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ABSTRACT

Image restoration is a classic computer vision problem that involves estimating
high-quality (HQ) images from low-quality (LQ) ones. To compensate the informa-
tion loss in the degradation process, prior knowledge of HQ image is indispensable.
While deep neural networks (DNNs), especially Transformers for image restora-
tion, have seen significant advancements in recent years, challenges still remain,
particularly in the explicit incorporation of external priors, managing computational
complexity, and tailoring generalized external priors to image specifics. To address
these issues, we propose to enhance Transformer with Adaptive Token Dictionary
(ATD), leading to a novel architecture which introduces a token dictionary to
explicitly model external prior in the attention mechanism. The proposed ATD
calculates the attention between the input features and the token dictionary, which
integrates similar features on a global scale. Furthermore, we propose an adaptive
dictionary refinement mechanism (ADR) to progressively customize the shared
tokens to image specifics from shallow to deep layers. Crucially, benefiting from
the condensed token dictionary, the computational complexity of the new attention
mechanism is reduced from quadratic to linear with respect to the number of image
tokens. This efficiency makes our network notably advantageous in constrained
settings. Experimental results show that our method achieves best performance on
various image restoration benchmark.

1 INTRODUCTION

The task of image restoration (IR) aims to recover clean high-quality (HQ) images from a solitary
degraded low-quality (LQ) image or a sequence of such images, including image super-resolution,
image denoising and JPEG compression artifact reduction. Since each LQ image may correspond to
an infinite number of possible HQ images, image restoration is a classic ill-posed and challenging
problem in the fields of computer vision and image processing. This practice is significant as it
transcends the resolution and accuracy limitations of cost-effective sensors and enhances images
produced by outdated equipment. The inherent information loss during the degradation process
necessitates the incorporation of prior knowledge, specifically external and internal image priors, to
supplement information for HQ image estimation. External priors refer to the generalized knowledge
extracted from training datasets, whereas internal priors denote the image-specific information derived
from the input image itself (Wang et al., 2015). The utilization and interplay of these external and
internal image priors present numerous intriguing challenges and opportunities for exploration within
the field.

In earlier research, various models such as Markov random field (He & Siu, 2011) and Dictionary
Learning methods (Yang et al., 2010), were exploited to extract external priors explicitly from training
datasets in a generative manner. The swift advancement of deep learning technologies in recent years
has catalyzed an exponential increase in the application of deep neural network (DNN) models for
image restoration. Pioneered by SRCNN (Dong et al., 2015) and DnCNN (Zhang et al., 2017a),
convolutional neural network (CNN) based image restoration methods have emerged (Kim et al., 2016;
Lim et al., 2017; Zhang et al., 2018a; Dai et al., 2020; Zhang et al., 2021). These methods directly
learn the LQ-to-HQ mapping function with CNNs in a discriminative manner and implicitly embeds
external prior knowledge of HQ image in the learned mapping functions. Recently, another family of
DNNs, i.e., Transformer-based image restoration networks have demonstrated their superiority to
CNN-based networks, primarily by utilizing self-attention between image tokens to model internal
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image priors (Liang et al., 2021; Chen et al., 2023; Li et al., 2023). Yet, how to explicitly embed
external priors in DNN-based solutions for image restoration remains to be answered.

The second highly related issue about modelling internal image priors with Transformer-based
networks is the computational complexity. The size of receptive field in vision transformers plays a
critical role in capturing internal prior across an extensive range of patches (Liu et al., 2021; 2022).
Despite achievements in image partitioning for self-attention, it continues to grapple with escalating
computational complexity, growing quadratically with the number of input tokens and quadruply
with the window size, which becomes particularly evident with increased sizes (Chen et al., 2023).

Moreover, although external priors offer a broad understanding of various image characteristics and
patterns, each image possesses unique features and nuances that cannot be fully captured by these
generalized external priors. By tailoring these priors to the specifics of the individual image, the
network can better understand and leverage the unique properties of that image, enhancing the quality
and accuracy of the resultant HR image. This adaptive approach allows for a more personalized and
precise image reconstruction.

In summary, we try to address the following three research questions in this paper:

1. What methods can be employed to explicitly integrate external image priors into Transformer-based
networks?

2. How can we reduce the computational complexity of Transformer-based networks while effectively
modeling internal image priors for image restoration?

3. How can we tailor the incorporated external image prior to specific image characteristics?

Our solution is inspired by the classical dictionary learning methods, which models image prior
with learned dictionary items. We propose to learn and adapt a token dictionary which seamlessly
solves the three research questions. First of all, the external prior of the entire training dataset is
condensed into the token dictionary during the training process. To exploit the external prior of
token dictionary, we then implement an attention operation to select relevant dictionary keys and
reconstruct enhanced features with their corresponding value tokens. Secondly, the complexity of the
above token dictionary attention mechanism (Vaswani et al., 2017) is notably reduced to linear in
relation to the number of image tokens. This allows us to efficiently apply the attention mechanism to
enhance all the tokens in the image. Thirdly, we propose a refining strategy to adaptively fit the public
dictionary to specific testing image. Specifically, the the attention map between token dictionary
and image tokens encapsulates the similarity relationship between image tokens and the dictionary.
By recurrently weighting the enhanced token with previous attention map, we can refine the public
token dictionary based on the enhanced local structures of the input image. When combined with the
original Swin Multi-head Self-Attention (SW-MSA) block (Liu et al., 2021; Liang et al., 2021), our
proposed Adaptive Token Dictionary Cross-Attention (ATDCA) block enables the proposed network
to balance use of internal and external image prior effectively.

Our contributions can be summarized as follows:

• We introduce a token dictionary learning method that incorporates external prior from the training
dataset to augment the internal prior of existing self-attention-based IR approaches.

• We put forward a cross-block refining strategy that adaptively tailors the learned public token
dictionary to a specific input image during the testing phase, enhancing IR results.

• By combining the proposed adaptive token dictionary attention with Swin self-attention, we achieve
a balanced use of internal and external priors. This proposed method offers an improved balance
between accuracy and computational load compared with the current state-of-the-art.

2 RELATED WORKS

DNN-based Image Restoration. SRCNN (Dong et al., 2015) was the first to use deep learning for
single image super-resolution with a simple 3-layer neural network. DnCNN (Zhang et al., 2017a) is
a pioneering work in image denoising. Since its development, many other works (Kim et al., 2016;
Lim et al., 2017; Zhang et al., 2018a; 2019; Dai et al., 2020; Niu et al., 2020; Mei et al., 2021; Zhang
et al., 2021) have explored a vast range of structures to boost performance. Among them, EDSR (Lim
et al., 2017) and RDN (Zhang et al., 2018b) introduced new residual blocks with detailed connection
designs, enhancing the capabilities of convolutional neural networks further.
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With the quick growth of Transformer (Vaswani et al., 2017) in NLP, several works have enhanced
performance using attention mechanisms. Since ViT (Dosovitskiy et al., 2020) and its variants (Liu
et al., 2021; Chu et al., 2021; Wang et al., 2022) have shown the effectiveness of pure Transformer-
based models in image classification, more works are exploring the potential of Transformer-based
networks (Liang et al., 2021; Zamir et al., 2022; Zhang et al., 2023; Chen et al., 2023; Li et al., 2023)
in image restoration, showing their superiority to CNN-based methods. These studies investigated
a range of techniques to enhance the performance of image restoration transformers. The explored
methods include window self-attention (Liang et al., 2021), channel self-attention (Zamir et al., 2022),
and anchored self-attention (Li et al., 2023), among others. Additionally, pretraining on extensive
datasets (Li et al., 2021), employing sparse attention (Zhang et al., 2023), and utilizing large window
sizes (Chen et al., 2023) were strategies used to further boost performance.

External Prior and Internal Prior Modeling. Image restoration is an ill-posed problem due to
information loss during the degradation process. Additional knowledge is needed to compensate for
the information loss. In earlier studies, some methods were proposed to estimate the HQ image using
the Bayesian framework. But in the past two decades, most image restoration methods learn the LQ
to HQ mapping directly, embedding the prior of HQ image in the learned mapping functions.

Traditionally, two types of prior have been used for image restoration (Wang et al., 2015). One
approach learns an external prior from a universal set of training data to predict the missing
information for the HR image. Various functions, including local regression models (Timofte et al.,
2015), coupled dictionary learning models (Yang et al., 2010), and deep neural networks (Dong
et al., 2015), have been used to capture the external prior implicitly. Another approach searches for
example patches from the input image itself to use the image’s internal prior of cross-scale non-local
self-similarity (Freedman & Fattal, 2011; Glasner et al., 2009; Shocher et al., 2018), providing
relevant but limited references.

Recently, besides using internal prior for mapping function learning, researchers also proposed using
internal prior by designing specific network architectures. The non-local layer (Wang et al., 2018)
in CNNs benefits from the non-local prior of natural images. The self-attention block (Dosovitskiy
et al., 2020) uses similarity between input tokens to combine input token features effectively. Both
the non-local block (Zhang et al., 2019) and the self-attention block (Liang et al., 2021) enhance
CNNs or MLPs for image restoration by balancing the use of external and internal priors.

This paper reveals that the self-attention block in Vision Transformer (Dosovitskiy et al., 2020) can
also effectively model external prior. Inspired by conventional dictionary learning approaches, we
introduce token dictionaries to model image external prior explicitly in Transformer-based image
restoration network. We propose an adaptive strategy that updates the token dictionary based on the
specific content of the input image, balancing the use of internal and external prior and delivering
state-of-the-art image restoration results.

3 METHODOLOGY

3.1 MOTIVATION

In this subsection, we discuss how the dictionary learning based and self-attention based image
restoration methods utilize external and internal prior to provide supplementary information for
image restoration. Then we discuss how those two method motivates us to introduce external prior to
Transformer-based methods with learned token dictionary.

Dictionary Learning for Image Restoration. Before the era of deep learning, dictionary learning
methods play an important role in providing prior information for image restoration. Due to the limited
computational resource, conventional dictionary learning based methods divide image into patches for
modeling image local prior. Take image super-resolution for example. Denote x ∈ Rd as a vectorized
image patch in the low-resolution(LR) image. To estimate the corresponding high-resolution(HR)
patch y ∈ Rd, Yang et al. (2010) decompose the signal by solving the sparse representation problem:

α∗ = argminα∥x−DLα∥22 + λ∥α∥1 (1)

and reconstruct the HR patch with DHα∗; where DL ∈ Rd×N and DH ∈ Rd×N are the learned LR
and HR dictionaries, and N is the number of atoms in the dictionary. The coupled dictionaries DL

3



Under review as a conference paper at ICLR 2024

and DH , summarize prior information of the external training dataset to compensate losing details in
HR image.

Vision Transformer for Image Restoration. CNN-based image restoration methods learn spatially
invariant convolution kernels from the training dataset to capture the LQ-to-HQ mapping. From a
prior modeling perspective, local features of the input LQ image are enhanced based on external
prior which were embedded in the convolution kernels in the training phase. On the other hand,
the Transformer-based methods pay more attention to image internal priors and exploit similarity
between tokens as weight to mutually enhance image features:

Attention(Q,K,V ) = SoftMax
(
QKT /

√
d
)
V ; (2)

Q ∈ RN×d, K ∈ RN×d and V ∈ RN×d are linearly transformed from the input feature X ∈ RN×d

itself, N is the token number and d is the feature dimension. Due to the self-attentive processing
philosophy, large window size plays a critical role in modeling internal prior of more patches.
However, the complexity of self-attention computation increases quadratically with the number of
input tokens, different strategies including shift-window (Liu et al., 2021; 2022; Liang et al., 2021;
Conde et al., 2023), anchor attention (Li et al., 2023), and shifted crossed attention (Li et al., 2021)
have been proposed to alleviate the limited window size issue of vision Transformer.

Token Dictionary: Empower Attention Block with External Prior. After reviewing the above
contents, we found that the decomposition and reconstruction idea of dictionary learning based
image restoration is similar to the process of self-attention computation. Specifically, the above
method in Eq. 1 solves the sparse representation model to find similar LR dictionary atoms and
reconstruct HR signal with the corresponding HR dictionary atoms; while the attention-based methods
use normalized point product operation to determine attention values for combining value tokens.
The above observation implies that the idea of using coupled dictionary DL and DH to introduce
external prior can be easily incorporated into the Transformer framework. By learning an extra token
dictionary instead of generating key and value tokens from input image, we can summarize external
prior of training dataset for better restoration.

In the following sub-sections, we will firstly introduce how we design our Token Dictionary Cross-
Attention (TDCA) block to introduce external prior into the Transformer framework. Then, we further
improve our proposed TDCA by proposing a refine strategy to adaptively fit the public dictionary to
each specific input image.

3.2 TOKEN DICTIONARY CROSS-ATTENTION

In this subsection, we introduce details of our proposed token dictionary cross-attention block.

In comparison to the existing MSA which generates query, key and value tokens by the input feature
itself. We aim to introduce an extra dictionary D ∈ RM×d to summarize external prior from the
training data. We use the learned token dictionary D to generate the Key Dictionary KD and the
Value Dictionary VD and use the input feature X ∈ RN×d to generate query tokens:

QX = XWQ, KD = DWK , VD = DW V , (3)

where M ≪ N , and WQ ∈ Rd×d/r, WK ∈ Rd×d/r and WV ∈ Rd×d are linear transforms for
Query Tokens, Key Dictionary Tokens and Value Dictionary Tokens, respectively. Note that the
feature dimensions of query tokens and key dictionary tokens are reduced to 1/r for decreasing
parameters and save computational resource consumption, where r is the reduction ratio. Then, we
use the key dictionary and value dictionary to enhance query tokens via cross-attention calculation:

TDCA(QX ,KD,VD) = SoftMax (S/τ)VD, where S = Simcos(QX ,KD). (4)

In Eq. 4, τ is a learnable parameter for adjusting the range of similarity value. Simcos(·, ·) represents
calculating Cosine Similarity between two tokens, and S ∈ RN×M is the similarity map between
Query image tokens and Key dictionary tokens. We use the normalized Cosine distance instead of dot
product operation in MSA because we want each token in the Dictionary to have equal opportunity to
be selected, the similar magnitude normalization operation is commonly used in previous dictionary
learning works.

The above TDCA operation firstly selects similar tokens in Key Dictionary tokens, which is similar
to the sparse representation process in Eq. 1 to obtain representation coefficients; then, TDCA
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Figure 1: The proposed Token Dictionary Cross-Attention Block (TDCA) block and the Adaptive
Dictionary Refinement (ADR) strategy. More details of our proposed TDCA and ADR can be found
in Sec. 3.2 and 3.3, respectively.

utilizes the similarity values to combine the corresponding Value Dictionary tokens, which is the
same as reconstructing HQ patch with HQ dictionary atoms and representation coefficients. By this
way, our TDCA is able to embed the external prior into learned dictionary for enhancing the input
image feature. We will validate the effectiveness of using token dictionary to provide external prior
information in our ablation study at Sec. 4.1.

3.3 ADAPTIVE TOKEN DICTIONARY REFINEMENT

In the previous subsection, we have presented how we could introduce an extra token dictionary to
supply external prior for image restoration Transformer. Since the image feature in each block will
be projected to different feature space by Multi-Layer Perceptrons (MLPs), we need to learn Token
Dictionary for each block to provide external prior in each specific feature space. This will lead to a
large number of extra parameters. In this subsection, we introduce an adaptive refining strategy which
refines token dictionary of the previous block based on the similarity map and the updated features.

To introduce the proposed adaptive refining strategy, we set up the block index (l) for the input
features and token dictionary, i.e. X(l) and D(l) denotes the input feature and token dictionary of the
l-th block, respectively. We learn token dictionary for the first block D(0) to introduce external prior
as introduced in Sec. 3.2. While, for each token in the dictionary

{
d
(l)
i

}
i=1,...,M

of the l-th block,

we select the corresponding similar tokens in the image to refine it. To be more specific, we denote
s
(l−1)
i as the i-th column of similarity map S(l−1), it contains the distance between d

(l−1)
i and all

the N query tokens X(l−1). Therefore, based on s
(l−1)
i , we are able to select the corresponding

enhanced tokens X(l) to reconstruct the new token dictionary d
(l)
i :

D(l) = SoftMax
(
S(l−1)T /σ

)
X(l), (5)

where σ is a learnable scaling value to adjust the range of similarity map.

Thanks to the linear complexity of the proposed TDCA with the number of image tokens, we do not
need to divide the image into windows and X(l) represents all the image tokens. A visualization of
the intermediate similarity map can be found in Fig. 2, it can be easily found that different similarity
vectors si captures different types of textures in the input image. Starting from the initial token
dictionary D(0), which introduces external prior into the network, our adaptive refining strategy
gradually select relevant tokens from the whole image to refine the dictionary. The refined dictionary
could cross the boundary of self-attention window to summarize the typical local structures of the
whole image, and consequently, improve image feature with global information.

3.4 THE OVERALL NETWORK ARCHITECTURE

Having our proposed Token Dictionary Cross-Attention (TDCA) block and the Adaptive Dictionary
Refinement (ADR) strategy in Sec. 3.2 and 3.3, we are able to establish our Adaptive Token Dictionary
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Figure 2: Visualization of similarity vectors s(l)
i of an image in the Urban 100 dataset. (b), (c) and (d) show

similarity map between all the input tokens and three tokens in our token dictionary. The similarity map clearly
shows that different tokens in the dictionary could detect different types of local structures. Therefore, we are
able to adaptively fit the public dictionary to specific testing image by summarizing image structures based on
the similarity map.

(ATD) network for image restoration. Given an input LQ image, we firstly utilize a 3×3 convolution
layer to extract shallow features. Then, the shallow features are fed into several ATD blocks in
specific architecture depending on the task. Each ATD block contains NTrans transformer layers.
The transformer layer contains our proposed Adaptive Token Dictionary Cross-Attention (ATDCA)
and a Shift Window-based MSA(SW-MSA) (Liang et al., 2021; Liu et al., 2021), the two kinds
of attention blocks process the input feature in parallel and the final features are combined by a
summation operation. In addition to the attention block, our transformer layer also utilize LayerNorm
and ConvFFN layers, which have been commonly utilized in other Transformer-based architectures.
After the ATD blocks, we utilize an extra convolution layer (followed with pixel shuffle operation for
SR task) to generate the final HQ estimation. For image SR, ATD blocks are connected in sequence
and we provide an illustration of our network architecture in Fig. 3. For image denoising and JPEG
compression artifact reduction, an encoder-decoder architecture is employed following previous
works as shown in Fig. 6 in Appendix.
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Figure 3: The overall architecture of the proposed ATD network for image super-resolution. The
illustration of the ATD-U (encoder-decoder architecture for image denoising and JPEG compression
artifact reduction) is presented in the Fig. 6.

4 EXPERIMENTS

In this section we provide experimental results on several image restoration tasks including 1) image
super-resolution, 2) image denoising, and 3) JPEG compression artifacts reduction. Three models
with different architecture and parameter size are built for different tasks. We establish ATD as well as
its tiny version ATD-light to tackle super-resolution problem, while ATD-U is designed for denoising
and JPEG compression artifact reduction task. Due to page limitations, the detailed experimental
settings are presented in the Appendix.

4.1 ABLATION STUDY

Before comparing our model with state-of-the-art methods, we firstly conduct ablation studies to
validate our design choices. We conduct ablation studies on re-scaled ATD-light model and train all
the models for 500k iterations on DIV2K (Timofte et al., 2017) dataset. We then evaluate them on
the Urban100 (Huang et al., 2015) benchmark.
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Table 1: Ablation study on the effects
of each component. More details of the
experimental settings can be found in
our Ablation study section.

model TD ADR PSNR(dB) SSIM
ATD(-t) 26.67 0.8038
ATD(-a)

√
26.72 0.8044

ATD
√ √

26.77 0.8051

Effects of External Token Dictionary and Adaptive To-
ken Dictionary. In order to show the effectiveness of
the proposed adaptive token dictionary cross-attention (AT-
DCA) approach, we establish three models and compare
their capability for image SR. The first model is our fi-
nal model ATD, which learns external token dictionary
from training data and utilizes refinement strategy to up-
date token dictionary in each ATD blocks. To demonstrate
the effectiveness of learned token dictionary, we present
a baseline model ATD(-t) which do not learn any token
dictionary and only adopt SW-MSA block to process image features. Then, to analyze the effect of our
adaptive dictionary refinement strategy, we establish another model, i.e. the ATD(-a), which directly
learns external token dictionary for each Transformer layer without applying adaptive refinement
operation. The ablation results can be found in Table 1. The results clearly show that the learned
token dictionary could provide external information for better SR, and the refinement strategy is able
to further enhance the learned public dictionary while reducing the size of dictionary.

Table 2: Quantitative comparison (PSNR/SSIM) with state-of-the-art methods on lightweight SR and classical
SR task. Best and second best results are colored with red and blue. More experimental details can be found in
the main text.

Method Params Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CARN (Ahn et al., 2018) ×2 1,592K 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
IMDN (Hui et al., 2019) ×2 694K 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774
LAPAR-A (Li et al., 2020) ×2 548K 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
LatticeNet (Luo et al., 2020) ×2 756K 38.15 0.9610 33.78 0.9193 32.25 0.9005 32.43 0.9302 - -
SwinIR-light (Liang et al., 2021) ×2 910K 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783
ELAN (Zhang et al., 2022) ×2 582K 38.17 0.9611 33.94 0.9207 32.30 0.9012 32.76 0.9340 39.11 0.9782
SwinIR-NG (Choi et al., 2022) ×2 1181K 38.17 0.9612 33.94 0.9205 32.31 0.9013 32.78 0.9340 39.20 0.9781
OmniSR (Wang et al., 2023) ×2 772K 38.22 0.9613 33.98 0.9210 32.36 0.9020 33.05 0.9363 39.28 0.9784
ATD-light (ours) ×2 757K 38.27 0.9615 34.05 0.9218 32.38 0.9022 33.22 0.9380 39.35 0.9781
EDSR (Lim et al., 2017) ×2 42.6M 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
RCAN (Zhang et al., 2018a) ×2 15.4M 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
SAN (Dai et al., 2020) ×2 15.7M 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
HAN (Niu et al., 2020) ×2 63.6M 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
IPT (Chen et al., 2020) ×2 115M 38.37 - 34.43 - 32.48 - 33.76 - - -
SwinIR (Liang et al., 2021) ×2 11.8M 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9433 39.92 0.9797
EDT (Li et al., 2021) ×2 11.5M 38.45 0.9624 34.57 0.9258 32.52 0.9041 33.80 0.9425 39.93 0.9800
CAT-A (Chen et al., 2022) ×2 16.5M 38.51 0.9626 34.78 0.9265 32.59 0.9047 34.26 0.9440 40.10 0.9805
ART (Zhang et al., 2023) ×2 16.4M 38.56 0.9629 34.59 0.9267 32.58 0.9048 34.30 0.9452 40.24 0.9808
HAT (Chen et al., 2023) ×2 20.6M 38.63 0.9630 34.86 0.9274 32.62 0.9053 34.45 0.9466 40.26 0.9809
ATD (ours) ×2 18.7M 38.61 0.9630 34.77 0.9271 32.63 0.9054 34.49 0.9470 40.33 0.9808

CARN (Ahn et al., 2018) ×4 1,592K 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
IMDN (Hui et al., 2019) ×4 715K 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
LAPAR-A (Li et al., 2020) ×4 659K 32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074
LatticeNet (Luo et al., 2020) ×4 777K 32.30 0.8962 28.68 0.7830 27.62 0.7367 26.25 0.7873 - -
SwinIR-light (Liang et al., 2021) ×4 930K 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151
ELAN (Zhang et al., 2022) ×4 582K 32.43 0.8975 28.78 0.7858 27.69 0.7406 26.54 0.7982 30.92 0.9150
SwinIR-NG (Choi et al., 2022) ×4 1201K 32.44 0.8980 28.83 0.7870 27.73 0.7418 26.61 0.8010 31.09 0.9161
OmniSR (Wang et al., 2023) ×4 792K 32.49 0.8988 28.78 0.7859 27.71 0.7415 26.65 0.8018 31.02 0.9151
ATD-light (ours) ×4 772K 32.50 0.8988 28.86 0.7884 27.76 0.7431 26.89 0.8097 31.29 0.9184
EDSR (Lim et al., 2017) ×4 43.0M 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
RCAN (Zhang et al., 2018a) ×4 15.6M 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
SAN (Dai et al., 2020) ×4 15.9M 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
HAN (Niu et al., 2020) ×4 64.2M 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
IPT (Chen et al., 2020) ×4 116M 32.64 - 29.01 - 27.82 - 27.26 - - -
SwinIR (Liang et al., 2021) ×4 11.9M 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
EDT (Li et al., 2021) ×4 11.6M 32.82 0.9031 29.09 0.7939 27.91 0.7483 27.46 0.8246 32.05 0.9254
CAT-A (Chen et al., 2022) ×4 16.6M 33.08 0.9052 29.18 0.7960 27.99 0.7510 27.89 0.8339 32.39 0.9285
ART (Zhang et al., 2023) ×4 16.6M 33.04 0.9051 29.16 0.7958 27.97 0.7510 27.77 0.8321 32.31 0.9283
HAT (Chen et al., 2023) ×4 20.8M 33.04 0.9056 29.23 0.7973 28.00 0.7517 27.97 0.8368 32.48 0.9292
ATD (ours) ×4 18.9M 33.07 0.9061 29.20 0.7979 28.01 0.7518 27.98 0.8374 32.49 0.9292

4.2 IMAGE SUPER-RESOLUTION

We firstly evaluate the proposed ATD method on the image super-resolution task. We choose
Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2012), BSD100 (Martin et al., 2002), Ur-
ban100 (Huang et al., 2015), and Manga109 (Matsui et al., 2016) as evaluation datasets and compare
with recent state-of-the-art SR methods. For the task of lightweight SR, we compare our method with
CARN (Ahn et al., 2018), IMDN (Hui et al., 2019), LAPAR (Li et al., 2020), LatticeNet (Luo et al.,
2020), SwinIR (Liang et al., 2021), ELAN (Zhang et al., 2022) and OmniSR (Wang et al., 2023).
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As can be found in Table 2, the proposed ATD-light achieved better results with OmniSR (Wang
et al., 2023) in both ×2 and ×4 zooming factors across most of benchmark datasets. Our ATD-light
outperform recently proposed light-weight method OmniSR by a large margin (0.27dB) on the
anga109 dataset. e believe this is because more information was lost during the downscaling process
for cases with large zoom factors. With the learned and refined token dictionary, our ATD-light model
is able to make better use of external prior for recovering HR details in challenging conditions.

We further compare our method with state-of-the-art SR methods: EDSR (Lim et al., 2017),
RCAN (Zhang et al., 2018a), SAN (Dai et al., 2020), HAN (Niu et al., 2020), CSNLN (Mei et al.,
2020), IPT (Chen et al., 2020), SwinIR (Liang et al., 2021), CAT (Chen et al., 2022), ART (Zhang
et al., 2023), HAT (Chen et al., 2023). With about 10% less number of parameters(18.7M vs. 20.8M),
the proposed ATD model still outperforms HAT (Chen et al., 2023). We achieved +0.07dB PSNR
gain on the ×2 Manga109 dataset.

Some visual examples by different methods can be found in Fig. 4. The images in Fig. 4 clearly
demonstrate our advantages in recovering sharp edges and clean textures. More visual examples can
be found in the Appendix A.3.
Table 3: Quantitative comparison (PSNR) with state-of-the-art methods on grayscale image denoising. Best
and second best results are colored with red and blue. More experimental details can be found in the main text.

Dataset σ BM3D DnCNN IRCNN RNAN RDN DRUNet SwinIR Restormer ATD-U (ours)

Set12
15 32.37 32.86 32.76 - - 33.25 33.36 33.42 33.47
25 29.97 30.44 30.37 - - 30.94 31.01 31.08 31.16
50 26.72 27.18 27.12 27.70 27.60 27.90 27.91 28.00 28.09

BSD68
15 31.08 31.73 31.63 - - 31.91 31.97 31.96 31.97
25 28.57 29.23 29.15 - - 29.48 29.50 29.52 29.51
50 25.60 26.23 26.19 26.48 26.41 26.59 26.58 26.62 26.54

Urban100
15 32.35 32.64 32.46 - - 33.44 33.70 33.79 34.05
25 29.70 29.95 29.80 - - 31.11 31.30 31.46 31.83
50 25.95 26.26 26.22 27.65 27.40 27.96 27.98 28.29 28.81

4.3 IMAGE DENOISING

We build ATD-U based on encoder-decoder architecture following Zamir et al. (2022) for grayscale
image denoising task and make comparison with recent state-of-the-art methods: DnCNN (Zhang
et al., 2017a), IRCNN (Zhang et al., 2017b), RNAN (Zhang et al., 2019), RDN (Zhang et al.,
2018b), DRUNet (Zhang et al., 2021), SwinIR (Liang et al., 2021), Restormer (Zamir et al., 2022) on
Set12 (Zhang et al., 2017a), BSD68 (Martin et al., 2001) and Urban100 (Huang et al., 2015) datasets.
The quantitative results are shown in Table 3. Our ATD-U outperforms Restormer by a large margin
up to 0.52dB on Urban100 benchmark under challenging noise level of 50 with 10% smaller model
size (23.5M) compared to Restormer(26.1M). These comparisons illustrate the strong power of
external prior when restoring image from severe noise. ATD-U also exhibits comparable and better
performance on BSD68 and other datasets. These results indicate the powerful capacity of ATD-U to
mitigate noise in grayscale images. We provide some visual examples in Fig. 4. These comparisons
illustrate that ATD-U possess the ability to restore cleaner image from heavy noise pollution while
resulting in less artifacts. More visual comparisons can be found in the Appendix A.3.

Figure 4: Visual comparisons of image super-resolution methods on image Urban100-"img027", Manga109-
"DualJustice" and grayscale image denoising methods on image Urban100-"img060"
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4.4 JPEG COMPRESSION ARTIFACT REDUCTION

Same as image denoising task, we employ ATD-U model on JPEG compression artifact reduction
task and make comparison with recent state-of-the-art methods: DnCNN (Zhang et al., 2017a),
RNAN (Zhang et al., 2019), RDN (Zhang et al., 2018b), DRUNet (Zhang et al., 2021), SwinIR (Liang
et al., 2021), ART (Zhang et al., 2023). We choose Classic5 (Foi et al., 2007), LIVE1 (Sheikh
et al., 2006) and Urban100 (Huang et al., 2015) as evaluation datasets. The experimental results are
presented in Table 4. Our ATD-U achieves better performance compared to previous methods SwinIR
and ART. ATD-U obtains up to 0.25dB gain on Urban100 under challenging compression quality
factor(QF=10). These results manifest that ATD-U also has strong artifact removal ability for JPEG
compression artifact reduction.

Table 4: Quantitative comparison (PSNR/SSIM) with state-of-the-art methods on JPEG compression artifact
reduction. Best and second best results are colored with red and blue. More experimental details can be found
in the main text.

Set QF
Grayscale

Set QF
Color

DnCNN DRUNet SwinIR ART ATD-U (ours) DRUNet SwinIR ATD-U (ours)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

C
la

ss
ic

5 10 29.40 0.8013 30.16 0.8234 30.27 0.8249 30.27 0.8258 30.38 0.8272

C
la

ss
ic

5 10 27.47 0.8045 28.06 0.8129 28.32 0.8179
20 31.63 0.8596 32.39 0.8734 32.52 0.8748 - - 32.60 0.8751 20 30.29 0.8743 30.44 0.8768 30.58 0.8787
30 32.91 0.8855 33.59 0.8949 33.73 0.8961 33.74 0.8964 33.80 0.8962 30 31.64 0.9020 31.81 0.9040 31.97 0.9059
40 33.77 0.8993 34.41 0.9075 34.52 0.9082 34.55 0.9086 34.59 0.9082 40 32.56 0.9174 32.75 0.9193 32.89 0.9205

L
IV

E
1 10 29.19 0.8172 29.79 0.8278 29.86 0.8287 29.89 0.8300 29.94 0.8371

B
SD

50
0 10 27.62 0.8001 28.22 0.8075 28.32 0.8083

20 31.59 0.8848 32.17 0.8899 32.25 0.8909 - - 32.31 0.8949 20 30.39 0.8711 30.54 0.8739 30.54 0.8730
30 32.98 0.9167 33.59 0.9166 33.69 0.9174 33.71 0.9178 33.72 0.9226 30 31.73 0.9003 31.90 0.9025 31.90 0.9020
40 33.96 0.9294 34.58 0.9312 34.67 0.9317 34.70 0.9322 34.70 0.9342 40 32.66 0.9168 32.84 0.9189 32.80 0.9178

U
rb

an
10

0 10 28.54 0.8484 30.31 0.8745 30.55 0.8835 30.87 0.8894 31.12 0.8935
U

rb
an

10
0 10 27.10 0.8400 28.18 0.8586 29.07 0.8726

20 31.01 0.9050 32.81 0.9241 33.12 0.9190 - - 33.52 0.9271 20 30.17 0.8991 30.53 0.9030 31.14 0.9094
30 32.47 0.9312 34.23 0.9414 34.58 0.9417 34.81 0.9442 34.85 0.9458 30 31.49 0.9189 31.87 0.9219 32.48 0.9271
40 33.49 0.9412 35.20 0.9547 35.50 0.9515 35.73 0.9553 35.73 0.9573 40 32.36 0.9301 32.75 0.9329 33.27 0.9365

4.5 COMPUTATIONAL BURDEN ANALYSIS

Figure 5: Comparison of PSNR and FLOPs by our model and
S.O.T.A approaches (SR: Manga109 × 2; Denoise: Urban100
σ = 50), FLOPs are calculated on input size of 256× 256.

We further analyze the compu-
tational burden of the proposed
ATD model. In Fig. 5, we present
the image restoration accuracy
(PSNR) and computational con-
sumption of recent state-of-the-
art models on the image SR and
denoising tasks. The figures
clearly demonstrate that the pro-
posed ATD model helps the net-
work to achieve a better trade-off
between restoration accuracy and
efficiency. Our ATD method achieves better SR results with 10% and 50% less computations than
the HAT and ART model, respectively. Moreover, with only 10% more computations, our ATD-U
model is able to improve the denoising performance of Restormer by a large margin (0.52dB). In
comparison with the baseline SwinIR approach, ATD-U surpasses SwinIR by 0.83dB with 3.7× less
FLOPs.

5 CONCLUSION

In this paper, we proposed a new Transformer-based image restoration network. Inspired by the
traditional dictionary learning methods, we proposed to learn token dictionaries to provide external
supplementary information for estimating the missing high-quality details. We further proposed
an adaptive dictionary refinement strategy which could use similarity map of the previous block to
refine the externally learned dictionary, making it better fit the content of specific input image. We
conducted ablation studies to demonstrate the effectiveness of the proposed token dictionary and
adaptive refinement strategy. Extensive experimental results on plenty of benchmark datasets have
been presented, our method achieved state-of-the-art results on image super-resolution, grayscale
image denoising and JPEG compression artifact reduction.
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A APPENDIX

A.1 EXPERIMENTAL SETTING DETAILS.

A.1.1 NETWORK ARCHITECTURE SETTING.

ATD For image super-resolution task, we establish ATD model that employs a sequence of ATD
blocks as its backbone. There are 6 ATD blocks in total, each comprising six transformer layers
with a channel number of 200. We establish 512 external tokens for our dictionary in ATD model
and use a reduction rate r of 10. Each external token has 200 feature dimensions as in the SW-MSA
branch, and each external token dictionary is randomly initialized as a tensor with shape of [512, 200]
in normal distribution.

ATD-light ATD-light is a tiny version of ATD which reduce feature dimensions to 48 for lightweight
SR task. The number of dictionary token is decreased to 64 and we also adjust the reduction rate r to
4 for keeping enough in similarity calculation.

ATD-U For image denoising and JPEG compression artifact reduction, we employ a 4-level encoder-
decoder architecture on ATD-U following Restormer (Zamir et al., 2022). An illustration of ATD-U
architecture is presented in Fig. 6. We set the number of Transformer layers for each level as [4, 6, 6,
8], while the number of channel and reduction rate r are set as [48, 96, 192, 384] and [3, 6, 12, 24].
The parameter setting of refinement block is the same as level-1 encoder.

ATD-U Block

ATD-U Block

ATD-U Block ATD-U Block

ATD-U Block

ATD-U Block

1 × 1

1 × 1

ATD-U Block

C

C

D

D

D

3
×
3

U

𝐻
×
𝑊
×
𝐶

𝐻 ×𝑊 × 𝐶

𝐻
2
×
𝑊
2
× 2𝐶

𝐻
4 ×

𝑊
4 × 4𝐶

𝐻
8 ×

𝑊
8 × 8𝐶

𝐻
8 ×

𝑊
8 × 8𝐶

𝐻
4 ×

𝑊
4 × 4𝐶

𝐻
4
×
𝑊
4
× 4𝐶

𝐻
2
×
𝑊
2
× 2𝐶U

𝐻
2 ×

𝑊
2 × 2𝐶

C

U
𝐻 ×𝑊 ×𝐶

𝐻 ×𝑊 × 2𝐶

ATD-U Block

Refinement
𝐻 ×𝑊 × 2𝐶

3
×
3

𝐻
×
𝑊
×
𝐶

𝐻
×
𝑊
×
3

Tr
an

sf
or

m
er

 L
ay

er

Tr
an

sf
or

m
er

 L
ay

er

…

…
External

Dictionary

𝑫𝟎

Adaptively Refined
Dictionary

𝑫𝟏 𝑫𝒍−𝟏

Tr
an

sf
or

m
er

 L
ay

er

𝑫𝒍

Tr
an

sf
or

m
er

 L
ay

er

D

U

Downsample

Upsample

Concatenation

k × k Convolutional
Layer
Shortcut
Connetction

Figure 6: The overall architecture of the proposed ATD-U network for image denoising and JPEG
compression artifact reduction.

A.1.2 OTHER DETAILS ABOUT ARCHITECTURE.

Hard threshold operation. When applying adaptive token dictionary refinement as mentioned in
Eq. 5, we combine the similarity map and features to generate refined token dictionary. Practically,
instead of directly using the similarity map from the previous block, we adopt an additional hard
thresholding operation:

Sδ(i, j) = HardThresholding (S(i, j); δ) =

{
S(i, j) if S(i, j) ≥ δ

−∞ if S(i, j) < δ
, (6)

where δ is the threshold in the hard thresholding operator and −∞ is set to a small enough number to
ensure that the value after Softmax is 0. Adopting S

(l)
δ instead of S(l) in Eq. 5 enables us to filter out

irrelevant tokens with small similarity values and only use highly similar image tokens to update the
tokens in the token dictionary.
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ConvFFN. Recently, several works such as Zamir et al. (2022) start to add depth-wise convolutional
layers and gating mechanism into feed-forward network. We simply adopt depth-wise convolution
between two linear layers in FFN. It yields obvious improvement on ATD-light but little to ATD,
since the extra receptive field brought by DWConv has a greater impact on shallow networks. The
kernel size of DWConv are set as 7 for ATD-light and 5 for other versions of ATD.

A.1.3 IMPLEMENTATION DETAILS

ATD. We follow previous works (Liang et al., 2021; Chen et al., 2023) and choose
DF2K(DIV2K (Timofte et al., 2017) + Flickr2K (Lim et al., 2017)) as the training dataset for
ATD. We split the training process for ATD into two stages. In the first stage, we randomly crop
64× 64 LR patches and the corresponding HR image patches for training. The batch size is set as 64,
while commonly used Data augmentation tricks including random rotation and horizontally flipping
are adopted in our training stage. We adopt the AdamW (Loshchilov & Hutter, 2018) optimizer with
β1 = 0.9, β2 = 0.9 to minimize L1 pixel loss between HR estimation and ground-truth. For the case
of zooming factor ×2, we train the model from scratch with an initial learning rate of 2× 10−4 for
600k iterations. We then finetune the ×4 model based on ×2 model for 300k iteration. The learning
rate gradually decay to 1×10−6 using cosine annealing scheduler (Loshchilov & Hutter, 2016). Then
in the second stage, we utilize larger LR patches with size of 96× 96 to further improve performance.
The initial learning rate is reduced to 1× 10−5 for stable finetuning process of 50k iteration.

ATD-light. To make fair comparisons with previous SOTA methods, we only employ DIV2K for
training. Same as ATD, we train the ×2 model from scratch and the ×4 model is finetuned from ×2
one. We increase the batch size to 128 for ATD-light and thus we can apply a large initial learning
rate of 1× 10−3 for ×2 training process. The training procedure for ATD-light is identical to that of
ATD, except we don’t apply the large-patch finetune stage for ATD-light.

ATD-U. We choose ImageNet (Deng et al., 2009) as training data. To save training time, we first
train ATD-U for 2000k iterations with a small window size of 8× 8. Each batch consists of eight
128× 128 noisy image patches. The initial learning rate is set as 2× 10−4 and we halve it at [400k,
800k, 1200k, 1600k, 1800k, 1900k]. Then we expand the window size to 16 × 16 and apply a
two-phase finetuning strategy. The patch size is first enlarged to 256× 256 for 160k iterations and
further up to 512 × 512 for another 120k iterations. In the final finetuning phase we change the
training dataset to DFWB(DIV2K, Flickr2K, BSD500 (Arbelaez et al., 2011) and WED (Ma et al.,
2017)). The initial learning rate for each finetuning phase is decreased to 1× 10−5 for stability.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

A.2.1 EXPERIMENTS ON GAUSSIAN COLOR IMAGE DENOISING

Additional experiments were carried out with ATD-U model for Gaussian color image denois-
ing, and the experimental setting keeps consistent with grayscale one. We compare ATD-U with
several SOTA methods including DnCNN (Zhang et al., 2017a), RNAN (Zhang et al., 2019),
RDN (Zhang et al., 2018b), IPT (Chen et al., 2020), DRUNet (Zhang et al., 2021), SwinIR (Liang
et al., 2021), Restormer (Zamir et al., 2022), and ART (Zhang et al., 2023). Quantitative results on
Kodak24 (Franzen, 1999) and Urban100 (Huang et al., 2015) are provided in Table 5. Experimental
results show that our proposed ATD-U yields 0.43dB and 0.18dB performance gain over Restormer
and ART under severe noise level of σ = 50, which demonstrate the superiority of ATD-U to these
methods.
Table 5: Quantitative PSNR(dB) comparison with state-of-the-art methods on color image denoising
task. Best and second best results are colored with red and blue.

Dataset σ DnCNN RNAN RDN IPT DRUNet SwinIR Restormer ART ATD-U (ours)

Kodak24
15 34.60 - - - 35.31 35.34 35.35 35.39 35.38
25 32.14 - - - 32.89 32.89 32.93 32.95 32.99
50 28.95 29.58 29.66 29.64 29.86 29.79 29.87 29.87 29.93

Urban100
15 32.98 - - - 34.81 35.13 35.13 35.29 35.36
25 30.81 - - - 32.60 32.90 32.96 33.14 33.25
50 27.59 29.08 29.38 29.71 29.61 29.82 30.02 30.27 30.45
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A.3 MORE VISUAL COMPARISONS

We provide more visual comparisons on image super-resolution in Fig. 7, Fig. 8, Fig. 9, Fig. 10 and
grayscale image denoising in Fig. 11. These visual comparisons illustrate the potential of ATD and
ATD-U in restoring sharp edge and texture under severe degradation.

Figure 7: More visual comparisons of classic image super-resolution task on Urban100 (Huang et al.,
2015) dataset. Test images from top to bottom are respectively "img_001", "img_004", "img_021".

Figure 8: More visual comparisons of classic image super-resolution task on Manga109 (Matsui
et al., 2016) dataset. Test images from top to bottom are respectively "EienNoWith", "JijiBabaFight",
"KyokugenCyclone", "MomoyamaHaikagura".

16



Under review as a conference paper at ICLR 2024

Figure 9: More visual comparisons of classic image super-resolution and lightweight image
super-resolution task on Manga109 (Matsui et al., 2016) dataset. Test images from top to bottom
are respectively "HighschoolKimengumi_vol01", "EverydayOsakanaChan", "Hamlet", "Joouari",
"Shimattelkouze_vol26", "UltraEleven", "YumeiroCooking".
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Figure 10: More visual comparisons of lightweight image super-resolution task on Ur-
ban100 (Huang et al., 2015) dataset. Test images from top to bottom are respectively "High-
schoolKimengumi_vol01", "EverydayOsakanaChan", "Hamlet", "Joouari", "Shimattelkouze_vol26",
"UltraEleven", "YumeiroCooking".
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Figure 11: More visual comparisons of grayscale image denoising task. Test images from top
to bottom are respectively "Lena" from Set12 (Zhang et al., 2017a), "test_003", "test_033" from
BSD68 (Martin et al., 2001), and "img_038", "img_064", "img_073", "img_091", "img_097" from
Urban100 (Huang et al., 2015) dataset.
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