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Abstract

Recent work on enhancing BERT-based lan-001
guage representation models with knowledge002
graphs (KGs) and knowledge bases (KBs) has003
promising results on multiple NLP tasks. State-004
of-the-art approaches typically integrate the005
original input sentences with triples in KGs,006
and feed the combined representation into a007
BERT model. However, as the sequence length008
of a BERT model is limited, the framework can009
not contain too much knowledge besides the010
original input sentences and is thus forced to011
discard some knowledge. The problem is espe-012
cially severe for those downstream tasks that013
input is a long paragraph or even a document,014
such as QA or reading comprehension tasks. To015
address the problem, we propose Roof-BERT,016
a model with two underlying BERTs and a017
fusion layer on them. One of the underlying018
BERTs encodes the knowledge resources and019
the other one encodes the original input sen-020
tences, and the fusion layer like a roof inte-021
grates both BERTs’ encodings. Experiment022
results on QA task and GLUE benchmark re-023
veal the effectiveness of the proposed model.024

1 Introduction025

While BERT model dominates multiple benchmark026

datasets, studies on incorporating extra knowledge027

with Language Models (LMs) for advancing lan-028

guage understanding sprung up (Zhang et al., 2019;029

Liu et al., 2019; Wang et al., 2020). The sources030

of the extra knowledge are mostly KGs and KBs031

providing rich knowledge facts and benefiting lan-032

guage understanding. For example, ERNIE (Zhang033

et al., 2019) employs TransE (Bordes et al., 2013)034

to encode entity information, and concatenate them035

with the token embedding to feed into a fusion036

layer. Despite the success on GLUE benchmark,037

due to the concatenation on token level, ERNIE is038

not able to consider textual knowledge representa-039

tion. On the other hand, K-BERT (Liu et al., 2019)040

convert knowledge triples into textual forms and041

inject them into the input sentences, forming a tree 042

representation to feed into a BERT. However, this 043

kind of approaches can only consider pretty lim- 044

ited knowledge besides the input sentences due to 045

intrinsic limitation of input length of BERT (512 046

tokens). 047

Accordingly, we propose Roof-BERT, a model 048

with two underlying BERTs and a fusion layer, 049

Transformer encoder (Vaswani et al., 2017), as the 050

Roof on top of them. Roof-BERT encodes the 051

text input with one of the underlying BERTs and 052

encode the knowledge information with the other 053

BERT, and integrate both embeddings with a fusion 054

layer for further downstream tasks. Through the 055

structure, our model allows more information from 056

both the original text and knowledge information. 057

In addition, if memory permits and the necessity of 058

long input, employing multiple BERTs (more than 059

two) is also accessible through the structure. 060

Although the proposed idea is intuitive, there are 061

still several critical challenges which need to be 062

addressed: 063

(1) What is a appropriate model for a Roof? And 064

how does the Roof distinguish individual outputs 065

from two underlying BERTs? 066

(2) How many layers are enough for the roof 067

to fuse the outputs from two underlying BERTs? 068

There could be a trade-off between computational 069

resources and performance. 070

(3) Due to different model complexities, neces- 071

sary converge time for Roof may be different from 072

converge time for BERTs. How to address the issue 073

during the training phase? 074

(4) Although through our proposed architecture, 075

the space for knowledge can be as long as 512 to- 076

kens, it is still limited. Thus precise knowledge 077

selection and effective representation would be cru- 078

cial for the performance. 079

We investigate various factors and propose the 080

corresponding solutions to these challenges, de- 081

scribed in detail in the following sections. 082
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Figure 1: The overall architecture of Roof-BERT for QA task: The input of Roof-BERT contains input tokens and
segmentation tokens, which are the yellow and green blocks respectively. The linear layer, in the case of QA task,
outputs two digits, which are the probabilities of the start and end positions of the answer, for every position. In the
case of NLU tasks in GLUE, we input the average mean of the transformer encoder layers’ output into the linear
layer, the linear layer outputs the probability distribution of the labels.

We conduct experiments on the QA task (Ra-083

jpurkar et al., 2016) and GLUE benchmark. Exper-084

iment results reveal that integrating knowledge by085

Roof-BERT structure significantly outperforms the086

results of using only one BERT to integrate both087

original input sentences and knowledge.088

Overall, our contributions can be summarized as089

follows:090

• We propose a BERT-based framework,091

namely Roof-BERT, which encodes knowl-092

edge and input sentences with two separate093

BERTs. Promising results of QA task and094

GLUE benchmark are provided.095

• Roof-BERT address the problem of input096

length limitation of BERT. We believe it can097

also contribute to other NLP tasks where098

much knowledge or long context comprehen-099

sion is needed.100

• We show that precise knowledge selection and101

effective representation are critical to advance102

the performance for various downstream NLP103

tasks.104

2 Related Work 105

Many researches have worked on integrating 106

KB/KG for enhanced language representation. 107

Before strong pre-trained LMs such as BERT 108

were proposed, several works have studied joint 109

representation learning of words and knowledge. 110

(Wang et al., 2014) combines knowledge embed- 111

dings and word vectors. (Toutanova et al., 2015) 112

utilizes the convolutional neural network to capture 113

the compositional structure of textual relations, and 114

jointly optimizes entity, KBs, and textual relation 115

representations. Both of them are also based on 116

the concept of word2vec (Mikolov et al., 2013) and 117

TransE (Bordes et al., 2013). 118

After Google Inc. launched BERT in 2018, re- 119

searches on integrating KBs/KGs gradually focus 120

on optimization with pre-trained LMs. ERNIE 121

(Zhang et al., 2019), one of the early studies, en- 122

codes knowledge information in KGs by knowl- 123

edge embedding model TransE (Bordes et al., 124

2013) trained on Wikidata and refines pre-training 125

of BERT via named entity masking and phrase 126

masking. K-BERT (Liu et al., 2019) proposed in- 127

jecting knowledge into the text to form a sentence 128

tree without using a pre-training by-self model for 129

knowledge embeddings and adopted soft-position 130

2



embeddings and visible matrix for structural infor-131

mation and prevention of diverting the sentence132

from its correct meaning. Based on these works,133

KEPLER (Wang et al., 2020) jointly optimizes the134

knowledge embeddings and mask language model-135

ing objectives on pre-training LMs.136

There are also some related work relying on two137

BERTs working together. For example, Sentence-138

BERT (Reimers and Gurevych, 2019), propose a139

model to derive sentence embeddings via BERTs140

and use a classifier to judge the similarity of two141

sentences. DC-BERT (Zhang et al., 2020), a decou-142

pled contextual encoding framework to address the143

efficiency of information retrieval, use an online144

BERT to encode the question only once, and an145

offline BERT which pre-encodes each document146

and caches their encodings.147

3 Methodology148

In this section, we detail the overall framework of149

Roof-BERT presented in Figure 1 and the input150

formats for Roof-BERT, which are sentences pairs151

and selected triples from KB.152

3.1 Model Architecture153

As shown in Figure 1, the entire model architec-154

ture of Roof-BERT contains three stacked mod-155

ules: (1) the Underlying BERT model, responsible156

for encoding tokens to meaningful representations,157

(2) the Fusion layer, responsible for combining in-158

formation from the Underlying BERT model, and159

(3) the Prediction layer, responsible for the further160

downstream task, in our case, the QA task and the161

common Natural Language Understanding (NLU)162

tasks.163

Underlying BERT model. The Underlying BERT164

model is composed of two independent BERT165

models, denoting as TASK-BERT and KB-BERT.166

TASK-BERT encodes the tokenized passages,167

which are identical to those input for a single BERT168

on each downstream task, into embeddings. KB-169

BERT encodes the tokenized triples from KBs to170

embeddings. Both embeddings are then concate-171

nated and fed to the Fusion layer as input.172

Fusion layer. We choose Transformer Encoder173

(TE) layers (Vaswani et al., 2017) as our Fusion174

layer due to its self-attention mechanism. The input175

of the Fusion layer is the concatenation of output176

embeddings from TASK-BERT Emb ∈ RM×d and177

the output embeddings from KB-BERT Emb′ ∈178

RN×d, where d is the dimension or the hidden size179

of word embeddings and M and N are the length 180

of the tokenized passage of question and paragraph 181

and tokenized triples from KBs, respectively. 182

Prediction layer. The Prediction Layer is simply 183

a Linear NN Layer, which is responsible for trans- 184

forming high-dimension embeddings into appropri- 185

ate logits for prediction and inference. The input 186

of the prediction layer is the output embeddings of 187

the Fusion layer Emb′′ ∈ R(M+N)×d; while the 188

output of QA task is logits ∈ R(M+N)×2, and the 189

two dimensions of the output logits in each position 190

are the start and end logits, which stands for the 191

probability of whether the position is the start or the 192

end position of the answer. On the other hand, in 193

other NLU tasks, the output embeddings of Fusion 194

layer are compressed to only one sequence length 195

AvgEmb ∈ Rd; while the output logits ∈ Re, and 196

e is based on the number of class of predicted label. 197

The model parameters are updated by minimiz- 198

ing the cross-entropy loss between the output logits 199

and the ground truths. 200

3.2 Input Format for TASK-BERT 201

In this paper, we test the capability of Roof-BERT 202

on QA downstream task and NLU tasks of GLUE. 203

We follow the format of the input of the major 204

approach for BERT. Each sentence pair from the 205

dataset contains two passages. Both passages will 206

be tokenized and will be concatenated with a [SEP] 207

token as input for TASK-BERT. 208

Since BERT has a 512 limitation on input length, 209

we set the maximum length for our question pas- 210

sage and paragraph passage. If the length of the 211

passage is shorter than the maximum length, which 212

is mostly the case in the question passage, [PAD] 213

tokens will be added at the end of the concatenated 214

passage to fix the length of every input. If the length 215

of the passage is longer than the maximum length, 216

which is mostly the case in paragraph passages, we 217

will truncate the passage. 218

3.3 Input Format for KB-BERT 219

We choose KBs as our external information for 220

our approach. KB contains triples and each triple 221

consists 3 components, which are head, relation, 222

and tail, each corresponds to subject, relation, and 223

object in a sentence respectively. 224

The triples will be selected by a heuristic algo- 225

rithm (string match), which will select the triple if 226

its head exists in the paragraph passage in the input 227

of TASK-BERT. The selected triples, will then con- 228
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Figure 2: Example of three types of expansion. Note
that we use Chinese KB; this example is for demonstra-
tion.

catenate one after another, and are separated with229

[SEP] token.230

As shown in Figure 2, we proposed three type231

of expansions, which are denoted as Expand 0, 1,232

2, for our selected triples. Expand 0 simply con-233

catenate the components in the triple as a unit, and234

it will concatenate after the previous unit. Expand235

1 will further add "的", a Chinese token, between236

head and relation, and add "是", a Chinese token,237

between relation and tail to form a natural sentence238

(Agarwal et al., 2021), which is equivalent to "head239

is a relation of tail" in English. The sentence, which240

is also the unit, will then be concatenated after the241

previous unit. Expand 2 is a refined version of242

Expand 1; if the current head of the selected triple243

is identical to the head of the previous unit, the244

head will be replaced by a pronoun, and merge245

with the previous unit with a comma, forming a246

larger sentence/unit.247

4 Experiments248

In this section, we present the details of fine-249

training Roof-BERT and the fine-tuning results250

with different KBs and settings. The estimated251

number of parameters is around 200 230M depends252

on the depth of our fusion layer.253

4.1 Parameter Settings254

For QA task, conformed to the input length limit255

of BERT, we set the maximum length of ques-256

tion and paragraph as 59 and 450 respectively257

so that the total length of the input token length258

would be len([CLS]) + len(Question passge to-259

ken) + len([SEP]) + len(Paragraph passage token)260

+ len([SEP]) = 1 + 59 + 1 + 450 + 1 = 512.261

We find the following setting values work well262

on the QA datasets, i.e., batch size: 16, learning 263

rate (AdamW): 3e−5. In addition, we adopt linear 264

learning rate decay scheduler. For the number of 265

epochs, since we are fine-tuning our model on QA 266

downstream task, the number of the epoch is set 267

1 with the training loss and accuracy converging 268

properly. 269

For the NLU tasks of GLUE, we set the maxi- 270

mum length of sentence pair as 512, including one 271

[CLS] token and two [SEP] tokens, if the length 272

of sentences doesn’t reach 512, we add the [PAD] 273

tokens at the end of the sentences until the length 274

of sentences reaches 512. 275

We find the following setting values work well 276

on the GLUE benchmark, i.e., batch size: 16, learn- 277

ing rate (AdamW): 2e−5. We use cosine learning 278

rate decay scheduler. The training epochs are fixed 279

at 5 for fine-tuning our proposed model. 280

4.2 Dataset 281

For QA task, we evaluate Roof-BERT and baseline 282

model on DRCD dataset (Shao et al., 2019). For 283

other NLU tasks, we evaluate our model on Gen- 284

eral Language Understanding Evaluation (GLUE) 285

benchmark (Wang et al., 2018), which is used in 286

ERNIE (Zhang et al., 2019). GLUE is a multi-task 287

benchmark for NLU consisting 11 tasks, and we 288

use the following 8 tasks of GLUE to evaluate Roof- 289

BERT and compare it with baseline models. These 290

tasks adopt different evaluation metrics depending 291

on their purpose. 292

DRCD. The Delta Reading Comprehension 293

Dataset is an open-source Chinese QA dataset, 294

which is composed of paragraphs from Wikipedia 295

articles and questions generated by annotators. The 296

ground truths of each Question-Paragraph pair are 297

the start and end position of the answer. The re- 298

sult will be evaluated by exact match (EM) score 299

metrics. 300

GLUE. We select the following 8 tasks of GLUE 301

benchmark: (1) SST-2, a sentiment task using ac- 302

curacy as metrics, (2) CoLA, a acceptability task 303

using Matthews Corr. as metrics, (3) MRPC, a para- 304

phrase task using F1 score as metrics, (4) STS-B, a 305

sentence similarity task using Pearson-Spearman 306

Corr. as metrics, (5) QNLI, a Natural Language In- 307

ference (NLI) task using accuracy score as metrics, 308

(6) QQP, a paraphrase task using F1 score as met- 309

rics, (7) RTE, a NLI task using accuracy as metrics, 310

(8) MNLI, a NLI task using accuracy as metrics. 311
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4.3 Knowledge Base312

We employ two Chinese KBs, HowNet and CN-313

DBpedia which are refined and used in K-BERT314

(Liu et al., 2019) for QA task. Each triple in both315

KBs holds head, relation, and tail. We also employ316

KELM Corpus to evaluate our model on common317

NLU tasks of GLUE benchmark.318

CN-DBpedia. The CN-DBpedia (Xu et al., 2017)319

is a large-scale structured encyclopedia developed320

and maintained by the Knowledge Workshop Lab-321

oratory of Fudan University. It has extended to322

fields such as law, industry, finance, and medical323

care, providing supporting knowledge services for324

intelligent applications in various industries. The325

refined CN-DBpedia contains around 5M triples.326

HowNet. The HowNet (Dong et al., 2006) is a327

large-scale KB containing Chinese concepts and328

vocabulary. Each entity is annotated with semantic329

units called sememes. The refined HowNet con-330

tains a total of 52,576 triples.331

KELM. The KELM Corpus (Lu et al., 2021) con-332

sists of the entire Wikidata KG as natural text sen-333

tences, it contains around 15M sentences converted334

from KG’s triples, the sentences are like Expand 2335

shown in Figure 2.336

4.4 KB Format337

It is intuitive that knowledge representation will338

effect the performance of models by yielding dif-339

ferentiating quality of language understanding. Be-340

sides, which knowledge to select is also an essential341

issue. Therefore, we test 6 different formats of in-342

put of KB-BERT, which are the combinations of 3343

kinds of knowledge representation with 2 kinds of344

knowledge selection.345

Representation. We represent the knowledge from346

KBs with 3 types of Expand mentioned in Sec-347

tion 3.3 and demonstrated in Figure 2, and compare348

these representations with model performance.349

Selection. As mentioned in Section 3.3, triples in350

KB are selected if its head exists in the paragraph351

passage no matter its tail exists in the paragraph,352

and we denote this selection as Tail_nonExist. The353

other kind of selection is denoted as Tail_Exist,354

meaning that both the head and the tail of the se-355

lected triple exist in the paragraph passage. Check-356

ing whether the tail exists in the paragraph passage357

is a simple way to ensure the selected triples are358

more likely to relate to the paragraph passage.359

The result shows that the combination of Ex-360

pand 2 and Tail_Exist yields the best performance.361

4.5 Other Setting 362

We also investigate the following factors, which in- 363

fluence the fusion efficiency, through experiments. 364

Segmentation. Since the input of the fusion layer 365

contains outputs from both underlying BERT mod- 366

els, where they contains their own positional in- 367

formation, the fusion layer can hardly distinguish 368

these two parts. Thus, we add segmentation tokens 369

to the input of KB-BERT and TASK-BERT, and 370

test 2 formats segmentation token to find out the 371

better way to address this problem. 372

The first type of segmentation of KB tokens and 373

padding tokens in KB-BERT are different, using 374

A and B respectively; while the segmentation of 375

question, paragraph, and padding tokens in TASK- 376

BERT are A, B, A respectively. The first type of 377

segmentation aims to separate the content of tokens 378

in a single BERT. 379

As showed in Figure 1, the second type of seg- 380

mentation of every token in KB-BERT is set to A, 381

that is, the segmentation of KB tokens and padding 382

tokens are all A; while the segmentation of every 383

token in TASK-BERT is set to B, that is, the ques- 384

tion, paragraph, and padding tokens are all B. The 385

second type of segmentation aims to separate the 386

content of tokens of two BERT. 387

The result shows that the second type generates 388

a better performance. 389

Fusion layer. As mentioned in Section 3.1, we 390

use TE layers as our Fusion layer. To answer 391

the questions of ’whether the more layer the bet- 392

ter on performance?’ and ’whether loading pre- 393

trained weight to Fusion layer helps prediction?’, 394

we test different number of TE layers under same 395

setting; we also test TE layers initialized by ran- 396

dom weights and pre-trained BERTbase, and TE 397

layers are updated during training. 398

The result shows that ’more layers do not al- 399

ways lead to better performance’ and ’adopting 400

pre-trained weight outperforms random weights’. 401

Learning Rate of TE. Due to different model com- 402

plexities of BERTs and the fusion layer, we found 403

that necessary converge time for the fusion layer 404

(less complex) would be much more than BERTs 405

(more complex). How to make the two types of 406

models converge at the same time would be a chal- 407

lenge, our proposed solution is to use different 408

learning rates for them: the learning rate of fu- 409

sion layer is increased to be much larger than the 410

learning rate of BERTs under the same training pro- 411

cess. Thus, we investigate different learning rates 412
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Model KB TE Initialization EM score

BERTbase-chinese - - 76.08

Roof-BERT HowNet BERTbase-chinese 77.45
Roof-BERT CN-DBpedia BERTbase-chinese 77.59

Roof-BERT HowNet random weight 76.31
Roof-BERT CN-DBpedia random weight 76.61

Table 1: Results of Roof-BERT and baseline on QA tasks (%) with different KBs and initialization

Model KB SST-2 CoLA MRPC STS-B QNLI QQP RTE MNLI-m

BERTbase - 93.3 52.1 88.0 85.0 90.5 71.2 66.4 84.6
ERNIE Wikidata 93.5 52.3 88.2 83.2 91.3 71.2 68.8 84.0

Roof-BERT KELM 93.0 54.4 89.0 84.2 90.6 70.3 69.0 84.3

Table 2: Results of Roof-BERT and baselines on eight datasets of GLUE benchmark (%)

on the Fusion layer, e.g. 5 times, 10 times than413

the Underlying BERTs’ learning rate, and make a414

comparison with using the same learning rate on415

the entire model.416

The result shows that using 10 times learning417

rate of the Underlying BERT model on the Fusion418

layer achieves the best performance.419

4.6 Baseline420

In this paper, we compare Roof-BERT to three421

baseline: BERTbase-chinese, BERTbase-uncased422

(Devlin et al., 2018) and ERNIE (Zhang et al.,423

2019). BERTbase-chinese is pre-trained on WikiZh;424

BERTbase-uncased, denoted as BERTbase, is pre-425

trained on the BookCorpus and English Wikipedia;426

ERNIE is pre-trained on English Wikipedia for427

large-scale textual corpora and Wikidata for KGs.428

We use BERTbase-chinese as the baseline for QA429

task, and use BERTbase ERNIE as the baseline430

tasks in GLUE. Both BERT models are fine-tuned431

without KBs, and the results of baseline ERINE are432

from results in (Zhang et al., 2019).433

4.7 Results434

QA performance. We find the following setting435

performs the best in Roof-BERT: KB format with436

Expand 2 and Tail_Exist, segmentation with sec-437

ond type, TE initialized with last 4 layers from438

pre-trained BERTbase-chinese with 10 times of the439

Underlying BERT model’s learning rate.440

As the results are shown in Table 1, with external441

information from KBs, the performance of EM442

score on QA task increases >1.5%, which presents443

the benefits of utilizing KBs. The quality and the 444

quantity of knowledge from Cn-Dbpedia might be 445

better than that from HowNet so as to result in a 446

slight difference between their EM score in Table 1. 447

KB format. We compared the results of 6 differ- 448

ent KB formats showed in Table 3 with same set- 449

ting mentioned in Section 4.7-QAperformance 450

except KB format, including knowledge represen- 451

tation and selection. It is clearly that the KB for- 452

mat with Expand 2 representation and selected by 453

Tail_Exist produces the best performance. How- 454

ever, with a closer look in the contributions of 455

knowledge representation and selection, we found 456

that Expand 2 yields marginally better results 457

among three types of Expand, producing finer lan- 458

guage representation; however, whether the tails 459

of the selected triples are in the paragraph passage 460

matters. 461

The comparison of knowledge selections is 462

shown in Table 4 with same setting mentioned in 463

Section 4.7-QAperformance except knowledge 464

selection. The result indicates that selecting knowl- 465

edge with tail existing in paragraph passage im- 466

proves the EM score even with far less knowledge 467

added, inferring that adding arbitrary information 468

might worsen the performance. 469

TE initialization. As shown in Table 1, using pre- 470

trained weight on TE for initialization performs 471

better on both KBs; while the EM scores with us- 472

ing random weight for initialization do not increase 473

much compare to our baseline. It indicates that 474

pre-trained weight can improve language under- 475

standing. 476

6



Figure 3: Results of fusion efficiency study on QA and GLUE tasks: The metrics in (a), (b) are both EM scores,
while the metrics in (c), (d) are accuracy for RTE and Matthew’s Corr for CoLA. In (a) and (c), we set 10 times
learning rate of the Underlying BERT model in TE layers; in (b), we set the number of TE layers to 4; in (d), we set
the number of TE layers to 3.

Type Tail_Exist Tail_nonExist

Expand 0 77.21 77.34
Expand 1 76.92 76.77
Expand 2 77.45 77.03

Table 3: Results (EM score %) of different types of
KB selections and representations on QA task using
HowNet as KB.

Number of TE layers. As reported in Figure. 3a477

and c, the scores reache the maximum when using478

the last 4 and 3 TE layers from pre-trained BERT479

as Fusion layer. When using more layers, it con-480

sumes much more memory and the scores drop,481

which might be due to over-fitting; while using less482

layers, the fusion layer can not integrate language483

representation with KBs well.484

Learning rate of TE. As reported in Figure. 3b,485

using 10 times the learning rate of the Underlying486

BERT model’s learning rate on 4 TE layers returns487

the highest EM score increasing >1% compared to488

using the same learning rate as Underlying BERT489

model. Similarly, as reported in Figure. 3d, us-490

KB Selection Length EM Score (%)

HowNet Tail_Exist 29 77.45
HowNet Tail_nonExist 131 77.03

Cn-Dbpedia Tail_Exist 24 77.59
Cn-Dbpedia Tail_nonExist 168 76.90

Table 4: Comparison of adopting different knowledge
selections, where Length is the average length of the
input tokens of KB-BERT (w/o [PAD]) during training.

ing 10 times the learning rate of the Underlying 491

BERT model’s learning rate on 3 TE layers has a 492

2% performance boost. This shows that adopting a 493

higher learning rate in Fusion layer improves the 494

fusion effectiveness and further enhances predic- 495

tion. The cause behind the phenomena is that after 496

BERT was pre-trained, a very small learning rate 497

is adequate for fine-tuning on downstream task and 498

requires less epochs for its loss to converge to a 499

minima (global or local); on the contrary, excessive 500

learning rate might not lead our model to conver- 501

gence. That is to say, it is highly possible that the 502

learning pace of Fusion layer should be faster than 503
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Figure 4: Case study for QA task (DRCD dataset): This table contains 2 cases, where the ground truths of both
cases are matched with those predicted from Roof-BERT and knowledge is from HowNet in these cases. Noted that,
content is translated (without meaning loss) since the DRCD dataset and HowNet are in Chinese.

the Underlying BERT model in order not to con-504

fine to the individual information each underlying505

BERT provides but to consider both.506

GLUE. We use the following settings to evaluate507

Roof-BERT on datasets of GLUE: KB represen-508

tation with Expand 2, TE initialized with last 3509

layers from pre-trained BERTbase with 10 times of510

the Underlying BERT model’s learning rate.511

As the result shown in Table 2, Roof-BERT512

shows better performance on some datasets, like513

RTE, CoLA, and MRPC, which means our pro-514

posed model can integrate knowledge and con-515

textual embeddings well. Moreover, Roof-BERT516

achieves comparable or even better results with517

ERNIE on GLUE benchmark.518

The result also shows that Roof-BERT doesn’t519

have a significant effect on other tasks, like SST-2,520

STS-B, and QNLI. The reason could be the neces-521

sity of external information for these tasks, like sen-522

timental analysis, the sentiment of the sentence is523

determined by the emotional words but not knowl-524

edge, this situation also occurs in other researches,525

like ERNIE and K-BERT. However, our model in526

these tasks still achieve comparable performance527

compare to BERT.528

5 Case Study529

We conduct a case study on the QA task. As re-530

sult shown in Table 4: In the first case, knowl-531

edge provides information that both Chahar Peo- 532

ple’s Anti-Japanese Allied Army and Eighth Route 533

Army are kinds of army, enabling Roof-BERT un- 534

derstand these unseen named entities, which indi- 535

rectly helps correct prediction. Similarly, in the 536

second case, Roof-BERT also benefits from the 537

added knowledge, making it aware the functions 538

and characters of those named entities (Aircraft car- 539

rier, Destroyer...) in the paragraph. On the contrary, 540

without knowledge from KB, our baseline model, 541

BERTbase-chinese fail to understand the contex- 542

tual information of given question and paragraph, 543

leading to mis-prediction. 544

6 Conclusion 545

In this paper, we propose Roof-BERT to encode 546

knowledge and input sentences with two underly- 547

ing BERTs respectively and a fusion layer on them 548

as a Roof. Through the architecture, the problem 549

of length limitation of BERT can be eased, so more 550

knowledge and longer input texts can be handled 551

with BERT. Experiment results on QA task and 552

GLUE benchmark are provided to demostrate the 553

model’s effectiveness. We also show that precise 554

knowledge selection is also critical under the archi- 555

tecture. Roof-BERT is a very general and powerful 556

method for language understanding, which could 557

easily be applied to other NLP tasks. It would espe- 558

cially benefit tasks which require information from 559

a large range of knowledge or long input texts. 560
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