Under review as a conference paper at ICLR 2026

THE GEOMETRY OF LLM QUANTIZATION:
GPTQ AS BABAI’S NEAREST PLANE ALGORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantizing the weights of large language models (LLMs) from 16-bit to lower
bitwidth is the de facto approach to deploy massive transformers onto more
affordable accelerators. While GPTQ emerged as one of the standard methods for
one-shot post-training quantization at LLM scale, its inner workings are described
as a sequence of algebraic updates that obscure geometric meaning or worst-case
guarantees. In this work, we show that, when executed back-to-front (from the last
to first dimension) for a linear layer, GPTQ is mathematically identical to Babai’s
nearest plane algorithm for the classical closest vector problem (CVP) on a lattice
defined by the Hessian matrix of the layer’s inputs. This equivalence is based
on a sophisticated mathematical argument, and has two analytical consequences:
first, the GPTQ error propagation step gains an intuitive geometric interpretation;
second, GPTQ inherits the error upper bound of Babai’s algorithm under the
assumption that no weights are clipped. Leveraging this bound, we design
post-training quantization methods that avoid clipping, and outperform the original
GPTQ. In addition, we provide efficient GPU inference kernels for the resulting
representation. Taken together, these results place GPTQ on a firm theoretical
footing and open the door to importing decades of progress in lattice algorithms
towards the design of future quantization algorithms for billion-parameter models.

1 INTRODUCTION

Generative pre-trained transformers (GPT) models contain hundreds of billions of parameters and
have massive computational and memory costs (Luccioni et al.| 2024). Post-training quantization
(PTQ) has emerged as a practical solution for reducing their footprint (Gholami et al., 2021). Among
a growing family of methods, GPTQ (Frantar et al.| [2023)) was the first to push one-shot quantization
down to the 4-bit regime, while retaining near-baseline accuracies. GPTQ is still very popular
nowadays and yields state-of-the-art results in some regimes (Kurtic et al.,[2024).

Despite its empirical success, the GPTQ algorithm was only presented as a sequence of greedily
applied algebraic operations: the procedure picks one weight at a time, quantizes it via rounding
or clipping, and then optimally updates the not-yet-quantized weights to correct for the remaining
per-layer loss; it then continues with the next weight, and so on. This procedure leaves an obvious
open question: why does a local greedy rule work so well globally? Current literature does not
answer this question, leaving little guidance for principled extensions or failure case analysis.

Our contribution. This paper is the firs to provide a geometric interpretation for GPTQ, which
implies a layer-wise global error bound. Our main theoretical results (Sectiond) are (i) the GPTQ
optimization problem, i.e. linear-layer quantization with the L2 objective on the output, is equivalent
to the closest vector problem (CVP) w.r.t. L2 distance; (ii) the GPTQ algorithm executed from the
last to first dimension is the same as Babai’s nearest plane algorithm on the basis of the factorized
Hessian matrix, without LLL basis reduction, and this finding holds independently of whether large
weights are clipped to the quantization grid (a process known as weight clipping); and (iii) the
worst-case layer-wise error in the no-clipping setting is bound tightly by the trace of the diagonal
matrix of the LDL decomposition of the Hessian matrix. In addition (Section @, we tie our theoretical
findings to practical quantization by introducing new no-clipping methods of better accuracy than
the original GPTQ, together with efficient GPU inference kernels for the resulting representation.

'"The concurrent work of [Birnick| (2025) appeared on arXiv later than our preprint.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Second-order compression (pruning and quantization). The idea of using Hessian information
to guide parameter removal dates back to Optimal Brain Damage (LeCun et al.,[1989) and Optimal
Brain Surgeon (OBS) (Hassibi et al., |1993)). Optimal Brain Compression (OBC) (Frantar & Alistarhl
2022) generalizes OBS to the post-training setting and unifies structured pruning and quantization
(also called Optimal Brain Quantizer, OBQ) under a single exact solver. GPTQ (Frantar et al.| [2023)
inherits OBQ’s error propagation method but applies it in a fixed order, so that the inverse Hessian
can be shared and only needs to be computed once. GPTQ only has cubic computational complexity
in the column/row dimension, making it suitable for LLMs. QuIP (Chee et al.l 2023) proves an error
guarantee for GPTQ and proposes the LDLQ method as an equivalent variant of GPTQ.

Lattices, CVP algorithms, and hardness. The closest vector problem (CVP) is NP-complete
to approximate within any constant factor under polynomial-time reductions (van Emde Boas|
1981} [Micciancio & Goldwasser, [2002; Dinur et al., 2003), motivating decades of approximation
algorithms. Babai’s nearest plane heuristic (Babai, |1986) delivers a solution in polynomial time
and, when preceded by LLL basis reduction (Lenstra et al.,[1982), enjoys a 2°(") approximation.
BKZ basis reduction (Kannan, |1987) further tightens the constant in an exponential-time solver.

3 PRELIMINARIES AND NOTATIONS

We use Python-style indexing inside square brackets to select elements and sub-matrices from a
tensor, e.g., [7, :] selects the j-th row vector, [:, j] selects the j-th column vector, and [j :, j] selects
the sub-column consisting of rows after j-th (included) row in j-th column, [:, J] selects the column
vectors indexed by set J as a sub-matrix, et

3.1 LINEAR-LAYER QUANTIZATION PROBLEM
Problem. Let X = [zq,... ,a:n]T € R™*¢ be the sampled calibration input data of batch size
n and input dimension ¢ with x; € R° and n > ¢ = rank (X). Let W = [wy,...,w,] € R
be the linear layer weights of input dimension ¢ and output dimension r with w; € R° Let
S =[s1,...,8] € R;XOT be the non-zero quantization scales with s; € R%,. Here we consider
a general case that applies to any grouping pattern: each weight element w;[j] has its own
scaling factor s;[j]. Assume S is statically computed using methods like AbsMax or MSE
before any weight updates. Let Z+ C Z be the quantization grid (representable integers). In the

clipping setting, e.g., for INT4 format, Z; = {-8,...,—1,0,1,...,7}. In the no-clipping setting,
Z = Z, which allows any integer as the quantization results. Let Z = [z1,...,2,] € Z;**"
be the (unknown) quantized integers with z; € Z;. Denote Q@ = [q1,...,q,] € R°*" as the

dequantized weights with g; = diag (s;) z; € R¢. The goal is to minimize the L2 error on the
layer output XW € R™": | XQ — XW |2 = S7_ | X diag (s;) z; — Xw||”, i.e, finding
argminmez? | X diag (s;) z; — X'win foralll < <.
OBQ algorithm. Let set J; initialized to {1, ..., ¢} be the set of not-yet-quantized indices of w;.
We denote J; as J as a short-hand notation. For each weight vector w;, OBQ chooses
. 1\ 2
(gilj] — wilj])
1. -
(X[, JIT XL J]) [, 4]
as the next dimension to quantize. OBQ quantizes the chosen element w;[j] as
qi[j] + s:i[j] - ROUND (“S’?[[j]],ZT) via the ROUND (-, Z;) function which rounds the inputs
to the nearest values in Z;. OBQ then optimally updates the subset of weights w;[J] via an error
propagation step w;[j'] < w;[j'] + Aw;[j'] for all j* € J with
“1., .
(X[X)) 1]
1. .
(X[, JIT X[7)) (6,4

ey

J ¢ argmin,c ;

Aw;[j'] (@i[j] — wslj]) - 2

2For more details, please see (NumPy): https://numpy.org/doc/stable/user/basics)
indexing.html

https://numpy.org/doc/stable/user/basics.indexing.html
https://numpy.org/doc/stable/user/basics.indexing.html

Under review as a conference paper at ICLR 2026

OBQ continues iteration with J < J \ {4} until J is empty.

GPTQ algorithm. GPTQ reduces the computational complexity of OBQ by applying the OBQ
quantization and error propagation steps in a fixed dimensional order, e.g., from the first to last
dimension (j <+ 1 to ¢), instead of dynamically determined orders (Eq.[I). The fixed order is

independent of the output channel i, thus the Hessian information (X[:, J]" X[:, J]) ', 4] can
be shared across w; for all 7, without recomputation. Furthermore, the Hessian information for all
j can be precomputed at once using Cholesky or LDL decomposition of the Hessian matrix X ' X

Algorithm (T]is the pseudocode of GPTQ. The algorithm is identical to the original GPTQ paper (Fran’
tar et al.| 2023) except for missing the blocking mechanism that only affects the memory access
pattern and computational speed, but not the numerical results. Additional notations are as follows.
P € {0,1}°"“is a permutation matrix that modifies the dimensional order of GPTQ quantization.
The default order is front-to-back (from the first to last dimension), i.e., P = I. A € R, is a small
damping factor for computing the Hessian matrix, ensuring the matrix is of full rank. A typical

choice is A = 1552 > (XTX)[j,4] = 1902 HX||% Function LDL returns the lower triangular

matrix in LDL decomposition. Symbols * and / denote the element-wise multiplication and division.

Algorithm 1: GPTQ
Input: original weights W € R“*", per-coordinate scales S € R;XOT, calibration activation

X € R™*¢, permutation P € {0, 1}, damping ratio A > 0, integer grid Z; C Z
Output: quantized weights Z € Z?XT, dequantized weights Q € R*"
H<«+ P’ (XTX + /\I) P // dampen and reorder Hessian
L + LDL (H *1) // factorize (take the L matrix from the LDL decomposition) the inversed
Hessian as the shared coefficients for error propagation

W,S < P~'W,P~'S§ // reorder weights and scales
Q,Z <+ W 0 // initialize dequantized and quantized weights
for j < 1tocdo

¢ <+ W1j,:1/S[j,:] I/ element-wise divide current row by its scales

Z[j,:] < ROUND ({,Z;) // quantize coefficients to the target grid

Qlj,:] < Z[j,:] * S[4,:] // dequantize current row back to weight space

€ + Qlj,:] — Wj,:] // quantization error for current row

W(j::] < W]j:,:]+ L[j:, jle /l propagate error to not-yet-quantized rows; broadcast

over columns

[S

SO XIS AW

[

[
[

end
Z.,Q < PZ,PQ // undo reorder to restore original input order; return integers and
dequantized weights

i
[%)

3.2 THE CLOSEST VECTOR PROBLEM (CVP)

Problem. Let B = [by,...,b.] € R"*° be a set of ¢ basis vectors of dimension n with b; € R"
and n > ¢ = rank (B). Let y € R™ be an external target vector to approximate. Let z € Z€ be the
(unknown) integer vector representing the basis combinations of the lattice vector. The goal is to find
the vector on the lattice defined by the basis B that is the closest to the target vector y, i.e., finding

argmin, .. |Bz — sz A visualization of a two-dimensional CVP is shown in Figure|l|(a).

Babai’s nearest plane algorithm. Babai’s algorithm iteratively projects the target vector onto the
nearest hyperplane of a LLL-reduced lattice and rounds the corresponding coefficient. Figure(l|(b)
visualizes the basis reduction step and Figure[I] (c-d) visualize the projection steps.

Algorithm [2] is the pseudocode of Babai’s nearest plane algorithm to solve CVP. For better
computational efficiency, the pseudocode uses a conceptually equivalent approach. Instead of
projecting the target vector to the nearest hyperplane, it moves the target vector along the basis
direction towards the hyperplane where the origin lies. The projection error is kept in the updated
target vector since it is orthogonal to the hyperplane and will not affect the following projections.
Additional notations are as follows. Function LLL returns the transformation matrix of the LLL
reduction with parameter delta defaulting to %. Function QR returns the orthogonal matrix in QR

Under review as a conference paper at ICLR 2026

Lattice Point
Target Point

Babai's Algorithm

Returned Lattice Point
Babai's Projected Point
—— Basis Vector

X ® + o

(a) Closest Vecfor Problem

Basis Direction

Gram-Schmidt Vector

Babai's Hyperplane
—— Rounding Boundary

Rounding Boundaries

(e) Optimal / Voronoi (f) Round-to-Nearest (g) Babai (h) Babai (Another Order)

Figure 1: Upper row: (a) CVP in a two-dimensional lattice; (b) Basis reduction can find a shorter,
more orthogonal basis that can potentially improve the results; (c-d) The projection steps in Babai’s
nearest plane algorithm. Lower row: rounding boundaries of (e) optimal rounding or Voronoi cells;
(f) round-to-nearest (RTN); (g) Babai’s nearest plane algorithm without basis reduction; (h) Babai’s
algorithm without basis reduction under the reversely ordered basis.

decomposition, the same as the normalized Gram-Schmidt orthogonalization process. (-, -) denotes
the vector dot product. Function ROUND is defined as in the GPTQ algorithm.

Algorithm 2: Babai’s Nearest Plane

Input: lattice basis (column vectors) B € R"*¢, target vector y € R™
Output: closest lattice vector’s basis coefficients z € Z°

1 T < LLL (B) // unimodular transformation matrix from LLL basis reduction

2 A + BT // reduce the basis

3 ® <~ QR (A) // normalized Gram-Schmidt process (take the Q matrix from the QR

decomposition)

4 y', z < y,0// initialize residual target and integer solution in reduced basis

5 for j < ctoldo

6 | ¢ (®[,4,y)/ (P[], Al j]) // exact coefficient along the unnormalized
Gram-Schmidt vector; ratio between the projections of residual and the reduced basis
on the Gram-Schmidt direction

z[j] + ROUND (¢, Z) // round to the nearest plane

y' «— y' — Al j|z[j] // update the residual

7
8
9 end
0 z < Tz // map integer solution back to the original basis and return

Babai’s error bound. Figure|l|shows the rounding boundaries of the optimal (e), round-to-nearest
(RTN) (f), and Babai’s algorithm without basis reduction (g-h). Compared to RTN, Babai’s algorithm
generates rectangular partitions and thus has a smaller worst-case error. The error bound has been
proven in Babai| (1986). Formally, let ® = [¢1,. .., ¢.] be the set of normalized Gram-Schmidt
vectors of the LLL-reduced basis A = [aq,...,a.]. Let A= [@1,...,a.] denote the unnormalized
Gram-Schmidt vectors with @; = (¢;, a;) ¢;. At iteration j, the algorithm replaces the exact
coefficient ¢ by the closest integer, so the deviation satisfies | — z[j]| < %. Hence the error
component along @; has norm at most % la;||. Because the A is orthogonal, these error components
add in Euclidean norm, giving a bound on the residual (error) vector y': ||3/[|* < 1 25:1 la;||* =
% Z§=1 (&5, aj>2. Babai’s algorithm guarantees to return the center vector of the hyper-cuboid

(Figurem(g)) constructed by the unnormalized Gram-Schmidt vectors A where the target y is located.
Equality is attained when the target y lies at the corner of the hyper-cuboid, so the bound is tight. Babai

Under review as a conference paper at ICLR 2026

(1986) additionally proved a relative error bound for v with | Bz — y|| < v - min, ez ||Bz' — y||.

i a2 & .r
The boundis 1 <y < \/1 + maxi<j<c 423./:1\\% I <Ve+1 maxi<j<j<c |I‘ZJ‘I|
- - == J

lla;l®
4 THEORETICAL RESULTS

We first show that weight quantization is an instance of the classical closest vector problem (CVP)
in Section 4.1 which lets us work in a lattice defined by the Hessian. We then reinterpret OBQ’s,
equivalently GPTQ’s, error propagation step as a nearest hyperplane projection in Section .2}
setting up our main equivalence in Section .3} GPTQ, running back-to-front, coincides exactly
with Babai’s nearest plane algorithm. This equivalence lets us import Babai’s guarantees to obtain
a tight, layer-wise error bound in the no-clipping setting in Section4.4] Finally, we analyze how
quantization order influences this bound in Section 4.5]

4.1 EQUIVALENCE BETWEEN L2 QUANTIZATION AND CVP

A quantization problem with the L2 objective argminzez# | X diag (s;) z; — Xw;||> and a CVP

with the L2 distance argmin, ;. ||Bz — y||2 share the same solution (z = z;) whenever the
structural conditions B = X diag (s;) and y = X w, hold and the solution domain matches. To
ensure the solution domain matches, we can either disable the clipping in the quantization setup
(setting Z4 = Z) or enable the clipping in the CVP setup (making z € Zf).

We can introduce a factor of the Hessian matrix, X = [x1, ..., X with X T X = X" X. The loss
can then be reformulated as || X diag (s;) z; — Xw;||>.

Theorem 1 (Quantization and CVP) The CVPs using any possible factors X of the Hessian matrix
X " X are equivalent under an orthogonal transformation (rotation and reflection) of the lattice and
external target vector.

Proof Let X and X’ be two possible factors of the Hessian matrix with X' X = X'T X’. The
inner products (X, , Xj,) and <x§-1,x;-2> must be equal for all 1 < ji, jo < c. In other words, the

lengths ||[x;, || = ||x}, ||, and the angles Z (x;,, Xj.) = £ (X}, X},)- forall 1 < ji, j» < c. [|

According to Theorem any decomposition factor X of the Hessian matrix X " X can be used
instead of X without changing the geometric properties of the CVP and its associated quantization
problem. This is useful to reduce the computational cost, e.g., we may use a square matrix
X € R*¢ instead of the rectangular matrix X € R™*¢. Section provides a clear summary of
the correspondence between the quantization and CVP concepts.

4.2 OBQ’S GEOMETRIC INTERPRETATION

We first demonstrate the geometric interpretation of OBQ (GPTQ’s slower predecessor) to facilitate
our equivalence proof of GPTQ and Babai’s algorithm in Section[4.3]

Theorem 2 (Error Propagation and Babai’s projection) Babai’s nearest plane algorithm itera-
tively projects the target vector onto the nearest hyperplane and rounds the coefficient. The OBQ
error propagation step (Eq.|2) is exactly this projection on the original basis B = X diag (s;)
without basis reduction.

Proof Let B = [by,. .., b.] be the basis with b; being a basis vector. Let J be the set of unprojected
indices with ji,jo € J and j; # jo. Lety = Zje] ¢;b; be the current residual target where
¢; € Ris areal number to be rounded to integers. Let NHP := |(;, | bj, + Span{b; | j # jo} be
the nearest hyperplane that is orthogonal to the Gram-Schmidt vector bj, — i PT0Jb, (bj,).
Figure |2| (a) is a 3D plot showing the projection error vector Ay = Projyyp (y) — y. We
focus on analyzing the error propagation in the direction of basis b;, induced by the projection
of basis b;, and collapse the span of other basis vectors to a single dimension as illustrated by
the hyperline HL := |(;,]bj, + Span{b;|j # j1,j2}. Figure 2| (b) is a 3D plot showing the

Under review as a conference paper at ICLR 2026

] Auxiliary Line in Orthogonal Directions
\ —— Basis Vector by,

—— Basis Vector by,
& Target Pointy : = %;jb;
Nearest Hyperplane NHP: = |{j,|bj, + Span{b; | j # >}
—— Hyperline HL : = [{},|bj, + Span{b; | j #j1,j2}
Babai's Projected Point Projyp(y) : = Z;({; + Agj)b;
—— Error Vector Ay : = Projyp(y) —y = Z;Agb;

—— Error Component Vector A by,
(a) [3D] Babai's Projection (b) [3D] Babai & OBQ Equivalence —— Error Component Vector A, by,

—— Remaining Error Component Vector 2; ., ;,Agjb;

—— Inverse Basis Vector nj, : (nj, b;) =1;n; Lb;, Vj#j;
Inverse Basis Vector nj, : (ny,, by,) =1;n;, L b;, Vj# >
Orthogonal Projection Plane OPP: = Span{n; | j =1, j}

----- Projected Basis Vector Projopp(by,)

SO (- Projected Basis Vector Projopp(by,)
F S (R PPPPN Projected Error Vector Projopp(Ay) = Ay = 3, j, ;,AZProjors(bj)

----- Projected Error Component Vector AZj, Projopp(bj,)

----- Projected Error Component Vector A}, Projors(bj,)
Angle 8 = £(nj,, n;,) =1 — L(Projopp(bj,), Projorr(b,))

(c) [2D] Nearest Hyperplane (d) [2D] Orthogonal Projection Plane

Figure 2: Equivalence of OBQ’s error propagation and Babai’s projection. (a) 3D plot showing
the target being projected onto the nearest plane. (b) 3D plot showing how the projection error is
propagated. (¢) 2D plot showing the vectors on the nearest hyperplane in (a-b). (d) 2D plot showing
the vectors on the orthogonal projection plane in (b).

decomposition of the error Ay = > jed A(;b; as the error component vectors in the basis directions.
Figure 2] (c) is a 2D plot showing the vectors on plane N'HP. The number ¢; will be updated to
(j + AG; such that Projyryp (y) = > c s ((+ AG) by. Next, let N = B T =[ng,...,n]
be the inverse basis. Then, we have (n;,b;) = 1 and n; L b;/,Vj # j'. We project all the
vectors in Figure [2[(b) onto the orthogonal projection plane OPP := Span{n,|j = ji,ja2}
that is orthogonal to the hyperline HL, and continue the proof in the 2D geometry in Fig-
ure 2| (d). Denote the angle § = Z(nj,.n;,) = 7™ — Z(Projopp (bj,),Projopp (bj,)).

Ay ||Pr0j07779(bj1)|| nj1777‘j2> ||n1'2|| <n317nj2>

Then, - = cosf = A2 — For j = 7j1,J9,
A [[Projorn (bss)| < [l [[llmse [|| (722 m4) J 172

. Proj b;)n; b; n; .. .
IProjopyp (b))l I = Eerelml = Sl = i For j.j € {jijah
(nj,ny) = (NTN)[j] = (B—'—B)71 [4,7/]. Combining the above equations,
_ Pretopp (Bl || (mai i) Ay (i) Ao (BIB) Tlival \o g
B = Meroiors o)l (o n) 25 = Qg 5592 = @B] 252 F
nally, substituting B = (X diag (s;)) [:, J] and {; = 1:?[[;]] completes the proof. [|

Auxiliary Line in Orthogonal Directions
Basis Vector b,

& Target Pointy: =3;gb;
—— Nearest Hyperplane (Hyperline) NHP: = |j,|bj, + Span{b; | j # 2}
% Babai's Projected Point Projyyp(y) : = Z;({j + Agj)b;
—— Error Vector Ay : = Projyuply) — Y = Z;Alb;
—— Error Component Vector AZj,bj,
~—— Remaining Error Component Vector 2; j,Ajb;
Inverse Basis Vector nj, : (nj,, by,) =1;nj, Lb;, Vj#j,

----- Projected Basis Vector Projn, (bj,)

Figure 3: Geometric interpretation of OBQ’s quantization order. This 2D plot shows the target being
projected onto the nearest plane.

Under review as a conference paper at ICLR 2026

Corollary 3 (OBQ Dimension Selection) Az each dimension selection step (Eq.[I), OBQ selects
the not-yet-quantized dimension j such that the nearest hyperplane of dimension j is the closest to
the target residual vector.

Proof We use the same notations defined in Theorem Figure [3| is a 2D plot showing
the distance (projection error or quantization error) between the target residual vector y and
the nearest hyperplane N'HP of the basis b;,. For better illustration, we collapse N'HP

to a single dimension. The distance ||Ay|| can be written as ||Ay| = HProjnj2 (Ay)H =
. NG IO NG, .
|AC, | ’PrOJnu (b,,)|| = | C’2“|T<L ‘JZ’Hn”H = |||n472||\. For each w;, OBQ independently selects
h 72 J2
. . i[i]—w;[§])2 . N . A
j o= argmijJ(X[;(,z][TJ]XEfJ[]])]zl[j,j] = argmlnjeJﬁ = argmlnjejﬁ as the next
dimension to quantize, which is exactly minimizing this distance. |

4.3 GPTQ AND BABAI’S ALGORITHM

Originally, GPTQ (Algorithm runs from the first to the last dimension (5 <— 1 to ¢) while Babai’s
algorithm (Algorithm [2)) runs from the last to the first dimension (j < ¢ to 1). This is the only
(superficial) difference between the two algorithms, as formalized below.

Theorem 4 (GPTQ and Babai) GPTQ and Babai’s algorithm without basis reduction will have the
same results if we align the dimensional order of these two algorithms, e.g., running GPTQ from the
last to the first dimension.

Proof We prove this theorem both geometrically and algebraically. We first present the geometric
proof. Theorem 2] shows that each intermediate weight vector produced by OBQ, equivalently GPTQ,
can be viewed as Babai’s residual vector in the activation space. At step j (running from the last to
the first dimension, j <— ¢ to 1), GPTQ’s error propagation update is exactly Babai’s projection at
step j, which projects the current residual of the target vector onto the hyperplane orthogonal to the
7-th Gram-Schmidt vector.

Alternatively, we present a more rigorous algebraic proof. Section[A.2|describes the exact quantization
procedures using Babai’s algorithm in more detail, with the pseudocode in Algorithm[d] Appendix
contains the equivalence proof, in which we proceed in three steps. First, we rewrite GPTQ to track
the cumulative quantization error and show that this form is algebraically equivalent to the standard
implementation. Second, we run GPTQ in the back-to-front order and replace the lower triangular
factor by an upper triangular one, so that each update affects only the not-yet-quantized coordinates.
Third, we prove that the step-wise rounding decisions of the back-to-front GPTQ coincide with those
of Babai’s algorithm.]

Geometric interpretation of GPTQ. Theorem E] shows that, if we regard the activations as the
lattice basis and transform the floating-point weight vector as a target vector in the activation space,
GPTQ performs an orthogonal walk through a nested sequence of affine subspaces in a pre-computed
dimensional order.

Ineffectiveness of composing algorithms. A seemingly appealing idea is to take the solution
returned by any Babai iteration and then perform one further GPTQ-style error propagation step
on the weights in the activation space, hoping to push the approximation even closer to the optimum.
However, as proven in Section such an extra update vanishes: the final results of Z and Q
remain unchanged. In other words, once Babai’s projection has been executed, any subsequent
GPTQ-style correction is algebraically redundant. This confirms that the equivalence in Theorem 4]
is already tight; neither algorithm can be strengthened by composition.

4.4 GPTQ’s ERROR BOUND

Having established the correspondence between GPTQ and Babai’s nearest plane algorithm, we can
now import Babai’s approximation guarantee to obtain an upper bound on the layer-wise quantization
error in the no-clipping setting.

Under review as a conference paper at ICLR 2026

Theorem 5 (GPTQ Error Bound) Assume no clipping (Z; = Z) and let T' be the permutation
matrix of the reversed GPTQ quantization order (equivalently P with the reversed column or-
der). Let D be the diagonal matrix of the LDL decomposition of the permuted Hessian matrix
TT"XTXT. For every output channel i (1 < i < r) produced by Babai’s algorithm, or equiv-
alently GPTQ algorithm executed back-to-front, the (absolute) quantization error has a tight up-

per bound: || X diag (s;) z; — Xw;|* < 1 (T‘lsi)T D (T~ 's;). For the relative bound for

1
v with || X diag (s;) z; — Xw;|| < v - ming ez [| X diag(si) z; — Xw;l, we have 1 < v <

> 43 d;r - _ .
\/1 +maxi<j<. =~ <Ve+ 1 maxicjcj<e <5 where d;j = VD 31 |(T1s;) [4])-
J p

The full proof of Theorem [3]is presented in Section [C.1} If the scales s; are small enough, we may
assume the weights w; are nearly uniformly distributed within the hyper-cuboid constructed by
Babai’s orthogonalized basis vectors, the expected absolute error will be % of the worst-case bound.
See Section [C.2]for a proof.

4.5 THE ROLE OF QUANTIZATION ORDER IN GPTQ

The quadratic form on the right-hand side of the absolute error bound in Theorem [3]is sensitive
to the pivot order of the LDL decomposition of the Hessian matrix; this is the quantization order.
Re-ordering the dimensions changes the entries of the diagonal matrix D before the scale s; is
“weighted” by them. A poor order may place large D entries against large s; entries and hence inflate
the bound. For a batched quantization algorithm like GPTQ, the order should be independent of the
output channel . To develop a good heuristic order, a reasonable approximation to make, especially
for large quantization group sizes, is that the elements of s;[j] are equal for all 1 < j < ¢. Then
we can focus on finding the optimal pivot order for the LDL decomposition of the Hessian matrix
X " X to minimize tr (D).

Finding the optimal order is NP-hard (Rose et al.,|1976). However, heuristics often effectively reduce
the trace term in practice. Even with clipping, heuristics can reduce the error. GPTQ introduces
the act-order, the descending order of the Hessian diagonal, i.e. the ascending order of the Hessian
diagonal when applied to Babai’s algorithm.

To improve upon act-order, we propose the min-pivot order, which is essentially taking the minimum
diagonal entry at each LDL (or Cholesky) decomposition step. This order can be calculated by
Algorithm [3] which has cubic time complexity and does not increase the overall time complexity
of quantization. This order also has a geometric interpretation, as the order of the Gram-Schmidt
orthogonalization process of the basis: always taking the shortest residual vector as the next one to
orthogonalize, agreeing with Babai’s relative error bound. Across our preliminary runs (Section [C.3),
min-pivot consistently reduces tr (D) relative to act-order, but the downstream accuracy gains are
modest. We nevertheless report min-pivot as a principled choice, and view act-order as a cheap
approximation that only considers the Hessian diagonal, which already captures most of the benefit
when the Hessian matrix is well-conditioned.

Algorithm 3: Min-Pivot
Input: Hessian H € R¢*¢
Output: order encoded as a permutation matrix T" € {0, 1}
1 J « {1,...,c} //initialize the not-yet-pivoted indices
2 T < 0// initialize the output permutation matrix
3 for j < 1tocdo
4 j' < argmin; c ;H[j', j'] // choose next index with the smallest current diagonal
5 H «+ H - H[,,j)|H[j',:]/H]j’, j'] // updates remaining entries with rank-1 Schur
complement
6 T[4, 4] + 1// record the index
7 J « J\ {j'} // mark pivot as used
8 end

cXc

Under review as a conference paper at ICLR 2026

5 APPLICATIONS

The original GPTQ algorithm clips the overflowed integers at the rounding step, introducing large
errors that violate the error bound in Theorem 5} In this section, we explore error-guaranteed variants
of GPTQ that work in the no-clipping regime.

We notice that enforcing no-clipping by simply increasing scales is counterproductive: larger scales
enlarge the bound, and the resulting errors can exceed those of a clipped scheme such as MSE. Hence,
any practical no-clipping design must account for the weight distributions that are known to have
heavy outliers (Li et al.}[2025). We would still like to apply small scales, but use small bitwidths for
the bulk of inliers while handling the overflowed outliers with more storage budget without clipping
them. We therefore propose two overflow-tolerant schemes.

Scale-adjusted SpQR (SSQR). SpQR (Dettmers et al.,2024) keeps a small set of outliers in full preci-
sion, but it still leaves clipping in place: weights are grouped, the outliers and a shared scale are chosen
per group before the GPTQ updates, and there is no guarantee the updated inlier weights stay within
the representable range. We design SSQR with a scale-adjustment mechanism to fix this issue. For
simplicity, we discard SpQR’s second-level quantization for the scales. For a weight vector w; € R,
we represent the quantized weight g; € R€ as diag (s;) z; + &; where z € Z‘{ is the low-bitwidth inte-
ger weight vector, s; € R%, is the floating-point scale vector with each scale shared per group (only
one number per group is actually stored), and &; € R¢ is the sparse floating-point outlier vector (stored
in the compressed sparse row format, CSR) that captures all the overflowed weights after GPTQ’s er-
ror propagation. The scale-adjustment mechanism tunes the scale s; until the density of &; satisfies the
specified rate. Because exhaustive trial-and-error over per-group scales is infeasible in large layers, the
mechanism only proportionally changes s; so that the search space reduces to one dimension. With the
observation that the outlier rate is negatively related to the scales in general, this can be done via binary
search: initialize s; using MSE, quantize w; with the specified format using GPTQ without clipping,
calculate the density of §;, and adjust s; and iterate. Section Algorithm [9]is the pseudocode.

Huffman-encoded post-training quantization (HPTQ). To better align with the infinite,
unconstrained lattice in CVP, we design HPTQ, which represents both inliers and outliers in a unified,
equal-spaced integer grid. The idea is to use Huffman encoding, which was also explored for
network compression by [Choi et al.|(2017). We quantize the weight matrix W € R°*" as Q = sZ
with a single scalar s € R and integers Z € Z“*". We select s via an entropy-guided binary
search: initialize a range proportional to the maximum weight, quantize to unclipped integers with
GPTQ, measure the Huffman coding cost of Z, and adjust s until the encoded bits meet a target
average bitwidth. This yields uneven-bitwidth representations that preserve accuracy while meeting
a compression budget. Section [D.T] Algorithm [TT]is the pseudocode.

Experiments compare round-to-nearest (RTN), original GPTQ, HPTQ, and SSQR with 1~5% outliers.
We also include Huffman-encoded RTN (HRTN) as a baseline to HPTQ, which mirrors HPTQ
but replaces GPTQ with RTN (Pseudocode: Section [D.T] Algorithm[I2)). The quantization order is
act-order for all methods. RTN, GPTQ, and SSQR use group size 128. RTN and GPTQ calculate the
scales with the MSE method. Figure[d (a-b) shows that HPTQ sustains low perplexity on Qwen3-8B
at reduced bitwidths and scales favorably across model sizes, with 3.125-bit emerging as Pareto
optimal in terms of perplexity vs compression. The experimental setup and additional metrics,
including the benchmark results, are detailed in Sections and[D.J3]

CUDA inference kernel. We implement an inference kernel for SSQR in CUDA/C++, optimized
for low-batch latency, handling both the dense inliers and sparse outliers while targeting the Ampere
platform. The kernel supports group-quantized inlier weights in the 2-4-bit range with scales in 16
bits and support for unstructured sparsity, used to avoid weight clipping. Figure] (c) visualizes the
end-to-end speedup in the LLM decoding phase vs the PyTorch BF16 kernel. Our kernel achieves
about 2 x speedup across different bitwidth and outlier rate settings when generating 128 new tokens
at a batch size of 1. Technical details and layer-wise speedups are described in Section[D.4]

6 CONCLUSION

We have shown that GPTQ, when executed back-to-front, is mathematically identical to Babai’s
nearest plane algorithm applied to the lattice defined by a layer’s Hessian without basis reduction.

Under review as a conference paper at ICLR 2026

%0 Different Methods on Qwen3-8B 8l(-)[PTQ on Qwen3-0.6/1.7/4/8/14B 2SSSQR on Qwen3-8B (A6000 GPU)
o 2.
—e— RIN Average Bitwidth [bit] % L\‘Q;:‘Q‘:
> GPTQ B —o— 4125 =120
E —o— HRIN 40 —o— 3.125 5
B 40 —e— HPTQ B 2.125 i~}
& BF16 2 & L5
Q -@- ssQr-% | 20 <
3 20 -@- SSQR3% | B < 1.0
= = 53
iv] SSQR-5% v} 10 2, Inlier Bitwidth [bit]
= = Pareto Optimal : 0.5 4 - —
10 | s g oo -3
2.125 3.125 4.125 5.125 01 2 3 456 738 0 1 2 3 4 5
Average Bitwidth [bit] Model Size [GB] Outlier Rate [%)]

(a) (b) (c)

Figure 4: (a) Comparison of quantization methods (RTN, GPTQ, HRTN, HPTQ, and SSQR with
1~5% outliers) on Qwen3-8B evaluated on WikiText-2. Perplexity is plotted against the average
effective bitwidth per weight, with the BF16 baseline shown as a horizontal line. HPTQ has the
best (lowest) perplexity. See Section [D.3]for zero-shot evaluation results. (b) Scaling behavior of
HPTQ across multiple model sizes (0.6B, 1.7B, 4B, 8B, 14B) and bitwidths (4.125, 3.125, 2.125).
The x-axis denotes the effective model size after quantization, and the y-axis shows perplexity on
WikiText-2. Each curve corresponds to a fixed bitwidth, while points along a curve represent different
model scales. Using our HPTQ method, 3.125-bit stands out as the Pareto optimal bitwidth (optimal
perplexity vs compression trade-offs). (¢) End-to-end inference speedups of our SSQR kernel vs the
PyTorch BF16 matrix multiplication kernel on NVIDIA RTX A6000 GPU. We run the Qwen3-8B
model across multiple outlier rates (0%~5%) and inlier bitwidths (4, 3, 2) and measure the TPOT
(time per output token) metric. Our kernel achieves about 2 x speedup end-to-end.

Based on this theory, we propose error-guaranteed practical methods and provide optimized CUDA
kernels that deliver low-latency inferences. Looking ahead, extending the analysis to clipped grids and
exploring (scale-aware) basis reductions are the immediate next steps. We will also extend the lattice
view beyond weight-only linear layers to activation and KV-cache quantization. More broadly, the
lattice perspective opens a two-way channel: decades of CVP heuristics can refine practical quantizers,
while the behavior of massive neural networks may, in turn, inspire new questions for lattice theory.

ETHICS STATEMENT

Throughout this work, we have strictly adhered to the ICLR Code of Ethics. All datasets utilized in
our experiments are publicly available and widely recognized within the scientific community. We
ensure that these datasets do not contain any personally identifiable information or sensitive content.
Our work does not involve human subjects, animals, or any form of personal data collection. We have
thoroughly considered potential dual-use concerns and do not foresee any harmful applications of our
methods. There are no conflicts of interest to declare, and no external sponsorship influenced the
outcomes of this research. All experiments were conducted with integrity and transparency.

REPRODUCIBILITY STATEMENT

We are committed to ensuring that our work is transparent and reproducible. To facilitate this, clear
explanations of any assumptions and a complete proof of the claims have been included in the main
text and appendix. We also share the source code as part of the supplementary materials. The code
is documented and includes instructions for setting up the environment, running the simulations,
and reproducing the results presented in our paper. By making our resources openly available and
providing detailed explanations, we aim to enable the research community to validate and build upon
our findings.

REFERENCES

Lészl6 Babai. On lovasz’ lattice reduction and the nearest lattice point problem. Combinatorica, 6(1):
1-13, March 1986. ISSN 1439-6912. doi: 10.1007/BF02579403. URL https://doi.org/
10.1007/BF02579403.

10

https://doi.org/10.1007/BF02579403
https://doi.org/10.1007/BF02579403

Under review as a conference paper at ICLR 2026

Johann Birnick. The lattice geometry of neural network quantization — a short equivalence proof of
gptq and babai’s algorithm, 2025. URL https://arxiv.org/abs/2508.01077.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-
bit quantization of large language models with guarantees. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 4396-4429. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
f1le/0df38cdl13520747eleb4e5bl23a78ef8-Paper—Conference.pdf.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Towards the limit of network quantization. In
International Conference on Learning Representations, 2017. URL https://openreview,
net/forum?id=rJ8uNptgll

Tim Dettmers, Ruslan A. Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh
Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. SpQR: A sparse-quantized
representation for near-lossless LLM weight compression. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL |https://openreview.net/forum?id=
Qlu25ahSuy.

L. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating cvp to within almost-polynomial fac-
tors is np-hard. Combinatorica, 23(2):205-243, apr 2003. ISSN 1439-6912. doi: 10.1007/
s00493-003-0019-y. URL https://doi.org/10.1007/s00493-003-0019-vy!

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 12284—12303. PMLR, 21-27 Jul
2024. URL https://proceedings.mlr.press/v235/egiazarian24a.html.

Elias Frantar and Dan Alistarh. = Optimal brain compression: A framework for accu-
rate post-training quantization and pruning. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 4475-4488. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
1caf09c9f4e6b0150b06a07e77£2710c—-Paper—Conference.pdfl

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=tcbBPnfwxsS.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference, 2021. URL https:
//arxiv.org/abs/2103.13630.

Babak Hassibi, David G. Stork, and Gregory J. Wolff. Optimal brain surgeon and general network
pruning. In IEEE International Conference on Neural Networks, pp. 293-299 vol.1, 1993. doi:
10.1109/ICNN.1993.298572.

Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res., 12(3):
415-440, August 1987. ISSN 0364-765X.

Eldar Kurtic, Alexandre Marques, Shubhra Pandit, Mark Kurtz, and Dan Alistarh. " give me
bf16 or give me death"? accuracy-performance trade-offs in llm quantization. arXiv preprint
arXiv:2411.02355, 2024.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky
(ed.), Advances in Neural Information Processing Systems, volume 2. Morgan-Kaufmann,
1989. URL https://proceedings.neurips.cc/paper_files/paper/1989/
file/6c9882bbaclc7093bd25041881277658-Paper.pdfl

11

https://arxiv.org/abs/2508.01077
https://proceedings.neurips.cc/paper_files/paper/2023/file/0df38cd13520747e1e64e5b123a78ef8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0df38cd13520747e1e64e5b123a78ef8-Paper-Conference.pdf
https://openreview.net/forum?id=rJ8uNptgl
https://openreview.net/forum?id=rJ8uNptgl
https://openreview.net/forum?id=Q1u25ahSuy
https://openreview.net/forum?id=Q1u25ahSuy
https://doi.org/10.1007/s00493-003-0019-y
https://proceedings.mlr.press/v235/egiazarian24a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/1caf09c9f4e6b0150b06a07e77f2710c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/1caf09c9f4e6b0150b06a07e77f2710c-Paper-Conference.pdf
https://openreview.net/forum?id=tcbBPnfwxS
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf

Under review as a conference paper at ICLR 2026

Arjen Klaas Lenstra, Hendrik Willem Lenstra, and Laszl6é Lovéasz. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4):515-534, dec 1982. ISSN 1432-1807. doi:
10.1007/BF01457454. URL https://doi.org/10.1007/BF01457454.

Xinlin Li, Osama Hanna, Christina Fragouli, and Suhas Diggavi. ICQuant: Index coding enables
low-bit LLM quantization. In Second Conference on Language Modeling, 2025. URL https:
//openreview.net/forum?id=m6nBgFSMTLL

Sasha Luccioni, Yacine Jernite, and Emma Strubell. Power hungry processing: Watts driving the
cost of ai deployment? In Proceedings of the 2024 ACM Conference on Fairness, Accountability,
and Transparency, FAccT 24, pp. 85-99, New York, NY, USA, 2024. Association for Computing
Machinery. ISBN 9798400704505. doi: 10.1145/3630106.3658542. URL |https://doi.org/
10.1145/3630106.3658542.

Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: A Cryptographic
Perspective, volume 671 of The Springer International Series in Engineering and Computer
Science. Springer, New York, NY, 1 edition, 2002. ISBN 978-0-7923-7688-0. doi: 10.1007/
978-1-4615-0897-7. URL https://doi.org/10.1007/978-1-4615-0897-7.

Donald J. Rose, Robert E. Tarjan, and George S. Lueker. Algorithmic aspects of vertex elimination
on graphs. SIAM Journal on Computing, 5(2):266-283, 1976. doi: 10.1137/0205021.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. QulP#:
Even better LLM quantization with hadamard incoherence and lattice codebooks. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 48630-48656. PMLR, 21-27 Jul
2024a. URL https://proceedings.mlr.press/v235/tseng24a.html.

Albert Tseng, Qingyao Sun, David Hou, and Christopher De. Qtip: Quantization with trel-
lises and incoherence processing. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing
Systems, volume 37, pp. 59597-59620. Curran Associates, Inc., 2024b. doi: 10.52202/
079017-1904. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/6de2e84b8dad /bb2eb5e2ac96c63d2b0-Paper—Conference.pdfl.

P. van Emde Boas. Another np-complete problem and the complexity of computing short vectors in a
lattice. Technical Report 8104, University of Amsterdam, Department of Mathematics, Netherlands,
1981.

12

https://doi.org/10.1007/BF01457454
https://openreview.net/forum?id=m6nBgFSMTL
https://openreview.net/forum?id=m6nBgFSMTL
https://doi.org/10.1145/3630106.3658542
https://doi.org/10.1145/3630106.3658542
https://doi.org/10.1007/978-1-4615-0897-7
https://proceedings.mlr.press/v235/tseng24a.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/6de2e84b8da47bb2eb5e2ac96c63d2b0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/6de2e84b8da47bb2eb5e2ac96c63d2b0-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

A APPLYING BABAI’S ALGORITHM TO BATCHED QUANTIZATION

A.1 QUANTIZATION-CVP CORRESPONDENCE

Table[I]is a take-away dictionary showing the correspondence between the quantization and CVP
concepts.

Table 1: Quantization-CVP dictionary for the output channel .

Quantization symbol CVP interpretation

Input activation X € R"*¢ Basis directions (columns are generators)

Scale s; € R;O Basis stretches

B(;) = X diag(s;) € R"*¢ Lattice basis (columns are generators)

Weight w; € R¢ Floating-point coordinates on the unstretched basis
Integer weight representation z; € Z Integer coordinates on the lattice basis

Dequantized weight q; = diag (s;) z; € R® Dequantized coordinates on the unstretched basis
Target output activation y;) = Xw; € R™ External target vector to approximate

13

Under review as a conference paper at ICLR 2026

A.2 BABAI’S QUANTIZATION ALGORITHM

Given the equivalence we have shown in Section the quantization problem can be converted to
CVP, allowing us to apply Babai’s nearest plane algorithm in the context of quantization. A naive
way is to compute B(;y = X diag (s;) and y(;) = Xw; and run Babai’s algorithm independently for
all 1 <17 < r. However, this is computationally inefficient, as we will need to compute the expensive
O (04)) LLL basis reduction transformation T7;) for the basis B;) and the expensive (O (03)) QR
decomposition of A ;) = B(;T|; for r times. However, a few adjustments can be made to simplify
the computation and enable batched processing.

Disabling basis reduction. The LLL basis reduction is unfortunately scale-sensitive, generating
different transformations T\ for different scales s; (unless all the s; vectors are parallel), which
prohibits the reuse of QR decomposition results. Furthermore, LLL basis reduction is incompatible
with clipping, as the roundings are performed in another basis, and there is no easy way to do the
clipping for the original basis.

Changing quantization order. Quantization order is a feature in GPTQ that controls the rounding
and clipping order of the dimensions. This order influences the quantization error, as we discuss
in Section[4.5] In the context of Babai’s algorithm, this corresponds to the order of the basis in the
Gram-Schmidt orthogonalization and the hyperplane projections, as shown in Figure[I](g-h). To do
so, we can replace the LLL basis reduction in Babai’s algorithm with a permutation by setting the
transformation matrix T" to a permutation matrix that is independent of <.

Theorem 6 (Babai’s Quantization Order) If T is a permutation matrix that does not depend on i,
the orthogonal matrix ® can be reused without recomputing the QR decomposition for each i.

Proof The permutation matrix 7' € {0, 1} has exactly one non-zero element in each row and
column. Scaling the rows of T" can also be interpreted as scaling the columns of T, therefore its
multiplication with a diagonal matrix has property: diag (s;) T = T diag (T 's;). Let A = XT,
Ay = X diag (s;) T'. Denote the QR decomposition of A as A = ® R with ® being an orthogonal
matrix and R being an upper triangular matrix. Then, the QR decomposition of A ;) becomes A ;) =
X diag (s;) T = XT diag (T 's;) = A diag (T"'s;) = ® (Rdiag (T~'s;)). Therefore, the
QR decompositions of A(i) share the same orthogonal matrix ® forall 1 <17 < 7. |

As shown in Theorem [6] changing quantization order does not require repeated computation of the
QR decomposition. Note that, we also need to permute the scale S accordingly to T~ S.

Selecting basis. Putting things together, we are Algorithm 4: Babai’s Quantize
interested in A = X'T and its QR decomposition

®. Theorem [T|allows us to choose any Hessian glptut.t?i; S, X, T, A\ 24
factor X while keeping the result intact. With- utput: Z, Q

T(xT

out loss of generality, we can choose a X such 1 H<T (X X + /\!r) T
that A is an upper triangular matrix and the QR 2 A < CHOLESKY (H)
decomposition becomes trivial: ® = I, which 3 W, S« T 'W, T 'S
simplifies the computation. The upper triangu- 4 Y ,Q,Z < AW W, 0
lar matrix A can be directly computed from the 5 for j < cto 1 do
Cholesky decomposition of the permuted Hessian 6 w <« Y[j,:]/Alj, 7]
matrix ATA=TTXTXT. 7 ¢« w/S[j,1]
Applying all the considerations in this subsection, 8 Zb.’] - RO[.H,\ID (¢, ZT)

- o9 | Qi+ Z[5, * S[i,]
we construct Algorithm [for batched quantiza iy 0
tion using Babai’s algori 10 Y <Y - AL 51Ql

g Babai’s algorithm. 11 end

12 Z,Q+TZ,TQ

14

Under review as a conference paper at ICLR 2026

B ALGEBRAIC EQUIVALENCE PROOF OF GPTQ AND BABAI’S ALGORITHM

In this section, we prove Theorem [that GPTQ (Algorithm [I)) and Babai’s algorithm (Algorithm F)
are equivalent if the dimensional orders are opposite.

Because a permutation matrix acts only as re-ordering coordinates, we may apply the permutation
once at the beginning (to W, S, and X) and once at the end (to Z and Q) without affecting any
intermediate arithmetic. Hence, all algebras performed inside the two algorithms can be analyzed on
the permuted basis where the permutation matrix is the identity. On that basis, the sole distinction
between GPTQ and Babai’s algorithm lies in the direction of the iterations. Proving that GPTQ
running back-to-front (j <— c to 1) reproduces Babai’s updates in Babai’s default iteration direction
would complete the equivalence proof.

We follow a three-step proof scheme.

* Step 1. Proving that the original GPTQ algorithm (Algorithm 5)) that uses relative quantiza-
tion error row vector € € R1*" is equivalent to a new algorithm (Algorithm@) using the
absolute quantization error matrix A € R¢*",

* Step 2. Reversing the iteration in Algorithm [6]and writing the reversed-iteration algorithm
as Algorithm

* Step 3. Proving that the reversed-iteration algorithm Algorithm[7]is equivalent to Babai’s
algorithm Algorithm 8]

Algorithms [5] to [§] are intentionally written in the linear algebra form. e; € R€ is the standard
basis vector whose elements are 0 except the j-th element being 1, which is used as the row or
column selector of a matrix. The superscripts in parentheses denote the versions of the variables
during the iterations. w,{ € R!'*" are intermediate row vectors. Additionally, L is the LDL

decomposition of the Hessian inverse H ! = LDE Dé LT where L is a lower triangular matrix
with all diagonal elements being 1, and Dé is a non-negative diagonal matrix. Similarly, U is the
“UDU” decomposition of the Hessian inverse H ' = U Dé DéU—r where U is an upper triangular
matrix with all diagonal elements being 1, and Dé is a non-negative diagonal matrix.

Note: the symbols are overloaded in Algorithms [5|to[8] and the variables using the same symbols
may carry different values, even if the inputs to the algorithms are the same.

B.1 STEP1

To distinguish the variables using the same symbol in Algorithms [5|and [6] we use symbols without *
to denote the symbols in Algorithm[3] and use the symbols with ~ for Algorithm [6]

Claim

(.Uj:&.?j, 1§]§C7 (3)
and consequently,
7G) — ZA(J'), 0<j<e, “4)
and _ Ny
QW =09, o<j<ec &)
Proof Eq.[3|by Induction
The following equalities are held by the design of AlgorithmsE] and@
QO =900 = wO — WO, (6)
Wi —elWU-D 1<j<e N
o) — ejTW(j—l), 1<j<e (8)
Q) = QU 4o (ejTZU) diag (STe;) — eJTQufl)) , 1<j<ec ©)

15

Under review as a conference paper at ICLR 2026

Algorithm 5: GPTQ Original (Front-to-Back)

Input: W, 5, X, \, Z;
Output: Z,Q

H« X"X 4+

L+ LDL(H™)

wO w

QY zO WO ¢
for 7 < 1tocdo

¢« w) diag (STe;) ‘
ZU) + 70U~V + e; (ROUND (¢, Z;) —e] ZU~D)
el eJTQ(J‘) — wW

wU) « wi-1 ¢ LejE(j)

—1

N-I-CREEN - WU B S VL

[
>

p—
[SR

end
Z,Q« 79,QY

Y
w

Algorithm 6: GPTQ Type-2 (Front-to-Back)

Input: W, S8, X,)\, Z;
Output: Z,Q

H« X"X 4+

L+ LDL(H™)

wO —w

QY. ZO WO o

for j < 1tocdo

w@) eij(jfl)
¢+ w) diag (STe;)
ZU) « ZU=Y + e; (ROUND (¢, Zt) —e] ZU~1)
QUY) «— QU-Y 4 e; (esz(j) diag (STej) - ejTQ(j—l))
AU — QY — WO // new

W0 « WO — LAV // new

—1

N-I-CREEN - WU B S VL

[
=

—
N

end
Z,Q« 29,QV

i
w

16

Under review as a conference paper at ICLR 2026

Algorithm 7: GPTQ Type-2 (Back-to-Front)

Input: W, S, X, \, Z;

Output: Z,Q

H« XTX +)

U «+ UDU (H™!) // new

weth) « w

(}2(c—i—1)7 Z(c+1) W(C+1), 0

for j < cto1ldo

wl) e;rw(jJrl)

¢ — w) diag (S’Tej)f1

Z) « zG+1) L e; (ROUND (C(j)7ZT) — ejTZ(j-‘rl))
QY «— QU + e; (esz(j) diag (STej) — e]TQ(jH))
AU QU) — Wit

W0 « Wt —U-1AG) // new

o 00 N NN hAE W N =

p—
=}

p—
[S

end
Z,Q« zW,QY

p—
w

Algorithm 8: Babai-Quantize (Default Order)

Input: W, 5, X, A, Z;
Output: Z,Q

H+ XTX +I

A « CHOLESKY (H)
Y (et Qe Z() o AW, W,0

for j < cto1ldo
el Yy @+l
J

e] Ac,
¢ — w) diag (S’Tej)f1
ZU) « zG+1) L e; (ROUND (C(”,ZT) _ esz(jH))
QY «— QU + e; (esz(j) diag (STej) — e]TQ(jH))
YU yU+1) _ AejejTQ(j)

T

N AW N =

A= I Y

10 end
11 Z,Q+zW QW

—

17

Under review as a conference paper at ICLR 2026

OV = QUY 4 e, (ejTZW diag (ST e;) — ejTQ“*”) , 1<j<e (10)
e —el QY —wl), 1<j<e (11

AN =QW WO, 1<j<e (12)

W =wWU-D 4 Le;e®, 1<j<e (13)

WO =wO _ LAV, 1<j<e (14)

Extend the definition of AU) (Eq.[12) for j = 0,

AW — Q(j) _ pi/'(O)7 0<j<e. (15)
Then we have A0 =QO) WO = WO _ WO =0, 5o that Eq.can also be extended for
=0 WO =wO _ 1AW o<j<e (16)
(1) Eq.f]holds for j = 1:

Using Eqs.[6] [7} B
w® — elT‘,V(o) _ elTW(O) = o, (17

(2) Assume Eq.E]holds forall j < j,, 1< j, <ec

Because L is a lower triangular matrix with all diagonal elements being 1, L™! is also a lower
triangular matrix with all diagonal elements being 1.

Forl1<j<k<eg,

e;Lek = e;rL_le,zc =0. (18)
For1 <j<eg,
e/Lej=e, L 'e; = 1. (19)
Forl <j <eg,
J
e;r_HL <Z eke;cr>
k=1

(&
_aT T T T
=e; L (ekek> —€j41€1 — E epey
k

k=j+2

J+1 c
T T T T T T
=e; L eye, | —e.Lejiej —e;j L E eiey
k

k=1 =j+2 (20
:eLlLI - e;-rH - Z e;-rHLeke;— (Eq.[19)
k=j+2
=e/ L —el — Z Oey, (Eq.[T8)
k=j+2
=e/ (L-1).

With Eq.0} for 1 < j < ¢,1 <k <candj#k,
el QY =] (U1 +e; (e] 2V diag (STe;) — e/ QUV))
—e/QU™Y te]e; (ejTZ(j) diag (STe;) — ejTQ(j—n) o
—e/ QUV 10 (e]TZ(j) diag (STe;) ejTQ(j—1)>
:e;Q(j—l)_

18

Under review as a conference paper at ICLR 2026

Recursively applying Eq.2T} for 1 < j <¢,1 <k <e¢,

>
>

(k) fl1<k<ij3<
el QW) — Q nlsr=~J>¢
@ { 1Q0 =] WO ifi<j<k<e (22)
Similar to Eq.22] with Eq.[I0} for1 < j <¢,1 <k <,
Ay k . .
TQ<0> —e, WO ifi<j<k<ec
With Eq.23] for1 < j <¢,1 <k <eg,
ef AW =] (Qm _ W(o>) (Eq.[13)
=] Q) — e/ W 24)
B egQ(k) — egW(O) =e] A ifl<k<j<ec,
o ekTW(O) — e;VAV(O) =e]A0D =0 ifl<j<k<c
Forl1<k<j<eg,
eZLA(j)
—e] LIAY)
_ekL <Z ek,ek/> A(])
k=1
= e Leyel AV
k=1
k c)
= (Z e/ Lek,ek,A(J)> + (Z e,ILek/eg,A(”)
k=1 K =k+1
k c .
- (Z el Lepe[A% >> + (> 09£A“’) (Eqs. [T8 29)
k=1 K =k+1 (25)
= (Oe{,AW) (Eq.2%)
=k+1
(1

(Z e Lek/ek/A(>+
k'=1

(e} Lepel, A | + e;Lek/ekT,A(k)> (Eq.[T8)
k=1

=k+

Z Lek/ek,A

_ekL <Z ek’ekl> A(k)

k'=1
—e] LIA®)
—e] LA®),

19

Under review as a conference paper at ICLR 2026

Forl <j <g,

k=1
j—1 c
:(e;rL_lekeTA(J 1)> —i—e;L le;e]l AU-D 4 Z e;—L lepe, AU
k=1 k=j+1
i-1 c
= e;'—L_leke;A(j_l)> +e;L_1ej0+ Z 0e] AU-D (Eqs.[T8] [24)
k=1 k=j+1
Jj—1 c
= e;rL lepey AU 1)> + Z Oej AUY +eTA(J)—e;AU)
k=1 k=j+1

:ejTLfllA(j) _ ejTA(j)
=e] (L' -T) AV

(26)
According to the assumption, for 1 < k < j, < ¢, we have
ef W=D = () — 5B — g W k=1 (27)
and
Q" =Q™W. (28)

20

Under review as a conference paper at ICLR 2026

FOr]. S k S j*3
e® = QW) — w® (Eq.[TT)
—e] QW) —] WD
—e] (Q(m _ W(k—l))
el (Q") -~ WD) (Eqs. 27} 28)
—eT (Q<k> _ (W(m ! AUH))) (Eq.[T6)
A) (29)
e (@))
—e] (A<k> + L*1A<’H>) (Eq.[T3)
o] (AW + (L7 1) AW) (Eq.26)
—e L TA®)
WUt :ejT*HW(j*) (Eq.[7)
=ej 11 (W(j*_l) + Lejﬁ(j*)) (Ea. 13
Jx
s (wor (e o
k=1
~ J* y
(w0 (S raefsa)) e
k=1
~ Jx 1
=e; 1 (W“” +L (Z ewl) LlAW) (30)
k=1
—e] 1 (WO + (@ -1 L71AUY) (Eq.20)
—el s (W(o) _LAGY 4 A(j*))
e] 41 (W® - L71A0) +0) (Eq.29)
oL 0
=e] WU (Eq.[T6)
— Ut (Eq.[B).
Eq.[3holds for j = j, + 1. u
B.2 STEP2

Algorithm [7] (back-to-front order) is generated by reversing the iteration direction of Algorithm [6]
Besides changing the direction of the index j, we also need to change the LDL decomposition to a so-
called “UDU” decomposition so that the error propagation is correctly applied to the not-yet-quantized
weights in the front dimensions.

Justification

Let P be the anti-diagonal permutation matrix with P = PT = P~1. Let L be the LDL decomposi-
tion of the permuted Hessian inverse PH ~1P = ﬁf)g ﬁf LT where L is a lower triangular matrix

A L
with all diagonal elements being 1, and D7 is a non-negative diagonal matrix.

21

Under review as a conference paper at ICLR 2026

Since we are changing the iteration direction instead of applying the permutation, we permute the
matrix L back, yielding U = PLP. Alternatively, U can be calculated using the decomposition

~ A L A L ~ 1 1
H-'=PLPPD;PPD; PPL'P = UD{ Dy U where U is an upper triangular matrix with
1 A L
all diagonal elements being 1, and D = P D¢ P is a non-negative diagonal matrix.

The decomposition to calculate U from H ~! is what we call “UDU” decomposition, which can be
considered as a variant of the LDL. decomposition.

B.3 STEP3

To distinguish the variables using the same symbol in Algorithms[7]and[8] we use symbols with " to
denote the symbols in Algorithm[7} and use the symbols with ~ for Algorithm §]

1 —1
We have the Cholesky decomposition of H: H = (H’l)f1 = (UDéD%UT) =
T
(Di*U~") DU sotha A= DyPU

Claim

wj=wj, 1<j<gc 31
and consequently,
ZW =20 1<j<c+1, (32)
and
QY =QY, 1<j<c+1. (33)

Proof Eq.[31] by Induction

Forl <j <g,
Ty (G+1)
o0 :L
e; Ae;

eJTy(j+1)

e;rDG%U—lej
el Y U+ (34)
Dy *[j, 4]
1o ,
:DG[j,J]ejTy(JH)

—e] DZYUD,

The following equalities are held by the design of Algorithms|[6]and [8}

Q(C_H) _ Q(C—H) — Wit — w. (35)
YD) = AW = DS PU-IW. (36)

QW) = QU 1 (ejTZA(j) diag (STe;) — e]TQ(Hl)) . 1<j<ec (38)
QU = QU+ e; (] 29 ding (STe;) — e QUTV), 1<j<e (39)
AW = QW) Wt 1 <j<e (40)

WO = Wwlet) _yg1A@, 1<j<e. (41

y(@ — y@+h _ AejejTQ(j) —yU+h _ DE%U*lejejTQ(j)7 1<j<ec (42)

22

Under review as a conference paper at ICLR 2026

Because U is an upper triangular matrix with all diagonal elements being 1, U ! is also an upper
triangular matrix with all diagonal elements being 1.

For1<k<j<eg

e,Ue,=e, U 'e, =0. (43)
e/U=e¢/. (44)

Forl <j <g,
e;Uej=e/U 'e;=1. (45)

(1) Eq.3T]holds for j = ¢
Using Eqs. [34] 33| 36| 37] (44l

5@ = el DIY D) = eI DEDPU W =, U'W =] W = e, W(eHD) = (),

(46)
(2) Assume Eq.[3T]holds for all j > j., 1 < j,. <c.
With Eq.[38] for1 < j <¢,1 <k <candj#k,
el Q) —e] (Q<j+1> te, (ejTZ(j) diag (STe;) — e}@(m)))
=, QUtY tele; (ejTZ(j) diag (S'e;) — ejTQ(j“)) “n
=, QUHY 10 (e;Z(j) diag (S e;) — e;rQ(j'H))
—e, QUTY.
Recursively applying Eq.[47] for1 < j < ¢,1 <k <,
G rQ® ifl1<j<k<
TOW —)€ Q) ifl<j<k<c, 48
e Q {emcw — el W) ifl<k<j<ec. (48)
Similar to Eq. 48] with Eq.[39] for 1 < j <¢,1 <k <e¢,
= Q) ifl1<j<k<
THH — {1 Q@ ifl<j<k<q 49
e, Q {e,jQ@H) =e]W ifl<k<j<c “49)
Forl <j <g,
Y0 =y Ut — D 2U " eje] QU) (Eq.F2)
—y) — [3 DU ere] Q) (Eq.B2)
k=j
(50)

—DPU'W - [Y. DU "ere] QY | (Eq.[)
k=j

=D5%U—1 W — Zeke; QY
P

23

Under review as a conference paper at ICLR 2026

Forl <j <eg,
. 1 .
@) =e] DFYUHD (Eq.34)
11 - ¢ .
=e/ DD U | W — | Y eref | QUTY (Eq.[50)

k=j+1
:e;rU_1 W — Z eke;r Q(jH)

k=j+1

=eU'W — e/ U lerel | QUHY
—J+1

“w— (ZeTU ekek> <ZeTU ekeT>—eTU eje)Q(JH)

“w— (ZeTU ekek> <Z 0ek> — le;)QQH) (Egs. [#3] @3)

j (
—eTU w — (eTUlekeZ> QU+t +e;rQ(j+1)

=e]U
=e/U!

=e]U'W - eTU) QUTY +efW (Eq.[9)
:e;r (VV —Uu! <<Z eke;r) Q(j+1) — W))
k=1
—e] (W U- (QU+ _ W))
—e] (W U- (Q J+1) W)) :

(D

Because e, (W U~ (Q(CH) — W)) = e;rW =), Eq.can be extended for j = ¢,

oD — (W U- (Q(J“)—W)), 1<j<e (52)

According to the assumption, for 1 < j, < k < ¢, we have

Q(k) — Q(k). (53)
o1 :e;_r*_l (W _y-! (Q(j*) _ V[/)) (Eq.@
—el (W<c+1> _U-! (Qu*) _ W(c+1))> (Eq.[53)
—e] (W(c+1> _ U—lA(y‘*)) (Eq. F0) (54)
:e;»';flVAV(j*) (Eq.H1)
—@U-—1 (Eq.[37).
Eq.[31]holds for j = j, — 1. [|

24

Under review as a conference paper at ICLR 2026

B.4 PROOF OF INEFFECTIVENESS OF ADDITIONAL GPTQ REFINEMENT ON BABAI’S
ALGORITHM

We may try to apply further GPTQ updates in Babai’s algorithm by changing Line[9]in Algorithm[§]

Y'Y Ly 4 AUejs(J) —_yUu+D _ AejeJTQ(J) + AUejE(J) (55)

1 iy i
However, as A = DU, the @~ remains the same:

w“l(j*l) :e;‘rleéY/(j) (Eq@
—e] D (Y(j) I Dg%Uferje(j))

1 . 1 _1 .
=e]_ DY) tel \DZD U 'Ue;e

:e;!:lDéy(j) +el eel) (56)
:e;_lpéym 1 0eW
~e,Div0
=pU-1 (Eq.[39).
]

25

Under review as a conference paper at ICLR 2026

C FURTHER DISCUSSION ON QUANTIZATION ERROR BOUND

C.1 PROOF OF ABSOLUTE AND RELATIVE GPTQ QUANTIZATION ERROR BOUNDS

We prove Theorem 5 as follows.

Denote the basis B(;) = & diag (s;), y) = Xw; asin Sectionso that the quantization problem
becomes the CVP minimizing ||B(i)zi — Y@ H2 Applying permutation T' gives the permuted basis
Ay = BT = X diag(s;) T = XT diag (T~'s;). Write the unnormalized Gram-Schmidt
vectors of A ;) as A(i) = [d(i)l, e ,Ez(i)c] Babai’s guarantee therefore yields the tight bound
1Bz — vl = |40 (T712) — v |* < 1352 lawsll”

We may, without loss of generality, use Theorem [I] to rotate X so that A(;) is upper triangu-
lar. In that case, the norm Hd(i)j | simplifies to | A [j,j]|. Let D(; be the diagonal ma-
trix of the LDL decomposition of Aa)A(i) such that D;[j,5] = |A [j7j”2 = H&(i)j||2'

The summation Z;’le ||d(i)j||2 can then be expressed as tr (D(i)). Let £ be the lower trian-

gular matrix in the LDL decomposition of TTX " XT = LDL', so that the LDL decom-

position of AE;)AU) = diag (T7's;) T' X" XT diag (T 's;) = LD i)[,g) has D, =

diag (T’lsi) D diag (T’lsi) and L;) = diag (Tﬁlsi) L diag (T’lsi)fl. The absolute no-
. . . 1 c ~ 2 1 1 _ T _

clipping error bound is therefore 3 37, llawy;||” = 1tr (D) =5 (T71si) D (T 's).

For the relative no-clipping quantization error bound, we can plug in Hd(i)j H = ‘A(i) [7, jH =
VD li-g] = /(diag (T~1s;) D diag (T~ 1s,)) [j,j] = /D, [(T""s:) [j]| = d; into

Babai’s relative error bound in Section

26

Under review as a conference paper at ICLR 2026

C.2 EXPECTED QUANTIZATION ERROR OVER A UNIFORM HYPER-CUBOID

We have shown that, when clipping is disabled, Babai’s nearest-plane (hence back-to-front GPTQ)
ensures the tight worst-case bound

. s 1, 2 < .
| X diag (s;) z; — Xw;]| SZZH(LJH , A=lay,...,a. (57)

Jj=1
where a; are the unnormalized Gram-Schmidt vectors of the permuted lattice basis A.

Introduce the half-edge lengths
1.)
aj:§||aj|\, i=1...,¢ (58)

so that the Babai residual always lies in the axis-aligned hyper-cuboid H§:1 [—a;,a;] and Eq. is
rewritten as

c
Eworst = Y _ 7. (59)
j=1

Uniform prior on the unknown weight vector. Assume now that the continuous, not-yet-quantized
weight offset u = X (w; — diag(s;)z;) is uniformly distributed inside this hyper-cuboid, i.e., each
coordinate u; ~ Uniform (—a;, a;) and the coordinates are independent. The squared error becomes
the random variable

e=> (60)
=1
Lemma 7 For a scalar u ~ Uniform (—a, a) one has E[UQ} = %2
Proof a 2
1 11 ,]° a
E 2 [2d [3 = —. 61
[2a/_a““ 2a[3x .3 ©D
[|

Expected residual norm. Using independence,

- 1
Ele] = ZIE [w?] = 3 Za?. (62)
j=1

j=1

Ratio to the worst-case bound. Comparing Eq. (62| with Eq.|59| gives

1 , 1
Eld] = geworst| = E (1 diag (s) 2 — Xwi|*| = 5 2 laill*. (63)
j=1

Hence, under a uniform prior on the weights inside Babai’s orthogonal hyper-cuboid, the average
layer-wise quantization error is exactly % of the worst-case guarantee stated in Theorem

27

Under review as a conference paper at ICLR 2026

C.3 EMPIRICAL VERIFICATION ON QUANTIZATION ORDER AND ERROR BOUND

Changing the quantization order alters the diagonal matrix D of the LDL decomposition of the
permuted Hessian and therefore the no-clipping GPTQ/Babai bound (see Section[d.5). When per-
group scales are approximately uniform, minimizing tr (D) is a good proxy for tightening this
bound. To assess different orders (back-to-front, front-to-back, random order, GPTQ’s act-order,
and our min-pivot order), we run the calibration dataset from Section [D.2]through the full-precision
Qwen3-8B model and compute per-layer Hessians and calculate the tr (D). For the random order,
we average the results over 100 runs. Table reports tr (D) for the layers in transformer block 18;
other blocks and models show similar patterns. In block 18, act-order already reduces tr (D) relative
to the back-to-front/front-to-back/random baselines, especially in the Q-K-V and Gate-Up layers
(=35-50% lower). Our min-pivot heuristic consistently attains the smallest trace. In practice, this
tightens the theoretical layer-wise error bound and yields modest but consistent improvements. We
can use act-order as a cheap option and reserve min-pivot for cases where a tighter bound is required.

Table 2: tr (D) with different quantization orders of layers in Qwen3-8B block 18.

Order QKV o Gate-Up Down

back-to-front 1.169¢+08 1.824e+08 1.181e+08 1.323e+09
front-to-back 1.161e+08 1.841e+08 1.202e+08 1.320e+09
random (averaged) 1.168e+08 1.856e+08 1.194e+08 1.322e+09
act-order 7.400e+07 1.786e+08 6.052e+07 1.222e+09
min-pivot 7.323e+07 1.772e+08 5.990e+07 1.221e+09

28

Under review as a conference paper at ICLR 2026

D FURTHER APPLICATIONS AND EXPERIMENTAL RESULTS

D.1 OVERFLOW-TOLERANT QUANTIZATION ALGORITHMS

Algorithms [[T]and[I2] are the pseudocodes of our proposed SSQR, HPTQ, and HRTN algorithms
in Section [5| Additional notations are as follows. p € [0,1] is the target outlier rate in SSQR.
E = [&1,...,&] € RY*" is the sparse weight matrix in SSQR. & € Ry is the target average
bitwidth in HPTQ and HRTN.

Algorithm 9: SSQR
Input: W, X, P,)\, Z;,p
Output: Z, 5,2, Q

1 Swuse < compute the MSE scale using W and Z;

2 Smin, Smax < 07,27 // initialize the binary search boundary per output channel

3 5 ¢ (Smin + Smax) /2 // the scale for scale

4 while s not converge do

5 S < Swusk diag (s) // output-channel-wisely proportionally adjust the scale

6 Z,2,Q <+ SSQRINNERPROCEDURE (W, S, X, P\, Z:) I/ Algorithm

7 | Sminli], Smaxli] < {Sm,inm’ slil 3 I8k dlo <pe e
8[i], Smax[i] otherwise

8 8 < (smin + Smax) /2
9 end

Algorithm 10: SSQR Inner Procedure (GPTQ with overflowed elements in floating-point)
Input: W, S8, X, P, \,Z
Output: Z =, Q
H<« P’ (XTX—i-)\I)P
L+ LDL(H™)
W,S«+ P 'w P'S
Q,Z <+~ W,0
for j <+ 1tocdo
¢« Wij,:]/S[j.]
Z|j,:] <~ ROUND (¢, Z4)
0 otherwise
— Z[j,:] * S[j,:] + E[4,:] // new
10 < Qlj,:| - Wlj,]
11 Wlj::|+ WI[j:: |+ L[j:jle
12 end
13 Z,5,Q <+ PZ, PE, PQ // new

NS\ R W N =

// new

29

Under review as a conference paper at ICLR 2026

Algorithm 11: HPTQ

Input: W X, P A\ h
Output: Z,s,Q
1 Smin, Smax < 0, [|W|, // initialize the binary search boundary
2 5 < (Smin + Smax) /2 // the scale
3 while s not converge do
4 S < s-1°%" /] broadcast the scale
5 Z,Q + GPTQ (W, S, X, P, \,Z) // Algorithml]
6 h' + average Huffman encoding bitwidth of Z
7 if ' < h then
8 \ Smax < s // too few bits, try smaller scale

9 end
10 else
11 | Smin < §// too many bits, try larger scale
12 end
13 $ 4 (Smin + Smax) /2
14 end

Algorithm 12: HRTN

Input: W h

Output: Z,s,Q
1 Smin; Smax < 0, ||W/| // initialize the binary search boundary with min and max
2 5 4 (Smin + Smax) /2 // the scale
3 while s not converge do
4 Z < ROUND (W /s, Z) Il round-to-nearest
5 Q +— sZ
6 h' + average Huffman encoding bitwidth of Z
7 if ' < h then
8 \ Smax < s // too few bits, try smaller scale
9

end
10 else
11 | Smin < §// too many bits, try larger scale
12 end
13 S < (Smin + Smax) /2
14 end

30

Under review as a conference paper at ICLR 2026

D.2 EXPERIMENT SETUP

We work with the Qwen3 family of models, which come in a range of sizes. We focus on the
Qwen3-8B model for detailed head-to-head comparisons, while the other variants, Qwen3-0.6B,
Qwen3-1.7B, Qwen3-4B, and Qwen3-14B, help us assess how our method performs across different
model scales.

We construct the calibration dataset for the GPTQ algorithm using the FineWeb-Edu dataset
(HuggingFaceFW/fineweb-edu, subset sample-10BT). The dataset is streamed and shuffled with a
fixed seed for reproducibility. After tokenizing the text samples, our 256 sequences are accumulated
into non-overlapping sequences of length 2048.

We use WikiText-2 and C4 for perplexity evaluations. For WikiText-2, the entire test split is first
concatenated using two line breaks as separators and then tokenized with the default HuggingFace
tokenizer for each model. For C4, we sample individual documents from the selected shard, tokenize
them, and randomly extract sequences of the desired length. In both cases, sequences shorter than the
target length (2048 tokens) are discarded, and sequences longer than the target length are cropped to
the specified window.

31

Under review as a conference paper at ICLR 2026

D.3 ACCURACY RESULTS

We compare the perplexity results between RTN, GPTQ, HRTN, HPTQ, and SSQR using the Qwen3-
8B model in Table[3] In addition, the perplexity results for other variants of Qwen3 with HPTQ are
shown in Table [l

Table |§] shows additional zero-shot results on the Qwen3-8B model for RTN, GPTQ, HRTN, and
HPTQ. Additional HPTQ results on other Qwen3 models are in Tables [6]to [T0]

Table 3: Perplexity of Qwen3-8B model under HPTQ, GPTQ, HRTN, RTN, and SSQR with different
bitwidths.

Method Avg Bitwidth Perplexity
WikiText-2 C4
BF16 Baseline 16 9.73 13.55
4.125 9.81 13.64
HPTQ 3.125 10.34 14.23
2.125 13.97 16.89
4.125 10.10 13.92
GPTQ 3.125 12.77 15.61
2.125 57.51 36.14
4.125 9.90 13.80
HRTN 3.125 10.75 14.63
2.125 593.05 503.00
4.125 10.30 15.20
RTN 3.125 16.30 21.08
2.125 2el0 2el0
4.445 10.00 13.83
SSQR-1% 3.445 10.64 14.71
2.445 22.30 27.07
4.765 9.96 13.76
SSQR-2% 3.765 10.57 14.56
2.765 16.55 20.80
5.085 9.92 13.76
SSQR-3% 4.085 10.42 14.32
3.085 14.05 18.57
5.405 9.84 13.71
SSQR-4% 4.405 10.34 14.29
3.405 13.12 17.60
5.725 9.80 13.67
SSQR-5% 4.725 10.32 14.22
3.725 12.88 16.85

32

Under review as a conference paper at ICLR 2026

Table 4: Perplexity of Qwen3 models under HPTQ for different bitwidths.

Model Avg Bitwidth Perplexity
WikiText2 C4
16 2096 2637
4.125 072 2835
0.6B 3.125 3143 3792
2.125 15645 17138
16 1672 1992
4.125 1818 20.99
178 3.125 1972 2315
2,125 4694 5196
16 1366 17.07
45 4.125 1426 17.39
3.125 1455 18.17
2,125 2440 2646
16 9.73 1355
- 4.125 9.81 13.64
3.125 1034 1423
2,125 1397 16.89
16 8.65 1223
4.125 8.76 12.12
148 3.125 9.06 13.97
2,125 1136 15.50

33

Under review as a conference paper at ICLR 2026

Table 5: Zero-shot evaluation results (%) for Qwen3-8B under different quantization methods across
six benchmarks.

Method Avg Bits Wino MMLU PiQA SciQ TQA
MC1 MC2
BF16 Baseline 16 68.11 73.02 77.80 957 36.35 54.50

4.125 67.17 7228 7742 956 3501 53.36
HPTQ 3.125 6693 7096 7753 954 36.11 54.73
2.125 59.19 5299 7252 86.8 31.09 49.01

4.125 68.82 71.76 7758 953 3635 54.55
GPTQ 3.125 68.35 65.80 7546 7546 36.11 5521
2.125 5225 3425 5783 57.83 2840 4691

4.125 67.56 7215 7699 942 3647 56.46
HRTN 3.125 66.22 67.85 76.12 9377 3513 53.68
2.125 51.22 3391 6578 76.8 3048 51.78

4.125 67.17 69.71 7590 945 36.84 55.77
RTN 3.125 5793 4790 70.89 87.1 34.03 52.76
2.125 49.08 2295 51.63 212 2411 4733

4.445 68.43 7212 77.04 952 37.58 55.81
SSQR-1% 3.445 68.11 6846 7584 955 38.19 55.95
2.445 51.85 2671 61.64 69.8 2840 43.88

4.765 67.25 7227 7797 955 3562 5347
SSQR-2% 3.765 6740 69.66 7622 951 3390 53.05
2.765 5572 3748 66.76 83.8 27.54 45.54

5.085 67.72 71.89 7753 956 3647 54.46
SSQR-3% 4.085 65.59 6988 7731 943 37.82 55.34
3.085 59.19 4932 6959 864 2950 48.53

5.405 69.53 72.63 7731 951 3623 53.60
SSQR-4% 4.405 6748 69.51 76.61 949 3721 5481
3.405 61.25 54.07 7280 89.5 31.33 50.46

5.725 68.27 7223 7742 952 3586 53.76
SSQR-5% 4.725 6748 70.76 76771 955 3537 5291
3.725 62.59 58.67 7323 90.8 31.21 50.25

Table 6: TruthfullQA (%) zero-shot results (MC1/MC2) for Qwen3 models quantized with HPTQ.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 27.17/42.80 29.50/45.88 37.33/54.83 36.35/54.50 40.76/58.62
4.125 26.19/41.56 28.76/45.17 36.72/54.46 35.01/53.36 40.51/58.28
3.125 25.34/41.95 29.62/46.13 35.25/53.83 36.11/54.73 39.90/58.33
2.125 23.99/46.39 28.15/48.25 31.70/50.67 31.09/49.01 36.84/54.93

34

Under review as a conference paper at ICLR 2026

Table 7: MMLU (%) zero-shot results for Qwen3 models quantized with HPTQ.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 4034 5544 6838 73.02 77.10
4.125 29.84 5395 6745 7228 76.27
3.125 3292 4749 6270 7096 75.53
2.125 24.58 23.87 40.83 5299 64.31

Table 8: PiQA (%) zero-shot results for Qwen3 models quantized with HPTQ.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 67.30 7231 7492 77.80 79.87
4.125 66.00 70.78 7530 7742 79.54
3.125 62.08 68.44 73.01 77.53 78.78
2.125 54.13 5740 66.76 72.52 75.46

Table 9: WinoGrande (%) zero-shot results for Qwen models quantized with HPTQ.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 5643 6148 6527 68.11 72.53
4.125 5438 59.67 64.09 67.17 73.01
3.125 52.72 5872 64.80 6693 71.19
2.125 4980 4996 53.04 59.19 66.06

Table 10: SciQ (%) zero-shot results for Qwen3 models quantized with HPTQ, with internal reasoning
disabled.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 835 912 935 957 96.8
4.125 80.7 889 933 956 97.1
3.125 76.6 899 92 954 9638
2.125 40.8 628 812 86.8 938

35

Under review as a conference paper at ICLR 2026

D.4 TECHNICAL DETAILS AND PERFORMANCE OF SSQR’Ss CUDA KERNEL

The kernel is specialized for two regimes: in the low-batch regime, the kernel utilizes SIMT GPU
cores exclusively, while tensor cores are utilized when batch size is >8, the smallest outer dimension
where tensor cores can be utilized without padding, and with 16-bit operands and 32-bit floating-point
accumulators. For both regimes, sparse outliers are handled with SIMT cores.

To handle the dense inliers, we apply two reordering schemes here. First, the weights are reordered
for memory movement involving tensor cores. Second, we apply an additional reordering scheme to
enable batched conversion between 2-4-bit integers into their 16-bit counterparts.

To handle the sparse outliers, we group sparse outliers in groups of 16 rows (matching the outer tensor
core dimension), then store them in column-major row order with padding to account for differences
between non-zero counts across rows in the group.

Figure[5]shows the layer-wise speedup of the SSQR kernel on NVIDIA RTX 6000 GPU compared
to the PyTorch BF16 matrix multiplication baseline across different layer shapes in the Qwen3-8B
model (layers with the same input are merged), inlier bitwidths, outlier rates, and batch sizes. We
observe the largest gains in the low-batch regime, with up to 4 x speedup when <1% outliers are
present. As the outlier rate increases, the speedup diminishes, but the kernel consistently outperforms
the BF16 baseline across all settings.

36

1944
1945
1946
1947
1948
1949
1950
1951

1952
1953
1954
1955
1956
1957
1958
1959
1960
1961

1962
1963
1964
1965
1966
1967
1968
1969
1970
1971

1972
1973
1974
1975
1976
1977
1978
1979
1980
1981

1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

w
w
w

i
/4

8]

Speedup (Q-K-V Layer)
w

—

=1

Speedup (O Layer)

Speedup (Gate-Up Layer)

5 5 5
et
Sl
54 NS 4 4
= '\ [,
£3 3 S 3
= Q SN
3 2 o | 2 ol ? e
i ! !

0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16

Batch Size (2-Bit Inlier) Batch Size (3-Bit Inlier) Batch Size (4-Bit Inlier)
Outlier Rate

—o— 0% 00— 1% —— 2% —— 3% —0— 4% —— 5%

Figure 5: Layer-wise inference speedup of the SSQR kernel over the PyTorch BF16 baseline on
Qwen3-8B across inlier bitwidths, outlier rates, and batch sizes on A6000 GPU.

37

Under review as a conference paper at ICLR 2026

D.5 RESULTS FOR LLAMA MODELS
Tables[T]to[I5]report the evaluation results for Llama-3.2-3B-Instruct, Llama-3.1-8B-Instruct, and

Llama-2-7B models under the same setups as in Section[D.3]

Table 11: Perplexity of Llama-3.2-3B-Instruct model under HPTQ, GPTQ, and SSQR with different
bitwidths.

Method Avg Bitwidth Perplexity
WikiText-2 C4
BF16 Baseline 16 11.01 13.49
4.125 11.27 14.64
HPTQ 3.125 12.51 15.81
2.125 22.58 29.82
4.125 11.96 15.37
GPTQ 3.125 15.20 18.99
2.125 357.69 172.89
4.445 11.38 14.95
SSQR-1% 3.445 13.48 18.38
2.445 83.41 67.19
4.765 11.50 14.77
SSQR-2% 3.765 13.20 16.65
2.765 4593 41.69
5.085 11.39 14.64
SSQR-3% 4.085 12.50 16.10
3.085 37.41 30.74
5.405 11.53 14.69
SSQR-4% 4.405 12.33 15.96
3.405 23.74 27.59
5.725 11.47 14.69
SSQR-5% 4.725 12.29 15.81
3.725 22.94 25.44

38

Under review as a conference paper at ICLR 2026

Table 12: Perplexity of Llama-3.1-8B-Instruct model under HPTQ, GPTQ, and SSQR with different
bitwidths.

Method Avg Bitwidth Perplexity
WikiText-2 C4
BF16 Baseline 16 7.20 9.09
4.125 7.37 9.99
HPTQ 3.125 7.84 11.04
2.125 11.89 16.37
4.125 7.56 10.46
GPTQ 3.125 9.44 13.16
2.125 148.15 71.33
4.445 7.50 10.30
SSQR-1% 3.445 8.67 12.35
2.445 57.26 39.96
4.765 7.48 10.20
SSQR-2% 3.765 8.32 11.75
2.765 25.18 25.21
5.085 7.41 10.11
SSQR-3% 4.085 8.16 11.54
3.085 17.27 20.03
5.405 7.39 10.05
SSQR-4% 4.405 8.01 11.31
3.405 13.22 17.77
5.725 7.38 10.03
SSQR-5% 4.725 7.98 11.13
3.725 12.12 16.13

Table 13: Perplexity of Llama-2-7B model under HPTQ, GPTQ, and SSQR-1% with different
bitwidths.

Method Avg Bitwidth Perplexity
WikiText-2 C4
FP16 Baseline 16 5.50 6.24
4.125 5.53 6.73
HPTQ 3.125 5.77 7.04
2.125 7.45 943
4.125 5.70 6.90
GPTQ 3.125 6.75 8.08
2.125 28.07 26.13
4.445 5.60 6.81
SSQR-1% 3.445 6.09 7.52
2.445 14.58 15.85

39

Under review as a conference paper at ICLR 2026

Table 14: Zero-shot evaluation results (%) for Llama-3.2-3B-Instruct under different quantization
methods.

Method Avg Bits Wino MMLU PiQA SciQ HSwag
acc aCCpomm
BF16 Baseline 16 68.75 62.18 76.17 954 5327 71.65

4.125 68.03 61.57 7655 950 53.02 71.28
HPTQ 3.125 68.35 5850 7497 955 51.76 70.00
2.125 60.85 4275 69.15 899 4454 60.29

4.125 68.11 59.81 7573 955 5229 70.54
GPTQ 3.125 66.06 49.13 7258 94.0 47.25 63.93
2.125 50.59 2296 53.65 634 28.06 30.58

4.445 68.19 6094 76.12 957 5237 70.88
SSQR-1% 3.445 66.93 5410 7492 956 50.55 68.86
2.445 51.70 2397 5822 645 31.14 36.90

4.765 68.03 61.17 7633 952 5249 70.99
SSQR-2% 3.765 65.51 5637 7443 944 50.88 68.85
2.765 53.12 2391 60.01 783 34.12 4299

5.085 68.27 61.68 7682 954 53.03 71.29
SSQR-3% 4.085 66.69 57.65 75.03 950 5098 69.00
3.085 5848 3420 65.61 90.5 39.87 5243

5.405 68.90 61.11 7628 955 52.80 71.03
SSQR-4% 4.405 66.77 5773 75.03 953 51.08 68.79
3.405 57.85 33774 6649 90.1 40.66 54.44

5.725 68.35 61.67 7557 953 52.88 70.97
SSQR-5% 4.725 66.69 57.02 7552 953 5132 69.70
3.725 5738 3724 6556 915 4137 5496

40

Under review as a conference paper at ICLR 2026

Table 15: Zero-shot evaluation results (%) for Llama-3.1-8B-Instruct under different quantization
methods.

Method Avg Bits Wino MMLU PiQA SciQ HSwag
acc aCCpomm
BF16 Baseline 16 73.72 6831 80.14 973 59.81 79.59

4.125 73.56 6790 7949 9777 59.57 79.25
HPTQ 3.125 7277 6458 79.16 969 5842 7821
2.125 63.69 45.01 69.15 90.8 49.84 67.98

4.125 73.80 65.68 79.27 972 58.61 78.36
GPTQ 3.125 7245 5819 7737 955 5521 7457
2.125 5493 24.67 5446 751 31.77 37.79

4.445 7443 66.78 79.65 969 59.18 78.93
SSQR-1% 3.445 7245 60.14 7797 963 56.74 76.24
2.445 52.80 23.07 5849 741 3325 40.05

4.765 73.80 6721 7949 972 5894 78.53
SSQR-2% 3.765 7324 63.13 78778 964 57.63 77.22
2.765 5430 27.08 61.04 825 3841 5041

5.085 7293 6738 7954 969 59.64 79.07
SSQR-3% 4.085 73.09 63.77 79.11 96.6 57.62 77.40
3.085 54.54 26.15 5881 83.6 3834 49.52

5.405 7324 6695 7992 969 5932 79.06
SSQR-4% 4.405 7324 6292 7873 965 57.61 7747
3.405 5454 2995 5495 823 39.80 51.87

5.725 74.03 6791 8052 972 5949 79.39
SSQR-5% 4.725 7340 64.14 79.05 97.0 58.16 77.63
3.725 64.25 4259 7258 887 4994 68.20

41

Under review as a conference paper at ICLR 2026

D.6 COMPARISON WITH OTHER QUANTIZATION METHODS

We compare zero-shot WinoGrande and PiQA accuracies of our methods (HPTQ, SSQR) against
GPTQ and state-of-the-art post-training, weight-only quantizers AQLM (Egiazarian et al.| 2024),
QuIP# [20244), and QTIP (Tseng et all [2024b) on Llama-2-7B. Results are reported
in Table[16] sorted by average bitwidth. Metrics for AQLM, QuIP#, and QTIP are taken from their
respective papers.

As shown in Tablerli)'], for average bitwidth > 4, all methods yield accuracy close to the full-precision
baseline. In the 3-4 bit regime, vanilla GPTQ falls behind recent methods; however, HPTQ and SSQR
close this gap, bringing a scalar quantization approach to parity with vector quantization methods
(AQLM, QulP#, QTIP). In the 2-3 bit regime, HPTQ remains competitive with the state of the art.

Table 16: Comparing the zero-shot results of different quantization methods on Llama-2-7B.

Method Avg Bitwidth WinoGrande PiQA
FP16 Baseline 16 69.46 78.13
AQLM 5.020 67.40 78.29
SSOR-1% 4.445 68.82 78.35
HPTQ 4.125 69.61 77.75
GPTQ 4.125 68.82 77.97
AQLM 4.040 67.32 78.24
QulP# 4.000 67.60 78.40
QTIP 4.000 67.10 78.40
SSOR-1% 3.445 65.43 77.15
HPTQ 3.125 67.72 77.80
GPTQ 3.125 64.96 73.88
AQLM 3.040 66.93 76.88
QulP# 3.000 66.50 77.30
QTIP 3.000 66.90 78.10
SSOR-1% 2.445 50.04 56.15
AQLM 2.290 65.67 74.92
HPTQ 2.125 65.82 73.56
GPTQ 2.125 49.64 56.20
AQLM 2.020 65.67 74.76
QulP# 2.000 64.90 75.10
QTIP 2.000 64.70 75.90

42

Under review as a conference paper at ICLR 2026

E LLM USAGE

LLM was used to aid and polish the writing of this paper, e.g., correcting grammar and rephrasing
sentences.

43

	Introduction
	Related Work
	Preliminaries and Notations
	Linear-Layer Quantization Problem
	The Closest Vector Problem (CVP)

	Theoretical Results
	Equivalence Between L2 Quantization and CVP
	OBQ's Geometric Interpretation
	GPTQ and Babai's Algorithm
	GPTQ's Error Bound
	The Role of Quantization Order in GPTQ

	Applications
	Conclusion
	Ethics Statement
	Reproducibility Statement
	References
	Applying Babai's Algorithm to Batched Quantization
	Quantization-CVP Correspondence
	Babai's Quantization Algorithm

	Algebraic Equivalence Proof of GPTQ and Babai's Algorithm
	Step 1
	Step 2
	Step 3
	Proof of ineffectiveness of additional GPTQ refinement on Babai's algorithm

	Further Discussion on Quantization Error Bound
	Proof of Absolute and Relative GPTQ Quantization Error Bounds
	Expected Quantization Error over a Uniform Hyper-Cuboid
	Empirical Verification on Quantization Order and Error Bound

	Further Applications and Experimental Results
	Overflow-Tolerant Quantization Algorithms
	Experiment Setup
	Accuracy Results
	Technical Details and Performance of SSQR's CUDA Kernel
	 Results for Llama Models
	 Comparison with Other Quantization Methods

	LLM Usage

