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A B S T R A C T

Numerous studies have demonstrated that biological sequences, such as DNA, RNA, and peptide, can be 
considered the “language of life”. Utilizing pre-trained language models (LMs) like ESM2, GPT, and BERT have 
yielded state-of-the-art (SOTA) results in many cases. However, the increasing size of datasets exponentially 
escalates the time and hardware resources required for fine-tuning a complete LM. This paper assumed that 
natural language shared linguistic logic with the “language of life” like peptides. We took the LM BERT model as 
an example in a novel Principal Component Analysis (PCA)-based Ying-Yang dilution network of the inter- and 
intra-BERT layers, termed TaiChiNet, for feature representation of peptide sequences. The Ying-Yang dilution 
architecture fuses the PCA transformation matrices trained on positive and negative samples, respectively. We 
transferred the TaiChiNet features into a subtractive layer feature space and observed that TaiChiNet just rotated 
the original subtractive features with a certain angle and didn’t change the relative distance among the di-
mensions. TaiChiNet-engineered features together with the hand-crafted (HC) ones were integrated for the 
prediction model of anti-coronavirus peptides (TaiChiACVP). Experimental results demonstrated that the Tai-
ChiACVP model achieved new SOTA performance and remarkably short training time on five imbalanced 
datasets established for the anti-coronavirus peptide (ACVP) prediction task. The decision paths of the random 
forest classifier illustrated that TaiChiNet features can complement HC features for better decisions. TaiChiNet 
has also learned the latent features significantly correlated with physicochemical properties including molecular 
weight. This makes an explainable connection between the deep learning-represented features and the ACVP- 
associated physicochemical properties. Additionally, we extended our work to the other LMs, including ESM2 
with 6 and 12 layers, ProGen2 small and base version, ProtBERT, and ProtGPT2. Due to the limitations of these 
recent LMs, none of them outperforms TaiChiACVP. However, some limitations of TaiChiNet remained to be 
investigated in the future, including learnable rotation degrees, extended fusions of more layers, and end-to-end 
training architecture. The source code is freely available at: http://www.healthinformaticslab.org/supp/reso 
urces.php.

1. Introduction

The recent outbreak of the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) caused a world-wide pandemic of acute 

respiratory disease called coronavirus disease 2019 (COVID-19), which 
has substantially increased the research community’s interest on 
developing new SARS-CoV-2 vaccines (Amanat & Krammer, 2020; 
Dong, et al., 2020; Krammer, 2020) and forecasting the driver mutations 
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in the future SARS-CoV-2 strains of concern (Maher, et al., 2022). Anti- 
microbial peptides (AMPs) have emerged as a promising treatment op-
tion in light of the escalating antibiotic resistance (Prevention, 2019; 
Renaud & Mansbach, 2023; Wan, Kontogiorgos-Heintz, & de la Fuente- 
Nunez, 2022). These peptides exhibit a wide range of biological activ-
ities, such as anti-virus, anti-coronavirus, and anti-fungi, among others 
(Bin Hafeez, Jiang, Bergen, & Zhu, 2021).

Accurately identifying AMPs is crucial for the discovery of novel anti- 
microbial drugs and treatments. Anti-coronavirus peptide (ACVP) is one 
kind of AMP, and has been reported as pivotal therapeutic agents against 
coronavirus (Y. Pang, Wang, Jhong, & Lee, 2021). Zhang et al., 
discovered an anti-microbial peptide DP7 with potential activities 
against coronavirus infections via computer screening and wet-lab 
experimental confirmation (R. Zhang, et al., 2021). Another study 
observed that the positive interfacial hydrophobicity of the peptide LL- 
37 resulted in disruption of COVID-19 viral membrane (Nireeksha, 
Gollapalli, Varma, Hegde, & Kumari, 2022). The recent advancement of 
artificial intelligence (AI) technologies has facilitated the development 
of efficient AMP and ACVP identifications and characterizations.

The enhanced generalization capability of LMs relies on extensive 
training data and high computational requirement (Yang, et al., 2023). 
These characteristics often impeded the widespread adoptions of LMs in 
small- and medium-sized enterprises as well as academic institutions 
with limited computing resources. This issue may be addressed by model 
compression techniques, including pruning (Gordon, Duh, & Andrews, 
2020; Han, Mao, & Dally, 2015; Paul Michel and Neubig, 2019), 
quantization (Han, et al., 2015), and distillation (Geffrey Hinton and 
Dean, 2015; Jiao, et al., 2020; Sanh, Debut, Chaumond, & Wolf, 2019). 

These approaches aim to build simplified versions of LMs with reduced 
computing resource requirements and similarly good prediction per-
formances for resource-constrained settings.

This study introduced a novel principal component analysis (PCA)- 
based Ying-Yang dilution strategy, termed TaiChiNet, for the trans-
former encoder-based layers of the LM BERT model. We applied the 
TaiChiNet-engineered features with five distinct types of HC features to 
the ACVP prediction task, and outperformed the existing algorithms on 
the benchmark PreAntiCoV datasets. The key contributions of this study 
are summarized as follows: 

• A novel PCA-based peptide representation framework, TaiChiNet, 
was proposed, and demonstrated that the prediction performance of 
language models (LMs) with Random Forest (RF) classifiers is 
influenced by the rotation degree of subtractive layer features.

• TaiChiNet features exhibited explainable values, and showed corre-
lations with the physicochemical properties of antimicrobial 
peptides.

• The TaiChiNet-engineered features complemented hand-crafted 
(HC) features, and their combination resulted in optimal prediction 
performance.

2. Related work

Diverse hand-crafted (HC) features may be calculated to represent 
the amino-acid-based descriptors and physiochemical properties of 
AMPs and ACVPs. Most machine learning algorithms cannot directly 
handle a peptide sequence, and take the peptide HC features as the 
input. Lawrence et al., extracted physicochemical properties of AMPs 
and trained an accurate random forest-based AMP classifier (amPEPpy 
1.0) (Lawrence, et al., 2021). Pang et al., developed an accurate ACVP 
identifier PreAntiCoV by evaluating various negative datasets (Y. Pang, 
et al., 2021). PreAntiCoV comprehensively utilized multiple encoding 
strategies to represent the amino acid-based descriptors and physico-
chemical properties of ACVPs. The datasets (Y. Pang, et al., 2021) have 
also been widely used in the other ACVP (Kurata, Tsukiyama, & Man-
avalan, 2022; Timmons & Hewage, 2021), anti-virus peptide (AVP) 
(Yuxuan Pang, Yao, Jhong, Wang, & Lee, 2021; Wei, Zhou, Chen, Song, 
& Su, 2018), and database (Q. Zhang, et al., 2022) studies.

Deep learning algorithms have also been extensively used to learn 
the latent features for the identifications of AMPs and ACVPs. Timmons 
and Hewage trained a fully-connected neural network on two large 
datasets ENNAVIA-A ENNAVIA-B, and transferred the pre-trained 
models to binary ACVP classification tasks on two small ACVP data-
sets (Timmons & Hewage, 2021). The developed tool ENNAVIA ach-
ieved an external test accuracy of 93.9 %. Kurata et al., used a dataset- 
specific word2vec model to represent ACVPs and achieved the state-of- 
the-art prediction performance with their iACVP model (Kurata, et al., 
2022). AMPScanner leveraged the deep learning-based word embed-
dings of peptide sequences and long short-term memory (LSTM)-based 
representations for the AMP recognition task (Veltri, Kamath, & Shehu, 
2018). Multi-scale convolutional neural network (msCNN) was also 
proven effective in AMP prediction (Su, Xu, Yin, Quan, & Zhang, 2019). 
Zhou et al., showed that three heterogeneous types of peptide features 
may be represented by different deep neural networks and their fused 
feature representation facilitated remarkably adaptive and effective 
AMP identification (Zhou, et al., 2023).

The language models (LMs) have recently emerged as powerful tools 
in multiple natural language processing (NLP) tasks. Researchers have 
also discovered the interdisciplinary applications of LMs in extracting 
co-evolution information from protein sequences, even in the absence of 
multiple sequence alignment (MSA) data (Verkuil, et al., 2022). Prot-
Trans (Elnaggar, et al., 2022) re-trains a series of natural language 
models, including ProtBERT and ProtT5. However, since biological se-
quences carry inherent co-evolutionary information, such sequence data 
have a relatively obvious tendency to cluster (Suzek, Huang, McGarvey, 

Table 1 
The five benchmark datasets used in this study. The columns “P” and “N” gave 
the numbers of positive and negative samples in a dataset. Each row gave the 
information of one dataset, which was pre-split into the Training and Testing 
subsets.

ID Dataset Training subset Testing subset

P N P N

0 Anti-Virus 95 1,399 42 600
1 non-AVP 95 3,746 42 1,566
2 non-AMP 95 3,485 42 1,494
3 All-Neg 95 8,535 42 3,660
4 All-AMP 95 5,050 42 2,166

Table 2 
The terms used in this paper and their corresponding meanings.

Term Interpretation

k The number of the first k BERT layers, k = 1, 2, …, 12
BERTA Given a training dataset, calculate the engineered features through 

the first k layers of BERT, and chose the top-ranked principal 
components (PCs) explaining 95 % variance of the dataset by the 
PCA, trained on the training set

PCBERTA Baseline version of TaiChiNet. See Algorithm 1.
TaiChiNet The main algorithm proposed in this study. See Algorithm 2 and 

Fig. 1.
HC Abbreviation for the hand-crafted features
TaiChiACVP The ACVP prediction model integrating the TaiChiNet-engineered 

and HC features
D, L Training set, and training labels
D+ Training set with only positive samples
D- Training set with only negative samples
|D| The size of training set D
n_layers The number of the total layers of BERT. n_layers = 12 in this work
n_embedding The dimension of the BERT embedding features. n_embedding = 768 

in this work
max_len The max length of the input sequences to BERT
PCA+

k , PCA−
k PCA-based positive/negative inter layer fusion matrix

C+ ,C− The average value of BERT layers of positive and negative samples in 
the training set

PCAi PCA-based intra layer fusion matrix for the ith layer, i = 1, …,k
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Mazumder, & Wu, 2007), and a carefully-designed dataset splitting 
strategy is very important for the establishment of robust models (Meier, 
et al., 2021). The Meta team extended BERT into the ESM2 model 
through strict data partitioning, and its performance far exceeds Prot-
BERT (Lin, et al., 2023). Before publishing ESM2, the Meta team also 
computationally proved the impacts of data partitioning on the perfor-
mance of ESM2. Some data partitions can easily lead to model over-
fitting and make it difficult to continue the model training process 
(Meier, et al., 2021). The essence of data partitioning is to adaptively 
adjust the loss function weight of the model (Meier, et al., 2021). ProGen 
is another transformer-decoder autoregressive model (Nijkamp, Ruffolo, 
Weinstein, Naik, & Madani, 2023). Erik Nijkamp et al. have explored the 
capacity of autoregressive models on protein sequences, and found that 
autoregressive models may also have the scaling law pattern on protein 
sequences (Nijkamp, et al., 2023). And Noelia Ferruz et al. retrained the 
GPT2 model as ProtGPT2 on the protein sequences (Ferruz, Schmidt, & 
Höcker, 2022).

A peptide may be viewed as a subsequence of a protein, and it is 
reasonable to speculate that LMs may also be used to extract important 
information of peptides for the subsequent prediction tasks. Multiple 
studies exerted the successful employments of LMs in the AMP predic-
tion tasks (Dee, 2022; Y. Zhang, Lin, Zhao, Zeng, & Liu, 2021). To the 
best of our knowledge, ESM2 is the most popularly-used LMs on protein 
design, but it remains to be improved for its peptide representation 
capability, since some researchers found that the scaling law pattern of 
ESM2 didn’t work well on peptides (Fernandez-Diaz et al., 2023).

3. Materials and methods

3.1. Datasets

This study evaluated the proposed TaiChiNet peptide representation 
framework by the benchmark datasets derived from (Y. Pang, et al., 
2021). Pang et al., proposed one of the first few ACVP prediction models 
(Manavalan, Basith, & Lee, 2022), and extensively constructed five 
imbalanced classification benchmark datasets with different negative 
samples, i.e., Anti-Virus (anti-virus peptides excluding the ACVPs as 
negative samples), non-AVP (anti-microbial peptides excluding anti- 
virus peptides as negative samples), non-AMP (peptides excluding 
AMPs as negative samples), All-Neg (all peptides excluding ACVPs as 
negative samples), and All-AMP (all anti-microbial peptides excluding 
ACVPs as negative samples). The known ACVPs served as the positive 
samples of all the five datasets, and the detailed information of these 
datasets were shown in Table 1.

These datasets from (Y. Pang, et al., 2021) had been popularly used 
in ACVP classification (Kurata, et al., 2022; Manavalan, et al., 2022; 
Yuxuan Pang, et al., 2021; Timmons & Hewage, 2021), anti-bacterial 
peptide prediction (Singh, Shrivastava, Kumar Singh, Kumar, & Sax-
ena, 2022), AMP prediction (Yan, Lv, Guo, Peng, & Liu, 2023), and 
database constructions (Jhong, et al., 2022; Q. Zhang, et al., 2022).

Fig. 1. Illustration of the network frameworks of this study. (a) illustrated the framework of the ACVP prediction models evaluated in this study. (b) described the 
training step of TaiChiNet. The positive and negative samples were transformed through the first k transformer encoder layers of the pre-trained BERT model, and 
then the PCA calculations, respectively. We got the positive and negative transformation matrices. (f) showed the detailed procedure of calculating positive 
transformation matrix. (c) and (d) showed the baseline BERTA and PCBERTA frameworks, while (e) illustrated the Ying-Yang dilution architecture TaiChiNet.
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3.2. Definitions of terms and variables

Table 2 defined some terms and variables frequently used in this 
study for the convenience of writings.

3.3. Performance metrics

This study focused on the five binary classification tasks shown in 
Table 1. A binary classification dataset consisted of positive and negative 
samples. True positive (TP) and true negative (TN) were the numbers of 
correctly predicted positive and negative samples, respectively. The 
numbers of incorrectly predicted positive and negative samples were 
false negative (FN) and false positive (FP), respectively.

A binary classification model could be evaluated by the performance 
metric accuracy, defined as Acc=(TP + TN)/(TP + FN + TN + FP). 
However, the five datasets in Table 1 were highly imbalanced. So the 
metric geometric mean Gmean = sqrt(Sn × Sp) was used to evaluate an 
imbalanced binary classification model, where sensitivity Sn = TP/(TP 
+ FN), specificity Sp = TN/(TN + FP), and sqrt() was the square root 
function. This study calculated the performance metrics by the 10-fold 

cross validation strategy on the training set. To be specific, this study 
utilized the same classifiers in the literature (Y. Pang, et al., 2021), a 
random forest classifier with the down-sampling strategy NearMiss 
version 3 and a balanced random forest classifier. Both classifiers used 
grid search for parameter optimization with 10-fold cross validation. 
The details can be found in Supplementary Table S1. Except that the 
balanced factor calculation in the section 4.4 used the 10-fold cross 
validation on the training set, all of the other results were on the test 
sets. The section 4.2, section 4.3, and section 4.11.1 used the test sets to 
evaluate the balanced random forest classifier. The other results used the 
classifier with better Gmean of 10-fold cross-validation on the training 
sets.

The proposed TaiChiNet framework fused the first k layers of the LM 
BERT, and we evaluated this proposed framework on the five datasets 
described in Table 1. A combined optimization goal was defined as the 
balanced factor: 

BF(k)
μ(Gmean(i) )

k
12 + σ(Gmean(i) )

, (1) 

Fig. 2. The pseudocode of PCBERTA.

Fig. 3. The pseudocode of TaiChiNet. This pseudocode was the same as PCBERTA except for the altered step 7.
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where Gmean(i) was the performance metric value Gmean of the 
currently evaluated model on the dataset i (i = 0, 1, 2, 3, or 4), μ() and 
σ() are the mean and standard deviation of the five Gmean(i) values.

The time cost of training the TaiChiNet framework was positively 
related with the parameter k. Therefore, the combined metric balanced 
factor (BF(i)) simultaneously considered the training time cost and 
prediction performance. The prediction models were evaluated on the 
individual datasets by the metric Gmean.

3.4. The Ying-Yang dilution network frameworks of this study

The network frameworks in this study were illustrated in Fig. 1. Two 
classifiers, balanced random forest (BRF) and random forest with the 
NearMiss3 down sampling strategy (SRF) (J. Zhang & Mani, 2003), were 
employed for the imbalanced classification tasks of ACVPs. A grid search 
was conducted to find the optimal parameter selection using the 10-fold 
cross validation strategy and the metric Gmean. Fig. 1 (a) showed the 
overall framework of the TaiChiACVP model using both TaiChiNet- 
engineered and HC features. The positive (P) and negative (N) 

transformation matrices were calculated during the training step in 
Fig. 1 (b). Took the procedure of calculating positive transition matrix as 
an example. We passed the positive samples in the training set to the 
BERT models and calculated the first k layer of BERT features. Let the 
output be the |D+| × k × max length × n embedding dimension features. 
We firstly took the mean values in the axis of amino acids to get the 
general representation of each peptide sequence, which was |D+| × k ×

n embedding dimension of the output. And then we calculated the mean 
values in the axis of samples to get a general representation of the 
positive samples with dimension k× n embedding. Finally, we trans-
posed the result and passed it through the PCA transformation matrix for 
training and got the positive matrix. Fig. 1 (f) illustrated the procedure. 
The baseline BERTA, PCBERTA and the proposed TaiChiNet frameworks 
were illustrated in Fig. 1 (c), (d) and (e), respectively. The experimental 
data supported the necessity of upgrading the positive (P) and negative 
PCA transformation matrices to the Ying-Yang dilution architectures P 
+ N and N + P, respectively.

3.5. The baseline PCBERTA framework

We initially built the baseline PCA-based fusion framework 
PCBERTA, and Fig. 2 illustrated its pseudocode. The essence idea was to 
extract the linear relationships between (steps 5 and 6) and within (steps 
7 and 8) of the first k BERT layers. We anticipated that the first k BERT 
layers may deliver the important encoding capabilities to represent the 
differences between the ACVPs and the negative peptides.

3.6. The proposed TaiChiNet framework

TaiChiNet upgraded the PCA transformations (Step 7 in Fig. 2) of 
PCBERTA, as illustrated in Fig. 1 (e). This alternation was found to 
improve the ACVP prediction performances. Fig. 3 showed only the 
altered step 7 of Fig. 2, and TaiChiNet had the same operations in the 
other steps of PCBERTA in Fig. 2.

3.7. The HC features

HC features have been successfully employed in many sequence- 
based prediction tasks (Lawrence, et al., 2021; Y. Pang, et al., 2021). 
This study combined the TaiChiNet-engineered features with the same 
five types of HC features in (Y. Pang, et al., 2021). The normalized 

Fig. 4. Evaluation of the training time cost of the five classification tasks. The 
horizontal axis listed the number of the first few layers of BERT. The vertical 
axis gave the training time cost of each classification task counted in seconds. 
The formula and the R2 value of the trend line of each classification task was 
given after the line title.

Fig. 5. Evaluation of the latent features encoded by the individual BERT layers. The horizontal axis gave the number of the first BERT layers used for the peptide 
encoding. The left vertical axis was the Gmean metric (%) for the histogram plots of the five classification tasks, i.e., Anti-Virus, non-AVP, non-AMP, All-Neg, and All- 
AMP, and the right vertical axis gave the mean value (line plot) of the Gmean metric over the five classification tasks. The classifier BRF was used to build the 
prediction models.
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occurrence rates of the 20 amino acids in a peptide were calculated as 
the 20-dimension AAC features. The normalized occurrence rates of the 
paired amino acids were also calculated as the DiC features with 400 
dimensions. CKSAAGP was a modified composition of k-pair amino 
acids (Chen & Li, 2022). PAAC improved the AAC algorithm by intro-
ducing a set of discrete factors (Chen & Li, 2022), and PHYC was short 
for eight physicochemical features (Meher, Dash, Sahu, Satpathy, & 
Pradhan, 2022). The detailed definitions of these five types of HC fea-
tures could be found in (Y. Pang, et al., 2021).

4. Results

4.1. Training time linearly increased as the number of BERT layers

The standard pre-trained BERT model consisted of 12 layers and 
Fig. 4 showed that the training time cost of each classification task lin-
early correlated with the number k of the BERT layers. All the trend lines 
were formulated as linear functions, and all the R2 values were larger 
than 0.9900. Therefore, the training time cost could be accurately 

predicted by these trend lines and the number k of the BERT layers. The 
overall optimization goal BF used the parameter k to represent the time 
cost in evaluating a prediction framework over the five classification 
tasks.

4.2. Evaluation of the individual BERT layers

The five classification tasks showed the overall descending trend in 
the performance metric Gmean, as the number of the first BERT encoder 
layers increases (Fig. 5). The mean Gmean values reached the highest 
two values 82.48 % and 82.00 % using the first one and two BERT layers, 
respectively. This observation was anticipated since BERT was not 
designed and optimized for the peptide-based downstream tasks, and 
the last few layers of BERT aimed for the high-level abstractions of 
natural languages (Jawahar, Sagot, & Seddah, 2019). However, it shed 
light on the possibility and efficacy of utilizing only the first few BERT 
layers for the peptide-based downstream tasks in this study.

This approach offered several advantages, including reduced time 
cost while still achieving competitive performance levels, as 

Fig. 6. Evaluation of the BERTA-encoded features. The structure of BERTA was shown in Fig. 1 (c). The horizontal axis gave the number of the first BERT layers used 
for the peptide encoding. The left vertical axis was the Gmean metric (%) for the histogram plots of the five classification tasks, i.e., Anti-Virus, non-AVP, non-AMP, 
All-Neg, and All-AMP, and the right vertical axis gave the mean value (line plot) of the Gmean metric over the five classification tasks. The classifier BRF was used to 
build the prediction models. The PCA transformation matrices of the individual BERT layers were trained on the training subsets, and fit on the Training and 
Testing subsets.

Fig. 7. Peptide representations of different BERT layers for the ACVP prediction task. The horizontal axis gave the number of the first BERT layers used for the 
peptide representations. The left vertical axis was the average value (mGmean) and the standard deviation (error bars) of the Gmean metric (%) over the five 
classification tasks, i.e., Anti-Virus, non-AVP, non-AMP, All-Neg, and All-AMP, and the right vertical axis gave the metric BF (line plot) of the Gmean metric over the 
five classification tasks. The BERTA framework was used in this experiment.
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demonstrated in Fig. 5.

4.3. BERTA: PCA-based enrichment of the BERT layer-encoded features

The latent features encoded by the BERT layers exhibited significant 
sparsity (with most values close to 0), and this study used PCA to enrich 
the BERT layer-encoded features to the PCs explaining for 95 % vari-
ance. The baseline PCBERTA framework used class-specific feature 
enrichment PCA models (Fig. 1 (d)) for the downstream tasks.

A comparison between Figs. 5 and 6 suggested that the PCA-based 
enrichment did not significantly change the prediction performance of 
the BERT layer-encoded features on the five downstream tasks. Fig. 6
demonstrated the same trend that the latent features encoded by the first 
two layers achieved the two best mean Gmean (%) values across the five 
prediction tasks. Therefore, PCA effectively enriched the latent features 
encoded by the individual BERT layers while maintained similar per-
formance levels of the five downstream tasks.

4.4. Selecting the number of BERT layers

The metric mGmean reached the largest value 89.84 % at k = 2, 
while the first layer (k = 1) delivered a slightly worse mGmean = 89.70 
% (Fig. 7). If we took the training time cost into consideration, the metric 
BF also reached the largest value BF = 19.94 at k = 2. The standard 
deviation value reached the smallest value 4.34 at k = 2 while the next 
two best values were 4.87 (k = 1) and 4.63 (k = 3). Based on these data, 
this study used the first two BERT layers for the subsequent experiments.

4.5. Comparison of PCBERTA and BERTA

PCBERTA utilized the class-specific PCA enrichment, instead of the 
class-independent PCA engineering in the BERTA framework. Fig. 8
compared the prediction performance of the PCBERTA and BERTA 
frameworks based on the first two BERT layers. The PCA transformed 
matrix of the first two BERT layers generated two layers of PCs, which 
were independent to each other. The two layers of the PCs in the 
PCBERTA framework were denoted as PCBERTA1 and PCBERTA2, 
respectively. Those in the BERTA framework were noted as BERTA1 and 
BERTA2, respectively.

Fig. 8 showed that PCBERTA2 achieved the best mGmean value 
83.03 % averaged over the five prediction datasets. BERTA2 (82.26 %) 
also outperformed BERTA1 (81.61 %) in the metric mGmean. 
PCBERTA1 and PCBERTA2 achieved the best Gmean values on three of 
the five datasets, while BERTA1 and BERTA2 together only achieved 
twice the best Gmean values. Overall, PCBERTA outperformed the 

BERTA framework.

4.6. Contributions of the HC features

This study evaluated the contributions of the five types of the HC 
features from (Y. Pang, et al., 2021) to the BERTA and PCBERTA features 
(Fig. 9). Pang et al., also used the statistical t-test to select a subset of 
these HC features for the ACVP prediction task (Y. Pang, et al., 2021), 
and this subset of features were denoted as “HC + Ttest” in Fig. 9.

Fig. 9 (a) showed that the HC features improved the mGmean values 
of all the four models, i.e., PCBERTA1, PCBERTA2, BERTA1 and 
BERTA2. The largest improvement in mGmean 5.21 was achieved for 
the BERTA1 features, and all the five prediction tasks based on the 
BERTA1 features were improved. The second largest improvement in 
mGmean 5.18 was achieved for the PCBERTA1 features, although the 
prediction task All-AMP based on the PCBERTA1 features was slightly 
worsen by 2.23 in Gmean (%). Therefore, the HC features positively 
contributed to the ACVP prediction tasks based on the PCBERTA and 
BERTA represented features, particularly PCBERTA1 and BERTA1.

We further compared the absolute values of the metric Gmean of the 
HC features and their concatenations with the PCBERTA and BERTA 
features (Fig. 9 (b)). PCBERTA1 + HC and BERTA1 + HC achieved the 
best two mGmean values 85.94 % and 86.82 %, both were better than 
the HC (85.57 %) and HC + Ttest (84.13 %) models. The PCBERTA1 +
HC model achieved the best Gmean values on two ACVP prediction tasks 
(Anti-Virus and non-AVP), while the BERTA1 + HC model achieved the 
best Gmean values on another two tasks (All-Neg and All-AMP). The HC 
+ Ttest model achieved the best Gmean value on the non-AMP predic-
tion task, but its performances were much worse than the other models 
on the other ACVP prediction tasks.

4.7. TaiChiNet features further improve the ACVP prediction tasks

The PCA transformed matrix of the first two BERT layers generated 
two layers of PCs, which were independent to each other. The two layers 
of the PCs in the TaiChiNet framework were denoted as TaiChiNet1 and 
TaiChiNet2, respectively.

The TaiChiNet features alone did not achieve good prediction per-
formance on the ACVP prediction task, but the integration of the HC 
features substantially improved the five ACVP prediction datasets based 
on the TaiChiNet features alone (Fig. 10). TaiChiNet1 + HC achieved the 
best mGmean value 87.27 %, and outperformed all the five ACVP pre-
diction datasets based on both the HC and the HC + Ttest features from 
the study PreAntiCoV (Y. Pang, et al., 2021). Therefore, the following 
sections referred to TaiChiNet1 as the default TaiChiNet framework, and 
the final best model TaiChiNet1 + HC as TaiChiACVP.

4.8. TaiChiNet is the most important feature type

The averaged feature importance columns in Fig. 11 showed that 
TaiChiNet was the most important feature type in the TaiChiACVP 
model. The TaiChiNet features achieved at least 38.87 % improvement 
in the feature importance than the other five feature types. The averaged 
feature importance of TaiChiNet was even 14.1990 times that of the DiC 
feature type. The TaiChiNet feature type alone achieved the largest 
feature importances on the three ACVP prediction datasets, including 
All-Neg, non-AMP, and Anti-Virus. The PHYC feature type achieved the 
largest feature importance on the other two prediction tasks. For the 
details of the feature importance of each features in the 5 ACVP datasets, 
please see Supplementary Table S2.

4.9. The physicochemical meaning of TaiChiNet features

We further investigated the explainability of the TaiChiNet features 
(Fig. 12) using the approach in (Renaud & Mansbach, 2023). Renaud 
et al., calculated the bridge variables to describe the physicochemical 

Fig. 8. Performance evaluation of PCBERTA and BERTA. The horizontal axis 
listed the five prediction datasets and mGmean averaged over these five data-
sets. The vertical axis gave the performance metric Gmean (%), and mGmean 
(%) in the last clustered columns. PCBERTA1 and PCBERTA2 represented the 
PCBERTA framework based on the first one and two BERT layers, respectively. 
BERTA1 and BERTA2 were the BERTA framework based on the first one and 
two BERT layers, respectively.
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properties of a peptide, and evaluated the correlations of the latent 
features with these bridge variables. There were 18 bridge variables 
used in this paper, and seven of them were aliphatic index, Boman index, 
isoelectric point, charge (discretized as pH = 3, pH = 7 and pH = 11), 
hydrophobicity, instability index, and molecular weight. They could be 
calculated using the python package peptides (Renaud & Mansbach, 
2023). The other 11 bridge variables were derived from (Huang, et al., 
2023), including positive charge, negative charge, charge of all, polar 
number, non-polar number, pH number and Van der Waals volume 
(vdW_volume). The absolute values of the PCCs were used to show 
whether there were TaiChiNet features strongly correlated with the 
bridge variables. The results were shown in Fig. 12.

Generally, all the 11 bridge variables had the TaiChiNet features 
with the |PCC| values at least 0.1905 across the five ACVP prediction 
datasets (Fig. 12), which was the |PCC| value of vdW_volume with 
TaiChiNet-1d on the All-Neg dataset. And the 0th dimension of the 
TaiChiNet features learned a latent feature strongly correlated with the 
molecular weight (|PCC|≥0.9867) across all the five ACVP prediction 

datasets. And the 0th dimension of the TaiChiNet features stayed at the 
top 30 importance features among all of the 5 ACVP tasks (see Supple-
mentary Table S2). Specifically, the other bridge variables could also be 
explained by some TaiChiNet features, like the 3rd dimension of Tai-
ChiNet features was highly correlated to “charge of all” property on non- 
AMP dataset with |PCC|=0.7912. The 4th dimension of TaiChiNet fea-
tures was highly correlated to “net charge (pH = 7)” property on All-Neg 
dataset with |PCC|=0.7171.

However, not all TaiChiNet features can be explained by these 
properties, such as the 1st dimension and the 5th dimension of TaiChi-
Net features only have the maximum |PCC| value 0.3238 and 0.3796 
with the bridge variables, respectively.

4.10. Insights into TaiChiNet: Principles and visualization

In order to figure out what TaiChiNet has learned, we dig deeply into 
the mathematical meaning of TaiChiNet and PCBERTA. The comparison 
shows that both of them do not change the relative distance among the 

Fig. 9. Contributions of the HC features to the BERTA and PCBERTA features. The horizontal axis gave the five prediction datasets, and the metric mGmean averaged 
over the five datasets. The vertical axis gave the Gmean (%). (a) The vertical axis of this sub-figure gave the difference between the Gmean (%) values of (model +
HC) and (model), where model was one of the four feature representation models, PCBERTA, PCBERTA2, BERTA1 and BERTA2. (b) The vertical axis of this sub- 
figure gave the Gmean (%) values.
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dimensions of BERT features before concatenation, and the only differ-
ence between them is the rotation degree. The impact of different 
rotation degrees emerges after the concatenating operation. As is shown 
in Fig. 13.

4.10.1. The only difference between a pair of subtractive features of 
TaiChiNet and PCBERTA is the degree of rotation

The most crucial step in the TaiChiNet framework is step 7 in Al-
gorithm 2. It is worth of notion that the intra-layer based PCA process is 
the same among BERTA, PCBERTA and TaiChiNet, and this subsection 
only considers the inter-layer PCA-based fusion matrix calculation. The 
mathematical principle of PCA involves decomposing the covariance 

matrix of the features through Singular Value Decomposition (SVD), and 
then transforming it into scaling factors composed of eigenvalues Λ and 
an orthogonal rotation matrix of eigenvectors Q, after the data 
centralization. This work uses the Python sklearn package to calculate 
PCA with default parameters. The parameter whiten is False by default, 
meaning that the principal components are all unit vectors without Λ. 
Therefore, this work uses two steps to calculate PCA: centralization and 
rotation.

To consider the centralization for PCA transformation, let C+ =
[
c+1 ,

c+2
]
andC− =

[
c−1 , c−2

]
,whereC+,C− ∈ R nembedding×2, be the mean values of 

the two BERT layers of positive samples in training set D+ and negative 
samples in training set D− , respectively. Given a sample d = [L1 L2 ],

Fig. 10. Evaluation of the TaiChiNet features on the ACVP prediction task. The horizontal axis gave the five prediction datasets, and the metric mGmean averaged 
over the five datasets. The vertical axis gave the Gmean (%) values.

Fig. 11. Evaluation of the importance of the six feature types in the final TaiChiACVP model. The six feature types were AAC, DiC, CKSAAGP, PAAC, PHYC, and 
TaiChiNet. Each feature was measured by its importance coefficient in the TaiChiACVP model, and each feature type was evaluated by the mean importance co-
efficient of the features in this feature type of an ACVP prediction dataset. The “Average” column series was the averaged values of the six feature types over the five 
ACVP prediction datasets.
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whereL1, L2 ∈ R nembedding×1, we have two types of TaiChiNet features 

T+(d) and T− (d) before concatenation. Define 
[

*
*

]
as the concatenation 

operation. We finally have the TaiChiNet features T(d) =

[
T+(d)
T− (d)

]

: 

T+(d) =
[
(d − C+)PCA+

k
T
− C−

]
PCA−

k
T 

= (d − C+)PCA+
k

TPCA−
k

T − C− PCA−
k

T (2) 

T− (d) =
[
(d − C− )PCA−

k
T − C+

]
PCA+

k
T 

= (d − C− )PCA−
k

TPCA+
k

T
− C+PCA+

k
T (3) 

T(d) =

[
(d − C+)PCA+

k
TPCA−

k
T − C− PCA−

k
T

(d − C− )PCA−
k

TPCA+
k

T
− C+PCA+

k
T

]

(4) 

The dimensions of both PCA+
k and PCA−

k within TaiChiNet are R2×2. Let 
us denote: 

PCA+
k

T
= Q+T

=

[ cosθ sinθ
− sinθ cosθ

]

(5) 

PCA−
k

T = Q− T =

[ cosβ sinβ
− sinβ cosβ

]

(6) 

The primary procedures of step 7 in TaiChiNet Algorithm 2 involves the 
multiplication of the two positive and negative layer fusion trans-

formation matrices PCA+
k

TandPCA−
k

T which is equal to: 

PCA+
k

TPCA−
k

T = Q+TQ− T =

[
cosθ sinθ
− sinθ cosθ

][
cosβ sinβ
− sinβ cosβ

]

=

[
cos(θ + β) sin(θ + β)

− sin(θ + β) cos(θ + β)

]

(7) 

Therefore, PCA+
k

TPCA−
k

T = PCA−
k

TPCA+
k

T, both of which are orthog-
onal matrices with the same rotation degree θ + β. According to the 
equations (2) and (3), we can see that TaiChiNet firstly centralizes the 
input data d and rotates the samples with θ+β degrees, and then minus a 
rotated negative/positive mean value. Additionally, if we mathemati-
cally compare PCBERTA with TaiChiNet, we have two types of 
PCBERTA features before concatenation P+(d) and P− (d). We finally 

have P(d) =

[
P+(d)
P− (d)

]

: 

P+(d) = (d − C+)PCA+
k

T
= dPCA+

k
T
− C+PCA+

k
T (8) 

P− (d) = (d − C− )PCA−
k

T = dPCA−
k

T − C− PCA−
k

T (9) 

P(d) =

[
(d − C+)PCA+

k
T

(d − C− )PCA−
k

T

]

(10) 

In order to clarify the difference between PCBERTA and TaiChiNet, it 
would be better to measure the distance between 2 arbitrary samples in 

Fig. 12. Explainability of the TaiChiNet features. The vertical axis lists the TaiChiNet features, and the horizontal axis gives the list the datasets. The color illustrates 
the maximum absolute Pearson correlation coefficient (PCC) between a TaiChiNet feature and the corresponding bridge variable in a TaiChiACVP model. And the 
text showed the certain physicochemical properties of the corresponding values.
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the representation space. However, the dimension of the BERT features 
is high and the definition of distance in the high dimension is tricky, and 
directly measuring this distance is difficult. Instead, we consider the 
distance of each dimension of the two BERT layer features from the 
origin. The Euclidean distance of each dimension of the subtractive 
features between a pair of samples is calculated as the subtractive layer 
feature space. We get the subtraction of the TaiChiNet features DT(d1,

d2) and PCBERTA features DP(d1, d2) of any two samples d1andd2(d1 ∕=

d2) as: 

DP(d1, d2) = P(d1) − P(d2) =

[
(d1 − d2)PCA+

k
T

(d1 − d2)PCA−
k

T

]

(11) 

DT(d1,d2) = T(d1) − T(d2) =

[
(d1 − d2)PCA+

k
TPCA−

k
T

(d1 − d2)PCA−
k

TPCA+
k

T

]

(12) 

For any dimension i of DT(d1, d2) we have the distance from the origin: 
⃒
⃒
⃒
⃒DT(d1,d2)i•

⃒
⃒
⃒
⃒2 =

⃒
⃒
⃒
⃒(d1 − d2)i•PCA+

k
TPCA−

k
T ⃒⃒

⃒
⃒
2
=

⃒
⃒
⃒
⃒(d1 − d2)i•

⃒
⃒
⃒
⃒2

(13) 

As well as for the distance of any dimension i of DP(d1,d2) from the 
origin: 

⃒
⃒
⃒
⃒DP(d1, d2)i•

⃒
⃒
⃒
⃒2 =

⎧
⎪⎨

⎪⎩

⃒
⃒
⃒
⃒(d1 − d2)i•PCA+

k
T ⃒⃒

⃒
⃒
2

⃒
⃒
⃒
⃒(d1 − d2)i•PCA−

k
T ⃒⃒

⃒
⃒2

=
⃒
⃒
⃒
⃒(d1 − d2)i•

⃒
⃒
⃒
⃒2 (14) 

Equations (13) and (14) suggest that TaiChiNet just rotates the sub-
tractive features between a pair of samples and doesn’t change the 
relative distance among the dimensions before concatenation. So it does 

Fig. 13. An exemplified visualization of the difference between TaiChiNet and PCBERTA in the subtractive layer feature space. For any pair of samples 
d1andd2(d1 ∕= d2), we denote the subtraction of their TaiChiNet features DT(d1, d2) and PCBERTA features DP(d1, d2). The x-axis and the y-axis represent the first and 
second dimensions of a sample d. The green circle highlights the subtraction of their original BERT layer features d1 − d2. The arrows denote the rotation directions. 
The red dot on the right x-axis highlights the distance of any dimension i in the subtraction of the original BERT layer features d1 − d2 from the origin. The dash circle 
represents the identical distance from the origin. (a) The procedure of TaiChiNet. The red point is an example of any dimension i in DT(d1, d2), namely DT(d1, d2)i. 
TaiChiNet just rotates the subtractive features and doesn’t change the relative distance among the dimensions before concatenation. Due to the symmetric patterns of 
PCA+

k
TPCA−

k
T and PCA−

k
TPCA+

k
T, the rotation degree of two types of TaiChiNet features are the same, which results in the inter distance differences between the two 

concatenated subtraction layer features of TaiChiNet and PCBERTA. (b) The procedure of PCBERTA. The red and blue points are an example of the rotated sub-
tractive features of any dimension i in DP(d1,d2), namely DP(d1,d2)i. Their rotation degrees are different by positive and negative rotation matrices. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. . The performances of berta, pcberta and taichinet. The horizontal axis gave the five prediction datasets, the metric mGmean averaged over the five datasets, 
and the metric vGmean is the variance of Gmean among 5 datasets. The vertical axis gave the Gmean (%) values. The rotation degree of their layer features was 
annotated in (*|*), where “|” represents the concatenation operation. BERTA have no rotation and concatenation operations, so it was annotated with “(0 degree)”. 
TaiChiNet and PCBERTA both have their own rotation degrees and was annotated by “(θ + β|θ + β)” and“(θ|β)” respectively.
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the same processing to PCBERTA. However, the symmetric patterns of 
PCA+

k
TPCA−

k
T and PCA−

k
TPCA+

k
T make the rotation degree of two type 

of TaiChiNet subtractive layer features the same (as illustrated in Fig. 13
(a)). PCBERTA shows a slightly different rotation degree. This results in 
the inter-distance difference between the two concatenated subtraction 
layer features of TaiChiNet and PCBERTA. Fig. 13 intuitively illustrates 
the process of the former deduction.

4.10.2. Advantages of TaiChiNet
BERTA, PCBERTA and TaiChiNet use the same mathematical intra- 

layer fusion strategy with PCA, whereas PCBERTA and TaiChiNet 
further utilize inter-layer fusion strategy with PCA and extend the 
dimension with concatenation operation. In order to figure out the ad-
vantages of TaiChiNet, we firstly compare the performance of TaiChiNet 
with PCBERTA and BERTA, as shown in Fig. 14. The rotation degree of 

their layer features is annotated in (*|*), where “|” represents the 
concatenation operation. BERTA has no rotation and concatenation 
operations. So it is annotated with “(0 degree)”. TaiChiNet and 
PCBERTA both have their own rotation degrees and are annotated by 
“(θ + β|θ + β)” and“(θ|β)”, respectively.

The experimental data in the previous sections show that different 
rotation degrees influence the downstream predictive performances. 
Besides, PCBERTA2 performs the best in the mGmean 82.58 % due to the 
concatenation of different rotation degrees, as deduced in the previous 
subsection (Fig. 13 (b)). TaiChiNet1 has the most stable performance 
among the datasets with the lowest vGmean 16.69 %, which is 8.24 % 
lower than BERTA1 and 8.25 % lower than BERTA2, 1.78 % lower than 
PCBERTA1 and 7.87 % lower than PCBERTA2. TaiChiNet1 also per-
forms 11.10 % lower than TaiChiNet2. This means TaiChiNet1 captures 
a generally informative peptide representation that can distinguish 

Fig. 15. An example of a single decision tree in the non-AMP prediction task of TaiChiNet with HC features. “taichi0-nd” denoted as the nth dimension of the 
TaiChiNet1, “AAC_X” denoted as the AAC features of amino acid X, “DiC_XX” denoted as the DiC features of the amino acids pair “XX”.

Fig. 16. The average Gmean of different LMs across layers on the test dataset of 5 ACVP tasks. The vertical axis shows the average Gmean value of different LMs 
across all layers. The horizontal axis shows the 5 ACVP tasks, and calculates the mean Gmean value (mGmean) across the 5 tasks for each LM. ESM2_t6 and ESM2_t12 
are short for ESM2 with 6 layers and 12 layers, respectively. BERT is the English LM BERT we have utilized in this paper. ProtBERT denotes ProtBERT. ProGen2_small 
and ProGen 2_base are the small and base versions of ProGen2, respectively. And the last model ProtGPT2 represents ProtGPT2.
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between the positive and negative samples in the 5 datasets, rather than 
leaning towards any bias of the individual data set. We also observe that 
TaiChiNet1 generally perform better than PCBERTA1 and BERTA1.

A combination of TaiChiNet1 and HC features achieves the best 
performance among the 5 ACVP tasks (Fig. 10). So we visualize the trees 
to observe the decision paths of the random forest classifier (Fig. 15). It 
turns out that the decision-making process of no single tree was solely 
based on the TaiChiNet features, and the decision path of each tree 
utilizes both TaiChiNet and HC features. Fig. 15 shows an example de-
cision tree in the non-AMP prediction task. “taichi0-nd” denotes the nth 

dimension of the TaiChiNet1 features, “AAC_X” denotes the AAC fea-
tures of amino acid X, “DiC_XX” denotes the DiC features of the amino 
acids pair “XX”. More details may be found in the code plot_interpre-
tation.py in our publicly available source code at https://www.health 

informaticslab.org/supp/resources.php. This observation suggests that 
the TaiChiNet features have learned useful information to compensate 
the HC features for the ACVP prediction tasks.

4.11. Evaluation of other language models

4.11.1. Performances of each layer of LMs
We continue to evaluate the performance of different pre-trained 

language models. Two Transformer encoder-based masking language 
models are tested, including ESM2 (Lin, et al., 2023) with 6 layers 
(ESM2_t6), 12 layers (ESM2_t12) and ProtBERT (Elnaggar, et al., 2022). 
Another two Transformer decoder-based autoregressive models are 
evaluated, including ProGen2 (Nijkamp, et al., 2023) small version 
(ProGen2_small), base version (ProGen2_base) and ProtGPT2 (Ferruz, 

Fig. 17. The performances of the first two layer of PCXA and TaiChiNet for each LM. The x-axis gives the prediction tasks, and the y-axis gvies the Gmean value.

Fig. 18. The performances of TaiChiACVP for each LM. The x-axis is the dataset. The y-axis is the Gmean value. mGmean denotes the average og Gmean among 5 
ACVP tasks.
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et al., 2022). The results are summarized in Fig. 16, and the detailed data 
of each layer in an LM may be found in Supplementary Fig. S1.

It turns out that ProtBERT performs the worst one among 7 LMs on 
each ACVP tasks. It might be due to that ProtBERT didn’t consider the 
effect of data partition during training. Biological sequences have an 
inherent tendency to cluster together (Suzek, et al., 2007), hence the 
training procedure of a pre-trained LM needs to carefully design the 
dataset splitting strategy to avoid bias. This is an essential difference 
between natural languages and biological sequences (Rives, et al., 
2021). The second worst model is ProtGPT2, which may have the same 
issue during training. ESM2 with 6 layers generally outperforms the one 
with 12 layers, and achieves the best performance on average (with 
mGmean 82.94 %). This observation could be attributed to that the 
scaling law pattern of ESM2 collapses on peptide sequences, which is 
also consistent with the literature (Fernandez-Diaz et al., 2023). We 
hypothesize that the dataset splitting strategy MMseqs2 is not as suitable 
on protein sequences as it is on peptides (Hauser, Steinegger, & Söding, 
2016; Teufel, et al., 2023; “UniRef|UniProt help,” 2024). Furthermore, 
ProGen2 small version generally outperforms its base version, which 
may be caused by the same reason as ESM2.

4.11.2. Performances of TaiChiACVP on different LMs
We also evaluate the prediction performances of our TaiChiACVP 

framework by replacing the embedded BERT model with the other LMs. 
We calculate the TaiChiNet and PCBERTA features of the first two layers 
for each LM. Like the PCBERTA model based on the BERT model, we 
denote the suffices “PCXA1” and “TaiChi1” for the first layers of the 
PCBERTA and TaiChiACVP frameworks based on different LM models, 
respectively. The results are shown in Fig. 17.

Except for ProGen2 base version, ProtBERT and ProtGPT2, TaiChi-
Net improves all of the other 4 LMs on the ACVP prediction tasks. 
Specifically, ProGen2 small version benefits a lot by TaiChiNet, while 
ESM2 with 6 layers and 12 layers also benefit from TaiChiNet except on 
the non-AVP and All-AMP tasks. These results tell us that the rotation 
degree of the layer features can affect the performance of LMs with RF 
classifiers. It is noteworthy that tree-based classifiers treat input features 
individually, whereas deep learning models mix the input features (Xia, 
et al., 2024).

Then we combine HC features with TaiChiNet features based on each 
LM, and the results are shown in Fig. 18. It turns out that BERT model 
still has the best performance among these models, and ProGen2 base 
version performs the second best. It is observed again that ESM2 with 6 
layers performs better than ESM2 with 12 layers, which could be due to 
the same reasons. Surprisingly, ProtBERT alone performs the worst, and 
it outperforms ESM2 with 12 layers in the TaiChiACVP framework.

4.12. Evaluation of different rotation degrees

We test 4 additional combinations of positive and negative transition 
matrices, including “pp + nn” (rotation degrees with 2θ and 2β, denoted 
as “2θ|2β”), “nppn + pnnp” (rotation degrees with 2(θ + β) and 2(θ + β), 
denoted as “2(θ + β)|2(θ + β)”), “pn + p” (rotation degrees with (θ + β) 
and β, denoted as “(θ + β)|β”), and “np + n” (rotation degrees with (θ +
β) and θ, denoted as “(θ + β)|θ”). The results are shown in Fig. 19.

The experimental data shows that “TaiChiNet1 + HC” still performs 
the best in the metric mGmean, and the default version of TaiChiNet1 
features alone outperforms the other four settings of rotation degrees. If 
the HC features are not utilized, the five prediction tasks have different 
optimal rotation degrees. The prediction task non-AMP prefers “np + n” 
with 90.50 % in Gmean, while another task non-AVP prefers “pp + nn” 
setting with Gmean = 82.32 %. The prediction task All-Neg prefers 
“nppn + pnnp” with Gmean = 80.13 %. The remaining two prediction 
tasks Anti-Virus and All-AMP achieve the Gmean values 79.73 % and 
79.97 %, respectively.

These results suggest that the rotation degrees of BERT layer features 
can influence the prediction performances of the downstream tasks. 
Therefore, finding a way to optimize an optimal rotation degree is 
necessary for the future work.

5. Discussion

This study proposed a PCA-based fusion network TaiChiNet to enrich 
the first two BERT layers for peptide representation and ACVP predic-
tion. The experimental data showed that the integration of the HC fea-
tures and the TaiChiNet features based on the first two BERT layers were 
both computational efficient and predictively accurate compared with 

Fig. 19. Performances of different rotation degrees. “pp + nn” is denoted as “2θ|2β”, “nppn + pnnp” is denoted as “2(θ + β)|2(θ + β)”, “pn + p” is represented by “(θ 
+ β|θ)”, “np + n” is referred by “(θ + β|β)”.
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the whole BERT model.
After mathematically investigating the mechanism of TaiChiNet and 

PCBERTA in the section 4.10, we figured out that the rotation degrees of 
the layer features could influence the performances. The rotation degree 
was learned by PCA, and the angle was fixed after the calculation of the 
PCA transformation matrix. This fixed learning method limited the ca-
pacity of TaiChiNet. Besides, TaiChiNet used the first two layers in this 
work, and the extension of TaiChiNet to effectively utilize more layers 
remained to investigate in the future work.

We were surprised to observe that BERT outperformed the other LMs 
on the ACVP prediction tasks when their TaiChiNet-engineered features 
were integrated with HC features, while the BERT features alone just 
performed the 5th best average performance. On the one hand, the 
experimental data suggested that the existing pre-trained LMs failed to 
properly represent peptide sequences, since these LMs were trained 
using the dataset splitting strategy suitable for protein sequences 
(Hauser, et al., 2016; Teufel, et al., 2023; “UniRef|UniProt help,” 2024). 
The inherent differences between the lengths and structures of peptides 
and proteins might have caused this discrepancy. Besides, the base 
version of ProGen2 also gave competitive results on the ACVP prediction 
tasks. All the experimental data suggested the necessity of future ex-
plorations of LMs on effective peptide representations and downstream 
predictions.

Some of the TaiChiNet features also showed good explainability by 
their strong correlations with the physicochemical properties of the 
represented peptides (section 4.9). Clark et al. explained the information 
learned from each attention head of the English language-based BERT 
model (Clark, Khandelwal, Levy, & Manning, 2019). Better under-
standing of an LM learned from peptide sequences will help represent 
the peptides and their property predictions.

In summary, the novel TaiChiNet network efficiently represented the 
peptides for the downstream ACVP prediction tasks, and can be easily 
orchestrated with the other LMs. Its explainability may attract the at-
tentions of both computer scientists and interdisciplinary researchers in 
the area of artificial intelligence. The future work may explore the uti-
lizations of learnable rotation degrees, multi-layer fusions, and end-to- 
end training. The TaiChiNet framework may also be employed on the 
representations of nucleotide sequences like DNA and RNA.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

This work was supported by the Senior and Junior Technological 
Innovation Team (20210509055RQ), Guizhou Provincial Science and 
Technology Projects (ZK2023-297), the Science and Technology Foun-
dation of Health Commission of Guizhou Province (gzwkj2023-565), 
Science and Technology Project of Education Department of Jilin 
Province (JJKH20220245KJ and JJKH20220226SK), the National Nat-
ural Science Foundation of China (62072212 and U19A2061), the Jilin 
Provincial Key Laboratory of Big Data Intelligent Computing 
(20180622002JC), and the Fundamental Research Funds for the Central 
Universities, JLU.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.eswa.2025.127786.

Data availability

The source code is freely available at: http://www.health-

informaticslab.org/supp/resources.php.

References

Amanat, F., & Krammer, F. (2020). SARS-CoV-2 vaccines: Status report. Immunity, 52, 
583–589.

Bin Hafeez, A., Jiang, X., Bergen, P. J., & Zhu, Y. (2021). Antimicrobial peptides: An 
update on classifications and databases. International Journal of Molecular Sciences, 
22, 11691.

Chen, D., & Li, Y. (2022). PredMHC: An effective predictor of major histocompatibility 
complex using mixed features. Frontiers in Genetics, 13, Article 875112.

Clark, K., Khandelwal, U., Levy, O., & Manning, C. D. (2019). What does BERT look at? An 
analysis of BERT’s attention (pp. 276–286). Florence, Italy: Association for 
Computational Linguistics.

Dee, W. (2022). LMPred: Predicting antimicrobial peptides using pre-trained language 
models and deep learning. Bioinformatics Advances, 2, Article vbac021.

Dong, Y., Dai, T., Wei, Y., Zhang, L., Zheng, M., & Zhou, F. (2020). A systematic review of 
SARS-CoV-2 vaccine candidates. Signal Transduction and Targeted Therapy, 5, 237.

Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Wang, Y., Jones, L., Gibbs, T., 
Feher, T., Angerer, C., Steinegger, M., Bhowmik, D., & Rost, B. (2022). ProtTrans: 
Toward understanding the language of life through self-supervised learning. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 44, 7112–7127.
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