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Abstract001

We introduce MedGraphRAG, a novel graph-002
based Retrieval-Augmented Generation (RAG)003
framework designed to enhance LLMs in gen-004
erating evidence-based medical responses, im-005
proving safety and reliability with private med-006
ical data. We introduce Triple Graph Construc-007
tion and U-Retrieval to enhance GraphRAG,008
enabling holistic insights and evidence-based009
response generation for medical applications.010
Specifically, we connect user documents to011
credible medical sources and integrate Top-012
down Precise Retrieval with Bottom-up Re-013
sponse Refinement for balanced context aware-014
ness and precise indexing. Validated on 9 med-015
ical Q&A benchmarks, 2 health fact-checking016
datasets, and a long-form generation test set,017
MedGraphRAG outperforms state-of-the-art018
models while ensuring credible sourcing. Our019
code is publicly available.020

1 Introduction021

The rapid advancement of large language mod-022

els (LLMs), such as OpenAI’s GPT-4 (OpenAI,023

2023a), has accelerated research in natural lan-024

guage processing and driven numerous AI applica-025

tions. However, these models still face significant026

challenges in specialized fields like medicine (Hadi027

et al., 2024; Williams et al., 2024; Xie et al., 2024).028

The first challenge is that these domains rely on029

vast knowledge bases -principles and notions dis-030

covered and accumulated over thousands of years;031

fitting such knowledge into the finite context win-032

dow of current LLMs is a hopeless task. Supervised033

Fine-Tuning (SFT) provides an alternative to us-034

ing the context window, but it is often prohibitively035

expensive or unfeasible due to the closed-source na-036

ture of most commercial models. Second, medicine037

is a specialized field that relies on a precise termi-038

nology system and numerous established truths,039

such as specific disease symptoms or drug side ef-040

fects. In this domain, it is essential that LLMs do041

not distort, modify, or introduce creative elements 042

into the data. Unfortunately, verifying the accuracy 043

of responses in medicine is particularly challeng- 044

ing for non-expert users. Therefore, the ability to 045

perform complex reasoning using large external 046

datasets, while generating accurate and credible 047

responses backed by verifiable sources, is crucial 048

in medical applications of LLMs. 049

Retrieval-augmented generation (RAG) (Lewis 050

et al., 2021) is a technique that answers user queries 051

using specific and private datasets without requir- 052

ing further training of the model. However, RAG 053

struggles to synthesize new insights and underper- 054

forms in tasks requiring a holistic understanding 055

across extensive documents. GraphRAG (Hu et al., 056

2024) has been recently introduced to overcome 057

these limitations. GraphRAG constructs a knowl- 058

edge graph from raw documents using an LLM, and 059

retrieves knowledge from the graph to enhance re- 060

sponses. By representing clear conceptual relation- 061

ships across the data, it significantly outperforms 062

classic RAG, especially for complex reasoning (Hu 063

et al., 2024). However, its graph construction lacks 064

a specific design to ensure response authentication 065

and credibility, and its hierarchical community con- 066

struction process is costly, as it is designed to han- 067

dle various cases for general-purpose use. We find 068

that specific effort is required to apply it effectively 069

in the medical domain. 070

In this paper, we introduce a novel graph-based 071

RAG method for medical domain, which we refer 072

to as Medical GraphRAG (MedGraphRAG). This 073

technique enhances LLM performance in the medi- 074

cal domain by generating evidence-based responses 075

and official medical term explanation, which not 076

only increases their credibility but also significantly 077

improves their overall quality. Our method builds 078

on GraphRAG with a more sophisticated graph con- 079

struction technique, called Triple Graph Construc- 080

tion, to generate evidence-based responses, and an 081

efficient retrieval method, U-Retrieval, which im- 082
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proves response quality with few costs. In Triple083

Graph Construction, we design a mechanism to084

link user RAG data to credible medical papers and085

foundational medical dictionaries. This process086

generates triples [RAG data, source, definition]087

to construct a comprehensive graph of user doc-088

uments. It enhances LLM reasoning and ensures089

responses are traceable to their sources and defi-090

nitions, guaranteeing reliability and explainability.091

We also developed a unique U-Retrieval strategy to092

respond to user queries. Instead of building costly093

graph communities, we streamline the process by094

summarizing each graph using predefined medical095

tags, then iteratively clustering similar graphs to096

form a multi-layer hierarchical tag structure, from097

broad to detailed tags. The LLM generates tags for098

the user query and indexes the most relevant graph099

based on tag similarity in a top-down approach,100

using it to formulate the initial response. Then it101

refines the response by progressively integrating102

back the higher-level tags in a bottom-up manner103

until the final answer is generated. This U-Retrieval104

technique strikes a balance between global context105

awareness and the retrieval efficiency.106

To evaluate our MedGraphRAG method, we107

implemented it on several popular open-source108

and commercial LLMs, including GPT (OpenAI,109

2023b), Gemini(Team et al., 2023) and LLaMA110

(Touvron et al., 2023). The results evaluated111

across 9 medical Q&A benchmarks show that Med-112

GraphRAG yields materially better results than113

classic RAG and GraphRAG. Our final results even114

surpass many specifically trained LLMs on medi-115

cal corpora, setting a new state-of-the-art (SOTA)116

across all benchmarks. To verify its evidence-based117

response capability, we quantitatively tested Med-118

GraphRAG on 2 health fact-checking benchmarks119

and conducted a human evaluation by experienced120

clinicians. Both evaluations strongly support that121

our responses are more source-based and reliable122

than previous methods.123

Our contributions are as follows:124

1. We are the first to propose a specialized frame-125

work for introducing graph-based RAG in the med-126

ical domain, which we named MedGraphRAG.127

2. We have developed unique Triple Graph128

Construction and U-Retrieval methods that enable129

LLMs to efficiently generate evidence-based re-130

sponses utilizing holistic RAG data.131

3. MedGraphRAG outperforms other retrieval132

methods and extensively fine-tuned Medical LLMs133

across a wide range of medical Q&A benchmarks,134

establishing the new SOTAs. 135

4. Validated by human evaluations, Med- 136

GraphRAG is able to generate more understand- 137

able and evidence-based responses in the medical 138

domain. 139

2 Method 140

The overall workflow of MedGraphRAG is shown 141

in Fig. 1. We first construct the knowledge graphs 142

from the documents by using Triple Graph Con- 143

struction (Section 2.1), then tag the graphs for 144

U-Retrieval to response the user queries (Section 145

2.2). We illustrate the main idea here, with de- 146

tailed implementation and prompts provided in the 147

appendix. 148

2.1 Triple Graph Construction 149

2.1.1 Preliminary: Document Chunking & 150

Entities Extraction 151

Large medical documents often contain diverse 152

content. We segment them into chunks respect- 153

ing LLMs’ context limits. We adopt the semantic 154

chunking function implemented in LangChain to 155

chunk the documents(langchain, 2024). Specifi- 156

cally, we isolate paragraphs Pi within the document 157

D = {P1, P2, . . . , PNp} using a text embedding 158

model. We then set a buffer size of 5 and enforce 159

the token limit according to the graph construction 160

LLM LG. 161

We then extract entities from each chunk through 162

graph construction LLM LG. We prompt LG to 163

identify all relevant entities E = {e1, e2, . . . , eN1
e
} 164

in each chunk and generate a structured output 165

with name, type, and a description of the context: 166

e = {na, ty, cx}, as the examples shown in the 167

Step2 in Fig. 1. We set name be the text from the 168

document, type selected from the UMLS semantic 169

types (Bodenreider, 2004), and context a few sen- 170

tences generated by LG contextualized within the 171

document. 172

2.1.2 Triple Linking 173

Medicine relies on precise terminology and estab- 174

lished facts, making it essential for LLMs to pro- 175

duce responses grounded in established facts. To 176

achieve this, we introduced Triple Graph Construc- 177

tion, linking user documents to credible sources 178

and professional definitions. Specifically, we build 179

repository graph (RepoGraph), which is intended 180

to be fixed across different users, providing estab- 181

lished sources and controlled vocabulary defini- 182

tions for user RAG documents. We construct Re- 183
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Figure 1: The overall workflow of MedGraphRAG begins with Triple Graph Construction, where documents are
chunked, and entities are extracted. Triple linking then connects user entities to referenced papers and vocabulary
graph layers, forming the Med-MetaGraph. In the subsequent U-Retrieval phase, graphs are tagged to enable
top-down precise retrieval and bottom-up response refinement, ensuring graph-enhanced query responses.

poGraph under user RAG graph with two layers:184

one based on medical papers/books and another185

based on medical dictionaries. We build the bottom186

layer of RepoGraph as UMLS (Bodenreider, 2004)187

graph, which consist comprehensive, well-defined188

medical vocabularies and their relationships. The189

upper layer of RepoGraph is constructed from med-190

ical textbooks and scholarly articles using the same191

graph construction method described here.192

The entities of all three tiers of graphs are193

hierarchically linked through semantic rela-194

tionships. Let us denoted entities extracted195

from RAG documents as E1. We link them to196

entities extracted from medical books/papers,197

denoted as E2, based on their relevance, which198

is determined by computing the cosine similarity199

between their content embeddings ϕ(Ce). The200

content of an entity Ce is the concatenation201

of its name, type, and context, represented202

as: Ce = Text[name: na; type: ty; context: cx].203

This directed linking is annotated as the204

reference of, indicating the reference rela-205

tionship between entities in the two layers:206

Re1

e2 =

{
(e1i , TheReferenceOf, e2j )

∣∣∣∣ ϕ(C
e1
i
)·ϕ(C

e2
j
)

∥ϕ(C
e1
i
)∥ ∥ϕ(C

e2
j
)∥ ≥ δr

}
,207

where δr is the pre-defined threshold. Entities208

e2 ∈ E2 are linked to e3 ∈ E3 through the same209

way with relationships annotated as the definition 210

of . Thus, RAG entities are constructed as triples 211

[RAG entity, source, definition]. 212

We then instruct LG to identify the relationships 213

among RAG entities in each chunk, which we 214

noted as e1 ∈ Em. This relationship is a concise 215

phrase generated by LG based on the content 216

of the entity Ce1 and associated references 217

{Ce2 |Re1
e2 = the reference of}. The identified 218

relationships specify the source and target enti- 219

ties, provide a description of their relationship: 220

R
e1j
e1i

=
{
(e1i , rij , e

1
j )

∣∣∣ rij = LG
rel(Ce1i

;Ce2i
, Ce1j

;Ce2j
)
}
, 221

where LG
rel is LG with relationship identification 222

and generation prompt. We show an example of 223

relationship linking in the Step4 of Fig. 1. After 224

performing this analysis, we have generated a di- 225

rected graph for each data chunk, which is referred 226

to as Meta-MedGraphs Gm = {Em, R(Em)}. 227

2.2 U-Retrieval 228

2.2.1 Preliminary: Graph Tagging 229

Organizing and summarizing the graphs in ad- 230

vance is intuitive and has proven to facilitate ef- 231

ficient retrieval (Hu et al., 2024). However, unlike 232

GraphRAG, we avoid constructing costly graph 233

communities. We observe that, unlike general lan- 234
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guage content, medical text is often structured and235

can be summarized effectively using predefined236

tags. Motivated by this, we simply summarize237

each Meta-MedGraph Gm with several predefined238

tags T , and iteratively generate more abstract tag239

summaries for clusters of closely-related graphs.240

Specifically, LLM LG first summarises the con-241

tent of each Meta-MedGraph {Ce | e ∈ Gm}242

given a set of given tags T . The tags T consist of243

multiple medical categories following Society for244

Testing and Materials (ASTM) standards for con-245

tent of electronic health records, mainly including246

Symptoms, Patient History, Body Functions, and247

Medication (detailed format shown in appendix).248

This process generates a structured tag-summary249

for each Gm, denoted as Tm.250

We then apply a variant agglomerative hierarchi-251

cal clustering method with dynamic thresholding252

based on tag similarity, to group the graphs and253

generate synthesized tag summaries. Initially, each254

graph begins as its own group. At each iteration,255

we compute the tag similarity between all pairs256

of clusters and dynamically set the threshold δt to257

merge the top 20% most similar pairs. The graphs258

will be merged if all pairwise similarities within the259

group exceed δt. Note that we don’t really link the260

nodes across different graphs, but generate a syn-261

thesized tag-summary for each group. Specifically,262

we calculate the similarity of pairs by measuring263

the average cosine similarity of all their tag em-264

beddings. Let ϕ(t) denote the embedding of a tag265

t ∈ Tm. Taking two Meta-MedGraphs Gmi and266

Gmj with tag sets Tmi and Tmj as an example, we267

generate the abstract tag summery Tmij if their co-268

sine similarity of tag embeddings ϕ(t) and ϕ(t′)269

higher than the threshold δt270

Tmij = LG(Tmi , Tmj ), if271
272

1

|Tmi | · |Tmj |
∑

t∈Tmi

∑
t′∈Tmj

ϕ(t)⊤ϕ(t′)

∥ϕ(t)∥ ∥ϕ(t′)∥
≥ δt;273

These newly merged tag-summary, along with274

those that remain unmerged, form a new layer of275

tags. As tag-summaries become less detailed at276

higher layers, there is a trade-off between precision277

and efficiency. In practice, we limit the process278

to 12 layers, as this is sufficient for most model279

variants (detailed in Fig. 5).280

2.2.2 Top-down Precise Retrieval281

After constructing the graph, we use response LLM282

LR efficiently retrieves information to respond to283

user queries. We begin by generating tag-summary 284

on the user query TQ = LR(Q), and use these 285

to identify the most relevant graph through a Top- 286

down Precise Retrieval. Let’s indicate the jth tags 287

at layer i summarised tag T i as T i[j], it starts from 288

the top layer: T 0, progressively indexing down by 289

selecting the most similar tag in each layer: 290

T i+1 = argmax
T i[j]∈T i

sim(TQ, T
i[j]) 291

until we reach the tag for the target Meta- 292

MedGraph Gmt . We then retrieve Top Nu 293

entities based on the embedding similarity 294

between the query and the entity content: 295

Er = {e | TopNu(sim(ϕ(Q), ϕ(Ce))), e ∈ Mt}, 296

and gather all their Top ku nearest triple neighbours 297

Tri≤ku(e) as Eku
r =

{
e, Tri≤ku(e), | e ∈ Er

}
. 298

2.2.3 Bottom-up Response Refinement 299

By using all these entities and their relationships 300

Gr = {Eku
r , R(Eku

r )}, we prompt LR to an- 301

swer the question given the concatenated entity 302

names and relationships in Gr: Given QUESTION: 303

{Q}. GRAPH: {ei[na]+Rej
ei +ej [na], ...}. Answer 304

the user question: QUESTION using the graph: 305

GRAPH... as LR
Gr

. 306

In the Bottom-up Response Refinement step, we 307

then move back to the higher-level tag retrieved in 308

the previous step T i−1, in a bottom-up manner. We 309

provide LR QUESTION: {Q}, LAST RESPONSE: 310

..., and SUMMARY: {T i−1}, and ask it to Adjust 311

the response:RESPONSE of the question: QUES- 312

TION using the updated information: SUMMARY. 313

LR continues refining its responses until it reaches 314

the target layer. In practice, we retrieve 4-6 layers 315

depends on the baseline LLM, a detailed experi- 316

ment about it is shown in Fig. 5. It ultimately 317

generate a final response after scanning all indexed 318

graphs along the trajectory. This method enables 319

the LLM to gain a comprehensive overview by in- 320

teracting with all relevant data in the graph, while 321

remaining efficient by accessing less relevant data 322

in summarized form. 323

3 Experiment 324

3.1 Dataset 325

3.1.1 RAG data 326

We anticipate that users will use frequently-updated 327

private data as RAG data, such as patient electronic 328

medical records. Thus, we employ MIMIC-IV 329

(Johnson et al., 2023), a publicly available elec- 330

tronic health record dataset, as RAG data. 331
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Figure 2: Example responses from GraphRAG and MedGraphRAG, with abstracted graphs. MedGraphRAG
provides more detailed explanations and more complex reasoning with evidences. Full results are in the appendix.

3.1.2 Repository data332

We provide repository data to support LLM re-333

sponses with credible sources and authoritative vo-334

cabulary definitions. We use MedC-K (Wu et al.,335

2023), a corpus containing 4.8 million biomedical336

academic papers and 30,000 textbooks, along with337

all evidence publications from FakeHealth (Dai338

et al., 2020) and PubHealth (Kotonya and Toni,339

2020), as the upper repository data, and UMLS340

graph, which includes authoritative medical vo-341

cabularis and semantic relationships as the bottom342

repository data.343

3.1.3 Test Data344

Our test set are the test split of 9 multiple-choice345

biomedical datasets from the MultiMedQA suite,346

2 fact verification datasets about public health,347

i.e., FakeHealth (Dai et al., 2020) and PubHealth348

(Kotonya and Toni, 2020), and 1 test set we col-349

lected, called DiverseHealth. MultiMedQA in-350

cludes MedQA (Jin et al., 2021), MedMCQA (Pal351

et al., 2022) PubMedQA (Jin et al., 2019) and352

MMLU clinic topics (Hendrycks et al., 2020). We353

also collected the DiverseHealth test set, focused354

on health equity, consisting of 50 real-world clin-355

ical questions that cover a wide range of topics,356

including rare diseases, minority health, comorbidi-357

ties, drug use, alcohol, COVID-19, obesity, suicide,358

and chronic disease management. The dataset will359

be released alongside the paper. Details on dataset360

usage can be found in the appendix.361

3.2 Experiment Setting 362

We compare different RAG methods across 6 lan- 363

guage models as LR: Llama2 (13B, 70B), Llama3 364

(8B, 70B), Gemini-pro, and GPT-4. The Llama 365

models were obtained from their official Hugging- 366

Face page. We used gemini-1.0-pro for Gemini- 367

pro and gpt-4-0613 for GPT-4. We primarily com- 368

pare our approach with standard RAG implemented 369

by LangChain(langchain, 2024) and GraphRAG 370

(Edge et al., 2024a) implemented by Microsoft 371

Azure (microsoft, 2024). All retrieval methods 372

are compared under same RAG data and test data. 373

We deploy LG as Llama3-70B to construct the 374

graph. For text embeddings, we utilize OpenAI’s 375

text-embedding-3-large model. Model comparison 376

is performed using a 5-shot response ensemble (Li 377

et al., 2024). MedGraphRAG used U-Retrieval 378

with 4 levels on GPT-4, and 5 levels for the oth- 379

ers. In the retrieval, we picked top 60 entities with 380

their 16-hop neighbors. Unless otherwise noted, 381

all thresholds are set as 0.5. We use the same 382

query prompt for all models to generate responses. 383

Prompts are shown in the appendix. 384

3.3 Results 385

3.3.1 Multi-Choice Evaluation 386

Baselines with different retrievals First, we con- 387

ducted experiments to evaluate retrieval methods 388

on various LLM baselines, with the results shown 389

in Table 1. We compared MedGraphRAG against 390

baselines without retrieval, standard RAG, and 391
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GraphRAG. Performance is measured by the ac-392

curacy of selecting the correct option. The results393

show that MedGraphRAG significantly enhances394

LLM performance on both health fact-checking395

and medical Q&A benchmarks. Compared to base-396

lines without retrieval, MedGraphRAG achieves397

an average improvement of nearly 10% in fact-398

checking and 8% in medical Q&A. When com-399

pared to baselines using GraphRAG, it demon-400

strates an average improvement of around 8% in401

fact-checking and 5% in medical Q&A Notably,402

MedGraphRAG yields more pronounced improve-403

ments in smaller LLMs, such as Llama213B and404

Llama28B . This suggests that MedGraphRAG ef-405

fectively utilizes the models’ own reasoning capa-406

bilities while providing them with additional knowl-407

edge beyond their parameters, serving as an exter-408

nal memory for information.409

Comparing with SOTA Medical LLMs When410

applied MedGraphRAG to larger models, like411

Llama70B or GPT, it resulted in new SOTA across412

all 11 datasets. This result also outperforms in-413

tensively fine-tuning based medical large language414

models like Med-PaLM 2 (Singhal et al., 2023b)415

and Med-Gemini (Saab et al., 2024), establishing416

a new SOTA on the medical LLM leaderboard. A417

detailed comparison is shown in Fig. 6.418

Figure 3: Impact of Repository Data on RAG,
GraphRAG, and MedGraphRAG with GPT-4. Line
chart: performance with incremental data inclusion;
bar chart: performance with individual data inclusion.

3.3.2 Long-form Generation Evaluation419

Human Evaluation We conducted human evalu-420

ations of long-form model generation on the Mul-421

tiMedQA and DiverseHealth benchmarks, com-422

paring our method to SOTA models that generate423

citation-backed responses, including Inline Search424

in (Gao et al., 2023b), ATTR-FIRST (Slobodkin425

et al., 2024), and MIRAGE (Qi et al., 2024). Our426

evaluation panel consisted of 7 certified clinicians 427

and 5 laypersons to ensure feedback from both pro- 428

fessional and general users. Raters completed a 429

five-level rating survey for each model’s response, 430

assessing responses across five dimensions: perti- 431

nence (Pert.), correctness (Cor.), citation precision 432

(CP), citation recall (CR), and understandability 433

(Und.). Detailed background information on the 434

raters and the survey questions can be found in the 435

appendix. As shown in Table 2, MedGraphRAG 436

consistently received higher ratings across all met- 437

rics. Notably, it showed a significant advantage in 438

CP, CR and Und., indicating that its responses were 439

more often backed by accurate sources and were 440

easier to understand, even for laypersons, thanks to 441

evidence-backed responses and clear explanations 442

of complex medical terms. 443

Case Study As illustrated in Fig. 7, we com- 444

pare the responses from GraphRAG and Med- 445

GraphRAG for a complex case involving pa- 446

tients with both chronic obstructive pulmonary 447

disease (COPD) and heart failure (left plot). 448

GraphRAG suggested general COPD treatments 449

like bronchodilators and pulmonary rehabilita- 450

tion but overlooked that certain bronchodilators 451

may worsen heart failure symptoms. In contrast, 452

MedGraphRAG provided a more comprehensive 453

answer by recommending cardioselective beta- 454

blockers—such as bisoprolol or metoprolol—that 455

safely manage both conditions without adverse ef- 456

fects. As we can see from the graph abstracted, 457

this superiority stems from MedGraphRAG’s ar- 458

chitecture, where entities are directly linked to key 459

information in references, allowing retrieval of spe- 460

cific evidence. Conversely, GraphRAG struggles 461

to retrieve specific information since its reference 462

and user data are intertwined within the same layer 463

of the graph, which leads to missing key informa- 464

tion under the same number of nearest neighbors. 465

And its retrieval based purely on graph summaries 466

results in a lack of detailed insights. 467

3.4 Ablation and Analysis 468

3.4.1 Overall Ablation Study 469

We conducted a comprehensive ablation study to 470

validate the effectiveness of our proposed mod- 471

ules, with the results presented in Table 3. Starting 472

with GraphRAG (Hu et al., 2024) as the baseline, 473

we incrementally incorporated our unique compo- 474

nents, including Triple Graph Construction, and 475

U-Retrieval. Notably, both experiments were con- 476
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Table 1: Accuracy(%) of LLMs using different retrieval methods. Columns with a blue background represent
health fact-checking benchmarks, while the others correspond to medical Q&A benchmarks. The best results are
highlighted in bold.

Model
Fake

Health
Pub

Health
MedQA

Med
MCQA

Pub
MedQA

MMLU
Col-Med

MMLU
Col-Bio

MMLU
Pro-Med

MMLU
Anatomy

MMLU
Gene

MMLU
Clinic

Baselines without retrieval
Llama2-13B 53.8 49.4 42.7 37.4 68.0 60.7 69.4 60.3 52.6 66.0 63.8
Llama2-70B 58.9 56.7 43.7 35.0 74.3 64.2 84.7 75.0 62.3 74.0 71.7
Llama3-8B 51.1 53.2 59.8 57.3 75.2 61.9 78.5 70.2 68.9 83.0 74.7

Llama3-70B 64.2 61.0 72.1 65.5 77.5 72.3 92.5 86.7 72.5 83.9 82.7
Gemini-pro 60.6 63.7 59.0 54.8 69.8 69.2 88.0 77.7 66.7 75.8 76.7

GPT-4 71.4 70.9 78.2 72.6 75.3 76.7 95.3 93.8 81.3 90.4 86.2
Baselines with RAG

Llama2-13B 56.2 54.3 48.1 42.0 68.6 62.5 68.3 63.7 51.0 64.5 67.4
Llama2-70B 64.6 63.2 56.2 49.8 75.2 69.6 85.8 77.4 63.0 75.8 73.3
Llama3-8B 60.5 59.6 64.3 58.2 76.0 68.6 84.9 73.2 72.1 85.2 77.8

Llama3-70B 76.2 72.1 82.3 72.5 80.6 86.8 94.4 89.7 84.3 87.1 87.6
Gemini-pro 72.5 68.4 64.5 57.3 76.9 79.0 91.3 86.4 79.5 80.4 83.9

GPT-4 78.6 77.3 88.1 76.3 77.6 81.2 95.5 94.3 83.1 92.9 93.1
Baselines with GraphRAG

Llama2-13B 58.7 57.5 52.3 44.6 72.8 64.1 73.0 64.6 52.1 66.2 67.9
Llama2-70B 65.7 63.8 55.1 52.4 74.6 68.0 86.4 79.2 64.6 73.9 75.8
Llama3-8B 61.7 61.0 64.8 58.7 76.6 69.2 84.3 73.9 72.8 85.5 77.4

Llama3-70B 77.7 74.5 84.1 73.2 81.2 87.4 94.8 89.8 85.2 87.9 88.5
Gemini-pro 73.8 70.6 65.1 59.1 75.2 79.8 90.8 85.8 80.7 81.5 84.7

GPT-4 78.4 77.8 88.9 77.2 77.9 82.1 95.1 94.8 82.6 92.5 94.0
Baselines with MedGraphRAG

Llama2-13B 64.1 61.2 65.5 51.4 73.2 68.4 76.5 67.2 56.0 67.3 69.5
Llama2-70B 69.3 68.6 69.2 58.7 76.0 73.3 88.6 84.5 68.9 76.0 77.3
Llama3-8B 79.9 77.6 74.2 61.6 77.8 89.2 95.4 91.6 85.9 89.3 89.7

Llama3-70B 81.2 79.2 88.4 79.1 83.8 91.4 96.5 93.2 89.8 91.0 94.1
Gemini-pro 79.2 76.4 71.8 62.0 76.2 86.3 92.9 89.7 85.0 87.1 89.3

GPT-4 86.5 83.4 91.3 81.5 83.3 91.5 98.1 95.8 93.2 98.5 96.4

Table 2: Human evaluation on MedQA and Diverse-
Health samples.

Data Methods Pert. Cor. CP CR Und.

MultiMedQA

INLINE 91 88 80 74 85
ATTR.FIRST 93 91 86 77 93

MIRAGE 95 90 84 75 91
MedGrapgRAG 97 94 92 86 95

Diverse Health

INLINE 95 84 78 71 81
ATTR.FIRST 96 91 81 78 85

MIRAGE 97 89 83 76 87
MedGrapgRAG 97 96 89 84 93

Table 3: An ablation study of MedGraphRAG, starting
from GraphRAG, evaluated using accuracy (%) on Q&A
datasets.

MedQA PubMedQA MedMCQA
GraphRAG 88.9 77.9 77.2

+Triple Graph Construction 91.1 81.8 80.9
+U-Retrieval 91.3 83.3 81.5

ducted on the same RAG dataset, eliminating data-477

related improvements. The results show a gradual478

performance improvement as more of our modules479

are added, with significant gains observed when480

replacing GraphRAG graph construction with our481

Triple Graph Construction. Additionally, by replac-482

ing the summary-based retrieval(Edge et al., 2024b)483

in GraphRAG with our U-Retrieval method, we484

achieved further improvements, setting new state-485

of-the-art results across all three benchmarks. 486

3.4.2 Detailed Ablation on Triple Linking 487

To assess the individual effects of external RAG 488

data and retrieval technologies, we conducted ex- 489

periments comparing retrieval methods: RAG, 490

GraphRAG, and MedGraphRAG under two set- 491

tings: (1) retrieving each tier of data separately (bar 492

chart in Fig. 3), and (2) incrementally adding all 493

three tiers (line chart in Fig. 3). The results show 494

that both the data and the right retrieval method 495

must work together to unlock the full potential. 496

When retrieving data by standard RAG, Med-Paper 497

data individually improves performance by less 498

than 2%, and Med-Dictionary data by less than 1%. 499

Accumulating three tier data also leads to mediocre 500

improvements. GraphRAG shows improvement in 501

retrieving individual data but has minimal gains 502

when incrementally adding more data, likely due 503

to superficiality from linking trivial entities, as dis- 504

cussed in the previous case study. In contrast, Med- 505

GraphRAG efficiently handles the additional data, 506

using its hierarchical structure to clarify relation- 507

ships and show strong improvements as more data 508

is added. With MedGraphRAG, we see significant 509

improvements of over 6% and 8% for Med-Paper 510
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and Med-Dictionary data, respectively, highlight-511

ing the importance of the retrieval method in maxi-512

mizing the impact of the data.513

3.5 Detailed Ablation on U-Retrieval514

In U-Retrieval, we set the retrieval depth to 4-5515

layers, the number of retrieval entities to 60, and516

entity neighbors to 16. These settings were de-517

termined through comprehensive trials. First, we518

examine the impact of the retrieval range, i.e. the519

number of entities and neighbors, using GPT-4 with520

MedGraphRAG on MedQA, as shown in Fig. 4.521

Our findings show that retrieving more data does522

not necessarily lead to better performance. In fact,523

more data can introduce noise and exacerbate LLM524

performance issues with long contexts. The peak525

performance occurs when the retrieval size reaches526

approximately 120 entities with 4-hop neighbors527

or 60 entities with 16-hop neighbors. The 16-hop528

neighbors setting performed slightly better, likely529

due to the robustness of graph-based linking com-530

pared to vector-similarity-based retrieval.531

As previously mentioned, there is also a trade-off532

between model accuracy and response time with533

retrieval layer increases. This relationship is ex-534

plored in Fig. 5. The figure compares the cost time535

and MedQA accuracy across retrieval depths from536

0 to 9 layers. We observe that both performance537

and response time increase as the retrieval layer538

increases initially. However, performance begins to539

degrade when retrieving more layers, as higher lay-540

ers often contain less relevant information, which541

can interfere with refining the response. The opti-542

mal retrieval depth is 4 layers for the GPT-4 model543

and 5 layers for others, which we use as the default544

setting in our experiments.545

Figure 4: The effect of retrieving different number of
entities and neighbourhoods. Performance evaluated by
GPT-4 (MedGraphRAG) on MedQA.

Figure 5: The relationship between U-retrieval level and
time cost.

4 Related Work 546

Large language models (LLMs) built on Trans- 547

former architectures have advanced rapidly, lead- 548

ing to specialized medical LLMs such as BioGPT 549

(Luo et al., 2022), PMC-LLaMA (Wu et al., 2023), 550

BioMedLM (Bolton et al., 2022), and Med-PaLM 2 551

(Singhal et al., 2023b). While many are fine-tuned 552

by large organizations, recent research has focused 553

on cost-efficient, non-fine-tuned approaches, pri- 554

marily using prompt engineering (Saab et al., 2024; 555

Wang et al., 2023; Savage et al., 2024). RAG, as 556

another non-finetuning approach, is rarely explored 557

for medical applications (Miao et al., 2024; Xiong 558

et al., 2024; Long et al., 2024) and lacks support for 559

evidence-based responses and term explanations 560

required in clinical settings. 561

RAG (Lewis et al., 2021) enables models to use 562

specific datasets without additional training, im- 563

proving response accuracy and reducing hallucina- 564

tions (Guu et al., 2020). RAG has shown strong 565

results across various tasks, including generating 566

responses with citations (Gao et al., 2023b; Slobod- 567

kin et al., 2024; Qi et al., 2024; Nakano et al., 2021; 568

Bohnet et al., 2022; Gao et al., 2023a,c; Schiman- 569

ski et al., 2024; Zhang et al., 2024). GraphRAG 570

(Hu et al., 2024) further enhances complex reason- 571

ing by constructing knowledge graphs, but lacks 572

specific design features for generating attributed 573

responses, and its application in medical special- 574

ization remains limited. 575

5 Conclusion 576

MedGraphRAG improves the reliability of medi- 577

cal response generation with its graph-based RAG 578

framework, using Triple Graph Construction and 579

U-Retrieval to enhance evidence-based, context- 580

aware responses. Future work will focus on real- 581

time data updates and validation on real-world clin- 582

ical data. 583
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6 Limitation584

Despite the strong capabilities demonstrated by585

MedGraphRAG, the graph construction step incurs586

significant computational costs. In the retrieval and587

response stage, although the costs are lower than588

graph construction, they remain higher than stan-589

dard large language model (LLM) calls, with each590

question taking around 70 seconds to process (see591

Figure 6 for details). Future efforts should explore592

methods to transfer pre-constructed graphs or ac-593

celerate the graph construction process to mitigate594

these computational costs.595

Additionally, the scale of experimental data and596

the expensive nature of graph construction make597

it challenging to conduct comprehensive compar-598

isons of hyper-parameter settings and technology599

choices. For instance, factors such as the number of600

paragraphs in the context window during document601

chunking, the use of alternative RAG datasets, and602

the impact of different prompts for graph construc-603

tion were selected empirically based on limited604

data. A more rigorous and comprehensive compar-605

ison of these factors is needed in future work to606

identify the optimal configurations that maximize607

the method’s potential.608

Finally, regarding human evaluation, while we609

made efforts to ensure diversity and expertise610

among our raters (see Appendix for details), the611

evaluation may still carry biases due to the limited612

sample size (120 questions on MultiMedQA and613

50 questions on DiverseHealth). Future research614

should include larger-scale and better-designed hu-615

man evaluations to thoroughly assess the model’s616

performance.617
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A.1 MIMIC-IV918

The Medical Information Mart for Intensive Care919

(MIMIC-IV (Johnson et al., 2023)) is governed by920

the PhysioNet Credentialed Health Data License921

1.5.0, and access is restricted to credentialed users 922

who sign the PhysioNet Credentialed Health Data 923

Use Agreement 1.5.0 (DUA). The dataset is a com- 924

prehensive, deidentified dataset derived from pa- 925

tients admitted to the emergency department or 926

an intensive care unit (ICU) at Beth Israel Dea- 927

coness Medical Center in Boston, MA. MIMIC-IV 928

includes data on over 65,000 ICU patients and over 929

200,000 emergency department patients, totaling 930

364,627 unique individuals. The dataset reflects 931

546,028 hospital admissions and 94,458 unique 932

ICU stays. The dataset was developed through a 933

three-step process of acquisition, preparation, and 934

de-identification, offering modular data organiza- 935

tion to enable the seamless integration of different 936

data sources for research purposes. 937

A.2 MedC-K 938

The MedC-K (Wu et al., 2023) corpus is a large, 939

medical-specific dataset consisting of 4.8 million 940

biomedical academic papers and 30,000 textbooks. 941

It is designed to enhance foundational language 942

models for medical applications. To adapt a 943

general-purpose language model for the medical 944

domain, a data-centric knowledge injection ap- 945

proach is employed, which focuses on introduc- 946

ing the model to medical-related terminologies and 947

definitions. This process emphasizes two key data 948

sources: biomedical papers and textbooks, ensur- 949

ing that the model is exposed to both academic 950

research and comprehensive medical knowledge. 951

A.3 FakeHealth 952

FakeHealth (Dai et al., 2020) dataset is licensed 953

under the Creative Commons Attribution 4.0 Inter- 954

national (DOI: 10.5281/zenodo.3606757), which 955

permits redistribution and reuse of the work, pro- 956

vided that the original creator is appropriately cred- 957

ited. FakeHealth consists of two datasets: Health- 958

Story and HealthRelease. Both datasets contain 959

news content, news reviews, social engagements, 960

and user networks. HealthRelease consists of 606 961

pieces of content and reviews, while HealthStory 962

contains 1,690. We did not use the social engage- 963

ment or user network data. The models were tested 964

on rating questions from the ’criteria’ section of the 965

news reviews, using the news content as RAG data, 966

or repository data specifically for MedGraphRAG. 967

The data collection process involved four steps: (1) 968

crawling reviews of news stories and releases from 969

HealthNewsReview.org, (2) including the source 970

news titles and URLs in the collected files, (3) 971
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scraping the corresponding news content, and (4)972

gathering social engagements on Twitter (tweets,973

replies, and retweets) related to the source news,974

supplemented by user network information.975

A.4 PubHealth976

The PUBHEALTH (Kotonya and Toni, 2020)977

dataset, released under the MIT license, is designed978

for explainable automated fact-checking of public979

health claims. It consists of 11,832 claims across980

various health-related topics, including biomedi-981

cal subjects (such as infectious diseases and stem982

cell research), government healthcare policies (like983

abortion, mental health, and women’s health), and984

other public health issues. Each claim is labeled985

with a veracity tag—true, false, unproven, or mix-986

ture—and accompanied by an explanation text987

that justifies the assigned label. These explana-988

tions, crafted by journalists, serve as gold standard989

judgments to support the fact-check labels. The990

claims were sourced from both fact-checking web-991

sites and news or news review websites, making992

PUBHEALTH a comprehensive resource for under-993

standing the veracity of health-related claims.994

A.5 MultiMedQA995

The MultiMedQA dataset, released under the996

Apache License 2.0, serves as a comprehen-997

sive benchmark for open question answering998

in the medical domain, combining six existing999

datasets that span professional medical exams,1000

research queries, and consumer health inquiries.1001

We used its multiple-choice question answering1002

part including MedQA, MedMCQA, PubMedQA,1003

and MMLU clinical topics. We did not use1004

the included LiveQA, MedicationQA, or Health-1005

SearchQA datasets for model testing. All datasets1006

are in English and cover a wide range of medical1007

and health-related topics.1008

A.5.1 MedQA1009

The MedQA (Jin et al., 2021) dataset, released un-1010

der the MIT license, contains questions in the style1011

of the US Medical License Exam, with each ques-1012

tion offering 4 or 5 possible answer choices. These1013

questions were sourced from the National Medi-1014

cal Board Examination in the USA. The dataset is1015

divided into a development set comprising 11,4501016

questions and a test set containing 1,273 questions.1017

It follows a multiple-choice, open-domain format,1018

where each question is accompanied by a set of1019

possible answers. MedQA serves as a valuable1020

resource for training and evaluating models in med- 1021

ical question answering. 1022

A.5.2 MedMCQA 1023

The MedMCQA dataset, released under the MIT 1024

license, is a large-scale multiple-choice question 1025

answering dataset designed to reflect real-world 1026

medical entrance exam questions. It contains 1027

over 194,000 high-quality MCQs from AIIMS and 1028

NEET PG entrance exams, covering 2,400 health- 1029

care topics across 21 medical subjects. The dataset 1030

is notable for its high topical diversity and an aver- 1031

age question length of 12.77 tokens. Available in 1032

English, the dataset is divided into a development 1033

set with 187,000 questions and a test set containing 1034

6,100 questions. The format follows a typical Q+A 1035

structure with multiple-choice, open-domain ques- 1036

tions, making it a valuable resource for medical 1037

education and AI research. 1038

A.5.3 PubMedQA 1039

The PubMedQA (Pal et al., 2022) dataset, re- 1040

leased under the MIT license, is a specialized 1041

biomedical question answering (QA) dataset de- 1042

signed to answer research questions using abstracts 1043

from PubMed. The task involves providing a 1044

yes/no/maybe answer based on the corresponding 1045

abstract. PubMedQA consists of 1,000 expert- 1046

annotated instances, 61.2k unlabeled instances, and 1047

211.3k artificially generated QA instances, mak- 1048

ing it the first QA dataset that requires reason- 1049

ing over biomedical research texts, particularly 1050

their quantitative aspects, to answer questions. Un- 1051

like open-domain tasks like MedQA and MedM- 1052

CQA, PubMedQA is a closed-domain task, where 1053

answers must be inferred from the supporting 1054

PubMed abstract context. The dataset is structured 1055

as Q+A+context in a multiple-choice format and 1056

is divided into a development set of 500 instances 1057

and a test set of 500 instances. 1058

A.5.4 MMLU clinic topics 1059

The MMLU clinic topics dataset (Hendrycks et al., 1060

2020), released under the MIT license, follows a 1061

multiple-choice question answering format (Q + A) 1062

and is designed for open-domain tasks. It includes 1063

a development set of 29 questions and a test set con- 1064

taining 265 questions. This structure allows for the 1065

evaluation of models in an open-domain context 1066

where a variety of potential answers are consid- 1067

ered, making it a valuable resource for research in 1068

question answering. 1069
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A.6 DiverseHealth1070

The DiverseHealth test set is a carefully curated1071

dataset we collected to advance health equity by1072

capturing a broad and inclusive range of clinical1073

scenarios. Sourced from real users through a pri-1074

vate telehealth application, the dataset consists of1075

50 real-world clinical questions. These questions,1076

voluntarily provided by patients who signed ex-1077

plicit consent to share their inquiries, reflect gen-1078

uine healthcare concerns, with all personal identifi-1079

cation removed to ensure privacy and confidential-1080

ity. The telehealth platform, used predominantly1081

by underserved and diverse populations, offers a1082

unique opportunity to collect a wide spectrum of1083

medical questions that highlight the challenges1084

faced by individuals across various socioeconomic1085

and demographic backgrounds.1086

Each question in the DiverseHealth test set ad-1087

dresses critical aspects of healthcare that are often1088

underrepresented in traditional datasets. Topics in-1089

clude rare diseases that disproportionately affect1090

minority populations, the complexities of manag-1091

ing multiple comorbidities, and issues related to1092

drug and alcohol use. Mental health questions,1093

such as those concerning suicide prevention, offer1094

valuable insights into the mental health struggles1095

experienced by various communities. The dataset1096

also includes questions related to emerging pub-1097

lic health crises like COVID-19, focusing on its1098

disproportionate impact on marginalized groups,1099

as well as long-standing health concerns such as1100

obesity and chronic disease management.1101

The combination of real-world clinical questions1102

and the diversity of topics ensures that the Diverse-1103

Health test set serves as a powerful tool for devel-1104

oping AI-driven healthcare solutions. By focusing1105

on the real concerns of diverse patient populations,1106

this dataset is crucial for improving the inclusiv-1107

ity of AI models, ensuring they perform effectively1108

across different demographic groups and healthcare1109

environments. Ultimately, the DiverseHealth test1110

set aims to address health disparities, helping re-1111

searchers build AI systems that contribute to more1112

equitable healthcare outcomes for all.1113

B Detailed Implementation1114

In the semantic document chunking process, we1115

apply proposition transfer (Chen et al., 2023) to1116

each paragraph before semantic validation to ex-1117

tract standalone statements that are self-contained1118

and unambiguous (e.g., transforming "It prevents1119

respiratory disease" to "Remdesivir prevents res- 1120

piratory disease"). Through proposition transfer, 1121

each paragraph is transformed into independent, 1122

clear statements. For semantic validation, we uti- 1123

lize an LLM to first generate a short summary and 1124

a title for the current chunk. The LLM then de- 1125

termines if the current paragraph belongs to this 1126

chunk based on the title and summary. If it belongs, 1127

the LLM updates the title and summary accord- 1128

ingly. If not, the current chunk is finalized, and the 1129

LLM generates a title and summary for the new 1130

paragraph, treating it as the start of a new chunk. 1131

(the prompts of this process are all in the Sec. D.1). 1132

If the scan reaches the end of the document, the 1133

current chunk is automatically finalized to ensure 1134

no chunk spans across multiple documents. 1135

In the entity extraction, we include unique IDs 1136

to trace their source document. In practice, for the 1137

user privacy data, we generate a universally unique 1138

identifier (UUID) for each document as their IDs. 1139

For the medical papers and books, we use their Dig- 1140

ital object identifier (DOI) as their IDs, and for the 1141

medical dictionaries, we use their UMLS Concept 1142

Unique Identifiers (CUI) as their IDs. This identi- 1143

fier is crucial for retrieving information from the 1144

source, enabling the generation of evidence-based 1145

responses later. For tag-based summary generation 1146

and merging, we insert ten tags into the prompt at 1147

a time to iteratively generate the response. 1148

All experiments except GraphRAG related are 1149

run on Google Cloud Platform with GCP a3- 1150

megagpu-8g Accelerator Optimized: 8 NVIDIA 1151

H100 GPU, 208 vCPUs, 1872GB RAM, 16 local 1152

SSD servers. GraphRAG related experiments are 1153

run on Microsoft Azure Standard-ND96isr-H100- 1154

v5 machines by Microsoft’s default implementa- 1155

tion. We process different documents in parallel for 1156

document chunking and then parallelize the con- 1157

struction of the Med-MetaGraph over each data 1158

chunk. All graphs are stored and organized in 1159

Neo4j. Detailed statistic information about the con- 1160

structed Med Report Graph and Med Paper Graph 1161

is shown in Tab. 4. The UMLS graph is directly 1162

deployed in its existing natural graph structure.

Table 4: Statistic information of Med Report Graph
(RAG Graph) and Med Paper Graph (top tier of reposi-
tory graph), including the number of Med-MetaGraphs,
average nodes in each Med-MetaGraph, and average
degrees of each Med-MetaGraph.

Med Report Graph Med Paper Graph
MetaGraph Num. Ave. Nodes Ave. Degrees MetaGraph Num. Ave. Nodes Ave. Degrees

2,978,245 72.7 3.1 41,321,588 91.2 3.7

14



For testing the models on MultiMedQA, we eval-1163

uate their zero-shot performance using only the1164

test set of each dataset, without utilizing the train-1165

ing data for fine-tuning or including it in the RAG1166

data for retrieval. For evaluating accuracy on Fake-1167

Health, we incorporate its news content into the1168

Medical-Papers-tier graph of MedGraphRAG and1169

into RAG data of the others, then use the criteria1170

questions from the news content to prompt the mod-1171

els to respond with ’Satisfactory’ or ’Not Satisfac-1172

tory.’ For PubHealth, we integrate its news/reviews1173

into Medical-Papers-tier graph of MedGraphRAG1174

and into RAG data of the others, and prompt the1175

models to classify each claim as ’True,’ ’False,’1176

’Unproven,’ or a ’Mixture.’1177

C Additional Results and Analysis1178

C.1 Compare to SOTA Medical LLM Models1179

We also evaluated MedGraphRAG against a range1180

of previous SOTA medical large language models1181

on these benchmarks, including both intensively1182

fine-tuned models (Gu et al., 2022)(Yasunaga1183

et al., 2022a)(Yasunaga et al., 2022b)(Bolton1184

et al., 2022)(Singhal et al., 2022)(Singhal et al.,1185

2023a)(Wu et al., 2023) and non-fine-tuned mod-1186

els (Nori et al., 2023)(OpenAI, 2023b)(OpenAI,1187

2023a)(Saab et al., 2024). The results, depicted1188

in Fig. 6, show that when combined with GPT-4,1189

our MedGraphRAG surpasses the previous SOTA1190

model, Medprompt (Nori et al., 2023), by a no-1191

table 1.1% on the MedQA benchmark, and also1192

outperforms it across all 9 datasets, establishing1193

a new SOTA on the medical LLM leaderboard.1194

It’s important to note that while Medprompt re-1195

trieves training data with similar questions and1196

correct answers as examples for prompting, our1197

model operates with a simple prompt containing1198

only the original question. This improvement fur-1199

ther demonstrates MedGraphRAG’s superior capa-1200

bility, even when retrieving from data with a dif-1201

ferent distribution. Furthermore, when compared1202

to intensive fine-tuning methods on these medi-1203

cal datasets, MedGraphRAG outperforms strong1204

models like Med-PaLM 2 (Singhal et al., 2023b)1205

and Med-Gemini (Saab et al., 2024), establishing a1206

new SOTA. This superior performance highlights1207

MedGraphRAG’s ability to efficiently leverage the1208

inherent capabilities of LLMs and enhance their1209

performance with additional data, without the need1210

for fine-tuning.1211

C.2 Case study: GPT4 with and without 1212

MedGraphRAG 1213

As shown in Fig. 7, we compare the responses 1214

generated by vanilla GPT-4 and MedGraphRAG 1215

for a misleading case where a patient presents with 1216

symptoms commonly associated with Alzheimer’s 1217

but is actually Vascular Dementia. GPT-4 was 1218

misled, returning an incorrect diagnosis. In con- 1219

trast, MedGraphRAG notes the details like that the 1220

MRI showed moderate vascular changes and white 1221

matter lesions, which are indicative of chronic 1222

ischemic damage—typical of vascular dementia 1223

rather than Alzheimer’s, through retrieving the 1224

findings in (Smith and Beaudin, 2018), "CBF and 1225

WMH that...causing ical impairments,". With de- 1226

tailed definitions of medical terms and source 1227

knowledge retrieved to assist the reasoning pro- 1228

cess, MedGraphRAG chose the correct answer and 1229

provided a detailed, easily understandable expla- 1230

nation with citation, enabling users to verify the 1231

response. 1232

C.3 Case study: Long-form generation of 1233

MedGraphRAG 1234

We provided four examples of MedGraphRAG 1235

Long-form response generation. We include the 1236

diverse cases across Comorbidity Fig. 8, 9, Rare 1237

Disease Fig. 10,11, Minority Health Fig. 12,13, 1238

and Chornic Disease Managment Fig. 14,15. We 1239

can see the unique responses provided by Med- 1240

GraphRAG combining citations with clear term 1241

explanations in medical responses ensures both 1242

credibility and understanding. Citations provide 1243

a foundation of evidence, reassuring patients and 1244

professionals that recommendations are grounded 1245

in research. For example, in the hormone replace- 1246

ment therapy answer, the association between HRT 1247

and increased risks of cardiovascular events and 1248

thromboembolic complications is backed by "Dhe- 1249

jne et al., 2011," which provides long-term follow- 1250

up data on health outcomes in transgender individ- 1251

uals undergoing hormone therapy. This level of 1252

transparency is particularly important in healthcare, 1253

where trust is critical for patient compliance and 1254

effective care. 1255

Clear term explanations help bridge the gap for 1256

those who might struggle with medical jargon. By 1257

explaining complex terms like cardioselective beta- 1258

blockers or hypoglycemia in simple language, pa- 1259

tients better understand their condition and the ra- 1260

tionale behind their treatment. This not only em- 1261
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Figure 6: Compare to SOTA Medical LLM Models on MedQA benchmark.

powers them but also helps in preventing misunder-1262

standings that could lead to improper management1263

of their health. Altogether, using citations for ev-1264

idence and plain language for explanation strikes1265

the right balance between trust, safety, and accessi-1266

bility in medical communication.1267

C.4 Case study: Abstracted Graph1268

comparison between GraphRAG and1269

MedGraphRAG1270

We conducted a closer examination of the ab-1271

stracted graphs of GraphRAG (Fig. 16 a) and Med-1272

GraphRAG (Fig. 16 b) for the case study shown in1273

the left plot of Fig. 7. By abstracting similar near-1274

est neighbors of the retrieved entities (COPD and1275

Heart Failure), we observed that MedGraphRAG1276

accessed more detailed and specific entities, such as1277

beta-1 receptors and Cardioselective Beta-Blockers,1278

by linking to relevant references. While these enti-1279

ties are also present in the GraphRAG graph, they1280

were not retrieved under the same number of near-1281

est neighbors due to their indirect linkage with the1282

retrieved entities. GraphRAG lacks a hierarchical1283

graph that directly links these entities through an1284

"is reference of" relationship, leading them to be1285

overshadowed by more general neighbors at the1286

same tier, ultimately missing retrieval.1287

Moreover, MedGraphRAG’s approach to linking1288

Heart Failure with Cardioselective Beta-Blockers1289

enables further connections through beta-1 recep-1290

tors in the second-tier graph, eventually linking1291

back to Non-selective Beta-Blockers. It helps to1292

link Heart Failure and Non-selective Beta-Blockers 1293

as neighbors in the first-tier graph relationship link- 1294

ing stage, which significantly enhances the LLM’s 1295

ability to generate specific and accurate responses. 1296

Such an observation demonstrates the importance 1297

of including triple linking relationships when con- 1298

structing the first-tier graph. MedGraphRAG lever- 1299

ages this unique design to build a more detailed 1300

and professional knowledge graph, resulting in bet- 1301

ter entity retrieval and richer context for accurate 1302

generation. 1303

D Prompt used in the paper 1304

D.1 Document Chunking 1305

In document chunking, we used a FIFO semantic 1306

chunking method. We will first prompt LLM to 1307

generate a title and a summary of the current chunk 1308

using prompt template Fig. 17, for the current 1309

paragraph, we let LLM to determine if it should 1310

be include into this chunk based on the chunk title 1311

and summary using prompt template Fig. 18. If 1312

the paragraph is considered to be included in the 1313

chunk, then we will update the current chunk title 1314

and summary based on the prompt template Fig. 1315

19. 1316

D.2 Entity Extraction 1317

We extract the entities from the chunk by prompt 1318

template Fig. 20. 1319
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D.3 Relationship Generation1320

We generate the relationship among entities by1321

prompt template Fig. 21 and Fig. 22.1322

D.4 tag-summary generation1323

We use prompt template Fig. 23 and Fig. 24 to1324

generate tag-summary for the graphs and queries.1325

The predefined Medical Tags are in D.5.1326

D.5 Medical Tags1327

ANATOMICAL_STRUCTURE1328

Complex parts of the human body such as1329

cells, organs, and systems.1330

SYMPTOM1331

Any subjective evidence of disease or physical1332

disturbance as reported by the patient, e.g.,1333

“cough”, “fatigue”, “nausea”.1334

BODY_PART1335

Specific part of the body, e.g., “hand”, “liver”,1336

“spinal cord”.1337

PHYSIOLOGICAL_PROCESS1338

The normal biological process in the body,1339

e.g., “digestion”, “circulation”.1340

HEALTH_STATUS1341

General status of health or well-being, e.g.,1342

“healthy”, “at risk”, “critical”.1343

MEDICAL_CONDITION1344

Any medical problem or condition, e.g., “hy-1345

pertension”, “asthma”.1346

DISEASE_STAGE1347

The progression or stage of a disease, e.g.,1348

“Stage IV cancer”, “early onset”.1349

CAUSE_OF_ILLNESS1350

A cause or contributing factor to a condition,1351

e.g., “infection”, “genetic predisposition”.1352

RISK_FACTOR1353

Any factor that increases the likelihood of de-1354

veloping a disease, e.g., “smoking”, “family1355

history”.1356

PROGNOSIS1357

Expected outcome or forecast of the progres-1358

sion of a medical condition, e.g., “full recov-1359

ery”, “chronic”.1360

VITAL_SIGN1361

Specific vital signs measured in a clinical set-1362

ting, e.g., “heart rate”, “blood pressure”.1363

DIAGNOSTIC_TEST 1364

Tests conducted for diagnosis purposes, e.g., 1365

“blood test”, “CT scan”. 1366

TREATMENT_PLAN 1367

A general plan for treating a medical con- 1368

dition, e.g., “chemotherapy”, “physical ther- 1369

apy”. 1370

RECOVERY 1371

Information regarding the recovery process, 1372

e.g., “rehabilitation needed”, “recovery period 1373

of 2 weeks”. 1374

PREVENTIVE_MEASURE 1375

Any action taken to prevent disease, e.g., “vac- 1376

cination”, “diet changes”. 1377

SYMPTOM_SEVERITY 1378

The intensity of a symptom, e.g., “mild”, “se- 1379

vere”, “moderate”. 1380

CONTRAINDICATION 1381

A condition or factor that serves as a reason 1382

to withhold a certain medical treatment, e.g., 1383

“contraindicated in pregnancy”. 1384

ALLERGY 1385

Known allergies, e.g., “allergy to penicillin”, 1386

“seasonal allergy”. 1387

BODY_FUNCTION 1388

A function or activity carried out by the human 1389

body, e.g., “heart rate”, “respiration”. 1390

BODY_FUNCTION_RESULT 1391

The result or condition of a body function, 1392

e.g., “impaired”, “normal”. 1393

BODY_MEASUREMENT 1394

A quantifiable measurement of body function, 1395

such as vital signs obtained via basic instru- 1396

ments, e.g., “temperature”, “blood pressure”. 1397

BODY_MEASUREMENT_RESULT 1398

The specific value of a body measurement. 1399

BODY_MEASUREMENT_UNIT 1400

The unit for body measurements, e.g., “bpm”, 1401

“mmHg”. 1402

LAB_TEST 1403

A diagnostic examination performed on a bod- 1404

ily sample, e.g., blood test, urine test. 1405

17



LAB_RESULT1406

A qualitative description of laboratory data,1407

e.g., “positive”, “negative”, “elevated”.1408

LAB_VALUE1409

The numerical value obtained from lab testing.1410

LAB_UNIT1411

The unit of measurement for the lab value.1412

MEDICATION1413

Drugs or treatments prescribed for prevention1414

or cure, e.g., “aspirin”, “insulin”.1415

MED_DOSE1416

The amount of medication prescribed at one1417

time.1418

MED_FREQUENCY1419

The frequency at which a medication is taken,1420

e.g., “twice a day”.1421

MED_ROUTE1422

The mode of administration of a medication,1423

e.g., “oral”, “intravenous”.1424

MED_DURATION1425

The length of time a medication is to be taken.1426

MED_STATUS1427

The status of a medication regimen, such as1428

“start”, “stop”, “continue”.1429

MED_STRENGTH1430

The concentration of the active ingredient in a1431

medication.1432

MED_FORM1433

The form in which the medication is given,1434

e.g., “tablet”, “liquid”.1435

MEDICAL_CONDITION1436

Includes diseases, findings, and symptoms.1437

PROCEDURE1438

Diagnostic or treatment procedure carried out1439

on a patient, e.g., “MRI”, “surgery”.1440

PROCEDURE_RESULT1441

The outcome or findings of a procedure.1442

PROCEDURE_METHOD1443

Specific method or approach used during a1444

procedure.1445

SEVERITY1446

Level of intensity or seriousness of a medical1447

condition.1448

PATIENT_HISTORY 1449

Description of past medical conditions, treat- 1450

ments, and procedures, e.g., “history of hyper- 1451

tension”. 1452

FAMILY_HISTORY 1453

Medical conditions and diseases present in the 1454

patient’s family, e.g., “mother had diabetes”. 1455

LIFESTYLE_FACTORS 1456

Relevant lifestyle details, e.g., “smoker for 10 1457

years”, “alcohol consumption”. 1458

ALLERGIES 1459

Known allergies, e.g., “penicillin allergy”, 1460

“peanut allergy”. 1461

TUMOR_DIMENSIONS 1462

Measurements describing the size of a tumor 1463

or mass. 1464

GENE_STUDIED 1465

Genes linked to tumor formation, e.g., 1466

“BRCA1”. 1467

HISTOLOGICAL_GRADE 1468

The grade assigned to the appearance of can- 1469

cerous cells. 1470

RADIATION_DOSAGE 1471

Amount of radiation used in cancer treatment. 1472

CLINICAL_STATUS 1473

Cancer status, e.g., “active”, “in remission”. 1474

AGE 1475

Age or life stage descriptor, e.g., “elderly”, 1476

“30 years old”. 1477

FAMILY_STRUCTURE 1478

Describes the patient’s family context or rela- 1479

tionships, e.g., “married with two kids”. 1480

LIVING_SITUATION 1481

Details about a patient’s living arrangements, 1482

e.g., “lives alone”, “has a caregiver”. 1483

SOCIAL_IDENTITY 1484

Patient’s identity, including ethnicity, religion, 1485

nationality, e.g., “Hispanic”, “Catholic”. 1486

OCCUPATION 1487

Information regarding the patient’s employ- 1488

ment status or history, e.g., “retired”, “con- 1489

struction worker”. 1490
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PERSON_NAME1491

Names or titles used to identify individuals.1492

ORGANIZATION_NAME1493

Names of organizations involved in patient1494

care.1495

CONTACT_INFORMATION1496

Includes phone numbers, emails, URLs, ZIP1497

codes.1498

GENERIC_ID1499

Identifiers such as medical record numbers,1500

social security numbers.1501

D.6 Tag-Summary generation1502

We use prompt template Fig. 25, 26 to merge Tag1503

summaries.1504

D.7 Response user query1505

The prompt template for generating the response1506

with the retrieved Med-MetaGraph is shown in Fig.1507

27. The prompt template to revise the response1508

based on the tag-summary is shown in Fig. 28.1509

E Details of Human Evaluation1510

E.1 Physician Answers1511

In the rating process, physicians were given unlim-1512

ited time to return their responses and were allowed1513

to use reference materials. They were instructed1514

to tailor their answers to a layperson with average1515

reading comprehension. The tasks were not tied to1516

a specific clinical context or setting.1517

E.2 Physician and lay-person raters1518

Human evaluations were conducted by both physi-1519

cian and layperson raters. The physician raters1520

included seven individuals: two from the US, three1521

from China, and two from Singapore. Their spe-1522

cialties spanned ophthalmology, internal medicine,1523

oncology, cardiology, gender dysphoria, epidemi-1524

ology, and surgery. The layperson raters consisted1525

of five individuals (three female, two male, aged1526

22-51) based in the US, all without a medical back-1527

ground. Their educational backgrounds included1528

two with high school diplomas, two with graduate1529

degrees, and one with postgraduate experience.1530

E.3 Individual evaluation of long-form1531

answers1532

Raters were blinded to the source of each answer1533

and conducted their evaluations independently,1534

without consulting one another. The experiments 1535

are conducted on 120 questions randomly sampled 1536

from the MultiMedQA dataset and all 50 questions 1537

of DiverseHealth dataset. In all new rating experi- 1538

ments, each response was evaluated by all 12 raters. 1539

Inter-rater reliability analysis showed very good 1540

agreement (κ > 0.8) among raters for the Multi- 1541

MedQA answers, and good agreement (κ > 0.6) for 1542

the DiverseHealth dataset, including assessments 1543

on whether answers lacked important citations or 1544

contained unrelated citation information. 1545

E.4 Survey Questions 1546

For each response generated by the models being 1547

evaluated, please rate the response based on the 1548

following dimensions. Provide your rating on a 1549

scale of 1 to 5, where 1 is the lowest and 5 is 1550

the highest. Additionally, provide comments if 1551

necessary. 1552

1. Pertinence (Pert.) 1553

• How relevant is the response to the given 1554

medical query? 1555

• Rating Scale: 1 (Not Relevant) to 5 1556

(Highly Relevant) 1557

• Optional Comment: What aspects of 1558

the response made it relevant or irrele- 1559

vant? 1560

2. Correctness (Cor.) 1561

• How accurate is the information pro- 1562

vided in the response? 1563

• Rating Scale: 1 (Incorrect) to 5 (Com- 1564

pletely Accurate) 1565

• Optional Comment: Identify any spe- 1566

cific inaccuracies or issues in the re- 1567

sponse. 1568

3. Citation Precision (CP) 1569

• How well does the provided citation sup- 1570

port the statements made in the response? 1571

• Rating Scale: 1 (Not at All Supported) 1572

to 5 (Fully Supported) 1573

• Optional Comment: Are there any in- 1574

stances where the citation does not ade- 1575

quately support the statement? 1576

4. Citation Recall (CR) 1577

• Does every important claim or medical 1578

statement have a corresponding citation 1579

to support it? 1580
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• Rating Scale: 1 (Many Claims Lack Ci-1581

tations) to 5 (All Claims are Supported1582

by Citations)1583

• Optional Comment: Are there any1584

claims made without proper citations that1585

should be addressed?1586

5. Understandability (Und.)1587

• How easy is it to understand the response,1588

given the medical content?1589

• Rating Scale: 1 (Difficult to Understand)1590

to 5 (Very Easy to Understand)1591

• Optional Comment: If any part of the1592

response was unclear, what made it diffi-1593

cult to understand?1594

Rating Scale Definitions (1-5)1595

1. 1: Very poor – lacks relevance, accuracy,1596

proper citations, or clarity.1597

2. 2: Poor – has significant shortcomings in one1598

or more areas.1599

3. 3: Fair – some issues are present, but the re-1600

sponse is generally acceptable.1601

4. 4: Good – response meets most expectations,1602

with minor issues.1603

5. 5: Excellent – fully meets expectations, with1604

no significant issues.1605

F Boarder Impact1606

Our MedGraphRAG enhances LLMs by provid-1607

ing intrinsic source citations, significantly improv-1608

ing transparency, interpretability, and verifiability.1609

This tool ensures that each response generated by1610

the LLM is accompanied by provenance or source1611

grounding information, clearly demonstrating that1612

answers are rooted in the dataset. The availability1613

of cited sources for each assertion allows users, es-1614

pecially in the critical field of medicine, to swiftly1615

and accurately audit the LLM’s output against the1616

original source material. This feature is crucial1617

where (a) a trustworthy relationship -based on trans-1618

parency of reasoning, needs to exist between hu-1619

man experts and LLM agents and (b) where the1620

security/privacy of the information shared with1621

the agent is mission critical. By employing this1622

method, we have developed an Evidence-based1623

Medical LLM. Clinicians can easily verify the1624

source of the reasoning and adjust the model’s re- 1625

sponses, ensuring the safe use of LLMs in clinical 1626

scenarios. 1627

1628
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Figure 7: Example case shows MedGraphRAG generating evidence-based responses with grounded citations and
terminology explanations.
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Figure 8: MedGraphRAG long-form generation response on Comorbidity example-part1.
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Figure 9: MedGraphRAG long-form generation response on Comorbidity example-part2.
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Figure 10: MedGraphRAG long-form generation response on Minority Health example-part1.
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Figure 11: MedGraphRAG long-form generation response on Minority Health example-part2.
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Figure 12: MedGraphRAG long-form generation response on Rare Disease example1.
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Figure 13: MedGraphRAG long-form generation response on Rare Disease example-part2.
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Figure 14: MedGraphRAG long-form generation response on Chornic Disease Managment example-part1.
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Figure 15: MedGraphRAG long-form generation response on Chornic Disease Managment example-part2.
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Figure 16: The comparison of abstracted graph between
GraphRAG and MedGraphRAG.
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Figure 17: Prompt to generate chunk outline.
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Figure 18: Prompt to determine whether the given paragraph should be included in the chunk.
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Figure 19: Prompt to update the chunk outline based on the new paragraph.
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Figure 20: Entity extraction prompt.
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Figure 21: Relationship generation prompt-part1.
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Figure 22: Relationship generation prompt-part2.
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Figure 23: tag-summary generation prompt for the graphs.

Figure 24: tag-summary generation prompt for the queries.
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Figure 25: tag-summary merge prompt, part-1.
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Figure 26: tag-summary merge prompt, part-2.
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Figure 27: Prompt to response based on retrieved graph.
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Figure 28: Prompt to revise the response based on tag-summary.
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