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ABSTRACT

Quantizing the weights of large language models (LLMs) from 16-bit to lower
bitwidth is the de facto approach to deploy massive transformers onto more
affordable accelerators. While GPTQ emerged as one of the standard methods for
one-shot post-training quantization at LLM scale, its inner workings are described
as a sequence of algebraic updates that obscure geometric meaning or worst-case
guarantees. In this work, we show that, when executed back-to-front (from the last
to first dimension) for a linear layer, GPTQ is mathematically identical to Babai’s
nearest plane algorithm for the classical closest vector problem (CVP) on a lattice
defined by the Hessian matrix of the layer’s inputs. This equivalence is based
on a sophisticated mathematical argument, and has two analytical consequences:
first, the GPTQ error propagation step gains an intuitive geometric interpretation;
second, GPTQ inherits the error upper bound of Babai’s algorithm under the
assumption that no weights are clipped. Leveraging this bound, we design
post-training quantization methods that avoid clipping, and outperform the original
GPTQ. In addition, we provide efficient GPU inference kernels for the resulting
representation. Taken together, these results place GPTQ on a firm theoretical
footing and open the door to importing decades of progress in lattice algorithms
towards the design of future quantization algorithms for billion-parameter models.

1 INTRODUCTION

Generative pre-trained transformers (GPT) models contain hundreds of billions of parameters and
have massive computational and memory costs (Luccioni et al., 2024). Post-training quantization
(PTQ) has emerged as a practical solution for reducing their footprint (Gholami et al., 2021). Among
a growing family of methods, GPTQ (Frantar et al., 2023) was the first to push one-shot quantization
down to the 4-bit regime, while retaining near-baseline accuracies. GPTQ is still very popular
nowadays and yields state-of-the-art results in some regimes (Kurtic et al., 2024).

Despite its empirical success, the GPTQ algorithm was only presented as a sequence of greedily
applied algebraic operations: the procedure picks one weight at a time, quantizes it via rounding
or clipping, and then optimally updates the not-yet-quantized weights to correct for the remaining
per-layer loss; it then continues with the next weight, and so on. This procedure leaves an obvious
open question: why does a local greedy rule work so well globally? Current literature does not
answer this question, leaving little guidance for principled extensions or failure case analysis.

Our contribution. This paper is the first1 to provide a geometric interpretation for GPTQ, which
implies a layer-wise global error bound. Our main theoretical results (Section 4) are (i) the GPTQ
optimization problem, i.e. linear-layer quantization with the L2 objective on the output, is equivalent
to the closest vector problem (CVP) w.r.t. L2 distance; (ii) the GPTQ algorithm executed from the
last to first dimension is the same as Babai’s nearest plane algorithm on the basis of the factorized
Hessian matrix, without LLL basis reduction, and this finding holds independently of whether large
weights are clipped to the quantization grid (a process known as weight clipping); and (iii) the
worst-case layer-wise error in the no-clipping setting is bound tightly by the trace of the diagonal
matrix of the LDL decomposition of the Hessian matrix. In addition (Section 5), we tie our theoretical
findings to practical quantization by introducing new no-clipping methods of better accuracy than
the original GPTQ, together with efficient GPU inference kernels for the resulting representation.

1The concurrent work of Birnick (2025) appeared on arXiv later than our preprint.
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2 RELATED WORK

Second-order compression (pruning and quantization). The idea of using Hessian information
to guide parameter removal dates back to Optimal Brain Damage (LeCun et al., 1989) and Optimal
Brain Surgeon (OBS) (Hassibi et al., 1993). Optimal Brain Compression (OBC) (Frantar & Alistarh,
2022) generalizes OBS to the post-training setting and unifies structured pruning and quantization
(also called Optimal Brain Quantizer, OBQ) under a single exact solver. GPTQ (Frantar et al., 2023)
inherits OBQ’s error propagation method but applies it in a fixed order, so that the inverse Hessian
can be shared and only needs to be computed once. GPTQ only has cubic computational complexity
in the column/row dimension, making it suitable for LLMs. QuIP (Chee et al., 2023) proves an error
guarantee for GPTQ and proposes the LDLQ method as an equivalent variant of GPTQ.

Lattices, CVP algorithms, and hardness. The closest vector problem (CVP) is NP-complete
to approximate within any constant factor under polynomial-time reductions (van Emde Boas,
1981; Micciancio & Goldwasser, 2002; Dinur et al., 2003), motivating decades of approximation
algorithms. Babai’s nearest plane heuristic (Babai, 1986) delivers a solution in polynomial time
and, when preceded by LLL basis reduction (Lenstra et al., 1982), enjoys a 2O(n) approximation.
BKZ basis reduction (Kannan, 1987) further tightens the constant in an exponential-time solver.

3 PRELIMINARIES AND NOTATIONS

We use Python-style indexing inside square brackets to select elements and sub-matrices from a
tensor, e.g., [j, :] selects the j-th row vector, [:, j] selects the j-th column vector, and [j :, j] selects
the sub-column consisting of rows after j-th (included) row in j-th column, [:, J ] selects the column
vectors indexed by set J as a sub-matrix, etc2.

3.1 LINEAR-LAYER QUANTIZATION PROBLEM

Problem. Let X = [x1, . . . ,xn]
⊤ ∈ Rn×c be the sampled calibration input data of batch size

n and input dimension c with xi ∈ Rc and n ≥ c = rank (X). Let W = [w1, . . . ,wr] ∈ Rc×r

be the linear layer weights of input dimension c and output dimension r with wi ∈ Rc. Let
S = [s1, . . . , sr] ∈ Rc×r

̸=0 be the non-zero quantization scales with si ∈ Rc
̸=0. Here we consider

a general case that applies to any grouping pattern: each weight element wi[j] has its own
scaling factor si[j]. Assume S is statically computed using methods like AbsMax or MSE
before any weight updates. Let Z† ⊆ Z be the quantization grid (representable integers). In the
clipping setting, e.g., for INT4 format, Z† = {−8, . . . ,−1, 0, 1, . . . , 7}. In the no-clipping setting,
Z† = Z, which allows any integer as the quantization results. Let Z = [z1, . . . ,zr] ∈ Z†

c×r

be the (unknown) quantized integers with zi ∈ Zc
†. Denote Q = [q1, . . . , qr] ∈ Rc×r as the

dequantized weights with qi = diag (si) zi ∈ Rc. The goal is to minimize the L2 error on the
layer output XW ∈ Rn×r: ∥XQ−XW ∥2F =

∑r
i=1 ∥X diag (si) zi −Xwi∥2 , i.e, finding

argminzi∈Zc
†
∥X diag (si) zi −Xwi∥2 for all 1 ≤ i ≤ r.

OBQ algorithm. Let set Ji initialized to {1, . . . , c} be the set of not-yet-quantized indices of wi.
We denote Ji as J as a short-hand notation. For each weight vector wi, OBQ chooses

j ← argminj∈J

(qi[j]−wi[j])
2

(X[:, J ]⊤X[:, J ])
−1

[j, j]
(1)

as the next dimension to quantize. OBQ quantizes the chosen element wi[j] as
qi[j] ← si[j] · ROUND

(
wi[j]
si[j]

,Z†

)
via the ROUND (·,Z†) function which rounds the inputs

to the nearest values in Z†. OBQ then optimally updates the subset of weights wi[J ] via an error
propagation step wi[j

′]← wi[j
′] + ∆wi[j

′] for all j′ ∈ J with

∆wi[j
′]←

(
X[:, J ]⊤X[:, J ]

)−1
[j′, j]

(X[:, J ]⊤X[:, J ])
−1

[j, j]
(qi[j]−wi[j]) . (2)

2For more details, please see (NumPy): https://numpy.org/doc/stable/user/basics.
indexing.html
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OBQ continues iteration with J ← J \ {j} until J is empty.

GPTQ algorithm. GPTQ reduces the computational complexity of OBQ by applying the OBQ
quantization and error propagation steps in a fixed dimensional order, e.g., from the first to last
dimension (j ← 1 to c), instead of dynamically determined orders (Eq. 1). The fixed order is
independent of the output channel i, thus the Hessian information

(
X[:, J ]⊤X[:, J ]

)−1
[:, j] can

be shared across wi for all i, without recomputation. Furthermore, the Hessian information for all
j can be precomputed at once using Cholesky or LDL decomposition of the Hessian matrix X⊤X .

Algorithm 1 is the pseudocode of GPTQ. The algorithm is identical to the original GPTQ paper (Fran-
tar et al., 2023) except for missing the blocking mechanism that only affects the memory access
pattern and computational speed, but not the numerical results. Additional notations are as follows.
P ∈ {0, 1}c×c is a permutation matrix that modifies the dimensional order of GPTQ quantization.
The default order is front-to-back (from the first to last dimension), i.e., P = I. λ ∈ R+ is a small
damping factor for computing the Hessian matrix, ensuring the matrix is of full rank. A typical
choice is λ = 1

100c

∑c
j=1

(
X⊤X

)
[j, j] = 1

100c ∥X∥
2
F. Function LDL returns the lower triangular

matrix in LDL decomposition. Symbols ∗ and / denote the element-wise multiplication and division.

Algorithm 1: GPTQ

Input: original weights W ∈ Rc×r, per-coordinate scales S ∈ Rc×r
̸=0 , calibration activation

X ∈ Rn×c, permutation P ∈ {0, 1}c×c, damping ratio λ > 0, integer grid Z† ⊆ Z
Output: quantized weights Z ∈ Zc×r

† , dequantized weights Q ∈ Rc×r

1 H ← P⊤ (X⊤X + λI
)
P // dampen and reorder Hessian

2 L← LDL
(
H−1

)
// factorize (take the L matrix from the LDL decomposition) the inversed

Hessian as the shared coefficients for error propagation
3 W ,S ← P−1W ,P−1S // reorder weights and scales
4 Q,Z ←W ,0 // initialize dequantized and quantized weights
5 for j ← 1 to c do
6 ζ ←W [j, :]/S[j, :] // element-wise divide current row by its scales
7 Z[j, :]← ROUND (ζ,Z†) // quantize coefficients to the target grid
8 Q[j, :]← Z[j, :] ∗ S[j, :] // dequantize current row back to weight space
9 ε← Q[j, :]−W [j, :] // quantization error for current row

10 W [j :, :]←W [j :, :] +L[j :, j]ε // propagate error to not-yet-quantized rows; broadcast
over columns

11 end
12 Z,Q← PZ,PQ // undo reorder to restore original input order; return integers and

dequantized weights

3.2 THE CLOSEST VECTOR PROBLEM (CVP)

Problem. Let B = [b1, . . . , bc] ∈ Rn×c be a set of c basis vectors of dimension n with bj ∈ Rn

and n ≥ c = rank (B). Let y ∈ Rn be an external target vector to approximate. Let z ∈ Zc be the
(unknown) integer vector representing the basis combinations of the lattice vector. The goal is to find
the vector on the lattice defined by the basis B that is the closest to the target vector y, i.e., finding
argminz∈Zc ∥Bz − y∥2. A visualization of a two-dimensional CVP is shown in Figure 1 (a).

Babai’s nearest plane algorithm. Babai’s algorithm iteratively projects the target vector onto the
nearest hyperplane of a LLL-reduced lattice and rounds the corresponding coefficient. Figure 1 (b)
visualizes the basis reduction step and Figure 1 (c-d) visualize the projection steps.

Algorithm 2 is the pseudocode of Babai’s nearest plane algorithm to solve CVP. For better
computational efficiency, the pseudocode uses a conceptually equivalent approach. Instead of
projecting the target vector to the nearest hyperplane, it moves the target vector along the basis
direction towards the hyperplane where the origin lies. The projection error is kept in the updated
target vector since it is orthogonal to the hyperplane and will not affect the following projections.
Additional notations are as follows. Function LLL returns the transformation matrix of the LLL
reduction with parameter delta defaulting to 3

4 . Function QR returns the orthogonal matrix in QR

3
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Babai's Hyperplane
Rounding Boundary

Figure 1: Upper row: (a) CVP in a two-dimensional lattice; (b) Basis reduction can find a shorter,
more orthogonal basis that can potentially improve the results; (c-d) The projection steps in Babai’s
nearest plane algorithm. Lower row: rounding boundaries of (e) optimal rounding or Voronoi cells;
(f) round-to-nearest (RTN); (g) Babai’s nearest plane algorithm without basis reduction; (h) Babai’s
algorithm without basis reduction under the reversely ordered basis.

decomposition, the same as the normalized Gram-Schmidt orthogonalization process. ⟨·, ·⟩ denotes
the vector dot product. Function ROUND is defined as in the GPTQ algorithm.

Algorithm 2: Babai’s Nearest Plane
Input: lattice basis (column vectors) B ∈ Rn×c, target vector y ∈ Rn

Output: closest lattice vector’s basis coefficients z ∈ Zc

1 T ← LLL (B) // unimodular transformation matrix from LLL basis reduction
2 A← BT // reduce the basis
3 Φ← QR (A) // normalized Gram-Schmidt process (take the Q matrix from the QR

decomposition)
4 y′, z ← y,0 // initialize residual target and integer solution in reduced basis
5 for j ← c to 1 do
6 ζ ← ⟨Φ[:, j],y′⟩ / ⟨Φ[:, j],A[:, j]⟩ // exact coefficient along the unnormalized

Gram-Schmidt vector; ratio between the projections of residual and the reduced basis
on the Gram-Schmidt direction

7 z[j]← ROUND (ζ,Z) // round to the nearest plane
8 y′ ← y′ −A[:, j]z[j] // update the residual
9 end

10 z ← Tz // map integer solution back to the original basis and return

Babai’s error bound. Figure 1 shows the rounding boundaries of the optimal (e), round-to-nearest
(RTN) (f), and Babai’s algorithm without basis reduction (g-h). Compared to RTN, Babai’s algorithm
generates rectangular partitions and thus has a smaller worst-case error. The error bound has been
proven in Babai (1986). Formally, let Φ = [ϕ1, . . . ,ϕc] be the set of normalized Gram-Schmidt
vectors of the LLL-reduced basis A = [a1, . . . ,ac]. Let Ã = [ã1, . . . , ãc] denote the unnormalized
Gram-Schmidt vectors with ãj = ⟨ϕj ,aj⟩ϕj . At iteration j, the algorithm replaces the exact
coefficient ζ by the closest integer, so the deviation satisfies |ζ − z[j]| ≤ 1

2 . Hence the error
component along ãj has norm at most 1

2 ∥ãj∥. Because the Ã is orthogonal, these error components
add in Euclidean norm, giving a bound on the residual (error) vector y′: ∥y′∥2 ≤ 1

4

∑c
j=1 ∥ãj∥2 =

1
4

∑c
j=1 ⟨ϕj ,aj⟩2. Babai’s algorithm guarantees to return the center vector of the hyper-cuboid

(Figure 1 (g)) constructed by the unnormalized Gram-Schmidt vectors Ã where the target y is located.
Equality is attained when the target y lies at the corner of the hyper-cuboid, so the bound is tight. Babai

4
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(1986) additionally proved a relative error bound for γ with ∥Bz − y∥ ≤ γ ·minz′∈Zc ∥Bz′ − y∥.

The bound is 1 ≤ γ ≤
√
1 + max1≤j≤c

∑j

j′=1∥ãj′∥2
∥ãj∥2 ≤

√
c+ 1 ·max1≤j′≤j≤c

∥ãj′∥
∥ãj∥ .

4 THEORETICAL RESULTS

We first show that weight quantization is an instance of the classical closest vector problem (CVP)
in Section 4.1, which lets us work in a lattice defined by the Hessian. We then reinterpret OBQ’s,
equivalently GPTQ’s, error propagation step as a nearest hyperplane projection in Section 4.2,
setting up our main equivalence in Section 4.3: GPTQ, running back-to-front, coincides exactly
with Babai’s nearest plane algorithm. This equivalence lets us import Babai’s guarantees to obtain
a tight, layer-wise error bound in the no-clipping setting in Section 4.4. Finally, we analyze how
quantization order influences this bound in Section 4.5.

4.1 EQUIVALENCE BETWEEN L2 QUANTIZATION AND CVP

A quantization problem with the L2 objective argminzi∈Zc
†
∥X diag (si) zi −Xwi∥2 and a CVP

with the L2 distance argminz∈Zc ∥Bz − y∥2 share the same solution (z = zi) whenever the
structural conditions B = X diag (si) and y = Xwi hold and the solution domain matches. To
ensure the solution domain matches, we can either disable the clipping in the quantization setup
(setting Z† = Z) or enable the clipping in the CVP setup (making z ∈ Zc

†).

We can introduce a factor of the Hessian matrix, X = [χ1, . . . ,χc] with X⊤X = X⊤X . The loss
can then be reformulated as ∥X diag (si) zi −Xwi∥2.

Theorem 1 (Quantization and CVP) The CVPs using any possible factors X of the Hessian matrix
X⊤X are equivalent under an orthogonal transformation (rotation and reflection) of the lattice and
external target vector.

Proof Let X and X ′ be two possible factors of the Hessian matrix with X⊤X = X ′⊤X ′. The
inner products ⟨χj1 ,χj2⟩ and

〈
χ′

j1
,χ′

j2

〉
must be equal for all 1 ≤ j1, j2 ≤ c. In other words, the

lengths ∥χj1∥ =
∥∥χ′

j1

∥∥, and the angles ∠ (χj1 ,χj2) = ∠
(
χ′

j1
,χ′

j2

)
, for all 1 ≤ j1, j2 ≤ c.

According to Theorem 1, any decomposition factor X of the Hessian matrix X⊤X can be used
instead of X without changing the geometric properties of the CVP and its associated quantization
problem. This is useful to reduce the computational cost, e.g., we may use a square matrix
X ∈ Rc×c instead of the rectangular matrix X ∈ Rn×c. Section A.1 provides a clear summary of
the correspondence between the quantization and CVP concepts.

4.2 OBQ’S GEOMETRIC INTERPRETATION

We first demonstrate the geometric interpretation of OBQ (GPTQ’s slower predecessor) to facilitate
our equivalence proof of GPTQ and Babai’s algorithm in Section 4.3.

Theorem 2 (Error Propagation and Babai’s projection) Babai’s nearest plane algorithm itera-
tively projects the target vector onto the nearest hyperplane and rounds the coefficient. The OBQ
error propagation step (Eq. 2) is exactly this projection on the original basis B = X diag (si)
without basis reduction.

Proof Let B = [b1, . . . , bc] be the basis with bj being a basis vector. Let J be the set of unprojected
indices with j1, j2 ∈ J and j1 ̸= j2. Let y =

∑
j∈J ζjbj be the current residual target where

ζj ∈ R is a real number to be rounded to integers. Let NHP := ⌊ζj2⌉bj2 + Span {bj | j ̸= j2} be
the nearest hyperplane that is orthogonal to the Gram-Schmidt vector bj2 −

∑
j ̸=j2

Projbj
(bj2).

Figure 2 (a) is a 3D plot showing the projection error vector ∆y = ProjNHP (y) − y. We
focus on analyzing the error propagation in the direction of basis bj1 induced by the projection
of basis bj2 and collapse the span of other basis vectors to a single dimension as illustrated by
the hyperline HL := ⌊ζj2⌉bj2 + Span {bj |j ̸= j1, j2}. Figure 2 (b) is a 3D plot showing the

5
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(a) [3D] Babai's Projection (b) [3D] Babai & OBQ Equivalence

(c) [2D] Nearest Hyperplane (d) [2D] Orthogonal Projection Plane

Auxiliary Line in Orthogonal Directions
Basis Vector bj1

Basis Vector bj2

Target Point y : = Σjζjbj

Nearest Hyperplane  : = ⌊ζj2⌉bj2 +Span{bj | j≠ j2}
Hyperline  : = ⌊ζj2⌉bj2 +Span{bj | j≠ j1, j2}
Babai's Projected Point Proj(y) : = Σj(ζj+Δζj)bj

Error Vector Δy : = Proj(y) −y=ΣjΔζjbj

Error Component Vector Δζj1bj1

Error Component Vector Δζj2bj2

Remaining Error Component Vector Σj≠ j1, j2Δζjbj

Inverse Basis Vector nj1 : ⟨nj1,bj1⟩=1;nj1 ⟂bj, ∀j≠ j1
Inverse Basis Vector nj2 : ⟨nj2,bj2⟩=1;nj2 ⟂bj, ∀j≠ j2
Orthogonal Projection Plane  : = Span{nj | j= j1, j2}
Projected Basis Vector Proj(bj1)
Projected Basis Vector Proj(bj2)
Projected Error Vector Proj(Δy) = Δy=Σj= j1, j2ΔζjProj(bj)
Projected Error Component Vector Δζj1Proj(bj1)
Projected Error Component Vector Δζj2Proj(bj2)
Angle θ=∠(nj1,nj2) = π−∠(Proj(bj1), Proj(bj2))

Figure 2: Equivalence of OBQ’s error propagation and Babai’s projection. (a) 3D plot showing
the target being projected onto the nearest plane. (b) 3D plot showing how the projection error is
propagated. (c) 2D plot showing the vectors on the nearest hyperplane in (a-b). (d) 2D plot showing
the vectors on the orthogonal projection plane in (b).

decomposition of the error ∆y =
∑

j∈J ∆ζjbj as the error component vectors in the basis directions.
Figure 2 (c) is a 2D plot showing the vectors on plane NHP . The number ζj will be updated to
ζj + ∆ζj such that ProjNHP (y) =

∑
j∈J (ζj +∆ζj) bj . Next, let N = B−⊤ = [n1, . . . ,nc]

be the inverse basis. Then, we have ⟨nj , bj⟩ = 1 and nj ⊥ bj′ , ∀j ̸= j′. We project all the
vectors in Figure 2 (b) onto the orthogonal projection plane OPP := Span {nj |j = j1, j2}
that is orthogonal to the hyperline HL, and continue the proof in the 2D geometry in Fig-
ure 2 (d). Denote the angle θ = ∠ (nj1 ,nj2) = π − ∠ (ProjOPP (bj1) ,ProjOPP (bj2)).

Then,
∆ζj1∥ProjOPP(bj1)∥
∆ζj2∥ProjOPP(bj2)∥

= cos θ =
⟨nj1

,nj2⟩
∥nj1∥∥nj2∥

=
∥nj2∥
∥nj1∥

⟨nj1
,nj2⟩

⟨nj2
,nj2⟩

. For j = j1, j2,

∥ProjOPP (bj)∥ ∥nj∥ =
⟨ProjOPP(bj),nj⟩

cos(π
2 −θ)

=
⟨bj ,nj⟩

cos(π
2 −θ)

= 1

cos(π
2 −θ)

. For j, j′ ∈ {j1, j2},

⟨nj ,nj′⟩ =
(
N⊤N

)
[j, j′] =

(
B⊤B

)−1
[j, j′]. Combining the above equations,

∆ζj1 =
∥ProjOPP(bj2)∥∥nj2∥
∥ProjOPP(bj1)∥∥nj1∥

⟨nj1 ,nj2⟩
⟨nj1 ,nj2⟩

∆ζj2 =
⟨nj1 ,nj2⟩
⟨nj2 ,nj2⟩

∆ζj2 =
(B⊤B)

−1
[j1,j2]

(B⊤B)−1[j2,j2]
∆ζj2 . Fi-

nally, substituting B = (X diag (si)) [:, J ] and ζj =
wi[j]
si[j]

completes the proof.

Auxiliary Line in Orthogonal Directions
Basis Vector bj2

Target Point y : = Σjζjbj

Nearest Hyperplane (Hyperline)  : = ⌊ζj2⌉bj2 +Span{bj | j≠ j2}
Babai's Projected Point Proj(y) : = Σj(ζj+Δζj)bj

Error Vector Δy : = Proj(y) −y=ΣjΔζjbj

Error Component Vector Δζj2bj2

Remaining Error Component Vector Σj≠ j2Δζjbj

Inverse Basis Vector nj2 : ⟨nj2,bj2⟩=1;nj2 ⟂bj, ∀j≠ j2
Projected Basis Vector Projnj2(bj2)

Figure 3: Geometric interpretation of OBQ’s quantization order. This 2D plot shows the target being
projected onto the nearest plane.
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Corollary 3 (OBQ Dimension Selection) At each dimension selection step (Eq. 1), OBQ selects
the not-yet-quantized dimension j such that the nearest hyperplane of dimension j is the closest to
the target residual vector.

Proof We use the same notations defined in Theorem 2. Figure 3 is a 2D plot showing
the distance (projection error or quantization error) between the target residual vector y and
the nearest hyperplane NHP of the basis bj2 . For better illustration, we collapse NHP
to a single dimension. The distance ∥∆y∥ can be written as ∥∆y∥ =

∥∥∥Projnj2
(∆y)

∥∥∥ =

|∆ζj2 |
∥∥∥Projnj2

(bj2)
∥∥∥ =

|∆ζj2 ||⟨bj2
,nj2⟩|

∥nj2∥
=
|∆ζj2 |
∥nj2∥

. For each wi, OBQ independently selects

j = argminj∈J
(qi[j]−wi[j])

2

(X[:,J]⊤X[:,J])−1[j,j]
= argminj∈J

(∆ζj)
2

⟨nj ,nj⟩ = argminj∈J
|∆ζj |
∥nj∥ as the next

dimension to quantize, which is exactly minimizing this distance.

4.3 GPTQ AND BABAI’S ALGORITHM

Originally, GPTQ (Algorithm 1) runs from the first to the last dimension (j ← 1 to c) while Babai’s
algorithm (Algorithm 2) runs from the last to the first dimension (j ← c to 1). This is the only
(superficial) difference between the two algorithms, as formalized below.

Theorem 4 (GPTQ and Babai) GPTQ and Babai’s algorithm without basis reduction will have the
same results if we align the dimensional order of these two algorithms, e.g., running GPTQ from the
last to the first dimension.

Proof We prove this theorem both geometrically and algebraically. We first present the geometric
proof. Theorem 2 shows that each intermediate weight vector produced by OBQ, equivalently GPTQ,
can be viewed as Babai’s residual vector in the activation space. At step j (running from the last to
the first dimension, j ← c to 1), GPTQ’s error propagation update is exactly Babai’s projection at
step j, which projects the current residual of the target vector onto the hyperplane orthogonal to the
j-th Gram-Schmidt vector.

Alternatively, we present a more rigorous algebraic proof. Section A.2 describes the exact quantization
procedures using Babai’s algorithm in more detail, with the pseudocode in Algorithm 4. Appendix B
contains the equivalence proof, in which we proceed in three steps. First, we rewrite GPTQ to track
the cumulative quantization error and show that this form is algebraically equivalent to the standard
implementation. Second, we run GPTQ in the back-to-front order and replace the lower triangular
factor by an upper triangular one, so that each update affects only the not-yet-quantized coordinates.
Third, we prove that the step-wise rounding decisions of the back-to-front GPTQ coincide with those
of Babai’s algorithm.

Geometric interpretation of GPTQ. Theorem 4 shows that, if we regard the activations as the
lattice basis and transform the floating-point weight vector as a target vector in the activation space,
GPTQ performs an orthogonal walk through a nested sequence of affine subspaces in a pre-computed
dimensional order.

Ineffectiveness of composing algorithms. A seemingly appealing idea is to take the solution
returned by any Babai iteration and then perform one further GPTQ-style error propagation step
on the weights in the activation space, hoping to push the approximation even closer to the optimum.
However, as proven in Section B.4, such an extra update vanishes: the final results of Z and Q
remain unchanged. In other words, once Babai’s projection has been executed, any subsequent
GPTQ-style correction is algebraically redundant. This confirms that the equivalence in Theorem 4
is already tight; neither algorithm can be strengthened by composition.

4.4 GPTQ’S ERROR BOUND

Having established the correspondence between GPTQ and Babai’s nearest plane algorithm, we can
now import Babai’s approximation guarantee to obtain an upper bound on the layer-wise quantization
error in the no-clipping setting.
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Theorem 5 (GPTQ Error Bound) Assume no clipping (Z† = Z) and let T be the permutation
matrix of the reversed GPTQ quantization order (equivalently P with the reversed column or-
der). Let D be the diagonal matrix of the LDL decomposition of the permuted Hessian matrix
T⊤X⊤XT . For every output channel i (1 ≤ i ≤ r) produced by Babai’s algorithm, or equiv-
alently GPTQ algorithm executed back-to-front, the (absolute) quantization error has a tight up-
per bound: ∥X diag (si) zi −Xwi∥2 ≤ 1

4

(
T−1si

)⊤
D
(
T−1si

)
. For the relative bound for

γ with ∥X diag (si) zi −Xwi∥ ≤ γ · minz′
i∈Zc ∥X diag (si) z

′
i −Xwi∥, we have 1 ≤ γ ≤√

1 + max1≤j≤c

∑j

j′=1
d2
j′

d2
j

≤
√
c+ 1 ·max1≤j′≤j≤c

dj′

dj
where dj =

√
D[j, j]

∣∣(T−1si
)
[j]
∣∣.

The full proof of Theorem 5 is presented in Section C.1. If the scales si are small enough, we may
assume the weights wi are nearly uniformly distributed within the hyper-cuboid constructed by
Babai’s orthogonalized basis vectors, the expected absolute error will be 1

3 of the worst-case bound.
See Section C.2 for a proof.

4.5 THE ROLE OF QUANTIZATION ORDER IN GPTQ

The quadratic form on the right-hand side of the absolute error bound in Theorem 5 is sensitive
to the pivot order of the LDL decomposition of the Hessian matrix; this is the quantization order.
Re-ordering the dimensions changes the entries of the diagonal matrix D before the scale si is
“weighted” by them. A poor order may place large D entries against large si entries and hence inflate
the bound. For a batched quantization algorithm like GPTQ, the order should be independent of the
output channel i. To develop a good heuristic order, a reasonable approximation to make, especially
for large quantization group sizes, is that the elements of si[j] are equal for all 1 ≤ j ≤ c. Then
we can focus on finding the optimal pivot order for the LDL decomposition of the Hessian matrix
X⊤X to minimize tr (D).

Finding the optimal order is NP-hard (Rose et al., 1976). However, heuristics often effectively reduce
the trace term in practice. Even with clipping, heuristics can reduce the error. GPTQ introduces
the act-order, the descending order of the Hessian diagonal, i.e. the ascending order of the Hessian
diagonal when applied to Babai’s algorithm.

To improve upon act-order, we propose the min-pivot order, which is essentially taking the minimum
diagonal entry at each LDL (or Cholesky) decomposition step. This order can be calculated by
Algorithm 3, which has cubic time complexity and does not increase the overall time complexity
of quantization. This order also has a geometric interpretation, as the order of the Gram-Schmidt
orthogonalization process of the basis: always taking the shortest residual vector as the next one to
orthogonalize, agreeing with Babai’s relative error bound. Across our preliminary runs (Section C.3),
min-pivot consistently reduces tr (D) relative to act-order, but the downstream accuracy gains are
modest. We nevertheless report min-pivot as a principled choice, and view act-order as a cheap
approximation that only considers the Hessian diagonal, which already captures most of the benefit
when the Hessian matrix is well-conditioned.

Algorithm 3: Min-Pivot
Input: Hessian H ∈ Rc×c

Output: order encoded as a permutation matrix T ∈ {0, 1}c×c

1 J ← {1, . . . , c} // initialize the not-yet-pivoted indices
2 T ← 0 // initialize the output permutation matrix
3 for j ← 1 to c do
4 j′ ← argminj′∈JH[j′, j′] // choose next index with the smallest current diagonal
5 H ←H −H[:, j′]H[j′, :]/H[j′, j′] // updates remaining entries with rank-1 Schur

complement
6 T [j′, j]← 1 // record the index
7 J ← J \ {j′} // mark pivot as used
8 end

8
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5 APPLICATIONS

The original GPTQ algorithm clips the overflowed integers at the rounding step, introducing large
errors that violate the error bound in Theorem 5. In this section, we explore error-guaranteed variants
of GPTQ that work in the no-clipping regime.

We notice that enforcing no-clipping by simply increasing scales is counterproductive: larger scales
enlarge the bound, and the resulting errors can exceed those of a clipped scheme such as MSE. Hence,
any practical no-clipping design must account for the weight distributions that are known to have
heavy outliers (Li et al., 2025). We would still like to apply small scales, but use small bitwidths for
the bulk of inliers while handling the overflowed outliers with more storage budget without clipping
them. We therefore propose two overflow-tolerant schemes.

Scale-adjusted SpQR (SSQR). SpQR (Dettmers et al., 2024) keeps a small set of outliers in full preci-
sion, but it still leaves clipping in place: weights are grouped, the outliers and a shared scale are chosen
per group before the GPTQ updates, and there is no guarantee the updated inlier weights stay within
the representable range. We design SSQR with a scale-adjustment mechanism to fix this issue. For
simplicity, we discard SpQR’s second-level quantization for the scales. For a weight vector wi ∈ Rc,
we represent the quantized weight qi ∈ Rc as diag (si) zi+ξi where z ∈ Zc

† is the low-bitwidth inte-
ger weight vector, si ∈ Rc

̸=0 is the floating-point scale vector with each scale shared per group (only
one number per group is actually stored), and ξi ∈ Rc is the sparse floating-point outlier vector (stored
in the compressed sparse row format, CSR) that captures all the overflowed weights after GPTQ’s er-
ror propagation. The scale-adjustment mechanism tunes the scale si until the density of ξi satisfies the
specified rate. Because exhaustive trial-and-error over per-group scales is infeasible in large layers, the
mechanism only proportionally changes si so that the search space reduces to one dimension. With the
observation that the outlier rate is negatively related to the scales in general, this can be done via binary
search: initialize si using MSE, quantize wi with the specified format using GPTQ without clipping,
calculate the density of ξi, and adjust si and iterate. Section D.1 Algorithm 9 is the pseudocode.

Huffman-encoded post-training quantization (HPTQ). To better align with the infinite,
unconstrained lattice in CVP, we design HPTQ, which represents both inliers and outliers in a unified,
equal-spaced integer grid. The idea is to use Huffman encoding, which was also explored for
network compression by Choi et al. (2017). We quantize the weight matrix W ∈ Rc×r as Q = sZ
with a single scalar s ∈ R ̸=0 and integers Z ∈ Zc×r. We select s via an entropy-guided binary
search: initialize a range proportional to the maximum weight, quantize to unclipped integers with
GPTQ, measure the Huffman coding cost of Z, and adjust s until the encoded bits meet a target
average bitwidth. This yields uneven-bitwidth representations that preserve accuracy while meeting
a compression budget. Section D.1 Algorithm 11 is the pseudocode.

Experiments compare round-to-nearest (RTN), original GPTQ, HPTQ, and SSQR with 1~5% outliers.
We also include Huffman-encoded RTN (HRTN) as a baseline to HPTQ, which mirrors HPTQ
but replaces GPTQ with RTN (Pseudocode: Section D.1 Algorithm 12). The quantization order is
act-order for all methods. RTN, GPTQ, and SSQR use group size 128. RTN and GPTQ calculate the
scales with the MSE method. Figure 4 (a-b) shows that HPTQ sustains low perplexity on Qwen3-8B
at reduced bitwidths and scales favorably across model sizes, with 3.125-bit emerging as Pareto
optimal in terms of perplexity vs compression. The experimental setup and additional metrics,
including the benchmark results, are detailed in Sections D.2 and D.3.

CUDA inference kernel. We implement an inference kernel for SSQR in CUDA/C++, optimized
for low-batch latency, handling both the dense inliers and sparse outliers while targeting the Ampere
platform. The kernel supports group-quantized inlier weights in the 2-4-bit range with scales in 16
bits and support for unstructured sparsity, used to avoid weight clipping. Figure 4 (c) visualizes the
end-to-end speedup in the LLM decoding phase vs the PyTorch BF16 kernel. Our kernel achieves
about 2× speedup across different bitwidth and outlier rate settings when generating 128 new tokens
at a batch size of 1. Technical details and layer-wise speedups are described in Section D.4.

6 CONCLUSION

We have shown that GPTQ, when executed back-to-front, is mathematically identical to Babai’s
nearest plane algorithm applied to the lattice defined by a layer’s Hessian without basis reduction.
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Figure 4: (a) Comparison of quantization methods (RTN, GPTQ, HRTN, HPTQ, and SSQR with
1~5% outliers) on Qwen3-8B evaluated on WikiText-2. Perplexity is plotted against the average
effective bitwidth per weight, with the BF16 baseline shown as a horizontal line. HPTQ has the
best (lowest) perplexity. See Section D.3 for zero-shot evaluation results. (b) Scaling behavior of
HPTQ across multiple model sizes (0.6B, 1.7B, 4B, 8B, 14B) and bitwidths (4.125, 3.125, 2.125).
The x-axis denotes the effective model size after quantization, and the y-axis shows perplexity on
WikiText-2. Each curve corresponds to a fixed bitwidth, while points along a curve represent different
model scales. Using our HPTQ method, 3.125-bit stands out as the Pareto optimal bitwidth (optimal
perplexity vs compression trade-offs). (c) End-to-end inference speedups of our SSQR kernel vs the
PyTorch BF16 matrix multiplication kernel on NVIDIA RTX A6000 GPU. We run the Qwen3-8B
model across multiple outlier rates (0%~5%) and inlier bitwidths (4, 3, 2) and measure the TPOT
(time per output token) metric. Our kernel achieves about 2× speedup end-to-end.

Based on this theory, we propose error-guaranteed practical methods and provide optimized CUDA
kernels that deliver low-latency inferences. Looking ahead, extending the analysis to clipped grids and
exploring (scale-aware) basis reductions are the immediate next steps. We will also extend the lattice
view beyond weight-only linear layers to activation and KV-cache quantization. More broadly, the
lattice perspective opens a two-way channel: decades of CVP heuristics can refine practical quantizers,
while the behavior of massive neural networks may, in turn, inspire new questions for lattice theory.
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A APPLYING BABAI’S ALGORITHM TO BATCHED QUANTIZATION

A.1 QUANTIZATION-CVP CORRESPONDENCE

Table 1 is a take-away dictionary showing the correspondence between the quantization and CVP
concepts.

Table 1: Quantization-CVP dictionary for the output channel i.

Quantization symbol CVP interpretation

Input activation X ∈ Rn×c Basis directions (columns are generators)
Scale si ∈ Rc

̸=0 Basis stretches
B(i) = X diag (si) ∈ Rn×c Lattice basis (columns are generators)
Weight wi ∈ Rc Floating-point coordinates on the unstretched basis
Integer weight representation zi ∈ Zc

† Integer coordinates on the lattice basis
Dequantized weight qi = diag (si) zi ∈ Rc Dequantized coordinates on the unstretched basis
Target output activation y(i) = Xwi ∈ Rn External target vector to approximate

13
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A.2 BABAI’S QUANTIZATION ALGORITHM

Given the equivalence we have shown in Section 4.1, the quantization problem can be converted to
CVP, allowing us to apply Babai’s nearest plane algorithm in the context of quantization. A naive
way is to compute B(i) = X diag (si) and y(i) = Xwi and run Babai’s algorithm independently for
all 1 ≤ i ≤ r. However, this is computationally inefficient, as we will need to compute the expensive
(O
(
c4
)
) LLL basis reduction transformation T(i) for the basis B(i) and the expensive (O

(
c3
)
) QR

decomposition of A(i) = B(i)T(i) for r times. However, a few adjustments can be made to simplify
the computation and enable batched processing.

Disabling basis reduction. The LLL basis reduction is unfortunately scale-sensitive, generating
different transformations T(i) for different scales si (unless all the si vectors are parallel), which
prohibits the reuse of QR decomposition results. Furthermore, LLL basis reduction is incompatible
with clipping, as the roundings are performed in another basis, and there is no easy way to do the
clipping for the original basis.

Changing quantization order. Quantization order is a feature in GPTQ that controls the rounding
and clipping order of the dimensions. This order influences the quantization error, as we discuss
in Section 4.5. In the context of Babai’s algorithm, this corresponds to the order of the basis in the
Gram-Schmidt orthogonalization and the hyperplane projections, as shown in Figure 1 (g-h). To do
so, we can replace the LLL basis reduction in Babai’s algorithm with a permutation by setting the
transformation matrix T to a permutation matrix that is independent of i.

Theorem 6 (Babai’s Quantization Order) If T is a permutation matrix that does not depend on i,
the orthogonal matrix Φ can be reused without recomputing the QR decomposition for each i.

Proof The permutation matrix T ∈ {0, 1}c×c has exactly one non-zero element in each row and
column. Scaling the rows of T can also be interpreted as scaling the columns of T , therefore its
multiplication with a diagonal matrix has property: diag (si)T = T diag

(
T−1si

)
. Let A = XT ,

A(i) = X diag (si)T . Denote the QR decomposition of A as A = ΦR with Φ being an orthogonal
matrix and R being an upper triangular matrix. Then, the QR decomposition of A(i) becomes A(i) =

X diag (si)T = XT diag
(
T−1si

)
= A diag

(
T−1si

)
= Φ

(
R diag

(
T−1si

))
. Therefore, the

QR decompositions of A(i) share the same orthogonal matrix Φ for all 1 ≤ i ≤ r.

As shown in Theorem 6, changing quantization order does not require repeated computation of the
QR decomposition. Note that, we also need to permute the scale S accordingly to T−1S.

Algorithm 4: Babai’s Quantize
Input: W ,S,X,T , λ,Z†
Output: Z,Q

1 H ← T⊤ (X⊤X + λI
)
T

2 A← CHOLESKY (H)
⊤

3 W ,S ← T−1W ,T−1S
4 Y ,Q,Z ← AW ,W ,0
5 for j ← c to 1 do
6 ω ← Y [j, :]/A[j, j]
7 ζ ← ω/S[j, :]
8 Z[j, :]← ROUND (ζ,Z†)
9 Q[j, :]← Z[j, :] ∗ S[j, :]

10 Y ← Y −A[:, j]Q[j, :]
11 end
12 Z,Q← TZ,TQ

Selecting basis. Putting things together, we are
interested in A = XT and its QR decomposition
Φ. Theorem 1 allows us to choose any Hessian
factor X while keeping the result intact. With-
out loss of generality, we can choose a X such
that A is an upper triangular matrix and the QR
decomposition becomes trivial: Φ = I, which
simplifies the computation. The upper triangu-
lar matrix A can be directly computed from the
Cholesky decomposition of the permuted Hessian
matrix A⊤A = T⊤X⊤XT .

Applying all the considerations in this subsection,
we construct Algorithm 4 for batched quantiza-
tion using Babai’s algorithm.

14
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B ALGEBRAIC EQUIVALENCE PROOF OF GPTQ AND BABAI’S ALGORITHM

In this section, we prove Theorem 4 that GPTQ (Algorithm 1) and Babai’s algorithm (Algorithm 4)
are equivalent if the dimensional orders are opposite.

Because a permutation matrix acts only as re-ordering coordinates, we may apply the permutation
once at the beginning (to W , S, and X) and once at the end (to Z and Q) without affecting any
intermediate arithmetic. Hence, all algebras performed inside the two algorithms can be analyzed on
the permuted basis where the permutation matrix is the identity. On that basis, the sole distinction
between GPTQ and Babai’s algorithm lies in the direction of the iterations. Proving that GPTQ
running back-to-front (j ← c to 1) reproduces Babai’s updates in Babai’s default iteration direction
would complete the equivalence proof.

We follow a three-step proof scheme.

• Step 1. Proving that the original GPTQ algorithm (Algorithm 5) that uses relative quantiza-
tion error row vector ε ∈ R1×r is equivalent to a new algorithm (Algorithm 6) using the
absolute quantization error matrix ∆ ∈ Rc×r.

• Step 2. Reversing the iteration in Algorithm 6 and writing the reversed-iteration algorithm
as Algorithm 7.

• Step 3. Proving that the reversed-iteration algorithm Algorithm 7 is equivalent to Babai’s
algorithm Algorithm 8.

Algorithms 5 to 8 are intentionally written in the linear algebra form. ej ∈ Rc is the standard
basis vector whose elements are 0 except the j-th element being 1, which is used as the row or
column selector of a matrix. The superscripts in parentheses denote the versions of the variables
during the iterations. ω, ζ ∈ R1×r are intermediate row vectors. Additionally, L is the LDL
decomposition of the Hessian inverse H−1 = LD

1
2

LD
1
2

LL
⊤ where L is a lower triangular matrix

with all diagonal elements being 1, and D
1
2

L is a non-negative diagonal matrix. Similarly, U is the

“UDU” decomposition of the Hessian inverse H−1 = UD
1
2

UD
1
2

UU
⊤ where U is an upper triangular

matrix with all diagonal elements being 1, and D
1
2

U is a non-negative diagonal matrix.

Note: the symbols are overloaded in Algorithms 5 to 8, and the variables using the same symbols
may carry different values, even if the inputs to the algorithms are the same.

B.1 STEP 1

To distinguish the variables using the same symbol in Algorithms 5 and 6, we use symbols withoutˆ
to denote the symbols in Algorithm 5, and use the symbols withˆ for Algorithm 6.

Claim

ωj = ω̂j , 1 ≤ j ≤ c, (3)
and consequently,

Z(j) = Ẑ(j), 0 ≤ j ≤ c, (4)
and

Q(j) = Q̂(j), 0 ≤ j ≤ c. (5)

Proof Eq. 3 by Induction

The following equalities are held by the design of Algorithms 5 and 6:

Q(0) = Q̂(0) = W (0) = Ŵ (0). (6)

ω(j) = e⊤j W
(j−1), 1 ≤ j ≤ c. (7)

ω̂(j) = e⊤j Ŵ
(j−1), 1 ≤ j ≤ c. (8)

Q(j) = Q(j−1) + ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)
, 1 ≤ j ≤ c. (9)
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Algorithm 5: GPTQ Original (Front-to-Back)
Input: W ,S,X, λ,Z†
Output: Z,Q

1 H ←X⊤X + λI

2 L← LDL
(
H−1

)
3 W (0) ←W

4 Q(0),Z(0) ←W (0),0
5 for j ← 1 to c do
6 ω(j) ← e⊤j W

(j−1)

7 ζ(j) ← ω(j) diag
(
S⊤ej

)−1

8 Z(j) ← Z(j−1) + ej
(

ROUND
(
ζ(j),Z†

)
− e⊤j Z

(j−1)
)

9 Q(j) ← Q(j−1) + ej
(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)

10 ε(j) ← e⊤j Q
(j) − ω(j)

11 W (j) ←W (j−1) +Lejε
(j)

12 end
13 Z,Q← Z(c),Q(c)

Algorithm 6: GPTQ Type-2 (Front-to-Back)
Input: W ,S,X, λ,Z†
Output: Z,Q

1 H ←X⊤X + λI

2 L← LDL
(
H−1

)
3 W (0) ←W

4 Q(0),Z(0) ←W (0),0
5 for j ← 1 to c do
6 ω(j) ← e⊤j W

(j−1)

7 ζ(j) ← ω(j) diag
(
S⊤ej

)−1

8 Z(j) ← Z(j−1) + ej
(

ROUND
(
ζ(j),Z†

)
− e⊤j Z

(j−1)
)

9 Q(j) ← Q(j−1) + ej
(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)

10 ∆(j) ← Q(j) −W (0) // new
11 W (j) ←W (0) −L−1∆(j) // new
12 end
13 Z,Q← Z(c),Q(c)
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Algorithm 7: GPTQ Type-2 (Back-to-Front)
Input: W ,S,X, λ,Z†
Output: Z,Q

1 H ←X⊤X + λI

2 U ← UDU
(
H−1

)
// new

3 W (c+1) ←W

4 Q(c+1),Z(c+1) ←W (c+1),0
5 for j ← c to 1 do
6 ω(j) ← e⊤j W

(j+1)

7 ζ(j) ← ω(j) diag
(
S⊤ej

)−1

8 Z(j) ← Z(j+1) + ej
(

ROUND
(
ζ(j),Z†

)
− e⊤j Z

(j+1)
)

9 Q(j) ← Q(j+1) + ej
(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j+1)
)

10 ∆(j) ← Q(j) −W (c+1)

11 W (j) ←W (c+1) −U−1∆(j) // new
12 end
13 Z,Q← Z(1),Q(1)

Algorithm 8: Babai-Quantize (Default Order)
Input: W ,S,X, λ,Z†
Output: Z,Q

1 H ←X⊤X + λI

2 A← CHOLESKY (H)
⊤

3 Y (c+1),Q(c+1),Z(c+1) ← AW ,W ,0
4 for j ← c to 1 do
5 ω(j) ← e⊤

j Y (j+1)

e⊤
j Aej

6 ζ(j) ← ω(j) diag
(
S⊤ej

)−1

7 Z(j) ← Z(j+1) + ej
(
ROUND

(
ζ(j),Z†

)
− e⊤j Z

(j+1)
)

8 Q(j) ← Q(j+1) + ej
(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j+1)
)

9 Y (j) ← Y (j+1) −Aeje
⊤
j Q

(j)

10 end
11 Z,Q← Z(1),Q(1)
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Q̂(j) = Q̂(j−1) + ej

(
e⊤j Ẑ

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j−1)
)
, 1 ≤ j ≤ c. (10)

ε(j) = e⊤j Q
(j) − ω(j), 1 ≤ j ≤ c. (11)

∆(j) = Q̂(j) − Ŵ (0), 1 ≤ j ≤ c. (12)
W (j) = W (j−1) +Lejε

(j), 1 ≤ j ≤ c. (13)

Ŵ (j) = Ŵ (0) −L−1∆(j), 1 ≤ j ≤ c. (14)

Extend the definition of ∆(j) (Eq. 12) for j = 0,

∆(j) = Q̂(j) − Ŵ (0), 0 ≤ j ≤ c. (15)

Then we have ∆(0) = Q̂(0) − Ŵ (0) = Ŵ (0) − Ŵ (0) = 0 , so that Eq. 14 can also be extended for
j = 0,

Ŵ (j) = Ŵ (0) −L−1∆(j), 0 ≤ j ≤ c. (16)

(1) Eq. 3 holds for j = 1:

Using Eqs. 6, 7, 8,
ω(1) = e⊤1 W

(0) = e⊤1 Ŵ
(0) = ω̂(1). (17)

(2) Assume Eq. 3 holds for all j ≤ j∗, 1 ≤ j∗ < c.

Because L is a lower triangular matrix with all diagonal elements being 1, L−1 is also a lower
triangular matrix with all diagonal elements being 1.

For 1 ≤ j < k ≤ c,
e⊤j Lek = e⊤j L

−1ek = 0. (18)

For 1 ≤ j ≤ c,
e⊤j Lej = e⊤j L

−1ej = 1. (19)

For 1 ≤ j < c,

e⊤j+1L

(
j∑

k=1

eke
⊤
k

)

=e⊤j+1L

( c∑
k=1

eke
⊤
k

)
− ej+1e

⊤
j+1 −

 c∑
k=j+2

eke
⊤
k


=e⊤j+1L

(
j+1∑
k=1

eke
⊤
k

)
− e⊤c Lej+1e

⊤
j+1 − e⊤j+1L

 c∑
k=j+2

eke
⊤
k


=e⊤j+1LI− e⊤j+1 −

 c∑
k=j+2

e⊤j+1Leke
⊤
k

 (Eq. 19)

=e⊤j+1L− e⊤j+1 −

 c∑
k=j+2

0e⊤k

 (Eq. 18)

=e⊤j+1 (L− I) .

(20)

With Eq. 9, for 1 ≤ j ≤ c, 1 ≤ k ≤ c and j ̸= k,

e⊤k Q
(j) =e⊤k

(
Q(j−1) + ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
))

=e⊤k Q
(j−1) + e⊤k ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)

=e⊤k Q
(j−1) + 0

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)

=e⊤k Q
(j−1).

(21)
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Recursively applying Eq. 21, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k Q
(j) =

{
e⊤k Q

(k) if 1 ≤ k ≤ j ≤ c,

e⊤k Q
(0) = e⊤k W

(0) if 1 ≤ j < k ≤ c.
(22)

Similar to Eq. 22, with Eq. 10, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k Q̂
(j) =

{
e⊤k Q̂

(k) if 1 ≤ k ≤ j ≤ c,

e⊤k Q̂
(0) = e⊤k Ŵ

(0) if 1 ≤ j < k ≤ c.
(23)

With Eq. 23, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k ∆
(j) =e⊤k

(
Q̂(j) − Ŵ (0)

)
(Eq. 15)

=e⊤k Q̂
(j) − e⊤k Ŵ

(0)

=

{
e⊤k Q̂

(k) − e⊤k Ŵ
(0) = e⊤k ∆

(k) if 1 ≤ k ≤ j ≤ c,

e⊤k Ŵ
(0) − e⊤k Ŵ

(0) = e⊤k ∆
(0) = 0 if 1 ≤ j < k ≤ c.

(24)

For 1 ≤ k ≤ j ≤ c,

e⊤k L∆(j)

=e⊤k LI∆(j)

=e⊤k L

(
c∑

k′=1

ek′e⊤k′

)
∆(j)

=

c∑
k′=1

e⊤k Lek′e⊤k′∆(j)

=

(
k∑

k′=1

e⊤k Lek′e⊤k′∆(j)

)
+

(
c∑

k′=k+1

e⊤k Lek′e⊤k′∆(j)

)

=

(
k∑

k′=1

e⊤k Lek′e⊤k′∆(k′)

)
+

(
c∑

k′=k+1

0e⊤k′∆(j)

)
(Eqs. 18, 24)

=

(
k∑

k′=1

e⊤k Lek′e⊤k′∆(k)

)
+

(
c∑

k′=k+1

0e⊤k′∆(k)

)
(Eq. 24)

=

(
k∑

k′=1

e⊤k Lek′e⊤k′∆(k)

)
+

(
c∑

k′=k+1

e⊤k Lek′e⊤k′∆(k)

)
(Eq. 18)

=

c∑
k′=1

e⊤k Lek′e⊤k′∆(k)

=e⊤k L

(
c∑

k′=1

ek′e⊤k′

)
∆(k)

=e⊤k LI∆(k)

=e⊤k L∆(k).

(25)
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For 1 ≤ j ≤ c,

e⊤j L
−1∆(j−1)

=e⊤j L
−1I∆(j−1)

=e⊤j L
−1

(
c∑

k=1

eke
⊤
k

)
∆(j−1)

=

c∑
k=1

e⊤j L
−1eke

⊤
k ∆

(j−1)

=

(
j−1∑
k=1

e⊤j L
−1eke

⊤
k ∆

(j−1)

)
+ e⊤j L

−1eje
⊤
j ∆

(j−1) +

 c∑
k=j+1

e⊤j L
−1eke

⊤
k ∆

(j−1)


=

(
j−1∑
k=1

e⊤j L
−1eke

⊤
k ∆

(j−1)

)
+ e⊤j L

−1ej0+

 c∑
k=j+1

0e⊤k ∆
(j−1)

 (Eqs. 18, 24)

=

(
j−1∑
k=1

e⊤j L
−1eke

⊤
k ∆

(j−1)

)
+

 c∑
k=j+1

0e⊤k ∆
(j−1)

+ e⊤j ∆
(j) − e⊤j ∆

(j)

=

(
j−1∑
k=1

e⊤j L
−1eke

⊤
k ∆

(j)

)
+

 c∑
k=j+1

e⊤j L
−1eke

⊤
k ∆

(j)

+ e⊤j L
−1eje

⊤
j ∆

(j) − e⊤j ∆
(j) (Eqs. 19, 24)

=

(
c∑

k=1

e⊤j L
−1eke

⊤
k ∆

(j)

)
− e⊤j ∆

(j)

=e⊤j L
−1

(
c∑

k=1

eke
⊤
k

)
∆(j) − e⊤j ∆

(j)

=e⊤j L
−1I∆(j) − e⊤j ∆

(j)

=e⊤j
(
L−1 − I

)
∆(j).

(26)

According to the assumption, for 1 ≤ k ≤ j∗ < c, we have

e⊤k W
(k−1) = ω(k) = ω̂(k) = e⊤k Ŵ

(k−1) (27)

and

Q(k) = Q̂(k). (28)
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For 1 ≤ k ≤ j∗,

ε(k) =e⊤k Q
(k) − ω(k) (Eq. 11)

=e⊤k Q
(k) − e⊤k W

(k−1)

=e⊤k

(
Q(k) −W (k−1)

)
=e⊤k

(
Q̂(k) − Ŵ (k−1)

)
(Eqs. 27, 28)

=e⊤k

(
Q̂(k) −

(
Ŵ (0) −L−1∆(k−1)

))
(Eq. 16)

=e⊤k

((
Q̂(k) − Ŵ (0)

)
+L−1∆(k−1)

)
=e⊤k

(
∆(k) +L−1∆(k−1)

)
(Eq. 15)

=e⊤k

(
∆(k) +

(
L−1 − I

)
∆(k)

)
(Eq. 26)

=e⊤k L
−1∆(k)

=e⊤k L
−1∆(j∗) (Eq. 25).

(29)

ω(j∗+1) =e⊤j∗+1W
(j∗) (Eq. 7)

=e⊤j∗+1

(
W (j∗−1) +Lej∗ε

(j∗)
)

(Eq. 13)

=e⊤j∗+1

(
W (0) +

(
j∗∑

k=1

Lekε
(k)

))
(Eq. 13)

=e⊤j∗+1

(
Ŵ (0) +

(
j∗∑

k=1

Leke
⊤
k L

−1∆(j∗)

))
(Eq. 29)

=e⊤j∗+1

(
Ŵ (0) +L

(
j∗∑

k=1

eke
⊤
k

)
L−1∆(j∗)

)
=e⊤j∗+1

(
Ŵ (0) + (L− I)L−1∆(j∗)

)
(Eq. 20)

=e⊤j∗+1

(
Ŵ (0) −L−1∆(j∗) +∆(j∗)

)
=e⊤j∗+1

(
Ŵ (0) −L−1∆(j∗) + 0

)
(Eq. 24)

=e⊤j∗+1

(
Ŵ (0) −L−1∆(j∗)

)
=e⊤j∗+1Ŵ

(j∗) (Eq. 16)

=ω̂(j∗+1) (Eq. 8).

(30)

Eq. 3 holds for j = j∗ + 1. ■

B.2 STEP 2

Algorithm 7 (back-to-front order) is generated by reversing the iteration direction of Algorithm 6.
Besides changing the direction of the index j, we also need to change the LDL decomposition to a so-
called “UDU” decomposition so that the error propagation is correctly applied to the not-yet-quantized
weights in the front dimensions.

Justification

Let P be the anti-diagonal permutation matrix with P = P⊤ = P−1. Let L̂ be the LDL decomposi-
tion of the permuted Hessian inverse PH−1P = L̂D̂

1
2

L D̂
1
2

L L̂
⊤ where L̂ is a lower triangular matrix

with all diagonal elements being 1, and D̂
1
2

L is a non-negative diagonal matrix.
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Since we are changing the iteration direction instead of applying the permutation, we permute the
matrix L̂ back, yielding U = PL̂P. Alternatively, U can be calculated using the decomposition
H−1 = PL̂PPD̂

1
2

LPPD̂
1
2

LPPL̂⊤P = UD
1
2

UD
1
2

UU
⊤ where U is an upper triangular matrix with

all diagonal elements being 1, and D
1
2

U = PD̂
1
2

LP is a non-negative diagonal matrix.

The decomposition to calculate U from H−1 is what we call “UDU” decomposition, which can be
considered as a variant of the LDL decomposition.

B.3 STEP 3

To distinguish the variables using the same symbol in Algorithms 7 and 8, we use symbols withˆ to
denote the symbols in Algorithm 7, and use the symbols with˜ for Algorithm 8.

We have the Cholesky decomposition of H: H =
(
H−1

)−1
=
(
UD

1
2

UD
1
2

UU
⊤
)−1

=(
D

− 1
2

U U−1
)⊤

D
− 1

2

U U−1, so that A = D
− 1

2

U U−1.

Claim

ω̂j = ω̃j , 1 ≤ j ≤ c, (31)

and consequently,
Ẑ(j) = Z̃(j), 1 ≤ j ≤ c+ 1, (32)

and
Q̂(j) = Q̃(j), 1 ≤ j ≤ c+ 1. (33)

Proof Eq. 31 by Induction

For 1 ≤ j ≤ c,

ω̃(j) =
e⊤j Y

(j+1)

e⊤j Aej

=
e⊤j Y

(j+1)

e⊤j D
− 1

2

U U−1ej

=
e⊤j Y

(j+1)

D
− 1

2

U [j, j]

=D
1
2

U[j, j]e
⊤
j Y

(j+1)

=e⊤j D
1
2

UY
(j+1).

(34)

The following equalities are held by the design of Algorithms 6 and 8:

Q̂(c+1) = Q̃(c+1) = Ŵ (c+1) = W̃ . (35)

Y (c+1) = AW̃ = D
− 1

2

U U−1W̃ . (36)

ω̂(j) = e⊤j Ŵ
(j+1), 1 ≤ j ≤ c. (37)

Q̂(j) = Q̂(j+1) + ej

(
e⊤j Ẑ

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j+1)
)
, 1 ≤ j ≤ c. (38)

Q̃(j) = Q̃(j+1) + ej

(
e⊤j Z̃

(j) diag
(
S⊤ej

)
− e⊤j Q̃

(j+1)
)
, 1 ≤ j ≤ c. (39)

∆(j) = Q̂(j) − Ŵ (c+1), 1 ≤ j ≤ c. (40)

Ŵ (j) = Ŵ (c+1) −U−1∆(j), 1 ≤ j ≤ c. (41)

Y (j) = Y (j+1) −Aeje
⊤
j Q̃

(j) = Y (j+1) −D
− 1

2

U U−1eje
⊤
j Q̃

(j), 1 ≤ j ≤ c. (42)
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Because U is an upper triangular matrix with all diagonal elements being 1, U−1 is also an upper
triangular matrix with all diagonal elements being 1.

For 1 ≤ k < j ≤ c,

e⊤j Uek = e⊤j U
−1ek = 0. (43)

e⊤c U = e⊤c . (44)

For 1 ≤ j ≤ c,

e⊤j Uej = e⊤j U
−1ej = 1. (45)

(1) Eq. 31 holds for j = c:

Using Eqs. 34, 35, 36, 37, 44,

ω̃(c) = e⊤c D
1
2

UY
(c+1) = e⊤c D

1
2

UD
− 1

2

U U−1W̃ = e⊤c U
−1W̃ = e⊤c W̃ = e⊤c Ŵ

(c+1) = ω̂(c).
(46)

(2) Assume Eq. 31 holds for all j ≥ j∗, 1 < j∗ ≤ c.

With Eq. 38, for 1 ≤ j ≤ c, 1 ≤ k ≤ c and j ̸= k,

e⊤k Q̂
(j) =e⊤k

(
Q̂(j+1) + ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j+1)
))

=e⊤k Q̂
(j+1) + e⊤k ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j+1)
)

=e⊤k Q̂
(j+1) + 0

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j+1)
)

=e⊤k Q̂
(j+1).

(47)

Recursively applying Eq. 47, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k Q̂
(j) =

{
e⊤k Q̂

(k) if 1 ≤ j ≤ k ≤ c,

e⊤k Q̂
(c+1) = e⊤k Ŵ

(c+1) if 1 ≤ k < j ≤ c.
(48)

Similar to Eq. 48, with Eq. 39, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k Q̃
(j) =

{
e⊤k Q̃

(k) if 1 ≤ j ≤ k ≤ c,

e⊤k Q̃
(c+1) = e⊤k W̃ if 1 ≤ k < j ≤ c.

(49)

For 1 ≤ j ≤ c,

Y (j) =Y (j+1) −D
− 1

2

U U−1eje
⊤
j Q̃

(j) (Eq. 42)

=Y (c+1) −

 c∑
k=j

D
− 1

2

U U−1eke
⊤
k Q̃

(k)

 (Eq. 42)

=D
− 1

2

U U−1W̃ −

 c∑
k=j

D
− 1

2

U U−1eke
⊤
k Q̃

(j)

 (Eq. 36)

=D
− 1

2

U U−1

W̃ −

 c∑
k=j

eke
⊤
k

 Q̃(j)



(50)
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For 1 ≤ j < c,

ω̃(j) =e⊤j D
1
2

UY
(j+1) (Eq. 34)

=e⊤j D
1
2

UD
− 1

2

U U−1

W̃ −

 c∑
k=j+1

eke
⊤
k

 Q̃(j+1)

 (Eq. 50)

=e⊤j U
−1

W̃ −

 c∑
k=j+1

eke
⊤
k

 Q̃(j+1)


=e⊤j U

−1W̃ −

 c∑
k=j+1

e⊤j U
−1eke

⊤
k

 Q̃(j+1)

=e⊤j U
−1W̃ −

((
c∑

k=1

e⊤j U
−1eke

⊤
k

)
−

(
j−1∑
k=1

e⊤j U
−1eke

⊤
k

)
− e⊤j U

−1eje
⊤
j

)
Q̃(j+1)

=e⊤j U
−1W̃ −

((
c∑

k=1

e⊤j U
−1eke

⊤
k

)
−

(
j−1∑
k=1

0e⊤k

)
− 1e⊤j

)
Q̃(j+1) (Eqs. 43, 45)

=e⊤j U
−1W̃ −

(
c∑

k=1

e⊤j U
−1eke

⊤
k

)
Q̃(j+1) + e⊤j Q̃

(j+1)

=e⊤j U
−1W̃ −

(
c∑

k=1

e⊤j U
−1eke

⊤
k

)
Q̃(j+1) + e⊤j W̃ (Eq. 49)

=e⊤j

(
W̃ −U−1

((
c∑

k=1

eke
⊤
k

)
Q̃(j+1) − W̃

))
=e⊤j

(
W̃ −U−1

(
IQ̃(j+1) − W̃

))
=e⊤j

(
W̃ −U−1

(
Q̃(j+1) − W̃

))
.

(51)

Because e⊤c

(
W̃ −U−1

(
Q̃(c+1) − W̃

))
= e⊤c W̃ = ω̃(c), Eq. 51 can be extended for j = c,

ω̃(j) = e⊤j

(
W̃ −U−1

(
Q̃(j+1) − W̃

))
, 1 ≤ j ≤ c. (52)

According to the assumption, for 1 < j∗ ≤ k ≤ c, we have

Q̂(k) = Q̃(k). (53)

ω̃(j∗−1) =e⊤j∗−1

(
W̃ −U−1

(
Q̃(j∗) − W̃

))
(Eq. 52)

=e⊤j∗−1

(
Ŵ (c+1) −U−1

(
Q̂(j∗) − Ŵ (c+1)

))
(Eq. 53)

=e⊤j∗−1

(
Ŵ (c+1) −U−1∆(j∗)

)
(Eq. 40)

=e⊤j∗−1Ŵ
(j∗) (Eq. 41)

=ω̂(j∗−1) (Eq. 37).

(54)

Eq. 31 holds for j = j∗ − 1. ■
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B.4 PROOF OF INEFFECTIVENESS OF ADDITIONAL GPTQ REFINEMENT ON BABAI’S
ALGORITHM

We may try to apply further GPTQ updates in Babai’s algorithm by changing Line 9 in Algorithm 8
to

Y ′(j) ← Y (j) +AUejε
(j) = Y (j+1) −Aeje

⊤
j Q̃

(j) +AUejε
(j) (55)

However, as A = D
− 1

2

U U−1, the ω̃(j−1) remains the same:

ω̃′(j−1)
=e⊤j−1D

1
2

UY
′(j) (Eq. 34)

=e⊤j−1D
1
2

U

(
Y (j) +D

− 1
2

U U−1Uejε
(j)
)

=e⊤j−1D
1
2

UY
(j) + e⊤j−1D

1
2

UD
− 1

2

U U−1Uejε
(j)

=e⊤j−1D
1
2

UY
(j) + e⊤j−1ejε

(j)

=e⊤j−1D
1
2

UY
(j) + 0ε(j)

=e⊤j−1D
1
2

UY
(j)

=ω̃(j−1) (Eq. 34).

(56)

■
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C FURTHER DISCUSSION ON QUANTIZATION ERROR BOUND

C.1 PROOF OF ABSOLUTE AND RELATIVE GPTQ QUANTIZATION ERROR BOUNDS

We prove Theorem 5 as follows.

Denote the basis B(i) = X diag (si), y(i) = Xwi as in Section 4.1 so that the quantization problem

becomes the CVP minimizing
∥∥B(i)zi − y(i)

∥∥2. Applying permutation T gives the permuted basis
A(i) = B(i)T = X diag (si)T = XT diag

(
T−1si

)
. Write the unnormalized Gram-Schmidt

vectors of A(i) as Ã(i) =
[
ã(i)1, . . . , ã(i)c

]
. Babai’s guarantee therefore yields the tight bound∥∥B(i)zi − y(i)

∥∥2 =
∥∥A(i)

(
T−1zi

)
− y(i)

∥∥2 ≤ 1
4

∑c
j=1

∥∥ã(i)j

∥∥2.

We may, without loss of generality, use Theorem 1 to rotate X so that A(i) is upper triangu-
lar. In that case, the norm

∥∥ã(i)j

∥∥ simplifies to
∣∣A(i)[j, j]

∣∣. Let D(i) be the diagonal ma-

trix of the LDL decomposition of A⊤
(i)A(i) such that D(i)[j, j] =

∣∣A(i)[j, j]
∣∣2 =

∥∥ã(i)j

∥∥2.

The summation
∑c

j=1

∥∥ã(i)j

∥∥2 can then be expressed as tr
(
D(i)

)
. Let L be the lower trian-

gular matrix in the LDL decomposition of T⊤X⊤XT = LDL⊤, so that the LDL decom-
position of A⊤

(i)A(i) = diag
(
T−1si

)
T⊤X⊤XT diag

(
T−1si

)
= L(i)D(i)L⊤

(i) has D(i) =

diag
(
T−1si

)
D diag

(
T−1si

)
and L(i) = diag

(
T−1si

)
L diag

(
T−1si

)−1
. The absolute no-

clipping error bound is therefore 1
4

∑c
j=1

∥∥ã(i)j

∥∥2 = 1
4 tr
(
D(i)

)
= 1

4

(
T−1si

)⊤
D
(
T−1si

)
.

For the relative no-clipping quantization error bound, we can plug in
∥∥ã(i)j

∥∥ =
∣∣A(i)[j, j]

∣∣ =√
D(i)[j, j] =

√
(diag (T−1si)D diag (T−1si)) [j, j] =

√
D[j, j]

∣∣(T−1si
)
[j]
∣∣ := dj into

Babai’s relative error bound in Section 3.2.
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C.2 EXPECTED QUANTIZATION ERROR OVER A UNIFORM HYPER-CUBOID

We have shown that, when clipping is disabled, Babai’s nearest-plane (hence back-to-front GPTQ)
ensures the tight worst-case bound

∥X diag (si) zi −Xwi∥2 ≤
1

4

c∑
j=1

∥ãj∥2 , Ã = [ã1, . . . , ãc] (57)

where ãj are the unnormalized Gram-Schmidt vectors of the permuted lattice basis A.

Introduce the half-edge lengths

aj =
1

2
∥ãj∥ , j = 1, . . . , c, (58)

so that the Babai residual always lies in the axis-aligned hyper-cuboid
∏c

j=1 [−aj , aj ] and Eq. 57 is
rewritten as

ϵworst =

c∑
j=1

a2j . (59)

Uniform prior on the unknown weight vector. Assume now that the continuous, not-yet-quantized
weight offset u = X (wi − diag(si)zi) is uniformly distributed inside this hyper-cuboid, i.e., each
coordinate uj ∼ Uniform (−aj , aj) and the coordinates are independent. The squared error becomes
the random variable

ϵ =

c∑
j=1

u2
j . (60)

Lemma 7 For a scalar u ∼ Uniform (−a, a) one has E[u2] = a2

3 .

Proof
E[u2] =

1

2a

∫ a

−a

u2du =
1

2a

[
1

3
x3

]a
−a

=
a2

3
. (61)

Expected residual norm. Using independence,

E[ϵ] =
c∑

j=1

E
[
u2
j

]
=

1

3

c∑
j=1

a2j . (62)

Ratio to the worst-case bound. Comparing Eq. 62 with Eq. 59 gives

E[ϵ] =
1

3
ϵworst =⇒ E

[
∥X diag (si) zi −Xwi∥2

]
=

1

12

c∑
j=1

∥ãj∥2. (63)

Hence, under a uniform prior on the weights inside Babai’s orthogonal hyper-cuboid, the average
layer-wise quantization error is exactly 1

3 of the worst-case guarantee stated in Theorem 5.
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C.3 EMPIRICAL VERIFICATION ON QUANTIZATION ORDER AND ERROR BOUND

Changing the quantization order alters the diagonal matrix D of the LDL decomposition of the
permuted Hessian and therefore the no-clipping GPTQ/Babai bound (see Section 4.5). When per-
group scales are approximately uniform, minimizing tr (D) is a good proxy for tightening this
bound. To assess different orders (back-to-front, front-to-back, random order, GPTQ’s act-order,
and our min-pivot order), we run the calibration dataset from Section D.2 through the full-precision
Qwen3-8B model and compute per-layer Hessians and calculate the tr (D). For the random order,
we average the results over 100 runs. Table 2 reports tr (D) for the layers in transformer block 18;
other blocks and models show similar patterns. In block 18, act-order already reduces tr (D) relative
to the back-to-front/front-to-back/random baselines, especially in the Q·K·V and Gate·Up layers
(≈35-50% lower). Our min-pivot heuristic consistently attains the smallest trace. In practice, this
tightens the theoretical layer-wise error bound and yields modest but consistent improvements. We
can use act-order as a cheap option and reserve min-pivot for cases where a tighter bound is required.

Table 2: tr (D) with different quantization orders of layers in Qwen3-8B block 18.

Order Q·K·V O Gate·Up Down

back-to-front 1.169e+08 1.824e+08 1.181e+08 1.323e+09

front-to-back 1.161e+08 1.841e+08 1.202e+08 1.320e+09

random (averaged) 1.168e+08 1.856e+08 1.194e+08 1.322e+09

act-order 7.400e+07 1.786e+08 6.052e+07 1.222e+09

min-pivot 7.323e+07 1.772e+08 5.990e+07 1.221e+09
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D FURTHER APPLICATIONS AND EXPERIMENTAL RESULTS

D.1 OVERFLOW-TOLERANT QUANTIZATION ALGORITHMS

Algorithms 9, 11 and 12 are the pseudocodes of our proposed SSQR, HPTQ, and HRTN algorithms
in Section 5. Additional notations are as follows. ρ ∈ [0, 1] is the target outlier rate in SSQR.
Ξ = [ξ1, . . . , ξr] ∈ Rc×r is the sparse weight matrix in SSQR. h ∈ R>0 is the target average
bitwidth in HPTQ and HRTN.

Algorithm 9: SSQR
Input: W ,X,P , λ,Z†, ρ
Output: Z,S,Ξ,Q

1 SMSE ← compute the MSE scale using W and Z†
2 smin, smax ← 0r,2r // initialize the binary search boundary per output channel
3 s← (smin + smax) /2 // the scale for scale
4 while s not converge do
5 S ← SMSE diag (s) // output-channel-wisely proportionally adjust the scale
6 Z,Ξ,Q← SSQRINNERPROCEDURE (W ,S,X,P , λ,Z†) // Algorithm 10

7 smin[i], smax[i]←
{
smin[i], s[i] if ∥Ξ[:, i]∥0 < ρc

s[i], smax[i] otherwise
for i ∈ {1, . . . , r}

8 s← (smin + smax) /2
9 end

Algorithm 10: SSQR Inner Procedure (GPTQ with overflowed elements in floating-point)
Input: W ,S,X,P , λ,Z†
Output: Z,Ξ,Q

1 H ← P⊤ (X⊤X + λI
)
P

2 L← LDL
(
H−1

)
3 W ,S ← P−1W ,P−1S
4 Q,Z ←W ,0
5 for j ← 1 to c do
6 ζ ←W [j, :]/S[j, :]
7 Z[j, :]← ROUND (ζ,Z†)

8 Ξ[j, i]←
{
W [j, i]−Z[j, i] ∗ S[j, i] if Z[j, i] ̸= ROUND (ζ[i],Z)
0 otherwise

// new

9 Q[j, :]← Z[j, :] ∗ S[j, :] +Ξ[j, :] // new
10 ε← Q[j, :]−W [j, :]
11 W [j :, :]←W [j :, :] +L[j :, j]ε
12 end
13 Z,Ξ,Q← PZ,PΞ,PQ // new
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Algorithm 11: HPTQ
Input: W ,X,P , λ, h
Output: Z, s,Q

1 smin, smax ← 0, ∥W ∥∞ // initialize the binary search boundary
2 s← (smin + smax) /2 // the scale
3 while s not converge do
4 S ← s · 1c×r // broadcast the scale
5 Z,Q← GPTQ (W ,S,X,P , λ,Z) // Algorithm 1
6 h′ ← average Huffman encoding bitwidth of Z
7 if h′ < h then
8 smax ← s // too few bits, try smaller scale
9 end

10 else
11 smin ← s // too many bits, try larger scale
12 end
13 s← (smin + smax) /2
14 end

Algorithm 12: HRTN
Input: W , h
Output: Z, s,Q

1 smin, smax ← 0, ∥W ∥∞ // initialize the binary search boundary with min and max
2 s← (smin + smax) /2 // the scale
3 while s not converge do
4 Z ← ROUND (W /s,Z) // round-to-nearest
5 Q← sZ
6 h′ ← average Huffman encoding bitwidth of Z
7 if h′ < h then
8 smax ← s // too few bits, try smaller scale
9 end

10 else
11 smin ← s // too many bits, try larger scale
12 end
13 s← (smin + smax) /2
14 end
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D.2 EXPERIMENT SETUP

We work with the Qwen3 family of models, which come in a range of sizes. We focus on the
Qwen3-8B model for detailed head-to-head comparisons, while the other variants, Qwen3-0.6B,
Qwen3-1.7B, Qwen3-4B, and Qwen3-14B, help us assess how our method performs across different
model scales.

We construct the calibration dataset for the GPTQ algorithm using the FineWeb-Edu dataset
(HuggingFaceFW/fineweb-edu, subset sample-10BT). The dataset is streamed and shuffled with a
fixed seed for reproducibility. After tokenizing the text samples, our 256 sequences are accumulated
into non-overlapping sequences of length 2048.

We use WikiText-2 and C4 for perplexity evaluations. For WikiText-2, the entire test split is first
concatenated using two line breaks as separators and then tokenized with the default HuggingFace
tokenizer for each model. For C4, we sample individual documents from the selected shard, tokenize
them, and randomly extract sequences of the desired length. In both cases, sequences shorter than the
target length (2048 tokens) are discarded, and sequences longer than the target length are cropped to
the specified window.
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D.3 ACCURACY RESULTS

We compare the perplexity results between RTN, GPTQ, HRTN, HPTQ, and SSQR using the Qwen3-
8B model in Table 3. In addition, the perplexity results for other variants of Qwen3 with HPTQ are
shown in Table 4.

Table 5 shows additional zero-shot results on the Qwen3-8B model for RTN, GPTQ, HRTN, and
HPTQ. Additional HPTQ results on other Qwen3 models are in Tables 6 to 10.

Table 3: Perplexity of Qwen3-8B model under HPTQ, GPTQ, HRTN, RTN, and SSQR with different
bitwidths.

Method Avg Bitwidth Perplexity

WikiText-2 C4

BF16 Baseline 16 9.73 13.55

HPTQ
4.125 9.81 13.64
3.125 10.34 14.23
2.125 13.97 16.89

GPTQ
4.125 10.10 13.92
3.125 12.77 15.61
2.125 57.51 36.14

HRTN
4.125 9.90 13.80
3.125 10.75 14.63
2.125 593.05 503.00

RTN
4.125 10.30 15.20
3.125 16.30 21.08
2.125 2e10 2e10

SSQR-1%
4.445 10.00 13.83
3.445 10.64 14.71
2.445 22.30 27.07

SSQR-2%
4.765 9.96 13.76
3.765 10.57 14.56
2.765 16.55 20.80

SSQR-3%
5.085 9.92 13.76
4.085 10.42 14.32
3.085 14.05 18.57

SSQR-4%
5.405 9.84 13.71
4.405 10.34 14.29
3.405 13.12 17.60

SSQR-5%
5.725 9.80 13.67
4.725 10.32 14.22
3.725 12.88 16.85
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Table 4: Perplexity of Qwen3 models under HPTQ for different bitwidths.

Model Avg Bitwidth Perplexity

WikiText-2 C4

0.6B

16 20.96 26.37
4.125 22.72 28.35
3.125 31.43 37.92
2.125 156.45 171.38

1.7B

16 16.72 19.92
4.125 18.18 20.99
3.125 19.72 23.15
2.125 46.94 51.96

4B

16 13.66 17.07
4.125 14.26 17.39
3.125 14.55 18.17
2.125 24.40 26.46

8B

16 9.73 13.55
4.125 9.81 13.64
3.125 10.34 14.23
2.125 13.97 16.89

14B

16 8.65 12.23
4.125 8.76 12.12
3.125 9.06 13.97
2.125 11.36 15.50
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Table 5: Zero-shot evaluation results (%) for Qwen3-8B under different quantization methods across
six benchmarks.

Method Avg Bits Wino MMLU PiQA SciQ TQA

MC1 MC2

BF16 Baseline 16 68.11 73.02 77.80 95.7 36.35 54.50

HPTQ
4.125 67.17 72.28 77.42 95.6 35.01 53.36
3.125 66.93 70.96 77.53 95.4 36.11 54.73
2.125 59.19 52.99 72.52 86.8 31.09 49.01

GPTQ
4.125 68.82 71.76 77.58 95.3 36.35 54.55
3.125 68.35 65.80 75.46 75.46 36.11 55.21
2.125 52.25 34.25 57.83 57.83 28.40 46.91

HRTN
4.125 67.56 72.15 76.99 94.2 36.47 56.46
3.125 66.22 67.85 76.12 93.7 35.13 53.68
2.125 51.22 33.91 65.78 76.8 30.48 51.78

RTN
4.125 67.17 69.71 75.90 94.5 36.84 55.77
3.125 57.93 47.90 70.89 87.1 34.03 52.76
2.125 49.08 22.95 51.63 21.2 24.11 47.33

SSQR-1%
4.445 68.43 72.12 77.04 95.2 37.58 55.81
3.445 68.11 68.46 75.84 95.5 38.19 55.95
2.445 51.85 26.71 61.64 69.8 28.40 43.88

SSQR-2%
4.765 67.25 72.27 77.97 95.5 35.62 53.47
3.765 67.40 69.66 76.22 95.1 33.90 53.05
2.765 55.72 37.48 66.76 83.8 27.54 45.54

SSQR-3%
5.085 67.72 71.89 77.53 95.6 36.47 54.46
4.085 65.59 69.88 77.31 94.3 37.82 55.34
3.085 59.19 49.32 69.59 86.4 29.50 48.53

SSQR-4%
5.405 69.53 72.63 77.31 95.1 36.23 53.60
4.405 67.48 69.51 76.61 94.9 37.21 54.81
3.405 61.25 54.07 72.80 89.5 31.33 50.46

SSQR-5%
5.725 68.27 72.23 77.42 95.2 35.86 53.76
4.725 67.48 70.76 76.71 95.5 35.37 52.91
3.725 62.59 58.67 73.23 90.8 31.21 50.25

Table 6: TruthfullQA (%) zero-shot results (MC1/MC2) for Qwen3 models quantized with HPTQ.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 27.17/42.80 29.50/45.88 37.33/54.83 36.35/54.50 40.76/58.62

4.125 26.19/41.56 28.76/45.17 36.72/54.46 35.01/53.36 40.51/58.28

3.125 25.34/41.95 29.62/46.13 35.25/53.83 36.11/54.73 39.90/58.33

2.125 23.99/46.39 28.15/48.25 31.70/50.67 31.09/49.01 36.84/54.93
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Table 7: MMLU (%) zero-shot results for Qwen3 models quantized with HPTQ.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 40.34 55.44 68.38 73.02 77.10

4.125 29.84 53.95 67.45 72.28 76.27

3.125 32.92 47.49 62.70 70.96 75.53

2.125 24.58 23.87 40.83 52.99 64.31

Table 8: PiQA (%) zero-shot results for Qwen3 models quantized with HPTQ.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 67.30 72.31 74.92 77.80 79.87

4.125 66.00 70.78 75.30 77.42 79.54

3.125 62.08 68.44 73.01 77.53 78.78

2.125 54.13 57.40 66.76 72.52 75.46

Table 9: WinoGrande (%) zero-shot results for Qwen models quantized with HPTQ.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 56.43 61.48 65.27 68.11 72.53

4.125 54.38 59.67 64.09 67.17 73.01

3.125 52.72 58.72 64.80 66.93 71.19

2.125 49.80 49.96 53.04 59.19 66.06

Table 10: SciQ (%) zero-shot results for Qwen3 models quantized with HPTQ, with internal reasoning
disabled.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 83.5 91.2 93.5 95.7 96.8

4.125 80.7 88.9 93.3 95.6 97.1

3.125 76.6 89.9 92 95.4 96.8

2.125 40.8 62.8 81.2 86.8 93.8
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D.4 TECHNICAL DETAILS AND PERFORMANCE OF SSQR’S CUDA KERNEL

The kernel is specialized for two regimes: in the low-batch regime, the kernel utilizes SIMT GPU
cores exclusively, while tensor cores are utilized when batch size is ≥8, the smallest outer dimension
where tensor cores can be utilized without padding, and with 16-bit operands and 32-bit floating-point
accumulators. For both regimes, sparse outliers are handled with SIMT cores.

To handle the dense inliers, we apply two reordering schemes here. First, the weights are reordered
for memory movement involving tensor cores. Second, we apply an additional reordering scheme to
enable batched conversion between 2-4-bit integers into their 16-bit counterparts.

To handle the sparse outliers, we group sparse outliers in groups of 16 rows (matching the outer tensor
core dimension), then store them in column-major row order with padding to account for differences
between non-zero counts across rows in the group.

Figure 5 shows the layer-wise speedup of the SSQR kernel on NVIDIA RTX 6000 GPU compared
to the PyTorch BF16 matrix multiplication baseline across different layer shapes in the Qwen3-8B
model (layers with the same input are merged), inlier bitwidths, outlier rates, and batch sizes. We
observe the largest gains in the low-batch regime, with up to 4× speedup when <1% outliers are
present. As the outlier rate increases, the speedup diminishes, but the kernel consistently outperforms
the BF16 baseline across all settings.
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Figure 5: Layer-wise inference speedup of the SSQR kernel over the PyTorch BF16 baseline on
Qwen3-8B across inlier bitwidths, outlier rates, and batch sizes on A6000 GPU.
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D.5 RESULTS FOR LLAMA MODELS

Tables 11 to 15 report the evaluation results for Llama-3.2-3B-Instruct, Llama-3.1-8B-Instruct, and
Llama-2-7B models under the same setups as in Section D.3.

Table 11: Perplexity of Llama-3.2-3B-Instruct model under HPTQ, GPTQ, and SSQR with different
bitwidths.

Method Avg Bitwidth Perplexity

WikiText-2 C4

BF16 Baseline 16 11.01 13.49

HPTQ
4.125 11.27 14.64
3.125 12.51 15.81
2.125 22.58 29.82

GPTQ
4.125 11.96 15.37
3.125 15.20 18.99
2.125 357.69 172.89

SSQR-1%
4.445 11.38 14.95
3.445 13.48 18.38
2.445 83.41 67.19

SSQR-2%
4.765 11.50 14.77
3.765 13.20 16.65
2.765 45.93 41.69

SSQR-3%
5.085 11.39 14.64
4.085 12.50 16.10
3.085 37.41 30.74

SSQR-4%
5.405 11.53 14.69
4.405 12.33 15.96
3.405 23.74 27.59

SSQR-5%
5.725 11.47 14.69
4.725 12.29 15.81
3.725 22.94 25.44
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Table 12: Perplexity of Llama-3.1-8B-Instruct model under HPTQ, GPTQ, and SSQR with different
bitwidths.

Method Avg Bitwidth Perplexity

WikiText-2 C4

BF16 Baseline 16 7.20 9.09

HPTQ
4.125 7.37 9.99
3.125 7.84 11.04
2.125 11.89 16.37

GPTQ
4.125 7.56 10.46
3.125 9.44 13.16
2.125 148.15 71.33

SSQR-1%
4.445 7.50 10.30
3.445 8.67 12.35
2.445 57.26 39.96

SSQR-2%
4.765 7.48 10.20
3.765 8.32 11.75
2.765 25.18 25.21

SSQR-3%
5.085 7.41 10.11
4.085 8.16 11.54
3.085 17.27 20.03

SSQR-4%
5.405 7.39 10.05
4.405 8.01 11.31
3.405 13.22 17.77

SSQR-5%
5.725 7.38 10.03
4.725 7.98 11.13
3.725 12.12 16.13

Table 13: Perplexity of Llama-2-7B model under HPTQ, GPTQ, and SSQR-1% with different
bitwidths.

Method Avg Bitwidth Perplexity

WikiText-2 C4

FP16 Baseline 16 5.50 6.24

HPTQ
4.125 5.53 6.73
3.125 5.77 7.04
2.125 7.45 9.43

GPTQ
4.125 5.70 6.90
3.125 6.75 8.08
2.125 28.07 26.13

SSQR-1%
4.445 5.60 6.81
3.445 6.09 7.52
2.445 14.58 15.85
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Table 14: Zero-shot evaluation results (%) for Llama-3.2-3B-Instruct under different quantization
methods.

Method Avg Bits Wino MMLU PiQA SciQ HSwag

acc accnorm

BF16 Baseline 16 68.75 62.18 76.17 95.4 53.27 71.65

HPTQ
4.125 68.03 61.57 76.55 95.0 53.02 71.28
3.125 68.35 58.50 7497 95.5 51.76 70.00
2.125 60.85 42.75 69.15 89.9 44.54 60.29

GPTQ
4.125 68.11 59.81 75.73 95.5 52.29 70.54
3.125 66.06 49.13 72.58 94.0 47.25 63.93
2.125 50.59 22.96 53.65 63.4 28.06 30.58

SSQR-1%
4.445 68.19 60.94 76.12 95.7 52.37 70.88
3.445 66.93 54.10 74.92 95.6 50.55 68.86
2.445 51.70 23.97 58.22 64.5 31.14 36.90

SSQR-2%
4.765 68.03 61.17 76.33 95.2 52.49 70.99
3.765 65.51 56.37 74.43 94.4 50.88 68.85
2.765 53.12 23.91 60.01 78.3 34.12 42.99

SSQR-3%
5.085 68.27 61.68 76.82 95.4 53.03 71.29
4.085 66.69 57.65 75.03 95.0 50.98 69.00
3.085 58.48 34.20 65.61 90.5 39.87 52.43

SSQR-4%
5.405 68.90 61.11 76.28 95.5 52.80 71.03
4.405 66.77 57.73 75.03 95.3 51.08 68.79
3.405 57.85 33.74 66.49 90.1 40.66 54.44

SSQR-5%
5.725 68.35 61.67 75.57 95.3 52.88 70.97
4.725 66.69 57.02 75.52 95.3 51.32 69.70
3.725 57.38 37.24 65.56 91.5 41.37 54.96
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Table 15: Zero-shot evaluation results (%) for Llama-3.1-8B-Instruct under different quantization
methods.

Method Avg Bits Wino MMLU PiQA SciQ HSwag

acc accnorm

BF16 Baseline 16 73.72 68.31 80.14 97.3 59.81 79.59

HPTQ
4.125 73.56 67.90 79.49 97.7 59.57 79.25
3.125 72.77 64.58 79.16 96.9 58.42 78.21
2.125 63.69 45.01 69.15 90.8 49.84 67.98

GPTQ
4.125 73.80 65.68 79.27 97.2 58.61 78.36
3.125 72.45 58.19 77.37 95.5 55.21 74.57
2.125 54.93 24.67 54.46 75.1 31.77 37.79

SSQR-1%
4.445 74.43 66.78 79.65 96.9 59.18 78.93
3.445 72.45 60.14 77.97 96.3 56.74 76.24
2.445 52.80 23.07 58.49 74.1 33.25 40.05

SSQR-2%
4.765 73.80 67.21 79.49 97.2 58.94 78.53
3.765 73.24 63.13 78.78 96.4 57.63 77.22
2.765 54.30 27.08 61.04 82.5 38.41 50.41

SSQR-3%
5.085 72.93 67.38 79.54 96.9 59.64 79.07
4.085 73.09 63.77 79.11 96.6 57.62 77.40
3.085 54.54 26.15 58.81 83.6 38.34 49.52

SSQR-4%
5.405 73.24 66.95 79.92 96.9 59.32 79.06
4.405 73.24 62.92 78.73 96.5 57.61 77.47
3.405 54.54 29.95 54.95 82.3 39.80 51.87

SSQR-5%
5.725 74.03 67.91 80.52 97.2 59.49 79.39
4.725 73.40 64.14 79.05 97.0 58.16 77.63
3.725 64.25 42.59 72.58 88.7 49.94 68.20
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D.6 COMPARISON WITH OTHER QUANTIZATION METHODS

We compare zero-shot WinoGrande and PiQA accuracies of our methods (HPTQ, SSQR) against
GPTQ and state-of-the-art post-training, weight-only quantizers AQLM (Egiazarian et al., 2024),
QuIP# (Tseng et al., 2024a), and QTIP (Tseng et al., 2024b) on Llama-2-7B. Results are reported
in Table 16, sorted by average bitwidth. Metrics for AQLM, QuIP#, and QTIP are taken from their
respective papers.

As shown in Table 16, for average bitwidth ≥ 4, all methods yield accuracy close to the full-precision
baseline. In the 3-4 bit regime, vanilla GPTQ falls behind recent methods; however, HPTQ and SSQR
close this gap, bringing a scalar quantization approach to parity with vector quantization methods
(AQLM, QuIP#, QTIP). In the 2-3 bit regime, HPTQ remains competitive with the state of the art.

Table 16: Comparing the zero-shot results of different quantization methods on Llama-2-7B.

Method Avg Bitwidth WinoGrande PiQA
FP16 Baseline 16 69.46 78.13

AQLM 5.020 67.40 78.29
SSQR-1% 4.445 68.82 78.35
HPTQ 4.125 69.61 77.75
GPTQ 4.125 68.82 77.97
AQLM 4.040 67.32 78.24
QuIP# 4.000 67.60 78.40
QTIP 4.000 67.10 78.40

SSQR-1% 3.445 65.43 77.15
HPTQ 3.125 67.72 77.80
GPTQ 3.125 64.96 73.88
AQLM 3.040 66.93 76.88
QuIP# 3.000 66.50 77.30
QTIP 3.000 66.90 78.10

SSQR-1% 2.445 50.04 56.15
AQLM 2.290 65.67 74.92
HPTQ 2.125 65.82 73.56
GPTQ 2.125 49.64 56.20
AQLM 2.020 65.67 74.76
QuIP# 2.000 64.90 75.10
QTIP 2.000 64.70 75.90
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E LLM USAGE

LLM was used to aid and polish the writing of this paper, e.g., correcting grammar and rephrasing
sentences.
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