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ABSTRACT

Medical imaging segmentation has emerged as a critical field within medical anal-
ysis, predominantly operating on thicker CT slices (> 1mm, usually 5mm) derived
from post-processed versions of original thinner slices (generally ≤ 1mm). While
thin slices offer superior spatial resolution and diagnostic precision for clinicians,
the scarcity of annotated data for supervision limits segmentation to thicker slices.
Acquiring thin slice annotations for training a dedicated segmenter is resource and
time-intensive, often requiring an order of magnitude more effort compared to an-
notating thick slices, making it impractical to accumulate sufficient high-quality
thin annotations for robust supervised models. Furthermore, directly employing
thick data to train models for thin slices faces significant domain gaps in scale. In
response to these multifaceted challenges, we introduce three key contributions.
Firstly, we propose a novel task of segmenting thin scans using annotations
from thicker slices, addressing a practical clinical need. Secondly, we present
the CQ500-Thin dataset, comprising Non-Contrast CT scans featuring Intracra-
nial Hemorrhage (ICH) and expertly-labelled pixel-level thin annotations tailored
for evaluation, accompanied by corresponding benchmarks and evaluation met-
rics. Lastly, we introduce the Thin-Thick Adapter (TTA), a simple yet highly
effective module that plays a pivotal role in bridging the domain gap between thin
and thick scans. TTA has notably enhanced segmentation performance, boost-
ing mDSC by 10.18% and mIoU by 12.34% compared to the vanilla nnUNet
baseline. This substantial improvement extends the applicability of segmentation
models, enabling their use in various clinical scenarios, including unsupervised
approaches, and thus advancing the cutting-edge of medical imaging segmenta-
tion research. The code and dataset will be published under acceptance.

1 INTRODUCTION

Segmentation has been a key focus of computer vision for an extended period and has impor-
tant applications in medical imaging (Long et al., 2015). Medical images, derived from predom-
inant modalities such as Computed Tomography (CT), Positron Emission Tomography (PET), and
Magnetic Resonance Imaging (MRI), are inherently volumetric in nature, encompassing a three-
dimensional (3D) spatial representation (Singh et al., 2020). Consequently, the precision and ac-
curacy of 3D segmentation is indispensable for tasks ranging from disease diagnosis to treatment
planning.

Furthermore, among diagnostic imaging modalities, CT is one of the most commonly employed
techniques (Muir & Santosh, 2005). CT scans produce two discernible image types based on slice
thickness: thick slices and thin slices (Huang et al., 2021). Thick slices are derived either from
thick scan acquisitions or by retrospective reconstruction of thin slices (Boxwala & Rosenman,
1994), while thin slices are acquired directly through thin scanning procedures. During the CT
scanning process, the patient is positioned on the CT scanner table and gradually moved through
the gantry, which houses the X-ray tube and detector array. This rotation and movement of the
table are controlled by the pitch parameter (Wang & Vannier, 1999), which determines the distance
the CT scanner table travels during each rotation of the X-ray tube. If the pitch number is greater
than 1, it means that the table travels more than the width of the beam, i.e. there are gaps. In
contrast, if the pitch number is less than 1, it means that the table travels less than the width of
the beam, i.e. there is overlap. During prospective reconstruction, the pitch plays a crucial role
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in determining the thickness of the resulting CT slices. A smaller pitch value indicates a smaller
distance traveled by the table per rotation, resulting in thinner CT slices. This parameter directly
influences the spatial resolution and image quality of the CT scans. The thin slices, in another
words, is obtained from the prospective reconstruction of thin scan. After acquiring thin slices, a
retrospective reconstruction (Boxwala & Rosenman, 1994) technique can be employed to obtain
thick slices. This process involves utilizing an averaging algorithm, such as the average intensity
projection (AIP) (Shirai et al., 2012), to merge multiple thin slices into a single thick slice. The thick
slices can be generated with varying thicknesses and from different orientations, including axial,
sagittal, and coronal planes (van Waes et al., 1983). Additionally, there are three different interval
strategies for averaging thin slices into thick slices: contiguous, non-contiguous, and overlapped
interval.

Thick slices exhibit diminished resolution along the depth axis, commonly referred to as z-
resolution. In contrast, thin slices encapsulate more detailed volumetric information, thus offering
superior capabilities for diagnosis. Unfortunately, publicly accessible CT datasets, accompanied
by pixel-wise ground truth annotations, predominantly provide thick-slice acquisitions. However,
there is a domain gap between thin and thick scans. The averaging nature of thick scans (compared
to thin) can alter the noise statistics of images, as well as blur anatomic structures. Consequently,
existing medical imaging segmentation methods underperform in thin-slice segmentation. As afore-
mentioned, the manual annotation CT scans by an expert human annotator, such as a radiologist,
is onerous given the laborious and time-intensive nature of this process. This challenge is further
exacerbated when it comes to annotating thin slices, which involve a larger number of scans.

We chose the brain hemorrhage dataset for our study because it provided convenient access to both
multi-semantic thick scans and unlabeled thin scans, some of which we already possessed.

Thus, the development of framework for segmenting thin slices based on thick-slice annotations is
required to maximize the utility of thin slice acquisitions. In light of this, this paper introduces the
following three key contributions as follows.

• We present an innovative problem formulation and scenario: the segmentation of exclu-
sively thin slices, utilizing annotations originally designed for thick slices, without neces-
sitating any paired annotations encompassing both thin and thick slices.

• We have released a dataset called CQ500-Thin, derived from the publicly available CQ500
dataset (Chilamkurthy et al., 2018). It comprises 374 thin Non-Contrast CT scans along
with 15 expertly labelled pixel-level annotations for evaluation purposes. This dataset can
also be utilized as a benchmark for future research.

• We have introduced a robust pipeline referred to as the Thin-Thick Adapter. This pipeline
employs a straightforward yet effective data alignment technique, acting on thick slices to
harmonize their shapes with thin slices. Additionally, we employ the 3D Cross Pseudo
Supervision (3D-CPS) (Chen et al., 2021b; Huang et al., 2022) on nnUNet (Isensee et al.,
2021) for unsupervised domain adaptation (UDA) to enhance the model’s performance
on unlabeled thin slices, achieving superior results compared to existing methods in the
context of thin slice segmentation tasks. Moreover, this pipeline serves as a sturdy baseline
for addressing the problem at hand and lays the groundwork for future research endeavors
in this domain.

2 RELATED WORKS

3D Medical Imaging Segmentation Transformer architectures, such as TransUNet (Chen et al.,
2021a), Medical Transformer (Valanarasu et al., 2021), and TransBTS (Wang et al., 2021), are
emerging as strong contenders to CNNs in medical image segmentation. They leverage self-attention
to capture global contexts in medical images, transcending CNN’s local limits. Hybrid models like
TransFuse (Zhang et al., 2021) and CoTr (Xie et al., 2021) blend Transformer and CNN strengths.
Here, CNNs extract local features, while Transformers address global contexts, enriched by skip
connections. Strategies such as proxy task pre-training in Swin UNETR (Hatamizadeh et al., 2021)
optimize Transformer performance on smaller datasets.

On the other hand, CNN-based designs, like nnUNet (Isensee et al., 2021) and UNETR
(Hatamizadeh et al., 2022), remain dominant due to their U-Net adaptations. For instance, UC-
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TransNet (Wang et al., 2022) modifies skip connections with attention. nnFormer (Zhou et al., 2021)
smoothly incorporates convolutional layers within its Transformer design, leveraging encoders like
Swin Transformers in Swin UNETR (Hatamizadeh et al., 2021). This facilitates capturing hier-
archical and volumetric representations, with self-supervised pre-training benefits echoing those in
Transformer models. Historically, research primarily applied 2D methods to reconstruct 3D volumes
slice-by-slice, leading to inconsistencies. Most methods focus on thick slice segmentation, limiting
their adaptability to thin slices. Our Thin-Thick Adapter addresses this by using thick annotations
for thin-slice segmentation.

Interpolation and Super-resolution In medical imaging, especially MRI, interpolation and
super-resolution techniques have advanced significantly. The study by (Thanh & Hai, 2017) presents
a 3D image construction from 2D MRI cortex images using a trilinear interpolation after prepro-
cessing and applying the multilevel Otsu method for brain extraction. Conversely, (Ghoshal et al.,
2023) introduces a technique using edge-preserved kriging interpolation for missing slice predic-
tion, speeding up the process through parallel processing and then applying shearlet transform and
the marching cubes method for visualization. This approach considerably accelerates reconstruc-
tion, even for large datasets.

Regarding super-resolution, (Brudfors et al., 2018) presents the UniRes generative model, which
treats high-resolution image recovery as an inverse problem. Incorporating a multi-channel total
variation prior, it exhibits enhanced MRI super-resolution capabilities. (Pinaya et al., 2022) har-
nesses Latent Diffusion Models for synthetic high-resolution 3D brain image generation, effectively
using the UK Biobank dataset for realistic data generation with variable conditioning. Finally, (Lyu
et al., 2020) proposes a method that integrates multiple contrast images in a high-level feature space
for superior super-resolution, especially effective when starting with significantly down-sampled
images.

Unsupervised Domain Adaptation In the arena of unsupervised domain adaptation (UDA) and
deep learning robustness, several notable advancements have been made. The SDC-UDA (Shin
et al., 2023) study introduces an innovative framework for slice-direction continuous cross-modality
medical image segmentation. SDC-UDA leverages intra- and inter-slice self-attentive image trans-
lation, coupled with uncertainty-constrained pseudo-label refinement and volumetric self-training.
Unlike previous UDA techniques in medical imaging, SDC-UDA ensures continuous segmentation
in the slice direction, enhancing its accuracy and clinical utility. This method demonstrated superior
slice-direction continuity and state-of-the-art segmentation performance across multiple datasets. In
a separate vein, CANARY (Sun et al., 2023) addresses the challenge of evaluating the adversarial
robustness of deep learning models. The CANARY platform utilizes a common scoring system,
incorporating four dimensions and 26 (sub)metrics. It employs a two-way evaluation strategy and
introduces Item Response Theory (IRT) to ensure fairness in scoring, thereby providing compre-
hensive evaluations of models or attack/defense algorithms. Lastly, the study (Yao et al., 2023)
presents an augmentation technique tailored for the Segment Anything Model (SAM) to enhance its
performance in segmenting noisy, low-contrast medical images. This method integrates multi-box
prompt augmentation with an aleatoric uncertainty-based false-negative and false-positive correc-
tion strategy. Further, the introduction of the Single-Slice-to-Volume (SS2V) method allows 3D
pixel-level segmentation from just a single 2D slice annotation, emphasizing SAM’s adaptability
even in challenging medical imaging scenarios.

3 UNPAIRED THIN-SLICE SEGMENTATION USING THICK ANNOTATIONS

As previously mentioned, thin slices and thick slices belong to distinct domains, with thin slices
often outperforming thick slices in various aspects. Consequently, there is a need to focus on seg-
menting thin slices exclusively. To address this, we have introduced a novel problem formulation:
segmenting thin slices using only thick annotations, without the requirement for paired thin and
thick slices or annotations. The necessity for this proposed problem formulation is outlined below.

Utilizing Thick Annotations We opted to utilize thick annotations instead of thin annotations due
to the prohibitively high cost associated with pixel-level annotations for 3D CT volumes. Annotat-
ing thin slices at the pixel level is considerably more expensive than annotating thick slices. Con-
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sequently, all existing publicly available pixel-level annotated Non-Contrast CT datasets primarily
consist of thick slices, until the introduction of our CQ500-Thin dataset. Because the quantity of
thin annotations is quite limited, both fully supervised training with thin annotations and pre-training
on thick annotations followed by fine-tuning on thin annotations cannot attain optimal performance,
which is demonstrated in Table 3. Furthermore, current 2D and 3D baseline models, trained on thick
annotations, exhibit suboptimal performance. For instance, 2D segmentation methods like SegViT
(Zhang et al., 2022; 2023) suffer from spiny and inconsistent predictions when viewed from sagittal
and coronal perspectives. This inconsistency arises because they fail to learn the coherence and
inter-slice relationships, resulting in masks that appear jagged. On the other hand, 3D segmentation
methods like nnUNet (Isensee et al., 2021) encounter issues with blocky predictions when observed
from sagittal and coronal orientations. This occurs due to their training on thick slices, which pos-
sess a different thickness compared to the thin slices. Thick slices and annotations are better suited
for coarse-grained data, whereas thin slices are better for fine-grained data.

Utilizing Unpaired Data We employ unpaired data because the availability of datasets containing
multi-semantic pixel-level annotations is notably scarce. Most of these datasets exclusively annotate
thick slices. In fact, datasets with pixel-level annotations on thin slices are nearly nonexistent, let
alone those containing paired thin-thick data. Consequently, addressing the challenge of thin-slice
segmentation cannot be accomplished through joint-loss or registration methods, as there is a lack
of paired thin-thick datasets. Consequently, utilizing unpaired datasets has enhanced the versatility,
universality, and generalizability of our approach.

Utilizing Domain Adaptation Approach The key difference between thin and thick slices isn’t
the number of slices, but rather the thickness of each individual slice, which collectively affects the
depth resolution. Attempting to use thick slices to segment thin ones presents challenges due to is-
sues such as partial volume artifacts, reduced spatial resolution, and noise averaging. This essentially
means that multiple structures can be contained within a single voxel, leading to a loss of contrast
resolution for small objects (partial voluming) and blurred edges for larger objects. Moreover, the
images display differing noise statistics, resulting in a domain shift. In essence, the problems of los-
ing contrast resolution for small objects and blurring the edges of larger objects are interconnected.

4 DATASET

CQ500-Thin CQ500-Thin is a dataset dedicated to Intracranial Hemorrhage, a subset derived
from the publicly available CQ500 dataset (Chilamkurthy et al., 2018). It consists of 374 thin non-
contrast CT scans, and we added pixel-level semantic segmentation annotations to 15 randomly
selected scans. These annotations cover five semantic categories: Epidural Hemorrhage (EDH), In-
traparenchymal Hemorrhage (IPH), Intraventricular Hemorrhage (IVH), Subarachnoid Hemorrhage
(SAH), and Subdural Hemorrhage (SDH). The annotation process involved contributions from a
neurologist, a junior doctor, and a medical student, with review by a radiologist.

ROTEM-Thin ROTEM-Thin originates from a private dataset within the ROTEM project, over-
seen by three doctors, comprising 389 thin non-contrast CT scans. We added pixel-level semantic
segmentation annotations by randomly selecting 10 images, including the same five semantics as
the CQ500-Thin dataset. This dataset serves as an internal benchmark to enhance the credibility and
robustness of our proposed method.

5 METHODOLOGY

5.1 DATA ALIGNMENT

Let’s assume that for a single thick scan, its shape is denoted as (c, h, w, d). Please note that, in the
case of a Non-Contrast CT protocol, it is typical to have a single channel (c = 1). Additionally, for a
head CT scan, the dimensions are generally set to h = w = 512 (Goldman, 2007; Wu et al., 2020).

The spacing, with respect to height, width, and depth, is defined as (sh, sw, sd). Note that, in the
case of a Non-Contrast CT scan, usually the sh = sw ≤ 1mm (Goldman, 2007; Lolli et al., 2016).
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Figure 1: This diagram illustrates the workflow of the Thin-Thick Adapter. Initially, labeled thick
scans undergo thickness adjustment and duplication n times, resulting in aligned thick scans. These
scans are subsequently used to train nnUNet as a supervision. The addition of 3D-CPS and unlabeled
thin data further enhances the performance of the Thin-Thick Adapter.

Hence, we can set sthin = sh = sw. And the spacing in depth sd is the thickness of slices.
Therefore, we define the alignment coefficient as

n = ⌈ sd
sthin

⌉ (1)

We can now duplicate each slice in the thick scans n times and adjust the depth spacing to sthin.
As a result, the aligned thick data will have the shape (c, h, w, nd), and the spacing will be
(sthin, sthin, sthin).

5.2 3D-CPS

The CPS is originally designed for 2D semi-supervised semantic segmentation (Chen et al., 2021b),
it is adaptable for 3D unsupervised domain adaptation (Huang et al., 2022). The objective of a
unsupervised domain adaptation (UDA) task is to train a segmentation network by utilizing both
labeled Dl and unlabeled Du data. The proposed method comprises two parallel segmentation
networks, denoted as FT1 and T2. These networks share the same architecture but have different
initial weights, represented as θ1 and θ2.

The input data X for UDA training undergoes preprocessing using the same pipeline as nnU-Net
(Isensee et al., 2021), followed by applying the default data augmentation from nnU-Net. T1(X) and
T2(X) generate predicted one-hot confidence maps based on the two parallel networks, while Y1(X)
and Y2(X) produce predicted one-hot label maps derived from T1(X) and T2(X), respectively.
The training objective consists of two key components: the supervision loss Lsup and the cross-
pseudo supervision loss Lcps, both are the combination of dice and cross-entropy losses, which
are aligned with the default configured of nnU-Net’s joint loss. The cross-pseudo supervision loss,
Lcps, comprises two parts: Ll

cps and Lu
cps, incorporating the CPS loss on labeled and unlabeled

datasets. In this setup, the two parallel networks consider the output of the other network as their
own pseudo-labels. The losses are formulated as:

Lsup = lsup(T1(X), Y ) + lsup(T2(X), Y ) (2)

Lcps = Ll
cps + Lu

cps (3)

Ll
cps = lcps(T1(X), Y2) + lcps(T2(X), Y1), X ∈ labeled data (4)

Lu
cps = lcps(T1(X), Y2) + lcps(T2(X), Y1), X ∈ unlabeled data (5)

L = Lsup + λLcps (6)

where λ serves as a hyper-parameter that must be predefined to determine the weight of the cross-
supervision loss. We set λ to increase linearly from 0 to 0.5, and it remains fixed after a specific
epoch ϵ, as opposed to having a constant value as in CPS.
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6 EXPERIMENTS

6.1 EXPERIMENT SETUP

The Thin-Thick Adapter experiments consist of several steps. First, data alignment is applied to
191 pixel-level annotated thick slices from the BHSD dataset (Wu et al., 2023). Subsequently, this
aligned thick data is combined with unlabeled data from various sources, including CQ500-Thin
(359 unlabeled thin scans), ROTEM-Thin (379 unlabeled thin scans), or a combination of both (738
unlabeled thin scans). These datasets are utilized to perform 3D-CPS (Chen et al., 2021b; Huang
et al., 2022) on the nnUNet backbone (Isensee et al., 2021), resulting in three distinct sets. The
evaluation is conducted on sets of 15, 10, and 25 pixel-level annotated scans, respectively. We set λ
to increase linearly from 0 to 0.5, and it remains fixed after 500 epochs.

To ensure a fair comparison, the baseline approach involves training the nnUNet model on the 191
thick annotated scans from the BHSD dataset. Subsequently, this trained model is directly applied
for inference on 15, 10, and 25 pixel-level annotated scans from CQ500-Thin, ROTEM-Thin, and
both datasets, respectively, without any adaptation.

An alternative approach that may tackle the challenge of thin slice segmentation, as mentioned
earlier, is to employ a state-of-the-art 2D semantic segmentation method. This involves training and
inferring CT scans on a slice-by-slice basis and subsequently reconstructing the individual slices to
form a complete 3D CT volume. In a manner similar to the 3D baseline (nnUNet), we disassembled
191 pixel-level annotated thick scans into individual slices and trained SegViT (Zhang et al., 2022)
on these thick slices. Subsequently, we evaluated the performance of the trained model on thin
evaluation sets.

We also applied two techniques, trilinear interpolation (Thanh & Hai, 2017) and UniRes (Brudfors
et al., 2018), for super-resolution. Initially, these techniques were used to enhance the resolution
of 191 thick scans from the BHSD dataset, making them isotropic among all three dimensions.
In other words, we adjusted the spacing in the depth (slice thickness) to be consistent with their
height and width. We also employed these techniques on the corresponding annotations, ensuring
that the semantic content of the annotations remained unchanged. To achieve this, we used the
semantics from the original annotations as a reference during the calibration process. Subsequently,
we used these super-resolution 191 thick scans to train the nnUNet and assessed their performance
on the three evaluation sets. The difference between the thick scans, trilinear interpolation, UniRes,
aligned thick scans, and the corresponding thin scans, has been shown in Figure 2. It is obvious that
interpolation and super-resolution techniques such as trilinear interpolation and UniRes introduce
blur compared with original scans, and thick scans has average out noise than thin scans due to
average intensity projection (AIP) (Shirai et al., 2012), as we mentioned in Section 1 and 3.

We selected nnUNet (Isensee et al., 2021) as our baseline because it is a convolutional architecture
that surpasses transformer-based or convolutional-transformer hybrid architectures when working
with limited data (Wu et al., 2023) due to its inherent CNN attributes, including locality and transla-
tion equivariance (Dosovitskiy et al., 2020). Furthermore, we chose 3D-CPS (Huang et al., 2022) as
our unsupervised domain adaptation (UDA) technique because it outperforms other semi-supervised
techniques (Wu et al., 2023) such as Entropy Minimization (Grandvalet & Bengio, 2004), Mean
Teacher (Tarvainen & Valpola, 2017), or Interpolation Consistency (Verma et al., 2022).

All experiments were conducted on a hardware platform featuring two Intel Xeon Platinum 8360Y
2.40GHz CPUs, 8 NVIDIA A100 40G GPUs, and 256GB of RAM.

6.2 EVALUATION METRICS

mDSC and aDSC The mean Dice Similarity Coefficient (mDSC) is the mean of Dice Similarity
Coefficients (DSCs) among all semantics, which is a commonly utilized evaluation metric in med-
ical imaging segmentation applications. It quantifies the degree of overlap between the predicted
segmentation P and the corresponding ground truth segmentation G. The mDSC value ranges be-
tween 0 and 1, with 0 indicating no overlap and 1 indicating a perfect match between the predicted
and ground truth segmentations. Assume we have n semantics, mDSC = (

∑n
i=1

2PG
P+G )/n
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Figure 2: The comparison between orginal thick scan, super-resolution techniques, data alignment
techinque in our TTA, and the original thin scan. Please note that we did not use any paired thick
and thin scans, this is just for demonstration.

In contrast, the class-agnostic Dice Similarity Coefficient (aDSC) is consider all the semantics as a
single foreground semantic, essentially measuring the overall quality of segmentation regardless of
specific foreground categories.

The aDSC is particularly valuable in assessing the accuracy of segmentation models, especially in
situations where there is a substantial class imbalance. It provides a comprehensive measure of the
segmentation performance, accounting for both the presence and absence of the segmented regions.

mIoU and aIoU The mean Intersection over Union (mIoU) is similar to the mDSC, which in-
volves determining the intersection of the predicted and ground truth segmentations and dividing it
by the union of their respective areas. The intersection represents the common region between the
two segmentations, while the union represents the combined area of both the predicted and ground
truth segmentations. It measures the degree of overlap between predicted P and ground truth G seg-
mentation masks, providing an overall assessment of the model’s performance across all semantics.
Assume we have n semantics, mIoU = (

∑n
i=1

P∩G
P∪G )/n

The class-agnostic Intersection over Union (aIoU) treats all semantics as a unified foreground se-
mantic. This essentially quantifies the overall segmentation quality without distinguishing specific
foreground categories.

6.3 RESULTS

The results demonstrate that our proposed Thin-Thick Adapter (TTA) significantly outperforms all
other methods, including the 3D nnUNet baseline, 2D SegViT, trilinear interpolation, and UniRes
super-resolution, as shown in Table 1. Additionally, TTA effectively resolves the issues of blocky
and spiny masks observed in the sagittal and coronal views, which are present in nnUNet and
SegViT, and produces accurate predictions compared to trilinear interpolation and UniRes, as il-
lustrated in Figure 3.

CQ500-Thin ROTEM-Thin Both
mDSC aDSC mIoU aIoU mDSC aDSC mIoU aIoU mDSC aDSC mIoU aIoU

nnUNet 70.28 77.80 55.03 63.66 47.30 67.98 34.18 51.50 66.76 75.11 51.11 60.14
SegViT 69.62 76.79 54.26 62.32 38.71 65.40 26.32 48.59 63.73 73.40 47.79 57.98
Trilinear 64.99 74.13 48.74 58.89 42.40 64.89 29.61 48.03 62.64 71.55 46.17 55.70
UniRes 67.43 73.97 51.52 58.70 42.04 62.92 28.92 45.90 63.53 70.84 47.19 54.85

TTA (Ours) 77.54 83.62 64.33 71.86 59.69 75.64 47.68 60.82 76.94 81.36 63.45 68.57

Table 1: The comparative results clearly indicate that the proposed Thin-Thick Adapter outperforms
the 3D baseline, 2D segmentation method, as well as interpolation and super-resolution techniques
by a significant margin.
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Image GT nnUNet SegViT Trilinear UniRes TTA�(Ours)

Axial

Sagittal

Coronal

EDH IPH IVH SAH SDH

Axial

Sagittal

Coronal

boardmix

boardmixFigure 3: The visual comparison presents inference masks generated by various methods alongside
the ground truth (GT). It is evident that the nnUNet baseline’s inference mask in the sagittal and
coronal planes appears blocky, while the SegViT 2D baseline’s inference mask in these planes seems
spiny. Notably, our TTA consistently outperforms all methods across axial, coronal, and sagittal
views.

6.4 ABLATION STUDIES

In this section, we conduct a thorough assessment of our Thin-Thick Adapter (TTA) across various
settings, shown in Table 2. These ablation studies are designed to elucidate the impact of each
component within the pipeline on the overall performance.

In the first experiment, we trained the nnUNet baseline on the 191 thick scans from BHSD and
assessed its performance on 15, 10, and 25 thin scans from CQ500-Thin, ROTEM-Thin, and both,
respectively. In the second experiment, we exclusively applied data augmentation (DA) to the 191
thick scans without any other techniques, and then evaluated the model on the same three evaluation
sets. In the third experiment, we employed 3D-CPS with both the original 191 thick scans and the
unlabeled scans from CQ500-Thin (359 thin scans), ROTEM-Thin (379 thin scans), and both (738
unlabeled thin scans) to train the nnUNet backbone, without implementing additional techniques.
We evaluated this model on the previously mentioned evaluation sets. Finally, we used the proposed
Thin-Thick Adapter, which trained on the aligned 191 thick scans with 359, 379, and 738 unlabeled
thin scans respectively, and then assessed its performance on the thin evaluation sets.

The results demonstrate that the data alignment technique significantly contributed to our proposed
method and cannot be substituted by unsupervised domain adaptation (UDA) techniques such as
3D-CPS. Furthermore, this ablation study shows that both data alignment and 3D-CPS techniques
play a role in the effectiveness of the proposed Thin-Thick Adapter.

CQ500-Thin ROTEM-Thin Both
mDSC aDSC mIoU aIoU mDSC aDSC mIoU aIoU mDSC aDSC mIoU aIoU

nnUNet 70.28 77.80 55.03 63.66 47.30 67.98 34.18 51.50 66.76 75.11 51.11 60.14
+ DA 76.48 +6.2 81.14 +3.3 62.95 +7.9 68.26 +4.6 58.34 +11.0 77.03 +9.1 46.23 +12.1 62.64 +11.1 74.73 +8.0 79.95 +4.8 60.62 +9.5 66.60 +6.5

+ 3D-CPS 70.89 +0.6 78.67 +0.9 55.91 +0.9 64.67 +1.0 48.47 +1.2 69.01 +1.0 35.37 +1.2 52.91 +1.4 67.40 +0.6 76.09 +1.0 52.03 +0.9 61.37 +1.2

TTA (Ours) 77.54 +7.3 83.62 +5.8 64.33 +9.3 71.86 +8.2 59.69 +12.4 75.64 +7.7 47.68 +13.5 60.82 +9.3 76.94 +10.2 81.36 +6.3 63.45 +12.3 68.57 +8.4

Table 2: The results emphasize the vital role of data alignment in our proposed method, which cannot
be replaced by unsupervised domain adaptation (UDA) techniques like 3D-CPS. Additionally, the
ablation study highlights the joint contributions of data alignment and 3D-CPS techniques to the
effectiveness of the Thin-Thick Adapter.
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In the second ablation study presented in Table 3, our aim is to investigate the performance of two
approaches in thin-slice segmentation when compared to our Thin-Thick Adapter. For this purpose,
we randomly selected 5 volumes from the 25 annotated thin slices as the evaluation set.

In the first experiment, we initially trained nnUNet on 191 thick scans from BHSD and then assessed
its performance on the 5 selected thin scans. In the second experiment, nnUNet was directly trained
on the remaining 20 thin scans and evaluated on the same 5 thin scans. In the third experiment,
nnUNet was first pre-trained on the 191 thick scans from BHSD, followed by fine-tuning on the
20 thin scans. The evaluation was conducted on the 5 thin scans in the evaluation set. In the last
experiment, our proposed Thin-Thick Adapter was trained using the 191 labeled thick slices from
BHSD and 738 unlabeled thin scans from both CQ500-Thin and ROTEM-Thin. Subsequently, we
evaluated its performance on the same 5 thin scans.

Notably, the results clearly demonstrate the superior performance of our Thin-Thick Adapter com-
pared to other methods. This ablation study reaffirms our earlier claim in Section 3 that, due to
the limited number of annotated thin scans, achieving satisfactory performance is challenging with
either supervised methods on thin scans or fine-tuning on them.

mDSC aDSC mIoU aIoU

nnUNet (Thick) 60.86 74.44 45.27 59.29
nnUNet (Thin) 50.24 79.18 38.70 65.54

nnUNet (Fine-tune) 51.28 73.38 38.03 57.95
TTA (Ours) 74.50 83.61 60.38 71.83

Table 3: The results highlight our Thin-Thick Adapter’s superior performance over other methods,
reaffirming the challenge of achieving satisfactory results with limited annotated thin scans using
either supervised methods or fine-tuning.

We performed a third ablation study to investigate the impact of different ranges of the CPS loss
hyper-parameter λ, which was fixed after various epochs ϵ, aiming to assess the method’s robustness.
The results are presented in Table 4, indicating that adjusting λ has a minor impact on performance.
Furthermore, the hyper-parameter used in our comparative experiments, specifically λ = 0 → 0.5
and fixed after 500 epochs, remains the optimal configuration among others.

CQ500-Thin ROTEM-Thin Both
mDSC aDSC mIoU aIoU mDSC aDSC mIoU aIoU mDSC aDSC mIoU aIoU

ϵ = 0, λ = 0.5 76.93 83.01 63.98 71.26 58.83 75.12 46.91 60.03 75.70 80.31 62.83 67.58
ϵ = 300, λ = 0 → 0.5 77.48 83.49 64.09 71.73 59.31 75.48 47.53 60.67 76.62 80.94 63.21 68.34
ϵ = 700, λ = 0 → 0.5 77.51 83.37 64.12 71.79 59.33 75.36 47.48 60.55 76.58 80.91 63.17 68.29

ϵ = 500, λ = 0 → 0.3 76.50 81.76 62.99 69.37 58.45 74.84 46.32 59.78 74.81 80.12 61.13 66.74
ϵ = 500, λ = 0 → 0.7 77.13 82.66 63.41 70.08 59.51 75.46 47.01 60.38 75.95 81.11 63.39 67.84

ϵ = 500, λ = 0 → 0.5 77.54 83.62 64.33 71.86 59.69 75.64 47.68 60.82 76.94 81.36 63.45 68.57

Table 4: The ablations of different ranges of hyperparameters of the CPS loss, λ and ϵ, indicates
the robustness of the proposed method. The optimal configuration is observed with hyperparameters
λ = 0 → 0.5 and ϵ = 500.

7 CONCLUSION

In conclusion, medical imaging segmentation faces a challenge when working with thinner CT slices
due to the limited availability of annotated data for supervision. This study addresses this issue
by introducing three significant contributions. Firstly, we propose segmenting thin slices using
annotations originally designed for thicker slices, thus enhancing the clinical utility of thin slice
data. Secondly, we introduce the CQ500-Thin dataset, which includes thin CT scans with expert
annotations, providing a valuable benchmark for future research. Finally, we present the Thin-Thick
Adapter, a robust pipeline that aligns thick and thin slices and employs 3D-CPS for unsupervised
domain adaptation, achieving superior results in thin slice segmentation. These contributions not
only advance the field of medical imaging segmentation but also reduce the annotation time required
for thin scans.
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