Medical Graph RAG: Evidence-based Medical Large Language Model via
Graph Retrieval-Augmented Generation

Anonymous ACL submission

Abstract

We introduce MedGraphRAG, a novel graph-
based Retrieval-Augmented Generation (RAG)
framework designed to enhance LLMs in gen-
erating evidence-based medical responses, im-
proving safety and reliability with private med-
ical data. We introduce Triple Graph Construc-
tion and U-Retrieval to enhance GraphRAG,
enabling holistic insights and evidence-based
response generation for medical applications.
Specifically, we connect user documents to
credible medical sources and integrate Top-
down Precise Retrieval with Bottom-up Re-
sponse Refinement for balanced context aware-
ness and precise indexing. Validated on 9 med-
ical Q&A benchmarks, 2 health fact-checking
datasets, and a long-form generation test set,
MedGraphRAG outperforms state-of-the-art
models while ensuring credible sourcing. Our
code is publicly available.

1 Introduction

The rapid advancement of large language mod-
els (LLMs), such as OpenAl’'s GPT-4 (OpenAl,
2023a), has accelerated research in natural lan-
guage processing and driven numerous Al applica-
tions. However, these models still face significant
challenges in specialized fields like medicine (Hadi
et al., 2024; Williams et al., 2024; Xie et al., 2024).
The first challenge is that these domains rely on
vast knowledge bases -principles and notions dis-
covered and accumulated over thousands of years;
fitting such knowledge into the finite context win-
dow of current LLMs is a hopeless task. Supervised
Fine-Tuning (SFT) provides an alternative to us-
ing the context window, but it is often prohibitively
expensive or unfeasible due to the closed-source na-
ture of most commercial models. Second, medicine
is a specialized field that relies on a precise termi-
nology system and numerous established truths,
such as specific disease symptoms or drug side ef-
fects. In this domain, it is essential that LLMs do

not distort, modify, or introduce creative elements
into the data. Unfortunately, verifying the accuracy
of responses in medicine is particularly challeng-
ing for non-expert users. Therefore, the ability to
perform complex reasoning using large external
datasets, while generating accurate and credible
responses backed by verifiable sources, is crucial
in medical applications of LLMs.

Retrieval-augmented generation (RAG) (Lewis
et al., 2021) is a technique that answers user queries
using specific and private datasets without requir-
ing further training of the model. However, RAG
struggles to synthesize new insights and underper-
forms in tasks requiring a holistic understanding
across extensive documents. GraphRAG (Hu et al.,
2024) has been recently introduced to overcome
these limitations. GraphRAG constructs a knowl-
edge graph from raw documents using an LLM, and
retrieves knowledge from the graph to enhance re-
sponses. By representing clear conceptual relation-
ships across the data, it significantly outperforms
classic RAG, especially for complex reasoning (Hu
et al., 2024). However, its graph construction lacks
a specific design to ensure response authentication
and credibility, and its hierarchical community con-
struction process is costly, as it is designed to han-
dle various cases for general-purpose use. We find
that specific effort is required to apply it effectively
in the medical domain.

In this paper, we introduce a novel graph-based
RAG method for medical domain, which we refer
to as Medical GraphRAG (MedGraphRAG). This
technique enhances LLM performance in the medi-
cal domain by generating evidence-based responses
and official medical term explanation, which not
only increases their credibility but also significantly
improves their overall quality. Our method builds
on GraphRAG with a more sophisticated graph con-
struction technique, called Triple Graph Construc-
tion, to generate evidence-based responses, and an
efficient retrieval method, U-Retrieval, which im-



proves response quality with few costs. In Triple
Graph Construction, we design a mechanism to
link user RAG data to credible medical papers and
foundational medical dictionaries. This process
generates triples [RAG data, source, definition]
to construct a comprehensive graph of user doc-
uments. It enhances LLM reasoning and ensures
responses are traceable to their sources and defi-
nitions, guaranteeing reliability and explainability.
We also developed a unique U-Retrieval strategy to
respond to user queries. Instead of building costly
graph communities, we streamline the process by
summarizing each graph using predefined medical
tags, then iteratively clustering similar graphs to
form a multi-layer hierarchical tag structure, from
broad to detailed tags. The LLM generates tags for
the user query and indexes the most relevant graph
based on tag similarity in a top-down approach,
using it to formulate the initial response. Then it
refines the response by progressively integrating
back the higher-level tags in a bottom-up manner
until the final answer is generated. This U-Retrieval
technique strikes a balance between global context
awareness and the retrieval efficiency.

To evaluate our MedGraphRAG method, we
implemented it on several popular open-source
and commercial LLMs, including GPT (OpenAl,
2023b), Gemini(Team et al., 2023) and LLaMA
(Touvron et al., 2023). The results evaluated
across 9 medical Q&A benchmarks show that Med-
GraphRAG yields materially better results than
classic RAG and GraphRAG. Our final results even
surpass many specifically trained LLMs on medi-
cal corpora, setting a new state-of-the-art (SOTA)
across all benchmarks. To verify its evidence-based
response capability, we quantitatively tested Med-
GraphRAG on 2 health fact-checking benchmarks
and conducted a human evaluation by experienced
clinicians. Both evaluations strongly support that
our responses are more source-based and reliable
than previous methods.

Our contributions are as follows:

1. We are the first to propose a specialized frame-
work for introducing graph-based RAG in the med-
ical domain, which we named MedGraphRAG.

2. We have developed unique Triple Graph
Construction and U-Retrieval methods that enable
LLMs to efficiently generate evidence-based re-
sponses utilizing holistic RAG data.

3. MedGraphRAG outperforms other retrieval
methods and extensively fine-tuned Medical LLMs
across a wide range of medical Q&A benchmarks,

establishing the new SOTAs.

4. Validated by human evaluations, Med-
GraphRAG is able to generate more understand-
able and evidence-based responses in the medical
domain.

2 Method

The overall workflow of MedGraphRAG is shown
in Fig. 1. We first construct the knowledge graphs
from the documents by using Triple Graph Con-
struction (Section 2.1), then tag the graphs for
U-Retrieval to response the user queries (Section
2.2). We illustrate the main idea here, with de-
tailed implementation and prompts provided in the
appendix.

2.1 Triple Graph Construction

2.1.1 Preliminary: Document Chunking &
Entities Extraction

Large medical documents often contain diverse
content. We segment them into chunks respect-
ing LLMs’ context limits. We adopt the semantic
chunking function implemented in LangChain to
chunk the documents(langchain, 2024). Specifi-
cally, we isolate paragraphs P; within the document
D = {P1,P,,...,Py,} using a text embedding
model. We then set a buffer size of 5 and enforce
the token limit according to the graph construction
LLM L€,

We then extract entities from each chunk through
graph construction LLM £%. We prompt £& to
identify all relevant entities &/ = {e1, ea,...,en1}
in each chunk and generate a structured output
with name, type, and a description of the context:
e = {na,ty,cx}, as the examples shown in the
Step2 in Fig. 1. We set name be the text from the
document, type selected from the UMLS semantic
types (Bodenreider, 2004), and context a few sen-
tences generated by £& contextualized within the
document.

2.1.2 Triple Linking

Medicine relies on precise terminology and estab-
lished facts, making it essential for LLMs to pro-
duce responses grounded in established facts. To
achieve this, we introduced Triple Graph Construc-
tion, linking user documents to credible sources
and professional definitions. Specifically, we build
repository graph (RepoGraph), which is intended
to be fixed across different users, providing estab-
lished sources and controlled vocabulary defini-
tions for user RAG documents. We construct Re-
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Figure 1: The overall workflow of MedGraphRAG begins with Triple Graph Construction, where documents are

chunked, and entities are extracted. Triple linking then

connects user entities to referenced papers and vocabulary

graph layers, forming the Med-MetaGraph. In the subsequent U-Retrieval phase, graphs are tagged to enable
top-down precise retrieval and bottom-up response refinement, ensuring graph-enhanced query responses.

poGraph under user RAG graph with two layers:
one based on medical papers/books and another
based on medical dictionaries. We build the bottom
layer of RepoGraph as UMLS (Bodenreider, 2004)
graph, which consist comprehensive, well-defined
medical vocabularies and their relationships. The
upper layer of RepoGraph is constructed from med-
ical textbooks and scholarly articles using the same
graph construction method described here.

The entities of all three tiers of graphs are
hierarchically linked through semantic rela-
tionships. Let us denoted entities extracted
from RAG documents as E'. We link them to
entities extracted from medical books/papers,
denoted as E2, based on their relevance, which
is determined by computing the cosine similarity
between their content embeddings ¢(C.). The
content of an entity C,. is the concatenation
of its name, type, and context, represented
as: C, Text[name: na; type: ty; context: cx].
This directed linking is annotated as the
reference of, indicating the reference rela-
tionship between entities in the two layers:

! 1 oy | HCDeC
RS = 4 (ej, TheReferenceOf,ef) H@(Cell)ijz)l >0 ¢ s
i i

where ¢, is the pre-defined threshold. Entities
e? € E? are linked to €3 € E3 through the same

way with relationships annotated as the definition
of . Thus, RAG entities are constructed as triples
[RAG entity, source, definition].

We then instruct £ to identify the relationships
among RAG entities in each chunk, which we
noted as e! € E,,. This relationship is a concise
phrase generated by £& based on the content
of the entity C,1 and associated references
{Ce2| R4 the reference of}. The identified
relationships specify the source and target enti-
ties, provide a description of their relationship:
R:fi = {(637”1»6}) ’ rij = ﬁfez(ceycegyce;;ce;)},
where ErGel is £ with relationship identification
and generation prompt. We show an example of
relationship linking in the Step4 of Fig. 1. After
performing this analysis, we have generated a di-
rected graph for each data chunk, which is referred
to as Meta-MedGraphs G, = {En, R(En)}-

2.2 U-Retrieval

2.2.1 Preliminary: Graph Tagging

Organizing and summarizing the graphs in ad-
vance is intuitive and has proven to facilitate ef-
ficient retrieval (Hu et al., 2024). However, unlike
GraphRAG, we avoid constructing costly graph
communities. We observe that, unlike general lan-



guage content, medical text is often structured and
can be summarized effectively using predefined
tags. Motivated by this, we simply summarize
each Meta-MedGraph G,,, with several predefined
tags T, and iteratively generate more abstract tag
summaries for clusters of closely-related graphs.
Specifically, LLM £ first summarises the con-
tent of each Meta-MedGraph {C. | e € G}
given a set of given tags 1. The tags T' consist of
multiple medical categories following Society for
Testing and Materials (ASTM) standards for con-
tent of electronic health records, mainly including
Symptoms, Patient History, Body Functions, and
Medication (detailed format shown in appendix).
This process generates a structured tag-summary
for each GG,,,, denoted as T5,.

We then apply a variant agglomerative hierarchi-
cal clustering method with dynamic thresholding
based on tag similarity, to group the graphs and
generate synthesized tag summaries. Initially, each
graph begins as its own group. At each iteration,
we compute the tag similarity between all pairs
of clusters and dynamically set the threshold d; to
merge the top 20% most similar pairs. The graphs
will be merged if all pairwise similarities within the
group exceed J;. Note that we don’t really link the
nodes across different graphs, but generate a syn-
thesized tag-summary for each group. Specifically,
we calculate the similarity of pairs by measuring
the average cosine similarity of all their tag em-
beddings. Let ¢(t) denote the embedding of a tag
t € T),. Taking two Meta-MedGraphs G, and
ij with tag sets T;,,, and T}, as an example, we
generate the abstract tag summery 75, ; if their co-
sine similarity of tag embeddings ¢(t) and ¢(t')
higher than the threshold J,

G .
Ty, = L (Tmi,ij) if
T /
o) o(t)
E E >
[T+ [T, | \Tm &, o5, H¢ IS

These newly merged tag—summary, along with
those that remain unmerged, form a new layer of
tags. As tag-summaries become less detailed at
higher layers, there is a trade-off between precision
and efficiency. In practice, we limit the process
to 12 layers, as this is sufficient for most model
variants (detailed in Fig. 5).

2.2.2 Top-down Precise Retrieval

After constructing the graph, we use response LLM
L* efficiently retrieves information to respond to

user queries. We begin by generating tag-summary
on the user query T = L£(Q), and use these
to identify the most relevant graph through a Top-
down Precise Retrieval. Let’s indicate the j** tags
at layer ¢ summarised tag T as T[], it starts from
the top layer: 77, progressively indexing down by
selecting the most similar tag in each layer:
T = arg max sim(Tg, T'[4])
Ti[5]eT

until we reach the tag for the target Meta-
MedGraph G,,,. We then retrieve Top N,
entities based on the embedding similarity
between the query and the entity content:
E, = {e | TopNu(sim(¢(Q), ¢(Ce))), e € M},
and gather all their Top k,, nearest triple neighbours
Triske(e) as Ef» = {e,Tri<ku(e),| e € E, }.

2.2.3 Bottom-up Response Refinement

By using all these entities and their relationships

= {EF« R(EF)}, we prompt L to an-
swer the question given the concatenated entity
names and relationships in G.: Given QUESTION:
{Q}. GRAPH: {e;[na]+R¢ +ej[na), ...}. Answer
the user question: QUESTION using the graph:
GRAPH... as L .

In the Bottom-up Response Refinement step, we
then move back to the higher-level tag retrieved in
the previous step 7!, in a bottom-up manner. We
provide £ QUESTION: {Q}, LAST RESPONSE:

., and SUMMARY: {T*~1}, and ask it to Adjust
the response:RESPONSE of the question: QUES-
TION using the updated information: SUMMARY.
LT continues refining its responses until it reaches
the target layer. In practice, we retrieve 4-6 layers
depends on the baseline LLM, a detailed experi-
ment about it is shown in Fig. 5. It ultimately
generate a final response after scanning all indexed
graphs along the trajectory. This method enables
the LLM to gain a comprehensive overview by in-
teracting with all relevant data in the graph, while
remaining efficient by accessing less relevant data
in summarized form.

3 Experiment

3.1 Dataset

3.1.1 RAG data

We anticipate that users will use frequently-updated
private data as RAG data, such as patient electronic
medical records. Thus, we employ MIMIC-IV
(Johnson et al., 2023), a publicly available elec-
tronic health record dataset, as RAG data.



In patients with both chronic obstructive pulmonary disease (COPD) and heart failure, how can lung
function be improved?

GraphRAG

In patients with both COPD and heart failure, managing lung function without worsening heart
symptoms requires an integrated approach. Treatment involves bronchodilators, supplemental oxygen
therapy to ease heart and lung workload, and pulmonary rehabilitation to improve respiratory
strength. Close monitoring by healthcare professionals is crucial to ensure balanced treatment for both
conditions.

[COPD] affects, [Lung] [Heart Failure] _ease [Oxygen Therapy]
uoat]—> | weakens

y Strength] _improves [Pulmonary Rehabilitation ]
In patients with both COPD and heart failure, the of br and i ive
beta-blockers can be used effectively to manage both conditions without significantly worsening
respiratory symptoms or heart function [1,4]. Cardioselective beta-blockers, such as bisoprolol or
metoprolol, are safe for COPD patients because they primarily block beta-1 receptors in the heart,
minimizing the risk of bronchoconstriction associated with non-selective beta-blockers [1,2].
Bronchodilator therapy, including long-acting beta-2 agonists and muscarinic antagonists, should be
continued to improve lung function in COPD [3]......

References:

1. Salpeter SR, Ormiston TM, Salpeter EE. "Cardioselective beta-blockers for chronic obstructive
pulmonary disease." Cochrane Database of Systematic Reviews. 2005

2.Du Q, Sun Y, Ding N, Lu L. "Beta-blockers reduced the risk of mortality and exacerbation in patients
with COPD: A meta-analysis of observational studies." PLoS ONE. 2016;11(11):e0166861.

ease

COPD...., heart failure:..., bronchodilators:..., cardioselective beta-blockers:..., beta-blockers:...

[COPD] [Heart Failure] __is reference of _[Cardi ive B block
4 improve risk 0 improved function is reference of.
[Bronchoconstriction] jnhibit [beta-2 block [Non-selective Beta-Blockers ] [beta-1 X

What are the most effective strategies for managing progressive thoracic insufficiency in patients

with fil plasia ossificans prog (FOP)?
GraphRAG
ing progressive thoracic ir in patients with fibrodysplasia ossificans progressiva (FOP)

focuses on avoiding thoracic surgeries that can trigger further ossification. Supportive care includes non-
invasive respiratory aids, effective pain management, and regular monitoring of lung function and chest
mobility to maintain quality of life and manage symptoms conservatively. Additionally, physical therapy
tailored to individual needs can help improve mobility and function without exacerbating the condition.

[FOP] _cause _[Thoracic 1_manage [Non-invasive
cause ‘manage
[ossification] rigger [Thoracic Surgery] [Pain Management] [Regular Mdnitoring]

MedGraphRAG

Managing progressive thoracic insufficiency in FOP patients requires a careful balance between
effective respiratory support and preventing heterotopic ossification (HO) [2]. Early use of non-
invasive ventilation (NIV) [1], such as BiPAP, particularly during sleep or in response to respiratory
infections, can improve respiratory function without invasive procedures [2], minimizing the risk of
trauma [3]...Gentle, supervised physical therapy helps maintain lung capacity while avoiding
trauma that could trigger HO [4]...

References:

1. Shulmanl, et al. "Maternal genetic skeletal disorders: lessons learned from cases of maternal
osteogenesis imp and fil i ifi prog iva." Journal of Clinical ..
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Figure 2: Example responses from GraphRAG and MedGraphRAG, with abstracted graphs. MedGraphRAG
provides more detailed explanations and more complex reasoning with evidences. Full results are in the appendix.

3.1.2 Repository data

We provide repository data to support LLM re-
sponses with credible sources and authoritative vo-
cabulary definitions. We use MedC-K (Wu et al.,
2023), a corpus containing 4.8 million biomedical
academic papers and 30,000 textbooks, along with
all evidence publications from FakeHealth (Dai
et al., 2020) and PubHealth (Kotonya and Toni,
2020), as the upper repository data, and UMLS
graph, which includes authoritative medical vo-
cabularis and semantic relationships as the bottom
repository data.

3.1.3 Test Data

Our test set are the test split of 9 multiple-choice
biomedical datasets from the MultiMedQA suite,
2 fact verification datasets about public health,
i.e., FakeHealth (Dai et al., 2020) and PubHealth
(Kotonya and Toni, 2020), and 1 test set we col-
lected, called DiverseHealth. MultiMedQA in-
cludes MedQA (Jin et al., 2021), MedMCQA (Pal
et al., 2022) PubMedQA (Jin et al., 2019) and
MMLU clinic topics (Hendrycks et al., 2020). We
also collected the DiverseHealth test set, focused
on health equity, consisting of 50 real-world clin-
ical questions that cover a wide range of topics,
including rare diseases, minority health, comorbidi-
ties, drug use, alcohol, COVID-19, obesity, suicide,
and chronic disease management. The dataset will
be released alongside the paper. Details on dataset
usage can be found in the appendix.

3.2 Experiment Setting

We compare different RAG methods across 6 lan-
guage models as £7: Llama2 (13B, 70B), Llama3
(8B, 70B), Gemini-pro, and GPT-4. The Llama
models were obtained from their official Hugging-
Face page. We used gemini-1.0-pro for Gemini-
pro and gpt-4-0613 for GPT-4. We primarily com-
pare our approach with standard RAG implemented
by LangChain(langchain, 2024) and GraphRAG
(Edge et al., 2024a) implemented by Microsoft
Azure (microsoft, 2024). All retrieval methods
are compared under same RAG data and test data.

We deploy £ as Llama3-70B to construct the
graph. For text embeddings, we utilize OpenAl’s
text-embedding-3-large model. Model comparison
is performed using a 5-shot response ensemble (Li
et al., 2024). MedGraphRAG used U-Retrieval
with 4 levels on GPT-4, and 5 levels for the oth-
ers. In the retrieval, we picked top 60 entities with
their 16-hop neighbors. Unless otherwise noted,
all thresholds are set as 0.5. We use the same
query prompt for all models to generate responses.
Prompts are shown in the appendix.

3.3 Results
3.3.1 Multi-Choice Evaluation

Baselines with different retrievals First, we con-
ducted experiments to evaluate retrieval methods
on various LLM baselines, with the results shown
in Table 1. We compared MedGraphRAG against
baselines without retrieval, standard RAG, and



GraphRAG. Performance is measured by the ac-
curacy of selecting the correct option. The results
show that MedGraphRAG significantly enhances
LLM performance on both health fact-checking
and medical Q&A benchmarks. Compared to base-
lines without retrieval, MedGraphRAG achieves
an average improvement of nearly 10% in fact-
checking and 8% in medical Q&A. When com-
pared to baselines using GraphRAG, it demon-
strates an average improvement of around 8% in
fact-checking and 5% in medical Q&A Notably,
MedGraphRAG yields more pronounced improve-
ments in smaller LLMs, such as Llama2i3g and
LlamaZ2gp. This suggests that MedGraphRAG ef-
fectively utilizes the models’ own reasoning capa-
bilities while providing them with additional knowl-
edge beyond their parameters, serving as an exter-
nal memory for information.

Comparing with SOTA Medical LLMs When
applied MedGraphRAG to larger models, like
Llamarop or GPT, it resulted in new SOTA across
all 11 datasets. This result also outperforms in-
tensively fine-tuning based medical large language
models like Med-PalLM 2 (Singhal et al., 2023b)
and Med-Gemini (Saab et al., 2024), establishing
a new SOTA on the medical LLM leaderboard. A
detailed comparison is shown in Fig. 6.

BN RAG
84- GraphRAG
B MedGraphRAG

© ©
o N

~
©

Accuracy on PubMedQA(%)

o
/'/ -

F

76

RAG Data (Med Report) Med Paper Data Med Dictionary Data

Figure 3: Impact of Repository Data on RAG,
GraphRAG, and MedGraphRAG with GPT-4. Line
chart: performance with incremental data inclusion;
bar chart: performance with individual data inclusion.

3.3.2 Long-form Generation Evaluation

Human Evaluation We conducted human evalu-
ations of long-form model generation on the Mul-
tiMedQA and DiverseHealth benchmarks, com-
paring our method to SOTA models that generate
citation-backed responses, including Inline Search
in (Gao et al., 2023b), ATTR-FIRST (Slobodkin
et al., 2024), and MIRAGE (Qi et al., 2024). Our

evaluation panel consisted of 7 certified clinicians
and 5 laypersons to ensure feedback from both pro-
fessional and general users. Raters completed a
five-level rating survey for each model’s response,
assessing responses across five dimensions: perti-
nence (Pert.), correctness (Cor.), citation precision
(CP), citation recall (CR), and understandability
(Und.). Detailed background information on the
raters and the survey questions can be found in the
appendix. As shown in Table 2, MedGraphRAG
consistently received higher ratings across all met-
rics. Notably, it showed a significant advantage in
CP, CR and Und., indicating that its responses were
more often backed by accurate sources and were
easier to understand, even for laypersons, thanks to
evidence-backed responses and clear explanations
of complex medical terms.

Case Study As illustrated in Fig. 7, we com-
pare the responses from GraphRAG and Med-
GraphRAG for a complex case involving pa-
tients with both chronic obstructive pulmonary
disease (COPD) and heart failure (left plot).
GraphRAG suggested general COPD treatments
like bronchodilators and pulmonary rehabilita-
tion but overlooked that certain bronchodilators
may worsen heart failure symptoms. In contrast,
MedGraphRAG provided a more comprehensive
answer by recommending cardioselective beta-
blockers—such as bisoprolol or metoprolol—that
safely manage both conditions without adverse ef-
fects. As we can see from the graph abstracted,
this superiority stems from MedGraphRAG’s ar-
chitecture, where entities are directly linked to key
information in references, allowing retrieval of spe-
cific evidence. Conversely, GraphRAG struggles
to retrieve specific information since its reference
and user data are intertwined within the same layer
of the graph, which leads to missing key informa-
tion under the same number of nearest neighbors.
And its retrieval based purely on graph summaries
results in a lack of detailed insights.

3.4 Ablation and Analysis
3.4.1 Overall Ablation Study

We conducted a comprehensive ablation study to
validate the effectiveness of our proposed mod-
ules, with the results presented in Table 3. Starting
with GraphRAG (Hu et al., 2024) as the baseline,
we incrementally incorporated our unique compo-
nents, including Triple Graph Construction, and
U-Retrieval. Notably, both experiments were con-



Table 1: Accuracy(%) of LLMs using different retrieval methods. Columns with a blue background represent
health fact-checking benchmarks, while the others correspond to medical Q&A benchmarks. The best results are

highlighted in bold.
Model Fake Pub MedQA Med Pub MMLU MMLU MMLU MMLU MMLU MMLU
Health Health MCQA MedQA Col-Med Col-Bio Pro-Med Anatomy  Gene Clinic
Baselines without retrieval
Llama2-13B  53.8 494 42.7 374 68.0 60.7 69.4 60.3 52.6 66.0 63.8
Llama2-70B  58.9 56.7 43.7 35.0 74.3 64.2 84.7 75.0 62.3 74.0 71.7
Llama3-8B 51.1 53.2 59.8 57.3 75.2 61.9 78.5 70.2 68.9 83.0 74.7
Llama3-70B  64.2 61.0 72.1 65.5 77.5 72.3 92.5 86.7 72.5 83.9 82.7
Gemini-pro  60.6 63.7 59.0 54.8 69.8 69.2 88.0 71.7 66.7 75.8 76.7
GPT-4 71.4 70.9 78.2 72.6 753 76.7 95.3 93.8 81.3 90.4 86.2
77777777777777777777777777777 Baselines with RAG ~ oo
Llama2-13B  56.2 54.3 48.1 42.0 68.6 62.5 68.3 63.7 51.0 64.5 67.4
Llama2-70B  64.6 63.2 56.2 49.8 75.2 69.6 85.8 77.4 63.0 75.8 73.3
Llama3-8B 60.5 59.6 64.3 58.2 76.0 68.6 84.9 73.2 72.1 85.2 77.8
Llama3-70B  76.2 72.1 82.3 72.5 80.6 86.8 944 89.7 84.3 87.1 87.6
Gemini-pro ~ 72.5 68.4 64.5 57.3 76.9 79.0 91.3 86.4 79.5 80.4 83.9
GPT-4 78.6 71.3 88.1 76.3 77.6 81.2 95.5 94.3 83.1 92.9 93.1
777777777777777777777777777 Baselines with GraphRAG ~ T
Llama2-13B  58.7 57.5 52.3 44.6 72.8 64.1 73.0 64.6 52.1 66.2 67.9
Llama2-70B  65.7 63.8 55.1 524 74.6 68.0 86.4 79.2 64.6 73.9 75.8
Llama3-8B 61.7 61.0 64.8 58.7 76.6 69.2 84.3 73.9 72.8 85.5 774
Llama3-70B  77.7 74.5 84.1 73.2 81.2 87.4 94.8 89.8 85.2 87.9 88.5
Gemini-pro ~ 73.8 70.6 65.1 59.1 75.2 79.8 90.8 85.8 80.7 81.5 84.7
GPT-4 78.4 77.8 88.9 77.2 77.9 82.1 95.1 94.8 82.6 92.5 94.0
Baselines with MedGraphRAG
Llama2-13B  64.1 61.2 65.5 514 73.2 68.4 76.5 67.2 56.0 67.3 69.5
Llama2-70B  69.3 68.6 69.2 58.7 76.0 73.3 88.6 84.5 68.9 76.0 713
Llama3-8B 79.9 77.6 74.2 61.6 77.8 89.2 95.4 91.6 85.9 89.3 89.7
Llama3-70B  81.2 79.2 88.4 79.1 83.8 914 96.5 93.2 89.8 91.0 94.1
Gemini-pro ~ 79.2 76.4 71.8 62.0 76.2 86.3 92.9 89.7 85.0 87.1 89.3
GPT-4 86.5 834 91.3 81.5 83.3 91.5 98.1 95.8 93.2 98.5 96.4

Table 2: Human evaluation on MedQA and Diverse-
Health samples.

Data Methods Pert. Cor. CP CR Und.
INLINE 91 88 80 74 85
. ATTR.FIRST 93 91 86 77 93
MultiMedQA | \RAGE | 95 90 84 75 ol
MedGrapgRAG | 97 94 92 8 95
INLINE 95 84 78 71 81
Diverse Health ATTR.FIRST 96 91 81 78 85
MIRAGE 97 8 83 76 87
MedGrapgRAG | 97 9% 89 84 93

Table 3: An ablation study of MedGraphRAG, starting
from GraphRAG, evaluated using accuracy (%) on Q&A
datasets.

MedQA PubMedQA MedMCQA
GraphRAG 88.9 77.9 772
+Triple Graph Construction 91.1 81.8 80.9
+U-Retrieval 91.3 83.3 81.5

ducted on the same RAG dataset, eliminating data-
related improvements. The results show a gradual
performance improvement as more of our modules
are added, with significant gains observed when
replacing GraphRAG graph construction with our
Triple Graph Construction. Additionally, by replac-
ing the summary-based retrieval(Edge et al., 2024b)
in GraphRAG with our U-Retrieval method, we
achieved further improvements, setting new state-

of-the-art results across all three benchmarks.

3.4.2 Detailed Ablation on Triple Linking

To assess the individual effects of external RAG
data and retrieval technologies, we conducted ex-
periments comparing retrieval methods: RAG,
GraphRAG, and MedGraphRAG under two set-
tings: (1) retrieving each tier of data separately (bar
chart in Fig. 3), and (2) incrementally adding all
three tiers (line chart in Fig. 3). The results show
that both the data and the right retrieval method
must work together to unlock the full potential.
When retrieving data by standard RAG, Med-Paper
data individually improves performance by less
than 2%, and Med-Dictionary data by less than 1%.
Accumulating three tier data also leads to mediocre
improvements. GraphRAG shows improvement in
retrieving individual data but has minimal gains
when incrementally adding more data, likely due
to superficiality from linking trivial entities, as dis-
cussed in the previous case study. In contrast, Med-
GraphRAG efficiently handles the additional data,
using its hierarchical structure to clarify relation-
ships and show strong improvements as more data
is added. With MedGraphRAG, we see significant
improvements of over 6% and 8% for Med-Paper



and Med-Dictionary data, respectively, highlight-
ing the importance of the retrieval method in maxi-
mizing the impact of the data.

3.5 Detailed Ablation on U-Retrieval

In U-Retrieval, we set the retrieval depth to 4-5
layers, the number of retrieval entities to 60, and
entity neighbors to 16. These settings were de-
termined through comprehensive trials. First, we
examine the impact of the retrieval range, i.e. the
number of entities and neighbors, using GPT-4 with
MedGraphRAG on MedQA, as shown in Fig. 4.
Our findings show that retrieving more data does
not necessarily lead to better performance. In fact,
more data can introduce noise and exacerbate LLM
performance issues with long contexts. The peak
performance occurs when the retrieval size reaches
approximately 120 entities with 4-hop neighbors
or 60 entities with 16-hop neighbors. The 16-hop
neighbors setting performed slightly better, likely
due to the robustness of graph-based linking com-
pared to vector-similarity-based retrieval.

As previously mentioned, there is also a trade-off
between model accuracy and response time with
retrieval layer increases. This relationship is ex-
plored in Fig. 5. The figure compares the cost time
and MedQA accuracy across retrieval depths from
0 to 9 layers. We observe that both performance
and response time increase as the retrieval layer
increases initially. However, performance begins to
degrade when retrieving more layers, as higher lay-
ers often contain less relevant information, which
can interfere with refining the response. The opti-
mal retrieval depth is 4 layers for the GPT-4 model
and 5 layers for others, which we use as the default
setting in our experiments.

=

uracy on MedQA (%)

—

S»Hop 12»hnp 16-Hop ZO»hop

Retrieve K-Hop Neighbourhood

Figure 4: The effect of retrieving different number of
entities and neighbourhoods. Performance evaluated by
GPT-4 (MedGraphRAG) on MedQA.

4 H
Bottom-Up U-Retrieval Level

Figure 5: The relationship between U-retrieval level and
time cost.

4 Related Work

Large language models (LLMs) built on Trans-
former architectures have advanced rapidly, lead-
ing to specialized medical LLMs such as BioGPT
(Luo et al., 2022), PMC-LLaMA (Wu et al., 2023),
BioMedLLM (Bolton et al., 2022), and Med-PalLM 2
(Singhal et al., 2023b). While many are fine-tuned
by large organizations, recent research has focused
on cost-efficient, non-fine-tuned approaches, pri-
marily using prompt engineering (Saab et al., 2024;
Wang et al., 2023; Savage et al., 2024). RAG, as
another non-finetuning approach, is rarely explored
for medical applications (Miao et al., 2024; Xiong
etal., 2024; Long et al., 2024) and lacks support for
evidence-based responses and term explanations
required in clinical settings.

RAG (Lewis et al., 2021) enables models to use
specific datasets without additional training, im-
proving response accuracy and reducing hallucina-
tions (Guu et al., 2020). RAG has shown strong
results across various tasks, including generating
responses with citations (Gao et al., 2023b; Slobod-
kin et al., 2024; Qi et al., 2024; Nakano et al., 2021;
Bohnet et al., 2022; Gao et al., 2023a,c; Schiman-
ski et al., 2024; Zhang et al., 2024). GraphRAG
(Hu et al., 2024) further enhances complex reason-
ing by constructing knowledge graphs, but lacks
specific design features for generating attributed
responses, and its application in medical special-
ization remains limited.

5 Conclusion

MedGraphRAG improves the reliability of medi-
cal response generation with its graph-based RAG
framework, using Triple Graph Construction and
U-Retrieval to enhance evidence-based, context-
aware responses. Future work will focus on real-
time data updates and validation on real-world clin-
ical data.



6 Limitation

Despite the strong capabilities demonstrated by
MedGraphRAG, the graph construction step incurs
significant computational costs. In the retrieval and
response stage, although the costs are lower than
graph construction, they remain higher than stan-
dard large language model (LLM) calls, with each
question taking around 70 seconds to process (see
Figure 6 for details). Future efforts should explore
methods to transfer pre-constructed graphs or ac-
celerate the graph construction process to mitigate
these computational costs.

Additionally, the scale of experimental data and
the expensive nature of graph construction make
it challenging to conduct comprehensive compar-
isons of hyper-parameter settings and technology
choices. For instance, factors such as the number of
paragraphs in the context window during document
chunking, the use of alternative RAG datasets, and
the impact of different prompts for graph construc-
tion were selected empirically based on limited
data. A more rigorous and comprehensive compar-
ison of these factors is needed in future work to
identify the optimal configurations that maximize
the method’s potential.

Finally, regarding human evaluation, while we
made efforts to ensure diversity and expertise
among our raters (see Appendix for details), the
evaluation may still carry biases due to the limited
sample size (120 questions on MultiMedQA and
50 questions on DiverseHealth). Future research
should include larger-scale and better-designed hu-
man evaluations to thoroughly assess the model’s
performance.
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A Details of Dataset
A.1l MIMIC-1V

The Medical Information Mart for Intensive Care
(MIMIC-IV (Johnson et al., 2023)) is governed by
the PhysioNet Credentialed Health Data License

1.5.0, and access is restricted to credentialed users
who sign the PhysioNet Credentialed Health Data
Use Agreement 1.5.0 (DUA). The dataset is a com-
prehensive, deidentified dataset derived from pa-
tients admitted to the emergency department or
an intensive care unit (ICU) at Beth Israel Dea-
coness Medical Center in Boston, MA. MIMIC-IV
includes data on over 65,000 ICU patients and over
200,000 emergency department patients, totaling
364,627 unique individuals. The dataset reflects
546,028 hospital admissions and 94,458 unique
ICU stays. The dataset was developed through a
three-step process of acquisition, preparation, and
de-identification, offering modular data organiza-
tion to enable the seamless integration of different
data sources for research purposes.

A2 MedC-K

The MedC-K (Wu et al., 2023) corpus is a large,
medical-specific dataset consisting of 4.8 million
biomedical academic papers and 30,000 textbooks.
It is designed to enhance foundational language
models for medical applications. To adapt a
general-purpose language model for the medical
domain, a data-centric knowledge injection ap-
proach is employed, which focuses on introduc-
ing the model to medical-related terminologies and
definitions. This process emphasizes two key data
sources: biomedical papers and textbooks, ensur-
ing that the model is exposed to both academic
research and comprehensive medical knowledge.

A.3 FakeHealth

FakeHealth (Dai et al., 2020) dataset is licensed
under the Creative Commons Attribution 4.0 Inter-
national (DOI: 10.5281/zenodo.3606757), which
permits redistribution and reuse of the work, pro-
vided that the original creator is appropriately cred-
ited. FakeHealth consists of two datasets: Health-
Story and HealthRelease. Both datasets contain
news content, news reviews, social engagements,
and user networks. HealthRelease consists of 606
pieces of content and reviews, while HealthStory
contains 1,690. We did not use the social engage-
ment or user network data. The models were tested
on rating questions from the ’criteria’ section of the
news reviews, using the news content as RAG data,
or repository data specifically for MedGraphRAG.
The data collection process involved four steps: (1)
crawling reviews of news stories and releases from
HealthNewsReview.org, (2) including the source
news titles and URLs in the collected files, (3)



scraping the corresponding news content, and (4)
gathering social engagements on Twitter (tweets,
replies, and retweets) related to the source news,
supplemented by user network information.

A.4 PubHealth

The PUBHEALTH (Kotonya and Toni, 2020)
dataset, released under the MIT license, is designed
for explainable automated fact-checking of public
health claims. It consists of 11,832 claims across
various health-related topics, including biomedi-
cal subjects (such as infectious diseases and stem
cell research), government healthcare policies (like
abortion, mental health, and women’s health), and
other public health issues. Each claim is labeled
with a veracity tag—true, false, unproven, or mix-
ture—and accompanied by an explanation text
that justifies the assigned label. These explana-
tions, crafted by journalists, serve as gold standard
judgments to support the fact-check labels. The
claims were sourced from both fact-checking web-
sites and news or news review websites, making
PUBHEALTH a comprehensive resource for under-
standing the veracity of health-related claims.

A.5 MultiMedQA

The MultiMedQA dataset, released under the
Apache License 2.0, serves as a comprehen-
sive benchmark for open question answering
in the medical domain, combining six existing
datasets that span professional medical exams,
research queries, and consumer health inquiries.
We used its multiple-choice question answering
part including MedQA, MedMCQA, PubMedQA,
and MMLU clinical topics. We did not use
the included LiveQA, MedicationQA, or Health-
SearchQA datasets for model testing. All datasets
are in English and cover a wide range of medical
and health-related topics.

AS5.1 MedQA

The MedQA (Jin et al., 2021) dataset, released un-
der the MIT license, contains questions in the style
of the US Medical License Exam, with each ques-
tion offering 4 or 5 possible answer choices. These
questions were sourced from the National Medi-
cal Board Examination in the USA. The dataset is
divided into a development set comprising 11,450
questions and a test set containing 1,273 questions.
It follows a multiple-choice, open-domain format,
where each question is accompanied by a set of
possible answers. MedQA serves as a valuable
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resource for training and evaluating models in med-
ical question answering.

AS5.2 MedMCQA

The MedMCQA dataset, released under the MIT
license, is a large-scale multiple-choice question
answering dataset designed to reflect real-world
medical entrance exam questions. It contains
over 194,000 high-quality MCQs from AIIMS and
NEET PG entrance exams, covering 2,400 health-
care topics across 21 medical subjects. The dataset
is notable for its high topical diversity and an aver-
age question length of 12.77 tokens. Available in
English, the dataset is divided into a development
set with 187,000 questions and a test set containing
6,100 questions. The format follows a typical Q+A
structure with multiple-choice, open-domain ques-
tions, making it a valuable resource for medical
education and Al research.

A.5.3 PubMedQA

The PubMedQA (Pal et al., 2022) dataset, re-
leased under the MIT license, is a specialized
biomedical question answering (QA) dataset de-
signed to answer research questions using abstracts
from PubMed. The task involves providing a
yes/no/maybe answer based on the corresponding
abstract. PubMedQA consists of 1,000 expert-
annotated instances, 61.2k unlabeled instances, and
211.3k artificially generated QA instances, mak-
ing it the first QA dataset that requires reason-
ing over biomedical research texts, particularly
their quantitative aspects, to answer questions. Un-
like open-domain tasks like MedQA and MedM-
CQA, PubMedQA is a closed-domain task, where
answers must be inferred from the supporting
PubMed abstract context. The dataset is structured
as Q+A-+context in a multiple-choice format and
is divided into a development set of 500 instances
and a test set of 500 instances.

A.5.4 MMLU clinic topics

The MMLU clinic topics dataset (Hendrycks et al.,
2020), released under the MIT license, follows a
multiple-choice question answering format (Q + A)
and is designed for open-domain tasks. It includes
a development set of 29 questions and a test set con-
taining 265 questions. This structure allows for the
evaluation of models in an open-domain context
where a variety of potential answers are consid-
ered, making it a valuable resource for research in
question answering.



A.6 DiverseHealth

The DiverseHealth test set is a carefully curated
dataset we collected to advance health equity by
capturing a broad and inclusive range of clinical
scenarios. Sourced from real users through a pri-
vate telehealth application, the dataset consists of
50 real-world clinical questions. These questions,
voluntarily provided by patients who signed ex-
plicit consent to share their inquiries, reflect gen-
uine healthcare concerns, with all personal identifi-
cation removed to ensure privacy and confidential-
ity. The telehealth platform, used predominantly
by underserved and diverse populations, offers a
unique opportunity to collect a wide spectrum of
medical questions that highlight the challenges
faced by individuals across various socioeconomic
and demographic backgrounds.

Each question in the DiverseHealth test set ad-
dresses critical aspects of healthcare that are often
underrepresented in traditional datasets. Topics in-
clude rare diseases that disproportionately affect
minority populations, the complexities of manag-
ing multiple comorbidities, and issues related to
drug and alcohol use. Mental health questions,
such as those concerning suicide prevention, offer
valuable insights into the mental health struggles
experienced by various communities. The dataset
also includes questions related to emerging pub-
lic health crises like COVID-19, focusing on its
disproportionate impact on marginalized groups,
as well as long-standing health concerns such as
obesity and chronic disease management.

The combination of real-world clinical questions
and the diversity of topics ensures that the Diverse-
Health test set serves as a powerful tool for devel-
oping Al-driven healthcare solutions. By focusing
on the real concerns of diverse patient populations,
this dataset is crucial for improving the inclusiv-
ity of Al models, ensuring they perform effectively
across different demographic groups and healthcare
environments. Ultimately, the DiverseHealth test
set aims to address health disparities, helping re-
searchers build Al systems that contribute to more
equitable healthcare outcomes for all.

B Detailed Implementation

In the semantic document chunking process, we
apply proposition transfer (Chen et al., 2023) to
each paragraph before semantic validation to ex-
tract standalone statements that are self-contained
and unambiguous (e.g., transforming "It prevents
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respiratory disease" to "Remdesivir prevents res-
piratory disease"). Through proposition transfer,
each paragraph is transformed into independent,
clear statements. For semantic validation, we uti-
lize an LLM to first generate a short summary and
a title for the current chunk. The LLM then de-
termines if the current paragraph belongs to this
chunk based on the title and summary. If it belongs,
the LLM updates the title and summary accord-
ingly. If not, the current chunk is finalized, and the
LLM generates a title and summary for the new
paragraph, treating it as the start of a new chunk.
(the prompts of this process are all in the Sec. D.1).
If the scan reaches the end of the document, the
current chunk is automatically finalized to ensure
no chunk spans across multiple documents.

In the entity extraction, we include unique IDs
to trace their source document. In practice, for the
user privacy data, we generate a universally unique
identifier (UUID) for each document as their IDs.
For the medical papers and books, we use their Dig-
ital object identifier (DOI) as their IDs, and for the
medical dictionaries, we use their UMLS Concept
Unique Identifiers (CUI) as their IDs. This identi-
fier is crucial for retrieving information from the
source, enabling the generation of evidence-based
responses later. For tag-based summary generation
and merging, we insert ten tags into the prompt at
a time to iteratively generate the response.

All experiments except GraphRAG related are
run on Google Cloud Platform with GCP a3-
megagpu-8g Accelerator Optimized: 8 NVIDIA
H100 GPU, 208 vCPUs, 1872GB RAM, 16 local
SSD servers. GraphRAG related experiments are
run on Microsoft Azure Standard-ND96isr-H100-
v5 machines by Microsoft’s default implementa-
tion. We process different documents in parallel for
document chunking and then parallelize the con-
struction of the Med-MetaGraph over each data
chunk. All graphs are stored and organized in
Neo4j. Detailed statistic information about the con-
structed Med Report Graph and Med Paper Graph
is shown in Tab. 4. The UMLS graph is directly
deployed in its existing natural graph structure.

Table 4: Statistic information of Med Report Graph
(RAG Graph) and Med Paper Graph (top tier of reposi-
tory graph), including the number of Med-MetaGraphs,
average nodes in each Med-MetaGraph, and average
degrees of each Med-MetaGraph.

Med Report Graph
MetaGraph Num. ‘ Ave. Nodes ‘ Ave. Degrees
2978245 | 727 ]| 31

Med Paper Graph
MetaGraph Num. ‘ Ave. Nodes ‘ Ave. Degrees
41321588 | 912 | 37




For testing the models on MultiMedQA, we eval-
uate their zero-shot performance using only the
test set of each dataset, without utilizing the train-
ing data for fine-tuning or including it in the RAG
data for retrieval. For evaluating accuracy on Fake-
Health, we incorporate its news content into the
Medical-Papers-tier graph of MedGraphRAG and
into RAG data of the others, then use the criteria
questions from the news content to prompt the mod-
els to respond with ’Satisfactory’ or "Not Satisfac-
tory.” For PubHealth, we integrate its news/reviews
into Medical-Papers-tier graph of MedGraphRAG
and into RAG data of the others, and prompt the
models to classify each claim as 'True,” ’False,
’Unproven,” or a ’"Mixture.’

C Additional Results and Analysis

C.1 Compare to SOTA Medical LLM Models

We also evaluated MedGraphRAG against a range
of previous SOTA medical large language models
on these benchmarks, including both intensively
fine-tuned models (Gu et al., 2022)(Yasunaga
et al.,, 2022a)(Yasunaga et al., 2022b)(Bolton
et al., 2022)(Singhal et al., 2022)(Singhal et al.,
2023a)(Wu et al., 2023) and non-fine-tuned mod-
els (Nori et al., 2023)(OpenAl, 2023b)(OpenAl,
2023a)(Saab et al., 2024). The results, depicted
in Fig. 6, show that when combined with GPT-4,
our MedGraphRAG surpasses the previous SOTA
model, Medprompt (Nori et al., 2023), by a no-
table 1.1% on the MedQA benchmark, and also
outperforms it across all 9 datasets, establishing
a new SOTA on the medical LLM leaderboard.
It’s important to note that while Medprompt re-
trieves training data with similar questions and
correct answers as examples for prompting, our
model operates with a simple prompt containing
only the original question. This improvement fur-
ther demonstrates MedGraphRAG’s superior capa-
bility, even when retrieving from data with a dif-
ferent distribution. Furthermore, when compared
to intensive fine-tuning methods on these medi-
cal datasets, MedGraphRAG outperforms strong
models like Med-PalLM 2 (Singhal et al., 2023b)
and Med-Gemini (Saab et al., 2024), establishing a
new SOTA. This superior performance highlights
MedGraphRAG’s ability to efficiently leverage the
inherent capabilities of LLMs and enhance their
performance with additional data, without the need
for fine-tuning.
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C.2 Case study: GPT4 with and without
MedGraphRAG

As shown in Fig. 7, we compare the responses
generated by vanilla GPT-4 and MedGraphRAG
for a misleading case where a patient presents with
symptoms commonly associated with Alzheimer’s
but is actually Vascular Dementia. GPT-4 was
misled, returning an incorrect diagnosis. In con-
trast, MedGraphRAG notes the details like that the
MRI showed moderate vascular changes and white
matter lesions, which are indicative of chronic
ischemic damage—typical of vascular dementia
rather than Alzheimer’s, through retrieving the
findings in (Smith and Beaudin, 2018), "CBF and
WMH that...causing ical impairments,". With de-
tailed definitions of medical terms and source
knowledge retrieved to assist the reasoning pro-
cess, MedGraphRAG chose the correct answer and
provided a detailed, easily understandable expla-
nation with citation, enabling users to verify the
response.

C.3 Case study: Long-form generation of
MedGraphRAG

We provided four examples of MedGraphRAG
Long-form response generation. We include the
diverse cases across Comorbidity Fig. 8, 9, Rare
Disease Fig. 10,11, Minority Health Fig. 12,13,
and Chornic Disease Managment Fig. 14,15. We
can see the unique responses provided by Med-
GraphRAG combining citations with clear term
explanations in medical responses ensures both
credibility and understanding. Citations provide
a foundation of evidence, reassuring patients and
professionals that recommendations are grounded
in research. For example, in the hormone replace-
ment therapy answer, the association between HRT
and increased risks of cardiovascular events and
thromboembolic complications is backed by "Dhe-
jne et al., 2011," which provides long-term follow-
up data on health outcomes in transgender individ-
uals undergoing hormone therapy. This level of
transparency is particularly important in healthcare,
where trust is critical for patient compliance and
effective care.

Clear term explanations help bridge the gap for
those who might struggle with medical jargon. By
explaining complex terms like cardioselective beta-
blockers or hypoglycemia in simple language, pa-
tients better understand their condition and the ra-
tionale behind their treatment. This not only em-
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Figure 6: Compare to SOTA Medical LLM Models on MedQA benchmark.

powers them but also helps in preventing misunder-
standings that could lead to improper management
of their health. Altogether, using citations for ev-
idence and plain language for explanation strikes
the right balance between trust, safety, and accessi-
bility in medical communication.

C.4 Case study: Abstracted Graph
comparison between GraphRAG and
MedGraphRAG

We conducted a closer examination of the ab-
stracted graphs of GraphRAG (Fig. 16 a) and Med-
GraphRAG (Fig. 16 b) for the case study shown in
the left plot of Fig. 7. By abstracting similar near-
est neighbors of the retrieved entities (COPD and
Heart Failure), we observed that MedGraphRAG
accessed more detailed and specific entities, such as
beta-1 receptors and Cardioselective Beta-Blockers,
by linking to relevant references. While these enti-
ties are also present in the GraphRAG graph, they
were not retrieved under the same number of near-
est neighbors due to their indirect linkage with the
retrieved entities. GraphRAG lacks a hierarchical
graph that directly links these entities through an
"is reference of" relationship, leading them to be
overshadowed by more general neighbors at the
same tier, ultimately missing retrieval.

Moreover, MedGraphRAG’s approach to linking
Heart Failure with Cardioselective Beta-Blockers
enables further connections through beta-1 recep-
tors in the second-tier graph, eventually linking
back to Non-selective Beta-Blockers. It helps to
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link Heart Failure and Non-selective Beta-Blockers
as neighbors in the first-tier graph relationship link-
ing stage, which significantly enhances the LLM’s
ability to generate specific and accurate responses.
Such an observation demonstrates the importance
of including triple linking relationships when con-
structing the first-tier graph. MedGraphRAG lever-
ages this unique design to build a more detailed
and professional knowledge graph, resulting in bet-
ter entity retrieval and richer context for accurate
generation.

D Prompt used in the paper

D.1 Document Chunking

In document chunking, we used a FIFO semantic
chunking method. We will first prompt LLM to
generate a title and a summary of the current chunk
using prompt template Fig. 17, for the current
paragraph, we let LLM to determine if it should
be include into this chunk based on the chunk title
and summary using prompt template Fig. 18. If
the paragraph is considered to be included in the
chunk, then we will update the current chunk title
and summary based on the prompt template Fig.
19.

D.2 Entity Extraction

We extract the entities from the chunk by prompt
template Fig. 20.



D.3 Relationship Generation

We generate the relationship among entities by
prompt template Fig. 21 and Fig. 22.

D4 tag-summary generation

We use prompt template Fig. 23 and Fig. 24 to
generate tag-summary for the graphs and queries.
The predefined Medical Tags are in D.5.

D.5 Medical Tags

ANATOMICAL_STRUCTURE
Complex parts of the human body such as
cells, organs, and systems.

SYMPTOM
Any subjective evidence of disease or physical
disturbance as reported by the patient, e.g.,

“cough”, “fatigue”, “nausea”.

BODY_PART
Specific part of the body, e.g., “hand”, “liver”,
“spinal cord”.

PHYSIOLOGICAL_PROCESS
The normal biological process in the body,

e.g., “digestion”, “circulation”.

HEALTH_STATUS
General status of health or well-being, e.g.,
“healthy”, “at risk”, “critical”.

MEDICAL_CONDITION
Any medical problem or condition, e.g., “hy-

pertension”, “asthma”.

DISEASE_STAGE
The progression or stage of a disease, e.g.,

“Stage IV cancer”, “early onset”.

CAUSE_OF_ILLNESS
A cause or contributing factor to a condition,

e.g., “infection”, “genetic predisposition”.

RISK_FACTOR
Any factor that increases the likelihood of de-
veloping a disease, e.g., “smoking”, “family

history”.

PROGNOSIS
Expected outcome or forecast of the progres-
sion of a medical condition, e.g., “full recov-

ery”, “chronic”.

VITAL_SIGN
Specific vital signs measured in a clinical set-
ting, e.g., “heart rate”, “blood pressure”.
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DIAGNOSTIC_TEST
Tests conducted for diagnosis purposes, e.g.,
“blood test”, “CT scan”.

TREATMENT_PLAN
A general plan for treating a medical con-

dition, e.g., “chemotherapy”, “physical ther-

apy”.

RECOVERY
Information regarding the recovery process,
e.g., “rehabilitation needed”, “recovery period
of 2 weeks”.

PREVENTIVE_MEASURE
Any action taken to prevent disease, e.g., “vac-
cination”, “diet changes”.

SYMPTOM_SEVERITY
The intensity of a symptom, e.g., “mild”, “se-

vere”, “moderate”.

CONTRAINDICATION
A condition or factor that serves as a reason
to withhold a certain medical treatment, e.g.,
“contraindicated in pregnancy”.

ALLERGY
Known allergies, e.g., “allergy to penicillin”,
“seasonal allergy”.

BODY_FUNCTION
A function or activity carried out by the human

body, e.g., “heart rate”, “respiration”.

BODY_FUNCTION_RESULT
The result or condition of a body function,
e.g., “impaired”, “normal”.

BODY_MEASUREMENT
A quantifiable measurement of body function,
such as vital signs obtained via basic instru-
ments, e.g., “temperature”, “blood pressure”.

BODY_MEASUREMENT_RESULT
The specific value of a body measurement.

BODY_MEASUREMENT_UNIT
The unit for body measurements, e.g., “bpm”,
G‘mmHg,’ X

LAB_TEST
A diagnostic examination performed on a bod-
ily sample, e.g., blood test, urine test.



LAB_RESULT
A qualitative description of laboratory data,

e.g., “positive”, elevated”.

LR N3

negative”,

LAB_VALUE

The numerical value obtained from lab testing.

LAB_UNIT
The unit of measurement for the lab value.

MEDICATION
Drugs or treatments prescribed for prevention

or cure, e.g., “aspirin”, “insulin”.
MED_DOSE

The amount of medication prescribed at one

time.

MED_FREQUENCY
The frequency at which a medication is taken,
e.g., “twice a day”.

MED_ROUTE
The mode of administration of a medication,
e.g., “oral”, “intravenous”.

MED_DURATION

The length of time a medication is to be taken.

MED_STATUS
The status of a medication regimen, such as
“start”, “stop”, “continue”.

MED_STRENGTH
The concentration of the active ingredient in a
medication.

MED_FORM
The form in which the medication is given,
e.g., “tablet”, “liquid”.

MEDICAL_CONDITION
Includes diseases, findings, and symptoms.

PROCEDURE
Diagnostic or treatment procedure carried out
on a patient, e.g., “MRI”, “surgery”.

PROCEDURE_RESULT
The outcome or findings of a procedure.

PROCEDURE_METHOD
Specific method or approach used during a
procedure.

SEVERITY
Level of intensity or seriousness of a medical
condition.
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PATIENT_HISTORY
Description of past medical conditions, treat-
ments, and procedures, e.g., “history of hyper-
tension”.

FAMILY_HISTORY
Medical conditions and diseases present in the
patient’s family, e.g., “mother had diabetes”.

LIFESTYLE_FACTORS
Relevant lifestyle details, e.g., “smoker for 10

years”, “alcohol consumption”.

ALLERGIES
Known allergies, e.g., “penicillin allergy”,
“peanut allergy”.

TUMOR_DIMENSIONS
Measurements describing the size of a tumor
Or mass.

GENE_STUDIED
Genes linked to tumor formation,
“BRCA1”.

e.g.,

HISTOLOGICAL_GRADE
The grade assigned to the appearance of can-
cerous cells.

RADIATION_DOSAGE
Amount of radiation used in cancer treatment.

CLINICAL_STATUS
Cancer status, e.g., “active

. “In remission”.
AGE
Age or life stage descriptor, e.g., “elderly”,
“30 years old”.

FAMILY_STRUCTURE
Describes the patient’s family context or rela-
tionships, e.g., “married with two kids”.

LIVING_SITUATION
Details about a patient’s living arrangements,
e.g., “lives alone”, “has a caregiver”.

SOCIAL_IDENTITY
Patient’s identity, including ethnicity, religion,
nationality, e.g., “Hispanic”, “Catholic”.

OCCUPATION
Information regarding the patient’s employ-
ment status or history, e.g., “retired”, “con-
struction worker”.



PERSON_NAME
Names or titles used to identify individuals.

ORGANIZATION_NAME
Names of organizations involved in patient
care.

CONTACT_INFORMATION
Includes phone numbers, emails, URLs, ZIP
codes.

GENERIC_ID
Identifiers such as medical record numbers,
social security numbers.

D.6 Tag-Summary generation

We use prompt template Fig. 25, 26 to merge Tag
summaries.

D.7 Response user query

The prompt template for generating the response
with the retrieved Med-MetaGraph is shown in Fig.
27. The prompt template to revise the response
based on the tag-summary is shown in Fig. 28.

E Details of Human Evaluation

E.1 Physician Answers

In the rating process, physicians were given unlim-
ited time to return their responses and were allowed
to use reference materials. They were instructed
to tailor their answers to a layperson with average
reading comprehension. The tasks were not tied to
a specific clinical context or setting.

E.2 Physician and lay-person raters

Human evaluations were conducted by both physi-
cian and layperson raters. The physician raters
included seven individuals: two from the US, three
from China, and two from Singapore. Their spe-
cialties spanned ophthalmology, internal medicine,
oncology, cardiology, gender dysphoria, epidemi-
ology, and surgery. The layperson raters consisted
of five individuals (three female, two male, aged
22-51) based in the US, all without a medical back-
ground. Their educational backgrounds included
two with high school diplomas, two with graduate
degrees, and one with postgraduate experience.

E.3 Individual evaluation of long-form
answers

Raters were blinded to the source of each answer
and conducted their evaluations independently,
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without consulting one another. The experiments
are conducted on 120 questions randomly sampled
from the MultiMedQA dataset and all 50 questions
of DiverseHealth dataset. In all new rating experi-
ments, each response was evaluated by all 12 raters.
Inter-rater reliability analysis showed very good
agreement (x > 0.8) among raters for the Multi-
MedQA answers, and good agreement (x > 0.6) for
the DiverseHealth dataset, including assessments
on whether answers lacked important citations or
contained unrelated citation information.

E.4 Survey Questions

For each response generated by the models being
evaluated, please rate the response based on the
following dimensions. Provide your rating on a
scale of 1 to 5, where 1 is the lowest and 5 is
the highest. Additionally, provide comments if
necessary.

1. Pertinence (Pert.)

* How relevant is the response to the given
medical query?

* Rating Scale: 1 (Not Relevant) to 5
(Highly Relevant)

* Optional Comment: What aspects of
the response made it relevant or irrele-
vant?

2. Correctness (Cor.)

* How accurate is the information pro-
vided in the response?

» Rating Scale: 1 (Incorrect) to 5 (Com-
pletely Accurate)

* Optional Comment: Identify any spe-
cific inaccuracies or issues in the re-
sponse.

3. Citation Precision (CP)

* How well does the provided citation sup-
port the statements made in the response?

» Rating Scale: 1 (Not at All Supported)
to 5 (Fully Supported)

* Optional Comment: Are there any in-
stances where the citation does not ade-
quately support the statement?

4. Citation Recall (CR)

* Does every important claim or medical
statement have a corresponding citation
to support it?



» Rating Scale: 1 (Many Claims Lack Ci-
tations) to 5 (All Claims are Supported
by Citations)

* Optional Comment: Are there any

claims made without proper citations that
should be addressed?

5. Understandability (Und.)

* How eagsy is it to understand the response,
given the medical content?

» Rating Scale: 1 (Difficult to Understand)
to 5 (Very Easy to Understand)

* Optional Comment: If any part of the
response was unclear, what made it diffi-
cult to understand?

Rating Scale Definitions (1-5)

1. 1: Very poor — lacks relevance, accuracy,
proper citations, or clarity.

. 2: Poor — has significant shortcomings in one
Or more areas.

. 3: Fair — some issues are present, but the re-
sponse is generally acceptable.

. 4: Good — response meets most expectations,
with minor issues.

. 5: Excellent — fully meets expectations, with
no significant issues.

F Boarder Impact

Our MedGraphRAG enhances LLMs by provid-
ing intrinsic source citations, significantly improv-
ing transparency, interpretability, and verifiability.
This tool ensures that each response generated by
the LLM is accompanied by provenance or source
grounding information, clearly demonstrating that
answers are rooted in the dataset. The availability
of cited sources for each assertion allows users, es-
pecially in the critical field of medicine, to swiftly
and accurately audit the LLM’s output against the
original source material. This feature is crucial
where (a) a trustworthy relationship -based on trans-
parency of reasoning, needs to exist between hu-
man experts and LLM agents and (b) where the
security/privacy of the information shared with
the agent is mission critical. By employing this
method, we have developed an Evidence-based
Medical LLM. Clinicians can easily verify the
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source of the reasoning and adjust the model’s re-
sponses, ensuring the safe use of LLMs in clinical
scenarios.



Question:

Mr. John Smith, a 68-year-old retired engineer, presents with increasing forgetfulness and occasional episodes of
sudden confusion and speech difficulty. His medical history includes type 2 diabetes, hypertension, and a
transient ischemic attack two years ago. Neuroimaging reveals moderate vascular changes and white matter
lesions, while his PET scan shows patchy decreased glucose metabolism. Given these symptoms and findings,
which of the following is the most likely diagnosis?

Options:

A. Alzheimer's Disease

B. Vascular Dementia

C. Frontotemporal Dementia

D. Lewy Body Dementia

Answer:

B. Vascular Dementia

GPT-4

Answer:

A. Alzheimer's Disease

Explanation:

1.Coghnitive Testing: His moderate cognitive impairment on the Montreal Cognitive Assessment (MoCA) might
also be consistent with Alzheimer's, considering the general decline in cognitive functions.

2.Neuroimaging: Although the MRI shows vascular changes, the patchy areas of decreased glucose
metabolism observed in the PET scan can sometimes overlap with early Alzheimer's patterns, reflecting
disrupted brain activity.

3.Symptom Pattern: While his symptoms show vascular influences, the general forgetfulness and worsening
coghnitive decline over the past year could also align with the progressive nature of Alzheimer’s disease.

MedGraphRAG

Answer:
B Vascular Dementia

Explanation:

Medical History and Symptoms: His history of vascular risk factors and the nature of his _,
which include sudden confusion and difficulties with speech, are indicative of neurological disturbances
typically associated with vascular incidents like _ [1].

1.Neuroimaging Results: The MRI showing moderate vascular changes and is
characteristic of _prevalent in vascular dementia, rather than the

pically observed in Alzheimer's or other dementias [2].

2.Additional Findings: His also support a vascular origin rather than a
degenerative neurological disease like Alzheimer’s, which would generally present a gradual, consistent
coghnitive decline rather than episodic [3].

These factors collectively support the diagnosis of vascular dementia, aligning more with the implications of
his vascular medical history and the episodic nature of his cognitive disturbances.

_: A form of dementia caused by an impaired supply of blood to the brain, often resulting from
strokes or other vascular injuries, which leads to cognitive decline.
: Symptoms that occur in discrete episodes, rather than being continuous. These can vary in
severity and nature and are transient, typically related to neurological events.
: Micro-strokes are small, unnoticed strokes that can cause temporary, minor neurological
symptoms. TIAs are brief episodes of neurological dysfunction caused by loss of blood flow to the brain, typically
lasting less than 24 hours without causing permanent damage.
: These are indicators of vascular pathology in the brain, including changes in blood vessel
structure and areas of damage in the white matter, often due to chronic ischemic (lack of blood flow) conditions.
: Long-standing damage to brain tissue caused by repeated or persistent reduction in
blood supply, typically resulting in loss of neuronal function and health.
: Refers to the structural and functional changes in the brain associated with
progressive neurological diseases like Alzheimer's, where there is gradual degradation and death of neurons.
: Fluctuating cognitive impairments that appear in episodes, contrasted with
steady cognitive decline seen in degenerative diseases.

[1]: O'Brien, J. T., & Thomas, A. (2015). Vascular dementia. Lancet, 386(10004), 1698-1706.

[2]: Smith, E. E., & Beaudin, A. E. (2018). New insights into cerebral small vessel disease and vascular cognitive
impairment from MRI. Current Opinion in Neurology, 31(1), 36-43.

[3]: Gorelick, P. B., Scuteri, A., Black, S. E., et al. (2011). Vascular contributions to cognitive impairment and dementia:
A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke,
42(9), 2672-2713.

Figure 7: Example case shows MedGraphRAG generating evidence-based responses with grounded citations and
terminology explanations.
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In patients with both chronic obstructive pulmonary disease (COPD) and heart failure, how can lung
function be improved?

MedGraphRAG

In patients with both COPD and heart failure, the combination

of bronchodilators and cardioselective beta-blockerscan be used effectively to manage both
conditions without significantly worsening respiratory symptoms or heart

function [1,4]. Cardioselective beta-blockers, such as bisoprolol or metoprolol, are safe

for COPD patients because they primarily block beta-1 receptors in the heart, minimizing the risk
of bronchoconstriction associated with non-selective beta-

blockers [1,2]. Bronchodilator therapy, including long-acting beta-2 agonists and muscarinic
antagonists, should be continued to improve lung function in COPD [3].

Bronchodilators, such as long-acting beta-2 agonists (LABAs), help relax the airway muscles,
which reduces bronchoconstriction and increases airflow, thereby improving lung

function [3,5]. Muscarinic antagonists, like tiotropium, work by blocking the action of
acetylcholine on airway muscles, further aiding in bronchodilation and easing the symptoms

of COPD [5]. These medications should be continued as part of the treatment regimen to enhance
respiratory efficiency.

Cardioselective beta-blockers, such as bisoprolol and metoprolol, are particularly beneficial
for COPD patients as they predominantly target beta-1 receptors in the heart, reducing
cardiovascular strain without significantly affecting the beta-2 receptors that are crucial for lung
function [1,2]. This selective targeting helps avoid the bronchoconstriction risk often seen with
non-selective beta-blockers, which can negatively impact patients with respiratory

conditions [2,6].

For patients managing both COPD and heart failure, the use of cardioselective beta-blockers in
combination with bronchodilators can be a balanced and effective strategy to optimize both
cardiovascular and respiratory health. Studies have shown that the careful use of cardioselective
beta-blockers reduces mortality risk without exacerbating respiratory symptoms [2]. This
combination treatment helps maintain heart function while avoiding respiratory compromise,
ultimately contributing to improved lung function and better overall outcomes in patients with
these comorbid conditions.

References:

1.Salpeter SR, Ormiston TM, Salpeter EE. "Cardioselective beta-blockers for chronic obstructive
pulmonary disease." Cochrane Database of Systematic Reviews. 2005.

2.Du Q, SunY, Ding N, Lu L. "Beta-blockers reduced the risk of mortality and exacerbation in
patients with COPD: A meta-analysis of observational studies." PLoS ONE. 2016; 11(11):
€0166861.

3.0'Donnell DE, Parker CM. "COPD exacerbations . 3: Pathophysiology." Thorax. 2006.

4.Hawkins NM, Petrie MC, Jhund PS, Chalmers GW, Dunn FG, McMurray JJ. "Heart failure and
chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology." European Journal of
Heart Failure. 2009; 11(2): 130-139.

5.Tashkin DP, Celli B, Senn S, et al. "A 4-year trial of tiotropium in chronic obstructive pulmonary
disease." New England Journal of Medicine. 2008; 359(15): 1543-1554.

6.Rutten FH, Cramer MJ, Lammers JW, Grobbee DE, Hoes AW. "Heart failure and chronic
obstructive pulmonary disease: An ignored combination?" European Journal of Heart Failure.
2006; 8(7): 706-711.

Figure 8: MedGraphRAG long-form generation response on Comorbidity example-part1.
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Terminological Clarification:

*COPD (Chronic Obstructive Pulmonary Disease): A chronic inflammatory lung disease
that obstructs airflow, causing breathing difficulties, cough, and mucus production.
*Heart Failure: A condition in which the heart cannot pump blood effectively, leading to
symptoms such as fatigue, shortness of breath, and fluid retention.

*Bronchodilators: Medications that relax the muscles surrounding the airways, leading to
widened air passages and improved airflow to ease breathing in COPD patients.
*Cardioselective Beta-Blockers: A type of beta-blocker that primarily targets beta-1
receptors in the heart, which reduces the risk of respiratory complications. They are used
to manage heart conditions without significantly affecting lung function.

*Beta-Blockers: A class of medications used to manage cardiovascular conditions like
hypertension and heart failure. They work by blocking beta receptors to decrease heart
rate and blood pressure. Non-selective beta-blockers can also affect beta-2 receptors,
leading to bronchoconstriction.

*Beta-1 Receptors: Receptors primarily found in the heart that, when blocked, lead to
reduced heart rate and force of contraction, making them a key target for treating
cardiovascular diseases.

*Beta-2 Receptors: Receptors found in the smooth muscles of the airways. Blocking
these receptors can lead to bronchoconstriction, which is why cardioselective beta-
blockers that do not significantly impact these receptors are preferred for COPD patients.
*Bronchoconstriction: The narrowing of the airways in the lungs due to the tightening of
surrounding muscles, leading to difficulty in breathing. This is a concern

for COPD patients and can be exacerbated by non-selective beta-blockers.

*Beta-2 Agonists: Medications that stimulate beta-2 receptors to relax airway muscles
and promote bronchodilation, improving airflow in COPD patients.

*Muscarinic Antagonists: Medications that block the action of acetylcholine on
muscarinic receptors, which helps to relax the airways and improve airflow, thus reducing
symptoms in COPD.

Figure 9: MedGraphRAG long-form generation response on Comorbidity example-part2.
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What are the most effective strategies for managing progressive thoracic insufficiency in patients
with fibrodysplasia ossificans progressiva (FOP)?

MedGraphRAG

Managing progressive thoracic insufficiency in FOP patients requires a careful balance between
effective respiratory support and preventing heterotopic ossification (HO) [2]. Early use of non-
invasive ventilation (NIV) [1], such as BiPAP, particularly during sleep or in response

to respiratory infections, can improve respiratory function without invasive procedures [2],
minimizing the risk of trauma [3]. Gentle, supervised physical therapy helps maintain lung
capacity while avoiding trauma that could trigger HO [4].

Non-invasive ventilation (NIV), like BiPAP, can be used to provide respiratory support, especially
during periods of compromised breathing due to respiratory infections or sleep. This avoids the
need for invasive procedures, which can provoke HO in FOP patients [1,2]. BiPAP specifically
offers different levels of air pressure during inhalation and exhalation, making it a comfortable and
effective choice for improving respiratory function [3,5].

Supervised physical therapy plays a crucial role in maintaining lung capacity while minimizing
trauma. It is important that such exercises are gentle and performed under supervision to avoid
any injury that might lead to the development of heterotopic ossification [4,6]. The main goal is to
preserve thoracic movement without stimulating the abnormal bone growth characteristic of FOP.
Nutritional support is also essential to optimize respiratory function in FOP patients. Maintaining
adequate nutrition helps to improve overall health and supports the muscles needed for
breathing [7].

References:

1.Shulmanl, et al. "Maternal genetic skeletal disorders: lessons learned from cases of maternal
osteogenesis imperfecta and fibrodysplasia ossificans progressiva." Journal of Clinical.

2.Pignolo RJ, et al. "The natural history of flare-ups in fibrodysplasia ossificans progressiva (FOP): a
comprehensive global assessment." Journal of Bone and Mineral Research. 2016.

3.Kaplan FS, et al. "Fibrodysplasia ossificans progressiva: Clinical and genetic aspects." Orphanet
Journal of Rare Diseases. 2008.

4.Additional source not explicitly listed (general reference to supervised physical therapy for
maintaining lung capacity in FOP patients).

5.Rocke DM, et al. "Pulmonary function and its management in FOP." Respiratory Care. 2017.
6.Kaplan FS, Glaser DL, Shore EM, et al. "The medical management of fibrodysplasia ossificans
progressiva: current treatment considerations." Clinical Reviews in Bone and Mineral Metabolism.
2005.

7.AlMukaddam M, et al. "Nutrition in Fibrodysplasia Ossificans Progressiva: Strategies and
Management." Journal of Clinical Endocrinology & Metabolism. 2020.

Figure 10: MedGraphRAG long-form generation response on Minority Health example-part].
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Terminological Clarification:

*Heterotopic Ossification (HO): The formation of bone tissue in areas outside of the
skeletal system, usually in soft tissues like muscles. It is common in FOP and can be
triggered by trauma or injury, resulting in limited mobility and pain.

*Non-Invasive Ventilation (NIV): A respiratory support method that uses a mask to deliver
air to the lungs, assisting breathing without requiring surgical procedures. It is commonly
used to avoid complications in FOPpatients where trauma can lead to HO.

*BiPAP (Bilevel Positive Airway Pressure): A type of NIV that provides two levels of air
pressure—higher pressure when inhaling and lower pressure when exhaling. It helps
maintain effective ventilation and supports breathing during sleep or when respiratory
function is compromised.

*Fibrodysplasia Ossificans Progressiva (FOP): A rare genetic disorder characterized by
the formation of bone in muscles, tendons, and other connective tissues, leading to
progressive immobility. Even minor trauma can trigger flare-ups, resulting in abnormal
bone growth.

*Thoracic Insufficiency: A condition where the chest wall cannot adequately support
normal breathing or lung growth, leading to reduced lung function. Itis a common
complication in FOP patients due to HO affecting the ribcage and spine.

*Respiratory Infections: Infections affecting the respiratory tract, which can significantly
worsen breathing in FOPpatients. Prevention and effective management are crucial to
avoid triggering HO.

*Physical Therapy: Supervised exercises designed to maintain or improve mobility.

For FOP patients, it must be done cautiously to avoid any physical stress or trauma that
could lead to HO.

*Nutritional Support: Adequate nutrition is crucial for maintaining general health and
supporting respiratory muscle function, especially in FOP patients where compromised
lung capacity can lead to difficulties in meeting nutritional needs.

Figure 11: MedGraphRAG long-form generation response on Minority Health example-part2.
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Will long-term hormone replacement therapy (HRT) injections affect life expectancy in a male-to-female
transgender individual?

MedGraphRAG

Yes, long-term hormone replacement therapy (HRT) injections in male-to-female
transgender individuals can affect life expectancy by potentially increasing certain health

risks [1,4], particularly cardiovascular events [2] and thromboembolic complications [3].
However, with proper medical supervision [5], risk assessment, and management strategies,
these risks can be mitigated, leading to a life expectancy similar to the general population.
Proper medical supervision is crucial for monitoring hormone levels, screening for potential
complications, and managing any risks associated with long-term HRT [5]. Cardiovascular
events, such as heart attacks or strokes, are potential risks that should be closely monitored in
individuals undergoing long-term HRT, especially when risk factors like smoking or pre-existing
heart conditions are present [2].

Thromboembolic complications, including deep vein thrombosis (DVT) or pulmonary embolism,
are also possible but can be managed through careful risk stratification and preventive
measures [3,6]. With regular medical check-ups and the use of personalized management
strategies, individuals undergoing HRT can mitigate these risks and achieve a life expectancy
comparable to that of the general population.

References:

1.Dhejne C, et al. "Long-Term Follow-Up of Transsexual Persons Undergoing Sex Reassignment
Surgery: Cohort Study in Sweden." PLoS ONE. 2011.

2.Nota NM, et al. "Occurrence of Acute Cardiovascular Events in Transgender Individuals
Receiving Hormone Therapy." European Journal of Endocrinology. 2019.

3.Asscheman H, et al. "Venous Thrombosis and Long-Term Use of Estrogens in Transgender
Women." Journal of Sexual Medicine. 2014.

4.Wierckx K, et al. "Long-term evaluation of cross-sex hormone treatment in transsexual
persons." Journal of Clinical Endocrinology & Metabolism. 2012.

5.Hembree WC, et al. "Endocrine Treatment of Gender-Dysphoric/Gender-Incongruent Persons:
An Endocrine Society Clinical Practice Guideline." Journal of Clinical Endocrinology & Metabolism.
2017.

6.Seal LJ, et al. "Health Implications of Gender Affirmation in Transgender Individuals." Lancet
Diabetes Endocrinology. 2016.

Figure 12: MedGraphRAG long-form generation response on Rare Disease examplel.
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Terminological Clarification:

*Hormone Replacement Therapy (HRT): A treatment involving the administration of
hormones, such as estrogen or testosterone, to align an individual's physical
characteristics with their gender identity. In male-to-female

transgender individuals, HRT typically includes estrogen and anti-androgens.
*Male-to-Female Transgender: Refers to individuals assigned male at birth who identify
and transition to female. HRT is a part of the transition process that helps in developing
feminine physical traits.

*Cardiovascular Events: Medical conditions affecting the heart or blood vessels,
including heart attacks, strokes, and other complications related to the cardiovascular
system. These events can be a risk factor for individuals on long-term HRT.
*Thromboembolic Complications: Conditions that involve blood clots forming in the
veins, which may lead to deep vein thrombosis (DVT) or pulmonary embolism. These
are possible risks associated with HRT in transgender individuals.

*Proper Medical Supervision: Regular healthcare support that includes monitoring
hormone levels, evaluating risk factors, and adjusting treatments as necessary. This helps
mitigate potential risks associated with HRT.

*Risk Assessment: The process of identifying potential health risks, such as
cardiovascular issues or thromboembolic complications, in individuals undergoing HRT.
*Management Strategies: Techniques or treatments designed to minimize health risks.
For individuals on HRT, this may include lifestyle modifications, regular monitoring, and
tailored medical care to address potential complications.

*Deep Vein Thrombosis (DVT): A condition where a blood clot forms in a deep vein,
usually in the legs. DVT is one of the possible thromboembolic

complications associated with HRT.

*Pulmonary Embolism: A blockage in one of the pulmonary arteries in the lungs, usually
caused by a blood clot that has traveled from the legs (DVT). It is a serious complication
that can occur with long-term HRT.

Figure 13: MedGraphRAG long-form generation response on Rare Disease example-part2.
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| have Type 1 Diabetes and I'm planning to exercise for about 30 minutes after work. How should | adjust
my insulin and eating?

MedGraphRAG

To avoid low blood sugar during and after your 30-minute exercise session, start by checking
your blood glucose before you begin; if it's below your target range, consume a

small carbohydrate snack (about 15-30 grams) [2,3,6]. Consider reducing your rapid-acting
insulin dose before exercise by 25-50% if you've taken it within the last few hours [2,3,7], as
exercise increases insulin sensitivity and can lower blood sugar levels [1,2,3,4]. Keep fast-
acting carbohydratesreadily available during your workout in case you experience symptoms

of hypoglycemia [1,3,5].

Monitoring blood glucose levels before, during, and after exercise helps maintain stable blood
sugar levels. Consuming carbohydrates before exercise if blood glucose is low will help

prevent hypoglycemia and allow you to exercise more comfortably [2,3,6]. Rapid-acting

insulin adjustments are important, as exercise can significantly increase insulin sensitivity,
leading to a faster decline in blood sugar levels [2,3,7].

Fast-acting carbohydrates (such as glucose tablets or sugary drinks) should be easily accessible
during exercise in case of hypoglycemia. These types of carbohydrates act quickly to raise blood
sugar levels and can help stabilize levels if they drop too low during activity [1,2,3,5].
References:

1.Bakris, G., et al. "American Diabetes Association (ADA) standards of medical care in diabetes
2016 cardiovascular disease and risk management." Diabetes Care. 2016.

2.Riddell MC, et al. "Exercise management in type 1 diabetes: a consensus statement." The Lancet
Diabetes & Endocrinology. 2017.

3.Colberg SR, et al. "Physical Activity/Exercise and Diabetes: A Position Statement of the American
Diabetes Association." Diabetes Care. 2016.

4.Yardley JE, et al. "Effects of Exercise on Glucose Levels in Type 1 Diabetes: A Continuous
Glucose Monitoring Study." Diabetes Technology & Therapeutics. 2013.

5.Adolfsson P, et al. "Improvements in Diabetes Control During Physical Activity Intervention for
Adolescents with Type 1 Diabetes Mellitus." Journal of Clinical Endocrinology & Metabolism. 2017.
6.Rabasa-Lhoret R, et al. "Exercise in Type 1 Diabetes: A practical review of its benefits and
challenges." Journal of Diabetes and its Complications. 2009.

7.Heinemann L, et al. "Adjustment of insulin therapy for physical activity in type 1 diabetes
mellitus." Diabetes Obesity and Metabolism. 2014.

Figure 14: MedGraphRAG long-form generation response on Chornic Disease Managment example-part1.
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Terminological Clarification:

*Low Blood Sugar (Hypoglycemia): A condition where blood glucose levels fall below
the normal range, leading to symptoms like shakiness, sweating, confusion, or even
loss of consciousness if untreated.

*Blood Glucose: The concentration of glucose (sugar) in the blood, commonly referred
to as blood sugar levels. Monitoring blood glucose is crucial for individuals with Type
1 Diabetes to manage their health.

*Carbohydrate: A macronutrient found in foods such as bread, fruits, and sweets that
provides energy. Consuming carbohydrates before exercise can help maintain blood
glucose levels, especially in individuals with diabetes.

*Rapid-Acting Insulin: A type of insulin that starts to work quickly to reduce blood
glucose levels, typically within 15 minutes of injection. It helps manage the spikes

in blood sugar that occur after meals.

*Insulin Sensitivity: The body's responsiveness to insulin, meaning how effectively
insulin helps cells absorb glucose. Exercise increases insulin sensitivity, which means
the body requires less insulin to lower blood glucoselevels.

*Blood Sugar Levels: The amount of glucose present in the blood at any given time.
Managing blood sugar levelsis essential for individuals with diabetes to prevent

both hypoglycemia and hyperglycemia.

*Fast-Acting Carbohydrates: Carbohydrates that are rapidly absorbed into the
bloodstream, quickly raising blood glucose levels. Examples include glucose tablets,
sugary drinks, and candies. These are used to treat hypoglycemia.

*Hypoglycemia: A condition characterized by abnormally low blood glucose levels,
which can be caused by too much insulin, insufficient food intake, or increased
physical activity without proper adjustments.

Figure 15: MedGraphRAG long-form generation response on Chornic Disease Managment example-part2.
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System Prompt:

You are the steward of a chunk, which represents a collection of paragraphs discussing a similar
medical topic.
Task:
*You should generate both a concise chunk title and a 1-sentence chunk summary that clearly
indicate what the chunk is about.
*The chunk title should be a few words that clearly describe the topic of the chunk.
*The chunk summary should provide a brief overview of the content, explaining what is covered.
Requirements for Titles and Summaries:
*The title should be brief but fully capture the essence of the chunk.
*The summary should describe what the chunk is about and provide any clarifying instructions for
additions.
*Your titles and summaries should anticipate generalization where appropriate. For example:

* [fthe chunkis about high blood pressure, generalize to cardiovascular conditions.

* |fthe contentis about a specific treatment, generalize to therapeutic approaches.
Examples:
1.Input: Chunk Content: This chunk contains multiple paragraphs about the use of basal insulin in
managing Type 1 diabetes, the benefits of continuous glucose monitoring (CGM) devices, and the
role of patient education in understanding insulin dosing adjustments.
Output:
Chunk Title: Basal Insulin and Monitoring in Type 1 Diabetes
Chunk Summary: Detailed exploration of basal insulin use, benefits of continuous glucose
monitoring, and the role of patient education in optimizing insulin dosing for Type 1 diabetes
management.
2.Input:
Chunk Content: This chunkincludes paragraphs on the use of oseltamivir as an antiviral treatment
for influenza, the importance of annual influenza vaccination for high-risk populations, and the
benefits of early initiation of antiviral drugs to reduce complications.
Output:
Chunk Title: Oseltamivir and Vaccination for Influenza
Chunk Summary: Focused discussion on oseltamivir as an antiviral, the significance of annual flu
vaccination, and the role of early antiviral treatment in managing influenza and reducing
complications.

User Prompt:

Determine the title and summary of the chunk based on its content:
Chunk Content: {chunk_content}

Figure 17: Prompt to generate chunk outline.
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System Prompt:

Task:
Determine whether the given paragraph should be included in the current chunk.
Criteria:
*A paragraph should be included in a chunk if its meaning, direction, or intention is similar to that of
the chunk.
Goal:
*The objective is to group similar paragraphs into cohesive chunks.
Context Provided:
*You will be given the outline of the current chunk and the previous four paragraphs as context.
Instructions:
*If you think the paragraph should be joined with the current chunk, return "Yes".
*If you think the paragraph should not be joined with the current chunk, return "No".
Examples:
1.Current Chunk Outline:
1. Chunk Name: Whole Grain Intake for Glycemic Controlin Type 2 Diabetes
2. Chunk Summary: Specific analysis of how increasing whole grain consumption can
contribute to better glycemic controlin Type 2 diabetes patients.
Given Paragraph:
"A balanced diet low in processed sugars and rich in whole grains is crucial for managing Type 2
diabetes effectively."
Return: "Yes"
Reason: The paragraph directly discusses increasing whole grain intake, which aligns well with the
chunk’s specific focus on glycemic control through whole grains.
2.Current Chunk Outline:
1. Chunk Name: ACE Inhibitors for Hypertension Management
2. Chunk Summary: Detailed discussion of the role of ACE inhibitors in lowering blood
pressure and their mechanisms of action for effective hypertension management.
Given Paragraph:
"Regular physical activity and reducing sodium intake are essential lifestyle changes for managing
high blood pressure."
Return: "No"
Reason: The paragraph is about non-pharmacological interventions for hypertension management,
whereas the chunk specifically focuses on the pharmacological role and mechanisms of ACE
inhibitors.

User Prompt:

Current Chunks:

--Start of current chunks—
{current_chunk_outline}

--End of current chunks—
Previous Paragraphs:

--Start of previous paragraphs—
{the four previous paragraphs}

--End of previous paragraphs—

Determine if the following paragraph should belong to the current chunk: {current paragraph}

Figure 18: Prompt to determine whether the given paragraph should be included in the chunk.
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System Prompt:

You are the steward of a chunk, which represents a collection of paragraphs discussing a similar
medical topic.
A new paragraph has been added to the chunk, and your task is to update both the chunk title
and summary to ensure they accurately reflect the current content.
Requirements for Title and Summary Updates:
*The title should be brief but fully capture the updated essence of the chunk.
*The summary should provide an accurate overview of the updated chunk content.
*Both the title and summary should anticipate generalization where appropriate. For example:

* |If the content is about high blood pressure, generalize to cardiovascular conditions.

* Ifthe content is about a specific treatment, generalize to therapeutic approaches.
Example:
Input:
New Paragraph: This paragraph discusses the benefits of basal insulin in maintaining consistent
blood sugar levels for patients with Type 1 diabetes.
Current Chunk Title: Insulin Therapy for Type 1 Diabetes
Current Chunk Summary: The use of continuous glucose monitoring (CGM) for real-time tracking
of blood glucose levels and basal and bolus insulin therapy for optimal glycemic control.
Output:
Updated Chunk Title: Insulin Therapy for Type 1 Diabetes
Updated Chunk Summary: The use of continuous glucose monitoring (CGM) for real-time tracking of
blood glucose levels, basal insulin therapy for maintaining consistent blood sugar levels, and bolus
insulin therapy for optimal glycemic control in patients with Type 1 diabetes.

User Prompt:

A new paragraph will be added to the chunk. Update the chunk title and summary based on the
current ones:

New paragraph :

{paragraph_content}

Current Chunk Title:

{current_title}

Current Chunk Summary:

{current_summary}

Figure 19: Prompt to update the chunk outline based on the new paragraph.
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System Prompt:

You are tasked with extracting key entities from a given paragraph and structuring them into Entity
objects.
Your Task:
*Analyze the input paragraph to identify important entities.
*Entities can be noun phrases or key concepts mentioned in the content.
Entity Structure:
For each identified entity, create an Entity object that includes:
*Name: Extracted directly from the text or inferred from context.
*Type: Chosen from UMLS semantic types
*Context: A few sentences explaining the entity's relevance within the paragraph.
Instructions:
*Carefully read the provided content.
|dentify distinct entities and assign an appropriate UMLS semantic type.
*Provide contextual information that explains the entity's role within the paragraph.
Example:
Input Paragraph: "Metformin is widely used for treating Type 2 diabetes. It helps lower blood sugar
levels and improve insulin sensitivity. The medication is recommended by most endocrinologists."
Expected Output:
Entities:
1.Entity:
1. Name: Metformin
2. Type: Pharmacologic Substance
3. Context: "Metformin is widely used for treating Type 2 diabetes."
2.Entity:
1. Name: Type 2 diabetes
2. Type: Disease or Syndrome
3. Context: "Metformin is widely used for treating Type 2 diabetes."
3.Entity:
1. Name: Endocrinologists
2. Type: Biomedical Occupation or Discipline
3. Context: "The medication is recommended by most endocrinologists."

User Prompt:

Extract entities from the given paragraph and structure them into Entity objects with the specified
properties:

Paragraph:

{paragraph}

Figure 20: Entity extraction prompt.
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System Prompt:

You are tasked with generating a concise description of the relationship between two given medical
entities. The two entities and their reference entities are provided, and your job is to identify and
describe the relationship between them based on established medical knowledge and context.
Instructions:
Review the Given Entities:
Examine the provided primary entities that need to be related.
Each entity includes a context, which is a description of the entity within the paragraph.
You will also receive reference entities to help understand the context.
Identify Relevant Relationships:
Use the primary entities and their context, along with reference entities, to determine the
relationship.
The relationship should be based on established medical associations, such as:
Treats: A drug treats a disease.
Causes: A condition or substance causes a symptom.
Associated With: Two entities are linked or commonly occur together.
Improves: A medication or intervention improves a function.
Diagnoses: A test or procedure diagnoses a condition.
Create a Relationship Object:
For each identified relationship, provide:
Subject (subj): The first entity Name.
Object (obj): The second entity Name.
Relationship Description: A concise phrase describing the relationship (e.g., "treats,"
"associated with").
Output Formatting:
Present the relationship as a structured object as shown in the example.
Ensure clarity and consistency for easy understanding.
Example:
Given Entities:
Primary Entities:
Entity 1:
Name: Metformin
Type: Pharmacologic Substance
Context: "Metformin is widely used for treating Type 2 diabetes."
Entity 2:
Name: Type 2 Diabetes
Type: Disease or Syndrome
Context: "Metformin is widely used for treating Type 2 diabetes."
Reference Entities:
Entity 1:
Name: Metformin
Parent: Metformin
Type: Pharmacologic Substance
Context: "Metformin helps to lower blood sugar levels."
Entity 2:
Name: Type 2 Diabetes
Parent: Type 2 Diabetes
Type: Disease or Syndrome
Context: "Endocrinologists often recommend Metformin for managing Type 2 diabetes."

Figure 21: Relationship generation prompt-partl1.
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Generated Relationship:
Relationship:
Subject (subj):
Metformin
Object (obj):
Type 2 Diabetes
Relationship Description: "Treats”
Note:
Ensure that the relationship description is concise and accurate.
Use only verified medical relationships based on the context provided by the primary and reference
entities.
The relationship description should be a concise phrase (e.g., "treats," "causes,

associated with").

User Prompt:

Given the following two entities, generate a concise relationship description between them using
the specified format.
Primary Entities:
*Entity 1:

* Name: {entity_1_name}

* Type: {entity_1_type}

* Context: {entity_1_context}
*Entity 2:

* Name: {entity_2_name}

* Type: {entity_2_type}

* Context: {entity_2_context}
Reference Entities:
{The list of reference entities.}

Figure 22: Relationship generation prompt-part2.

36



System Prompt:

You are tasked with summarizing medical content from provided medical graph with
structure [entity content][relationship][entity content]. Each summary must strictly adhere
to a set of predefined categories, ensuring that the extracted information is well-
structured and presented in a concise manner. For each category, provide the information
using the format: 'CATEGORY_NAME: Key details' Only include information relevant to
each category, and avoid unnecessary elaboration: {Medical Tags and Description
provided.}

Each category should be addressed only if relevant to the source content. The summary
should be concise, precise, and well-structured, allowing for rapid comprehension and
use.

The summary should include the reference DOI at the end if the content from the reference is
used in constructing the summary. Additionally, include the CUI (Concept Unique Identifier)
number after specific terms if the term may be obscure and needs clarification for individuals
without a clinical background.

User Prompt:

Generate a structured summary from the following graph {a set of [entity
content][relationship][entity content]}

Figure 23: tag-summary generation prompt for the graphs.

System Prompt:

You are tasked with summarizing medical content from provided user query. Each
summary must strictly adhere to a set of predefined categories, ensuring that the
extracted information is well-structured and presented in a concise manner. For each
category, provide the information using the format: 'CATEGORY_NAME: Key details' Only
include information relevant to each category, and avoid unnecessary elaboration:
{Medical Tags and Description provided.}

Each category should be addressed only if relevant to the source content. The summary
should be concise, precise, and well-structured, allowing for rapid comprehension and
use.

User Prompt:

Generate a structured summary from the following query {user query}

Figure 24: tag-summary generation prompt for the queries.
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System Prompt:

You are tasked with merging two summaries of medical content, each structured by a set of
predefined medical categories. Your goal is to combine these summaries into a single cohesive
summary while preserving all relevant information and maintaining clarity.

Instructions:

1.Combine Information for Each Category:

1. For each category, compare the content from both summaries.

2. If both summaries mention different instances within a category, identify shared
characteristics and refer to them using a function word or a more general term (parent
category).

1. Examples:
1. "disease: glaucoma" and "disease: diabetic retinopathy" should be merged as
"disease: eye disease."
2. "ANATOMICAL_STRUCTURE: retina" and "ANATOMICAL_STRUCTURE: cornea"
should be generalized as "ocular structure.”
3. "SYMPTOM: blurred vision, eye pain, vision loss, redness" should be generalized as
"visual disturbance."

3. If there are common elements between both summaries, include them only once in the

merged output.
2.Avoid Redundancy:

1. Remove repeated information while retaining key details in a concise form.

3.Category Integrity:

1. Maintain clear labels for each category, and include all relevant categories in the final
summary.

2. If a category is irrelevant to both summaries, it can be omitted.

4.Well-Structured Format:

1. The final output should be concise, well-structured, and easy to understand, ensuring that
the original meaning is retained.

Output Format: Provide the merged information for each category in the following format:
CATEGORY_NAME: Key details.

Figure 25: tag-summary merge prompt, part-1.
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Merge Example:
*Input Summary A:
* ANATOMICAL_STRUCTURE: retina
* SYMPTOM: blurred vision, eye pain
* DISEASE: glaucoma
*Input Summary B:
* ANATOMICAL_STRUCTURE: cornea, retina
* SYMPTOM: vision loss, redness
* DISEASE: diabetic retinopathy
Expected Output:
*ANATOMICAL_STRUCTURE: ocular structure
* Explanation: "Retina" and "cornea" are generalized as "ocular structure."
*SYMPTOM: visual disturbance
* Explanation: Symptoms such as "blurred vision,
summarized as "visual disturbance."
*DISEASE: eye disease
* Explanation: Both "glaucoma" and "diabetic retinopathy" are classified as "eye disease."

eye pain," "vision loss," and "redness" are

User Prompt:

Now, merge the provided summaries accordingly by finding similarities, referring to shared
characteristics, using common parent categories where appropriate, and ensuring all
information is presented clearly and concisely under each category.

Tag Summary 1:
{Tag Summary 1}

Tag Summary 2:
{Tag Summary 2}

Figure 26: tag-summary merge prompt, part-2.
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System Prompt:

You are tasked with answering a medical question using the provided retrieved medical graph. The
graph has a structured format: [entity content] [relationship] [entity content]. Your response should
be well-reasoned and backed by information from the medical graph, ensuring clarity and accuracy.
Instructions:

1.Graph-Based Reasoning: Use the information from the provided graph structure to reason and
generate an accurate response to the medical question. Ensure that all relevant entities and
relationships are used effectively to construct a well-supported answer.

2.Reference Inclusion:

1. If the response uses information from a reference, include the reference DOI in the
appropriate position within the response to indicate sourcing or backing of the statement.

3.Clarification of Clinical Terms:

1. For specific terms that may be obscure or require additional context, include the CUI
(Concept Unique Identifier) after the term to assist individuals without a clinical
background in understanding.

4.Formatting:

1. Ensure that the response is clear, well-structured, and concise.

2. Cite DOIs and CUIls at relevant points to enhance understanding and credibility.
Output Example:
*Response should be in a natural conversational tone, ensuring readability.
*Example of reference inclusion: "The treatment has been shown effective for hypertension
[DOI:10.1234/example].”
*Example of CUl inclusion: "Patients may experience tachycardia (CUIl: C0004238)."

User Prompt:

Answer the user question: {QUESTION} using the graph: {GRAPH}.

Figure 27: Prompt to response based on retrieved graph.
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System Prompt:

You are tasked with adjusting a previous response to a medical question using an updated,
structured summary based on predefined categories. The updated summary provides additional or
clarified information, and your goal is to integrate these changes while preserving the structure and
quality of the original response.
Instructions:
1.Integration of Updated Information:
1. Carefully integrate relevant details from the structured summary into the previous response.
The summary is organized by categories, and the adjustments should use this categorized
information to enhance or update specific aspects of the answer.
2. Ensure consistency between the original response and the new information provided.
2.Reference Inclusion:
1. Include the reference DOI at the appropriate point if the updated or newly added content
uses information from a reference.
2. The DOI should be positioned where the reference supports reasoning, backing, or sourcing
within the response.
3.Term Clarification:
1. For any obscure terms that may need clarification for a non-clinical audience, include
the CUI (Concept Unique Identifier) after the term. This will help improve understanding for
readers with less clinical background.
4.Formatting:
1. Ensure the adjusted response remains clear, well-structured, and concise.
2. Maintain the conversational tone of the original response, incorporating new references and
CUIls where needed.

User Prompt:

Adjust the response: {model last response} of question: {user question} using the updated information:
{tag summary}

Figure 28: Prompt to revise the response based on tag-summary.
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