

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE GEOMETRY OF LLM QUANTIZATION: GPTQ AS BABAI'S NEAREST PLANE ALGORITHM

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

010 Quantizing the weights of large language models (LLMs) from 16-bit to lower
 011 bitwidth is the de facto approach to deploy massive transformers onto more
 012 affordable accelerators. While GPTQ emerged as one of the standard methods for
 013 one-shot post-training quantization at LLM scale, its inner workings are described
 014 as a sequence of algebraic updates that obscure geometric meaning or worst-case
 015 guarantees. In this work, we show that, when executed back-to-front (from the last
 016 to first dimension) for a linear layer, GPTQ is mathematically identical to Babai's
 017 nearest plane algorithm for the classical closest vector problem (CVP) on a lattice
 018 defined by the Hessian matrix of the layer's inputs. This equivalence is based
 019 on a sophisticated mathematical argument, and has two analytical consequences:
 020 first, the GPTQ error propagation step gains an intuitive geometric interpretation;
 021 second, GPTQ inherits the error upper bound of Babai's algorithm under the
 022 assumption that no weights are clipped. Leveraging this bound, we design
 023 post-training quantization methods that avoid clipping, and outperform the original
 024 GPTQ. In addition, we provide efficient GPU inference kernels for the resulting
 025 representation. Taken together, these results place GPTQ on a firm theoretical
 026 footing and open the door to importing decades of progress in lattice algorithms
 027 towards the design of future quantization algorithms for billion-parameter models.

1 INTRODUCTION

031 Generative pre-trained transformers (GPT) models contain hundreds of billions of parameters and
 032 have massive computational and memory costs (Luccioni et al., 2024). Post-training quantization
 033 (PTQ) has emerged as a practical solution for reducing their footprint (Gholami et al., 2021). Among
 034 a growing family of methods, GPTQ (Frantar et al., 2023) was the first to push one-shot quantization
 035 down to the 4-bit regime, while retaining near-baseline accuracies. GPTQ is still very popular
 036 nowadays and yields state-of-the-art results in some regimes (Kurtic et al., 2024).

037 Despite its empirical success, the GPTQ algorithm was only presented as a sequence of greedily
 038 applied algebraic operations: the procedure picks one weight at a time, quantizes it via rounding
 039 or clipping, and then optimally updates the not-yet-quantized weights to correct for the remaining
 040 per-layer loss; it then continues with the next weight, and so on. This procedure leaves an obvious
 041 open question: why does a local greedy rule work so well globally? Current literature does not
 042 answer this question, leaving little guidance for principled extensions or failure case analysis.

043 **Our contribution.** This paper is the first¹ to provide a geometric interpretation for GPTQ, which
 044 implies a layer-wise global error bound. Our main theoretical results (Section 4) are (i) the GPTQ
 045 optimization problem, i.e. linear-layer quantization with the L2 objective on the output, is equivalent
 046 to the closest vector problem (CVP) w.r.t. L2 distance; (ii) the GPTQ algorithm executed from the
 047 last to first dimension is the same as Babai's nearest plane algorithm on the basis of the factorized
 048 Hessian matrix, without LLL basis reduction, and this finding holds independently of whether large
 049 weights are clipped to the quantization grid (a process known as *weight clipping*); and (iii) the
 050 worst-case layer-wise error in the no-clipping setting is bound tightly by the trace of the diagonal
 051 matrix of the LDL decomposition of the Hessian matrix. In addition (Section 5), we tie our theoretical
 052 findings to practical quantization by introducing new no-clipping methods of better accuracy than
 053 the original GPTQ, together with efficient GPU inference kernels for the resulting representation.

¹The concurrent work of Birnick (2025) appeared on arXiv later than our preprint.

054 **2 RELATED WORK**

056 **Second-order compression (pruning and quantization).** The idea of using Hessian information
 057 to guide parameter removal dates back to Optimal Brain Damage (LeCun et al., 1989) and Optimal
 058 Brain Surgeon (OBS) (Hassibi et al., 1993). Optimal Brain Compression (OBC) (Frantar & Alistarh,
 059 2022) generalizes OBS to the post-training setting and unifies structured pruning and quantization
 060 (also called Optimal Brain Quantizer, OBQ) under a single exact solver. GPTQ (Frantar et al., 2023)
 061 inherits OBQ’s error propagation method but applies it in a fixed order, so that the inverse Hessian
 062 can be shared and only needs to be computed once. GPTQ only has cubic computational complexity
 063 in the column/row dimension, making it suitable for LLMs. QuIP (Chee et al., 2023) proves an error
 064 guarantee for GPTQ and proposes the LDLQ method as an equivalent variant of GPTQ.

065 **Lattices, CVP algorithms, and hardness.** The closest vector problem (CVP) is NP-complete
 066 to approximate within any constant factor under polynomial-time reductions (van Emde Boas,
 067 1981; Micciancio & Goldwasser, 2002; Dinur et al., 2003), motivating decades of approximation
 068 algorithms. Babai’s nearest plane heuristic (Babai, 1986) delivers a solution in polynomial time
 069 and, when preceded by LLL basis reduction (Lenstra et al., 1982), enjoys a $2^{O(n)}$ approximation.
 070 BKZ basis reduction (Kannan, 1987) further tightens the constant in an exponential-time solver.

071 **3 PRELIMINARIES AND NOTATIONS**

072 We use Python-style indexing inside square brackets to select elements and sub-matrices from a
 073 tensor, e.g., $[j, :]$ selects the j -th row vector, $[:, j]$ selects the j -th column vector, and $[j : ; j]$ selects
 074 the sub-column consisting of rows after j -th (included) row in j -th column, $[:, J]$ selects the column
 075 vectors indexed by set J as a sub-matrix, etc².

076 **3.1 LINEAR-LAYER QUANTIZATION PROBLEM**

077 **Problem.** Let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\top \in \mathbb{R}^{n \times c}$ be the sampled calibration input data of batch size
 078 n and input dimension c with $\mathbf{x}_i \in \mathbb{R}^c$ and $n \geq c = \text{rank}(\mathbf{X})$. Let $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_r] \in \mathbb{R}^{c \times r}$
 079 be the linear layer weights of input dimension c and output dimension r with $\mathbf{w}_i \in \mathbb{R}^c$. Let
 080 $\mathbf{S} = [s_1, \dots, s_r] \in \mathbb{R}_{\neq 0}^{c \times r}$ be the non-zero quantization scales with $s_i \in \mathbb{R}_{\neq 0}^c$. Here we consider
 081 a general case that applies to any grouping pattern: each weight element $\mathbf{w}_i[j]$ has its own
 082 scaling factor $s_i[j]$. Assume \mathbf{S} is statically computed using methods like AbsMax or MSE
 083 before any weight updates. Let $\mathbb{Z}_\dagger \subseteq \mathbb{Z}$ be the quantization grid (representable integers). In the
 084 clipping setting, e.g., for INT4 format, $\mathbb{Z}_\dagger = \{-8, \dots, -1, 0, 1, \dots, 7\}$. In the no-clipping setting,
 085 $\mathbb{Z}_\dagger = \mathbb{Z}$, which allows any integer as the quantization results. Let $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_r] \in \mathbb{Z}_\dagger^{c \times r}$
 086 be the (unknown) quantized integers with $\mathbf{z}_i \in \mathbb{Z}_\dagger^c$. Denote $\mathbf{Q} = [\mathbf{q}_1, \dots, \mathbf{q}_r] \in \mathbb{R}^{c \times r}$ as the
 087 dequantized weights with $\mathbf{q}_i = \text{diag}(\mathbf{s}_i) \mathbf{z}_i \in \mathbb{R}^c$. The goal is to minimize the L2 error on the
 088 layer output $\mathbf{XW} \in \mathbb{R}^{n \times r}$: $\|\mathbf{XQ} - \mathbf{XW}\|_{\text{F}}^2 = \sum_{i=1}^r \|\mathbf{X} \text{diag}(\mathbf{s}_i) \mathbf{z}_i - \mathbf{X} \mathbf{w}_i\|^2$, i.e., finding
 089 $\text{argmin}_{\mathbf{z}_i \in \mathbb{Z}_\dagger^c} \|\mathbf{X} \text{diag}(\mathbf{s}_i) \mathbf{z}_i - \mathbf{X} \mathbf{w}_i\|^2$ for all $1 \leq i \leq r$.

090 **OBQ algorithm.** Let set J_i initialized to $\{1, \dots, c\}$ be the set of not-yet-quantized indices of \mathbf{w}_i .
 091 We denote J_i as J as a short-hand notation. For each weight vector \mathbf{w}_i , OBQ chooses

$$j \leftarrow \text{argmin}_{j \in J} \frac{(\mathbf{q}_i[j] - \mathbf{w}_i[j])^2}{(\mathbf{X}[:, J]^\top \mathbf{X}[:, J])^{-1}[j, j]} \quad (1)$$

092 as the next dimension to quantize. OBQ quantizes the chosen element $\mathbf{w}_i[j]$ as
 093 $\mathbf{q}_i[j] \leftarrow s_i[j] \cdot \text{ROUND}\left(\frac{\mathbf{w}_i[j]}{s_i[j]}, \mathbb{Z}_\dagger\right)$ via the $\text{ROUND}(\cdot, \mathbb{Z}_\dagger)$ function which rounds the inputs
 094 to the nearest values in \mathbb{Z}_\dagger . OBQ then optimally updates the subset of weights $\mathbf{w}_i[J]$ via an error
 095 propagation step $\mathbf{w}_i[j'] \leftarrow \mathbf{w}_i[j'] + \Delta \mathbf{w}_i[j']$ for all $j' \in J$ with

$$\Delta \mathbf{w}_i[j'] \leftarrow \frac{(\mathbf{X}[:, J]^\top \mathbf{X}[:, J])^{-1}[j', j]}{(\mathbf{X}[:, J]^\top \mathbf{X}[:, J])^{-1}[j, j]} (\mathbf{q}_i[j] - \mathbf{w}_i[j]). \quad (2)$$

107 ²For more details, please see (NumPy): <https://numpy.org/doc/stable/user/basics.indexing.html>.

108 OBQ continues iteration with $J \leftarrow J \setminus \{j\}$ until J is empty.
 109
 110 **GPTQ algorithm.** GPTQ reduces the computational complexity of OBQ by applying the OBQ
 111 quantization and error propagation steps in a fixed dimensional order, e.g., from the first to last
 112 dimension ($j \leftarrow 1$ to c), instead of dynamically determined orders (Eq. 1). The fixed order is
 113 independent of the output channel i , thus the Hessian information $(\mathbf{X}[:, J]^\top \mathbf{X}[:, J])^{-1}[:, j]$ can
 114 be shared across w_i for all i , without recomputation. Furthermore, the Hessian information for all
 115 j can be precomputed at once using Cholesky or LDL decomposition of the Hessian matrix $\mathbf{X}^\top \mathbf{X}$.
 116
 117 Algorithm 1 is the pseudocode of GPTQ. The algorithm is identical to the original GPTQ paper (Fran-
 118 tar et al., 2023) except for missing the blocking mechanism that only affects the memory access
 119 pattern and computational speed, but not the numerical results. Additional notations are as follows.
 120 $\mathbf{P} \in \{0, 1\}^{c \times c}$ is a permutation matrix that modifies the dimensional order of GPTQ quantization.
 121 The default order is front-to-back (from the first to last dimension), i.e., $\mathbf{P} = \mathbf{I}$. $\lambda \in \mathbb{R}_+$ is a small
 122 damping factor for computing the Hessian matrix, ensuring the matrix is of full rank. A typical
 123 choice is $\lambda = \frac{1}{100c} \sum_{j=1}^c (\mathbf{X}^\top \mathbf{X}) [j, j] = \frac{1}{100c} \|\mathbf{X}\|_F^2$. Function LDL returns the lower triangular
 124 matrix in LDL decomposition. Symbols $*$ and $/$ denote the element-wise multiplication and division.
 125

Algorithm 1: GPTQ

126 **Input:** original weights $\mathbf{W} \in \mathbb{R}^{c \times r}$, per-coordinate scales $\mathbf{S} \in \mathbb{R}_{\neq 0}^{c \times r}$, calibration activation
 127 $\mathbf{X} \in \mathbb{R}^{n \times c}$, permutation $\mathbf{P} \in \{0, 1\}^{c \times c}$, damping ratio $\lambda > 0$, integer grid $\mathbb{Z}_\dagger \subseteq \mathbb{Z}$
 128 **Output:** quantized weights $\mathbf{Z} \in \mathbb{Z}_\dagger^{c \times r}$, dequantized weights $\mathbf{Q} \in \mathbb{R}^{c \times r}$
 129
 130 1 $\mathbf{H} \leftarrow \mathbf{P}^\top (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I}) \mathbf{P}$ // dampen and reorder Hessian
 131 2 $\mathbf{L} \leftarrow \text{LDL}(\mathbf{H}^{-1})$ // factorize (take the L matrix from the LDL decomposition) the inversed
 132 Hessian as the shared coefficients for error propagation
 133 3 $\mathbf{W}, \mathbf{S} \leftarrow \mathbf{P}^{-1} \mathbf{W}, \mathbf{P}^{-1} \mathbf{S}$ // reorder weights and scales
 134 4 $\mathbf{Q}, \mathbf{Z} \leftarrow \mathbf{W}, \mathbf{0}$ // initialize dequantized and quantized weights
 135 5 **for** $j \leftarrow 1$ to c **do**
 136 6 $\zeta \leftarrow \mathbf{W}[j, :] / \mathbf{S}[j, :]$ // element-wise divide current row by its scales
 137 7 $\mathbf{Z}[j, :] \leftarrow \text{ROUND}(\zeta, \mathbb{Z}_\dagger)$ // quantize coefficients to the target grid
 138 8 $\mathbf{Q}[j, :] \leftarrow \mathbf{Z}[j, :] * \mathbf{S}[j, :]$ // dequantize current row back to weight space
 139 9 $\epsilon \leftarrow \mathbf{Q}[j, :] - \mathbf{W}[j, :]$ // quantization error for current row
 140 10 $\mathbf{W}[j :, :] \leftarrow \mathbf{W}[j :, :] + \mathbf{L}[j :, j] \epsilon$ // propagate error to not-yet-quantized rows; broadcast
 141 over columns
 142 11 **end**
 143 12 $\mathbf{Z}, \mathbf{Q} \leftarrow \mathbf{P} \mathbf{Z}, \mathbf{P} \mathbf{Q}$ // undo reorder to restore original input order; return integers and
 144 dequantized weights
 145

 146 3.2 THE CLOSEST VECTOR PROBLEM (CVP)

147 **Problem.** Let $\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_c] \in \mathbb{R}^{n \times c}$ be a set of c basis vectors of dimension n with $\mathbf{b}_j \in \mathbb{R}^n$
 148 and $n \geq c = \text{rank}(\mathbf{B})$. Let $\mathbf{y} \in \mathbb{R}^n$ be an external target vector to approximate. Let $\mathbf{z} \in \mathbb{Z}^c$ be the
 149 (unknown) integer vector representing the basis combinations of the lattice vector. The goal is to find
 150 the vector on the lattice defined by the basis \mathbf{B} that is the closest to the target vector \mathbf{y} , i.e., finding
 151 $\text{argmin}_{\mathbf{z} \in \mathbb{Z}^c} \|\mathbf{B}\mathbf{z} - \mathbf{y}\|^2$. A visualization of a two-dimensional CVP is shown in Figure 1 (a).
 152

153 **Babai's nearest plane algorithm.** Babai's algorithm iteratively projects the target vector onto the
 154 nearest hyperplane of a LLL-reduced lattice and rounds the corresponding coefficient. Figure 1 (b)
 155 visualizes the basis reduction step and Figure 1 (c-d) visualize the projection steps.

156 Algorithm 2 is the pseudocode of Babai's nearest plane algorithm to solve CVP. For better
 157 computational efficiency, the pseudocode uses a conceptually equivalent approach. Instead of
 158 projecting the target vector to the nearest hyperplane, it moves the target vector along the basis
 159 direction towards the hyperplane where the origin lies. The projection error is kept in the updated
 160 target vector since it is orthogonal to the hyperplane and will not affect the following projections.
 161 Additional notations are as follows. Function LLL returns the transformation matrix of the LLL
 162 reduction with parameter delta defaulting to $\frac{3}{4}$. Function QR returns the orthogonal matrix in QR

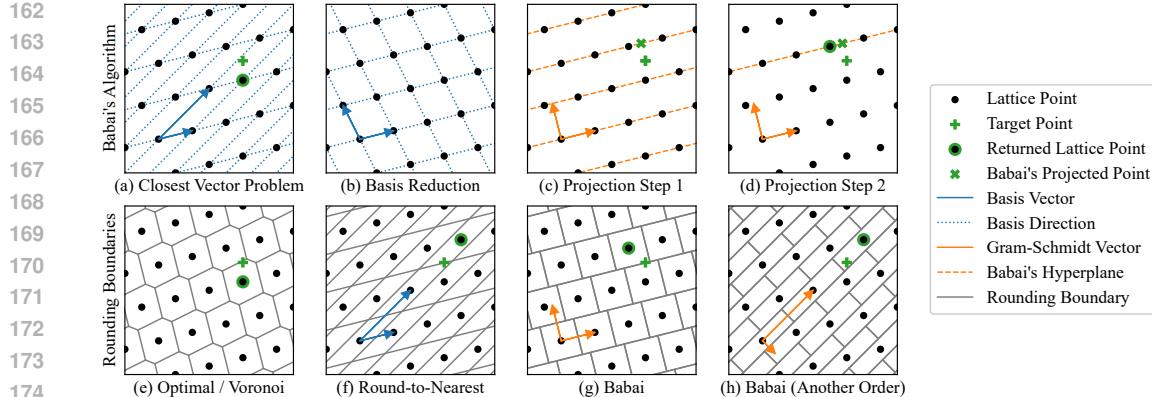


Figure 1: **Upper row:** (a) CVP in a two-dimensional lattice; (b) Basis reduction can find a shorter, more orthogonal basis that can potentially improve the results; (c-d) The projection steps in Babai’s nearest plane algorithm. **Lower row:** rounding boundaries of (e) optimal or Voronoi cells; (f) round-to-nearest (RTN); (g) Babai’s nearest plane algorithm without basis reduction; (h) Babai’s algorithm without basis reduction under the reversely ordered basis.

decomposition, the same as the normalized Gram-Schmidt orthogonalization process. $\langle \cdot, \cdot \rangle$ denotes the vector dot product. Function ROUND is defined as in the GPTQ algorithm.

Algorithm 2: Babai’s Nearest Plane

```

188 Input: lattice basis (column vectors)  $B \in \mathbb{R}^{n \times c}$ , target vector  $y \in \mathbb{R}^n$ 
189 Output: closest lattice vector’s basis coefficients  $z \in \mathbb{Z}^c$ 
190 1  $T \leftarrow \text{LLL}(B)$  // unimodular transformation matrix from LLL basis reduction
191 2  $A \leftarrow BT$  // reduce the basis
192 3  $\Phi \leftarrow \text{QR}(A)$  // normalized Gram-Schmidt process (take the Q matrix from the QR
193 decomposition)
194 4  $y', z \leftarrow y, 0$  // initialize residual target and integer solution in reduced basis
195 5 for  $j \leftarrow c$  to 1 do
196 6    $\zeta \leftarrow \langle \Phi[:, j], y' \rangle / \langle \Phi[:, j], A[:, j] \rangle$  // exact coefficient along the unnormalized
197   Gram-Schmidt vector; ratio between the projections of residual and the reduced basis
198   on the Gram-Schmidt direction
199 7    $z[j] \leftarrow \text{ROUND}(\zeta, \mathbb{Z})$  // round to the nearest plane
200 8    $y' \leftarrow y' - A[:, j]z[j]$  // update the residual
201 9 end
202 10  $z \leftarrow Tz$  // map integer solution back to the original basis and return
203

```

Babai’s error bound. Figure 1 shows the rounding boundaries of the optimal (e), round-to-nearest (RTN) (f), and Babai’s algorithm without basis reduction (g-h). Compared to RTN, Babai’s algorithm generates rectangular partitions and thus has a smaller worst-case error. The error bound has been proven in Babai (1986). Formally, let $\Phi = [\phi_1, \dots, \phi_c]$ be the set of normalized Gram-Schmidt vectors of the LLL-reduced basis $A = [a_1, \dots, a_c]$. Let $\tilde{A} = [\tilde{a}_1, \dots, \tilde{a}_c]$ denote the unnormalized Gram-Schmidt vectors with $\tilde{a}_j = \langle \phi_j, a_j \rangle \phi_j$. At iteration j , the algorithm replaces the exact coefficient ζ by the closest integer, so the deviation satisfies $|\zeta - z[j]| \leq \frac{1}{2}$. Hence the error component along \tilde{a}_j has norm at most $\frac{1}{2} \|\tilde{a}_j\|$. Because the \tilde{A} is orthogonal, these error components add in Euclidean norm, giving a bound on the residual (error) vector y' : $\|y'\|^2 \leq \frac{1}{4} \sum_{j=1}^c \|\tilde{a}_j\|^2 = \frac{1}{4} \sum_{j=1}^c \langle \phi_j, a_j \rangle^2$. Babai’s algorithm guarantees to return the center vector of the hyper-cuboid (Figure 1 (g)) constructed by the unnormalized Gram-Schmidt vectors \tilde{A} where the target y is located. Equality is attained when the target y lies at the corner of the hyper-cuboid, so the bound is tight. Babai

(1986) additionally proved a relative error bound for γ with $\|Bz - y\| \leq \gamma \cdot \min_{z' \in \mathbb{Z}^c} \|Bz' - y\|$. The bound is $1 \leq \gamma \leq \sqrt{1 + \max_{1 \leq j \leq c} \frac{\sum_{j'=1}^j \|\tilde{a}_{j'}\|^2}{\|\tilde{a}_j\|^2}} \leq \sqrt{c+1} \cdot \max_{1 \leq j' \leq c} \frac{\|\tilde{a}_{j'}\|}{\|\tilde{a}_j\|}$.

4 THEORETICAL RESULTS

We first show that weight quantization is an instance of the classical closest vector problem (CVP) in Section 4.1, which lets us work in a lattice defined by the Hessian. We then reinterpret OBQ’s, equivalently GPTQ’s, error propagation step as a nearest hyperplane projection in Section 4.2, setting up our main equivalence in Section 4.3: GPTQ, running back-to-front, coincides exactly with Babai’s nearest plane algorithm. This equivalence lets us import Babai’s guarantees to obtain a tight, layer-wise error bound in the no-clipping setting in Section 4.4. Finally, we analyze how quantization order influences this bound in Section 4.5.

4.1 EQUIVALENCE BETWEEN L2 QUANTIZATION AND CVP

A quantization problem with the L2 objective $\operatorname{argmin}_{z_i \in \mathbb{Z}_{\dagger}^c} \|\mathbf{X} \operatorname{diag}(s_i) z_i - \mathbf{X} w_i\|^2$ and a CVP with the L2 distance $\operatorname{argmin}_{z \in \mathbb{Z}^c} \|Bz - y\|^2$ share the same solution ($z = z_i$) whenever the structural conditions $B = \mathbf{X} \operatorname{diag}(s_i)$ and $y = \mathbf{X} w_i$ hold and the solution domain matches. To ensure the solution domain matches, we can either disable the clipping in the quantization setup (setting $\mathbb{Z}_{\dagger} = \mathbb{Z}$) or enable the clipping in the CVP setup (making $z \in \mathbb{Z}_{\dagger}^c$).

We can introduce a factor of the Hessian matrix, $\mathbf{X} = [\chi_1, \dots, \chi_c]$ with $\mathbf{X}^\top \mathbf{X} = \mathbf{X}^\top \mathbf{X}$. The loss can then be reformulated as $\|\mathbf{X} \operatorname{diag}(s_i) z_i - \mathbf{X} w_i\|^2$.

Theorem 1 (Quantization and CVP) *The CVPs using any possible factors \mathbf{X} of the Hessian matrix $\mathbf{X}^\top \mathbf{X}$ are equivalent under an orthogonal transformation (rotation and reflection) of the lattice and external target vector.*

Proof Let \mathbf{X} and \mathbf{X}' be two possible factors of the Hessian matrix with $\mathbf{X}^\top \mathbf{X} = \mathbf{X}'^\top \mathbf{X}'$. The inner products $\langle \chi_{j_1}, \chi_{j_2} \rangle$ and $\langle \chi'_{j_1}, \chi'_{j_2} \rangle$ must be equal for all $1 \leq j_1, j_2 \leq c$. In other words, the lengths $\|\chi_{j_1}\| = \|\chi'_{j_1}\|$, and the angles $\angle(\chi_{j_1}, \chi_{j_2}) = \angle(\chi'_{j_1}, \chi'_{j_2})$, for all $1 \leq j_1, j_2 \leq c$. ■

According to Theorem 1, any decomposition factor \mathbf{X} of the Hessian matrix $\mathbf{X}^\top \mathbf{X}$ can be used instead of \mathbf{X} without changing the geometric properties of the CVP and its associated quantization problem. This is useful to reduce the computational cost, e.g., we may use a square matrix $\mathbf{X} \in \mathbb{R}^{c \times c}$ instead of the rectangular matrix $\mathbf{X} \in \mathbb{R}^{n \times c}$. Section A.1 provides a clear summary of the correspondence between the quantization and CVP concepts.

4.2 OBQ’s GEOMETRIC INTERPRETATION

We first demonstrate the geometric interpretation of OBQ (GPTQ’s slower predecessor) to facilitate our equivalence proof of GPTQ and Babai’s algorithm in Section 4.3.

Theorem 2 (Error Propagation and Babai’s projection) *Babai’s nearest plane algorithm iteratively projects the target vector onto the nearest hyperplane and rounds the coefficient. The OBQ error propagation step (Eq. 2) is exactly this projection on the original basis $B = \mathbf{X} \operatorname{diag}(s_i)$ without basis reduction.*

Proof Let $B = [b_1, \dots, b_c]$ be the basis with b_j being a basis vector. Let J be the set of unprojected indices with $j_1, j_2 \in J$ and $j_1 \neq j_2$. Let $y = \sum_{j \in J} \zeta_j b_j$ be the current residual target where $\zeta_j \in \mathbb{R}$ is a real number to be rounded to integers. Let $\mathcal{NHP} := \lfloor \zeta_{j_2} \rfloor b_{j_2} + \operatorname{Span}\{b_j \mid j \neq j_2\}$ be the nearest hyperplane that is orthogonal to the Gram-Schmidt vector $b_{j_2} - \sum_{j \neq j_2} \operatorname{Proj}_{b_j}(b_{j_2})$. Figure 2 (a) is a 3D plot showing the projection error vector $\Delta y = \operatorname{Proj}_{\mathcal{NHP}}(y) - y$. We focus on analyzing the error propagation in the direction of basis b_{j_1} induced by the projection of basis b_{j_2} and collapse the span of other basis vectors to a single dimension as illustrated by the hyperline $\mathcal{HL} := \lfloor \zeta_{j_2} \rfloor b_{j_2} + \operatorname{Span}\{b_j \mid j \neq j_1, j_2\}$. Figure 2 (b) is a 3D plot showing the

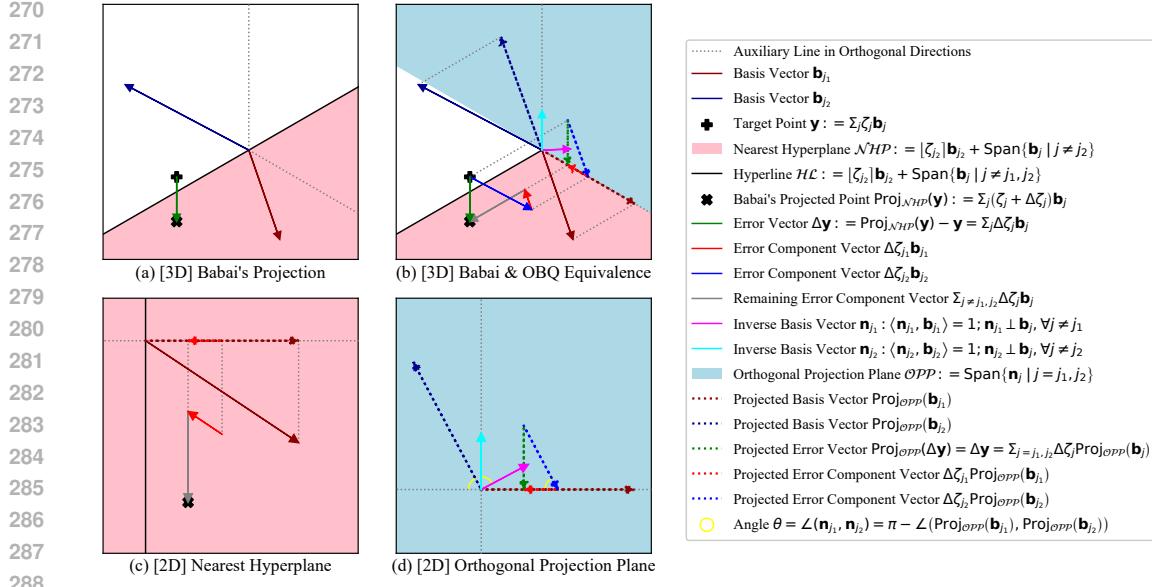


Figure 2: Equivalence of OBQ's error propagation and Babai's projection. (a) 3D plot showing the target being projected onto the nearest plane. (b) 3D plot showing how the projection error is propagated. (c) 2D plot showing the vectors on the nearest hyperplane in (a-b). (d) 2D plot showing the vectors on the orthogonal projection plane in (b).

decomposition of the error $\Delta\mathbf{y} = \sum_{j \in J} \Delta\zeta_j \mathbf{b}_j$ as the error component vectors in the basis directions. Figure 2 (c) is a 2D plot showing the vectors on plane \mathcal{NHP} . The number ζ_j will be updated to $\zeta_j + \Delta\zeta_j$ such that $\text{Proj}_{\mathcal{NHP}}(\mathbf{y}) = \sum_{j \in J} (\zeta_j + \Delta\zeta_j) \mathbf{b}_j$. Next, let $\mathbf{N} = \mathbf{B}^{-\top} = [\mathbf{n}_1, \dots, \mathbf{n}_c]$ be the inverse basis. Then, we have $\langle \mathbf{n}_j, \mathbf{b}_j \rangle = 1$ and $\mathbf{n}_j \perp \mathbf{b}_{j'}, \forall j \neq j'$. We project all the vectors in Figure 2 (b) onto the orthogonal projection plane $\mathcal{OPP} := \text{Span} \{ \mathbf{n}_j \mid j = j_1, j_2 \}$ that is orthogonal to the hyperline \mathcal{HL} , and continue the proof in the 2D geometry in Figure 2 (d). Denote the angle $\theta = \angle(\mathbf{n}_{j_1}, \mathbf{n}_{j_2}) = \pi - \angle(\text{Proj}_{\mathcal{OPP}}(\mathbf{b}_{j_1}), \text{Proj}_{\mathcal{OPP}}(\mathbf{b}_{j_2}))$. Then, $\frac{\Delta\zeta_{j_1} \|\text{Proj}_{\mathcal{OPP}}(\mathbf{b}_{j_1})\|}{\Delta\zeta_{j_2} \|\text{Proj}_{\mathcal{OPP}}(\mathbf{b}_{j_2})\|} = \cos \theta = \frac{\langle \mathbf{n}_{j_1}, \mathbf{n}_{j_2} \rangle}{\|\mathbf{n}_{j_1}\| \|\mathbf{n}_{j_2}\|} = \frac{\langle \mathbf{n}_{j_2} \rangle \langle \mathbf{n}_{j_1}, \mathbf{n}_{j_2} \rangle}{\|\mathbf{n}_{j_1}\| \langle \mathbf{n}_{j_2}, \mathbf{n}_{j_2} \rangle}$. For $j = j_1, j_2$, $\|\text{Proj}_{\mathcal{OPP}}(\mathbf{b}_j)\| \|\mathbf{n}_j\| = \frac{\langle \text{Proj}_{\mathcal{OPP}}(\mathbf{b}_j), \mathbf{n}_j \rangle}{\cos(\frac{\pi}{2} - \theta)} = \frac{\langle \mathbf{b}_j, \mathbf{n}_j \rangle}{\cos(\frac{\pi}{2} - \theta)} = \frac{1}{\cos(\frac{\pi}{2} - \theta)}$. For $j, j' \in \{j_1, j_2\}$, $\langle \mathbf{n}_j, \mathbf{n}_{j'} \rangle = (\mathbf{N}^\top \mathbf{N})[j, j'] = (\mathbf{B}^\top \mathbf{B})^{-1}[j, j']$. Combining the above equations, $\Delta\zeta_{j_1} = \frac{\|\text{Proj}_{\mathcal{OPP}}(\mathbf{b}_{j_2})\| \|\mathbf{n}_{j_2}\| \langle \mathbf{n}_{j_1}, \mathbf{n}_{j_2} \rangle}{\|\text{Proj}_{\mathcal{OPP}}(\mathbf{b}_{j_1})\| \|\mathbf{n}_{j_1}\| \langle \mathbf{n}_{j_1}, \mathbf{n}_{j_2} \rangle} \Delta\zeta_{j_2} = \frac{\langle \mathbf{n}_{j_1}, \mathbf{n}_{j_2} \rangle}{\langle \mathbf{n}_{j_2}, \mathbf{n}_{j_2} \rangle} \Delta\zeta_{j_2} = \frac{(\mathbf{B}^\top \mathbf{B})^{-1}[j_1, j_2]}{(\mathbf{B}^\top \mathbf{B})^{-1}[j_2, j_2]} \Delta\zeta_{j_2}$. Finally, substituting $\mathbf{B} = (\mathbf{X} \text{ diag}(\mathbf{s}_i))[:, J]$ and $\zeta_j = \frac{\mathbf{w}_i[j]}{\mathbf{s}_i[j]}$ completes the proof. \blacksquare

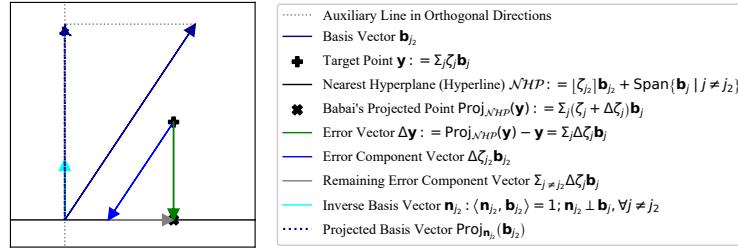


Figure 3: Geometric interpretation of OBQ's quantization order. This 2D plot shows the target being projected onto the nearest plane.

324 **Corollary 3 (OBQ Dimension Selection)** *At each dimension selection step (Eq. 1), OBQ selects
 325 the not-yet-quantized dimension j such that the nearest hyperplane of dimension j is the closest to
 326 the target residual vector.*

327 **Proof** We use the same notations defined in Theorem 2. Figure 3 is a 2D plot showing
 328 the distance (projection error or quantization error) between the target residual vector \mathbf{y} and
 329 the nearest hyperplane $\mathcal{N}\mathcal{H}\mathcal{P}$ of the basis \mathbf{b}_{j_2} . For better illustration, we collapse $\mathcal{N}\mathcal{H}\mathcal{P}$
 330 to a single dimension. The distance $\|\Delta\mathbf{y}\|$ can be written as $\|\Delta\mathbf{y}\| = \|\text{Proj}_{\mathbf{n}_{j_2}}(\Delta\mathbf{y})\| =$
 331 $|\Delta\zeta_{j_2}| \|\text{Proj}_{\mathbf{n}_{j_2}}(\mathbf{b}_{j_2})\| = \frac{|\Delta\zeta_{j_2}| |\langle \mathbf{b}_{j_2}, \mathbf{n}_{j_2} \rangle|}{\|\mathbf{n}_{j_2}\|} = \frac{|\Delta\zeta_{j_2}|}{\|\mathbf{n}_{j_2}\|}$. For each \mathbf{w}_i , OBQ independently selects
 332 $j = \text{argmin}_{j \in J} \frac{(\mathbf{q}_i[j] - \mathbf{w}_i[j])^2}{(\mathbf{X}[:, J]^\top \mathbf{X}[:, J])^{-1}[j, j]} = \text{argmin}_{j \in J} \frac{(\Delta\zeta_j)^2}{\langle \mathbf{n}_j, \mathbf{n}_j \rangle} = \text{argmin}_{j \in J} \frac{|\Delta\zeta_j|}{\|\mathbf{n}_j\|}$ as the next
 333 dimension to quantize, which is exactly minimizing this distance. ■
 334
 335
 336

337 4.3 GPTQ AND BABAI’S ALGORITHM

338 Originally, GPTQ (Algorithm 1) runs from the first to the last dimension ($j \leftarrow 1$ to c) while Babai’s
 339 algorithm (Algorithm 2) runs from the last to the first dimension ($j \leftarrow c$ to 1). This is the only
 340 (superficial) difference between the two algorithms, as formalized below.

341 **Theorem 4 (GPTQ and Babai)** *GPTQ and Babai’s algorithm without basis reduction will have the
 342 same results if we align the dimensional order of these two algorithms, e.g., running GPTQ from the
 343 last to the first dimension.*

344 **Proof** We prove this theorem both geometrically and algebraically. We first present the geometric
 345 proof. Theorem 2 shows that each intermediate weight vector produced by OBQ, equivalently GPTQ,
 346 can be viewed as Babai’s residual vector in the activation space. At step j (running from the last to
 347 the first dimension, $j \leftarrow c$ to 1), GPTQ’s error propagation update is exactly Babai’s projection at
 348 step j , which projects the current residual of the target vector onto the hyperplane orthogonal to the
 349 j -th Gram-Schmidt vector.

350 Alternatively, we present a more rigorous algebraic proof. Section A.2 describes the exact quantization
 351 procedures using Babai’s algorithm in more detail, with the pseudocode in Algorithm 4. Appendix B
 352 contains the equivalence proof, in which we proceed in three steps. First, we rewrite GPTQ to track
 353 the cumulative quantization error and show that this form is algebraically equivalent to the standard
 354 implementation. Second, we run GPTQ in the back-to-front order and replace the lower triangular
 355 factor by an upper triangular one, so that each update affects only the not-yet-quantized coordinates.
 356 Third, we prove that the step-wise rounding decisions of the back-to-front GPTQ coincide with those
 357 of Babai’s algorithm. ■

358 **Geometric interpretation of GPTQ.** Theorem 4 shows that, if we regard the activations as the
 359 lattice basis and transform the floating-point weight vector as a target vector in the activation space,
 360 GPTQ performs an *orthogonal walk* through a nested sequence of affine subspaces in a pre-computed
 361 dimensional order.

362 **Ineffectiveness of composing algorithms.** A seemingly appealing idea is to take the solution
 363 returned by any Babai iteration and then perform one further GPTQ-style error propagation step
 364 on the weights in the activation space, hoping to push the approximation even closer to the optimum.
 365 However, as proven in Section B.4, such an extra update vanishes: the final results of \mathbf{Z} and \mathbf{Q}
 366 remain unchanged. In other words, once Babai’s projection has been executed, any subsequent
 367 GPTQ-style correction is algebraically redundant. This confirms that the equivalence in Theorem 4
 368 is already tight; neither algorithm can be strengthened by composition.

369 4.4 GPTQ’S ERROR BOUND

370 Having established the correspondence between GPTQ and Babai’s nearest plane algorithm, we can
 371 now import Babai’s approximation guarantee to obtain an upper bound on the layer-wise quantization
 372 error in the no-clipping setting.

378 **Theorem 5 (GPTQ Error Bound)** Assume no clipping ($\mathbb{Z}_\dagger = \mathbb{Z}$) and let \mathbf{T} be the permutation
 379 matrix of the reversed GPTQ quantization order (equivalently \mathbf{P} with the reversed column or-
 380 der). Let \mathbf{D} be the diagonal matrix of the LDL decomposition of the permuted Hessian matrix
 381 $\mathbf{T}^\top \mathbf{X}^\top \mathbf{X} \mathbf{T}$. For every output channel i ($1 \leq i \leq r$) produced by Babai’s algorithm, or equiv-
 382 alently GPTQ algorithm executed back-to-front, the (absolute) quantization error has a tight up-
 383 per bound: $\|\mathbf{X} \operatorname{diag}(\mathbf{s}_i) \mathbf{z}_i - \mathbf{X} \mathbf{w}_i\|^2 \leq \frac{1}{4} (\mathbf{T}^{-1} \mathbf{s}_i)^\top \mathbf{D} (\mathbf{T}^{-1} \mathbf{s}_i)$. For the relative bound for
 384 γ with $\|\mathbf{X} \operatorname{diag}(\mathbf{s}_i) \mathbf{z}_i - \mathbf{X} \mathbf{w}_i\| \leq \gamma \cdot \min_{\mathbf{z}'_i \in \mathbb{Z}^c} \|\mathbf{X} \operatorname{diag}(\mathbf{s}_i) \mathbf{z}'_i - \mathbf{X} \mathbf{w}_i\|$, we have $1 \leq \gamma \leq$
 385 $\sqrt{1 + \max_{1 \leq j \leq c} \frac{\sum_{j'=1}^j d_{j'}^2}{d_j^2}} \leq \sqrt{c+1} \cdot \max_{1 \leq j' \leq j \leq c} \frac{d_{j'}}{d_j}$ where $d_j = \sqrt{\mathbf{D}[j, j]} |(\mathbf{T}^{-1} \mathbf{s}_i)[j]|$.
 386
 387

388 The full proof of Theorem 5 is presented in Section C.1. If the scales \mathbf{s}_i are small enough, we may
 389 assume the weights \mathbf{w}_i are nearly uniformly distributed within the hyper-cuboid constructed by
 390 Babai’s orthogonalized basis vectors, the expected absolute error will be $\frac{1}{3}$ of the worst-case bound.
 391 See Section C.2 for a proof.

393 4.5 THE ROLE OF QUANTIZATION ORDER IN GPTQ

395 The quadratic form on the right-hand side of the absolute error bound in Theorem 5 is sensitive
 396 to the pivot order of the LDL decomposition of the Hessian matrix; this is the quantization order.
 397 Re-ordering the dimensions changes the entries of the diagonal matrix \mathbf{D} before the scale \mathbf{s}_i is
 398 “weighted” by them. A poor order may place large \mathbf{D} entries against large \mathbf{s}_i entries and hence inflate
 399 the bound. For a batched quantization algorithm like GPTQ, the order should be independent of the
 400 output channel i . To develop a good heuristic order, a reasonable approximation to make, especially
 401 for large quantization group sizes, is that the elements of $\mathbf{s}_i[j]$ are equal for all $1 \leq j \leq c$. Then
 402 we can focus on finding the optimal pivot order for the LDL decomposition of the Hessian matrix
 403 $\mathbf{X}^\top \mathbf{X}$ to minimize $\operatorname{tr}(\mathbf{D})$.

404 Finding the optimal order is NP-hard (Rose et al., 1976). However, heuristics often effectively reduce
 405 the trace term in practice. Even with clipping, heuristics can reduce the error. GPTQ introduces
 406 the act-order, the descending order of the Hessian diagonal, i.e. the ascending order of the Hessian
 407 diagonal when applied to Babai’s algorithm.

408 To improve upon act-order, we propose the min-pivot order, which is essentially taking the minimum
 409 diagonal entry at each LDL (or Cholesky) decomposition step. This order can be calculated by
 410 Algorithm 3, which has cubic time complexity and does not increase the overall time complexity
 411 of quantization. This order also has a geometric interpretation, as the order of the Gram-Schmidt
 412 orthogonalization process of the basis: always taking the shortest residual vector as the next one to
 413 orthogonalize, agreeing with Babai’s relative error bound. Across our preliminary runs (Section C.3),
 414 min-pivot consistently reduces $\operatorname{tr}(\mathbf{D})$ relative to act-order, but the downstream accuracy gains are
 415 modest. We nevertheless report min-pivot as a principled choice, and view act-order as a cheap
 416 approximation that only considers the Hessian diagonal, which already captures most of the benefit
 417 when the Hessian matrix is well-conditioned.

419 **Algorithm 3: Min-Pivot**

420 **Input:** Hessian $\mathbf{H} \in \mathbb{R}^{c \times c}$
 421 **Output:** order encoded as a permutation matrix $\mathbf{T} \in \{0, 1\}^{c \times c}$

422 1 $J \leftarrow \{1, \dots, c\}$ // initialize the not-yet-pivoted indices
 423 2 $\mathbf{T} \leftarrow \mathbf{0}$ // initialize the output permutation matrix
 424 3 **for** $j \leftarrow 1$ to c **do**
 425 4 $j' \leftarrow \operatorname{argmin}_{j' \in J} \mathbf{H}[j', j']$ // choose next index with the smallest current diagonal
 426 5 $\mathbf{H} \leftarrow \mathbf{H} - \mathbf{H}[:, j'] \mathbf{H}[j', :] / \mathbf{H}[j', j']$ // updates remaining entries with rank-1 Schur
 427 complement
 428 6 $\mathbf{T}[j', j] \leftarrow 1$ // record the index
 429 7 $J \leftarrow J \setminus \{j'\}$ // mark pivot as used
 430 8 **end**

432 **5 APPLICATIONS**

434 The original GPTQ algorithm clips the overflowed integers at the rounding step, introducing large
 435 errors that violate the error bound in Theorem 5. In this section, we explore error-guaranteed variants
 436 of GPTQ that work in the no-clipping regime.

437 We notice that enforcing no-clipping by simply increasing scales is counterproductive: larger scales
 438 enlarge the bound, and the resulting errors can exceed those of a clipped scheme such as MSE. Hence,
 439 any practical no-clipping design must account for the weight distributions that are known to have
 440 heavy outliers (Li et al., 2025). We would still like to apply small scales, but use small bitwidths for
 441 the bulk of inliers while handling the overflowed outliers with more storage budget without clipping
 442 them. We therefore propose two overflow-tolerant schemes.

443 **Scale-adjusted SpQR (SSQR).** SpQR (Dettmers et al., 2024) keeps a small set of outliers in full precision,
 444 but it still leaves clipping in place: weights are grouped, the outliers and a shared scale are chosen
 445 per group before the GPTQ updates, and there is no guarantee the updated inlier weights stay within
 446 the representable range. We design SSQR with a scale-adjustment mechanism to fix this issue. For
 447 simplicity, we discard SpQR’s second-level quantization for the scales. For a weight vector $w_i \in \mathbb{R}^c$,
 448 we represent the quantized weight $q_i \in \mathbb{R}^c$ as $\text{diag}(s_i)z_i + \xi_i$ where $z \in \mathbb{Z}_+^c$ is the low-bitwidth integer
 449 weight vector, $s_i \in \mathbb{R}_{\neq 0}^c$ is the floating-point scale vector with each scale shared per group (only
 450 one number per group is actually stored), and $\xi_i \in \mathbb{R}^c$ is the sparse floating-point outlier vector (stored
 451 in the compressed sparse row format, CSR) that captures all the overflowed weights after GPTQ’s error
 452 propagation. The scale-adjustment mechanism tunes the scale s_i until the density of ξ_i satisfies the
 453 specified rate. Because exhaustive trial-and-error over per-group scales is infeasible in large layers, the
 454 mechanism only proportionally changes s_i so that the search space reduces to one dimension. With the
 455 observation that the outlier rate is negatively related to the scales in general, this can be done via binary
 456 search: initialize s_i using MSE, quantize w_i with the specified format using GPTQ without clipping,
 457 calculate the density of ξ_i , and adjust s_i and iterate. Section D.1 Algorithm 9 is the pseudocode.

458 **Huffman-encoded post-training quantization (HPTQ).** To better align with the infinite,
 459 unconstrained lattice in CVP, we design HPTQ, which represents both inliers and outliers in a unified,
 460 equal-spaced integer grid. The idea is to use [Huffman encoding](#), which was also explored for
 461 [network compression](#) by Choi et al. (2017). We quantize the weight matrix $W \in \mathbb{R}^{c \times r}$ as $Q = sZ$
 462 with a single scalar $s \in \mathbb{R}_{\neq 0}$ and integers $Z \in \mathbb{Z}^{c \times r}$. We select s via an entropy-guided binary
 463 search: initialize a range proportional to the maximum weight, quantize to unclipped integers with
 464 GPTQ, measure the Huffman coding cost of Z , and adjust s until the encoded bits meet a target
 465 average bitwidth. This yields uneven-bitwidth representations that preserve accuracy while meeting
 466 a compression budget. Section D.1 Algorithm 11 is the pseudocode.

467 Experiments compare round-to-nearest (RTN), original GPTQ, HPTQ, and SSQR with 1~5% outliers.
 468 We also include Huffman-encoded RTN (HRTN) as a baseline to HPTQ, which mirrors HPTQ
 469 but replaces GPTQ with RTN (Pseudocode: Section D.1 Algorithm 12). The quantization order is
 470 act-order for all methods. RTN, GPTQ, and SSQR use group size 128. RTN and GPTQ calculate the
 471 scales with the MSE method. Figure 4 (a-b) shows that HPTQ sustains low perplexity on Qwen3-8B
 472 at reduced bitwidths and scales favorably across model sizes, with 3.125-bit emerging as Pareto
 473 optimal in terms of perplexity vs compression. The experimental setup and additional metrics,
 474 including the benchmark results, are detailed in Sections D.2 and D.3.

475 **CUDA inference kernel.** We implement an inference kernel for SSQR in CUDA/C++, optimized
 476 for low-batch latency, handling both the dense inliers and sparse outliers while targeting the Ampere
 477 platform. The kernel supports group-quantized inlier weights in the 2-4-bit range with scales in 16
 478 bits and support for unstructured sparsity, used to avoid weight clipping. Figure 4 (c) visualizes the
 479 end-to-end speedup in the LLM decoding phase vs the PyTorch BF16 kernel. Our kernel achieves
 480 about 2 \times speedup across different bitwidth and outlier rate settings when generating 128 new tokens
 481 at a batch size of 1. Technical details and layer-wise speedups are described in Section D.4.

482 **6 CONCLUSION**

483 We have shown that GPTQ, when executed back-to-front, is mathematically identical to Babai’s
 484 nearest plane algorithm applied to the lattice defined by a layer’s Hessian without basis reduction.

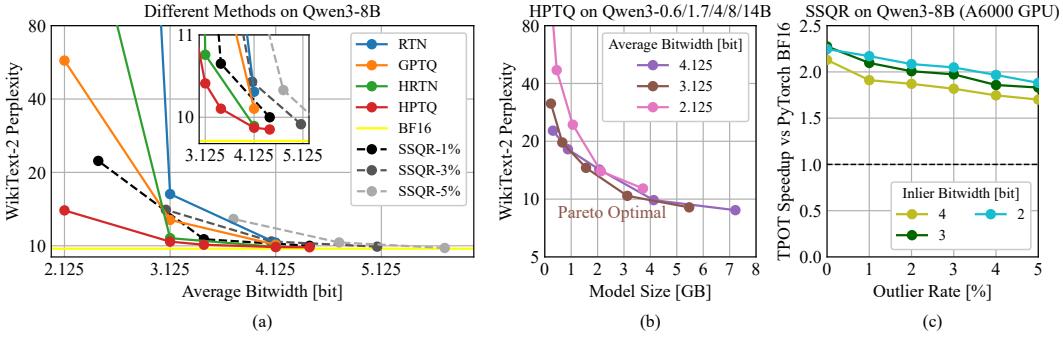


Figure 4: (a) Comparison of quantization methods (RTN, GPTQ, HRTN, HPTQ, and SSQR with 1~5% outliers) on Qwen3-8B evaluated on WikiText-2. Perplexity is plotted against the average effective bitwidth per weight, with the BF16 baseline shown as a horizontal line. HPTQ has the best (lowest) perplexity. See Section D.3 for zero-shot evaluation results. (b) Scaling behavior of HPTQ across multiple model sizes (0.6B, 1.7B, 4B, 8B, 14B) and bitwidths (4.125, 3.125, 2.125). The x-axis denotes the effective model size after quantization, and the y-axis shows perplexity on WikiText-2. Each curve corresponds to a fixed bitwidth, while points along a curve represent different model scales. Using our HPTQ method, 3.125-bit stands out as the Pareto optimal bitwidth (optimal perplexity vs compression trade-offs). (c) End-to-end inference speedups of our SSQR kernel vs the PyTorch BF16 matrix multiplication kernel on NVIDIA RTX A6000 GPU. We run the Qwen3-8B model across multiple outlier rates (0%~5%) and inlier bitwidths (4, 3, 2) and measure the TPOT (time per output token) metric. Our kernel achieves about 2 \times speedup end-to-end.

Based on this theory, we propose error-guaranteed practical methods and provide optimized CUDA kernels that deliver low-latency inferences. Looking ahead, extending the analysis to clipped grids and exploring (scale-aware) basis reductions are the immediate next steps. We will also extend the lattice view beyond weight-only linear layers to activation and KV-cache quantization. More broadly, the lattice perspective opens a two-way channel: decades of CVP heuristics can refine practical quantizers, while the behavior of massive neural networks may, in turn, inspire new questions for lattice theory.

ETHICS STATEMENT

Throughout this work, we have strictly adhered to the ICLR Code of Ethics. All datasets utilized in our experiments are publicly available and widely recognized within the scientific community. We ensure that these datasets do not contain any personally identifiable information or sensitive content. Our work does not involve human subjects, animals, or any form of personal data collection. We have thoroughly considered potential dual-use concerns and do not foresee any harmful applications of our methods. There are no conflicts of interest to declare, and no external sponsorship influenced the outcomes of this research. All experiments were conducted with integrity and transparency.

REPRODUCIBILITY STATEMENT

We are committed to ensuring that our work is transparent and reproducible. To facilitate this, clear explanations of any assumptions and a complete proof of the claims have been included in the main text and appendix. We also share the source code as part of the supplementary materials. The code is documented and includes instructions for setting up the environment, running the simulations, and reproducing the results presented in our paper. By making our resources openly available and providing detailed explanations, we aim to enable the research community to validate and build upon our findings.

REFERENCES

László Babai. On lovász' lattice reduction and the nearest lattice point problem. *Combinatorica*, 6(1):1–13, March 1986. ISSN 1439-6912. doi: 10.1007/BF02579403. URL <https://doi.org/10.1007/BF02579403>.

540 Johann Birnick. The lattice geometry of neural network quantization – a short equivalence proof of
 541 gptq and babai's algorithm, 2025. URL <https://arxiv.org/abs/2508.01077>.
 542

543 Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-
 544 bit quantization of large language models with guarantees. In A. Oh, T. Nau-
 545 mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neu-
 546 ral Information Processing Systems*, volume 36, pp. 4396–4429. Curran Associates, Inc.,
 547 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/0df38cd13520747e1e64e5b123a78ef8-Paper-Conference.pdf.
 548

549 Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Towards the limit of network quantization. In
 550 *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=rJ8uNptgl>.
 551

552 Tim Dettmers, Ruslan A. Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh
 553 Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. SpQR: A sparse-quantized
 554 representation for near-lossless LLM weight compression. In *The Twelfth International Confer-
 555 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Q1u25ahSuy>.
 556

557 I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating cvp to within almost-polynomial fac-
 558 tors is np-hard. *Combinatorica*, 23(2):205–243, apr 2003. ISSN 1439-6912. doi: 10.1007/
 559 s00493-003-0019-y. URL <https://doi.org/10.1007/s00493-003-0019-y>.
 560

561 Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
 562 Alistarh. Extreme compression of large language models via additive quantization. In Ruslan
 563 Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
 564 Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*,
 565 volume 235 of *Proceedings of Machine Learning Research*, pp. 12284–12303. PMLR, 21–27 Jul
 566 2024. URL <https://proceedings.mlr.press/v235/egiazarian24a.html>.
 567

568 Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accu-
 569 rate post-training quantization and pruning. In S. Koyejo, S. Mohamed, A. Agar-
 570 wal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Pro-
 571 cessing Systems*, volume 35, pp. 4475–4488. Curran Associates, Inc., 2022. URL
 572 https://proceedings.neurips.cc/paper_files/paper/2022/file/1caf09c9f4e6b0150b06a07e77f2710c-Paper-Conference.pdf.
 573

574 Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization
 575 for generative pre-trained transformers. In *The Eleventh International Conference on Learning
 576 Representations*, 2023. URL <https://openreview.net/forum?id=tcbBPnfwxs>.
 577

578 Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer.
 579 A survey of quantization methods for efficient neural network inference, 2021. URL <https://arxiv.org/abs/2103.13630>.
 580

581 Babak Hassibi, David G. Stork, and Gregory J. Wolff. Optimal brain surgeon and general network
 582 pruning. In *IEEE International Conference on Neural Networks*, pp. 293–299 vol.1, 1993. doi:
 583 10.1109/ICNN.1993.298572.
 584

585 Ravi Kannan. Minkowski's convex body theorem and integer programming. *Math. Oper. Res.*, 12(3):
 586 415–440, August 1987. ISSN 0364-765X.
 587

588 Eldar Kurtic, Alexandre Marques, Shubhra Pandit, Mark Kurtz, and Dan Alistarh. " give me
 589 bf16 or give me death"? accuracy-performance trade-offs in llm quantization. *arXiv preprint
 590 arXiv:2411.02355*, 2024.

591 Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky
 592 (ed.), *Advances in Neural Information Processing Systems*, volume 2. Morgan-Kaufmann,
 593 1989. URL https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf.

594 Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with
 595 rational coefficients. *Mathematische Annalen*, 261(4):515–534, dec 1982. ISSN 1432-1807. doi:
 596 10.1007/BF01457454. URL <https://doi.org/10.1007/BF01457454>.

597

598 Xinlin Li, Osama Hanna, Christina Fragouli, and Suhas Diggavi. ICQuant: Index coding enables
 599 low-bit LLM quantization. In *Second Conference on Language Modeling*, 2025. URL <https://openreview.net/forum?id=m6nBgFSMTL>.

600

601 Sasha Luccioni, Yacine Jernite, and Emma Strubell. Power hungry processing: Watts driving the
 602 cost of ai deployment? In *Proceedings of the 2024 ACM Conference on Fairness, Accountability,
 603 and Transparency*, FAccT '24, pp. 85–99, New York, NY, USA, 2024. Association for Computing
 604 Machinery. ISBN 9798400704505. doi: 10.1145/3630106.3658542. URL <https://doi.org/10.1145/3630106.3658542>.

605

606 Daniele Micciancio and Shafi Goldwasser. *Complexity of Lattice Problems: A Cryptographic
 607 Perspective*, volume 671 of *The Springer International Series in Engineering and Computer
 608 Science*. Springer, New York, NY, 1 edition, 2002. ISBN 978-0-7923-7688-0. doi: 10.1007/
 609 978-1-4615-0897-7. URL <https://doi.org/10.1007/978-1-4615-0897-7>.

610

611 Donald J. Rose, Robert E. Tarjan, and George S. Lueker. Algorithmic aspects of vertex elimination
 612 on graphs. *SIAM Journal on Computing*, 5(2):266–283, 1976. doi: 10.1137/0205021.

613

614 Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. QuIP#:
 615 Even better LLM quantization with hadamard incoherence and lattice codebooks. In Ruslan
 616 Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
 617 Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*,
 618 volume 235 of *Proceedings of Machine Learning Research*, pp. 48630–48656. PMLR, 21–27 Jul
 2024a. URL <https://proceedings.mlr.press/v235/tseng24a.html>.

619

620 Albert Tseng, Qingyao Sun, David Hou, and Christopher De. Qtip: Quantization with trellises
 621 and incoherence processing. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
 622 U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing
 623 Systems*, volume 37, pp. 59597–59620. Curran Associates, Inc., 2024b. doi: 10.52202/
 624 079017-1904. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/6de2e84b8da47bb2eb5e2ac96c63d2b0-Paper-Conference.pdf.

625

626 P. van Emde Boas. Another np-complete problem and the complexity of computing short vectors in a
 627 lattice. Technical Report 8104, University of Amsterdam, Department of Mathematics, Netherlands,
 628 1981.

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A APPLYING BABAI’S ALGORITHM TO BATCHED QUANTIZATION
649650 A.1 QUANTIZATION-CVP CORRESPONDENCE
651652 Table 1 is a take-away dictionary showing the correspondence between the quantization and CVP
653 concepts.654
655 Table 1: Quantization-CVP dictionary for the output channel i .
656

657 Quantization symbol	658 CVP interpretation
659 Input activation $\mathbf{X} \in \mathbb{R}^{n \times c}$	Basis directions (columns are generators)
660 Scale $\mathbf{s}_i \in \mathbb{R}_{\neq 0}^c$	Basis stretches
661 $\mathbf{B}_{(i)} = \mathbf{X} \text{ diag}(\mathbf{s}_i) \in \mathbb{R}^{n \times c}$	Lattice basis (columns are generators)
662 Weight $\mathbf{w}_i \in \mathbb{R}^c$	Floating-point coordinates on the unstretched basis
663 Integer weight representation $\mathbf{z}_i \in \mathbb{Z}_{\dagger}^c$	Integer coordinates on the lattice basis
664 Dequantized weight $\mathbf{q}_i = \text{diag}(\mathbf{s}_i) \mathbf{z}_i \in \mathbb{R}^c$	Dequantized coordinates on the unstretched basis
665 Target output activation $\mathbf{y}_{(i)} = \mathbf{X} \mathbf{w}_i \in \mathbb{R}^n$	External target vector to approximate

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A.2 BABAI'S QUANTIZATION ALGORITHM
703

704 Given the equivalence we have shown in Section 4.1, the quantization problem can be converted to
705 CVP, allowing us to apply Babai's nearest plane algorithm in the context of quantization. A naive
706 way is to compute $\mathbf{B}_{(i)} = \mathbf{X} \operatorname{diag}(\mathbf{s}_i)$ and $\mathbf{y}_{(i)} = \mathbf{X} \mathbf{w}_i$ and run Babai's algorithm independently for
707 all $1 \leq i \leq r$. However, this is computationally inefficient, as we will need to compute the expensive
708 ($O(c^4)$) LLL basis reduction transformation $\mathbf{T}_{(i)}$ for the basis $\mathbf{B}_{(i)}$ and the expensive ($O(c^3)$) QR
709 decomposition of $\mathbf{A}_{(i)} = \mathbf{B}_{(i)} \mathbf{T}_{(i)}$ for r times. However, a few adjustments can be made to simplify
710 the computation and enable batched processing.

711 **Disabling basis reduction.** The LLL basis reduction is unfortunately scale-sensitive, generating
712 different transformations $\mathbf{T}_{(i)}$ for different scales \mathbf{s}_i (unless all the \mathbf{s}_i vectors are parallel), which
713 prohibits the reuse of QR decomposition results. Furthermore, LLL basis reduction is incompatible
714 with clipping, as the roundings are performed in another basis, and there is no easy way to do the
715 clipping for the original basis.

716 **Changing quantization order.** Quantization order is a feature in GPTQ that controls the rounding
717 and clipping order of the dimensions. This order influences the quantization error, as we discuss
718 in Section 4.5. In the context of Babai's algorithm, this corresponds to the order of the basis in the
719 Gram-Schmidt orthogonalization and the hyperplane projections, as shown in Figure 1 (g-h). To do
720 so, we can replace the LLL basis reduction in Babai's algorithm with a permutation by setting the
721 transformation matrix \mathbf{T} to a permutation matrix that is independent of i .

722 **Theorem 6 (Babai's Quantization Order)** *If \mathbf{T} is a permutation matrix that does not depend on i ,
723 the orthogonal matrix Φ can be reused without recomputing the QR decomposition for each i .*
724

725 **Proof** The permutation matrix $\mathbf{T} \in \{0, 1\}^{c \times c}$ has exactly one non-zero element in each row and
726 column. Scaling the rows of \mathbf{T} can also be interpreted as scaling the columns of \mathbf{T} , therefore its
727 multiplication with a diagonal matrix has property: $\operatorname{diag}(\mathbf{s}_i) \mathbf{T} = \mathbf{T} \operatorname{diag}(\mathbf{T}^{-1} \mathbf{s}_i)$. Let $\mathbf{A} = \mathbf{X} \mathbf{T}$,
728 $\mathbf{A}_{(i)} = \mathbf{X} \operatorname{diag}(\mathbf{s}_i) \mathbf{T}$. Denote the QR decomposition of \mathbf{A} as $\mathbf{A} = \Phi \mathbf{R}$ with Φ being an orthogonal
729 matrix and \mathbf{R} being an upper triangular matrix. Then, the QR decomposition of $\mathbf{A}_{(i)}$ becomes $\mathbf{A}_{(i)} =$
730 $\mathbf{X} \operatorname{diag}(\mathbf{s}_i) \mathbf{T} = \mathbf{X} \mathbf{T} \operatorname{diag}(\mathbf{T}^{-1} \mathbf{s}_i) = \mathbf{A} \operatorname{diag}(\mathbf{T}^{-1} \mathbf{s}_i) = \Phi (\mathbf{R} \operatorname{diag}(\mathbf{T}^{-1} \mathbf{s}_i))$. Therefore, the
731 QR decompositions of $\mathbf{A}_{(i)}$ share the same orthogonal matrix Φ for all $1 \leq i \leq r$. ■

732 As shown in Theorem 6, changing quantization order does not require repeated computation of the
733 QR decomposition. Note that, we also need to permute the scale \mathbf{S} accordingly to $\mathbf{T}^{-1} \mathbf{S}$.

735 **Selecting basis.** Putting things together, we are
736 interested in $\mathbf{A} = \mathbf{X} \mathbf{T}$ and its QR decomposition
737 Φ . Theorem 1 allows us to choose any Hessian
738 factor \mathbf{X} while keeping the result intact. Without
739 loss of generality, we can choose a \mathbf{X} such
740 that \mathbf{A} is an upper triangular matrix and the QR
741 decomposition becomes trivial: $\Phi = \mathbf{I}$, which
742 simplifies the computation. The upper triangu-
743 lar matrix \mathbf{A} can be directly computed from the
744 Cholesky decomposition of the permuted Hessian
matrix $\mathbf{A}^\top \mathbf{A} = \mathbf{T}^\top \mathbf{X}^\top \mathbf{X} \mathbf{T}$.

745 Applying all the considerations in this subsection,
746 we construct Algorithm 4 for batched quantiza-
747 tion using Babai's algorithm.

Algorithm 4: Babai's Quantize

Input: $\mathbf{W}, \mathbf{S}, \mathbf{X}, \mathbf{T}, \lambda, \mathbb{Z}_\dagger$
Output: \mathbf{Z}, \mathbf{Q}
1 $\mathbf{H} \leftarrow \mathbf{T}^\top (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I}) \mathbf{T}$
2 $\mathbf{A} \leftarrow \text{CHOLESKY}(\mathbf{H})^\top$
3 $\mathbf{W}, \mathbf{S} \leftarrow \mathbf{T}^{-1} \mathbf{W}, \mathbf{T}^{-1} \mathbf{S}$
4 $\mathbf{Y}, \mathbf{Q}, \mathbf{Z} \leftarrow \mathbf{A} \mathbf{W}, \mathbf{W}, \mathbf{0}$
5 **for** $j \leftarrow c$ to 1 **do**
6 $\omega \leftarrow \mathbf{Y}[j, :] / \mathbf{A}[j, j]$
7 $\zeta \leftarrow \omega / \mathbf{S}[j, :]$
8 $\mathbf{Z}[j, :] \leftarrow \text{ROUND}(\zeta, \mathbb{Z}_\dagger)$
9 $\mathbf{Q}[j, :] \leftarrow \mathbf{Z}[j, :] * \mathbf{S}[j, :]$
10 $\mathbf{Y} \leftarrow \mathbf{Y} - \mathbf{A}[:, j] \mathbf{Q}[j, :]$
11 **end**
12 $\mathbf{Z}, \mathbf{Q} \leftarrow \mathbf{T} \mathbf{Z}, \mathbf{T} \mathbf{Q}$

748
749
750
751
752
753
754
755

756 B ALGEBRAIC EQUIVALENCE PROOF OF GPTQ AND BABAI'S ALGORITHM
757758 In this section, we prove Theorem 4 that GPTQ (Algorithm 1) and Babai's algorithm (Algorithm 4)
759 are equivalent if the dimensional orders are opposite.
760761 Because a permutation matrix acts only as re-ordering coordinates, we may apply the permutation
762 once at the beginning (to \mathbf{W} , \mathbf{S} , and \mathbf{X}) and once at the end (to \mathbf{Z} and \mathbf{Q}) without affecting any
763 intermediate arithmetic. Hence, all algebras performed inside the two algorithms can be analyzed on
764 the permuted basis where the permutation matrix is the identity. On that basis, the sole distinction
765 between GPTQ and Babai's algorithm lies in the direction of the iterations. Proving that GPTQ
766 running back-to-front ($j \leftarrow c$ to 1) reproduces Babai's updates in Babai's default iteration direction
767 would complete the equivalence proof.
768769 We follow a three-step proof scheme.
770771

- **Step 1.** Proving that the original GPTQ algorithm (Algorithm 5) that uses relative quantiza-
772 tion error row vector $\boldsymbol{\varepsilon} \in \mathbb{R}^{1 \times r}$ is equivalent to a new algorithm (Algorithm 6) using the
773 absolute quantization error matrix $\boldsymbol{\Delta} \in \mathbb{R}^{c \times r}$.
- **Step 2.** Reversing the iteration in Algorithm 6 and writing the reversed-iteration algorithm
774 as Algorithm 7.
- **Step 3.** Proving that the reversed-iteration algorithm Algorithm 7 is equivalent to Babai's
775 algorithm Algorithm 8.

776777 Algorithms 5 to 8 are intentionally written in the linear algebra form. $\mathbf{e}_j \in \mathbb{R}^c$ is the standard
778 basis vector whose elements are 0 except the j -th element being 1, which is used as the row or
779 column selector of a matrix. The superscripts in parentheses denote the versions of the variables
780 during the iterations. $\boldsymbol{\omega}, \boldsymbol{\zeta} \in \mathbb{R}^{1 \times r}$ are intermediate row vectors. Additionally, \mathbf{L} is the LDL
781 decomposition of the Hessian inverse $\mathbf{H}^{-1} = \mathbf{L}\mathbf{D}_L^{\frac{1}{2}}\mathbf{D}_L^{\frac{1}{2}}\mathbf{L}^\top$ where \mathbf{L} is a lower triangular matrix
782 with all diagonal elements being 1, and $\mathbf{D}_L^{\frac{1}{2}}$ is a non-negative diagonal matrix. Similarly, \mathbf{U} is the
783 “UDU” decomposition of the Hessian inverse $\mathbf{H}^{-1} = \mathbf{U}\mathbf{D}_U^{\frac{1}{2}}\mathbf{D}_U^{\frac{1}{2}}\mathbf{U}^\top$ where \mathbf{U} is an upper triangular
784 matrix with all diagonal elements being 1, and $\mathbf{D}_U^{\frac{1}{2}}$ is a non-negative diagonal matrix.
785786 Note: the symbols are overloaded in Algorithms 5 to 8, and the variables using the same symbols
787 may carry different values, even if the inputs to the algorithms are the same.
788789 B.1 STEP 1
790791 To distinguish the variables using the same symbol in Algorithms 5 and 6, we use symbols without $\hat{\cdot}$
792 to denote the symbols in Algorithm 5, and use the symbols with $\hat{\cdot}$ for Algorithm 6.
793794 **Claim**
795

796
$$\boldsymbol{\omega}_j = \hat{\boldsymbol{\omega}}_j, \quad 1 \leq j \leq c, \quad (3)$$

797 and consequently,

798
$$\mathbf{Z}^{(j)} = \hat{\mathbf{Z}}^{(j)}, \quad 0 \leq j \leq c, \quad (4)$$

799 and

800
$$\mathbf{Q}^{(j)} = \hat{\mathbf{Q}}^{(j)}, \quad 0 \leq j \leq c. \quad (5)$$

801

802 **Proof Eq. 3 by Induction**803 The following equalities are held by the design of Algorithms 5 and 6:
804

805
$$\mathbf{Q}^{(0)} = \hat{\mathbf{Q}}^{(0)} = \mathbf{W}^{(0)} = \hat{\mathbf{W}}^{(0)}. \quad (6)$$

806
$$\boldsymbol{\omega}^{(j)} = \mathbf{e}_j^\top \mathbf{W}^{(j-1)}, \quad 1 \leq j \leq c. \quad (7)$$

807
$$\hat{\boldsymbol{\omega}}^{(j)} = \mathbf{e}_j^\top \hat{\mathbf{W}}^{(j-1)}, \quad 1 \leq j \leq c. \quad (8)$$

808
$$\mathbf{Q}^{(j)} = \mathbf{Q}^{(j-1)} + \mathbf{e}_j \left(\mathbf{e}_j^\top \mathbf{Z}^{(j)} \operatorname{diag}(\mathbf{S}^\top \mathbf{e}_j) - \mathbf{e}_j^\top \mathbf{Q}^{(j-1)} \right), \quad 1 \leq j \leq c. \quad (9)$$

809

810
811
812
813
814
815
816
817
818
819

Algorithm 5: GPTQ Original (Front-to-Back)

820 **Input:** $W, S, X, \lambda, \mathbb{Z}_\dagger$
 821 **Output:** Z, Q
 822 1 $H \leftarrow X^\top X + \lambda I$
 823 2 $L \leftarrow LDL(H^{-1})$
 824 3 $W^{(0)} \leftarrow W$
 825 4 $Q^{(0)}, Z^{(0)} \leftarrow W^{(0)}, 0$
 826 5 **for** $j \leftarrow 1$ to c **do**
 827 6 $\omega^{(j)} \leftarrow e_j^\top W^{(j-1)}$
 828 7 $\zeta^{(j)} \leftarrow \omega^{(j)} \text{diag}(S^\top e_j)^{-1}$
 829 8 $Z^{(j)} \leftarrow Z^{(j-1)} + e_j (\text{ROUND}(\zeta^{(j)}, \mathbb{Z}_\dagger) - e_j^\top Z^{(j-1)})$
 830 9 $Q^{(j)} \leftarrow Q^{(j-1)} + e_j (e_j^\top Z^{(j)} \text{diag}(S^\top e_j) - e_j^\top Q^{(j-1)})$
 831 10 $\varepsilon^{(j)} \leftarrow e_j^\top Q^{(j)} - \omega^{(j)}$
 832 11 $W^{(j)} \leftarrow W^{(j-1)} + L e_j \varepsilon^{(j)}$
 833 12 **end**
 834 13 $Z, Q \leftarrow Z^{(c)}, Q^{(c)}$

Algorithm 6: GPTQ Type-2 (Front-to-Back)

835 **Input:** $W, S, X, \lambda, \mathbb{Z}_\dagger$
 836 **Output:** Z, Q
 837 1 $H \leftarrow X^\top X + \lambda I$
 838 2 $L \leftarrow LDL(H^{-1})$
 839 3 $W^{(0)} \leftarrow W$
 840 4 $Q^{(0)}, Z^{(0)} \leftarrow W^{(0)}, 0$
 841 5 **for** $j \leftarrow 1$ to c **do**
 842 6 $\omega^{(j)} \leftarrow e_j^\top W^{(j-1)}$
 843 7 $\zeta^{(j)} \leftarrow \omega^{(j)} \text{diag}(S^\top e_j)^{-1}$
 844 8 $Z^{(j)} \leftarrow Z^{(j-1)} + e_j (\text{ROUND}(\zeta^{(j)}, \mathbb{Z}_\dagger) - e_j^\top Z^{(j-1)})$
 845 9 $Q^{(j)} \leftarrow Q^{(j-1)} + e_j (e_j^\top Z^{(j)} \text{diag}(S^\top e_j) - e_j^\top Q^{(j-1)})$
 846 10 $\Delta^{(j)} \leftarrow Q^{(j)} - W^{(0)} // \text{new}$
 847 11 $W^{(j)} \leftarrow W^{(0)} - L^{-1} \Delta^{(j)} // \text{new}$
 848 12 **end**
 849 13 $Z, Q \leftarrow Z^{(c)}, Q^{(c)}$

850
851
852
853
854
855
856
857
858
859
860
861
862
863

864
865
866
867
868
869
870
871
872
873

Algorithm 7: GPTQ Type-2 (Back-to-Front)

874
875 **Input:** $\mathbf{W}, \mathbf{S}, \mathbf{X}, \lambda, \mathbb{Z}_\dagger$
 876 **Output:** \mathbf{Z}, \mathbf{Q}
 877 1 $\mathbf{H} \leftarrow \mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I}$
 878 2 $\mathbf{U} \leftarrow \text{UDU}(\mathbf{H}^{-1})$ // new
 879 3 $\mathbf{W}^{(c+1)} \leftarrow \mathbf{W}^{(c+1)}, \mathbf{0}$
 880 4 $\mathbf{Q}^{(c+1)}, \mathbf{Z}^{(c+1)} \leftarrow \mathbf{W}^{(c+1)}, \mathbf{0}$
 881 5 **for** $j \leftarrow c$ to 1 **do**
 882 6 $\boldsymbol{\omega}^{(j)} \leftarrow \mathbf{e}_j^\top \mathbf{W}^{(j+1)}$
 883 7 $\zeta^{(j)} \leftarrow \boldsymbol{\omega}^{(j)} \text{diag}(\mathbf{S}^\top \mathbf{e}_j)^{-1}$
 884 8 $\mathbf{Z}^{(j)} \leftarrow \mathbf{Z}^{(j+1)} + \mathbf{e}_j (\text{ROUND}(\zeta^{(j)}, \mathbb{Z}_\dagger) - \mathbf{e}_j^\top \mathbf{Z}^{(j+1)})$
 885 9 $\mathbf{Q}^{(j)} \leftarrow \mathbf{Q}^{(j+1)} + \mathbf{e}_j (\mathbf{e}_j^\top \mathbf{Z}^{(j)} \text{diag}(\mathbf{S}^\top \mathbf{e}_j) - \mathbf{e}_j^\top \mathbf{Q}^{(j+1)})$
 886 10 $\Delta^{(j)} \leftarrow \mathbf{Q}^{(j)} - \mathbf{W}^{(c+1)}$
 887 11 $\mathbf{W}^{(j)} \leftarrow \mathbf{W}^{(c+1)} - \mathbf{U}^{-1} \Delta^{(j)}$ // new
 888 12 **end**
 889 13 $\mathbf{Z}, \mathbf{Q} \leftarrow \mathbf{Z}^{(1)}, \mathbf{Q}^{(1)}$

Algorithm 8: Babai-Quantize (Default Order)

892
893 **Input:** $\mathbf{W}, \mathbf{S}, \mathbf{X}, \lambda, \mathbb{Z}_\dagger$
 894 **Output:** \mathbf{Z}, \mathbf{Q}
 895 1 $\mathbf{H} \leftarrow \mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I}$
 896 2 $\mathbf{A} \leftarrow \text{CHOLESKY}(\mathbf{H})^\top$
 897 3 $\mathbf{Y}^{(c+1)}, \mathbf{Q}^{(c+1)}, \mathbf{Z}^{(c+1)} \leftarrow \mathbf{A}\mathbf{W}, \mathbf{W}, \mathbf{0}$
 898 4 **for** $j \leftarrow c$ to 1 **do**
 899 5 $\boldsymbol{\omega}^{(j)} \leftarrow \frac{\mathbf{e}_j^\top \mathbf{Y}^{(j+1)}}{\mathbf{e}_j^\top \mathbf{A}\mathbf{e}_j}$
 900 6 $\zeta^{(j)} \leftarrow \boldsymbol{\omega}^{(j)} \text{diag}(\mathbf{S}^\top \mathbf{e}_j)^{-1}$
 901 7 $\mathbf{Z}^{(j)} \leftarrow \mathbf{Z}^{(j+1)} + \mathbf{e}_j (\text{ROUND}(\zeta^{(j)}, \mathbb{Z}_\dagger) - \mathbf{e}_j^\top \mathbf{Z}^{(j+1)})$
 902 8 $\mathbf{Q}^{(j)} \leftarrow \mathbf{Q}^{(j+1)} + \mathbf{e}_j (\mathbf{e}_j^\top \mathbf{Z}^{(j)} \text{diag}(\mathbf{S}^\top \mathbf{e}_j) - \mathbf{e}_j^\top \mathbf{Q}^{(j+1)})$
 903 9 $\mathbf{Y}^{(j)} \leftarrow \mathbf{Y}^{(j+1)} - \mathbf{A}\mathbf{e}_j \mathbf{e}_j^\top \mathbf{Q}^{(j)}$
 904 10 **end**
 905 11 $\mathbf{Z}, \mathbf{Q} \leftarrow \mathbf{Z}^{(1)}, \mathbf{Q}^{(1)}$

906
907
908
909
910
911
912
913
914
915
916
917

918 $\hat{\mathbf{Q}}^{(j)} = \hat{\mathbf{Q}}^{(j-1)} + \mathbf{e}_j \left(\mathbf{e}_j^\top \hat{\mathbf{Z}}^{(j)} \operatorname{diag}(\mathbf{S}^\top \mathbf{e}_j) - \mathbf{e}_j^\top \hat{\mathbf{Q}}^{(j-1)} \right), \quad 1 \leq j \leq c. \quad (10)$
 919

920 $\boldsymbol{\varepsilon}^{(j)} = \mathbf{e}_j^\top \hat{\mathbf{Q}}^{(j)} - \boldsymbol{\omega}^{(j)}, \quad 1 \leq j \leq c. \quad (11)$
 921

922 $\boldsymbol{\Delta}^{(j)} = \hat{\mathbf{Q}}^{(j)} - \hat{\mathbf{W}}^{(0)}, \quad 1 \leq j \leq c. \quad (12)$
 923

924 $\mathbf{W}^{(j)} = \mathbf{W}^{(j-1)} + \mathbf{L} \mathbf{e}_j \boldsymbol{\varepsilon}^{(j)}, \quad 1 \leq j \leq c. \quad (13)$
 925

926 $\hat{\mathbf{W}}^{(j)} = \hat{\mathbf{W}}^{(0)} - \mathbf{L}^{-1} \boldsymbol{\Delta}^{(j)}, \quad 1 \leq j \leq c. \quad (14)$
 927

928 Extend the definition of $\boldsymbol{\Delta}^{(j)}$ (Eq. 12) for $j = 0$,

929 $\boldsymbol{\Delta}^{(j)} = \hat{\mathbf{Q}}^{(j)} - \hat{\mathbf{W}}^{(0)}, \quad 0 \leq j \leq c. \quad (15)$
 930

931 Then we have $\boldsymbol{\Delta}^{(0)} = \hat{\mathbf{Q}}^{(0)} - \hat{\mathbf{W}}^{(0)} = \hat{\mathbf{W}}^{(0)} - \hat{\mathbf{W}}^{(0)} = \mathbf{0}$, so that Eq. 14 can also be extended for $j = 0$,

932 $\hat{\mathbf{W}}^{(j)} = \hat{\mathbf{W}}^{(0)} - \mathbf{L}^{-1} \boldsymbol{\Delta}^{(j)}, \quad 0 \leq j \leq c. \quad (16)$
 933

934 (1) Eq. 3 holds for $j = 1$:

935 Using Eqs. 6, 7, 8,

936 $\boldsymbol{\omega}^{(1)} = \mathbf{e}_1^\top \mathbf{W}^{(0)} = \mathbf{e}_1^\top \hat{\mathbf{W}}^{(0)} = \hat{\boldsymbol{\omega}}^{(1)}. \quad (17)$
 937

938 (2) Assume Eq. 3 holds for all $j \leq j_*$, $1 \leq j_* < c$.

939 Because \mathbf{L} is a lower triangular matrix with all diagonal elements being 1, \mathbf{L}^{-1} is also a lower
 940 triangular matrix with all diagonal elements being 1.

941 For $1 \leq j < k \leq c$,

942 $\mathbf{e}_j^\top \mathbf{L} \mathbf{e}_k = \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{e}_k = 0. \quad (18)$
 943

944 For $1 \leq j \leq c$,

945 $\mathbf{e}_j^\top \mathbf{L} \mathbf{e}_j = \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{e}_j = 1. \quad (19)$
 946

947 For $1 \leq j < c$,

948
$$\begin{aligned} & \mathbf{e}_{j+1}^\top \mathbf{L} \left(\sum_{k=1}^j \mathbf{e}_k \mathbf{e}_k^\top \right) \\ &= \mathbf{e}_{j+1}^\top \mathbf{L} \left(\left(\sum_{k=1}^c \mathbf{e}_k \mathbf{e}_k^\top \right) - \mathbf{e}_{j+1} \mathbf{e}_{j+1}^\top - \left(\sum_{k=j+2}^c \mathbf{e}_k \mathbf{e}_k^\top \right) \right) \\ &= \mathbf{e}_{j+1}^\top \mathbf{L} \left(\sum_{k=1}^{j+1} \mathbf{e}_k \mathbf{e}_k^\top \right) - \mathbf{e}_c^\top \mathbf{L} \mathbf{e}_{j+1} \mathbf{e}_{j+1}^\top - \mathbf{e}_{j+1}^\top \mathbf{L} \left(\sum_{k=j+2}^c \mathbf{e}_k \mathbf{e}_k^\top \right) \end{aligned} \quad (20)$$

949
$$= \mathbf{e}_{j+1}^\top \mathbf{L} \mathbf{I} - \mathbf{e}_{j+1}^\top - \left(\sum_{k=j+2}^c \mathbf{e}_{j+1}^\top \mathbf{L} \mathbf{e}_k \mathbf{e}_k^\top \right) \quad (\text{Eq. 19})$$

 950

951
$$= \mathbf{e}_{j+1}^\top \mathbf{L} - \mathbf{e}_{j+1}^\top - \left(\sum_{k=j+2}^c 0 \mathbf{e}_k^\top \right) \quad (\text{Eq. 18})$$

 952

953
$$= \mathbf{e}_{j+1}^\top (\mathbf{L} - \mathbf{I}).$$

 954

955 With Eq. 9, for $1 \leq j \leq c$, $1 \leq k \leq c$ and $j \neq k$,

956
$$\begin{aligned} \mathbf{e}_k^\top \mathbf{Q}^{(j)} &= \mathbf{e}_k^\top \left(\mathbf{Q}^{(j-1)} + \mathbf{e}_j \left(\mathbf{e}_j^\top \mathbf{Z}^{(j)} \operatorname{diag}(\mathbf{S}^\top \mathbf{e}_j) - \mathbf{e}_j^\top \mathbf{Q}^{(j-1)} \right) \right) \\ &= \mathbf{e}_k^\top \mathbf{Q}^{(j-1)} + \mathbf{e}_k^\top \mathbf{e}_j \left(\mathbf{e}_j^\top \mathbf{Z}^{(j)} \operatorname{diag}(\mathbf{S}^\top \mathbf{e}_j) - \mathbf{e}_j^\top \mathbf{Q}^{(j-1)} \right) \\ &= \mathbf{e}_k^\top \mathbf{Q}^{(j-1)} + 0 \left(\mathbf{e}_j^\top \mathbf{Z}^{(j)} \operatorname{diag}(\mathbf{S}^\top \mathbf{e}_j) - \mathbf{e}_j^\top \mathbf{Q}^{(j-1)} \right) \\ &= \mathbf{e}_k^\top \mathbf{Q}^{(j-1)}. \end{aligned} \quad (21)$$

 957

972 Recursively applying Eq. 21, for $1 \leq j \leq c, 1 \leq k \leq c$,
 973

974

$$975 \mathbf{e}_k^\top \mathbf{Q}^{(j)} = \begin{cases} \mathbf{e}_k^\top \mathbf{Q}^{(k)} & \text{if } 1 \leq k \leq j \leq c, \\ \mathbf{e}_k^\top \mathbf{Q}^{(0)} = \mathbf{e}_k^\top \mathbf{W}^{(0)} & \text{if } 1 \leq j < k \leq c. \end{cases} \quad (22)$$

976

977

978 Similar to Eq. 22, with Eq. 10, for $1 \leq j \leq c, 1 \leq k \leq c$,
 979

980

981

$$982 \mathbf{e}_k^\top \hat{\mathbf{Q}}^{(j)} = \begin{cases} \mathbf{e}_k^\top \hat{\mathbf{Q}}^{(k)} & \text{if } 1 \leq k \leq j \leq c, \\ \mathbf{e}_k^\top \hat{\mathbf{Q}}^{(0)} = \mathbf{e}_k^\top \hat{\mathbf{W}}^{(0)} & \text{if } 1 \leq j < k \leq c. \end{cases} \quad (23)$$

983

984

985

986 With Eq. 23, for $1 \leq j \leq c, 1 \leq k \leq c$,
 987

988 $\mathbf{e}_k^\top \Delta^{(j)} = \mathbf{e}_k^\top (\hat{\mathbf{Q}}^{(j)} - \hat{\mathbf{W}}^{(0)})$ (Eq. 15)

989

990 $= \mathbf{e}_k^\top \hat{\mathbf{Q}}^{(j)} - \mathbf{e}_k^\top \hat{\mathbf{W}}^{(0)}$ (24)

991

992 $= \begin{cases} \mathbf{e}_k^\top \hat{\mathbf{Q}}^{(k)} - \mathbf{e}_k^\top \hat{\mathbf{W}}^{(0)} = \mathbf{e}_k^\top \Delta^{(k)} & \text{if } 1 \leq k \leq j \leq c, \\ \mathbf{e}_k^\top \hat{\mathbf{W}}^{(0)} - \mathbf{e}_k^\top \hat{\mathbf{W}}^{(0)} = \mathbf{e}_k^\top \Delta^{(0)} = \mathbf{0} & \text{if } 1 \leq j < k \leq c. \end{cases}$

993

994

995

996 For $1 \leq k \leq j \leq c$,
 997

998 $\mathbf{e}_k^\top L \Delta^{(j)}$

999

1000 $= \mathbf{e}_k^\top L I \Delta^{(j)}$

1001 $= \mathbf{e}_k^\top L \left(\sum_{k'=1}^c \mathbf{e}_{k'} \mathbf{e}_{k'}^\top \right) \Delta^{(j)}$

1002

1003 $= \sum_{k'=1}^c \mathbf{e}_k^\top L \mathbf{e}_{k'} \mathbf{e}_{k'}^\top \Delta^{(j)}$

1004

1005 $= \left(\sum_{k'=1}^k \mathbf{e}_k^\top L \mathbf{e}_{k'} \mathbf{e}_{k'}^\top \Delta^{(j)} \right) + \left(\sum_{k'=k+1}^c \mathbf{e}_k^\top L \mathbf{e}_{k'} \mathbf{e}_{k'}^\top \Delta^{(j)} \right)$

1006

1007 $= \left(\sum_{k'=1}^k \mathbf{e}_k^\top L \mathbf{e}_{k'} \mathbf{e}_{k'}^\top \Delta^{(k')} \right) + \left(\sum_{k'=k+1}^c 0 \mathbf{e}_{k'}^\top \Delta^{(j)} \right)$ (Eqs. 18, 24)

1008

1009 $= \left(\sum_{k'=1}^k \mathbf{e}_k^\top L \mathbf{e}_{k'} \mathbf{e}_{k'}^\top \Delta^{(k)} \right) + \left(\sum_{k'=k+1}^c 0 \mathbf{e}_{k'}^\top \Delta^{(k)} \right)$ (Eq. 24)

1010

1011 $= \left(\sum_{k'=1}^k \mathbf{e}_k^\top L \mathbf{e}_{k'} \mathbf{e}_{k'}^\top \Delta^{(k)} \right) + \left(\sum_{k'=k+1}^c \mathbf{e}_k^\top L \mathbf{e}_{k'} \mathbf{e}_{k'}^\top \Delta^{(k)} \right)$ (Eq. 18)

1012

1013 $= \sum_{k'=1}^c \mathbf{e}_k^\top L \mathbf{e}_{k'} \mathbf{e}_{k'}^\top \Delta^{(k)}$

1014

1015 $= \mathbf{e}_k^\top L \left(\sum_{k'=1}^c \mathbf{e}_{k'} \mathbf{e}_{k'}^\top \right) \Delta^{(k)}$

1016

1017 $= \mathbf{e}_k^\top L I \Delta^{(k)}$

1018

1019 $= \mathbf{e}_k^\top L \Delta^{(k)}.$

1020

1021

1022

1023

1024

1025

1026 For $1 \leq j \leq c$,

1027

1028

1029

1030

1031 $\mathbf{e}_j^\top \mathbf{L}^{-1} \Delta^{(j-1)}$

1032 $= \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{I} \Delta^{(j-1)}$

1033 $= \mathbf{e}_j^\top \mathbf{L}^{-1} \left(\sum_{k=1}^c \mathbf{e}_k \mathbf{e}_k^\top \right) \Delta^{(j-1)}$

1034 $= \sum_{k=1}^c \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \Delta^{(j-1)}$

1035 $= \left(\sum_{k=1}^{j-1} \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \Delta^{(j-1)} \right) + \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{e}_j \mathbf{e}_j^\top \Delta^{(j-1)} + \left(\sum_{k=j+1}^c \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \Delta^{(j-1)} \right)$

1036 $= \left(\sum_{k=1}^{j-1} \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \Delta^{(j-1)} \right) + \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{e}_j \mathbf{0} + \left(\sum_{k=j+1}^c 0 \mathbf{e}_k^\top \Delta^{(j-1)} \right)$ (Eqs. 18, 24)

1037 $= \left(\sum_{k=1}^{j-1} \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \Delta^{(j-1)} \right) + \left(\sum_{k=j+1}^c 0 \mathbf{e}_k^\top \Delta^{(j-1)} \right) + \mathbf{e}_j^\top \Delta^{(j)} - \mathbf{e}_j^\top \Delta^{(j)}$

1038 $= \left(\sum_{k=1}^{j-1} \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \Delta^{(j-1)} \right) + \left(\sum_{k=j+1}^c \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \Delta^{(j)} \right) + \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{e}_j \mathbf{e}_j^\top \Delta^{(j)} - \mathbf{e}_j^\top \Delta^{(j)}$ (Eqs. 19, 24)

1039

1040 $= \left(\sum_{k=1}^{j-1} \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \Delta^{(j-1)} \right) - \mathbf{e}_j^\top \Delta^{(j)}$

1041 $= \mathbf{e}_j^\top \mathbf{L}^{-1} \left(\sum_{k=1}^c \mathbf{e}_k \mathbf{e}_k^\top \right) \Delta^{(j)} - \mathbf{e}_j^\top \Delta^{(j)}$

1042 $= \mathbf{e}_j^\top \mathbf{L}^{-1} \mathbf{I} \Delta^{(j)} - \mathbf{e}_j^\top \Delta^{(j)}$

1043 $= \mathbf{e}_j^\top (\mathbf{L}^{-1} - \mathbf{I}) \Delta^{(j)}.$

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063 According to the assumption, for $1 \leq k \leq j_* < c$, we have

1064

1065

1066

1067

1068 $\mathbf{e}_k^\top \mathbf{W}^{(k-1)} = \boldsymbol{\omega}^{(k)} = \hat{\boldsymbol{\omega}}^{(k)} = \mathbf{e}_k^\top \hat{\mathbf{W}}^{(k-1)}$ (27)

1069

1070

1071

1072

1073 and

1074

1075

1076

1077

1078

1079

$$\mathbf{Q}^{(k)} = \hat{\mathbf{Q}}^{(k)}. \quad (28)$$

1080 For $1 \leq k \leq j_*$,

$$\begin{aligned}
 \varepsilon^{(k)} &= \mathbf{e}_k^\top \mathbf{Q}^{(k)} - \boldsymbol{\omega}^{(k)} & \text{(Eq. 11)} \\
 &= \mathbf{e}_k^\top \mathbf{Q}^{(k)} - \mathbf{e}_k^\top \mathbf{W}^{(k-1)} \\
 &= \mathbf{e}_k^\top (\mathbf{Q}^{(k)} - \mathbf{W}^{(k-1)}) \\
 &= \mathbf{e}_k^\top (\hat{\mathbf{Q}}^{(k)} - \hat{\mathbf{W}}^{(k-1)}) & \text{(Eqs. 27, 28)} \\
 &= \mathbf{e}_k^\top (\hat{\mathbf{Q}}^{(k)} - (\hat{\mathbf{W}}^{(0)} - \mathbf{L}^{-1} \boldsymbol{\Delta}^{(k-1)})) & \text{(Eq. 16)} \\
 &= \mathbf{e}_k^\top ((\hat{\mathbf{Q}}^{(k)} - \hat{\mathbf{W}}^{(0)}) + \mathbf{L}^{-1} \boldsymbol{\Delta}^{(k-1)}) \\
 &= \mathbf{e}_k^\top (\boldsymbol{\Delta}^{(k)} + \mathbf{L}^{-1} \boldsymbol{\Delta}^{(k-1)}) & \text{(Eq. 15)} \\
 &= \mathbf{e}_k^\top (\boldsymbol{\Delta}^{(k)} + (\mathbf{L}^{-1} - \mathbf{I}) \boldsymbol{\Delta}^{(k)}) & \text{(Eq. 26)} \\
 &= \mathbf{e}_k^\top \mathbf{L}^{-1} \boldsymbol{\Delta}^{(k)} \\
 &= \mathbf{e}_k^\top \mathbf{L}^{-1} \boldsymbol{\Delta}^{(j_*)} & \text{(Eq. 25).} \\
 \\
 \boldsymbol{\omega}^{(j_*+1)} &= \mathbf{e}_{j_*+1}^\top \mathbf{W}^{(j_*)} & \text{(Eq. 7)} \\
 &= \mathbf{e}_{j_*+1}^\top (\mathbf{W}^{(j_*-1)} + \mathbf{L} \mathbf{e}_{j_*} \boldsymbol{\varepsilon}^{(j_*)}) & \text{(Eq. 13)} \\
 &= \mathbf{e}_{j_*+1}^\top \left(\mathbf{W}^{(0)} + \left(\sum_{k=1}^{j_*} \mathbf{L} \mathbf{e}_k \boldsymbol{\varepsilon}^{(k)} \right) \right) & \text{(Eq. 13)} \\
 &= \mathbf{e}_{j_*+1}^\top \left(\hat{\mathbf{W}}^{(0)} + \left(\sum_{k=1}^{j_*} \mathbf{L} \mathbf{e}_k \mathbf{e}_k^\top \mathbf{L}^{-1} \boldsymbol{\Delta}^{(j_*)} \right) \right) & \text{(Eq. 29)} \\
 &= \mathbf{e}_{j_*+1}^\top \left(\hat{\mathbf{W}}^{(0)} + \mathbf{L} \left(\sum_{k=1}^{j_*} \mathbf{e}_k \mathbf{e}_k^\top \right) \mathbf{L}^{-1} \boldsymbol{\Delta}^{(j_*)} \right) & \text{(Eq. 30)} \\
 &= \mathbf{e}_{j_*+1}^\top (\hat{\mathbf{W}}^{(0)} + (\mathbf{L} - \mathbf{I}) \mathbf{L}^{-1} \boldsymbol{\Delta}^{(j_*)}) & \text{(Eq. 20)} \\
 &= \mathbf{e}_{j_*+1}^\top (\hat{\mathbf{W}}^{(0)} - \mathbf{L}^{-1} \boldsymbol{\Delta}^{(j_*)} + \boldsymbol{\Delta}^{(j_*)}) \\
 &= \mathbf{e}_{j_*+1}^\top (\hat{\mathbf{W}}^{(0)} - \mathbf{L}^{-1} \boldsymbol{\Delta}^{(j_*)} + \mathbf{0}) & \text{(Eq. 24)} \\
 &= \mathbf{e}_{j_*+1}^\top (\hat{\mathbf{W}}^{(0)} - \mathbf{L}^{-1} \boldsymbol{\Delta}^{(j_*)}) \\
 &= \mathbf{e}_{j_*+1}^\top \hat{\mathbf{W}}^{(j_*)} & \text{(Eq. 16)} \\
 &= \hat{\boldsymbol{\omega}}^{(j_*+1)} & \text{(Eq. 8).}
 \end{aligned}$$

1121 Eq. 3 holds for $j = j_* + 1$. ■

1123 B.2 STEP 2

1125 Algorithm 7 (back-to-front order) is generated by reversing the iteration direction of Algorithm 6.
 1126 Besides changing the direction of the index j , we also need to change the LDL decomposition to a so-
 1127 called “UDU” decomposition so that the error propagation is correctly applied to the not-yet-quantized
 1128 weights in the front dimensions.

1130 Justification

1131 Let \mathbf{P} be the anti-diagonal permutation matrix with $\mathbf{P} = \mathbf{P}^\top = \mathbf{P}^{-1}$. Let $\hat{\mathbf{L}}$ be the LDL decomposi-
 1132 tion of the permuted Hessian inverse $\mathbf{P} \mathbf{H}^{-1} \mathbf{P} = \hat{\mathbf{L}} \hat{\mathbf{D}}_L^{\frac{1}{2}} \hat{\mathbf{D}}_L^{\frac{1}{2}} \hat{\mathbf{L}}^\top$ where $\hat{\mathbf{L}}$ is a lower triangular matrix
 1133 with all diagonal elements being 1, and $\hat{\mathbf{D}}_L^{\frac{1}{2}}$ is a non-negative diagonal matrix.

1134 Since we are changing the iteration direction instead of applying the permutation, we permute the
 1135 matrix $\hat{\mathbf{L}}$ back, yielding $\mathbf{U} = \mathbf{P}\hat{\mathbf{L}}\mathbf{P}$. Alternatively, \mathbf{U} can be calculated using the decomposition
 1136 $\mathbf{H}^{-1} = \mathbf{P}\hat{\mathbf{L}}\mathbf{P}\hat{\mathbf{D}}_{\mathbf{L}}^{\frac{1}{2}}\mathbf{P}\hat{\mathbf{D}}_{\mathbf{L}}^{\frac{1}{2}}\mathbf{P}\hat{\mathbf{L}}^{\top}\mathbf{P} = \mathbf{U}\mathbf{D}_{\mathbf{U}}^{\frac{1}{2}}\mathbf{D}_{\mathbf{U}}^{\frac{1}{2}}\mathbf{U}^{\top}$ where \mathbf{U} is an upper triangular matrix with
 1137 all diagonal elements being 1, and $\mathbf{D}_{\mathbf{U}}^{\frac{1}{2}} = \mathbf{P}\hat{\mathbf{D}}_{\mathbf{L}}^{\frac{1}{2}}\mathbf{P}$ is a non-negative diagonal matrix.
 1138

1139 The decomposition to calculate \mathbf{U} from \mathbf{H}^{-1} is what we call “UDU” decomposition, which can be
 1140 considered as a variant of the LDL decomposition.
 1141

1142 B.3 STEP 3

1144 To distinguish the variables using the same symbol in Algorithms 7 and 8, we use symbols with $\hat{\cdot}$ to
 1145 denote the symbols in Algorithm 7, and use the symbols with $\tilde{\cdot}$ for Algorithm 8.
 1146

1147 We have the Cholesky decomposition of \mathbf{H} : $\mathbf{H} = (\mathbf{H}^{-1})^{-1} = (\mathbf{U}\mathbf{D}_{\mathbf{U}}^{\frac{1}{2}}\mathbf{D}_{\mathbf{U}}^{\frac{1}{2}}\mathbf{U}^{\top})^{-1} =$
 1148 $(\mathbf{D}_{\mathbf{U}}^{-\frac{1}{2}}\mathbf{U}^{-1})^{\top}\mathbf{D}_{\mathbf{U}}^{-\frac{1}{2}}\mathbf{U}^{-1}$, so that $\mathbf{A} = \mathbf{D}_{\mathbf{U}}^{-\frac{1}{2}}\mathbf{U}^{-1}$.
 1149

1150 **Claim**

1151

$$1153 \hat{\omega}_j = \tilde{\omega}_j, \quad 1 \leq j \leq c, \quad (31)$$

1154 and consequently,

$$1155 \hat{\mathbf{Z}}^{(j)} = \tilde{\mathbf{Z}}^{(j)}, \quad 1 \leq j \leq c+1, \quad (32)$$

1156 and

$$1158 \hat{\mathbf{Q}}^{(j)} = \tilde{\mathbf{Q}}^{(j)}, \quad 1 \leq j \leq c+1. \quad (33)$$

1159 **Proof Eq. 31 by Induction**

1160 For $1 \leq j \leq c$,

$$1162 \begin{aligned} \tilde{\omega}^{(j)} &= \frac{\mathbf{e}_j^{\top} \mathbf{Y}^{(j+1)}}{\mathbf{e}_j^{\top} \mathbf{A} \mathbf{e}_j} \\ 1163 &= \frac{\mathbf{e}_j^{\top} \mathbf{Y}^{(j+1)}}{\mathbf{e}_j^{\top} \mathbf{D}_{\mathbf{U}}^{-\frac{1}{2}} \mathbf{U}^{-1} \mathbf{e}_j} \\ 1164 &= \frac{\mathbf{e}_j^{\top} \mathbf{Y}^{(j+1)}}{\mathbf{D}_{\mathbf{U}}^{-\frac{1}{2}}[j, j]} \\ 1165 &= \mathbf{D}_{\mathbf{U}}^{\frac{1}{2}}[j, j] \mathbf{e}_j^{\top} \mathbf{Y}^{(j+1)} \\ 1166 &= \mathbf{e}_j^{\top} \mathbf{D}_{\mathbf{U}}^{\frac{1}{2}} \mathbf{Y}^{(j+1)}. \end{aligned} \quad (34)$$

1174 The following equalities are held by the design of Algorithms 6 and 8:

$$1175 \hat{\mathbf{Q}}^{(c+1)} = \tilde{\mathbf{Q}}^{(c+1)} = \hat{\mathbf{W}}^{(c+1)} = \tilde{\mathbf{W}}. \quad (35)$$

$$1177 \mathbf{Y}^{(c+1)} = \mathbf{A}\tilde{\mathbf{W}} = \mathbf{D}_{\mathbf{U}}^{-\frac{1}{2}}\mathbf{U}^{-1}\tilde{\mathbf{W}}. \quad (36)$$

$$1179 \omega^{(j)} = \mathbf{e}_j^{\top} \hat{\mathbf{W}}^{(j+1)}, \quad 1 \leq j \leq c. \quad (37)$$

$$1181 \hat{\mathbf{Q}}^{(j)} = \hat{\mathbf{Q}}^{(j+1)} + \mathbf{e}_j \left(\mathbf{e}_j^{\top} \hat{\mathbf{Z}}^{(j)} \operatorname{diag}(\mathbf{S}^{\top} \mathbf{e}_j) - \mathbf{e}_j^{\top} \hat{\mathbf{Q}}^{(j+1)} \right), \quad 1 \leq j \leq c. \quad (38)$$

$$1183 \tilde{\mathbf{Q}}^{(j)} = \tilde{\mathbf{Q}}^{(j+1)} + \mathbf{e}_j \left(\mathbf{e}_j^{\top} \tilde{\mathbf{Z}}^{(j)} \operatorname{diag}(\mathbf{S}^{\top} \mathbf{e}_j) - \mathbf{e}_j^{\top} \tilde{\mathbf{Q}}^{(j+1)} \right), \quad 1 \leq j \leq c. \quad (39)$$

$$1185 \Delta^{(j)} = \hat{\mathbf{Q}}^{(j)} - \hat{\mathbf{W}}^{(c+1)}, \quad 1 \leq j \leq c. \quad (40)$$

$$1186 \hat{\mathbf{W}}^{(j)} = \hat{\mathbf{W}}^{(c+1)} - \mathbf{U}^{-1} \Delta^{(j)}, \quad 1 \leq j \leq c. \quad (41)$$

$$1187 \mathbf{Y}^{(j)} = \mathbf{Y}^{(j+1)} - \mathbf{A} \mathbf{e}_j \mathbf{e}_j^{\top} \tilde{\mathbf{Q}}^{(j)} = \mathbf{Y}^{(j+1)} - \mathbf{D}_{\mathbf{U}}^{-\frac{1}{2}} \mathbf{U}^{-1} \mathbf{e}_j \mathbf{e}_j^{\top} \tilde{\mathbf{Q}}^{(j)}, \quad 1 \leq j \leq c. \quad (42)$$

1188 Because \mathbf{U} is an upper triangular matrix with all diagonal elements being 1, \mathbf{U}^{-1} is also an upper
 1189 triangular matrix with all diagonal elements being 1.
 1190

1191 For $1 \leq k < j \leq c$,

$$1192 \mathbf{e}_j^\top \mathbf{U} \mathbf{e}_k = \mathbf{e}_j^\top \mathbf{U}^{-1} \mathbf{e}_k = 0. \quad (43)$$

$$1194 \mathbf{e}_c^\top \mathbf{U} = \mathbf{e}_c^\top. \quad (44)$$

1197 For $1 \leq j \leq c$,

$$1199 \mathbf{e}_j^\top \mathbf{U} \mathbf{e}_j = \mathbf{e}_j^\top \mathbf{U}^{-1} \mathbf{e}_j = 1. \quad (45)$$

1201 (1) Eq. 31 holds for $j = c$:

1203 Using Eqs. 34, 35, 36, 37, 44,

$$1205 \tilde{\omega}^{(c)} = \mathbf{e}_c^\top \mathbf{D}_U^{\frac{1}{2}} \mathbf{Y}^{(c+1)} = \mathbf{e}_c^\top \mathbf{D}_U^{\frac{1}{2}} \mathbf{D}_U^{-\frac{1}{2}} \mathbf{U}^{-1} \tilde{\mathbf{W}} = \mathbf{e}_c^\top \mathbf{U}^{-1} \tilde{\mathbf{W}} = \mathbf{e}_c^\top \tilde{\mathbf{W}} = \mathbf{e}_c^\top \hat{\mathbf{W}}^{(c+1)} = \hat{\omega}^{(c)}. \quad (46)$$

1207 (2) Assume Eq. 31 holds for all $j \geq j_*$, $1 < j_* \leq c$.

1209 With Eq. 38, for $1 \leq j \leq c$, $1 \leq k \leq c$ and $j \neq k$,

$$1210 \begin{aligned} \mathbf{e}_k^\top \hat{\mathbf{Q}}^{(j)} &= \mathbf{e}_k^\top \left(\hat{\mathbf{Q}}^{(j+1)} + \mathbf{e}_j \left(\mathbf{e}_j^\top \mathbf{Z}^{(j)} \operatorname{diag}(\mathbf{S}^\top \mathbf{e}_j) - \mathbf{e}_j^\top \hat{\mathbf{Q}}^{(j+1)} \right) \right) \\ 1211 &= \mathbf{e}_k^\top \hat{\mathbf{Q}}^{(j+1)} + \mathbf{e}_k^\top \mathbf{e}_j \left(\mathbf{e}_j^\top \mathbf{Z}^{(j)} \operatorname{diag}(\mathbf{S}^\top \mathbf{e}_j) - \mathbf{e}_j^\top \hat{\mathbf{Q}}^{(j+1)} \right) \\ 1213 &= \mathbf{e}_k^\top \hat{\mathbf{Q}}^{(j+1)} + 0 \left(\mathbf{e}_j^\top \mathbf{Z}^{(j)} \operatorname{diag}(\mathbf{S}^\top \mathbf{e}_j) - \mathbf{e}_j^\top \hat{\mathbf{Q}}^{(j+1)} \right) \\ 1215 &= \mathbf{e}_k^\top \hat{\mathbf{Q}}^{(j+1)}. \end{aligned} \quad (47)$$

1218 Recursively applying Eq. 47, for $1 \leq j \leq c$, $1 \leq k \leq c$,

$$1220 \mathbf{e}_k^\top \hat{\mathbf{Q}}^{(j)} = \begin{cases} \mathbf{e}_k^\top \hat{\mathbf{Q}}^{(k)} & \text{if } 1 \leq j \leq k \leq c, \\ \mathbf{e}_k^\top \hat{\mathbf{Q}}^{(c+1)} = \mathbf{e}_k^\top \hat{\mathbf{W}}^{(c+1)} & \text{if } 1 \leq k < j \leq c. \end{cases} \quad (48)$$

1224 Similar to Eq. 48, with Eq. 39, for $1 \leq j \leq c$, $1 \leq k \leq c$,

$$1226 \mathbf{e}_k^\top \tilde{\mathbf{Q}}^{(j)} = \begin{cases} \mathbf{e}_k^\top \tilde{\mathbf{Q}}^{(k)} & \text{if } 1 \leq j \leq k \leq c, \\ \mathbf{e}_k^\top \tilde{\mathbf{Q}}^{(c+1)} = \mathbf{e}_k^\top \tilde{\mathbf{W}} & \text{if } 1 \leq k < j \leq c. \end{cases} \quad (49)$$

1229 For $1 \leq j \leq c$,

$$1231 \mathbf{Y}^{(j)} = \mathbf{Y}^{(j+1)} - \mathbf{D}_U^{-\frac{1}{2}} \mathbf{U}^{-1} \mathbf{e}_j \mathbf{e}_j^\top \tilde{\mathbf{Q}}^{(j)} \quad (\text{Eq. 42})$$

$$1233 \mathbf{Y}^{(c+1)} = \mathbf{Y}^{(c+1)} - \left(\sum_{k=j}^c \mathbf{D}_U^{-\frac{1}{2}} \mathbf{U}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \tilde{\mathbf{Q}}^{(k)} \right) \quad (\text{Eq. 42})$$

$$1237 \mathbf{D}_U^{-\frac{1}{2}} \mathbf{U}^{-1} \tilde{\mathbf{W}} = \left(\sum_{k=j}^c \mathbf{D}_U^{-\frac{1}{2}} \mathbf{U}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \tilde{\mathbf{Q}}^{(j)} \right) \quad (\text{Eq. 36})$$

$$1240 \mathbf{D}_U^{-\frac{1}{2}} \mathbf{U}^{-1} \left(\tilde{\mathbf{W}} - \left(\sum_{k=j}^c \mathbf{e}_k \mathbf{e}_k^\top \right) \tilde{\mathbf{Q}}^{(j)} \right)$$

1242 For $1 \leq j < c$,

$$\begin{aligned}
 1244 \quad & \tilde{\omega}^{(j)} = \mathbf{e}_j^\top \mathbf{D}_U^{\frac{1}{2}} \mathbf{Y}^{(j+1)} & \text{(Eq. 34)} \\
 1245 \quad & = \mathbf{e}_j^\top \mathbf{D}_U^{\frac{1}{2}} \mathbf{D}_U^{-\frac{1}{2}} \mathbf{U}^{-1} \left(\tilde{\mathbf{W}} - \left(\sum_{k=j+1}^c \mathbf{e}_k \mathbf{e}_k^\top \right) \tilde{\mathbf{Q}}^{(j+1)} \right) & \text{(Eq. 50)} \\
 1246 \quad & = \mathbf{e}_j^\top \mathbf{U}^{-1} \left(\tilde{\mathbf{W}} - \left(\sum_{k=j+1}^c \mathbf{e}_k \mathbf{e}_k^\top \right) \tilde{\mathbf{Q}}^{(j+1)} \right) \\
 1247 \quad & = \mathbf{e}_j^\top \mathbf{U}^{-1} \tilde{\mathbf{W}} - \left(\sum_{k=j+1}^c \mathbf{e}_j^\top \mathbf{U}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \right) \tilde{\mathbf{Q}}^{(j+1)} \\
 1248 \quad & = \mathbf{e}_j^\top \mathbf{U}^{-1} \tilde{\mathbf{W}} - \left(\left(\sum_{k=1}^c \mathbf{e}_j^\top \mathbf{U}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \right) - \left(\sum_{k=1}^{j-1} \mathbf{e}_j^\top \mathbf{U}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \right) - \mathbf{e}_j^\top \mathbf{U}^{-1} \mathbf{e}_j \mathbf{e}_j^\top \right) \tilde{\mathbf{Q}}^{(j+1)} \\
 1249 \quad & = \mathbf{e}_j^\top \mathbf{U}^{-1} \tilde{\mathbf{W}} - \left(\left(\sum_{k=1}^c \mathbf{e}_j^\top \mathbf{U}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \right) - \left(\sum_{k=1}^{j-1} 0 \mathbf{e}_k^\top \right) - 1 \mathbf{e}_j^\top \right) \tilde{\mathbf{Q}}^{(j+1)} & \text{(Eqs. 43, 45)} \\
 1250 \quad & = \mathbf{e}_j^\top \mathbf{U}^{-1} \tilde{\mathbf{W}} - \left(\sum_{k=1}^c \mathbf{e}_j^\top \mathbf{U}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \right) \tilde{\mathbf{Q}}^{(j+1)} + \mathbf{e}_j^\top \tilde{\mathbf{Q}}^{(j+1)} \\
 1251 \quad & = \mathbf{e}_j^\top \mathbf{U}^{-1} \tilde{\mathbf{W}} - \left(\sum_{k=1}^c \mathbf{e}_j^\top \mathbf{U}^{-1} \mathbf{e}_k \mathbf{e}_k^\top \right) \tilde{\mathbf{Q}}^{(j+1)} + \mathbf{e}_j^\top \tilde{\mathbf{W}} & \text{(Eq. 49)} \\
 1252 \quad & = \mathbf{e}_j^\top \left(\tilde{\mathbf{W}} - \mathbf{U}^{-1} \left(\left(\sum_{k=1}^c \mathbf{e}_k \mathbf{e}_k^\top \right) \tilde{\mathbf{Q}}^{(j+1)} - \tilde{\mathbf{W}} \right) \right) \\
 1253 \quad & = \mathbf{e}_j^\top \left(\tilde{\mathbf{W}} - \mathbf{U}^{-1} \left(\mathbf{I} \tilde{\mathbf{Q}}^{(j+1)} - \tilde{\mathbf{W}} \right) \right) \\
 1254 \quad & = \mathbf{e}_j^\top \left(\tilde{\mathbf{W}} - \mathbf{U}^{-1} \left(\tilde{\mathbf{Q}}^{(j+1)} - \tilde{\mathbf{W}} \right) \right). & \text{(51)} \\
 1255 \quad & \\
 1256 \quad & \\
 1257 \quad & \\
 1258 \quad & \\
 1259 \quad & \\
 1260 \quad & \\
 1261 \quad & \\
 1262 \quad & \\
 1263 \quad & \\
 1264 \quad & \\
 1265 \quad & \\
 1266 \quad & \\
 1267 \quad & \\
 1268 \quad & \\
 1269 \quad & \\
 1270 \quad & \\
 1271 \quad & \\
 1272 \quad & \\
 1273 \quad & \\
 1274 \quad & \\
 1275 \quad & \\
 1276 \quad & \\
 1277 \quad & \\
 1278 \quad & \\
 1279 \quad & \\
 1280 \quad & \\
 1281 \quad & \\
 1282 \quad & \\
 1283 \quad & \\
 1284 \quad & \\
 1285 \quad & \\
 1286 \quad & \\
 1287 \quad & \\
 1288 \quad & \\
 1289 \quad & \\
 1290 \quad & \\
 1291 \quad & \\
 1292 \quad & \\
 1293 \quad & \\
 1294 \quad & \\
 1295 \quad &
 \end{aligned}$$

Because $\mathbf{e}_c^\top \left(\tilde{\mathbf{W}} - \mathbf{U}^{-1} \left(\tilde{\mathbf{Q}}^{(c+1)} - \tilde{\mathbf{W}} \right) \right) = \mathbf{e}_c^\top \tilde{\mathbf{W}} = \tilde{\omega}^{(c)}$, Eq. 51 can be extended for $j = c$,

$$\tilde{\omega}^{(j)} = \mathbf{e}_j^\top \left(\tilde{\mathbf{W}} - \mathbf{U}^{-1} \left(\tilde{\mathbf{Q}}^{(j+1)} - \tilde{\mathbf{W}} \right) \right), \quad 1 \leq j \leq c. \quad (52)$$

According to the assumption, for $1 < j_* \leq k \leq c$, we have

$$\hat{\mathbf{Q}}^{(k)} = \tilde{\mathbf{Q}}^{(k)}. \quad (53)$$

$$\begin{aligned}
 1284 \quad & \tilde{\omega}^{(j_*-1)} = \mathbf{e}_{j_*-1}^\top \left(\tilde{\mathbf{W}} - \mathbf{U}^{-1} \left(\tilde{\mathbf{Q}}^{(j_*)} - \tilde{\mathbf{W}} \right) \right) & \text{(Eq. 52)} \\
 1285 \quad & = \mathbf{e}_{j_*-1}^\top \left(\hat{\mathbf{W}}^{(c+1)} - \mathbf{U}^{-1} \left(\hat{\mathbf{Q}}^{(j_*)} - \hat{\mathbf{W}}^{(c+1)} \right) \right) & \text{(Eq. 53)} \\
 1286 \quad & = \mathbf{e}_{j_*-1}^\top \left(\hat{\mathbf{W}}^{(c+1)} - \mathbf{U}^{-1} \Delta^{(j_*)} \right) & \text{(Eq. 40)} \\
 1287 \quad & = \mathbf{e}_{j_*-1}^\top \hat{\mathbf{W}}^{(j_*)} & \text{(Eq. 41)} \\
 1288 \quad & = \hat{\omega}^{(j_*-1)} & \text{(Eq. 37).} \\
 1289 \quad & \\
 1290 \quad & \\
 1291 \quad & \\
 1292 \quad & \\
 1293 \quad & \\
 1294 \quad & \\
 1295 \quad &
 \end{aligned}$$

Eq. 31 holds for $j = j_* - 1$. ■

1296 B.4 PROOF OF INEFFECTIVENESS OF ADDITIONAL GPTQ REFINEMENT ON BABAI'S
 1297 ALGORITHM
 1298

1299 We may try to apply further GPTQ updates in Babai's algorithm by changing Line 9 in Algorithm 8
 1300 to

$$1301 \mathbf{Y}'^{(j)} \leftarrow \mathbf{Y}^{(j)} + \mathbf{A}\mathbf{U}\mathbf{e}_j\boldsymbol{\varepsilon}^{(j)} = \mathbf{Y}^{(j+1)} - \mathbf{A}\mathbf{e}_j\mathbf{e}_j^\top \tilde{\mathbf{Q}}^{(j)} + \mathbf{A}\mathbf{U}\mathbf{e}_j\boldsymbol{\varepsilon}^{(j)} \quad (55)$$

1302 However, as $\mathbf{A} = \mathbf{D}_U^{-\frac{1}{2}}\mathbf{U}^{-1}$, the $\tilde{\boldsymbol{\omega}}^{(j-1)}$ remains the same:

$$\begin{aligned} 1305 \tilde{\boldsymbol{\omega}}'^{(j-1)} &= \mathbf{e}_{j-1}^\top \mathbf{D}_U^{\frac{1}{2}} \mathbf{Y}'^{(j)} && \text{(Eq. 34)} \\ 1306 &= \mathbf{e}_{j-1}^\top \mathbf{D}_U^{\frac{1}{2}} \left(\mathbf{Y}^{(j)} + \mathbf{D}_U^{-\frac{1}{2}} \mathbf{U}^{-1} \mathbf{U} \mathbf{e}_j \boldsymbol{\varepsilon}^{(j)} \right) \\ 1307 &= \mathbf{e}_{j-1}^\top \mathbf{D}_U^{\frac{1}{2}} \mathbf{Y}^{(j)} + \mathbf{e}_{j-1}^\top \mathbf{D}_U^{\frac{1}{2}} \mathbf{D}_U^{-\frac{1}{2}} \mathbf{U}^{-1} \mathbf{U} \mathbf{e}_j \boldsymbol{\varepsilon}^{(j)} \\ 1308 &= \mathbf{e}_{j-1}^\top \mathbf{D}_U^{\frac{1}{2}} \mathbf{Y}^{(j)} + \mathbf{e}_{j-1}^\top \mathbf{e}_j \boldsymbol{\varepsilon}^{(j)} && (56) \\ 1309 &= \mathbf{e}_{j-1}^\top \mathbf{D}_U^{\frac{1}{2}} \mathbf{Y}^{(j)} + 0\boldsymbol{\varepsilon}^{(j)} \\ 1310 &= \mathbf{e}_{j-1}^\top \mathbf{D}_U^{\frac{1}{2}} \mathbf{Y}^{(j)} \\ 1311 &= \tilde{\boldsymbol{\omega}}^{(j-1)} && \text{(Eq. 34).} \\ 1312 & \blacksquare \end{aligned}$$

1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

1350 C FURTHER DISCUSSION ON QUANTIZATION ERROR BOUND
13511352 C.1 PROOF OF ABSOLUTE AND RELATIVE GPTQ QUANTIZATION ERROR BOUNDS
1353

1354 We prove Theorem 5 as follows.

1355 Denote the basis $\mathbf{B}_{(i)} = \mathbf{X} \operatorname{diag}(\mathbf{s}_i)$, $\mathbf{y}_{(i)} = \mathbf{X} \mathbf{w}_i$ as in Section 4.1 so that the quantization problem
1356 becomes the CVP minimizing $\|\mathbf{B}_{(i)} \mathbf{z}_i - \mathbf{y}_{(i)}\|^2$. Applying permutation \mathbf{T} gives the permuted basis
1357 $\mathbf{A}_{(i)} = \mathbf{B}_{(i)} \mathbf{T} = \mathbf{X} \operatorname{diag}(\mathbf{s}_i) \mathbf{T} = \mathbf{X} \mathbf{T} \operatorname{diag}(\mathbf{T}^{-1} \mathbf{s}_i)$. Write the unnormalized Gram-Schmidt
1358 vectors of $\mathbf{A}_{(i)}$ as $\tilde{\mathbf{A}}_{(i)} = [\tilde{\mathbf{a}}_{(i)1}, \dots, \tilde{\mathbf{a}}_{(i)c}]$. Babai's guarantee therefore yields the tight bound
1359 $\|\mathbf{B}_{(i)} \mathbf{z}_i - \mathbf{y}_{(i)}\|^2 = \|\mathbf{A}_{(i)} (\mathbf{T}^{-1} \mathbf{z}_i) - \mathbf{y}_{(i)}\|^2 \leq \frac{1}{4} \sum_{j=1}^c \|\tilde{\mathbf{a}}_{(i)j}\|^2$.
13601361 We may, without loss of generality, use Theorem 1 to rotate \mathbf{X} so that $\mathbf{A}_{(i)}$ is upper triangular.
1362 In that case, the norm $\|\tilde{\mathbf{a}}_{(i)j}\|$ simplifies to $|\mathbf{A}_{(i)}[j, j]|$. Let $\mathbf{D}_{(i)}$ be the diagonal matrix
1363 of the LDL decomposition of $\mathbf{A}_{(i)}^\top \mathbf{A}_{(i)}$ such that $\mathbf{D}_{(i)}[j, j] = |\mathbf{A}_{(i)}[j, j]|^2 = \|\tilde{\mathbf{a}}_{(i)j}\|^2$.
1364 The summation $\sum_{j=1}^c \|\tilde{\mathbf{a}}_{(i)j}\|^2$ can then be expressed as $\operatorname{tr}(\mathbf{D}_{(i)})$. Let \mathbf{L} be the lower triangular matrix
1365 in the LDL decomposition of $\mathbf{T}^\top \mathbf{X}^\top \mathbf{X} \mathbf{T} = \mathbf{L} \mathbf{D} \mathbf{L}^\top$, so that the LDL decomposition
1366 of $\mathbf{A}_{(i)}^\top \mathbf{A}_{(i)} = \operatorname{diag}(\mathbf{T}^{-1} \mathbf{s}_i) \mathbf{T}^\top \mathbf{X}^\top \mathbf{X} \mathbf{T} \operatorname{diag}(\mathbf{T}^{-1} \mathbf{s}_i) = \mathbf{L}_{(i)} \mathbf{D}_{(i)} \mathbf{L}_{(i)}^\top$ has $\mathbf{D}_{(i)} =$
1367 $\operatorname{diag}(\mathbf{T}^{-1} \mathbf{s}_i) \mathbf{D} \operatorname{diag}(\mathbf{T}^{-1} \mathbf{s}_i)$ and $\mathbf{L}_{(i)} = \operatorname{diag}(\mathbf{T}^{-1} \mathbf{s}_i) \mathbf{L} \operatorname{diag}(\mathbf{T}^{-1} \mathbf{s}_i)^{-1}$. The absolute no-
1368 clipping error bound is therefore $\frac{1}{4} \sum_{j=1}^c \|\tilde{\mathbf{a}}_{(i)j}\|^2 = \frac{1}{4} \operatorname{tr}(\mathbf{D}_{(i)}) = \frac{1}{4} (\mathbf{T}^{-1} \mathbf{s}_i)^\top \mathbf{D} (\mathbf{T}^{-1} \mathbf{s}_i)$.
13691370 For the relative no-clipping quantization error bound, we can plug in $\|\tilde{\mathbf{a}}_{(i)j}\| = |\mathbf{A}_{(i)}[j, j]| =$
1371 $\sqrt{\mathbf{D}_{(i)}[j, j]} = \sqrt{(\operatorname{diag}(\mathbf{T}^{-1} \mathbf{s}_i) \mathbf{D} \operatorname{diag}(\mathbf{T}^{-1} \mathbf{s}_i)) [j, j]} = \sqrt{\mathbf{D}[j, j]} |(\mathbf{T}^{-1} \mathbf{s}_i) [j]| := d_j$ into
1372 Babai's relative error bound in Section 3.2.
13731374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404 C.2 EXPECTED QUANTIZATION ERROR OVER A UNIFORM HYPER-CUBOID
14051406 We have shown that, when clipping is disabled, Babai’s nearest-plane (hence back-to-front GPTQ)
1407 ensures the tight worst-case bound

1408
1409
$$\|\mathbf{X} \operatorname{diag}(\mathbf{s}_i) \mathbf{z}_i - \mathbf{X} \mathbf{w}_i\|^2 \leq \frac{1}{4} \sum_{j=1}^c \|\tilde{\mathbf{a}}_j\|^2, \quad \tilde{\mathbf{A}} = [\tilde{\mathbf{a}}_1, \dots, \tilde{\mathbf{a}}_c] \quad (57)$$

1410
1411

1412 where $\tilde{\mathbf{a}}_j$ are the unnormalized Gram-Schmidt vectors of the permuted lattice basis \mathbf{A} .
1413

1414 Introduce the half-edge lengths

1415
$$a_j = \frac{1}{2} \|\tilde{\mathbf{a}}_j\|, \quad j = 1, \dots, c, \quad (58)$$

1416
1417

1418 so that the Babai residual always lies in the axis-aligned hyper-cuboid $\prod_{j=1}^c [-a_j, a_j]$ and Eq. 57 is
1419 rewritten as

1420
$$\epsilon_{\text{worst}} = \sum_{j=1}^c a_j^2. \quad (59)$$

1421
1422

1423 **Uniform prior on the unknown weight vector.** Assume now that the continuous, not-yet-quantized
1424 weight offset $\mathbf{u} = \mathbf{X}(\mathbf{w}_i - \operatorname{diag}(\mathbf{s}_i)\mathbf{z}_i)$ is uniformly distributed inside this hyper-cuboid, i.e., each
1425 coordinate $u_j \sim \text{Uniform}(-a_j, a_j)$ and the coordinates are independent. The squared error becomes
1426 the random variable

1427
$$\epsilon = \sum_{j=1}^c u_j^2. \quad (60)$$

1428
1429

1430 **Lemma 7** For a scalar $u \sim \text{Uniform}(-a, a)$ one has $\mathbb{E}[u^2] = \frac{a^2}{3}$.
14311432 **Proof**

1433
$$\mathbb{E}[u^2] = \frac{1}{2a} \int_{-a}^a u^2 du = \frac{1}{2a} \left[\frac{1}{3} x^3 \right]_{-a}^a = \frac{a^2}{3}. \quad (61)$$

1434
1435
1436

1437 **Expected residual norm.** Using independence,

1438
$$\mathbb{E}[\epsilon] = \sum_{j=1}^c \mathbb{E}[u_j^2] = \frac{1}{3} \sum_{j=1}^c a_j^2. \quad (62)$$

1439
1440
1441

1442 **Ratio to the worst-case bound.** Comparing Eq. 62 with Eq. 59 gives
1443

1444
$$\boxed{\mathbb{E}[\epsilon] = \frac{1}{3} \epsilon_{\text{worst}}} \quad \Rightarrow \quad \mathbb{E}[\|\mathbf{X} \operatorname{diag}(\mathbf{s}_i) \mathbf{z}_i - \mathbf{X} \mathbf{w}_i\|^2] = \frac{1}{12} \sum_{j=1}^c \|\tilde{\mathbf{a}}_j\|^2. \quad (63)$$

1445
1446

1447 Hence, under a uniform prior on the weights inside Babai’s orthogonal hyper-cuboid, the average
1448 layer-wise quantization error is exactly $\frac{1}{3}$ of the worst-case guarantee stated in Theorem 5.
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458 C.3 EMPIRICAL VERIFICATION ON QUANTIZATION ORDER AND ERROR BOUND
1459

1460 Changing the quantization order alters the diagonal matrix \mathbf{D} of the LDL decomposition of the
1461 permuted Hessian and therefore the no-clipping GPTQ/Babai bound (see Section 4.5). When per-
1462 group scales are approximately uniform, minimizing $\text{tr}(\mathbf{D})$ is a good proxy for tightening this
1463 bound. To assess different orders (back-to-front, front-to-back, random order, GPTQ’s act-order,
1464 and our min-pivot order), we run the calibration dataset from Section D.2 through the full-precision
1465 Qwen3-8B model and compute per-layer Hessians and calculate the $\text{tr}(\mathbf{D})$. For the random order,
1466 we average the results over 100 runs. Table 2 reports $\text{tr}(\mathbf{D})$ for the layers in transformer block 18;
1467 other blocks and models show similar patterns. In block 18, act-order already reduces $\text{tr}(\mathbf{D})$ relative
1468 to the back-to-front/front-to-back/random baselines, especially in the Q·K·V and Gate-Up layers
1469 ($\approx 35\text{-}50\%$ lower). Our min-pivot heuristic consistently attains the smallest trace. In practice, this
1470 tightens the theoretical layer-wise error bound and yields modest but consistent improvements. We
1471 can use act-order as a cheap option and reserve min-pivot for cases where a tighter bound is required.
1472

1473 Table 2: $\text{tr}(\mathbf{D})$ with different quantization orders of layers in Qwen3-8B block 18.

Order	Q·K·V	O	Gate-Up	Down
back-to-front	1.169e+08	1.824e+08	1.181e+08	1.323e+09
front-to-back	1.161e+08	1.841e+08	1.202e+08	1.320e+09
random (averaged)	1.168e+08	1.856e+08	1.194e+08	1.322e+09
act-order	7.400e+07	1.786e+08	6.052e+07	1.222e+09
min-pivot	7.323e+07	1.772e+08	5.990e+07	1.221e+09

1512
1513

D FURTHER APPLICATIONS AND EXPERIMENTAL RESULTS

1514
1515

D.1 OVERFLOW-TOLERANT QUANTIZATION ALGORITHMS

1516
1517
1518
1519

Algorithms 9, 11 and 12 are the pseudocodes of our proposed SSQR, HPTQ, and HRTN algorithms in Section 5. Additional notations are as follows. $\rho \in [0, 1]$ is the target outlier rate in SSQR. $\Xi = [\xi_1, \dots, \xi_r] \in \mathbb{R}^{c \times r}$ is the sparse weight matrix in SSQR. $h \in \mathbb{R}_{>0}$ is the target average bitwidth in HPTQ and HRTN.

1520

Algorithm 9: SSQR

1521

Input: $\mathbf{W}, \mathbf{X}, \mathbf{P}, \lambda, \mathbb{Z}_\dagger, \rho$
Output: $\mathbf{Z}, \mathbf{S}, \Xi, \mathbf{Q}$

- 1 $S_{\text{MSE}} \leftarrow$ compute the MSE scale using \mathbf{W} and \mathbb{Z}_\dagger
- 2 $s_{\min}, s_{\max} \leftarrow \mathbf{0}^r, 2^r$ // initialize the binary search boundary per output channel
- 3 $s \leftarrow (s_{\min} + s_{\max}) / 2$ // the scale for scale
- 4 **while** s not converge **do**
- 5 $\mathbf{S} \leftarrow S_{\text{MSE}} \text{ diag}(s)$ // output-channel-wisely proportionally adjust the scale
- 6 $\mathbf{Z}, \Xi, \mathbf{Q} \leftarrow \text{SSQRINNERPROCEDURE}(\mathbf{W}, \mathbf{S}, \mathbf{X}, \mathbf{P}, \lambda, \mathbb{Z}_\dagger)$ // Algorithm 10
- 7 $s_{\min}[i], s_{\max}[i] \leftarrow \begin{cases} s_{\min}[i], s[i] & \text{if } \|\Xi[:, i]\|_0 < \rho c \\ s[i], s_{\max}[i] & \text{otherwise} \end{cases} \quad \text{for } i \in \{1, \dots, r\}$
- 8 $s \leftarrow (s_{\min} + s_{\max}) / 2$
- 9 **end**

1522

Algorithm 10: SSQR Inner Procedure (GPTQ with overflowed elements in floating-point)

1523

Input: $\mathbf{W}, \mathbf{S}, \mathbf{X}, \mathbf{P}, \lambda, \mathbb{Z}_\dagger$
Output: $\mathbf{Z}, \Xi, \mathbf{Q}$

- 1 $\mathbf{H} \leftarrow \mathbf{P}^\top (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I}) \mathbf{P}$
- 2 $\mathbf{L} \leftarrow \text{LDL}(\mathbf{H}^{-1})$
- 3 $\mathbf{W}, \mathbf{S} \leftarrow \mathbf{P}^{-1} \mathbf{W}, \mathbf{P}^{-1} \mathbf{S}$
- 4 $\mathbf{Q}, \mathbf{Z} \leftarrow \mathbf{W}, \mathbf{0}$
- 5 **for** $j \leftarrow 1$ to c **do**
- 6 $\zeta \leftarrow \mathbf{W}[j, :] / \mathbf{S}[j, :]$
- 7 $\mathbf{Z}[j, :] \leftarrow \text{ROUND}(\zeta, \mathbb{Z}_\dagger)$
- 8 $\Xi[j, i] \leftarrow \begin{cases} \mathbf{W}[j, i] - \mathbf{Z}[j, i] * \mathbf{S}[j, i] & \text{if } \mathbf{Z}[j, i] \neq \text{ROUND}(\zeta[i], \mathbb{Z}) \\ 0 & \text{otherwise} \end{cases}$ // new
- 9 $\mathbf{Q}[j, :] \leftarrow \mathbf{Z}[j, :] * \mathbf{S}[j, :] + \Xi[j, :] // \text{new}$
- 10 $\mathbf{\epsilon} \leftarrow \mathbf{Q}[j, :] - \mathbf{W}[j, :]$
- 11 $\mathbf{W}[j :, :] \leftarrow \mathbf{W}[j :, :] + \mathbf{L}[j :, j] \mathbf{\epsilon}$
- 12 **end**
- 13 $\mathbf{Z}, \Xi, \mathbf{Q} \leftarrow \mathbf{PZ}, \mathbf{P}\Xi, \mathbf{PQ} // \text{new}$

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

Algorithm 11: HPTQ

Input: $\mathbf{W}, \mathbf{X}, \mathbf{P}, \lambda, h$
Output: $\mathbf{Z}, s, \mathbf{Q}$

- 1 $s_{\min}, s_{\max} \leftarrow 0, \|\mathbf{W}\|_{\infty}$ // initialize the binary search boundary
- 2 $s \leftarrow (s_{\min} + s_{\max}) / 2$ // the scale
- 3 **while** s not converge **do**
- 4 $\mathbf{S} \leftarrow s \cdot \mathbf{1}^{c \times r}$ // broadcast the scale
- 5 $\mathbf{Z}, \mathbf{Q} \leftarrow \text{GPTQ}(\mathbf{W}, \mathbf{S}, \mathbf{X}, \mathbf{P}, \lambda, \mathbb{Z})$ // Algorithm 1
- 6 $h' \leftarrow$ average Huffman encoding bitwidth of \mathbf{Z}
- 7 **if** $h' < h$ **then**
- 8 $s_{\max} \leftarrow s$ // too few bits, try smaller scale
- 9 **end**
- 10 **else**
- 11 $s_{\min} \leftarrow s$ // too many bits, try larger scale
- 12 **end**
- 13 $s \leftarrow (s_{\min} + s_{\max}) / 2$
- 14 **end**

1593

1594

Algorithm 12: HRTN

Input: \mathbf{W}, h
Output: $\mathbf{Z}, s, \mathbf{Q}$

- 1 $s_{\min}, s_{\max} \leftarrow 0, \|\mathbf{W}\|_{\infty}$ // initialize the binary search boundary with min and max
- 2 $s \leftarrow (s_{\min} + s_{\max}) / 2$ // the scale
- 3 **while** s not converge **do**
- 4 $\mathbf{Z} \leftarrow \text{ROUND}(\mathbf{W} / s, \mathbb{Z})$ // round-to-nearest
- 5 $\mathbf{Q} \leftarrow s\mathbf{Z}$
- 6 $h' \leftarrow$ average Huffman encoding bitwidth of \mathbf{Z}
- 7 **if** $h' < h$ **then**
- 8 $s_{\max} \leftarrow s$ // too few bits, try smaller scale
- 9 **end**
- 10 **else**
- 11 $s_{\min} \leftarrow s$ // too many bits, try larger scale
- 12 **end**
- 13 $s \leftarrow (s_{\min} + s_{\max}) / 2$
- 14 **end**

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620 1621 D.2 EXPERIMENT SETUP

1622 We work with the Qwen3 family of models, which come in a range of sizes. We focus on the
1623 Qwen3-8B model for detailed head-to-head comparisons, while the other variants, Qwen3-0.6B,
1624 Qwen3-1.7B, Qwen3-4B, and Qwen3-14B, help us assess how our method performs across different
1625 model scales.1626 We construct the calibration dataset for the GPTQ algorithm using the FineWeb-Edu dataset
1627 (HuggingFaceFW/fineweb-edu, subset sample-10BT). The dataset is streamed and shuffled with a
1628 fixed seed for reproducibility. After tokenizing the text samples, our 256 sequences are accumulated
1629 into non-overlapping sequences of length 2048.1630 We use WikiText-2 and C4 for perplexity evaluations. For WikiText-2, the entire test split is first
1631 concatenated using two line breaks as separators and then tokenized with the default HuggingFace
1632 tokenizer for each model. For C4, we sample individual documents from the selected shard, tokenize
1633 them, and randomly extract sequences of the desired length. In both cases, sequences shorter than the
1634 target length (2048 tokens) are discarded, and sequences longer than the target length are cropped to
1635 the specified window.

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674 D.3 ACCURACY RESULTS
16751676 We compare the perplexity results between RTN, GPTQ, HRTN, HPTQ, and SSQR using the Qwen3-
1677 8B model in Table 3. In addition, the perplexity results for other variants of Qwen3 with HPTQ are
1678 shown in Table 4.1679 Table 5 shows additional zero-shot results on the Qwen3-8B model for RTN, GPTQ, HRTN, and
1680 HPTQ. Additional HPTQ results on other Qwen3 models are in Tables 6 to 10.
16811682 Table 3: Perplexity of Qwen3-8B model under HPTQ, GPTQ, HRTN, RTN, and SSQR with different
1683 bitwidths.
1684

Method	Avg Bitwidth	Perplexity	
		WikiText-2	C4
BF16 Baseline	16	9.73	13.55
HPTQ	4.125	9.81	13.64
	3.125	10.34	14.23
	2.125	13.97	16.89
GPTQ	4.125	10.10	13.92
	3.125	12.77	15.61
	2.125	57.51	36.14
HRTN	4.125	9.90	13.80
	3.125	10.75	14.63
	2.125	593.05	503.00
RTN	4.125	10.30	15.20
	3.125	16.30	21.08
	2.125	2e10	2e10
SSQR-1%	4.445	10.00	13.83
	3.445	10.64	14.71
	2.445	22.30	27.07
SSQR-2%	4.765	9.96	13.76
	3.765	10.57	14.56
	2.765	16.55	20.80
SSQR-3%	5.085	9.92	13.76
	4.085	10.42	14.32
	3.085	14.05	18.57
SSQR-4%	5.405	9.84	13.71
	4.405	10.34	14.29
	3.405	13.12	17.60
SSQR-5%	5.725	9.80	13.67
	4.725	10.32	14.22
	3.725	12.88	16.85

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742

Table 4: Perplexity of Qwen3 models under HPTQ for different bitwidths.

Model	Avg Bitwidth	Perplexity	
		WikiText-2	C4
0.6B	16	20.96	26.37
	4.125	22.72	28.35
	3.125	31.43	37.92
	2.125	156.45	171.38
1.7B	16	16.72	19.92
	4.125	18.18	20.99
	3.125	19.72	23.15
	2.125	46.94	51.96
4B	16	13.66	17.07
	4.125	14.26	17.39
	3.125	14.55	18.17
	2.125	24.40	26.46
8B	16	9.73	13.55
	4.125	9.81	13.64
	3.125	10.34	14.23
	2.125	13.97	16.89
14B	16	8.65	12.23
	4.125	8.76	12.12
	3.125	9.06	13.97
	2.125	11.36	15.50

1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

Table 5: Zero-shot evaluation results (%) for Qwen3-8B under different quantization methods across six benchmarks.

Method	Avg Bits	Wino	MMLU	PiQA	SciQ	TQA	
						MC1	MC2
BF16 Baseline	16	68.11	73.02	77.80	95.7	36.35	54.50
HPTQ	4.125	67.17	72.28	77.42	95.6	35.01	53.36
	3.125	66.93	70.96	77.53	95.4	36.11	54.73
	2.125	59.19	52.99	72.52	86.8	31.09	49.01
GPTQ	4.125	68.82	71.76	77.58	95.3	36.35	54.55
	3.125	68.35	65.80	75.46	75.46	36.11	55.21
	2.125	52.25	34.25	57.83	57.83	28.40	46.91
HRTN	4.125	67.56	72.15	76.99	94.2	36.47	56.46
	3.125	66.22	67.85	76.12	93.7	35.13	53.68
	2.125	51.22	33.91	65.78	76.8	30.48	51.78
RTN	4.125	67.17	69.71	75.90	94.5	36.84	55.77
	3.125	57.93	47.90	70.89	87.1	34.03	52.76
	2.125	49.08	22.95	51.63	21.2	24.11	47.33
SSQR-1%	4.445	68.43	72.12	77.04	95.2	37.58	55.81
	3.445	68.11	68.46	75.84	95.5	38.19	55.95
	2.445	51.85	26.71	61.64	69.8	28.40	43.88
SSQR-2%	4.765	67.25	72.27	77.97	95.5	35.62	53.47
	3.765	67.40	69.66	76.22	95.1	33.90	53.05
	2.765	55.72	37.48	66.76	83.8	27.54	45.54
SSQR-3%	5.085	67.72	71.89	77.53	95.6	36.47	54.46
	4.085	65.59	69.88	77.31	94.3	37.82	55.34
	3.085	59.19	49.32	69.59	86.4	29.50	48.53
SSQR-4%	5.405	69.53	72.63	77.31	95.1	36.23	53.60
	4.405	67.48	69.51	76.61	94.9	37.21	54.81
	3.405	61.25	54.07	72.80	89.5	31.33	50.46
SSQR-5%	5.725	68.27	72.23	77.42	95.2	35.86	53.76
	4.725	67.48	70.76	76.71	95.5	35.37	52.91
	3.725	62.59	58.67	73.23	90.8	31.21	50.25

Table 6: TruthfullQA (%) zero-shot results (MC1/MC2) for Qwen3 models quantized with HPTQ.

Avg Bitwidth	0.6B	1.7B	4B	8B	14B
16	27.17/42.80	29.50/45.88	37.33/54.83	36.35/54.50	40.76/58.62
4.125	26.19/41.56	28.76/45.17	36.72/54.46	35.01/53.36	40.51/58.28
3.125	25.34/41.95	29.62/46.13	35.25/53.83	36.11/54.73	39.90/58.33
2.125	23.99/46.39	28.15/48.25	31.70/50.67	31.09/49.01	36.84/54.93

1836

1837

1838

1839

Table 7: MMLU (%) zero-shot results for Qwen3 models quantized with HPTQ.

Avg Bitwidth	0.6B	1.7B	4B	8B	14B
16	40.34	55.44	68.38	73.02	77.10
4.125	29.84	53.95	67.45	72.28	76.27
3.125	32.92	47.49	62.70	70.96	75.53
2.125	24.58	23.87	40.83	52.99	64.31

1847

1848

1849

1850

1851

1852

Table 8: PiQA (%) zero-shot results for Qwen3 models quantized with HPTQ.

Avg Bitwidth	0.6B	1.7B	4B	8B	14B
16	67.30	72.31	74.92	77.80	79.87
4.125	66.00	70.78	75.30	77.42	79.54
3.125	62.08	68.44	73.01	77.53	78.78
2.125	54.13	57.40	66.76	72.52	75.46

1860

1861

1862

1863

1864

1865

1866

Table 9: WinoGrande (%) zero-shot results for Qwen models quantized with HPTQ.

Avg Bitwidth	0.6B	1.7B	4B	8B	14B
16	56.43	61.48	65.27	68.11	72.53
4.125	54.38	59.67	64.09	67.17	73.01
3.125	52.72	58.72	64.80	66.93	71.19
2.125	49.80	49.96	53.04	59.19	66.06

1874

1875

1876

1877

1878

1879

1880

Table 10: SciQ (%) zero-shot results for Qwen3 models quantized with HPTQ, with internal reasoning disabled.

Avg Bitwidth	0.6B	1.7B	4B	8B	14B
16	83.5	91.2	93.5	95.7	96.8
4.125	80.7	88.9	93.3	95.6	97.1
3.125	76.6	89.9	92	95.4	96.8
2.125	40.8	62.8	81.2	86.8	93.8

1888

1889

1890
1891

D.4 TECHNICAL DETAILS AND PERFORMANCE OF SSQR’S CUDA KERNEL

1892
1893
1894
1895

The kernel is specialized for two regimes: in the low-batch regime, the kernel utilizes SIMT GPU cores exclusively, while tensor cores are utilized when batch size is ≥ 8 , the smallest outer dimension where tensor cores can be utilized without padding, and with 16-bit operands and 32-bit floating-point accumulators. For both regimes, sparse outliers are handled with SIMT cores.

1896
1897
1898

To handle the dense inliers, we apply two reordering schemes here. First, the weights are reordered for memory movement involving tensor cores. Second, we apply an additional reordering scheme to enable batched conversion between 2-4-bit integers into their 16-bit counterparts.

1899
1900
1901
1902

To handle the sparse outliers, we group sparse outliers in groups of 16 rows (matching the outer tensor core dimension), then store them in column-major row order with padding to account for differences between non-zero counts across rows in the group.

1903
1904
1905
1906
1907

Figure 5 shows the layer-wise speedup of the SSQR kernel on NVIDIA RTX 6000 GPU compared to the PyTorch BF16 matrix multiplication baseline across different layer shapes in the Qwen3-8B model (layers with the same input are merged), inlier bitwidths, outlier rates, and batch sizes. We observe the largest gains in the low-batch regime, with up to $4\times$ speedup when <1% outliers are present. As the outlier rate increases, the speedup diminishes, but the kernel consistently outperforms the BF16 baseline across all settings.

1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

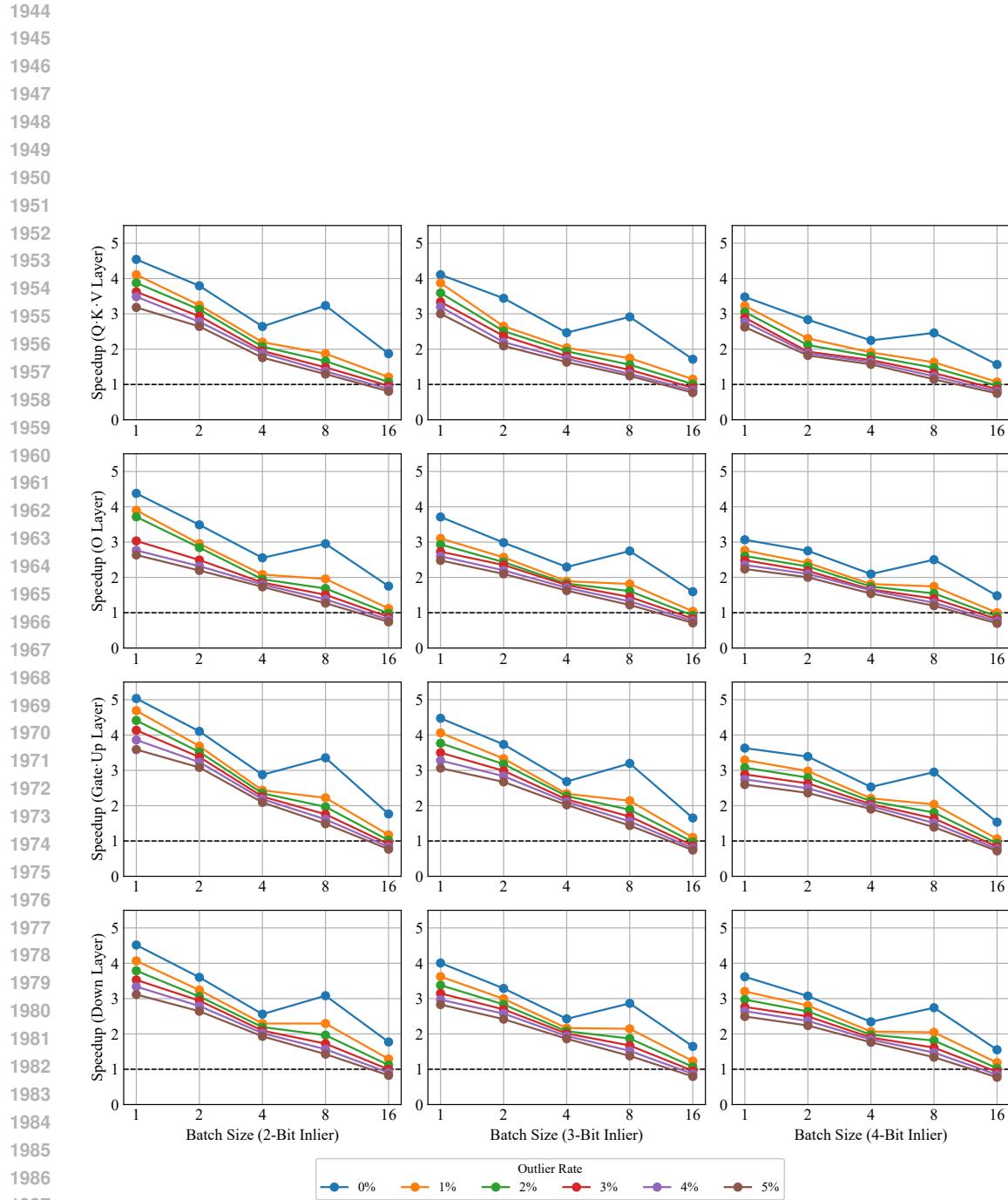


Figure 5: Layer-wise inference speedup of the SSQR kernel over the PyTorch BF16 baseline on Qwen3-8B across inlier bitwidths, outlier rates, and batch sizes on A6000 GPU.

1998
1999

D.5 RESULTS FOR LLAMA MODELS

2000
2001
2002

Tables 11 to 15 report the evaluation results for Llama-3.2-3B-Instruct, Llama-3.1-8B-Instruct, and Llama-2-7B models under the same setups as in Section D.3.

2003

Table 11: Perplexity of Llama-3.2-3B-Instruct model under HPTQ, GPTQ, and SSQR with different bitwidths.

2004

2005

Method	Avg Bitwidth	Perplexity	
		WikiText-2	C4
BF16 Baseline	16	11.01	13.49
HPTQ	4.125	11.27	14.64
	3.125	12.51	15.81
	2.125	22.58	29.82
GPTQ	4.125	11.96	15.37
	3.125	15.20	18.99
	2.125	357.69	172.89
SSQR-1%	4.445	11.38	14.95
	3.445	13.48	18.38
	2.445	83.41	67.19
SSQR-2%	4.765	11.50	14.77
	3.765	13.20	16.65
	2.765	45.93	41.69
SSQR-3%	5.085	11.39	14.64
	4.085	12.50	16.10
	3.085	37.41	30.74
SSQR-4%	5.405	11.53	14.69
	4.405	12.33	15.96
	3.405	23.74	27.59
SSQR-5%	5.725	11.47	14.69
	4.725	12.29	15.81
	3.725	22.94	25.44

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052
 2053
 2054
 2055 Table 12: Perplexity of Llama-3.1-8B-Instruct model under HPTQ, GPTQ, and SSQR with different
 2056 bitwidths.

Method	Avg Bitwidth	Perplexity	
		WikiText-2	C4
BF16 Baseline	16	7.20	9.09
HPTQ	4.125	7.37	9.99
	3.125	7.84	11.04
	2.125	11.89	16.37
GPTQ	4.125	7.56	10.46
	3.125	9.44	13.16
	2.125	148.15	71.33
SSQR-1%	4.445	7.50	10.30
	3.445	8.67	12.35
	2.445	57.26	39.96
SSQR-2%	4.765	7.48	10.20
	3.765	8.32	11.75
	2.765	25.18	25.21
SSQR-3%	5.085	7.41	10.11
	4.085	8.16	11.54
	3.085	17.27	20.03
SSQR-4%	5.405	7.39	10.05
	4.405	8.01	11.31
	3.405	13.22	17.77
SSQR-5%	5.725	7.38	10.03
	4.725	7.98	11.13
	3.725	12.12	16.13

2083
 2084
 2085
 2086
 2087
 2088 Table 13: Perplexity of Llama-2-7B model under HPTQ, GPTQ, and SSQR-1% with different
 2089 bitwidths.

Method	Avg Bitwidth	Perplexity	
		WikiText-2	C4
FP16 Baseline	16	5.50	6.24
HPTQ	4.125	5.53	6.73
	3.125	5.77	7.04
	2.125	7.45	9.43
GPTQ	4.125	5.70	6.90
	3.125	6.75	8.08
	2.125	28.07	26.13
SSQR-1%	4.445	5.60	6.81
	3.445	6.09	7.52
	2.445	14.58	15.85

2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118

2119 Table 14: [Zero-shot evaluation results \(%\) for Llama-3.2-3B-Instruct under different quantization](#)
 2120 [methods.](#)

Method	Avg Bits	Wino	MMLU	PiQA	SciQ	HSwag	
						acc	acc _{norm}
BF16 Baseline	16	68.75	62.18	76.17	95.4	53.27	71.65
HPTQ	4.125	68.03	61.57	76.55	95.0	53.02	71.28
	3.125	68.35	58.50	7497	95.5	51.76	70.00
	2.125	60.85	42.75	69.15	89.9	44.54	60.29
GPTQ	4.125	68.11	59.81	75.73	95.5	52.29	70.54
	3.125	66.06	49.13	72.58	94.0	47.25	63.93
	2.125	50.59	22.96	53.65	63.4	28.06	30.58
SSQR-1%	4.445	68.19	60.94	76.12	95.7	52.37	70.88
	3.445	66.93	54.10	74.92	95.6	50.55	68.86
	2.445	51.70	23.97	58.22	64.5	31.14	36.90
SSQR-2%	4.765	68.03	61.17	76.33	95.2	52.49	70.99
	3.765	65.51	56.37	74.43	94.4	50.88	68.85
	2.765	53.12	23.91	60.01	78.3	34.12	42.99
SSQR-3%	5.085	68.27	61.68	76.82	95.4	53.03	71.29
	4.085	66.69	57.65	75.03	95.0	50.98	69.00
	3.085	58.48	34.20	65.61	90.5	39.87	52.43
SSQR-4%	5.405	68.90	61.11	76.28	95.5	52.80	71.03
	4.405	66.77	57.73	75.03	95.3	51.08	68.79
	3.405	57.85	33.74	66.49	90.1	40.66	54.44
SSQR-5%	5.725	68.35	61.67	75.57	95.3	52.88	70.97
	4.725	66.69	57.02	75.52	95.3	51.32	69.70
	3.725	57.38	37.24	65.56	91.5	41.37	54.96

2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172

2173 Table 15: [Zero-shot evaluation results \(%\) for Llama-3.1-8B-Instruct under different quantization](#)
 2174 [methods.](#)

Method	Avg Bits	Wino	MMLU	PiQA	SciQ	HSwag	
						acc	acc _{norm}
BF16 Baseline	16	73.72	68.31	80.14	97.3	59.81	79.59
HPTQ	4.125	73.56	67.90	79.49	97.7	59.57	79.25
	3.125	72.77	64.58	79.16	96.9	58.42	78.21
	2.125	63.69	45.01	69.15	90.8	49.84	67.98
GPTQ	4.125	73.80	65.68	79.27	97.2	58.61	78.36
	3.125	72.45	58.19	77.37	95.5	55.21	74.57
	2.125	54.93	24.67	54.46	75.1	31.77	37.79
SSQR-1%	4.445	74.43	66.78	79.65	96.9	59.18	78.93
	3.445	72.45	60.14	77.97	96.3	56.74	76.24
	2.445	52.80	23.07	58.49	74.1	33.25	40.05
SSQR-2%	4.765	73.80	67.21	79.49	97.2	58.94	78.53
	3.765	73.24	63.13	78.78	96.4	57.63	77.22
	2.765	54.30	27.08	61.04	82.5	38.41	50.41
SSQR-3%	5.085	72.93	67.38	79.54	96.9	59.64	79.07
	4.085	73.09	63.77	79.11	96.6	57.62	77.40
	3.085	54.54	26.15	58.81	83.6	38.34	49.52
SSQR-4%	5.405	73.24	66.95	79.92	96.9	59.32	79.06
	4.405	73.24	62.92	78.73	96.5	57.61	77.47
	3.405	54.54	29.95	54.95	82.3	39.80	51.87
SSQR-5%	5.725	74.03	67.91	80.52	97.2	59.49	79.39
	4.725	73.40	64.14	79.05	97.0	58.16	77.63
	3.725	64.25	42.59	72.58	88.7	49.94	68.20

2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213

2214 D.6 COMPARISON WITH OTHER QUANTIZATION METHODS
2215

2216 We compare zero-shot WinoGrande and PiQA accuracies of our methods (HPTQ, SSQR) against
2217 GPTQ and state-of-the-art post-training, weight-only quantizers AQLM (Egiazarian et al., 2024),
2218 QuIP# (Tseng et al., 2024a), and QTIP (Tseng et al., 2024b) on Llama-2-7B. Results are reported
2219 in Table 16, sorted by average bitwidth. Metrics for AQLM, QuIP#, and QTIP are taken from their
2220 respective papers.

2221 As shown in Table 16, for average bitwidth ≥ 4 , all methods yield accuracy close to the full-precision
2222 baseline. In the 3-4 bit regime, vanilla GPTQ falls behind recent methods; however, HPTQ and SSQR
2223 close this gap, bringing a scalar quantization approach to parity with vector quantization methods
2224 (AQLM, QuIP#, QTIP). In the 2-3 bit regime, HPTQ remains competitive with the state of the art.

2226 Table 16: Comparing the zero-shot results of different quantization methods on Llama-2-7B.
2227

Method	Avg Bitwidth	WinoGrande	PiQA
FP16 Baseline	16	69.46	78.13
AQLM	5.020	67.40	78.29
<i>SSQR-1%</i>	4.445	68.82	78.35
<i>HPTQ</i>	4.125	69.61	77.75
GPTQ	4.125	68.82	77.97
AQLM	4.040	67.32	78.24
QuIP#	4.000	67.60	78.40
QTIP	4.000	67.10	78.40
<i>SSQR-1%</i>	3.445	65.43	77.15
<i>HPTQ</i>	3.125	67.72	77.80
GPTQ	3.125	64.96	73.88
AQLM	3.040	66.93	76.88
QuIP#	3.000	66.50	77.30
QTIP	3.000	66.90	78.10
<i>SSQR-1%</i>	2.445	50.04	56.15
AQLM	2.290	65.67	74.92
<i>HPTQ</i>	2.125	65.82	73.56
GPTQ	2.125	49.64	56.20
AQLM	2.020	65.67	74.76
QuIP#	2.000	64.90	75.10
QTIP	2.000	64.70	75.90

2268 **E LLM USAGE**
2269

2270 LLM was used to aid and polish the writing of this paper, e.g., correcting grammar and rephrasing
2271 sentences.
2272

2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321