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Abstract

Recent work on enhancing BERT-based lan-
guage representation models with knowledge
graphs (KGs) and knowledge bases (KBs) has
promising results on multiple NLP tasks. State-
of-the-art approaches typically integrate the
original input sentences with triples in KGs,
and feed the combined representation into a
BERT model. However, as the sequence length
of a BERT model is limited, the framework can
not contain too much knowledge besides the
original input sentences and is thus forced to
discard some knowledge. The problem is espe-
cially severe for those downstream tasks that
input is a long paragraph or even a document,
such as QA or reading comprehension tasks. To
address the problem, we propose Roof-BERT,
a model with two underlying BERTs and a
fusion layer on them. One of the underlying
BERTS encodes the knowledge resources and
the other one encodes the original input sen-
tences, and the fusion layer like a roof inte-
grates both BERTSs’ encodings. Experiment
results on QA task and GLUE benchmark re-
veal the effectiveness of the proposed model.

1 Introduction

While BERT model dominates multiple benchmark
datasets, studies on incorporating extra knowledge
with Language Models (LMs) for advancing lan-
guage understanding sprung up (Zhang et al., 2019;
Liu et al., 2019; Wang et al., 2020). The sources
of the extra knowledge are mostly KGs and KBs
providing rich knowledge facts and benefiting lan-
guage understanding. For example, ERNIE (Zhang
et al., 2019) employs TransE (Bordes et al., 2013)
to encode entity information, and concatenate them
with the token embedding to feed into a fusion
layer. Despite the success on GLUE benchmark,
due to the concatenation on token level, ERNIE is
not able to consider textual knowledge representa-
tion. On the other hand, K-BERT (Liu et al., 2019)
convert knowledge triples into textual forms and

inject them into the input sentences, forming a tree
representation to feed into a BERT. However, this
kind of approaches can only consider pretty lim-
ited knowledge besides the input sentences due to
intrinsic limitation of input length of BERT (512
tokens).

Accordingly, we propose Roof-BERT, a model
with two underlying BERTs and a fusion layer,
Transformer encoder (Vaswani et al., 2017), as the
Roof on top of them. Roof-BERT encodes the
text input with one of the underlying BERT's and
encode the knowledge information with the other
BERT, and integrate both embeddings with a fusion
layer for further downstream tasks. Through the
structure, our model allows more information from
both the original text and knowledge information.
In addition, if memory permits and the necessity of
long input, employing multiple BERTs (more than
two) is also accessible through the structure.

Although the proposed idea is intuitive, there are
still several critical challenges which need to be
addressed:

(1) What is a appropriate model for a Roof? And
how does the Roof distinguish individual outputs
from two underlying BERTs?

(2) How many layers are enough for the roof
to fuse the outputs from two underlying BERTs?
There could be a trade-off between computational
resources and performance.

(3) Due to different model complexities, neces-
sary converge time for Roof may be different from
converge time for BERTs. How to address the issue
during the training phase?

(4) Although through our proposed architecture,
the space for knowledge can be as long as 512 to-
kens, it is still limited. Thus precise knowledge
selection and effective representation would be cru-
cial for the performance.

We investigate various factors and propose the
corresponding solutions to these challenges, de-
scribed in detail in the following sections.
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Figure 1: The overall architecture of Roof-BERT for QA task: The input of Roof-BERT contains input tokens and
segmentation tokens, which are the yellow and green blocks respectively. The linear layer, in the case of QA task,
outputs two digits, which are the probabilities of the start and end positions of the answer, for every position. In the
case of NLU tasks in GLUE, we input the average mean of the transformer encoder layers’ output into the linear
layer, the linear layer outputs the probability distribution of the labels.

We conduct experiments on the QA task (Ra-
jpurkar et al., 2016) and GLUE benchmark. Exper-
iment results reveal that integrating knowledge by
Roof-BERT structure significantly outperforms the
results of using only one BERT to integrate both
original input sentences and knowledge.

Overall, our contributions can be summarized as
follows:

* We propose a BERT-based framework,
namely Roof-BERT, which encodes knowl-
edge and input sentences with two separate
BERTSs. Promising results of QA task and
GLUE benchmark are provided.

* Roof-BERT address the problem of input
length limitation of BERT. We believe it can
also contribute to other NLP tasks where
much knowledge or long context comprehen-
sion is needed.

* We show that precise knowledge selection and
effective representation are critical to advance
the performance for various downstream NLP
tasks.

2 Related Work

Many researches have worked on integrating
KB/KG for enhanced language representation.

Before strong pre-trained LMs such as BERT
were proposed, several works have studied joint
representation learning of words and knowledge.
(Wang et al., 2014) combines knowledge embed-
dings and word vectors. (Toutanova et al., 2015)
utilizes the convolutional neural network to capture
the compositional structure of textual relations, and
jointly optimizes entity, KBs, and textual relation
representations. Both of them are also based on
the concept of word2vec (Mikolov et al., 2013) and
TransE (Bordes et al., 2013).

After Google Inc. launched BERT in 2018, re-
searches on integrating KBs/KGs gradually focus
on optimization with pre-trained LMs. ERNIE
(Zhang et al., 2019), one of the early studies, en-
codes knowledge information in KGs by knowl-
edge embedding model TransE (Bordes et al.,
2013) trained on Wikidata and refines pre-training
of BERT via named entity masking and phrase
masking. K-BERT (Liu et al., 2019) proposed in-
jecting knowledge into the text to form a sentence
tree without using a pre-training by-self model for
knowledge embeddings and adopted soft-position



embeddings and visible matrix for structural infor-
mation and prevention of diverting the sentence
from its correct meaning. Based on these works,
KEPLER (Wang et al., 2020) jointly optimizes the
knowledge embeddings and mask language model-
ing objectives on pre-training LMs.

There are also some related work relying on two
BERTSs working together. For example, Sentence-
BERT (Reimers and Gurevych, 2019), propose a
model to derive sentence embeddings via BERTs
and use a classifier to judge the similarity of two
sentences. DC-BERT (Zhang et al., 2020), a decou-
pled contextual encoding framework to address the
efficiency of information retrieval, use an online
BERT to encode the question only once, and an
offline BERT which pre-encodes each document
and caches their encodings.

3 Methodology

In this section, we detail the overall framework of
Roof-BERT presented in Figure 1 and the input
formats for Roof-BERT, which are sentences pairs
and selected triples from KB.

3.1 Model Architecture

As shown in Figure 1, the entire model architec-
ture of Roof-BERT contains three stacked mod-
ules: (1) the Underlying BERT model, responsible
for encoding tokens to meaningful representations,
(2) the Fusion layer, responsible for combining in-
formation from the Underlying BERT model, and
(3) the Prediction layer, responsible for the further
downstream task, in our case, the QA task and the
common Natural Language Understanding (NLU)
tasks.

Underlying BERT model. The Underlying BERT
model is composed of two independent BERT
models, denoting as TASK-BERT and KB-BERT.
TASK-BERT encodes the tokenized passages,
which are identical to those input for a single BERT
on each downstream task, into embeddings. KB-
BERT encodes the tokenized triples from KBs to
embeddings. Both embeddings are then concate-
nated and fed to the Fusion layer as input.

Fusion layer. We choose Transformer Encoder
(TE) layers (Vaswani et al., 2017) as our Fusion
layer due to its self-attention mechanism. The input
of the Fusion layer is the concatenation of output
embeddings from TASK-BERT Emb € RM*? and
the output embeddings from KB-BERT Emb’ €
RV*d where d is the dimension or the hidden size

of word embeddings and M and N are the length
of the tokenized passage of question and paragraph
and tokenized triples from KBs, respectively.

Prediction layer. The Prediction Layer is simply
a Linear NN Layer, which is responsible for trans-
forming high-dimension embeddings into appropri-
ate logits for prediction and inference. The input
of the prediction layer is the output embeddings of
the Fusion layer Emb” € R(M+N)xd: while the
output of QA task is logits € R(M+TN)x2 ‘and the
two dimensions of the output logits in each position
are the start and end logits, which stands for the
probability of whether the position is the start or the
end position of the answer. On the other hand, in
other NLU tasks, the output embeddings of Fusion
layer are compressed to only one sequence length
AvgEmb € R?; while the output logits € R¢, and
e is based on the number of class of predicted label.

The model parameters are updated by minimiz-
ing the cross-entropy loss between the output logits
and the ground truths.

3.2 Input Format for TASK-BERT

In this paper, we test the capability of Roof-BERT
on QA downstream task and NLU tasks of GLUE.
We follow the format of the input of the major
approach for BERT. Each sentence pair from the
dataset contains two passages. Both passages will
be tokenized and will be concatenated with a [SEP]
token as input for TASK-BERT.

Since BERT has a 512 limitation on input length,
we set the maximum length for our question pas-
sage and paragraph passage. If the length of the
passage is shorter than the maximum length, which
is mostly the case in the question passage, [PAD]
tokens will be added at the end of the concatenated
passage to fix the length of every input. If the length
of the passage is longer than the maximum length,
which is mostly the case in paragraph passages, we
will truncate the passage.

3.3 Input Format for KB-BERT

We choose KBs as our external information for
our approach. KB contains triples and each triple
consists 3 components, which are head, relation,
and tail, each corresponds to subject, relation, and
object in a sentence respectively.

The triples will be selected by a heuristic algo-
rithm (string match), which will select the triple if
its head exists in the paragraph passage in the input
of TASK-BERT. The selected triples, will then con-



Sample triples ( head—relation—tail )

1. Bill Gates—founder—Microsoft

2. Bill Gates—alumni—Harvard

3. Elon Musk—founder—SpaceX
Expand 0

[SEP] Bill Gates founder Microsoft

[SEP] Bill Gates alumni Harvard

[SEP] Elon Musk founder SpaceX
Expand 1

[SEP] Bill Gates is a founder of Microsoft

[SEP] Bill Gates is a alumni of Harvard

[SEP] Elon Musk is a founder of SpaceX
Expand 2

[SEP] Bill Gates is a founder of Microsoft, he is a alumni of Harvard

[SEP] Elon Musk is a founder of SpaceX

Figure 2: Example of three types of expansion. Note
that we use Chinese KB; this example is for demonstra-
tion.

catenate one after another, and are separated with
[SEP] token.

As shown in Figure 2, we proposed three type
of expansions, which are denoted as Expand 0, 1,
2, for our selected triples. Expand 0 simply con-
catenate the components in the triple as a unit, and
it will concatenate after the previous unit. Expand
1 will further add "F*J", a Chinese token, between
head and relation, and add "J&", a Chinese token,
between relation and tail to form a natural sentence
(Agarwal et al., 2021), which is equivalent to "head
is arelation of tail" in English. The sentence, which
is also the unit, will then be concatenated after the
previous unit. Expand 2 is a refined version of
Expand 1; if the current head of the selected triple
is identical to the head of the previous unit, the
head will be replaced by a pronoun, and merge
with the previous unit with a comma, forming a
larger sentence/unit.

4 Experiments

In this section, we present the details of fine-
training Roof-BERT and the fine-tuning results
with different KBs and settings. The estimated
number of parameters is around 200 230M depends
on the depth of our fusion layer.

4.1 Parameter Settings

For QA task, conformed to the input length limit
of BERT, we set the maximum length of ques-
tion and paragraph as 59 and 450 respectively
so that the total length of the input token length
would be len([CLS]) + len(Question passge to-
ken) + len([SEP]) + len(Paragraph passage token)
+len([SEP]) =1 +59+1+450+1=512.

We find the following setting values work well

on the QA datasets, i.e., batch size: 16, learning
rate (AdamW): 3e~°. In addition, we adopt linear
learning rate decay scheduler. For the number of
epochs, since we are fine-tuning our model on QA
downstream task, the number of the epoch is set
1 with the training loss and accuracy converging
properly.

For the NLU tasks of GLUE, we set the maxi-
mum length of sentence pair as 512, including one
[CLS] token and two [SEP] tokens, if the length
of sentences doesn’t reach 512, we add the [PAD]
tokens at the end of the sentences until the length
of sentences reaches 512.

We find the following setting values work well
on the GLUE benchmark, i.e., batch size: 16, learn-
ing rate (AdamW): 2e~5. We use cosine learning
rate decay scheduler. The training epochs are fixed
at 5 for fine-tuning our proposed model.

4.2 Dataset

For QA task, we evaluate Roof-BERT and baseline
model on DRCD dataset (Shao et al., 2019). For
other NLU tasks, we evaluate our model on Gen-
eral Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2018), which is used in
ERNIE (Zhang et al., 2019). GLUE is a multi-task
benchmark for NLU consisting 11 tasks, and we
use the following 8 tasks of GLUE to evaluate Roof-
BERT and compare it with baseline models. These
tasks adopt different evaluation metrics depending
on their purpose.

DRCD. The Delta Reading Comprehension
Dataset is an open-source Chinese QA dataset,
which is composed of paragraphs from Wikipedia
articles and questions generated by annotators. The
ground truths of each Question-Paragraph pair are
the start and end position of the answer. The re-
sult will be evaluated by exact match (EM) score
metrics.

GLUE. We select the following 8 tasks of GLUE
benchmark: (1) SST-2, a sentiment task using ac-
curacy as metrics, (2) CoL A, a acceptability task
using Matthews Corr. as metrics, (3) MRPC, a para-
phrase task using F1 score as metrics, (4) STS-B, a
sentence similarity task using Pearson-Spearman
Corr. as metrics, (5) QNLI, a Natural Language In-
ference (NLI) task using accuracy score as metrics,
(6) QQP, a paraphrase task using F1 score as met-
rics, (7) RTE, a NLI task using accuracy as metrics,
(8) MNLLI, a NLI task using accuracy as metrics.



4.3 Knowledge Base

We employ two Chinese KBs, HowNet and CN-
DBpedia which are refined and used in K-BERT
(Liu et al., 2019) for QA task. Each triple in both
KBs holds head, relation, and tail. We also employ
KELM Corpus to evaluate our model on common
NLU tasks of GLUE benchmark.

CN-DBpedia. The CN-DBpedia (Xu et al., 2017)
is a large-scale structured encyclopedia developed
and maintained by the Knowledge Workshop Lab-
oratory of Fudan University. It has extended to
fields such as law, industry, finance, and medical
care, providing supporting knowledge services for
intelligent applications in various industries. The
refined CN-DBpedia contains around 5M triples.
HowNet. The HowNet (Dong et al., 2006) is a
large-scale KB containing Chinese concepts and
vocabulary. Each entity is annotated with semantic
units called sememes. The refined HowNet con-
tains a total of 52,576 triples.

KELM. The KELM Corpus (Lu et al., 2021) con-
sists of the entire Wikidata KG as natural text sen-
tences, it contains around 15M sentences converted
from KG’s triples, the sentences are like Expand 2
shown in Figure 2.

4.4 KB Format

It is intuitive that knowledge representation will
effect the performance of models by yielding dif-
ferentiating quality of language understanding. Be-
sides, which knowledge to select is also an essential
issue. Therefore, we test 6 different formats of in-
put of KB-BERT, which are the combinations of 3
kinds of knowledge representation with 2 kinds of
knowledge selection.

Representation. We represent the knowledge from
KBs with 3 types of Expand mentioned in Sec-
tion 3.3 and demonstrated in Figure 2, and compare
these representations with model performance.

Selection. As mentioned in Section 3.3, triples in
KB are selected if its head exists in the paragraph
passage no matter its tail exists in the paragraph,
and we denote this selection as Tail_nonExist. The
other kind of selection is denoted as Tail_EXxist,
meaning that both the head and the tail of the se-
lected triple exist in the paragraph passage. Check-
ing whether the tail exists in the paragraph passage
is a simple way to ensure the selected triples are
more likely to relate to the paragraph passage.
The result shows that the combination of Ex-
pand 2 and Tail_Exist yields the best performance.

4.5 Other Setting

We also investigate the following factors, which in-
fluence the fusion efficiency, through experiments.

Segmentation. Since the input of the fusion layer
contains outputs from both underlying BERT mod-
els, where they contains their own positional in-
formation, the fusion layer can hardly distinguish
these two parts. Thus, we add segmentation tokens
to the input of KB-BERT and TASK-BERT, and
test 2 formats segmentation token to find out the
better way to address this problem.

The first type of segmentation of KB tokens and
padding tokens in KB-BERT are different, using
A and B respectively; while the segmentation of
question, paragraph, and padding tokens in TASK-
BERT are A, B, A respectively. The first type of
segmentation aims to separate the content of tokens
in a single BERT.

As showed in Figure 1, the second type of seg-
mentation of every token in KB-BERT is set to A,
that is, the segmentation of KB tokens and padding
tokens are all A; while the segmentation of every
token in TASK-BERT is set to B, that is, the ques-
tion, paragraph, and padding tokens are all B. The
second type of segmentation aims to separate the
content of tokens of two BERT.

The result shows that the second type generates
a better performance.

Fusion layer. As mentioned in Section 3.1, we
use TE layers as our Fusion layer. To answer
the questions of *whether the more layer the bet-
ter on performance?’ and ’whether loading pre-
trained weight to Fusion layer helps prediction?’,
we test different number of TE layers under same
setting; we also test TE layers initialized by ran-
dom weights and pre-trained BERT}, and TE
layers are updated during training.

The result shows that more layers do not al-
ways lead to better performance’ and ’adopting
pre-trained weight outperforms random weights’.

Learning Rate of TE. Due to different model com-
plexities of BERTSs and the fusion layer, we found
that necessary converge time for the fusion layer
(less complex) would be much more than BERT's
(more complex). How to make the two types of
models converge at the same time would be a chal-
lenge, our proposed solution is to use different
learning rates for them: the learning rate of fu-
sion layer is increased to be much larger than the
learning rate of BERTSs under the same training pro-
cess. Thus, we investigate different learning rates



Model KB TE Initialization EM score
BERT}s.-chinese - - 76.08
Roof-BERT HowNet BERT},,s.-chinese 77.45
Roof-BERT CN-DBpedia BERT},s.-chinese 77.59
Roof-BERT HowNet random weight 76.31
Roof-BERT CN-DBpedia  random weight 76.61

Table 1: Results of Roof-BERT and baseline on QA tasks (%) with different KBs and initialization

Model KB SST-2 CoLA MRPC STS-B QNLI QQP RTE MNLI-m
BERT ¢ - 93.3 52.1 88.0 85.0 905 71.2 664 84.6
ERNIE Wikidata  93.5 523 88.2 83.2 913 712 6838 84.0
Roof-BERT KELM 93.0 54.4 89.0 84.2 906 703 69.0 84.3

Table 2: Results of Roof-BERT and baselines on eight datasets of GLUE benchmark (%)

on the Fusion layer, e.g. 5 times, 10 times than
the Underlying BERTS’ learning rate, and make a
comparison with using the same learning rate on
the entire model.

The result shows that using 10 times learning
rate of the Underlying BERT model on the Fusion
layer achieves the best performance.

4.6 Baseline

In this paper, we compare Roof-BERT to three
baseline: BERT},.-chinese, BERT},¢.-uncased
(Devlin et al., 2018) and ERNIE (Zhang et al.,
2019). BERT,s.-chinese is pre-trained on WikiZh;
BERT},s.-uncased, denoted as BERT}., is pre-
trained on the BookCorpus and English Wikipedia;
ERNIE is pre-trained on English Wikipedia for
large-scale textual corpora and Wikidata for KGs.
We use BERT},,;.-chinese as the baseline for QA
task, and use BERT},,. ERNIE as the baseline
tasks in GLUE. Both BERT models are fine-tuned
without KBs, and the results of baseline ERINE are
from results in (Zhang et al., 2019).

4.7 Results

QA performance. We find the following setting
performs the best in Roof-BERT: KB format with
Expand 2 and Tail_Exist, segmentation with sec-
ond type, TE initialized with last 4 layers from
pre-trained BERT},,¢.-chinese with 10 times of the
Underlying BERT model’s learning rate.

As the results are shown in Table 1, with external
information from KBs, the performance of EM
score on QA task increases >1.5%, which presents

the benefits of utilizing KBs. The quality and the
quantity of knowledge from Cn-Dbpedia might be
better than that from HowNet so as to result in a
slight difference between their EM score in Table 1.
KB format. We compared the results of 6 differ-
ent KB formats showed in Table 3 with same set-
ting mentioned in Section 4.7-Q) Aper formance
except KB format, including knowledge represen-
tation and selection. It is clearly that the KB for-
mat with Expand 2 representation and selected by
Tail_Exist produces the best performance. How-
ever, with a closer look in the contributions of
knowledge representation and selection, we found
that Expand 2 yields marginally better results
among three types of Expand, producing finer lan-
guage representation; however, whether the tails
of the selected triples are in the paragraph passage
matters.

The comparison of knowledge selections is
shown in Table 4 with same setting mentioned in
Section 4.7-Q Aper formance except knowledge
selection. The result indicates that selecting knowl-
edge with tail existing in paragraph passage im-
proves the EM score even with far less knowledge
added, inferring that adding arbitrary information
might worsen the performance.

TE initialization. As shown in Table 1, using pre-
trained weight on TE for initialization performs
better on both KBs; while the EM scores with us-
ing random weight for initialization do not increase
much compare to our baseline. It indicates that
pre-trained weight can improve language under-
standing.
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Figure 3: Results of fusion efficiency study on QA and GLUE tasks: The metrics in (a), (b) are both EM scores,
while the metrics in (c), (d) are accuracy for RTE and Matthew’s Corr for CoLA. In (a) and (c), we set 10 times
learning rate of the Underlying BERT model in TE layers; in (b), we set the number of TE layers to 4; in (d), we set

the number of TE layers to 3.

Type ‘ Tail_Exist Tail_nonExist
Expand 0 77.21 77.34
Expand 1 76.92 76.77
Expand 2 77.45 77.03

Table 3: Results (EM score %) of different types of
KB selections and representations on QA task using
HowNet as KB.

Number of TE layers. As reported in Figure. 3a
and c, the scores reache the maximum when using
the last 4 and 3 TE layers from pre-trained BERT
as Fusion layer. When using more layers, it con-
sumes much more memory and the scores drop,
which might be due to over-fitting; while using less
layers, the fusion layer can not integrate language
representation with KBs well.

Learning rate of TE. As reported in Figure. 3b,
using 10 times the learning rate of the Underlying
BERT model’s learning rate on 4 TE layers returns
the highest EM score increasing >1% compared to
using the same learning rate as Underlying BERT
model. Similarly, as reported in Figure. 3d, us-

KB Selection Length EM Score (%)
HowNet Tail_Exist 29 77.45
HowNet Tail_nonExist 131 77.03
Cn-Dbpedia Tail_Exist 24 77.59
Cn-Dbpedia  Tail_nonExist 168 76.90

Table 4: Comparison of adopting different knowledge
selections, where Length is the average length of the
input tokens of KB-BERT (w/o [PAD]) during training.

ing 10 times the learning rate of the Underlying
BERT model’s learning rate on 3 TE layers has a
2% performance boost. This shows that adopting a
higher learning rate in Fusion layer improves the
fusion effectiveness and further enhances predic-
tion. The cause behind the phenomena is that after
BERT was pre-trained, a very small learning rate
is adequate for fine-tuning on downstream task and
requires less epochs for its loss to converge to a
minima (global or local); on the contrary, excessive
learning rate might not lead our model to conver-
gence. That is to say, it is highly possible that the
learning pace of Fusion layer should be faster than



Question

Paragraph

Knowledge

Ans. of Roof-BERT

Ans. of baseline

Which army was the
Chinese army that
regained lost territory
for the first time since
the September 18th
Incident?

Feng Yuxiang, Ji Hongchang, Fang Zhenwu and others
established the Chahar People's Anti-Japanese Allied Army in
Zhangyuan on May 26, 1933 and started to attack the
Japanese troops in Chahar and Jehol in June, and all of them
were expelled from Chahar, which was the first time that the
Chinese army had regained lost territory since the September
18th Incident. From May to June in the 34th year of the
Republic of China, the Eighth Route Army in the Shanxi-
Chahar-Hebei border area launched the Chanan Campaign,
captured Huaian, Shuyuan and other county towns, and
developed to the Pingsui Road and the Chabei area.

[CLS] The Eighth Route
Army is a kind of army
[SEP] Allied Army is for
Alliance, and is a kind of
army [SEP]

The Chahar People's
Anti-Japanese Allied

Army

The Eighth Route
Army

Before Pearl Harbor
Attack, which of Japan’s
most important targets
were not in the harbor?

Tokyo received information about spies lurking in Pearl
Harbor. There were 9 warships, 3 cruisers, and 17 destroyers
parked in the harbor. There were 4 cruisers and 3 destroyers
in the dock, while all aircraft carriers were not in the base.
The pocket submarine, which was the vanguard of the
operation, began to leave the mothership. At 3:42, the U.S.
minesweeper USS Condor spotted a periscope in front of
Honolulu Harbor, and the destroyer USS Ward fired and

[CLS] Aircraft carrier is a
kind of weapon [SEP]
Periscope is for vision, and
is a kind of equipment
[SEP] Destroyer is a kind of
weapon [SEP] Cruiser is a
kind of weapon [SEP]

Aircraft carrier

USS Ward

dropped depth charges.

Figure 4: Case study for QA task (DRCD dataset): This table contains 2 cases, where the ground truths of both
cases are matched with those predicted from Roof-BERT and knowledge is from HowNet in these cases. Noted that,
content is translated (without meaning loss) since the DRCD dataset and HowNet are in Chinese.

the Underlying BERT model in order not to con-
fine to the individual information each underlying
BERT provides but to consider both.

GLUE. We use the following settings to evaluate
Roof-BERT on datasets of GLUE: KB represen-
tation with Expand 2, TE initialized with last 3
layers from pre-trained BERT}, . with 10 times of
the Underlying BERT model’s learning rate.

As the result shown in Table 2, Roof-BERT
shows better performance on some datasets, like
RTE, CoLA, and MRPC, which means our pro-
posed model can integrate knowledge and con-
textual embeddings well. Moreover, Roof-BERT
achieves comparable or even better results with
ERNIE on GLUE benchmark.

The result also shows that Roof-BERT doesn’t
have a significant effect on other tasks, like SST-2,
STS-B, and QNLI. The reason could be the neces-
sity of external information for these tasks, like sen-
timental analysis, the sentiment of the sentence is
determined by the emotional words but not knowl-
edge, this situation also occurs in other researches,
like ERNIE and K-BERT. However, our model in
these tasks still achieve comparable performance
compare to BERT.

5 Case Study

We conduct a case study on the QA task. As re-
sult shown in Table 4: In the first case, knowl-

edge provides information that both Chahar Peo-
ple’s Anti-Japanese Allied Army and Eighth Route
Army are kinds of army, enabling Roof-BERT un-
derstand these unseen named entities, which indi-
rectly helps correct prediction. Similarly, in the
second case, Roof-BERT also benefits from the
added knowledge, making it aware the functions
and characters of those named entities (Aircraft car-
rier, Destroyer...) in the paragraph. On the contrary,
without knowledge from KB, our baseline model,
BERT},s.-chinese fail to understand the contex-
tual information of given question and paragraph,
leading to mis-prediction.

6 Conclusion

In this paper, we propose Roof-BERT to encode
knowledge and input sentences with two underly-
ing BERTS respectively and a fusion layer on them
as a Roof. Through the architecture, the problem
of length limitation of BERT can be eased, so more
knowledge and longer input texts can be handled
with BERT. Experiment results on QA task and
GLUE benchmark are provided to demostrate the
model’s effectiveness. We also show that precise
knowledge selection is also critical under the archi-
tecture. Roof-BERT is a very general and powerful
method for language understanding, which could
easily be applied to other NLP tasks. It would espe-
cially benefit tasks which require information from
a large range of knowledge or long input texts.
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