the local similar- 153

ities. Hosseini et al. (2019) and Hosseini et al. 154

(2021) use Markov Chain on a entity-predicate bi- 155

partial graph weighted by link prediction scores 156

to calculate the transition probability between two 157

predicates as the local score. They rely on the link 158

predication model to calculate the features in fact. 159

Guillou et al. (2020) adds temporal information by 160

extracting the entity pairs within a limited tempo- 161

ral window as predicate features. McKenna et al. 162

(2021) extends the graphs to include entailment re- 163

lations between predicate with different numbers of 164

arguments by splitting the features from argument 165

pairs into independent entity slots, which impairs 166

the representation ability of features. 167

As mentioned in Section 1, entailment graphs are 168

generally learned by imposing global constraints 169
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on the local entailment relations about extracted170

predicates. The transitivity in entailment graph is171

modeled by the Integer Linear Programming (ILP)172

in Berant et al. (2011), which selects a transitive173

sub-graph of local weighted graph to maximize the174

summation over the weights of its edges. Their175

work is limited to a few hundreds of predicates due176

to the computational complexity of ILP. For better177

scalability, Berant et al. (2012) and Berant et al.178

(2015) propose a strong FRG-assumption that "if179

predicate a entails predicates b and c, b and c entail180

each other", and an approximation method, called181

Tree-Node-Fix (TNF). Obviously, the assumption182

is too strong to be satisfied by real cases.183

Because the hard constraints show bad scalabil-184

ity on large-scale entailment graphs, Hosseini et al.185

(2018) proposes two global soft constraints that186

maintain the similarity between paraphrasing pred-187

icates within typed graphs and between predicates188

with the same names in graphs with different argu-189

ment types. Their soft constraints are also used in190

Hosseini et al. (2019) and Hosseini et al. (2021).191

The first similarity implicitly takes the transitivity192

between paraphrasing predicates and third predi-193

cate into consideration, but ignores the transitivity194

in more common cases, and leads to a limited im-195

provement on performance.196

Meanwhile, the transformer-based Language197

Model (LM), although proved to be effective in198

RTE tasks (He et al., 2020; Raffel et al., 2020;199

Schmitt and Schütze, 2021), is not widely used in200

entailment graph learning. Hosseini et al. (2021)201

uses pretrained BERT to initialize the contextual-202

ized embeddings in their contextualized link predic-203

tion and entailment score calculation. High scores204

are assigned to the entailed predicates in the context205

of their premises, which is one implicit expression206

form of DIH and quite different from our direct207

utilization of LM on textual entailment.208

3 Our Method: EGT2209

3.1 Definition and Notations210

The target of entailment graph learning is to ex-211

tract predicates, learn the entailment relations212

and build entailment graphs from raw text cor-213

pus. Following previous works (Hosseini et al.,214

2018, 2019), we use the binary relations from215

neo-Davisonian semantics as predicates, which is216

a type of first-order logic with event identifiers.217

For instance, the sentence "Griseofulvin is pre-218

ferred for the infection." contains the predicate219

p =(prefer.2,prefer.for.2,medicine,disease), and the 220

sentence "Griseofulvin cures the infection." con- 221

tains q =(cure.1,cure.2,medicine,disease). The 222

numbers after the predicate words are correspond- 223

ing argument positions of entity "Griseofulvin" 224

and "infection", and the later two items are the 225

types of arguments. Formally, a predicate with 226

argument types t1 and t2 is represented as p = 227

(wp,1.ip,1, wp,2.ip,2, t1, t2). The predicate form is 228

strong enough to describe most of the relations in 229

real cases. 230

With T as the set of types and P as the set of 231

all typed predicates, V (t1, t2) contains typed pred- 232

icates p with unordered argument type t1 and t2, 233

where p ∈ P and t1, t2 ∈ T . For predicate p = 234

(wp,1.ip,1, wp,2.ip,2, t1, t2), we denote that τ1(p) = 235

t1, τ2(p) = t2 and π(p) = (wp,1.ip,1, wp,2.ip,2). In 236

other words, V (t1, t2) = {p|(τ1(p) = t1∧τ2(p) = 237

t2) ∨ (τ1(p) = t2 ∧ τ2(p) = t1)}. 238

A typed entailment graph G(t1, t2) =< 239

V (t1, t2), E(t1, t2) > is composed of the nodes 240

of typed predicates V (t1, t2) and the weighted 241

edges E(t1, t2). The edges can be also rep- 242

resented as sparse score matrix W (t1, t2) ∈ 243

[0, 1]|V (t1,t2)|×|V (t1,t2)|, containing the entailment 244

scores between predicates with type t1 and t2. As 245

the different argument types can naturally deter- 246

mine whether two predicates have the same order of 247

arguments, the order of argument type is not impor- 248

tant while t1 ̸= t2, and therefore we can ensure that 249

G(t1, t2) = G(t2, t1). For those predicates p with 250

τ1(p) = τ2(p), the two argument types are labeled 251

with orders, which allows the graph to contain the 252

entailment relations with different argument or- 253

ders, like (be.1,be.capital.of.2,location1,location2) 254

→ (contain.1,contain.2,location2,location1). 255

3.2 Local Entailment based on Textual 256

Entailment 257

Inspired by the outstanding performance of pre- 258

trained and fine-tuned LMs on RTE task, which is 259

closely related to the entailment graphs, EGT2 uses 260

fine-tuned transformer-based LM to calculate the 261

local entailment scores of typed predicated pairs. 262

In order to utilize the knowledge about entail- 263

ment relations in pretrained and fine-tuned LM, 264

EGT2 firstly transfers the predicate pair (p, q) into 265

corresponding sentence pair (S(p), S(q)) by sen- 266

tence generator S, as the complicated predicates 267

cannot be directly inputted into the LM. For typed 268

predicate p = (wp,1.ip,1, wp,2.ip,2, t1, t2), the gen- 269
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Table 1: Examples of sentence generator S.

Predicates Sentences
(be.1,be.capital.of.2,location1,location2) Location A is capital of Location B.
(contain.1,contain.2,location2,location1) Location B contains Location A.
(prefer.2,prefer.for.2,medicine,disease) Medicine A is preferred for Disease B.
(give.2,give.3,person,thing) Person A is given Thing B.
(aggrieved.by.2,aggrieved.felt.1,thing,person) Person B feels aggrieved by Thing A.

erator deduces the positions of arguments about270

the predicate based on ip,1 and ip,2, generates the271

surface form of p based on wp,1 and wp,2, and272

finally concatenates the surface form with capi-273

talized types as its arguments. Some generated274

examples are shown in Table 1, and the detailed275

algorithm of S is described in Appendix A.276

After generating sentence pair (S(p), S(q)) for277

predicate pair (p, q), EGT2 inputs (S(p), S(q))278

into a transformer-based LM to calculate the prob-279

ability of the entailment relation p → q as the local280

entailment score in G(t1, t2). In our experiments,281

the LM is implemented as DeBERTa (He et al.,282

2020). Generally, an entailment-oriented LM will283

output three scores for a sentence pair, represent-284

ing the probability of relationship entail, contra-285

dict and neutral respectively. Formally, we denote286

the weighted matrix of local entailment graph with287

type t1 and t2 as W local, and the weight of the edge288

between p and q in W local is calculated as:289

W local
p,q = P (p → q) ∈ [0, 1],

P (p → q) =
eLM(entail|p,q)∑

r∈{entail,contradict,neutral} e
LM(r|p,q) ,

(1)290

where LM(r|p, q) is the output score of corre-291

sponding relationship by the LM. As the local en-292

tailment is based on the LM fine-tuned to perform293

textual entailment, the local graph can be built for294

any predicates in the parsed semantic form, or in295

any other forms by changing sentence generator S.296

3.3 Global Entailment with Soft Transitivity297

Constraint298

Existing approaches use global learning to find299

correct entailment relations which are missing or300

despised in local entailment graphs to overcome301

the data sparsity. Following Hosseini et al. (2018),302

the evidence from existing local edges with high303

confidence is used by EGT2 to predict missing304

edges in the entailment graphs.305

The transitivity in entailment relation inference 306

implies a → c while both a → b and b → c hold. 307

For instance, in the example of Figure 1, the en- 308

tailment "is preferred for" → "is effective for" is 309

discovered because "is preferred for" → "cures" 310

and "cures" → "is effective for" have been learned. 311

The key challenge to incorporate the transitivity 312

constraint into weighted graphs is discreteness of 313

logical rules. Discreteness makes the rules impos- 314

sible to be directly used in gradient-based learning 315

methods without NP-hard complexity, as differ- 316

ent predicate pairs are jointly involved in the cal- 317

culation. To unify the discrete logical rules with 318

gradient-based learning, inspired by Li et al. (2019), 319

EGT2 uses the logical constraints in the form of dif- 320

ferentiable triangular norms (Gupta and Qi, 1991; 321

Klement et al., 2013), or called t-norms, as the 322

soft constraints so that the gradient-based learning 323

methods can be applied. 324

Different t-norm methods transfer the discrete 325

rules into different continuous loss functions. Tra- 326

ditional product t-norm maps P (A ∧ B) into 327

P (A)P (B), P (A ∨ B) into P (A) + P (B) − 328

P (A)P (B), and P (A → B) into min(1, P (B)
P (A) ). 329

For the entailment relations, the probability of tran- 330

sitivity to be satisfied is: 331

P [(a → b ∧ b → c) → (a → c)]

=min(1,
Wa,c

Wa,bWb,c
),

(2) 332

where the probability of the entailment relation 333

a → b is represented by the local entailment scores 334

Wa,b. To alleviate the noise from those edges as- 335

signed low confidence by local LM, EGT2 only 336

takes the local edges whose scores are higher than 337

1− ϵ into account (as a → b and b → c), where ϵ 338

is a small hyper-parameter because the local proba- 339

bility scores tend to be close to 0 or 1 in practice. 340

Therefore, to maximize the probability of transi- 341

tivity constraint satisfied over all predicates in the 342

entailment graph G(t1, t2), EGT2 tries to minimize 343

the following minus-log-likelihood loss function 344
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L1 = −log
∏

a,b,c∈V (t1,t2),
Wa,b,Wb,c>1−ϵ

min(1,
Wa,c

Wa,bWb,c
)

=
∑

a,b,c∈V (t1,t2)

I1−ϵ(Wa,b)I1−ϵ(Wb,c)ReLU(logWa,b + logWb,c − logWa,c)

L2 =
∑

a,b,c∈V (t1,t2)

−I1−ϵ(Wa,b)I1−ϵ(Wb,c)I0(Wa,bWb,c −Wa,c)logWa,c

L3 =
∑

a,b,c∈V (t1,t2)

−I1−ϵ(Wa,b)I1−ϵ(Wb,c)I0(Wa,bWb,c −Wa,c)Wa,bWb,clogWa,c

(3)

L1 in Eq. 3, where Iy(x) = 1 if x > y, or 0345

otherwise.346

Another important t-norm, called the Gödel t-347

norm, maps P (A → B) into 1 if P (B) ≥ P (A) or348

P (B) otherwise. Therefore, the Gödel probability349

of transitivity to be satisfied is:350

P [(a → b ∧ b → c) → (a → c)]

=

{
Wa,c Wa,bWb,c > Wa,c

1 otherwise
,

(4)351

and EGT2 similarly tries to minimize the loss func-352

tion L2 in Eq. 3. It should be noted that transitivity353

constraints will be disobeyed not only by the miss-354

ing edges, but also by the spurious edges in the355

local graphs. Therefore, we expect the soft con-356

straints to take reducing the weights of premise357

edges into consideration. L1 do this by the loss358

item Wa,b and Wb,c, and we modify L2 to L3 in Eq.359

3 so that the low confidence of Wa,c will help to360

detect whether Wa,b and Wb,c are spurious.361

Given the local entailment graph G(t1, t2) with362

weighted edges W local, in order to ensure that the363

global entailment graph W is not too far from364

W local, EGT2 finally minimizes the following loss365

function L to trade off the distance from local366

graphs and the soft transitivity constraint:367

L =
∑
a,b∈V

(Wa,b −W local
a,b )2 + λLi, i = 1, 2, 3

(5)368

where Li is the specified implementation of soft369

transitivity constraint in Eq. 3, and λ is a non-370

negative hyper-parameter that controls the influ-371

ence of two loss terms.372

4 Experimental Setup373

4.1 Predicate Extraction374

Following Hosseini et al. (2018) and Hosseini et al.375

(2019), we use the multiple-source NewsSpike376

corpus (Zhang and Weld, 2013), which contains 377

550K news articles, to extract binary relations as 378

generated predicates in EGT2. We make use of 379

the triples released and filtered in Hosseini et al. 380

(2019), which applies GraphParser (Reddy et al., 381

2014) based on Combinatorial Categorial Gram- 382

mar (CCG) syntactic derivations to extracting bi- 383

nary relations between predicates and arguments. 384

The argument entities are linked to Freebase (Bol- 385

lacker et al., 2008) and mapped to the first level of 386

the FIGER types (Ling and Weld, 2012) hierarchy. 387

The type of a predicate is determined by its two 388

corresponding argument entities. The triples are 389

filtered by two rules to remove the noisy binary 390

relations and arguments: (1) we only keep those 391

argument-pairs appearing in at least 3 relations; (2) 392

we only keep those relations with at least 3 different 393

argument-pairs. The number of relations in the cor- 394

pus is reduced from 26M to 3.9M, covering 304K 395

typed predicates in 355 typed entailment graphs. 396

4.2 Evaluation Datasets and Metrics 397

We use Levy/Holt Dataset (Levy and Dagan, 2016; 398

Holt, 2018) and Berant Dataset (Berant et al., 2011) 399

to evaluate the performance of entailment graph 400

models. 401

In Levy’s dataset, each example contains a pair 402

of triple with the same entities but different pred- 403

icates. Some questions with one predicate were 404

shown to the annotating workers, like "Which 405

medicine cures the infection?". The label for 406

each example are either True or False, indicating 407

whether the first typed predicate entails the sec- 408

ond one, by asking the workers whether the first 409

predicates can answer the question with the sec- 410

ond one. For example, if "Griseofulvin is preferred 411

for the infection" is a correct answer of the above 412

question, the dataset labels "is preferred for" → 413

"cures". Holt (2018) re-annotates Levy’s dataset 414

and forms the renewed dataset with 18,407 exam- 415
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ples (3,916 positive and 14,491 negative), referred416

as Levy/Holt Dataset. The dataset is split into val-417

idation set (30%) and test set (70%) as Hosseini418

et al. (2018) in our experiments.419

Berant et al. (2011) annotates all the entailment420

relations in their corpus, which generates 3,427421

positive and 35,585 negative examples, referred as422

Berant Dataset. Their entity types do not exactly423

match with the first level of FIGER types hierarchy,424

and therefore a simple hand-mapping by Hosseini425

et al. (2018) is used to unify the predicate types.426

To be comparable with previous works, we eval-427

uate our methods on the test set of Levy/Holt428

Dataset and the whole Berant Dataset by calcu-429

lating the area under the curves (AUC) with chang-430

ing the classification threshold of global entailment431

scores. Hosseini et al. (2018) argues that the AUC432

of Precision-Recall Curve (PRC) for precisions in433

the range [0.5, 1], as predictions with higher preci-434

sion than random are more important for the down-435

stream applications. Therefore, we report both the436

AUC of PRC for precisions in the range [0.5, 1] and437

the traditional AUC of ROC, which is more widely438

used in evaluation of other tasks.439

4.3 Comparison Methods440

We compare our model with existing entailment441

graph construction methods (Berant et al., 2011;442

Hosseini et al., 2018, 2019, 2021) and the best local443

distributional method, Balanced Inclusion (Szpek-444

tor and Dagan, 2008) , referred as BInc. We also445

include ablation variants of our EGT2, including446

local models with or without fine-tuning.447

4.4 Implementation Details448

For local transformer-based LM, EGT2 uses De-449

BERTa (He et al., 2020) implemented by the Hug-450

ging Face transformers library (Wolf et al., 2019)1,451

which has been fine-tuned on MNLI (Williams452

et al., 2018) dataset. In order to adapt it to the spe-453

cial type-oriented sentence pattern generated by S,454

we expand the validation set by extracting all of the455

predicates, generating sentence pairs by generator456

S for every two predicates, and checking whether457

they are labeled as paraphrase or entailment in the458

Paraphrase Database collection (PPDB) (Pavlick459

et al., 2015). We split 80% of the generated corpus460

to fine-tune the DeBERTa with Cross-Entropy Loss,461

and the rest as the validation set of fine-tuning pro-462

cess. The fine-tuning learning rate αf = 10−5,463

1https://github.com/huggingface/transformers

Table 2: Model performance on Levy/Holt Dataset and
Berant Dataset. The best performances on every metric
are boldfaced. Results with ∗ are from original papers,
as they did not share the codes or implementation details
to reproduce the results.

Methods Levy/Holt Berant
Metrics PRC ROC PRC ROC
BInc .155 .632 .147 .677
Local-Sup .161 .632 .129 .651
Hosseini18 .163 .637 .174 .682
Hosseini19∗ .187 - - -
- Local .167 .639 .118 .378
Hosseini21∗ .195 - - -
EGT2-Local .313 .712 .360 .857
- w/o Fine-tuning .234 .673 .147 .732
EGT2-L1 .345 .761 .437 .880
EGT2-L2 .319 .755 .361 .879
EGT2-L3 .356 .755 .443 .871

and the process is terminated while the F1 score 464

of entail on validation set does not increase in 10 465

epochs or training after 100 epochs. 466

For global soft transitivity constrains, we use 467

SGD (Cun et al., 1998) to optimize the scores W in 468

entailment graphs with loss function L in Eq. 5 for 469

e = 5 epochs. The SGD learning rate α = 0.05, 470

the coefficient λ = 1, and the confidence threshold 471

ϵ = 0.02. The hyper-parameters are selected based 472

on Levy/Holt validation dataset. More implemen- 473

tation details are given in Appendix B. 474

For testing, if one or both predicates of the ex- 475

ample do not appear in the corresponding typed 476

entailment graph, we handle the example as un- 477

typed one by resorting to its average score among 478

all typed entailment graphs. This setting is used for 479

all methods in the experiments for fair comparison. 480

5 Experiment Results and Discussion 481

5.1 Main Results 482

We summarize the model performances on both 483

Levy/Holt and Berant datasets in Table 2. All 484

global methods, including Hosseini et al. (2018), 485

Hosseini et al. (2019) and EGT2, perform bet- 486

ter than their corresponding local methods, which 487

demonstrates the effect of global constraints in 488

alleviating the data sparsity. Although using the 489

same extracted entailment relations with Hosseini 490

et al. (2019), our EGT2-Local significantly outper- 491

forms previous local methods because of the high- 492

quality entailment scores generated by reliable fine- 493
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Figure 2: The Precision-Recall Curves of different methods on (a) Levy/Holt Dataset and (b) Berant Dataset. The
result of Berant et al. (2011) is shown as a point, as they generate entailment graphs without weight.

tuned textual entailment LM. On the whole, EGT2494

with transitivity constraint L3 outperforms all the495

other models on both Levy/Holt Dataset and Be-496

rant Dataset with AUC of PRC, while EGT2-L1497

performs best with AUC of ROC. All of three soft498

transitivity constraints boost the performance of499

local model on all evaluation metrics, which shows500

that making use of transitivity rule between entail-501

ment relations improves the local entailment graph.502

EGT2-L1 or EGT2-L3 performs better than EGT2-503

L2, which indicates that involving the premises504

a → b and b → c into loss function is also impor-505

tant for using transitivity constraints.506

The Precision-Recall Curves of different meth-507

ods and the Precision-Recall Point of Berant et al.508

(2011) on the two evaluation datasets are shown in509

Figure 2(a) and 2(b) respectively. The local and510

global models of EGT2 consistently outperform511

previous state-of-the-art methods on all levels of512

precision and recall, which indicates the effect of513

our local model based on textual entailment and514

global soft constraints based on transitivity. The515

EGT2-Local achieves slightly higher precision than516

global models in the range recall < 0.5, but its517

precision drops quickly if we requires higher re-518

call and therefore leads to worse performance than519

global models. The result indicates that global520

models with transitivity constraints gain significant521

improvement on recall with far less expense on522

precision than EGT2-Local.523

5.2 How the local model fine-tuning works?524

As referred in Section 4.4, a new corpus is gener-525

ated for fine-tuning the local model. We claim that526

Table 3: The number of testing examples appearing in
entailment graphs learnt by corresponding models .

Methods Positive # Negative #
EGT2-Local 378 75
EGT2-L1 642 174
EGT2-L2 783 277
EGT2-L3 685 190

the fine-tuning corpus helps to improve the perfor- 527

mance of EGT2-Local by adapting it to the special 528

sentence pattern by S, rather than offering addi- 529

tional data to fit the distribution of target datasets 530

as traditional training datasets do. To prove this, we 531

also test a simple supervised method, labelled as 532

Local-Sup, which fits a 2-layers feedforward neural 533

network on the fine-tuning corpus with cosine sim- 534

ilarity, Weed, Lin and BInc scores as features. If 535

the corpus acts as training dataset, the performance 536

of Local-Sup should be obviously better than its 537

unsupervised features. 538

As shown in Table 2, Local-Sup does not per- 539

form significantly better on Levy/Holt Dataset, and 540

even worse on Berant Dataset than BInc, which is 541

one of the inputting features of Local-Sup. The 542

result illustrates the difference between the fine- 543

tuning corpus and the evaluation datasets, and 544

shows that the corpus plays a role as pattern adapt- 545

ing corpus rather than training dataset. 546

5.3 Why are global constraints helpful? 547

In Section 1, we expect that the improvement of 548

soft transitivity constraints is attributed to the alle- 549

viation of data sparsity in corpus. To examine the 550

7



sparsity before and after the applying of transitivity551

constraints, we count how many the positive and552

negative entailment relations in the Levy/Holt test553

set exactly appear in the local and global entail-554

ment graph respectively, and show the counting555

results in Table 3. All three soft transitivity con-556

straints help to find more entailment relations than557

local entailment graph and therefore achieve better558

performance on the evaluation datasets. Although559

EGT2-L2 finds the most entailment relations in560

the dataset in global stage, it finds more negative561

examples concurrently and thus performs worse562

than L1 and L3 as shown in Table 2. On the other563

hand, EGT2-L1 and EGT2-L3 obtain more propor-564

tions of positive examples by considering premise565

relations during the gradient calculation. The low566

confidence of hypothesis relationship Wa,c should567

be helpful to detect spurious premises Wa,b and568

Wb,c. Therefore, EGT2-L3 slightly outperforms569

EGT2-L1 as the gradients of Wa,b and Wb,c in L3570

are related to the hypothesis relationship Wa,c.571

We have also applied the soft transitivity con-572

straints on the local graph with BInc and Hos-573

seini et al. (2019), but observed only slightly im-574

provement of performance, as .155 → .157 and575

.167 → .170 for EGT2-L3 on PRC of Levy/Holt576

Dataset respectively. Comparing it with the signifi-577

cant improvement based on EGT2-Local, we claim578

that the high-quality local entailment graphs are579

the basis of effective soft transitivity constraints.580

5.4 Error Analysis581

We randomly sample and analyze 100 false pos-582

itive (FP) examples and 100 false negative (FN)583

examples from Levy/Holt test set according to pre-584

dictions by EGT2-L3. We manually setup the deci-585

sion threshold as 0.574 to make the precision level586

close to 0.76, which is the same as Berant et al.587

(2011). The major error types are shown in Table 4.588

Although the global constraint is used, about half589

of FN errors are due to the data sparsity where the590

entailment relations are not found in the entailment591

graph. When compared with the results in Hosseini592

et al. (2018), EGT2-L3 reduces the ratio of Sparsity593

in FN errors from 93% to 46% with stronger allevi-594

ation ability of data sparsity. About a quarter of FN595

are caused by the Under-weighted Relations in the596

graph, where EGT2 finds the entailment relations597

but gives them scores lower than the threshold.598

Most of FP errors are caused by the Spurious599

Correlation as these relations are too fraudulent for600

Table 4: The major error types of false positive and false
negative predictions by EGT2-L3 in Levy/Holt test set,
with predicted scores.

Error Types Examples
False Negative

Sparsity (46%)
Pain relieves by application
of Chloroform. → Chloro-
form reduces pain. (0.0)

Under-weighted
Relations (23%)

The Druids build the
Stonehenge. → The Druids
construct the Stonehenge.
(0.558)

Dataset Wrong
Labels (31%)

Salicylates reduces pain.
→ Salicylates is given for
pain. (0.034)

False Positive
Spurious Cor-
relation (68%)

The cat sleeps on a fur. →
The cat has a fur. (0.683)

Lemma-based
Process (5%)

Lincoln comes to New
York. → Lincoln comes
from New York. (0.867)

Dataset Wrong
Labels (27%)

The lamps are made of
metal. → the lamps are
made of metal. (1.0)

EGT2 to see through their spurious relationships 601

and consequently given high scores. A few FP 602

errors are caused by Lemma-based Processing in 603

LM inevitably, but the ratio still reduces from 12% 604

in Hosseini et al. (2018) to 5%. The result indicates 605

that our fine-tuned LM can handle the predicates 606

even with similar surface forms and contexts better 607

than parsing-based distributional local features. 608

6 Conclusions 609

In this paper, we propose a novel typed entailment 610

graphs learning framework, EGT2, which utilizes 611

fine-tuned textual entailment LM to calculate lo- 612

cal entailment scores and applies soft transitivity 613

constraints to learn global entailment graphs in 614

gradient-based method. The transitivity constraints 615

are achieved by carefully designed loss functions, 616

and effectively boost the quality of local entail- 617

ment graphs. By using the fine-tuned local LM 618

and global soft constraints, EGT2 does not rely on 619

distributional features, and can be easily applied 620

to large-scale graphs. Experiments on standard 621

benchmark datasets show that EGT2 achieves sig- 622

nificantly better performance than existing state-of- 623

the-art entailment graph methods. 624
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A Algorithm for Sentence Generator784

Algorithm 1 The sentence generator S.
Require: p = (wp,1.ip,1, wp,2.ip,2, t1, t2): a typed predi-

cate;
Ensure: Sentence S(p)
1: if Order of (t1,t2) is equal to graph types then
2: Actor1 = concat(t1,"A")
3: Actor2 = concat(t2,"B")
4: else
5: Actor1 = concat(t1,"B")
6: Actor2 = concat(t2,"A")
7: end if
8: if The first word of wp,1 or wp,2 is not a verb then
9: wp,1 = concat("is",wp,1)

10: wp,2 = concat("is",wp,2)
11: end if
12: Active1=Boolean(ip,1 = 1)
13: Active2=Boolean(ip,2 = 1)
14: MinLen=min(Length(wp,1),Length(wp,2))
15: MML=max i, s.t.wp,1[1:i]=wp,2[1:i]
16: Pathway=Boolean(MML=MinLen)
17: if Active1 and Active2 then
18: if Pathway then
19: return concat(Actor1,"and",Actor2,wp,1[1:

MinLen])
20: end if
21: return concat(Actor1,"and",Actor2,wp,1[1])
22: end if
23: if Active1 and not Active2 then
24: if Pathway then
25: Act=wp,1

26: if Length(wp,1)<MinLen then
27: Act=wp,2

28: end if
29: return concat(Actor1,Act,Actor2)
30: end if
31: return concat(Actor1,wp,1,"Something",

wp,2[MML+1:],Actor2)
32: end if
33: if Active2 and not Active1 then
34: if The first words of wp,1 is verb then
35: return concat(Actor1,Reverse(

wp,2[MML:]),"to",wp,1,Actor2)
36: end if
37: return concat(Actor1,Reverse(wp,2),

wp,1[MML:],Actor2)
38: end if
39: if Pathway then
40: return concat(Actor1,Passive(wp,1),

wp,2[MML:],Actor2)
41: end if
42: return concat("Something",wp,1,Actor1,

wp,2[MML:],Actor2)

B Additional Implementation Details 785

We select the SGD learning rate α from 786

{0.02, 0.05, 0.1}, the number of training 787

epochs from {2, 3, 5, 7}, the coefficient λ 788

from {0.5, 1, 2}, and the confidence threshold 789

ϵ from {0.005, 0.01, 0.02}. We manually tune 790

the hyper-parameters based on the AUC of PRC 791

on Levy/Holt validation dataset, which is .327 792

corresponding to our settings. 793

Under our experiment settings, one training 794

epoch costs about 4 hours on an NVIDIA A40 795

GPU. 796
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