
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE GEOMETRY OF LLM QUANTIZATION:
GPTQ AS BABAI’S NEAREST PLANE ALGORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantizing the weights of large language models (LLMs) from 16-bit to lower
bitwidth is the de facto approach to deploy massive transformers onto more
affordable accelerators. While GPTQ emerged as one of the standard methods for
one-shot post-training quantization at LLM scale, its inner workings are described
as a sequence of algebraic updates that obscure geometric meaning or worst-case
guarantees. In this work, we show that, when executed back-to-front (from the last
to first dimension) for a linear layer, GPTQ is mathematically identical to Babai’s
nearest plane algorithm for the classical closest vector problem (CVP) on a lattice
defined by the Hessian matrix of the layer’s inputs. This equivalence is based
on a sophisticated mathematical argument, and has two analytical consequences:
first, the GPTQ error propagation step gains an intuitive geometric interpretation;
second, GPTQ inherits the error upper bound of Babai’s algorithm under the
assumption that no weights are clipped. Leveraging this bound, we design
post-training quantization methods that avoid clipping, and outperform the original
GPTQ. In addition, we provide efficient GPU inference kernels for the resulting
representation. Taken together, these results place GPTQ on a firm theoretical
footing and open the door to importing decades of progress in lattice algorithms
towards the design of future quantization algorithms for billion-parameter models.

1 INTRODUCTION

Generative pre-trained transformers (GPT) models contain hundreds of billions of parameters and
have massive computational and memory costs (Luccioni et al., 2024). Post-training quantization
(PTQ) has emerged as a practical solution for reducing their footprint (Gholami et al., 2021). Among
a growing family of methods, GPTQ (Frantar et al., 2023) was the first to push one-shot quantization
down to the 4-bit regime, while retaining near-baseline accuracies. GPTQ is still very popular
nowadays and yields state-of-the-art results in some regimes (Kurtic et al., 2024).

Despite its empirical success, the GPTQ algorithm was only presented as a sequence of greedily
applied algebraic operations: the procedure picks one weight at a time, quantizes it via rounding
or clipping, and then optimally updates the not-yet-quantized weights to correct for the remaining
per-layer loss; it then continues with the next weight, and so on. This procedure leaves an obvious
open question: why does a local greedy rule work so well globally? Current literature does not
answer this question, leaving little guidance for principled extensions or failure case analysis.

Our contribution. This paper is the first1 to provide a geometric interpretation for GPTQ, which
implies a layer-wise global error bound. Our main theoretical results (Section 4) are (i) the GPTQ
optimization problem, i.e. linear-layer quantization with the L2 objective on the output, is equivalent
to the closest vector problem (CVP) w.r.t. L2 distance; (ii) the GPTQ algorithm executed from the
last to first dimension is the same as Babai’s nearest plane algorithm on the basis of the factorized
Hessian matrix, without LLL basis reduction, and this finding holds independently of whether large
weights are clipped to the quantization grid (a process known as weight clipping); and (iii) the
worst-case layer-wise error in the no-clipping setting is bound tightly by the trace of the diagonal
matrix of the LDL decomposition of the Hessian matrix. In addition (Section 5), we tie our theoretical
findings to practical quantization by introducing new no-clipping methods of better accuracy than
the original GPTQ, together with efficient GPU inference kernels for the resulting representation.

1The concurrent work of Birnick (2025) appeared on arXiv later than our preprint.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Second-order compression (pruning and quantization). The idea of using Hessian information
to guide parameter removal dates back to Optimal Brain Damage (LeCun et al., 1989) and Optimal
Brain Surgeon (OBS) (Hassibi et al., 1993). Optimal Brain Compression (OBC) (Frantar & Alistarh,
2022) generalizes OBS to the post-training setting and unifies structured pruning and quantization
(also called Optimal Brain Quantizer, OBQ) under a single exact solver. GPTQ (Frantar et al., 2023)
inherits OBQ’s error propagation method but applies it in a fixed order, so that the inverse Hessian
can be shared and only needs to be computed once. GPTQ only has cubic computational complexity
in the column/row dimension, making it suitable for LLMs. QuIP (Chee et al., 2023) proves an error
guarantee for GPTQ and proposes the LDLQ method as an equivalent variant of GPTQ.

Lattices, CVP algorithms, and hardness. The closest vector problem (CVP) is NP-complete
to approximate within any constant factor under polynomial-time reductions (van Emde Boas,
1981; Micciancio & Goldwasser, 2002; Dinur et al., 2003), motivating decades of approximation
algorithms. Babai’s nearest plane heuristic (Babai, 1986) delivers a solution in polynomial time
and, when preceded by LLL basis reduction (Lenstra et al., 1982), enjoys a 2O(n) approximation.
BKZ basis reduction (Kannan, 1987) further tightens the constant in an exponential-time solver.

3 PRELIMINARIES AND NOTATIONS

We use Python-style indexing inside square brackets to select elements and sub-matrices from a
tensor, e.g., [j, :] selects the j-th row vector, [:, j] selects the j-th column vector, and [j :, j] selects
the sub-column consisting of rows after j-th (included) row in j-th column, [:, J] selects the column
vectors indexed by set J as a sub-matrix, etc2.

3.1 LINEAR-LAYER QUANTIZATION PROBLEM

Problem. Let X = [x1, . . . ,xn]
⊤ ∈ Rn×c be the sampled calibration input data of batch size

n and input dimension c with xi ∈ Rc and n ≥ c = rank (X). Let W = [w1, . . . ,wr] ∈ Rc×r

be the linear layer weights of input dimension c and output dimension r with wi ∈ Rc. Let
S = [s1, . . . , sr] ∈ Rc×r

̸=0 be the non-zero quantization scales with si ∈ Rc
̸=0. Here we consider

a general case that applies to any grouping pattern: each weight element wi[j] has its own
scaling factor si[j]. Assume S is statically computed using methods like AbsMax or MSE
before any weight updates. Let Z† ⊆ Z be the quantization grid (representable integers). In the
clipping setting, e.g., for INT4 format, Z† = {−8, . . . ,−1, 0, 1, . . . , 7}. In the no-clipping setting,
Z† = Z, which allows any integer as the quantization results. Let Z = [z1, . . . ,zr] ∈ Z†

c×r

be the (unknown) quantized integers with zi ∈ Zc
†. Denote Q = [q1, . . . , qr] ∈ Rc×r as the

dequantized weights with qi = diag (si) zi ∈ Rc. The goal is to minimize the L2 error on the
layer output XW ∈ Rn×r: ∥XQ−XW ∥2F =

∑r
i=1 ∥X diag (si) zi −Xwi∥2 , i.e, finding

argminzi∈Zc
†
∥X diag (si) zi −Xwi∥2 for all 1 ≤ i ≤ r.

OBQ algorithm. Let set Ji initialized to {1, . . . , c} be the set of not-yet-quantized indices of wi.
We denote Ji as J as a short-hand notation. For each weight vector wi, OBQ chooses

j ← argminj∈J

(qi[j]−wi[j])
2

(X[:, J]⊤X[:, J])
−1

[j, j]
(1)

as the next dimension to quantize. OBQ quantizes the chosen element wi[j] as
qi[j] ← si[j] · ROUND

(
wi[j]
si[j]

,Z†

)
via the ROUND (·,Z†) function which rounds the inputs

to the nearest values in Z†. OBQ then optimally updates the subset of weights wi[J] via an error
propagation step wi[j

′]← wi[j
′] + ∆wi[j

′] for all j′ ∈ J with

∆wi[j
′]←

(
X[:, J]⊤X[:, J]

)−1
[j′, j]

(X[:, J]⊤X[:, J])
−1

[j, j]
(qi[j]−wi[j]) . (2)

2For more details, please see (NumPy): https://numpy.org/doc/stable/user/basics.
indexing.html

2

https://numpy.org/doc/stable/user/basics.indexing.html
https://numpy.org/doc/stable/user/basics.indexing.html

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

OBQ continues iteration with J ← J \ {j} until J is empty.

GPTQ algorithm. GPTQ reduces the computational complexity of OBQ by applying the OBQ
quantization and error propagation steps in a fixed dimensional order, e.g., from the first to last
dimension (j ← 1 to c), instead of dynamically determined orders (Eq. 1). The fixed order is
independent of the output channel i, thus the Hessian information

(
X[:, J]⊤X[:, J]

)−1
[:, j] can

be shared across wi for all i, without recomputation. Furthermore, the Hessian information for all
j can be precomputed at once using Cholesky or LDL decomposition of the Hessian matrix X⊤X .

Algorithm 1 is the pseudocode of GPTQ. The algorithm is identical to the original GPTQ paper (Fran-
tar et al., 2023) except for missing the blocking mechanism that only affects the memory access
pattern and computational speed, but not the numerical results. Additional notations are as follows.
P ∈ {0, 1}c×c is a permutation matrix that modifies the dimensional order of GPTQ quantization.
The default order is front-to-back (from the first to last dimension), i.e., P = I. λ ∈ R+ is a small
damping factor for computing the Hessian matrix, ensuring the matrix is of full rank. A typical
choice is λ = 1

100c

∑c
j=1

(
X⊤X

)
[j, j] = 1

100c ∥X∥
2
F. Function LDL returns the lower triangular

matrix in LDL decomposition. Symbols ∗ and / denote the element-wise multiplication and division.

Algorithm 1: GPTQ

Input: original weights W ∈ Rc×r, per-coordinate scales S ∈ Rc×r
̸=0 , calibration activation

X ∈ Rn×c, permutation P ∈ {0, 1}c×c, damping ratio λ > 0, integer grid Z† ⊆ Z
Output: quantized weights Z ∈ Zc×r

† , dequantized weights Q ∈ Rc×r

1 H ← P⊤ (X⊤X + λI
)
P // dampen and reorder Hessian

2 L← LDL
(
H−1

)
// factorize (take the L matrix from the LDL decomposition) the inversed

Hessian as the shared coefficients for error propagation
3 W ,S ← P−1W ,P−1S // reorder weights and scales
4 Q,Z ←W ,0 // initialize dequantized and quantized weights
5 for j ← 1 to c do
6 ζ ←W [j, :]/S[j, :] // element-wise divide current row by its scales
7 Z[j, :]← ROUND (ζ,Z†) // quantize coefficients to the target grid
8 Q[j, :]← Z[j, :] ∗ S[j, :] // dequantize current row back to weight space
9 ε← Q[j, :]−W [j, :] // quantization error for current row

10 W [j :, :]←W [j :, :] +L[j :, j]ε // propagate error to not-yet-quantized rows; broadcast
over columns

11 end
12 Z,Q← PZ,PQ // undo reorder to restore original input order; return integers and

dequantized weights

3.2 THE CLOSEST VECTOR PROBLEM (CVP)

Problem. Let B = [b1, . . . , bc] ∈ Rn×c be a set of c basis vectors of dimension n with bj ∈ Rn

and n ≥ c = rank (B). Let y ∈ Rn be an external target vector to approximate. Let z ∈ Zc be the
(unknown) integer vector representing the basis combinations of the lattice vector. The goal is to find
the vector on the lattice defined by the basis B that is the closest to the target vector y, i.e., finding
argminz∈Zc ∥Bz − y∥2. A visualization of a two-dimensional CVP is shown in Figure 1 (a).

Babai’s nearest plane algorithm. Babai’s algorithm iteratively projects the target vector onto the
nearest hyperplane of a LLL-reduced lattice and rounds the corresponding coefficient. Figure 1 (b)
visualizes the basis reduction step and Figure 1 (c-d) visualize the projection steps.

Algorithm 2 is the pseudocode of Babai’s nearest plane algorithm to solve CVP. For better
computational efficiency, the pseudocode uses a conceptually equivalent approach. Instead of
projecting the target vector to the nearest hyperplane, it moves the target vector along the basis
direction towards the hyperplane where the origin lies. The projection error is kept in the updated
target vector since it is orthogonal to the hyperplane and will not affect the following projections.
Additional notations are as follows. Function LLL returns the transformation matrix of the LLL
reduction with parameter delta defaulting to 3

4 . Function QR returns the orthogonal matrix in QR

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Closest Vector Problem

B
ab

ai
's

A
lg

or
ith

m

(b) Basis Reduction (c) Projection Step 1 (d) Projection Step 2

(e) Optimal / Voronoi

R
ou

nd
in

g
B

ou
nd

ar
ie

s

(f) Round-to-Nearest (g) Babai (h) Babai (Another Order)

Lattice Point
Target Point
Returned Lattice Point
Babai's Projected Point
Basis Vector
Basis Direction
Gram-Schmidt Vector
Babai's Hyperplane
Rounding Boundary

Figure 1: Upper row: (a) CVP in a two-dimensional lattice; (b) Basis reduction can find a shorter,
more orthogonal basis that can potentially improve the results; (c-d) The projection steps in Babai’s
nearest plane algorithm. Lower row: rounding boundaries of (e) optimal rounding or Voronoi cells;
(f) round-to-nearest (RTN); (g) Babai’s nearest plane algorithm without basis reduction; (h) Babai’s
algorithm without basis reduction under the reversely ordered basis.

decomposition, the same as the normalized Gram-Schmidt orthogonalization process. ⟨·, ·⟩ denotes
the vector dot product. Function ROUND is defined as in the GPTQ algorithm.

Algorithm 2: Babai’s Nearest Plane
Input: lattice basis (column vectors) B ∈ Rn×c, target vector y ∈ Rn

Output: closest lattice vector’s basis coefficients z ∈ Zc

1 T ← LLL (B) // unimodular transformation matrix from LLL basis reduction
2 A← BT // reduce the basis
3 Φ← QR (A) // normalized Gram-Schmidt process (take the Q matrix from the QR

decomposition)
4 y′, z ← y,0 // initialize residual target and integer solution in reduced basis
5 for j ← c to 1 do
6 ζ ← ⟨Φ[:, j],y′⟩ / ⟨Φ[:, j],A[:, j]⟩ // exact coefficient along the unnormalized

Gram-Schmidt vector; ratio between the projections of residual and the reduced basis
on the Gram-Schmidt direction

7 z[j]← ROUND (ζ,Z) // round to the nearest plane
8 y′ ← y′ −A[:, j]z[j] // update the residual
9 end

10 z ← Tz // map integer solution back to the original basis and return

Babai’s error bound. Figure 1 shows the rounding boundaries of the optimal (e), round-to-nearest
(RTN) (f), and Babai’s algorithm without basis reduction (g-h). Compared to RTN, Babai’s algorithm
generates rectangular partitions and thus has a smaller worst-case error. The error bound has been
proven in Babai (1986). Formally, let Φ = [ϕ1, . . . ,ϕc] be the set of normalized Gram-Schmidt
vectors of the LLL-reduced basis A = [a1, . . . ,ac]. Let Ã = [ã1, . . . , ãc] denote the unnormalized
Gram-Schmidt vectors with ãj = ⟨ϕj ,aj⟩ϕj . At iteration j, the algorithm replaces the exact
coefficient ζ by the closest integer, so the deviation satisfies |ζ − z[j]| ≤ 1

2 . Hence the error
component along ãj has norm at most 1

2 ∥ãj∥. Because the Ã is orthogonal, these error components
add in Euclidean norm, giving a bound on the residual (error) vector y′: ∥y′∥2 ≤ 1

4

∑c
j=1 ∥ãj∥2 =

1
4

∑c
j=1 ⟨ϕj ,aj⟩2. Babai’s algorithm guarantees to return the center vector of the hyper-cuboid

(Figure 1 (g)) constructed by the unnormalized Gram-Schmidt vectors Ã where the target y is located.
Equality is attained when the target y lies at the corner of the hyper-cuboid, so the bound is tight. Babai

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(1986) additionally proved a relative error bound for γ with ∥Bz − y∥ ≤ γ ·minz′∈Zc ∥Bz′ − y∥.

The bound is 1 ≤ γ ≤
√
1 + max1≤j≤c

∑j

j′=1∥ãj′∥2
∥ãj∥2 ≤

√
c+ 1 ·max1≤j′≤j≤c

∥ãj′∥
∥ãj∥ .

4 THEORETICAL RESULTS

We first show that weight quantization is an instance of the classical closest vector problem (CVP)
in Section 4.1, which lets us work in a lattice defined by the Hessian. We then reinterpret OBQ’s,
equivalently GPTQ’s, error propagation step as a nearest hyperplane projection in Section 4.2,
setting up our main equivalence in Section 4.3: GPTQ, running back-to-front, coincides exactly
with Babai’s nearest plane algorithm. This equivalence lets us import Babai’s guarantees to obtain
a tight, layer-wise error bound in the no-clipping setting in Section 4.4. Finally, we analyze how
quantization order influences this bound in Section 4.5.

4.1 EQUIVALENCE BETWEEN L2 QUANTIZATION AND CVP

A quantization problem with the L2 objective argminzi∈Zc
†
∥X diag (si) zi −Xwi∥2 and a CVP

with the L2 distance argminz∈Zc ∥Bz − y∥2 share the same solution (z = zi) whenever the
structural conditions B = X diag (si) and y = Xwi hold and the solution domain matches. To
ensure the solution domain matches, we can either disable the clipping in the quantization setup
(setting Z† = Z) or enable the clipping in the CVP setup (making z ∈ Zc

†).

We can introduce a factor of the Hessian matrix, X = [χ1, . . . ,χc] with X⊤X = X⊤X . The loss
can then be reformulated as ∥X diag (si) zi −Xwi∥2.

Theorem 1 (Quantization and CVP) The CVPs using any possible factors X of the Hessian matrix
X⊤X are equivalent under an orthogonal transformation (rotation and reflection) of the lattice and
external target vector.

Proof Let X and X ′ be two possible factors of the Hessian matrix with X⊤X = X ′⊤X ′. The
inner products ⟨χj1 ,χj2⟩ and

〈
χ′

j1
,χ′

j2

〉
must be equal for all 1 ≤ j1, j2 ≤ c. In other words, the

lengths ∥χj1∥ =
∥∥χ′

j1

∥∥, and the angles ∠ (χj1 ,χj2) = ∠
(
χ′

j1
,χ′

j2

)
, for all 1 ≤ j1, j2 ≤ c.

According to Theorem 1, any decomposition factor X of the Hessian matrix X⊤X can be used
instead of X without changing the geometric properties of the CVP and its associated quantization
problem. This is useful to reduce the computational cost, e.g., we may use a square matrix
X ∈ Rc×c instead of the rectangular matrix X ∈ Rn×c. Section A.1 provides a clear summary of
the correspondence between the quantization and CVP concepts.

4.2 OBQ’S GEOMETRIC INTERPRETATION

We first demonstrate the geometric interpretation of OBQ (GPTQ’s slower predecessor) to facilitate
our equivalence proof of GPTQ and Babai’s algorithm in Section 4.3.

Theorem 2 (Error Propagation and Babai’s projection) Babai’s nearest plane algorithm itera-
tively projects the target vector onto the nearest hyperplane and rounds the coefficient. The OBQ
error propagation step (Eq. 2) is exactly this projection on the original basis B = X diag (si)
without basis reduction.

Proof Let B = [b1, . . . , bc] be the basis with bj being a basis vector. Let J be the set of unprojected
indices with j1, j2 ∈ J and j1 ̸= j2. Let y =

∑
j∈J ζjbj be the current residual target where

ζj ∈ R is a real number to be rounded to integers. Let NHP := ⌊ζj2⌉bj2 + Span {bj | j ̸= j2} be
the nearest hyperplane that is orthogonal to the Gram-Schmidt vector bj2 −

∑
j ̸=j2

Projbj
(bj2).

Figure 2 (a) is a 3D plot showing the projection error vector ∆y = ProjNHP (y) − y. We
focus on analyzing the error propagation in the direction of basis bj1 induced by the projection
of basis bj2 and collapse the span of other basis vectors to a single dimension as illustrated by
the hyperline HL := ⌊ζj2⌉bj2 + Span {bj |j ̸= j1, j2}. Figure 2 (b) is a 3D plot showing the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) [3D] Babai's Projection (b) [3D] Babai & OBQ Equivalence

(c) [2D] Nearest Hyperplane (d) [2D] Orthogonal Projection Plane

Auxiliary Line in Orthogonal Directions
Basis Vector bj1

Basis Vector bj2

Target Point y : = Σjζjbj

Nearest Hyperplane  : = ⌊ζj2⌉bj2 +Span{bj | j≠ j2}
Hyperline  : = ⌊ζj2⌉bj2 +Span{bj | j≠ j1, j2}
Babai's Projected Point Proj(y) : = Σj(ζj+Δζj)bj

Error Vector Δy : = Proj(y) −y=ΣjΔζjbj

Error Component Vector Δζj1bj1

Error Component Vector Δζj2bj2

Remaining Error Component Vector Σj≠ j1, j2Δζjbj

Inverse Basis Vector nj1 : ⟨nj1,bj1⟩=1;nj1 ⟂bj, ∀j≠ j1
Inverse Basis Vector nj2 : ⟨nj2,bj2⟩=1;nj2 ⟂bj, ∀j≠ j2
Orthogonal Projection Plane  : = Span{nj | j= j1, j2}
Projected Basis Vector Proj(bj1)
Projected Basis Vector Proj(bj2)
Projected Error Vector Proj(Δy) = Δy=Σj= j1, j2ΔζjProj(bj)
Projected Error Component Vector Δζj1Proj(bj1)
Projected Error Component Vector Δζj2Proj(bj2)
Angle θ=∠(nj1,nj2) = π−∠(Proj(bj1), Proj(bj2))

Figure 2: Equivalence of OBQ’s error propagation and Babai’s projection. (a) 3D plot showing
the target being projected onto the nearest plane. (b) 3D plot showing how the projection error is
propagated. (c) 2D plot showing the vectors on the nearest hyperplane in (a-b). (d) 2D plot showing
the vectors on the orthogonal projection plane in (b).

decomposition of the error ∆y =
∑

j∈J ∆ζjbj as the error component vectors in the basis directions.
Figure 2 (c) is a 2D plot showing the vectors on plane NHP . The number ζj will be updated to
ζj + ∆ζj such that ProjNHP (y) =

∑
j∈J (ζj +∆ζj) bj . Next, let N = B−⊤ = [n1, . . . ,nc]

be the inverse basis. Then, we have ⟨nj , bj⟩ = 1 and nj ⊥ bj′ , ∀j ̸= j′. We project all the
vectors in Figure 2 (b) onto the orthogonal projection plane OPP := Span {nj |j = j1, j2}
that is orthogonal to the hyperline HL, and continue the proof in the 2D geometry in Fig-
ure 2 (d). Denote the angle θ = ∠ (nj1 ,nj2) = π − ∠ (ProjOPP (bj1) ,ProjOPP (bj2)).

Then,
∆ζj1∥ProjOPP(bj1)∥
∆ζj2∥ProjOPP(bj2)∥

= cos θ =
⟨nj1

,nj2⟩
∥nj1∥∥nj2∥

=
∥nj2∥
∥nj1∥

⟨nj1
,nj2⟩

⟨nj2
,nj2⟩

. For j = j1, j2,

∥ProjOPP (bj)∥ ∥nj∥ =
⟨ProjOPP(bj),nj⟩

cos(π
2 −θ)

=
⟨bj ,nj⟩

cos(π
2 −θ)

= 1

cos(π
2 −θ)

. For j, j′ ∈ {j1, j2},

⟨nj ,nj′⟩ =
(
N⊤N

)
[j, j′] =

(
B⊤B

)−1
[j, j′]. Combining the above equations,

∆ζj1 =
∥ProjOPP(bj2)∥∥nj2∥
∥ProjOPP(bj1)∥∥nj1∥

⟨nj1 ,nj2⟩
⟨nj1 ,nj2⟩

∆ζj2 =
⟨nj1 ,nj2⟩
⟨nj2 ,nj2⟩

∆ζj2 =
(B⊤B)

−1
[j1,j2]

(B⊤B)−1[j2,j2]
∆ζj2 . Fi-

nally, substituting B = (X diag (si)) [:, J] and ζj =
wi[j]
si[j]

completes the proof.

Auxiliary Line in Orthogonal Directions
Basis Vector bj2

Target Point y : = Σjζjbj

Nearest Hyperplane (Hyperline)  : = ⌊ζj2⌉bj2 +Span{bj | j≠ j2}
Babai's Projected Point Proj(y) : = Σj(ζj+Δζj)bj

Error Vector Δy : = Proj(y) −y=ΣjΔζjbj

Error Component Vector Δζj2bj2

Remaining Error Component Vector Σj≠ j2Δζjbj

Inverse Basis Vector nj2 : ⟨nj2,bj2⟩=1;nj2 ⟂bj, ∀j≠ j2
Projected Basis Vector Projnj2(bj2)

Figure 3: Geometric interpretation of OBQ’s quantization order. This 2D plot shows the target being
projected onto the nearest plane.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Corollary 3 (OBQ Dimension Selection) At each dimension selection step (Eq. 1), OBQ selects
the not-yet-quantized dimension j such that the nearest hyperplane of dimension j is the closest to
the target residual vector.

Proof We use the same notations defined in Theorem 2. Figure 3 is a 2D plot showing
the distance (projection error or quantization error) between the target residual vector y and
the nearest hyperplane NHP of the basis bj2 . For better illustration, we collapse NHP
to a single dimension. The distance ∥∆y∥ can be written as ∥∆y∥ =

∥∥∥Projnj2
(∆y)

∥∥∥ =

|∆ζj2 |
∥∥∥Projnj2

(bj2)
∥∥∥ =

|∆ζj2 ||⟨bj2
,nj2⟩|

∥nj2∥
=
|∆ζj2 |
∥nj2∥

. For each wi, OBQ independently selects

j = argminj∈J
(qi[j]−wi[j])

2

(X[:,J]⊤X[:,J])−1[j,j]
= argminj∈J

(∆ζj)
2

⟨nj ,nj⟩ = argminj∈J
|∆ζj |
∥nj∥ as the next

dimension to quantize, which is exactly minimizing this distance.

4.3 GPTQ AND BABAI’S ALGORITHM

Originally, GPTQ (Algorithm 1) runs from the first to the last dimension (j ← 1 to c) while Babai’s
algorithm (Algorithm 2) runs from the last to the first dimension (j ← c to 1). This is the only
(superficial) difference between the two algorithms, as formalized below.

Theorem 4 (GPTQ and Babai) GPTQ and Babai’s algorithm without basis reduction will have the
same results if we align the dimensional order of these two algorithms, e.g., running GPTQ from the
last to the first dimension.

Proof We prove this theorem both geometrically and algebraically. We first present the geometric
proof. Theorem 2 shows that each intermediate weight vector produced by OBQ, equivalently GPTQ,
can be viewed as Babai’s residual vector in the activation space. At step j (running from the last to
the first dimension, j ← c to 1), GPTQ’s error propagation update is exactly Babai’s projection at
step j, which projects the current residual of the target vector onto the hyperplane orthogonal to the
j-th Gram-Schmidt vector.

Alternatively, we present a more rigorous algebraic proof. Section A.2 describes the exact quantization
procedures using Babai’s algorithm in more detail, with the pseudocode in Algorithm 4. Appendix B
contains the equivalence proof, in which we proceed in three steps. First, we rewrite GPTQ to track
the cumulative quantization error and show that this form is algebraically equivalent to the standard
implementation. Second, we run GPTQ in the back-to-front order and replace the lower triangular
factor by an upper triangular one, so that each update affects only the not-yet-quantized coordinates.
Third, we prove that the step-wise rounding decisions of the back-to-front GPTQ coincide with those
of Babai’s algorithm.

Geometric interpretation of GPTQ. Theorem 4 shows that, if we regard the activations as the
lattice basis and transform the floating-point weight vector as a target vector in the activation space,
GPTQ performs an orthogonal walk through a nested sequence of affine subspaces in a pre-computed
dimensional order.

Ineffectiveness of composing algorithms. A seemingly appealing idea is to take the solution
returned by any Babai iteration and then perform one further GPTQ-style error propagation step
on the weights in the activation space, hoping to push the approximation even closer to the optimum.
However, as proven in Section B.4, such an extra update vanishes: the final results of Z and Q
remain unchanged. In other words, once Babai’s projection has been executed, any subsequent
GPTQ-style correction is algebraically redundant. This confirms that the equivalence in Theorem 4
is already tight; neither algorithm can be strengthened by composition.

4.4 GPTQ’S ERROR BOUND

Having established the correspondence between GPTQ and Babai’s nearest plane algorithm, we can
now import Babai’s approximation guarantee to obtain an upper bound on the layer-wise quantization
error in the no-clipping setting.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Theorem 5 (GPTQ Error Bound) Assume no clipping (Z† = Z) and let T be the permutation
matrix of the reversed GPTQ quantization order (equivalently P with the reversed column or-
der). Let D be the diagonal matrix of the LDL decomposition of the permuted Hessian matrix
T⊤X⊤XT . For every output channel i (1 ≤ i ≤ r) produced by Babai’s algorithm, or equiv-
alently GPTQ algorithm executed back-to-front, the (absolute) quantization error has a tight up-
per bound: ∥X diag (si) zi −Xwi∥2 ≤ 1

4

(
T−1si

)⊤
D
(
T−1si

)
. For the relative bound for

γ with ∥X diag (si) zi −Xwi∥ ≤ γ · minz′
i∈Zc ∥X diag (si) z

′
i −Xwi∥, we have 1 ≤ γ ≤√

1 + max1≤j≤c

∑j

j′=1
d2
j′

d2
j

≤
√
c+ 1 ·max1≤j′≤j≤c

dj′

dj
where dj =

√
D[j, j]

∣∣(T−1si
)
[j]
∣∣.

The full proof of Theorem 5 is presented in Section C.1. If the scales si are small enough, we may
assume the weights wi are nearly uniformly distributed within the hyper-cuboid constructed by
Babai’s orthogonalized basis vectors, the expected absolute error will be 1

3 of the worst-case bound.
See Section C.2 for a proof.

4.5 THE ROLE OF QUANTIZATION ORDER IN GPTQ

The quadratic form on the right-hand side of the absolute error bound in Theorem 5 is sensitive
to the pivot order of the LDL decomposition of the Hessian matrix; this is the quantization order.
Re-ordering the dimensions changes the entries of the diagonal matrix D before the scale si is
“weighted” by them. A poor order may place large D entries against large si entries and hence inflate
the bound. For a batched quantization algorithm like GPTQ, the order should be independent of the
output channel i. To develop a good heuristic order, a reasonable approximation to make, especially
for large quantization group sizes, is that the elements of si[j] are equal for all 1 ≤ j ≤ c. Then
we can focus on finding the optimal pivot order for the LDL decomposition of the Hessian matrix
X⊤X to minimize tr (D).

Finding the optimal order is NP-hard (Rose et al., 1976). However, heuristics often effectively reduce
the trace term in practice. Even with clipping, heuristics can reduce the error. GPTQ introduces
the act-order, the descending order of the Hessian diagonal, i.e. the ascending order of the Hessian
diagonal when applied to Babai’s algorithm.

To improve upon act-order, we propose the min-pivot order, which is essentially taking the minimum
diagonal entry at each LDL (or Cholesky) decomposition step. This order can be calculated by
Algorithm 3, which has cubic time complexity and does not increase the overall time complexity
of quantization. This order also has a geometric interpretation, as the order of the Gram-Schmidt
orthogonalization process of the basis: always taking the shortest residual vector as the next one to
orthogonalize, agreeing with Babai’s relative error bound. Across our preliminary runs (Section C.3),
min-pivot consistently reduces tr (D) relative to act-order, but the downstream accuracy gains are
modest. We nevertheless report min-pivot as a principled choice, and view act-order as a cheap
approximation that only considers the Hessian diagonal, which already captures most of the benefit
when the Hessian matrix is well-conditioned.

Algorithm 3: Min-Pivot
Input: Hessian H ∈ Rc×c

Output: order encoded as a permutation matrix T ∈ {0, 1}c×c

1 J ← {1, . . . , c} // initialize the not-yet-pivoted indices
2 T ← 0 // initialize the output permutation matrix
3 for j ← 1 to c do
4 j′ ← argminj′∈JH[j′, j′] // choose next index with the smallest current diagonal
5 H ←H −H[:, j′]H[j′, :]/H[j′, j′] // updates remaining entries with rank-1 Schur

complement
6 T [j′, j]← 1 // record the index
7 J ← J \ {j′} // mark pivot as used
8 end

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 APPLICATIONS

The original GPTQ algorithm clips the overflowed integers at the rounding step, introducing large
errors that violate the error bound in Theorem 5. In this section, we explore error-guaranteed variants
of GPTQ that work in the no-clipping regime.

We notice that enforcing no-clipping by simply increasing scales is counterproductive: larger scales
enlarge the bound, and the resulting errors can exceed those of a clipped scheme such as MSE. Hence,
any practical no-clipping design must account for the weight distributions that are known to have
heavy outliers (Li et al., 2025). We would still like to apply small scales, but use small bitwidths for
the bulk of inliers while handling the overflowed outliers with more storage budget without clipping
them. We therefore propose two overflow-tolerant schemes.

Scale-adjusted SpQR (SSQR). SpQR (Dettmers et al., 2024) keeps a small set of outliers in full preci-
sion, but it still leaves clipping in place: weights are grouped, the outliers and a shared scale are chosen
per group before the GPTQ updates, and there is no guarantee the updated inlier weights stay within
the representable range. We design SSQR with a scale-adjustment mechanism to fix this issue. For
simplicity, we discard SpQR’s second-level quantization for the scales. For a weight vector wi ∈ Rc,
we represent the quantized weight qi ∈ Rc as diag (si) zi+ξi where z ∈ Zc

† is the low-bitwidth inte-
ger weight vector, si ∈ Rc

̸=0 is the floating-point scale vector with each scale shared per group (only
one number per group is actually stored), and ξi ∈ Rc is the sparse floating-point outlier vector (stored
in the compressed sparse row format, CSR) that captures all the overflowed weights after GPTQ’s er-
ror propagation. The scale-adjustment mechanism tunes the scale si until the density of ξi satisfies the
specified rate. Because exhaustive trial-and-error over per-group scales is infeasible in large layers, the
mechanism only proportionally changes si so that the search space reduces to one dimension. With the
observation that the outlier rate is negatively related to the scales in general, this can be done via binary
search: initialize si using MSE, quantize wi with the specified format using GPTQ without clipping,
calculate the density of ξi, and adjust si and iterate. Section D.1 Algorithm 9 is the pseudocode.

Huffman-encoded post-training quantization (HPTQ). To better align with the infinite,
unconstrained lattice in CVP, we design HPTQ, which represents both inliers and outliers in a unified,
equal-spaced integer grid. The idea is to use Huffman encoding, which was also explored for
network compression by Choi et al. (2017). We quantize the weight matrix W ∈ Rc×r as Q = sZ
with a single scalar s ∈ R ̸=0 and integers Z ∈ Zc×r. We select s via an entropy-guided binary
search: initialize a range proportional to the maximum weight, quantize to unclipped integers with
GPTQ, measure the Huffman coding cost of Z, and adjust s until the encoded bits meet a target
average bitwidth. This yields uneven-bitwidth representations that preserve accuracy while meeting
a compression budget. Section D.1 Algorithm 11 is the pseudocode.

Experiments compare round-to-nearest (RTN), original GPTQ, HPTQ, and SSQR with 1~5% outliers.
We also include Huffman-encoded RTN (HRTN) as a baseline to HPTQ, which mirrors HPTQ
but replaces GPTQ with RTN (Pseudocode: Section D.1 Algorithm 12). The quantization order is
act-order for all methods. RTN, GPTQ, and SSQR use group size 128. RTN and GPTQ calculate the
scales with the MSE method. Figure 4 (a-b) shows that HPTQ sustains low perplexity on Qwen3-8B
at reduced bitwidths and scales favorably across model sizes, with 3.125-bit emerging as Pareto
optimal in terms of perplexity vs compression. The experimental setup and additional metrics,
including the benchmark results, are detailed in Sections D.2 and D.3.

CUDA inference kernel. We implement an inference kernel for SSQR in CUDA/C++, optimized
for low-batch latency, handling both the dense inliers and sparse outliers while targeting the Ampere
platform. The kernel supports group-quantized inlier weights in the 2-4-bit range with scales in 16
bits and support for unstructured sparsity, used to avoid weight clipping. Figure 4 (c) visualizes the
end-to-end speedup in the LLM decoding phase vs the PyTorch BF16 kernel. Our kernel achieves
about 2× speedup across different bitwidth and outlier rate settings when generating 128 new tokens
at a batch size of 1. Technical details and layer-wise speedups are described in Section D.4.

6 CONCLUSION

We have shown that GPTQ, when executed back-to-front, is mathematically identical to Babai’s
nearest plane algorithm applied to the lattice defined by a layer’s Hessian without basis reduction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4.1253.1252.125 5.125
Average Bitwidth [bit]

10

20

40

80

W
ik

iT
ex

t-2
 P

er
pl

ex
ity

(a)

Different Methods on Qwen3-8B

3.125 4.125 5.125

10

11 RTN
GPTQ
HRTN
HPTQ
BF16
SSQR-1%
SSQR-3%
SSQR-5%

0 1 2 3 4 5 6 7 8
Model Size [GB]

5

10

20

40

80

W
ik

iT
ex

t-2
 P

er
pl

ex
ity

Pareto Optimal

(b)

HPTQ on Qwen3-0.6/1.7/4/8/14B

Average Bitwidth [bit]
4.125
3.125
2.125

0 1 2 3 4 5
Outlier Rate [%]

0.0

0.5

1.0

1.5

2.0

2.5

TP
O

T
Sp

ee
du

p
vs

 P
yT

or
ch

 B
F1

6

(c)

SSQR on Qwen3-8B (A6000 GPU)

Inlier Bitwidth [bit]
4
3

2

Figure 4: (a) Comparison of quantization methods (RTN, GPTQ, HRTN, HPTQ, and SSQR with
1~5% outliers) on Qwen3-8B evaluated on WikiText-2. Perplexity is plotted against the average
effective bitwidth per weight, with the BF16 baseline shown as a horizontal line. HPTQ has the
best (lowest) perplexity. See Section D.3 for zero-shot evaluation results. (b) Scaling behavior of
HPTQ across multiple model sizes (0.6B, 1.7B, 4B, 8B, 14B) and bitwidths (4.125, 3.125, 2.125).
The x-axis denotes the effective model size after quantization, and the y-axis shows perplexity on
WikiText-2. Each curve corresponds to a fixed bitwidth, while points along a curve represent different
model scales. Using our HPTQ method, 3.125-bit stands out as the Pareto optimal bitwidth (optimal
perplexity vs compression trade-offs). (c) End-to-end inference speedups of our SSQR kernel vs the
PyTorch BF16 matrix multiplication kernel on NVIDIA RTX A6000 GPU. We run the Qwen3-8B
model across multiple outlier rates (0%~5%) and inlier bitwidths (4, 3, 2) and measure the TPOT
(time per output token) metric. Our kernel achieves about 2× speedup end-to-end.

Based on this theory, we propose error-guaranteed practical methods and provide optimized CUDA
kernels that deliver low-latency inferences. Looking ahead, extending the analysis to clipped grids and
exploring (scale-aware) basis reductions are the immediate next steps. We will also extend the lattice
view beyond weight-only linear layers to activation and KV-cache quantization. More broadly, the
lattice perspective opens a two-way channel: decades of CVP heuristics can refine practical quantizers,
while the behavior of massive neural networks may, in turn, inspire new questions for lattice theory.

ETHICS STATEMENT

Throughout this work, we have strictly adhered to the ICLR Code of Ethics. All datasets utilized in
our experiments are publicly available and widely recognized within the scientific community. We
ensure that these datasets do not contain any personally identifiable information or sensitive content.
Our work does not involve human subjects, animals, or any form of personal data collection. We have
thoroughly considered potential dual-use concerns and do not foresee any harmful applications of our
methods. There are no conflicts of interest to declare, and no external sponsorship influenced the
outcomes of this research. All experiments were conducted with integrity and transparency.

REPRODUCIBILITY STATEMENT

We are committed to ensuring that our work is transparent and reproducible. To facilitate this, clear
explanations of any assumptions and a complete proof of the claims have been included in the main
text and appendix. We also share the source code as part of the supplementary materials. The code
is documented and includes instructions for setting up the environment, running the simulations,
and reproducing the results presented in our paper. By making our resources openly available and
providing detailed explanations, we aim to enable the research community to validate and build upon
our findings.

REFERENCES

László Babai. On lovász’ lattice reduction and the nearest lattice point problem. Combinatorica, 6(1):
1–13, March 1986. ISSN 1439-6912. doi: 10.1007/BF02579403. URL https://doi.org/
10.1007/BF02579403.

10

https://doi.org/10.1007/BF02579403
https://doi.org/10.1007/BF02579403

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Johann Birnick. The lattice geometry of neural network quantization – a short equivalence proof of
gptq and babai’s algorithm, 2025. URL https://arxiv.org/abs/2508.01077.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-
bit quantization of large language models with guarantees. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 4396–4429. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/0df38cd13520747e1e64e5b123a78ef8-Paper-Conference.pdf.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Towards the limit of network quantization. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=rJ8uNptgl.

Tim Dettmers, Ruslan A. Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh
Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. SpQR: A sparse-quantized
representation for near-lossless LLM weight compression. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
Q1u25ahSuy.

I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating cvp to within almost-polynomial fac-
tors is np-hard. Combinatorica, 23(2):205–243, apr 2003. ISSN 1439-6912. doi: 10.1007/
s00493-003-0019-y. URL https://doi.org/10.1007/s00493-003-0019-y.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 12284–12303. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/v235/egiazarian24a.html.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accu-
rate post-training quantization and pruning. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 4475–4488. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
1caf09c9f4e6b0150b06a07e77f2710c-Paper-Conference.pdf.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=tcbBPnfwxS.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference, 2021. URL https:
//arxiv.org/abs/2103.13630.

Babak Hassibi, David G. Stork, and Gregory J. Wolff. Optimal brain surgeon and general network
pruning. In IEEE International Conference on Neural Networks, pp. 293–299 vol.1, 1993. doi:
10.1109/ICNN.1993.298572.

Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res., 12(3):
415–440, August 1987. ISSN 0364-765X.

Eldar Kurtic, Alexandre Marques, Shubhra Pandit, Mark Kurtz, and Dan Alistarh. " give me
bf16 or give me death"? accuracy-performance trade-offs in llm quantization. arXiv preprint
arXiv:2411.02355, 2024.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky
(ed.), Advances in Neural Information Processing Systems, volume 2. Morgan-Kaufmann,
1989. URL https://proceedings.neurips.cc/paper_files/paper/1989/
file/6c9882bbac1c7093bd25041881277658-Paper.pdf.

11

https://arxiv.org/abs/2508.01077
https://proceedings.neurips.cc/paper_files/paper/2023/file/0df38cd13520747e1e64e5b123a78ef8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0df38cd13520747e1e64e5b123a78ef8-Paper-Conference.pdf
https://openreview.net/forum?id=rJ8uNptgl
https://openreview.net/forum?id=rJ8uNptgl
https://openreview.net/forum?id=Q1u25ahSuy
https://openreview.net/forum?id=Q1u25ahSuy
https://doi.org/10.1007/s00493-003-0019-y
https://proceedings.mlr.press/v235/egiazarian24a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/1caf09c9f4e6b0150b06a07e77f2710c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/1caf09c9f4e6b0150b06a07e77f2710c-Paper-Conference.pdf
https://openreview.net/forum?id=tcbBPnfwxS
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4):515–534, dec 1982. ISSN 1432-1807. doi:
10.1007/BF01457454. URL https://doi.org/10.1007/BF01457454.

Xinlin Li, Osama Hanna, Christina Fragouli, and Suhas Diggavi. ICQuant: Index coding enables
low-bit LLM quantization. In Second Conference on Language Modeling, 2025. URL https:
//openreview.net/forum?id=m6nBgFSMTL.

Sasha Luccioni, Yacine Jernite, and Emma Strubell. Power hungry processing: Watts driving the
cost of ai deployment? In Proceedings of the 2024 ACM Conference on Fairness, Accountability,
and Transparency, FAccT ’24, pp. 85–99, New York, NY, USA, 2024. Association for Computing
Machinery. ISBN 9798400704505. doi: 10.1145/3630106.3658542. URL https://doi.org/
10.1145/3630106.3658542.

Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: A Cryptographic
Perspective, volume 671 of The Springer International Series in Engineering and Computer
Science. Springer, New York, NY, 1 edition, 2002. ISBN 978-0-7923-7688-0. doi: 10.1007/
978-1-4615-0897-7. URL https://doi.org/10.1007/978-1-4615-0897-7.

Donald J. Rose, Robert E. Tarjan, and George S. Lueker. Algorithmic aspects of vertex elimination
on graphs. SIAM Journal on Computing, 5(2):266–283, 1976. doi: 10.1137/0205021.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. QuIP#:
Even better LLM quantization with hadamard incoherence and lattice codebooks. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 48630–48656. PMLR, 21–27 Jul
2024a. URL https://proceedings.mlr.press/v235/tseng24a.html.

Albert Tseng, Qingyao Sun, David Hou, and Christopher De. Qtip: Quantization with trel-
lises and incoherence processing. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing
Systems, volume 37, pp. 59597–59620. Curran Associates, Inc., 2024b. doi: 10.52202/
079017-1904. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/6de2e84b8da47bb2eb5e2ac96c63d2b0-Paper-Conference.pdf.

P. van Emde Boas. Another np-complete problem and the complexity of computing short vectors in a
lattice. Technical Report 8104, University of Amsterdam, Department of Mathematics, Netherlands,
1981.

12

https://doi.org/10.1007/BF01457454
https://openreview.net/forum?id=m6nBgFSMTL
https://openreview.net/forum?id=m6nBgFSMTL
https://doi.org/10.1145/3630106.3658542
https://doi.org/10.1145/3630106.3658542
https://doi.org/10.1007/978-1-4615-0897-7
https://proceedings.mlr.press/v235/tseng24a.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/6de2e84b8da47bb2eb5e2ac96c63d2b0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/6de2e84b8da47bb2eb5e2ac96c63d2b0-Paper-Conference.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPLYING BABAI’S ALGORITHM TO BATCHED QUANTIZATION

A.1 QUANTIZATION-CVP CORRESPONDENCE

Table 1 is a take-away dictionary showing the correspondence between the quantization and CVP
concepts.

Table 1: Quantization-CVP dictionary for the output channel i.

Quantization symbol CVP interpretation

Input activation X ∈ Rn×c Basis directions (columns are generators)
Scale si ∈ Rc

̸=0 Basis stretches
B(i) = X diag (si) ∈ Rn×c Lattice basis (columns are generators)
Weight wi ∈ Rc Floating-point coordinates on the unstretched basis
Integer weight representation zi ∈ Zc

† Integer coordinates on the lattice basis
Dequantized weight qi = diag (si) zi ∈ Rc Dequantized coordinates on the unstretched basis
Target output activation y(i) = Xwi ∈ Rn External target vector to approximate

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 BABAI’S QUANTIZATION ALGORITHM

Given the equivalence we have shown in Section 4.1, the quantization problem can be converted to
CVP, allowing us to apply Babai’s nearest plane algorithm in the context of quantization. A naive
way is to compute B(i) = X diag (si) and y(i) = Xwi and run Babai’s algorithm independently for
all 1 ≤ i ≤ r. However, this is computationally inefficient, as we will need to compute the expensive
(O
(
c4
)
) LLL basis reduction transformation T(i) for the basis B(i) and the expensive (O

(
c3
)
) QR

decomposition of A(i) = B(i)T(i) for r times. However, a few adjustments can be made to simplify
the computation and enable batched processing.

Disabling basis reduction. The LLL basis reduction is unfortunately scale-sensitive, generating
different transformations T(i) for different scales si (unless all the si vectors are parallel), which
prohibits the reuse of QR decomposition results. Furthermore, LLL basis reduction is incompatible
with clipping, as the roundings are performed in another basis, and there is no easy way to do the
clipping for the original basis.

Changing quantization order. Quantization order is a feature in GPTQ that controls the rounding
and clipping order of the dimensions. This order influences the quantization error, as we discuss
in Section 4.5. In the context of Babai’s algorithm, this corresponds to the order of the basis in the
Gram-Schmidt orthogonalization and the hyperplane projections, as shown in Figure 1 (g-h). To do
so, we can replace the LLL basis reduction in Babai’s algorithm with a permutation by setting the
transformation matrix T to a permutation matrix that is independent of i.

Theorem 6 (Babai’s Quantization Order) If T is a permutation matrix that does not depend on i,
the orthogonal matrix Φ can be reused without recomputing the QR decomposition for each i.

Proof The permutation matrix T ∈ {0, 1}c×c has exactly one non-zero element in each row and
column. Scaling the rows of T can also be interpreted as scaling the columns of T , therefore its
multiplication with a diagonal matrix has property: diag (si)T = T diag

(
T−1si

)
. Let A = XT ,

A(i) = X diag (si)T . Denote the QR decomposition of A as A = ΦR with Φ being an orthogonal
matrix and R being an upper triangular matrix. Then, the QR decomposition of A(i) becomes A(i) =

X diag (si)T = XT diag
(
T−1si

)
= A diag

(
T−1si

)
= Φ

(
R diag

(
T−1si

))
. Therefore, the

QR decompositions of A(i) share the same orthogonal matrix Φ for all 1 ≤ i ≤ r.

As shown in Theorem 6, changing quantization order does not require repeated computation of the
QR decomposition. Note that, we also need to permute the scale S accordingly to T−1S.

Algorithm 4: Babai’s Quantize
Input: W ,S,X,T , λ,Z†
Output: Z,Q

1 H ← T⊤ (X⊤X + λI
)
T

2 A← CHOLESKY (H)
⊤

3 W ,S ← T−1W ,T−1S
4 Y ,Q,Z ← AW ,W ,0
5 for j ← c to 1 do
6 ω ← Y [j, :]/A[j, j]
7 ζ ← ω/S[j, :]
8 Z[j, :]← ROUND (ζ,Z†)
9 Q[j, :]← Z[j, :] ∗ S[j, :]

10 Y ← Y −A[:, j]Q[j, :]
11 end
12 Z,Q← TZ,TQ

Selecting basis. Putting things together, we are
interested in A = XT and its QR decomposition
Φ. Theorem 1 allows us to choose any Hessian
factor X while keeping the result intact. With-
out loss of generality, we can choose a X such
that A is an upper triangular matrix and the QR
decomposition becomes trivial: Φ = I, which
simplifies the computation. The upper triangu-
lar matrix A can be directly computed from the
Cholesky decomposition of the permuted Hessian
matrix A⊤A = T⊤X⊤XT .

Applying all the considerations in this subsection,
we construct Algorithm 4 for batched quantiza-
tion using Babai’s algorithm.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B ALGEBRAIC EQUIVALENCE PROOF OF GPTQ AND BABAI’S ALGORITHM

In this section, we prove Theorem 4 that GPTQ (Algorithm 1) and Babai’s algorithm (Algorithm 4)
are equivalent if the dimensional orders are opposite.

Because a permutation matrix acts only as re-ordering coordinates, we may apply the permutation
once at the beginning (to W , S, and X) and once at the end (to Z and Q) without affecting any
intermediate arithmetic. Hence, all algebras performed inside the two algorithms can be analyzed on
the permuted basis where the permutation matrix is the identity. On that basis, the sole distinction
between GPTQ and Babai’s algorithm lies in the direction of the iterations. Proving that GPTQ
running back-to-front (j ← c to 1) reproduces Babai’s updates in Babai’s default iteration direction
would complete the equivalence proof.

We follow a three-step proof scheme.

• Step 1. Proving that the original GPTQ algorithm (Algorithm 5) that uses relative quantiza-
tion error row vector ε ∈ R1×r is equivalent to a new algorithm (Algorithm 6) using the
absolute quantization error matrix ∆ ∈ Rc×r.

• Step 2. Reversing the iteration in Algorithm 6 and writing the reversed-iteration algorithm
as Algorithm 7.

• Step 3. Proving that the reversed-iteration algorithm Algorithm 7 is equivalent to Babai’s
algorithm Algorithm 8.

Algorithms 5 to 8 are intentionally written in the linear algebra form. ej ∈ Rc is the standard
basis vector whose elements are 0 except the j-th element being 1, which is used as the row or
column selector of a matrix. The superscripts in parentheses denote the versions of the variables
during the iterations. ω, ζ ∈ R1×r are intermediate row vectors. Additionally, L is the LDL
decomposition of the Hessian inverse H−1 = LD

1
2

LD
1
2

LL
⊤ where L is a lower triangular matrix

with all diagonal elements being 1, and D
1
2

L is a non-negative diagonal matrix. Similarly, U is the

“UDU” decomposition of the Hessian inverse H−1 = UD
1
2

UD
1
2

UU
⊤ where U is an upper triangular

matrix with all diagonal elements being 1, and D
1
2

U is a non-negative diagonal matrix.

Note: the symbols are overloaded in Algorithms 5 to 8, and the variables using the same symbols
may carry different values, even if the inputs to the algorithms are the same.

B.1 STEP 1

To distinguish the variables using the same symbol in Algorithms 5 and 6, we use symbols withoutˆ
to denote the symbols in Algorithm 5, and use the symbols withˆ for Algorithm 6.

Claim

ωj = ω̂j , 1 ≤ j ≤ c, (3)
and consequently,

Z(j) = Ẑ(j), 0 ≤ j ≤ c, (4)
and

Q(j) = Q̂(j), 0 ≤ j ≤ c. (5)

Proof Eq. 3 by Induction

The following equalities are held by the design of Algorithms 5 and 6:

Q(0) = Q̂(0) = W (0) = Ŵ (0). (6)

ω(j) = e⊤j W
(j−1), 1 ≤ j ≤ c. (7)

ω̂(j) = e⊤j Ŵ
(j−1), 1 ≤ j ≤ c. (8)

Q(j) = Q(j−1) + ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)
, 1 ≤ j ≤ c. (9)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 5: GPTQ Original (Front-to-Back)
Input: W ,S,X, λ,Z†
Output: Z,Q

1 H ←X⊤X + λI

2 L← LDL
(
H−1

)
3 W (0) ←W

4 Q(0),Z(0) ←W (0),0
5 for j ← 1 to c do
6 ω(j) ← e⊤j W

(j−1)

7 ζ(j) ← ω(j) diag
(
S⊤ej

)−1

8 Z(j) ← Z(j−1) + ej
(

ROUND
(
ζ(j),Z†

)
− e⊤j Z

(j−1)
)

9 Q(j) ← Q(j−1) + ej
(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)

10 ε(j) ← e⊤j Q
(j) − ω(j)

11 W (j) ←W (j−1) +Lejε
(j)

12 end
13 Z,Q← Z(c),Q(c)

Algorithm 6: GPTQ Type-2 (Front-to-Back)
Input: W ,S,X, λ,Z†
Output: Z,Q

1 H ←X⊤X + λI

2 L← LDL
(
H−1

)
3 W (0) ←W

4 Q(0),Z(0) ←W (0),0
5 for j ← 1 to c do
6 ω(j) ← e⊤j W

(j−1)

7 ζ(j) ← ω(j) diag
(
S⊤ej

)−1

8 Z(j) ← Z(j−1) + ej
(

ROUND
(
ζ(j),Z†

)
− e⊤j Z

(j−1)
)

9 Q(j) ← Q(j−1) + ej
(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)

10 ∆(j) ← Q(j) −W (0) // new
11 W (j) ←W (0) −L−1∆(j) // new
12 end
13 Z,Q← Z(c),Q(c)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 7: GPTQ Type-2 (Back-to-Front)
Input: W ,S,X, λ,Z†
Output: Z,Q

1 H ←X⊤X + λI

2 U ← UDU
(
H−1

)
// new

3 W (c+1) ←W

4 Q(c+1),Z(c+1) ←W (c+1),0
5 for j ← c to 1 do
6 ω(j) ← e⊤j W

(j+1)

7 ζ(j) ← ω(j) diag
(
S⊤ej

)−1

8 Z(j) ← Z(j+1) + ej
(

ROUND
(
ζ(j),Z†

)
− e⊤j Z

(j+1)
)

9 Q(j) ← Q(j+1) + ej
(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j+1)
)

10 ∆(j) ← Q(j) −W (c+1)

11 W (j) ←W (c+1) −U−1∆(j) // new
12 end
13 Z,Q← Z(1),Q(1)

Algorithm 8: Babai-Quantize (Default Order)
Input: W ,S,X, λ,Z†
Output: Z,Q

1 H ←X⊤X + λI

2 A← CHOLESKY (H)
⊤

3 Y (c+1),Q(c+1),Z(c+1) ← AW ,W ,0
4 for j ← c to 1 do
5 ω(j) ← e⊤

j Y (j+1)

e⊤
j Aej

6 ζ(j) ← ω(j) diag
(
S⊤ej

)−1

7 Z(j) ← Z(j+1) + ej
(
ROUND

(
ζ(j),Z†

)
− e⊤j Z

(j+1)
)

8 Q(j) ← Q(j+1) + ej
(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j+1)
)

9 Y (j) ← Y (j+1) −Aeje
⊤
j Q

(j)

10 end
11 Z,Q← Z(1),Q(1)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Q̂(j) = Q̂(j−1) + ej

(
e⊤j Ẑ

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j−1)
)
, 1 ≤ j ≤ c. (10)

ε(j) = e⊤j Q
(j) − ω(j), 1 ≤ j ≤ c. (11)

∆(j) = Q̂(j) − Ŵ (0), 1 ≤ j ≤ c. (12)
W (j) = W (j−1) +Lejε

(j), 1 ≤ j ≤ c. (13)

Ŵ (j) = Ŵ (0) −L−1∆(j), 1 ≤ j ≤ c. (14)

Extend the definition of ∆(j) (Eq. 12) for j = 0,

∆(j) = Q̂(j) − Ŵ (0), 0 ≤ j ≤ c. (15)

Then we have ∆(0) = Q̂(0) − Ŵ (0) = Ŵ (0) − Ŵ (0) = 0 , so that Eq. 14 can also be extended for
j = 0,

Ŵ (j) = Ŵ (0) −L−1∆(j), 0 ≤ j ≤ c. (16)

(1) Eq. 3 holds for j = 1:

Using Eqs. 6, 7, 8,
ω(1) = e⊤1 W

(0) = e⊤1 Ŵ
(0) = ω̂(1). (17)

(2) Assume Eq. 3 holds for all j ≤ j∗, 1 ≤ j∗ < c.

Because L is a lower triangular matrix with all diagonal elements being 1, L−1 is also a lower
triangular matrix with all diagonal elements being 1.

For 1 ≤ j < k ≤ c,
e⊤j Lek = e⊤j L

−1ek = 0. (18)

For 1 ≤ j ≤ c,
e⊤j Lej = e⊤j L

−1ej = 1. (19)

For 1 ≤ j < c,

e⊤j+1L

(
j∑

k=1

eke
⊤
k

)

=e⊤j+1L

(c∑
k=1

eke
⊤
k

)
− ej+1e

⊤
j+1 −

 c∑
k=j+2

eke
⊤
k


=e⊤j+1L

(
j+1∑
k=1

eke
⊤
k

)
− e⊤c Lej+1e

⊤
j+1 − e⊤j+1L

 c∑
k=j+2

eke
⊤
k


=e⊤j+1LI− e⊤j+1 −

 c∑
k=j+2

e⊤j+1Leke
⊤
k

 (Eq. 19)

=e⊤j+1L− e⊤j+1 −

 c∑
k=j+2

0e⊤k

 (Eq. 18)

=e⊤j+1 (L− I) .

(20)

With Eq. 9, for 1 ≤ j ≤ c, 1 ≤ k ≤ c and j ̸= k,

e⊤k Q
(j) =e⊤k

(
Q(j−1) + ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
))

=e⊤k Q
(j−1) + e⊤k ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)

=e⊤k Q
(j−1) + 0

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q

(j−1)
)

=e⊤k Q
(j−1).

(21)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Recursively applying Eq. 21, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k Q
(j) =

{
e⊤k Q

(k) if 1 ≤ k ≤ j ≤ c,

e⊤k Q
(0) = e⊤k W

(0) if 1 ≤ j < k ≤ c.
(22)

Similar to Eq. 22, with Eq. 10, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k Q̂
(j) =

{
e⊤k Q̂

(k) if 1 ≤ k ≤ j ≤ c,

e⊤k Q̂
(0) = e⊤k Ŵ

(0) if 1 ≤ j < k ≤ c.
(23)

With Eq. 23, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k ∆
(j) =e⊤k

(
Q̂(j) − Ŵ (0)

)
(Eq. 15)

=e⊤k Q̂
(j) − e⊤k Ŵ

(0)

=

{
e⊤k Q̂

(k) − e⊤k Ŵ
(0) = e⊤k ∆

(k) if 1 ≤ k ≤ j ≤ c,

e⊤k Ŵ
(0) − e⊤k Ŵ

(0) = e⊤k ∆
(0) = 0 if 1 ≤ j < k ≤ c.

(24)

For 1 ≤ k ≤ j ≤ c,

e⊤k L∆(j)

=e⊤k LI∆(j)

=e⊤k L

(
c∑

k′=1

ek′e⊤k′

)
∆(j)

=

c∑
k′=1

e⊤k Lek′e⊤k′∆(j)

=

(
k∑

k′=1

e⊤k Lek′e⊤k′∆(j)

)
+

(
c∑

k′=k+1

e⊤k Lek′e⊤k′∆(j)

)

=

(
k∑

k′=1

e⊤k Lek′e⊤k′∆(k′)

)
+

(
c∑

k′=k+1

0e⊤k′∆(j)

)
(Eqs. 18, 24)

=

(
k∑

k′=1

e⊤k Lek′e⊤k′∆(k)

)
+

(
c∑

k′=k+1

0e⊤k′∆(k)

)
(Eq. 24)

=

(
k∑

k′=1

e⊤k Lek′e⊤k′∆(k)

)
+

(
c∑

k′=k+1

e⊤k Lek′e⊤k′∆(k)

)
(Eq. 18)

=

c∑
k′=1

e⊤k Lek′e⊤k′∆(k)

=e⊤k L

(
c∑

k′=1

ek′e⊤k′

)
∆(k)

=e⊤k LI∆(k)

=e⊤k L∆(k).

(25)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

For 1 ≤ j ≤ c,

e⊤j L
−1∆(j−1)

=e⊤j L
−1I∆(j−1)

=e⊤j L
−1

(
c∑

k=1

eke
⊤
k

)
∆(j−1)

=

c∑
k=1

e⊤j L
−1eke

⊤
k ∆

(j−1)

=

(
j−1∑
k=1

e⊤j L
−1eke

⊤
k ∆

(j−1)

)
+ e⊤j L

−1eje
⊤
j ∆

(j−1) +

 c∑
k=j+1

e⊤j L
−1eke

⊤
k ∆

(j−1)


=

(
j−1∑
k=1

e⊤j L
−1eke

⊤
k ∆

(j−1)

)
+ e⊤j L

−1ej0+

 c∑
k=j+1

0e⊤k ∆
(j−1)

 (Eqs. 18, 24)

=

(
j−1∑
k=1

e⊤j L
−1eke

⊤
k ∆

(j−1)

)
+

 c∑
k=j+1

0e⊤k ∆
(j−1)

+ e⊤j ∆
(j) − e⊤j ∆

(j)

=

(
j−1∑
k=1

e⊤j L
−1eke

⊤
k ∆

(j)

)
+

 c∑
k=j+1

e⊤j L
−1eke

⊤
k ∆

(j)

+ e⊤j L
−1eje

⊤
j ∆

(j) − e⊤j ∆
(j) (Eqs. 19, 24)

=

(
c∑

k=1

e⊤j L
−1eke

⊤
k ∆

(j)

)
− e⊤j ∆

(j)

=e⊤j L
−1

(
c∑

k=1

eke
⊤
k

)
∆(j) − e⊤j ∆

(j)

=e⊤j L
−1I∆(j) − e⊤j ∆

(j)

=e⊤j
(
L−1 − I

)
∆(j).

(26)

According to the assumption, for 1 ≤ k ≤ j∗ < c, we have

e⊤k W
(k−1) = ω(k) = ω̂(k) = e⊤k Ŵ

(k−1) (27)

and

Q(k) = Q̂(k). (28)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

For 1 ≤ k ≤ j∗,

ε(k) =e⊤k Q
(k) − ω(k) (Eq. 11)

=e⊤k Q
(k) − e⊤k W

(k−1)

=e⊤k

(
Q(k) −W (k−1)

)
=e⊤k

(
Q̂(k) − Ŵ (k−1)

)
(Eqs. 27, 28)

=e⊤k

(
Q̂(k) −

(
Ŵ (0) −L−1∆(k−1)

))
(Eq. 16)

=e⊤k

((
Q̂(k) − Ŵ (0)

)
+L−1∆(k−1)

)
=e⊤k

(
∆(k) +L−1∆(k−1)

)
(Eq. 15)

=e⊤k

(
∆(k) +

(
L−1 − I

)
∆(k)

)
(Eq. 26)

=e⊤k L
−1∆(k)

=e⊤k L
−1∆(j∗) (Eq. 25).

(29)

ω(j∗+1) =e⊤j∗+1W
(j∗) (Eq. 7)

=e⊤j∗+1

(
W (j∗−1) +Lej∗ε

(j∗)
)

(Eq. 13)

=e⊤j∗+1

(
W (0) +

(
j∗∑

k=1

Lekε
(k)

))
(Eq. 13)

=e⊤j∗+1

(
Ŵ (0) +

(
j∗∑

k=1

Leke
⊤
k L

−1∆(j∗)

))
(Eq. 29)

=e⊤j∗+1

(
Ŵ (0) +L

(
j∗∑

k=1

eke
⊤
k

)
L−1∆(j∗)

)
=e⊤j∗+1

(
Ŵ (0) + (L− I)L−1∆(j∗)

)
(Eq. 20)

=e⊤j∗+1

(
Ŵ (0) −L−1∆(j∗) +∆(j∗)

)
=e⊤j∗+1

(
Ŵ (0) −L−1∆(j∗) + 0

)
(Eq. 24)

=e⊤j∗+1

(
Ŵ (0) −L−1∆(j∗)

)
=e⊤j∗+1Ŵ

(j∗) (Eq. 16)

=ω̂(j∗+1) (Eq. 8).

(30)

Eq. 3 holds for j = j∗ + 1. ■

B.2 STEP 2

Algorithm 7 (back-to-front order) is generated by reversing the iteration direction of Algorithm 6.
Besides changing the direction of the index j, we also need to change the LDL decomposition to a so-
called “UDU” decomposition so that the error propagation is correctly applied to the not-yet-quantized
weights in the front dimensions.

Justification

Let P be the anti-diagonal permutation matrix with P = P⊤ = P−1. Let L̂ be the LDL decomposi-
tion of the permuted Hessian inverse PH−1P = L̂D̂

1
2

L D̂
1
2

L L̂
⊤ where L̂ is a lower triangular matrix

with all diagonal elements being 1, and D̂
1
2

L is a non-negative diagonal matrix.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Since we are changing the iteration direction instead of applying the permutation, we permute the
matrix L̂ back, yielding U = PL̂P. Alternatively, U can be calculated using the decomposition
H−1 = PL̂PPD̂

1
2

LPPD̂
1
2

LPPL̂⊤P = UD
1
2

UD
1
2

UU
⊤ where U is an upper triangular matrix with

all diagonal elements being 1, and D
1
2

U = PD̂
1
2

LP is a non-negative diagonal matrix.

The decomposition to calculate U from H−1 is what we call “UDU” decomposition, which can be
considered as a variant of the LDL decomposition.

B.3 STEP 3

To distinguish the variables using the same symbol in Algorithms 7 and 8, we use symbols withˆ to
denote the symbols in Algorithm 7, and use the symbols with˜ for Algorithm 8.

We have the Cholesky decomposition of H: H =
(
H−1

)−1
=
(
UD

1
2

UD
1
2

UU
⊤
)−1

=(
D

− 1
2

U U−1
)⊤

D
− 1

2

U U−1, so that A = D
− 1

2

U U−1.

Claim

ω̂j = ω̃j , 1 ≤ j ≤ c, (31)

and consequently,
Ẑ(j) = Z̃(j), 1 ≤ j ≤ c+ 1, (32)

and
Q̂(j) = Q̃(j), 1 ≤ j ≤ c+ 1. (33)

Proof Eq. 31 by Induction

For 1 ≤ j ≤ c,

ω̃(j) =
e⊤j Y

(j+1)

e⊤j Aej

=
e⊤j Y

(j+1)

e⊤j D
− 1

2

U U−1ej

=
e⊤j Y

(j+1)

D
− 1

2

U [j, j]

=D
1
2

U[j, j]e
⊤
j Y

(j+1)

=e⊤j D
1
2

UY
(j+1).

(34)

The following equalities are held by the design of Algorithms 6 and 8:

Q̂(c+1) = Q̃(c+1) = Ŵ (c+1) = W̃ . (35)

Y (c+1) = AW̃ = D
− 1

2

U U−1W̃ . (36)

ω̂(j) = e⊤j Ŵ
(j+1), 1 ≤ j ≤ c. (37)

Q̂(j) = Q̂(j+1) + ej

(
e⊤j Ẑ

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j+1)
)
, 1 ≤ j ≤ c. (38)

Q̃(j) = Q̃(j+1) + ej

(
e⊤j Z̃

(j) diag
(
S⊤ej

)
− e⊤j Q̃

(j+1)
)
, 1 ≤ j ≤ c. (39)

∆(j) = Q̂(j) − Ŵ (c+1), 1 ≤ j ≤ c. (40)

Ŵ (j) = Ŵ (c+1) −U−1∆(j), 1 ≤ j ≤ c. (41)

Y (j) = Y (j+1) −Aeje
⊤
j Q̃

(j) = Y (j+1) −D
− 1

2

U U−1eje
⊤
j Q̃

(j), 1 ≤ j ≤ c. (42)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Because U is an upper triangular matrix with all diagonal elements being 1, U−1 is also an upper
triangular matrix with all diagonal elements being 1.

For 1 ≤ k < j ≤ c,

e⊤j Uek = e⊤j U
−1ek = 0. (43)

e⊤c U = e⊤c . (44)

For 1 ≤ j ≤ c,

e⊤j Uej = e⊤j U
−1ej = 1. (45)

(1) Eq. 31 holds for j = c:

Using Eqs. 34, 35, 36, 37, 44,

ω̃(c) = e⊤c D
1
2

UY
(c+1) = e⊤c D

1
2

UD
− 1

2

U U−1W̃ = e⊤c U
−1W̃ = e⊤c W̃ = e⊤c Ŵ

(c+1) = ω̂(c).
(46)

(2) Assume Eq. 31 holds for all j ≥ j∗, 1 < j∗ ≤ c.

With Eq. 38, for 1 ≤ j ≤ c, 1 ≤ k ≤ c and j ̸= k,

e⊤k Q̂
(j) =e⊤k

(
Q̂(j+1) + ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j+1)
))

=e⊤k Q̂
(j+1) + e⊤k ej

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j+1)
)

=e⊤k Q̂
(j+1) + 0

(
e⊤j Z

(j) diag
(
S⊤ej

)
− e⊤j Q̂

(j+1)
)

=e⊤k Q̂
(j+1).

(47)

Recursively applying Eq. 47, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k Q̂
(j) =

{
e⊤k Q̂

(k) if 1 ≤ j ≤ k ≤ c,

e⊤k Q̂
(c+1) = e⊤k Ŵ

(c+1) if 1 ≤ k < j ≤ c.
(48)

Similar to Eq. 48, with Eq. 39, for 1 ≤ j ≤ c, 1 ≤ k ≤ c,

e⊤k Q̃
(j) =

{
e⊤k Q̃

(k) if 1 ≤ j ≤ k ≤ c,

e⊤k Q̃
(c+1) = e⊤k W̃ if 1 ≤ k < j ≤ c.

(49)

For 1 ≤ j ≤ c,

Y (j) =Y (j+1) −D
− 1

2

U U−1eje
⊤
j Q̃

(j) (Eq. 42)

=Y (c+1) −

 c∑
k=j

D
− 1

2

U U−1eke
⊤
k Q̃

(k)

 (Eq. 42)

=D
− 1

2

U U−1W̃ −

 c∑
k=j

D
− 1

2

U U−1eke
⊤
k Q̃

(j)

 (Eq. 36)

=D
− 1

2

U U−1

W̃ −

 c∑
k=j

eke
⊤
k

 Q̃(j)



(50)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

For 1 ≤ j < c,

ω̃(j) =e⊤j D
1
2

UY
(j+1) (Eq. 34)

=e⊤j D
1
2

UD
− 1

2

U U−1

W̃ −

 c∑
k=j+1

eke
⊤
k

 Q̃(j+1)

 (Eq. 50)

=e⊤j U
−1

W̃ −

 c∑
k=j+1

eke
⊤
k

 Q̃(j+1)


=e⊤j U

−1W̃ −

 c∑
k=j+1

e⊤j U
−1eke

⊤
k

 Q̃(j+1)

=e⊤j U
−1W̃ −

((
c∑

k=1

e⊤j U
−1eke

⊤
k

)
−

(
j−1∑
k=1

e⊤j U
−1eke

⊤
k

)
− e⊤j U

−1eje
⊤
j

)
Q̃(j+1)

=e⊤j U
−1W̃ −

((
c∑

k=1

e⊤j U
−1eke

⊤
k

)
−

(
j−1∑
k=1

0e⊤k

)
− 1e⊤j

)
Q̃(j+1) (Eqs. 43, 45)

=e⊤j U
−1W̃ −

(
c∑

k=1

e⊤j U
−1eke

⊤
k

)
Q̃(j+1) + e⊤j Q̃

(j+1)

=e⊤j U
−1W̃ −

(
c∑

k=1

e⊤j U
−1eke

⊤
k

)
Q̃(j+1) + e⊤j W̃ (Eq. 49)

=e⊤j

(
W̃ −U−1

((
c∑

k=1

eke
⊤
k

)
Q̃(j+1) − W̃

))
=e⊤j

(
W̃ −U−1

(
IQ̃(j+1) − W̃

))
=e⊤j

(
W̃ −U−1

(
Q̃(j+1) − W̃

))
.

(51)

Because e⊤c

(
W̃ −U−1

(
Q̃(c+1) − W̃

))
= e⊤c W̃ = ω̃(c), Eq. 51 can be extended for j = c,

ω̃(j) = e⊤j

(
W̃ −U−1

(
Q̃(j+1) − W̃

))
, 1 ≤ j ≤ c. (52)

According to the assumption, for 1 < j∗ ≤ k ≤ c, we have

Q̂(k) = Q̃(k). (53)

ω̃(j∗−1) =e⊤j∗−1

(
W̃ −U−1

(
Q̃(j∗) − W̃

))
(Eq. 52)

=e⊤j∗−1

(
Ŵ (c+1) −U−1

(
Q̂(j∗) − Ŵ (c+1)

))
(Eq. 53)

=e⊤j∗−1

(
Ŵ (c+1) −U−1∆(j∗)

)
(Eq. 40)

=e⊤j∗−1Ŵ
(j∗) (Eq. 41)

=ω̂(j∗−1) (Eq. 37).

(54)

Eq. 31 holds for j = j∗ − 1. ■

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.4 PROOF OF INEFFECTIVENESS OF ADDITIONAL GPTQ REFINEMENT ON BABAI’S
ALGORITHM

We may try to apply further GPTQ updates in Babai’s algorithm by changing Line 9 in Algorithm 8
to

Y ′(j) ← Y (j) +AUejε
(j) = Y (j+1) −Aeje

⊤
j Q̃

(j) +AUejε
(j) (55)

However, as A = D
− 1

2

U U−1, the ω̃(j−1) remains the same:

ω̃′(j−1)
=e⊤j−1D

1
2

UY
′(j) (Eq. 34)

=e⊤j−1D
1
2

U

(
Y (j) +D

− 1
2

U U−1Uejε
(j)
)

=e⊤j−1D
1
2

UY
(j) + e⊤j−1D

1
2

UD
− 1

2

U U−1Uejε
(j)

=e⊤j−1D
1
2

UY
(j) + e⊤j−1ejε

(j)

=e⊤j−1D
1
2

UY
(j) + 0ε(j)

=e⊤j−1D
1
2

UY
(j)

=ω̃(j−1) (Eq. 34).

(56)

■

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C FURTHER DISCUSSION ON QUANTIZATION ERROR BOUND

C.1 PROOF OF ABSOLUTE AND RELATIVE GPTQ QUANTIZATION ERROR BOUNDS

We prove Theorem 5 as follows.

Denote the basis B(i) = X diag (si), y(i) = Xwi as in Section 4.1 so that the quantization problem

becomes the CVP minimizing
∥∥B(i)zi − y(i)

∥∥2. Applying permutation T gives the permuted basis
A(i) = B(i)T = X diag (si)T = XT diag

(
T−1si

)
. Write the unnormalized Gram-Schmidt

vectors of A(i) as Ã(i) =
[
ã(i)1, . . . , ã(i)c

]
. Babai’s guarantee therefore yields the tight bound∥∥B(i)zi − y(i)

∥∥2 =
∥∥A(i)

(
T−1zi

)
− y(i)

∥∥2 ≤ 1
4

∑c
j=1

∥∥ã(i)j

∥∥2.

We may, without loss of generality, use Theorem 1 to rotate X so that A(i) is upper triangu-
lar. In that case, the norm

∥∥ã(i)j

∥∥ simplifies to
∣∣A(i)[j, j]

∣∣. Let D(i) be the diagonal ma-

trix of the LDL decomposition of A⊤
(i)A(i) such that D(i)[j, j] =

∣∣A(i)[j, j]
∣∣2 =

∥∥ã(i)j

∥∥2.

The summation
∑c

j=1

∥∥ã(i)j

∥∥2 can then be expressed as tr
(
D(i)

)
. Let L be the lower trian-

gular matrix in the LDL decomposition of T⊤X⊤XT = LDL⊤, so that the LDL decom-
position of A⊤

(i)A(i) = diag
(
T−1si

)
T⊤X⊤XT diag

(
T−1si

)
= L(i)D(i)L⊤

(i) has D(i) =

diag
(
T−1si

)
D diag

(
T−1si

)
and L(i) = diag

(
T−1si

)
L diag

(
T−1si

)−1
. The absolute no-

clipping error bound is therefore 1
4

∑c
j=1

∥∥ã(i)j

∥∥2 = 1
4 tr
(
D(i)

)
= 1

4

(
T−1si

)⊤
D
(
T−1si

)
.

For the relative no-clipping quantization error bound, we can plug in
∥∥ã(i)j

∥∥ =
∣∣A(i)[j, j]

∣∣ =√
D(i)[j, j] =

√
(diag (T−1si)D diag (T−1si)) [j, j] =

√
D[j, j]

∣∣(T−1si
)
[j]
∣∣ := dj into

Babai’s relative error bound in Section 3.2.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

C.2 EXPECTED QUANTIZATION ERROR OVER A UNIFORM HYPER-CUBOID

We have shown that, when clipping is disabled, Babai’s nearest-plane (hence back-to-front GPTQ)
ensures the tight worst-case bound

∥X diag (si) zi −Xwi∥2 ≤
1

4

c∑
j=1

∥ãj∥2 , Ã = [ã1, . . . , ãc] (57)

where ãj are the unnormalized Gram-Schmidt vectors of the permuted lattice basis A.

Introduce the half-edge lengths

aj =
1

2
∥ãj∥ , j = 1, . . . , c, (58)

so that the Babai residual always lies in the axis-aligned hyper-cuboid
∏c

j=1 [−aj , aj] and Eq. 57 is
rewritten as

ϵworst =

c∑
j=1

a2j . (59)

Uniform prior on the unknown weight vector. Assume now that the continuous, not-yet-quantized
weight offset u = X (wi − diag(si)zi) is uniformly distributed inside this hyper-cuboid, i.e., each
coordinate uj ∼ Uniform (−aj , aj) and the coordinates are independent. The squared error becomes
the random variable

ϵ =

c∑
j=1

u2
j . (60)

Lemma 7 For a scalar u ∼ Uniform (−a, a) one has E[u2] = a2

3 .

Proof
E[u2] =

1

2a

∫ a

−a

u2du =
1

2a

[
1

3
x3

]a
−a

=
a2

3
. (61)

Expected residual norm. Using independence,

E[ϵ] =
c∑

j=1

E
[
u2
j

]
=

1

3

c∑
j=1

a2j . (62)

Ratio to the worst-case bound. Comparing Eq. 62 with Eq. 59 gives

E[ϵ] =
1

3
ϵworst =⇒ E

[
∥X diag (si) zi −Xwi∥2

]
=

1

12

c∑
j=1

∥ãj∥2. (63)

Hence, under a uniform prior on the weights inside Babai’s orthogonal hyper-cuboid, the average
layer-wise quantization error is exactly 1

3 of the worst-case guarantee stated in Theorem 5.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C.3 EMPIRICAL VERIFICATION ON QUANTIZATION ORDER AND ERROR BOUND

Changing the quantization order alters the diagonal matrix D of the LDL decomposition of the
permuted Hessian and therefore the no-clipping GPTQ/Babai bound (see Section 4.5). When per-
group scales are approximately uniform, minimizing tr (D) is a good proxy for tightening this
bound. To assess different orders (back-to-front, front-to-back, random order, GPTQ’s act-order,
and our min-pivot order), we run the calibration dataset from Section D.2 through the full-precision
Qwen3-8B model and compute per-layer Hessians and calculate the tr (D). For the random order,
we average the results over 100 runs. Table 2 reports tr (D) for the layers in transformer block 18;
other blocks and models show similar patterns. In block 18, act-order already reduces tr (D) relative
to the back-to-front/front-to-back/random baselines, especially in the Q·K·V and Gate·Up layers
(≈35-50% lower). Our min-pivot heuristic consistently attains the smallest trace. In practice, this
tightens the theoretical layer-wise error bound and yields modest but consistent improvements. We
can use act-order as a cheap option and reserve min-pivot for cases where a tighter bound is required.

Table 2: tr (D) with different quantization orders of layers in Qwen3-8B block 18.

Order Q·K·V O Gate·Up Down

back-to-front 1.169e+08 1.824e+08 1.181e+08 1.323e+09

front-to-back 1.161e+08 1.841e+08 1.202e+08 1.320e+09

random (averaged) 1.168e+08 1.856e+08 1.194e+08 1.322e+09

act-order 7.400e+07 1.786e+08 6.052e+07 1.222e+09

min-pivot 7.323e+07 1.772e+08 5.990e+07 1.221e+09

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D FURTHER APPLICATIONS AND EXPERIMENTAL RESULTS

D.1 OVERFLOW-TOLERANT QUANTIZATION ALGORITHMS

Algorithms 9, 11 and 12 are the pseudocodes of our proposed SSQR, HPTQ, and HRTN algorithms
in Section 5. Additional notations are as follows. ρ ∈ [0, 1] is the target outlier rate in SSQR.
Ξ = [ξ1, . . . , ξr] ∈ Rc×r is the sparse weight matrix in SSQR. h ∈ R>0 is the target average
bitwidth in HPTQ and HRTN.

Algorithm 9: SSQR
Input: W ,X,P , λ,Z†, ρ
Output: Z,S,Ξ,Q

1 SMSE ← compute the MSE scale using W and Z†
2 smin, smax ← 0r,2r // initialize the binary search boundary per output channel
3 s← (smin + smax) /2 // the scale for scale
4 while s not converge do
5 S ← SMSE diag (s) // output-channel-wisely proportionally adjust the scale
6 Z,Ξ,Q← SSQRINNERPROCEDURE (W ,S,X,P , λ,Z†) // Algorithm 10

7 smin[i], smax[i]←
{
smin[i], s[i] if ∥Ξ[:, i]∥0 < ρc

s[i], smax[i] otherwise
for i ∈ {1, . . . , r}

8 s← (smin + smax) /2
9 end

Algorithm 10: SSQR Inner Procedure (GPTQ with overflowed elements in floating-point)
Input: W ,S,X,P , λ,Z†
Output: Z,Ξ,Q

1 H ← P⊤ (X⊤X + λI
)
P

2 L← LDL
(
H−1

)
3 W ,S ← P−1W ,P−1S
4 Q,Z ←W ,0
5 for j ← 1 to c do
6 ζ ←W [j, :]/S[j, :]
7 Z[j, :]← ROUND (ζ,Z†)

8 Ξ[j, i]←
{
W [j, i]−Z[j, i] ∗ S[j, i] if Z[j, i] ̸= ROUND (ζ[i],Z)
0 otherwise

// new

9 Q[j, :]← Z[j, :] ∗ S[j, :] +Ξ[j, :] // new
10 ε← Q[j, :]−W [j, :]
11 W [j :, :]←W [j :, :] +L[j :, j]ε
12 end
13 Z,Ξ,Q← PZ,PΞ,PQ // new

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Algorithm 11: HPTQ
Input: W ,X,P , λ, h
Output: Z, s,Q

1 smin, smax ← 0, ∥W ∥∞ // initialize the binary search boundary
2 s← (smin + smax) /2 // the scale
3 while s not converge do
4 S ← s · 1c×r // broadcast the scale
5 Z,Q← GPTQ (W ,S,X,P , λ,Z) // Algorithm 1
6 h′ ← average Huffman encoding bitwidth of Z
7 if h′ < h then
8 smax ← s // too few bits, try smaller scale
9 end

10 else
11 smin ← s // too many bits, try larger scale
12 end
13 s← (smin + smax) /2
14 end

Algorithm 12: HRTN
Input: W , h
Output: Z, s,Q

1 smin, smax ← 0, ∥W ∥∞ // initialize the binary search boundary with min and max
2 s← (smin + smax) /2 // the scale
3 while s not converge do
4 Z ← ROUND (W /s,Z) // round-to-nearest
5 Q← sZ
6 h′ ← average Huffman encoding bitwidth of Z
7 if h′ < h then
8 smax ← s // too few bits, try smaller scale
9 end

10 else
11 smin ← s // too many bits, try larger scale
12 end
13 s← (smin + smax) /2
14 end

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

D.2 EXPERIMENT SETUP

We work with the Qwen3 family of models, which come in a range of sizes. We focus on the
Qwen3-8B model for detailed head-to-head comparisons, while the other variants, Qwen3-0.6B,
Qwen3-1.7B, Qwen3-4B, and Qwen3-14B, help us assess how our method performs across different
model scales.

We construct the calibration dataset for the GPTQ algorithm using the FineWeb-Edu dataset
(HuggingFaceFW/fineweb-edu, subset sample-10BT). The dataset is streamed and shuffled with a
fixed seed for reproducibility. After tokenizing the text samples, our 256 sequences are accumulated
into non-overlapping sequences of length 2048.

We use WikiText-2 and C4 for perplexity evaluations. For WikiText-2, the entire test split is first
concatenated using two line breaks as separators and then tokenized with the default HuggingFace
tokenizer for each model. For C4, we sample individual documents from the selected shard, tokenize
them, and randomly extract sequences of the desired length. In both cases, sequences shorter than the
target length (2048 tokens) are discarded, and sequences longer than the target length are cropped to
the specified window.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

D.3 ACCURACY RESULTS

We compare the perplexity results between RTN, GPTQ, HRTN, HPTQ, and SSQR using the Qwen3-
8B model in Table 3. In addition, the perplexity results for other variants of Qwen3 with HPTQ are
shown in Table 4.

Table 5 shows additional zero-shot results on the Qwen3-8B model for RTN, GPTQ, HRTN, and
HPTQ. Additional HPTQ results on other Qwen3 models are in Tables 6 to 10.

Table 3: Perplexity of Qwen3-8B model under HPTQ, GPTQ, HRTN, RTN, and SSQR with different
bitwidths.

Method Avg Bitwidth Perplexity

WikiText-2 C4

BF16 Baseline 16 9.73 13.55

HPTQ
4.125 9.81 13.64
3.125 10.34 14.23
2.125 13.97 16.89

GPTQ
4.125 10.10 13.92
3.125 12.77 15.61
2.125 57.51 36.14

HRTN
4.125 9.90 13.80
3.125 10.75 14.63
2.125 593.05 503.00

RTN
4.125 10.30 15.20
3.125 16.30 21.08
2.125 2e10 2e10

SSQR-1%
4.445 10.00 13.83
3.445 10.64 14.71
2.445 22.30 27.07

SSQR-2%
4.765 9.96 13.76
3.765 10.57 14.56
2.765 16.55 20.80

SSQR-3%
5.085 9.92 13.76
4.085 10.42 14.32
3.085 14.05 18.57

SSQR-4%
5.405 9.84 13.71
4.405 10.34 14.29
3.405 13.12 17.60

SSQR-5%
5.725 9.80 13.67
4.725 10.32 14.22
3.725 12.88 16.85

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 4: Perplexity of Qwen3 models under HPTQ for different bitwidths.

Model Avg Bitwidth Perplexity

WikiText-2 C4

0.6B

16 20.96 26.37
4.125 22.72 28.35
3.125 31.43 37.92
2.125 156.45 171.38

1.7B

16 16.72 19.92
4.125 18.18 20.99
3.125 19.72 23.15
2.125 46.94 51.96

4B

16 13.66 17.07
4.125 14.26 17.39
3.125 14.55 18.17
2.125 24.40 26.46

8B

16 9.73 13.55
4.125 9.81 13.64
3.125 10.34 14.23
2.125 13.97 16.89

14B

16 8.65 12.23
4.125 8.76 12.12
3.125 9.06 13.97
2.125 11.36 15.50

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 5: Zero-shot evaluation results (%) for Qwen3-8B under different quantization methods across
six benchmarks.

Method Avg Bits Wino MMLU PiQA SciQ TQA

MC1 MC2

BF16 Baseline 16 68.11 73.02 77.80 95.7 36.35 54.50

HPTQ
4.125 67.17 72.28 77.42 95.6 35.01 53.36
3.125 66.93 70.96 77.53 95.4 36.11 54.73
2.125 59.19 52.99 72.52 86.8 31.09 49.01

GPTQ
4.125 68.82 71.76 77.58 95.3 36.35 54.55
3.125 68.35 65.80 75.46 75.46 36.11 55.21
2.125 52.25 34.25 57.83 57.83 28.40 46.91

HRTN
4.125 67.56 72.15 76.99 94.2 36.47 56.46
3.125 66.22 67.85 76.12 93.7 35.13 53.68
2.125 51.22 33.91 65.78 76.8 30.48 51.78

RTN
4.125 67.17 69.71 75.90 94.5 36.84 55.77
3.125 57.93 47.90 70.89 87.1 34.03 52.76
2.125 49.08 22.95 51.63 21.2 24.11 47.33

SSQR-1%
4.445 68.43 72.12 77.04 95.2 37.58 55.81
3.445 68.11 68.46 75.84 95.5 38.19 55.95
2.445 51.85 26.71 61.64 69.8 28.40 43.88

SSQR-2%
4.765 67.25 72.27 77.97 95.5 35.62 53.47
3.765 67.40 69.66 76.22 95.1 33.90 53.05
2.765 55.72 37.48 66.76 83.8 27.54 45.54

SSQR-3%
5.085 67.72 71.89 77.53 95.6 36.47 54.46
4.085 65.59 69.88 77.31 94.3 37.82 55.34
3.085 59.19 49.32 69.59 86.4 29.50 48.53

SSQR-4%
5.405 69.53 72.63 77.31 95.1 36.23 53.60
4.405 67.48 69.51 76.61 94.9 37.21 54.81
3.405 61.25 54.07 72.80 89.5 31.33 50.46

SSQR-5%
5.725 68.27 72.23 77.42 95.2 35.86 53.76
4.725 67.48 70.76 76.71 95.5 35.37 52.91
3.725 62.59 58.67 73.23 90.8 31.21 50.25

Table 6: TruthfullQA (%) zero-shot results (MC1/MC2) for Qwen3 models quantized with HPTQ.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 27.17/42.80 29.50/45.88 37.33/54.83 36.35/54.50 40.76/58.62

4.125 26.19/41.56 28.76/45.17 36.72/54.46 35.01/53.36 40.51/58.28

3.125 25.34/41.95 29.62/46.13 35.25/53.83 36.11/54.73 39.90/58.33

2.125 23.99/46.39 28.15/48.25 31.70/50.67 31.09/49.01 36.84/54.93

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 7: MMLU (%) zero-shot results for Qwen3 models quantized with HPTQ.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 40.34 55.44 68.38 73.02 77.10

4.125 29.84 53.95 67.45 72.28 76.27

3.125 32.92 47.49 62.70 70.96 75.53

2.125 24.58 23.87 40.83 52.99 64.31

Table 8: PiQA (%) zero-shot results for Qwen3 models quantized with HPTQ.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 67.30 72.31 74.92 77.80 79.87

4.125 66.00 70.78 75.30 77.42 79.54

3.125 62.08 68.44 73.01 77.53 78.78

2.125 54.13 57.40 66.76 72.52 75.46

Table 9: WinoGrande (%) zero-shot results for Qwen models quantized with HPTQ.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 56.43 61.48 65.27 68.11 72.53

4.125 54.38 59.67 64.09 67.17 73.01

3.125 52.72 58.72 64.80 66.93 71.19

2.125 49.80 49.96 53.04 59.19 66.06

Table 10: SciQ (%) zero-shot results for Qwen3 models quantized with HPTQ, with internal reasoning
disabled.

Avg Bitwidth 0.6B 1.7B 4B 8B 14B

16 83.5 91.2 93.5 95.7 96.8

4.125 80.7 88.9 93.3 95.6 97.1

3.125 76.6 89.9 92 95.4 96.8

2.125 40.8 62.8 81.2 86.8 93.8

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

D.4 TECHNICAL DETAILS AND PERFORMANCE OF SSQR’S CUDA KERNEL

The kernel is specialized for two regimes: in the low-batch regime, the kernel utilizes SIMT GPU
cores exclusively, while tensor cores are utilized when batch size is ≥8, the smallest outer dimension
where tensor cores can be utilized without padding, and with 16-bit operands and 32-bit floating-point
accumulators. For both regimes, sparse outliers are handled with SIMT cores.

To handle the dense inliers, we apply two reordering schemes here. First, the weights are reordered
for memory movement involving tensor cores. Second, we apply an additional reordering scheme to
enable batched conversion between 2-4-bit integers into their 16-bit counterparts.

To handle the sparse outliers, we group sparse outliers in groups of 16 rows (matching the outer tensor
core dimension), then store them in column-major row order with padding to account for differences
between non-zero counts across rows in the group.

Figure 5 shows the layer-wise speedup of the SSQR kernel on NVIDIA RTX 6000 GPU compared
to the PyTorch BF16 matrix multiplication baseline across different layer shapes in the Qwen3-8B
model (layers with the same input are merged), inlier bitwidths, outlier rates, and batch sizes. We
observe the largest gains in the low-batch regime, with up to 4× speedup when <1% outliers are
present. As the outlier rate increases, the speedup diminishes, but the kernel consistently outperforms
the BF16 baseline across all settings.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

1 2 4 8 160

1

2

3

4

5

Sp
ee

du
p

(Q
·K

·V
 L

ay
er

)

1 2 4 8 160

1

2

3

4

5

1 2 4 8 160

1

2

3

4

5

1 2 4 8 160

1

2

3

4

5

Sp
ee

du
p

(O
 L

ay
er

)

1 2 4 8 160

1

2

3

4

5

1 2 4 8 160

1

2

3

4

5

1 2 4 8 160

1

2

3

4

5

Sp
ee

du
p

(G
at

e·
U

p
La

ye
r)

1 2 4 8 160

1

2

3

4

5

1 2 4 8 160

1

2

3

4

5

1 2 4 8 16
Batch Size (2-Bit Inlier)

0

1

2

3

4

5

Sp
ee

du
p

(D
ow

n
La

ye
r)

1 2 4 8 16
Batch Size (3-Bit Inlier)

0

1

2

3

4

5

1 2 4 8 16
Batch Size (4-Bit Inlier)

0

1

2

3

4

5

Outlier Rate
0% 1% 2% 3% 4% 5%

Figure 5: Layer-wise inference speedup of the SSQR kernel over the PyTorch BF16 baseline on
Qwen3-8B across inlier bitwidths, outlier rates, and batch sizes on A6000 GPU.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

D.5 RESULTS FOR LLAMA MODELS

Tables 11 to 15 report the evaluation results for Llama-3.2-3B-Instruct, Llama-3.1-8B-Instruct, and
Llama-2-7B models under the same setups as in Section D.3.

Table 11: Perplexity of Llama-3.2-3B-Instruct model under HPTQ, GPTQ, and SSQR with different
bitwidths.

Method Avg Bitwidth Perplexity

WikiText-2 C4

BF16 Baseline 16 11.01 13.49

HPTQ
4.125 11.27 14.64
3.125 12.51 15.81
2.125 22.58 29.82

GPTQ
4.125 11.96 15.37
3.125 15.20 18.99
2.125 357.69 172.89

SSQR-1%
4.445 11.38 14.95
3.445 13.48 18.38
2.445 83.41 67.19

SSQR-2%
4.765 11.50 14.77
3.765 13.20 16.65
2.765 45.93 41.69

SSQR-3%
5.085 11.39 14.64
4.085 12.50 16.10
3.085 37.41 30.74

SSQR-4%
5.405 11.53 14.69
4.405 12.33 15.96
3.405 23.74 27.59

SSQR-5%
5.725 11.47 14.69
4.725 12.29 15.81
3.725 22.94 25.44

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 12: Perplexity of Llama-3.1-8B-Instruct model under HPTQ, GPTQ, and SSQR with different
bitwidths.

Method Avg Bitwidth Perplexity

WikiText-2 C4

BF16 Baseline 16 7.20 9.09

HPTQ
4.125 7.37 9.99
3.125 7.84 11.04
2.125 11.89 16.37

GPTQ
4.125 7.56 10.46
3.125 9.44 13.16
2.125 148.15 71.33

SSQR-1%
4.445 7.50 10.30
3.445 8.67 12.35
2.445 57.26 39.96

SSQR-2%
4.765 7.48 10.20
3.765 8.32 11.75
2.765 25.18 25.21

SSQR-3%
5.085 7.41 10.11
4.085 8.16 11.54
3.085 17.27 20.03

SSQR-4%
5.405 7.39 10.05
4.405 8.01 11.31
3.405 13.22 17.77

SSQR-5%
5.725 7.38 10.03
4.725 7.98 11.13
3.725 12.12 16.13

Table 13: Perplexity of Llama-2-7B model under HPTQ, GPTQ, and SSQR-1% with different
bitwidths.

Method Avg Bitwidth Perplexity

WikiText-2 C4

FP16 Baseline 16 5.50 6.24

HPTQ
4.125 5.53 6.73
3.125 5.77 7.04
2.125 7.45 9.43

GPTQ
4.125 5.70 6.90
3.125 6.75 8.08
2.125 28.07 26.13

SSQR-1%
4.445 5.60 6.81
3.445 6.09 7.52
2.445 14.58 15.85

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Table 14: Zero-shot evaluation results (%) for Llama-3.2-3B-Instruct under different quantization
methods.

Method Avg Bits Wino MMLU PiQA SciQ HSwag

acc accnorm

BF16 Baseline 16 68.75 62.18 76.17 95.4 53.27 71.65

HPTQ
4.125 68.03 61.57 76.55 95.0 53.02 71.28
3.125 68.35 58.50 7497 95.5 51.76 70.00
2.125 60.85 42.75 69.15 89.9 44.54 60.29

GPTQ
4.125 68.11 59.81 75.73 95.5 52.29 70.54
3.125 66.06 49.13 72.58 94.0 47.25 63.93
2.125 50.59 22.96 53.65 63.4 28.06 30.58

SSQR-1%
4.445 68.19 60.94 76.12 95.7 52.37 70.88
3.445 66.93 54.10 74.92 95.6 50.55 68.86
2.445 51.70 23.97 58.22 64.5 31.14 36.90

SSQR-2%
4.765 68.03 61.17 76.33 95.2 52.49 70.99
3.765 65.51 56.37 74.43 94.4 50.88 68.85
2.765 53.12 23.91 60.01 78.3 34.12 42.99

SSQR-3%
5.085 68.27 61.68 76.82 95.4 53.03 71.29
4.085 66.69 57.65 75.03 95.0 50.98 69.00
3.085 58.48 34.20 65.61 90.5 39.87 52.43

SSQR-4%
5.405 68.90 61.11 76.28 95.5 52.80 71.03
4.405 66.77 57.73 75.03 95.3 51.08 68.79
3.405 57.85 33.74 66.49 90.1 40.66 54.44

SSQR-5%
5.725 68.35 61.67 75.57 95.3 52.88 70.97
4.725 66.69 57.02 75.52 95.3 51.32 69.70
3.725 57.38 37.24 65.56 91.5 41.37 54.96

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Table 15: Zero-shot evaluation results (%) for Llama-3.1-8B-Instruct under different quantization
methods.

Method Avg Bits Wino MMLU PiQA SciQ HSwag

acc accnorm

BF16 Baseline 16 73.72 68.31 80.14 97.3 59.81 79.59

HPTQ
4.125 73.56 67.90 79.49 97.7 59.57 79.25
3.125 72.77 64.58 79.16 96.9 58.42 78.21
2.125 63.69 45.01 69.15 90.8 49.84 67.98

GPTQ
4.125 73.80 65.68 79.27 97.2 58.61 78.36
3.125 72.45 58.19 77.37 95.5 55.21 74.57
2.125 54.93 24.67 54.46 75.1 31.77 37.79

SSQR-1%
4.445 74.43 66.78 79.65 96.9 59.18 78.93
3.445 72.45 60.14 77.97 96.3 56.74 76.24
2.445 52.80 23.07 58.49 74.1 33.25 40.05

SSQR-2%
4.765 73.80 67.21 79.49 97.2 58.94 78.53
3.765 73.24 63.13 78.78 96.4 57.63 77.22
2.765 54.30 27.08 61.04 82.5 38.41 50.41

SSQR-3%
5.085 72.93 67.38 79.54 96.9 59.64 79.07
4.085 73.09 63.77 79.11 96.6 57.62 77.40
3.085 54.54 26.15 58.81 83.6 38.34 49.52

SSQR-4%
5.405 73.24 66.95 79.92 96.9 59.32 79.06
4.405 73.24 62.92 78.73 96.5 57.61 77.47
3.405 54.54 29.95 54.95 82.3 39.80 51.87

SSQR-5%
5.725 74.03 67.91 80.52 97.2 59.49 79.39
4.725 73.40 64.14 79.05 97.0 58.16 77.63
3.725 64.25 42.59 72.58 88.7 49.94 68.20

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

D.6 COMPARISON WITH OTHER QUANTIZATION METHODS

We compare zero-shot WinoGrande and PiQA accuracies of our methods (HPTQ, SSQR) against
GPTQ and state-of-the-art post-training, weight-only quantizers AQLM (Egiazarian et al., 2024),
QuIP# (Tseng et al., 2024a), and QTIP (Tseng et al., 2024b) on Llama-2-7B. Results are reported
in Table 16, sorted by average bitwidth. Metrics for AQLM, QuIP#, and QTIP are taken from their
respective papers.

As shown in Table 16, for average bitwidth ≥ 4, all methods yield accuracy close to the full-precision
baseline. In the 3-4 bit regime, vanilla GPTQ falls behind recent methods; however, HPTQ and SSQR
close this gap, bringing a scalar quantization approach to parity with vector quantization methods
(AQLM, QuIP#, QTIP). In the 2-3 bit regime, HPTQ remains competitive with the state of the art.

Table 16: Comparing the zero-shot results of different quantization methods on Llama-2-7B.

Method Avg Bitwidth WinoGrande PiQA
FP16 Baseline 16 69.46 78.13

AQLM 5.020 67.40 78.29
SSQR-1% 4.445 68.82 78.35
HPTQ 4.125 69.61 77.75
GPTQ 4.125 68.82 77.97
AQLM 4.040 67.32 78.24
QuIP# 4.000 67.60 78.40
QTIP 4.000 67.10 78.40

SSQR-1% 3.445 65.43 77.15
HPTQ 3.125 67.72 77.80
GPTQ 3.125 64.96 73.88
AQLM 3.040 66.93 76.88
QuIP# 3.000 66.50 77.30
QTIP 3.000 66.90 78.10

SSQR-1% 2.445 50.04 56.15
AQLM 2.290 65.67 74.92
HPTQ 2.125 65.82 73.56
GPTQ 2.125 49.64 56.20
AQLM 2.020 65.67 74.76
QuIP# 2.000 64.90 75.10
QTIP 2.000 64.70 75.90

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

E LLM USAGE

LLM was used to aid and polish the writing of this paper, e.g., correcting grammar and rephrasing
sentences.

43

	Introduction
	Related Work
	Preliminaries and Notations
	Linear-Layer Quantization Problem
	The Closest Vector Problem (CVP)

	Theoretical Results
	Equivalence Between L2 Quantization and CVP
	OBQ's Geometric Interpretation
	GPTQ and Babai's Algorithm
	GPTQ's Error Bound
	The Role of Quantization Order in GPTQ

	Applications
	Conclusion
	Ethics Statement
	Reproducibility Statement
	References
	Applying Babai's Algorithm to Batched Quantization
	Quantization-CVP Correspondence
	Babai's Quantization Algorithm

	Algebraic Equivalence Proof of GPTQ and Babai's Algorithm
	Step 1
	Step 2
	Step 3
	Proof of ineffectiveness of additional GPTQ refinement on Babai's algorithm

	Further Discussion on Quantization Error Bound
	Proof of Absolute and Relative GPTQ Quantization Error Bounds
	Expected Quantization Error over a Uniform Hyper-Cuboid
	Empirical Verification on Quantization Order and Error Bound

	Further Applications and Experimental Results
	Overflow-Tolerant Quantization Algorithms
	Experiment Setup
	Accuracy Results
	Technical Details and Performance of SSQR's CUDA Kernel
	 Results for Llama Models
	 Comparison with Other Quantization Methods

	LLM Usage

