

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

IN-CONTEXT LEARNING FOR PURE EXPLORATION

Anonymous authors

Paper under double-blind review

ABSTRACT

We study the *active sequential hypothesis testing* problem, also known as *pure exploration*: given a new task, the learner *adaptively collects data* from the environment to efficiently determine an underlying correct hypothesis. A classical instance of this problem is the task of identifying the best arm in a multi-armed bandit problem (a.k.a. BAI, Best-Arm Identification), where actions index hypotheses. Another important case is generalized search, a problem of determining the correct label through a sequence of strategically selected queries that indirectly reveal information about the label. In this work, we introduce *In-Context Pure Exploration* (**ICPE**), which meta-trains Transformers to map *observation histories* to *query actions* and a *predicted hypothesis*, yielding a model that transfers in-context. At inference time, **ICPE** actively gathers evidence on new tasks and infers the true hypothesis without parameter updates. Across deterministic, stochastic, and structured benchmarks, including BAI and generalized search, **ICPE** is competitive with adaptive baselines while requiring no explicit modeling of information structure. Our results support Transformers as practical architectures for *general sequential testing*.

1 INTRODUCTION

Sequential architectures have shown striking in-context learning (ICL) abilities: given a short sequence of examples, they can infer task structure and act without parameter updates (Lee et al., 2023; Schaul & Schmidhuber, 2010; Bengio et al., 1990). While this behavior is well documented for supervised input–output tasks, as well as regret minimization problems, many real problems demand sequential experiment design: how do we allocate experiments to reliably infer an hypothesis? For instance, imagine a librarian trying to figure out which book you want by asking a series of questions. Similarly, in generalized search (Nowak, 2008), the learner adaptively chooses which tests to run, each partitioning the hypothesis class, to identify the true hypothesis as quickly as possible. This raises a natural question: can we leverage ICL for adaptive *data collection and hypothesis identification* across a family of problems?

We study this question through the lens of Active Sequential Hypothesis Testing (ASHT) (Chernoff, 1992; Cohn et al., 1996), a.k.a. *pure exloration* (Degenne & Koolen, 2019), where an agent adaptively performs measurements in an environment to identify a ground-truth hypothesis. In particular, we study a Bayesian formulation of ASHT, where each environment is drawn from a family of possible problems \mathcal{M} .

Classically, ASHT has been studied either (i) with a fixed confidence δ (i.e., stop as soon as the predicted hypothesis is correct with error probability at most δ) (Jang et al., 2024) or (ii) a fixed sampling budget (use N samples to predict the correct hypothesis) (Atsidakou et al., 2022). For example, in the fixed-confidence setting one can use ASHT to minimize the number of DNA-based tests performed to accurately detect cancer (Gan et al., 2021). Another canonical instantiation is Best-Arm Identification (BAI) in stochastic multi-armed bandits (Audibert & Bubeck, 2010). In this problem the agent sequentially selects an action (the query) and observes a noisy reward: the task is to identify the action with the highest mean reward¹. Other applications include medical diagnostics (Berry et al., 2010), sensor management (Hero & Cochran, 2011) and recommender systems (Resnick & Varian, 1997).

Despite substantial progress (Ghosh, 1991; Naghshvar & Javidi, 2013; Naghshvar et al., 2012; Mukherjee et al., 2022), solving ASHT problems remains difficult. Even in simple tabular environ-

¹Note that, *in this particular case*, the hypothesis space coincides with the query space of the agent.

Figure 1: (a) Generalized search example: **ICPE** starts from a masked image (left), and sequentially reveals patches expected to reduce the posterior entropy over labels. It stops once the inferred label is δ -correct (right). (b) After executing an action a_t , the agent observes x_{t+1} . At inference time, the data collected is used to infer an hypothesis.

ments, computing optimal sampling policies often requires strong modeling assumptions (known observation models that do not depend on the history, and/or known inference rules) and solving challenging (often nonconvex) programs (Al Marjani et al., 2021). This leaves open whether one can *learn*, in a simple way, to both gather informative data and infer the correct hypothesis without such assumptions.

To answer this question, we introduce In-Context Pure Explorer (**ICPE**), a Transformer-based architecture meta-trained on a family of tasks to jointly learn a data-collection policy and an inference rule, in both *fixed-confidence* and *fixed-budget* regimes. **ICPE** is a model that transfers in-context: at inference time, **ICPE** gathers evidence on new tasks and infers the true hypothesis without parameter updates (Schaul & Schmidhuber, 2010; Bengio et al., 1990).

The practical implementation of **ICPE** emerges naturally from the theory alone, showing how a principled information-theoretic reward function can be used to train, using Reinforcement Learning (RL), an optimal data-collection policy. Additionally, **ICPE** relaxes classical assumptions: the data-generation mechanism P is unknown and may be history-dependent, and the mapping from data to hypotheses is also unknown (we do not assume a known likelihood or a hand-designed test). These facts, combined with the simple and practical implementation of **ICPE**, offer a new way to design efficient ASHT methods in more general environments.

On BAI and generalized search tasks (deterministic, stochastic, structured), **ICPE** efficiently explores and achieves performance comparable to instance-dependent algorithms, while requiring only a forward pass at test time, and without requiring solving any complex optimization problem.

2 PROBLEM SETTING

The problem we consider is as follows: on an environment instance $M \sim \mathcal{P}$, sampled from a prior \mathcal{P} over an environment class \mathcal{M} , the learner chooses actions (queries²) a_t in rounds $t = 1, 2, \dots$ and observes outcomes x_{t+1} . The aim is to gather a trajectory $\mathcal{D}_t = (x_1, a_1, \dots, a_{t-1}, x_t)$ that is informative enough to identify an environment-specific ground-truth hypothesis H^* with high probability.

Informally, we seek to answer the following question:

Given an environment M drawn from a prior \mathcal{P} , how can we learn (i) a sampling policy π that collects data \mathcal{D} from M and (ii) an inference rule I such that $I(\mathcal{D})$ reliably predicts H^ ?*

Environments, sampling policy and hypotheses. We consider environments $(M = (\mathcal{X}, \mathcal{A}, \rho, P, H^*))$ with observation space \mathcal{X} , action set \mathcal{A} , initial observation law $\rho \in \Delta(\mathcal{X})$, and a (possibly history-dependent) generative mechanism $P = (P_t)_{t \geq 1}$ such that $x_{t+1} \sim P_t(\cdot | \mathcal{D}_t, a_t)$. All $M \in \mathcal{M}$ share the same \mathcal{X} and \mathcal{A} . The learner uses a (possibly randomized) policy $\pi = (\pi_t)_{t \geq 1}$ with $a_t \sim \pi_t(\cdot | \mathcal{D}_t)$, and a sequence of inference rules $I = (I_t)_{t \geq 1}$ with $I_t : \mathcal{D}_t \rightarrow \mathcal{H}$ for a finite hypothesis set \mathcal{H} . We assume throughout that H^* is induced by the environment via a measurable functional h^* , i.e., $H^* := h^*(\rho, P)$, and is almost surely unique under \mathcal{P} .

Example 2.1 (Best Arm Identification). *In BAI an agent seeks to identify the best arm among K arms. Upon selecting an action a at time t , it observes a random reward x_t distributed according to a distribution $P(\cdot | a_t)$. The goal is to identify $a^* = \arg \max_a \mathbb{E}_{x \sim P(\cdot | a)}[x]$ (so $H^* = a^*$). Many*

²The reason why denote “queries” as “actions” stems from the fact that the problem can be modeled similarly to a Markov Decision Process (MDP)(Puterman, 2014), and queries correspond to actions in an MDP.

108 algorithms exist for specific assumptions (Garivier & Kaufmann, 2016; Jedra & Proutiere, 2020),
 109 but designs change drastically with the model, and extensions to richer settings can be difficult and
 110 often non-convex (Marjani & Proutiere, 2021).

112 **Fixed confidence and fixed budget regimes.** Two regimes are usually considered in pure exploration:

114 • **Fixed confidence:** Given a target error level $\delta \in (0, 1)$, the learner chooses: (i) a stopping
 115 time $\tau \in \mathbb{N}$ that denotes the total number of queries and *marks* the *random* moment data
 116 collection stops, (ii) a data-collection policy π , (iii) and an inference rule I that minimize
 117 the expected total number of queries τ while meeting a correctness guarantee:

$$\inf_{\tau, \pi, I} \mathbb{E}^\pi [\tau] \quad \text{s.t.} \quad \mathbb{P}^\pi (I_\tau(\mathcal{D}_\tau) = H^*) \geq 1 - \delta. \quad (1)$$

120 where $\mathbb{P}^\pi(\cdot)$ denotes the probability of the underlying data collection process when π gathers
 121 data from M , and M is sampled from a prior \mathcal{P} .

122 • **Fixed budget:** For a given horizon $N \in \mathbb{N}$, the learner chooses π and I to maximize the
 123 chance of predicting the correct hypothesis after exactly N queries:

$$\sup_{\pi, I} \mathbb{P}^\pi (I_N(\mathcal{D}_N) = H^*). \quad (2)$$

127 These two objectives capture the main operational modes of pure exploration: “stop when certain” and
 128 “maximize accuracy over a fixed horizon”. Further note that the problem we propose to solve extends
 129 classical ASHT by allowing environment-specific, history-dependent observation kernels: $x_{t+1} \sim$
 130 $P_t(\cdot | \mathcal{D}_t, a_t)$. Standard formulations assume memoryless dependence only on (H^*, a_t) (Naghshvar
 131 & Javidi, 2013; Garivier & Kaufmann, 2016). Moreover, whereas ASHT/BAI typically use known
 132 estimators (e.g., maximum likelihood), we *learn the inference rule from data*. Consequently, both the
 133 sampling policy π and the inference rule I can depend on entire histories.

3 ICPE: IN-CONTEXT PURE EXPLORATION

135 In this section we describe **ICPE**, a meta-RL approach for solving eqs. (1) and (2). The implementa-
 136 tion of **ICPE** is motivated from the theory. We first show that learning an optimal inference rule I
 137 amounts to computing a posterior distribution. Secondly, the policy π can be learned using RL with
 138 an appropriate reward function.

139 Importantly, the reward function used for training π *emerges* naturally from the problem formulation,
 140 and it is *not* a user-chosen criterion, making it a principled information-theoretical reward function.
 141 We now describe the theory, and then describe the practical implementation of **ICPE**.

3.1 THEORETICAL RESULTS

144 Our theoretical results highlight that the main quantity of interest, in both regimes in eqs. (1) and (2),
 145 is the posterior distribution over the true hypothesis $\mathbb{P}(H^* = H | \mathcal{D}_t)$. First, the *optimal inference rule*
 146 *I** is based on this posterior. Secondly, this posterior naturally defines a reward function that can
 147 characterize the optimality of a data-collection policy.

148 Throughout this section, we assume that $\mathcal{X} \subset \mathbb{R}$ is compact and \mathcal{A}, \mathcal{H} are finite. We instantiate \mathcal{M}
 149 via a parametrized family $\{(P_\omega, \rho_\omega) : \omega \in \Omega\}$ with Ω compact and $\omega \mapsto (P_\omega, \rho_\omega)$ continuous, so a
 150 prior on Ω induces a prior on \mathcal{M} . For the sake of brevity, we provide informal statements here, and
 151 refer the reader to app. B.1 for all the details.

152 We have the following result about the optimality of the inference, proved in app. B.1.2.

154 **Proposition 3.1** (Inference Rule Optimality). *Let $t \geq 1$ and a policy π . The optimal inference rule to
 155 $\sup_{I_t} \mathbb{P}^\pi(H^* = I_t(\mathcal{D}_t))$ is given by $I_t^*(z) = \arg \max_{H \in \mathcal{H}} \mathbb{P}(H^* = H | \mathcal{D}_t = z)$.*

156 Concretely, prop. 3.1 identifies the optimal inference rule as the *maximum a posteriori* estimator
 157 based on $\mathbb{P}(H^* = H | \mathcal{D}_t)$, so that learning I_ϕ amounts to learning this posterior. Based on this we
 158 can now differentiate between the two settings.

160 **Fixed budget.** We begin with the simpler fixed budget case. The key idea is to show that the optimal
 161 policy π^* maximizes an action-value function Q (Sutton & Barto, 2018). First, define the following
 reward function: for $t < N$ let $r_t(\mathcal{D}_t) := 0$, and for $t = N$ set $r_N(\mathcal{D}_N) = \max_H \mathbb{P}(H^* = H | \mathcal{D}_N)$.

In words, we assign a reward equal to the maximum value of the posterior distribution at the last time step and 0 otherwise. Then, define $V_N(\mathcal{D}_N) = r_N(\mathcal{D}_N)$ to be the optimal value at the last timestep $t = N$. From this definition, we can recursively define the Q -function as follows:

$$Q_t(\mathcal{D}_t, a) = \mathbb{E}_{x_{t+1} | (\mathcal{D}_t, a)} [V_{t+1}(\underbrace{(\mathcal{D}_t, a, x_{t+1})}_{=\mathcal{D}_{t+1}})] \text{ and } V_t(\mathcal{D}_t) = \max_{a \in \mathcal{A}} Q_t(\mathcal{D}_t, a) \quad \forall t \leq N - 1.$$

where “ $x_{t+1} | (\mathcal{D}_t, a)$ ” denotes the posterior distribution of x_{t+1} given (\mathcal{D}_t, a) . Optimizing with respect to this reward function yields an optimal solution to (2), which we formalize in the following result proved in app. B.1.3.

Theorem 3.2 (Policy Optimality for Fixed Budget). *For all $t \geq 1$, define the policy $\pi_t^*(\mathcal{D}_t) = \arg \max_{a \in \mathcal{A}} Q_t(\mathcal{D}_t, a)$. Then, (π^*, I_N^*) (where I_N^* is as in prop. 3.1) are an optimal solution of eq. (2), and we have that*

$$\sup_{\pi, I} \mathbb{P}^\pi (I_N(\mathcal{D}_N) = H^*) = \mathbb{E}^{\pi^*} [r_N(\mathcal{D}_N)]. \quad (3)$$

Simply speaking, thm. 3.2 indicates that an optimal exploration policy in the fixed-budget setting is obtained by a greedy policy with respect to a Q -function whose terminal reward is the maximum posterior mass $r_N(\mathcal{D}_N) = \max_H \mathbb{P}(H^* = H | \mathcal{D}_N)$ (and zero reward for all other timesteps). A similar principle also holds for the fixed confidence setting.

Fixed confidence. In the fixed confidence setting, we first simplify the problem by noting that the stopping time τ can be simply embedded as a stopping action a_{stop} in the policy π (see app. B.1.4 for a formal justification). Hence, we extend the action set as $\mathcal{A} \leftarrow \mathcal{A} \cup \{a_{\text{stop}}\}$ and $\tau = \inf\{t \in \mathbb{N} : a_t = a_{\text{stop}}\}$. Then, as in classical ASHT literature (Naghshvar & Javidi, 2013), we study the dual problem of eq. (1), that is:

$$\inf_{\lambda \geq 0} \sup_{\pi, I} V_\lambda(\pi, I), \quad \text{where } V_\lambda(\pi, I) := -\mathbb{E}^\pi[\tau] + \lambda [\mathbb{P}^\pi(I_\tau(\mathcal{D}_\tau) = H^*) - 1 + \delta]. \quad (4)$$

To show optimality of a policy, and satisfaction of the correctness constraint, there are 2 key observations to make: (1) one can show that the optimal inference rule I^* remains as in prop. B.2; (2) solving eq. (4) amounts to solving an RL problem in π .

Indeed, similarly to the the fixed budget setting, for $t \geq 1$ define the reward model as

$$r_{t, \lambda}(\mathcal{D}_t, a) = -\mathbf{1}_{\{a \neq a_{\text{stop}}\}} + \lambda \mathbf{1}_{\{a = a_{\text{stop}}\}} \max_H \mathbb{P}(H^* = H | \mathcal{D}_t), \quad (5)$$

which simply penalizes the policy for each extra timestep, accompanied by a reward proportional to the maximum posterior value at the stopping time. Accordingly, we define the Q -function as

$$Q_{t, \lambda}(\mathcal{D}_t, a) = r_{t, \lambda}(\mathcal{D}_t, a) + \mathbf{1}_{\{a \neq a_{\text{stop}}\}} \mathbb{E}_{x_{t+1} | (\mathcal{D}_t, a)} \left[\max_{a'} Q_{t+1, \lambda}((\mathcal{D}_t, a, x_{t+1}), a') \right]. \quad (6)$$

Then, we have the following result (see app. B.1.5 and app. B.1.6 for a proof) indicating that optimizing with respect to this reward function yields an optimal solution to (1).

Theorem 3.3 (Policy Optimality for Fixed Confidence). *Let $\pi_{t, \lambda}^*(\mathcal{D}_t) = \arg \max_{a \in \mathcal{A}} Q_{t, \lambda}(\mathcal{D}_t, a)$ and $\pi_\lambda^* = (\pi_{t, \lambda})_t$. Then, for $\lambda \geq 0$ the pair (I^*, π_λ^*) , with $I^* = (I_t^*)_t$ defined as in prop. 3.1, is an optimal solution of $\sup_{\pi, I} V_\lambda(\pi, I)$. Furthermore, under suitable identifiability conditions (see assum. 2), any maximizer λ^* of eq. (4) guarantees that $\pi_{\lambda^*}^*$ satisfies the δ -correctness criterion.*

Intuitively, for the fixed-confidence setting, we first recast the constrained problem in eq. (1) via a Lagrangian dual, then prove that *any* admissible stopping rule τ can be represented as the selection time of an absorbing stopping action a_{stop} . In thm. 3.3, we show that the resulting dual problem is solved by a greedy policy on the Q -function defined via the reward in eq. (5), and that such policy achieves the desired level of correctness, $1 - \delta$. This result establishes that both an optimal δ -aware stopping rule and exploration strategy can be learned on the extended action space $\mathcal{A} \cup \{a_{\text{stop}}\}$. In the next section, we describe the practical implementation of **ICPE** based on these results using the Transformer architecture.

216 **Algorithm 1** **ICPE** (In-Context Pure Exploration)

217 1: **Input:** Tasks distribution \mathcal{P} ; confidence δ ; horizon N ; initial λ and hyper-parameter T_ϕ, T_θ .

218 // Training phase

219 2: Initialize buffer \mathcal{B} , networks Q_θ, I_ϕ and set $\bar{\theta} \leftarrow \theta, \bar{\phi} \leftarrow \phi$.

220 3: **while** Training is not over **do**

221 4: Sample environment $M \sim \mathcal{P}$ with hypothesis H^* , observe $x_1 \sim \rho$ and set $t \leftarrow 1$.

222 5: **repeat**

223 6: Execute action $a_t = \arg \max_a Q_\theta(\mathcal{D}_t, a)$ in M and observe x_{t+1} .

224 7: Add partial trajectory $(\mathcal{D}_t, a_t, x_{t+1}, H^*)$ to \mathcal{B} and set $t \leftarrow t + 1$.

225 8: **until** $a_{t-1} = a_{\text{stop}}$ (fixed confidence) or $t > N$ (fixed budget).

226 9: In the fixed confidence, update λ according to eq. (11).

227 10: Sample batch $B \sim \mathcal{B}$ and update θ, ϕ using $\mathcal{L}_{\text{inf}}(B; \phi)$ (eq. (7)) and $\mathcal{L}_{\text{policy}}(B; \theta)$ (eq. (8) or eq. (9)).

228 11: Every T_ϕ steps set $\bar{\phi} \leftarrow \phi$ (similarly, every T_θ steps set $\bar{\theta} \leftarrow \theta$).

229 12: **end while**

230 // Inference phase

231 13: Sample unknown environment $M \sim \mathcal{P}$.

232 14: Collect a trajectory \mathcal{D}_N (or \mathcal{D}_τ in fixed confidence) according to a policy $\pi_t(\mathcal{D}_t) = \arg \max_a Q_\theta(\mathcal{D}_t, a)$, until $t = N$ (or $a_t = a_{\text{stop}}$).

233 15: **Return** $\hat{H}_N = \arg \max_H I_\phi(H|\mathcal{D}_N)$ (or $\hat{H}_\tau = \arg \max_H I_\phi(H|\mathcal{D}_\tau)$ in the fixed confidence)

234

235

236 3.2 PRACTICAL IMPLEMENTATION: THE ICPE ALGORITHM

237 We instantiate **ICPE** with two learners: an *inference network* $I_\phi(H|\mathcal{D}_t)$, parametrized by ϕ , that

238 approximates the posterior $\mathbb{P}(H^* = H|\mathcal{D}_t)$ (cf. prop. 3.1) and a *Q-network* $Q_\theta(\mathcal{D}_t, a)$, parametrized

239 by θ , whose greedy policy defines π_θ (and includes a_{stop} in the fixed confidence setting only). Both

240 networks are implemented using Transformer architectures, and, for practical reasons, we impose

241 a maximum trajectory length of N . This architecture handles both *fixed budget* (eq. (2)) and *fixed*

242 *confidence* (eq. (1)) settings. However, we find it important to explicitly note that while algorithm 1

243 abstracts the main ideas of **ICPE** in a unified way, in practice we train separate models for the

244 fixed-budget and fixed-confidence regimes, each with their own reward and *Q*-function as derived in

245 section 3.1.

246

247 **Training phase.** At training time **ICPE** interacts with an online environment: each episode draws an

248 instance $M \sim \mathcal{P}$ and generates a trajectory. We maintain a buffer \mathcal{B} with tuples $(\mathcal{D}_t, a_t, x_{t+1}, H_M^*)$,

249 where H^* is the true hypothesis for the sampled environment M (from a single tuple we also obtain

250 $\mathcal{D}_{t+1} = (\mathcal{D}_t, a_t, x_{t+1})$). This buffer is used to sample mini-batches $B \subset \mathcal{B}$ to train (θ, ϕ) . Lastly,

251 we treat each optimization in (ϕ, θ) (and λ too for the fixed confidence) separately, treating the other

252 variables as fixed.

253

254 **Training of I_ϕ .** We train I_ϕ to learn the posterior by SGD on the negative log-likelihood on a batch

255 $B \subset \mathcal{B}$ of partial trajectories sampled from the buffer:

256

$$\mathcal{L}_{\text{inf}}(\phi) = -\frac{1}{|B|} \sum_{(\mathcal{D}_t, a_t, x_{t+1}, H^*) \in B} \log I_\phi(H^*|\mathcal{D}_{t+1}). \quad (7)$$

257

258 In expectation this is (up to an additive constant) equivalent to minimizing the KL-divergence between

259 $\mathbb{P}(H^* = H|\mathcal{D})$ and $I_\phi(H|\mathcal{D})$ (a similar loss is also used in (Lee et al., 2023)). Lastly, we also set

260 $\hat{H}_t = \arg \max_H I_\phi(H|\mathcal{D}_t)$ to be predicted hypothesis with data \mathcal{D}_t .

261

262 **Training in the Fixed Budget.** In the fixed budget we train θ using DQN (Mnih et al., 2015) and the

263 rewards defined in the previous section. We denote the target network $Q_{\bar{\theta}}$, which is parameterized

264 by $\bar{\theta}$. Since rewards are defined in terms of I_ϕ , to improve training stability we introduce a separate

265 target inference network $I_{\bar{\phi}}$, parameterized by $\bar{\phi}$, which provides feedback for training θ . These target

266 networks are periodically updated, setting $\bar{\phi} \leftarrow \phi$ every T_ϕ steps (similarly, $\bar{\theta} \leftarrow \theta$ every T_θ steps).

267

268 Hence, in the fixed budget, for a batch $B \sim \mathcal{B}$, we update θ by performing SGD on the following loss

269

$$\mathcal{L}_{\text{policy}}(B; \theta) = \frac{1}{|B|} \sum_{(\mathcal{D}_t, a_t, x_{t+1}) \in B} \left(\max_H I_{\bar{\phi}}(H|\mathcal{D}_t) \cdot \mathbf{1}_{\{t=N\}} + \max_a Q_{\bar{\theta}}(\mathcal{D}_{t+1}, a) - Q_\theta(\mathcal{D}_t, a_t) \right)^2. \quad (8)$$

270 **Training in the Fixed Confidence.** In this setting we train θ similarly to the fixed budget setting.
 271 However, we also have a dedicated stop-action a_{stop} whose value depends solely on history. Thus, its
 272 Q -value can be updated at any time, allowing retrospective evaluation of stopping. In other words,
 273 $Q_\theta(\mathcal{D}_t, a_{\text{stop}})$ can be updated for *any* sampled transition $z \in \mathcal{B}$, even if the logged action $a_t \neq a_{\text{stop}}$
 274 (i.e., a “pretend to stop” update). This allows the model to retro-actively evaluate the quality of
 275 stopping earlier in a trajectory.

276 Then, based on eq. (6), we update θ by performing SGD on the following Q -loss
 277

$$278 \mathcal{L}_{\text{policy}}(B; \theta) = \frac{1}{|B|} \sum_{(\mathcal{D}_t, a_t, x_{t+1}) \in B} \left[\mathbf{1}_{\{a_t \neq a_{\text{stop}}\}} \cdot \left(-1 + \max_a Q_{\bar{\theta}}(\mathcal{D}_{t+1}, a) - Q_\theta(\mathcal{D}_t, a_t) \right)^2 \right. \quad (9)$$

$$281 \left. + \left(\lambda \max_H I_{\bar{\phi}}(H | \mathcal{D}_t) - Q_\theta(\mathcal{D}_t, a_{\text{stop}}) \right)^2 \right], \quad (10)$$

284 and note that the loss depends on λ . We learn λ using a gradient descent update, which depends on
 285 the correctness of the predicted hypothesis. We sample K trajectories $\{(\mathcal{D}_\tau^{(i)}, H_i^*)\}_{i=1}^K$ with fixed
 286 (θ, ϕ) and update λ with a small learning rate β :

$$288 \lambda \leftarrow \max [0, \lambda - \beta (\hat{p} - 1 + \delta)], \text{ where } \hat{p} = \frac{1}{K} \sum_{i=1}^K \mathbf{1}_{\{\arg \max_H I_\phi(H | \mathcal{D}_\tau^{(i)}) = H_i^*\}}. \quad (11)$$

290 The quantity \hat{p} can be used to assess when to stop training by checking its empirical convergence.
 291 In the fixed confidence, in practice we can stop whenever $\hat{p} \geq 1 - \delta$ is stable and λ is almost a
 292 constant. However, to obtain rigorous guarantees care must be taken. In app. B.1.6 we discuss how to
 293 provide formal guarantees on the δ -correctness of the resulting method, based on a sequential testing
 294 procedure.

295 **Inference phase.** At inference time **ICPE** operates by simple forwards passes. An unknown
 296 task $M \sim \mathcal{P}$ is sampled, and actions are selected according to $a = \arg \max_a Q_\theta(\mathcal{D}_t, a)$.
 297 At the last timestep a hypothesis is predicted using $\hat{H}_N = \arg \max_H I_\phi(H | \mathcal{D}_N)$ (or $\hat{H}_\tau =$
 298 $\arg \max_H I_\phi(H | \mathcal{D}_\tau)$ at the stopping time for the fixed confidence setting).

300 **Theoretical guarantees.** We derive finite-sample guarantees for the fixed-budget **ICPE** meta-
 301 learning phase in a stylized setting in app. B.2. In thm. B.14 we derive a bound on the sub-
 302 optimality of the policy $\pi^{(k)}$ at training epoch k in terms of stage-wise Bellman residuals and
 303 concentrability coefficients. In thm. B.15, we additionally show how these residuals are controlled by
 304 an approximation term (capturing how well the function class can represent the Bellman update) and
 305 an estimation term that decays with the number and size of training batches. Together, these results
 306 yield an explicit finite-sample performance bound for **ICPE** in an ideal scenario.

307 4 EMPIRICAL EVALUATION

308 We evaluate **ICPE** on a range of tasks: BAI on bandit problems, hypothesis testing in MDPs, and
 309 general search problems (pixel sampling and binary search). For bandits, we consider different reward
 310 structures: deterministic, stochastic, with feedback graphs and with hidden information. Due to space
 311 limitations, refer to app. D for the results on bandit problem with feedback graphs and MDPs. Also
 312 refer to app. C for details on the algorithms. In all experiments we use a target accuracy value of
 313 $\delta = 0.1$, and shaded areas indicate 95% confidence intervals computed via hierarchical bootstrapping
 314 (see app. D for details).

315 4.1 BANDIT PROBLEMS

316 We now apply **ICPE** to the classical BAI problem within MAB tasks. For the MAB setting we have a
 317 finite number of actions $\mathcal{A} = \{1, \dots, K\}$, corresponding to the actions in the MAB problem M . For
 318 each action a , we define a corresponding reward distribution $P(\cdot | a)$ from which rewards are sampled
 319 i.i.d. Then, \mathcal{P} is a prior distribution on the actions’ rewards distributions. For the BAI problem, we
 320 let the true hypothesis be $H^* = \arg \max_a \mathbb{E}_{x \sim P(\cdot | a)}[x]$, so that the goal is to identify the best action
 321 (and thus $\mathcal{H} = \mathcal{A}$).

323 **Stochastic Bandit Problems.** We evaluate **ICPE** on stochastic bandit environments for both the
 324 fixed confidence and fixed budget setting (with $N = 30$). Each action’s reward distribution is

normally distributed $\nu_a = \mathcal{N}(\mu_a, 0.5^2)$, with $(\mu_a)_{a \in \mathcal{A}}$ drawn from \mathcal{P} . In this case \mathcal{P} is a uniform distribution over problems with minimum gap $\max_a \mu_a - \max_{b \neq a} \mu_a \geq \Delta_0$, with $\Delta_0 = 0.4$. Hence, an algorithm could exploit this property to infer H^* more quickly. For this case, we also derive some sample complexity bounds in app. B.

Figure 2: Results for stochastic MABs with fixed confidence $\delta = 0.1$ and $N = 100$: (a) average stopping time τ ; (b) survival function of τ ; (c) probability of correctness $\mathbb{P}^{\pi}(\hat{H}_{\tau} = H^*)$.³

We compare against pure exploration baselines: **TaS** (Track-and-Stop) (Garivier & Kaufmann, 2016) and **TTPS** (Top-Two) (Russo et al., 2018), which are principled choices for hypothesis testing (asymptotically optimal or close to optimal allocations that target the most confusable hypotheses). We also include an ablation, “**I-DPT**”, which uses our learned inference $I_{\phi}(H|D_t)$ as in DPT (Lee et al., 2023) and acts greedily with respect to the posterior (and a simple confidence-threshold stop); this isolates the value of learning a query policy versus relying on posterior-driven greedy control. Details for **I-DPT** are in app. C.

In fig. 2 are reported results for the fixed confidence. In fig. 2a we see how **ICPE** is able to find an efficient strategy compared to other techniques. Interestingly, also **I-DPT** seems to achieve relatively small sample complexities. However, the tail distribution of its τ is rather large compared to **ICPE** (fig. 2b) and the correctness is smaller than $1 - \delta$ for large values of K . Methods like **TaS** and **TTPS** achieve larger sample complexity, but also larger correctness values (fig. 2c). This is a well known fact: theoretically-sound stopping rules, such as the ones used by **TaS** and **TTPS**, tend to be overly conservative (Garivier & Kaufmann, 2016).

Lastly, we verified the robustness of **ICPE** to distribution shifts. We trained **ICPE** in the stochastic fixed-confidence bandit setting as described above, and then evaluated the trained model on bandit instances drawn from *shifted* environment distributions. We report the results in app. D.1.2. Across all experiments, we observed that both correctness and stopping time remain remarkably stable, with only minor fluctuations within the reported confidence intervals. This suggests that **ICPE** is not excessively sensitive to moderate shifts in the environment distribution around the training family.

Finally, for the sake of space, we refer the reader to app. D.1.2 for the results in the fixed budget setting.

Deterministic Bandits. We also evaluated **ICPE** in deterministic bandit environments with a fixed budget K , equal to the number of actions. Thus, **ICPE** needs to learn to select each action only once to determine the optimal action. Since the rewards are deterministic, we cannot compare to classical BAI methods, which are tailored for stochastic environments. Instead, we compare to: (i)

Figure 3: Deterministic bandits: (left) probability of correctly identifying the best action vs. K ; (right) average fraction of unique actions selected during exploration vs. K .

378 uniform policy that uses a maximum likelihood estimator to estimate the best arm; (ii) **DQN** (Mnih
 379 et al., 2013), which uses \mathcal{D}_t as the state, and trains an I network to infer the true hypothesis; (iii) and
 380 **I -DPT**, acts greedily with respect to the posterior of I_ϕ , as in DPT.

381 Figure 3 reports the results: **ICPE** consistently identifies optimal actions (correctness ≈ 1) and learns
 382 optimal sampling strategies (fraction of unique actions ≈ 1). Without being explicitly instructed to
 383 “choose each action exactly once”, **ICPE** discovers on its own that sampling every action is exactly
 384 what yields enough information to identify the best. While the optimal exploration strategy in this
 385 setting is intuitive, baseline performance degrades sharply as the number of actions grows, illustrating
 386 that existing exploration methods can fail even in such simple environments.

387 **Bandit Problems with Hidden Information.** To evaluate **ICPE** in structured settings, we introduce
 388 bandit environments with latent informational dependencies, termed *magic actions*. In the single
 389 magic action case, the magic action a_m ’s reward is distributed according to $\mathcal{N}(\mu_{a_m}, \sigma_m^2)$, where
 390 $\sigma_m \in (0, 1)$ and $\mu_{a_m} := \phi(\arg \max_{a \neq a_m} \mu_a)$ encodes information about the optimal action’s identity
 391 through an invertible mapping ϕ that is unknown to the learner. The index a_m is fixed, and the
 392 mean rewards of the other actions $(\mu_a)_{a \neq a_m}$ are sampled from \mathcal{P} , a uniform distribution over models
 393 guaranteeing that a_m , as defined above, is not optimal (see apps. B.5 and D.1.3 for more details).
 394 Then, we define the reward distribution of the non-magic actions as $\mathcal{N}(\mu_a, (1 - \sigma_m)^2)$.

405 Figure 4: (a) Single magic action: average stopping time and the theoretical lower bound across
 406 varying σ_m . (b) Magic chain: average stopping time between **ICPE**, *I*-IDS vs. number of magic
 407 actions. (c) **ICPE** in a regret minimization task, with $\sigma_m = 0.1$.

408 In our first experiment, we vary the standard deviation σ_m in $[0, 1]$. This problem isolates whether
 409 **ICPE** can detect and exploit latent informational dependencies (via a single diagnostic action that
 410 encodes the optimal arm) and balance sampling across action based on varying uncertainty levels.

411 Regarding the baselines, applying classical baselines (e.g., TaS) here is nontrivial: the magic action is
 412 coupled to the optimal arm via an *unknown* map ϕ , which would need to be encoded as inductive bias.
 413 Instead, we compare **ICPE** to “*I*-IDS”, which is standard pure exploration IDS (Russo & Van Roy,
 414 2018) instantiated on top of ICPE’s trained inference I_ϕ for exploiting the magic action.

415 We evaluate in a fixed-confidence setting with error rate $\delta = 0.1$. Figure 4a compares **ICPE**’s sample
 416 complexity against a theoretical lower bound (see app. B). **ICPE** achieves sample complexities close
 417 to the theoretical bound across all tested noise levels, consistently outperforming *I*-IDS.

419 Additionally, in fig. 4c we evaluate **ICPE** in a cumulative regret minimization setting, despite not
 420 being explicitly optimized for regret minimization. At the stopping τ , **ICPE** commits to the identified
 421 best action (i.e., explore-then-commit strategy). As shown in the results, **ICPE** outperforms classic
 422 algorithms such as UCB, Thompson Sampling, and standard IDS initialized with Gaussian priors.

423 To further challenge **ICPE**, we introduce a *multi-layered “magic chain” bandit* environment, where
 424 there is a sequence of n magic actions $\mathcal{A}_m := \{a_{i_1}, \dots, a_{i_n}\} \subset \mathcal{A}$ such that $\mu_{a_{i_j}} = \phi(\mu_{a_{i_{j+1}}})$, and
 425 $\mu_{a_{i_n}} = \phi(\arg \max_{a \notin \mathcal{A}_m} \mu_a)$. The first index i_1 is known, and by following the chain, an agent can
 426 uncover the best action in n steps. However, the optimal sample complexity depends on the ratio of
 427 magic actions to non-magic arms. Varying the number of magic actions from 1 to 9 in a 10-actions
 428 environment, Figure 4b demonstrates **ICPE**’s empirical performance, outperforming *I*-IDS.

4.2 GENERAL SEARCH PROBLEMS: PIXEL SAMPLING AND PROBABILISTIC BINARY SEARCH

430 We now evaluate the applicability of **ICPE** to general search problems, including structured real-world
 431 examples.

Figure 5: MNIST pixel-sampling task: (a) A chord between two digits indicates that their distributions were not significantly different (p -value > 0.05 , based on a pairwise chi-squared test), with thicker chords representing higher p -values; (b) accuracy and performance (mean \pm 95% CI)

Pixel sampling as generalized search. We introduce a classification task inspired by active perception settings. We consider the MNIST images (LeCun et al., 1998), each partitioned into a set of 36 distinct pixel patches, corresponding to the query space $\mathcal{A} = \{1, \dots, 36\}$. The agent starts from a blank (masked) image and, patch by patch, reveals pixels to quickly discover “what the image is about.” After choosing a query $a_t \in \mathcal{A}$ the agent observes x_t (the revealed patch) and accumulates a partially observed image. After a budget $N = 12$, the agent outputs the predicted digit $\hat{H}_N \in \{0, \dots, 9\}$.

For this setting we consider a slight variation of **ICPE** that may be of interest: we consider an inference net I that is a pre-trained classifier, trained on fully revealed images from \mathcal{P} . Using this network, we benchmark **ICPE** against two baselines: standard uniform random sampling and Deep Contextual Multi-Armed Bandit (**Deep CMAB**) (Collier & Llorens, 2018), which employs Bayesian neural networks to sample from a posterior distribution (Deep CMAB uses as rewards the correctness probabilities computed by I). Importantly, we cannot compare to methods such as DPT since $\mathcal{A} \neq \mathcal{H}$, the hypothesis space is different from the query space.

Table 5b reports the classification accuracy and number of regions sampled. **ICPE** achieves substantially better performance than both baselines using fewer regions. However, to analyze whether **ICPE** learns a sampling strategy that adapts to the context of the task, we compare region selection distributions across digit classes using pairwise chi-squared tests. **ICPE** exhibits significantly more variation across classes than either baseline, as visualized in Figure 5a. This suggests **ICPE** adapts its exploration to class-conditional structure, rather than applying a generic sampling policy.

Probabilistic binary search. We also evaluated **ICPE**’s capabilities to autonomously meta-learn binary search. We define an action space of $\mathcal{A} = \{1, \dots, K\}$, with $H^* \in \mathcal{A}$. Pulling an arm above or below H^* yields a observation $x_t = -1$ or $x_t = +1$, respectively, providing directional feedback. In tab. 1 we report results on 100 held-out tasks per setting. **ICPE** consistently achieves perfect accuracy with worst-case stopping times that match the optimal $\log_2(K)$ rate, demonstrating that it has successfully learned binary search. While simple, this task illustrates **ICPE**’s broader potential to learn efficient search strategies in domains where no hand-designed algorithm is available.

K	Min Accuracy	Mean Stop Time	Max Stop Time	$\log_2 K$
8	1.00	2.13 ± 0.12	3	3
16	1.00	2.93 ± 0.12	4	4
32	1.00	3.71 ± 0.15	5	5
64	1.00	4.50 ± 0.21	6	6
128	1.00	5.49 ± 0.23	7	7
256	1.00	6.61 ± 0.26	8	8

Table 1: **ICPE** performance on the binary search task as K increases.

5 DISCUSSION AND CONCLUSIONS

Our results position **ICPE** within a broader line of work on *active sequential hypothesis testing* (Naghshvar & Javidi, 2013) and its close ties to exploration in RL (Sutton & Barto, 2018). Regarding exploration, note that classical regret-minimization methods, including UCB variants (Auer et al., 2002), posterior sampling (Osband et al., 2013; Russo & Van Roy, 2014), and regret-focused IDS (Russo et al., 2018), optimize long-run reward, not hypothesis identification. On the other hand, pure-exploration formulations in BAI (Audibert & Bubeck, 2010) yield sharp, instance-dependent

486 procedures for hypothesis testing in fixed-confidence regimes (e.g., Track-and-Stop, [Garivier &](#)
 487 [Kaufmann, 2016](#)). However, these approaches assume to know the problem structure, which is
 488 not always possible if the user is not aware of such structure. Furthermore, computing an optimal
 489 data-collection policy remains a challenge in more general scenarios ([Al Marjani et al., 2021](#)), and
 490 we discuss some of these challenges in app. [C.3.1](#).

491 **ICPE** uses Transformers ([Vaswani et al., 2017](#)) to learn, in-context, a data collection policy and and
 492 inference rule. Transformers have demonstrated remarkable in-context learning capabilities ([Brown](#)
 493 [et al., 2020](#); [Garg et al., 2022](#)). In-context learning ([Moeini et al., 2025](#)) is a form of meta-RL
 494 ([Beck et al., 2023](#)), where agents can solve new tasks without updating any parameters by simply
 495 conditioning on histories. Building on this approach, Transformers can mimic posterior sampling
 496 from offline data, as in DPT ([Lee et al., 2023](#)), or perform return-conditioning for regret minimization
 497 (e.g., ICEE [Dai et al., 2024](#)). However, these approaches primarily target cumulative reward and
 498 typically lack a learned, δ -aware stopping rule; applying them to hypothesis testing would require
 499 altering objectives, data-collection protocol, and add stopping semantics. Moreover, in generalized
 500 search where $\mathcal{A} \neq \mathcal{H}$, additional modeling is needed to map hypotheses to actions.

501 **ICPE** addresses these gaps by *learning* to acquire information in-context. **ICPE** targets *pure*
 502 *exploration for identification*: it splits inference and control, using a supervised inference network
 503 to provide task-relevant information signals, while an RL-trained Transformer learns acquisition
 504 policies that maximize information gain. This separation makes it possible to exploit rich, non-tabular
 505 structures that are difficult to encode in hand-designed tests or confidence bounds.

506 Empirically, **ICPE** is competitive on unstructured bandits and extends naturally to structured and
 507 deterministic settings. The results on the MNIST dataset highlights a key strength: **ICPE** adapts
 508 sampling to the class-conditional structure. More broadly, **ICPE** suggests a path for *data-driven*
 509 *generalized search*.

510 Limitations point to concrete avenues for future work. First, scaling to continuous or combinatorial
 511 hypothesis spaces to deal with more general scenarios is an important direction. However, such
 512 extensions require substantial further theoretical development, as rigorous formalisms for continuous
 513 hypothesis-testing frameworks remain an active area of research, even in classical pure-exploration
 514 settings (see, e.g., ([Garivier & Kaufmann, 2021](#))). Second, extending **ICPE** to offline datasets is
 515 also a promising research direction. When offline data can be used to construct a reliable simulator,
 516 **ICPE** can already be applied directly. Moreover, even without such a simulator, **ICPE** could in
 517 principle be meta-trained purely from logged data using offline RL methods (e.g., IQL, CQL), and
 518 a systematic study of this offline regime is an important question for future work. Third, while the
 519 main focus of this work is to introduce and analyze **ICPE** as a general framework that can address a
 520 broad family of pure exploration problems, and we validate it on numerous BAI and active search
 521 tasks, we view real-world experiments as a natural next step. **ICPE** holds the promise to discover
 522 novel exploration and search algorithms in complex domains that do not offer a concrete way of
 523 finding an optimal solution a priori, such as determining efficient sequences of proteins to test in a
 524 lab ([Amin et al., 2024](#)), minimizing the number of tests required to detect cancer ([Gan et al., 2021](#)),
 525 and expediting the design of materials with desired properties ([Talapatra et al., 2018](#)). In sum, we
 526 believe **ICPE** advances pure exploration by leveraging in-context learning to discover task-adaptive
 527 acquisition strategies, and it opens a route toward unifying classical sequential testing with learned,
 528 structure-aware search policies that scale to real problems.

528

529

530 REPRODUCIBILITY STATEMENT

531

532 We have taken several measures to ensure the reproducibility of our results. All model architectures,
 533 optimization procedures, and hyperparameters are described in detail in the paper (see Sections
 534 2–3 and Appendix C–D). Experiments were conducted using Python 3.10.12 and standard libraries
 535 including NumPy, SciPy, PyTorch, Pandas, Matplotlib, CVXPY, and Gurobi.

536

537

538

539

To facilitate replication, we provide our full source code under the MIT license. The code contains (i)
 implementations of ICPE and all baselines, (ii) configuration files specifying the hyperparameters for
 each experiment, and (iii) detailed instructions in the README.md file for installing dependencies
 and running all experiments. Running the provided scripts will reproduce the main results reported in
 the paper, including bandit, MDP, and generalized search benchmarks.

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
543 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
544 *arXiv preprint arXiv:2303.08774*, 2023.

545 Aymen Al Marjani, Aurélien Garivier, and Alexandre Proutiere. Navigating to the best policy in
546 markov decision processes. *Advances in Neural Information Processing Systems*, 34:25852–25864,
547 2021.

548 Alan Nawzad Amin, Nate Gruver, Yilun Kuang, Lily Li, Hunter Elliott, Calvin McCarter, Aniruddh
549 Raghu, Peyton Greenside, and Andrew Gordon Wilson. Bayesian optimization of antibodies
550 informed by a generative model of evolving sequences. *arXiv preprint arXiv:2412.07763*, 2024.

552 Dilip Arumugam and Thomas L Griffiths. Toward efficient exploration by large language model
553 agents. *arXiv preprint arXiv:2504.20997*, 2025.

555 Alexia Atsidakou, Sumeet Katariya, Sujay Sanghavi, and Branislav Kveton. Bayesian fixed-budget
556 best-arm identification. *arXiv preprint arXiv:2211.08572*, 2022.

557 Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-armed bandits. In
558 *COLT-23th Conference on learning theory-2010*, pp. 13–p, 2010.

560 Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. *Journal of Machine
561 Learning Research*, 3(Nov):397–422, 2002.

563 Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
564 problem. *Machine learning*, 47:235–256, 2002.

565 Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
566 learning. *Advances in Neural Information Processing Systems (NeurIPS)*, 21, 2008.

568 Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon
569 Whiteson. A survey of meta-reinforcement learning. *arXiv preprint arXiv:2301.08028*, 2023.

571 Gowtham Bellala, Suresh Bhavnani, and Clayton Scott. Extensions of generalized binary search to
572 group identification and exponential costs. *Advances in Neural Information Processing Systems*,
573 23, 2010.

574 Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. *Learning a synaptic learning rule*. Citeseer,
575 1990.

577 Scott M Berry, Bradley P Carlin, J Jack Lee, and Peter Muller. *Bayesian adaptive methods for clinical
578 trials*. CRC press, 2010.

579 Lukas Biewald. Experiment tracking with weights and biases, 2020. URL <https://www.wandb.com/>. Software available from wandb.com.

582 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
583 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models
584 are few-shot learners. In *Advances in Neural Information Processing Systems*, volume 33, pp.
585 1877–1901, 2020.

586 Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in finitely-armed and continuous-
587 armed bandits. *Theoretical Computer Science*, 412(19):1832–1852, 2011.

589 Olivier Cappé, Aurélien Garivier, Odalric-Ambrym Maillard, Rémi Munos, and Gilles Stoltz.
590 Kullback-leibler upper confidence bounds for optimal sequential allocation. *The Annals of Statistics*,
591 pp. 1516–1541, 2013.

593 Fabio Cecchi and Nidhi Hegde. Adaptive active hypothesis testing under limited information.
594 *Advances in Neural Information Processing Systems*, 30, 2017.

594 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
 595 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
 596 modeling. In *Advances in Neural Information Processing Systems*, volume 34, pp. 15084–15097,
 597 2021.

598 Xi Chen, Quanquan Liu, and Yining Wang. Active learning for contextual search with binary
 599 feedback. *Management Science*, 69(4):2165–2181, 2023.

601 Herman Chernoff. Sequential design of experiments. *The Annals of Mathematical Statistics*, 30(3):
 602 755–770, 1959.

604 Herman Chernoff. *Sequential design of experiments*. Springer, 1992.

605 Julian Coda-Forno, Marcel Binz, Zeynep Akata, Matt Botvinick, Jane Wang, and Eric Schulz. Meta-
 606 in-context learning in large language models. *Advances in Neural Information Processing Systems*,
 607 36:65189–65201, 2023.

609 David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical models.
 610 *Journal of artificial intelligence research*, 4:129–145, 1996.

611 Mark Collier and Hector Urdiales Llorens. Deep contextual multi-armed bandits. *arXiv preprint*
 612 *arXiv:1807.09809*, 2018.

614 Zhenwen Dai, Federico Tomasi, and Sina Ghassian. In-context exploration-exploitation for rein-
 615 forcement learning. *arXiv preprint arXiv:2403.06826*, 2024.

616 Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In *Advances in Neural Information*
 617 *Processing Systems*, volume 17, 2004.

619 Rémy Degenne and Wouter M Koolen. Pure exploration with multiple correct answers. *Advances in*
 620 *Neural Information Processing Systems*, 32, 2019.

622 Rémy Degenne, Wouter M Koolen, and Pierre Ménard. Non-asymptotic pure exploration by solving
 623 games. *Advances in Neural Information Processing Systems*, 32, 2019.

624 Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
 625 optimization. *Journal of Machine Learning Research*, 17(83):1–5, 2016.

627 Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl²: Fast
 628 reinforcement learning via slow reinforcement learning. *arXiv preprint arXiv:1611.02779*, 2016.

630 Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
 631 offline rl via supervised learning? *arXiv preprint arXiv:2112.10751*, 2021.

632 Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahadevan. Action elimination and
 633 stopping conditions for the multi-armed bandit and reinforcement learning problems. *Journal of*
 634 *machine learning research*, 7(6), 2006.

636 Kyra Gan, Su Jia, and Andrew Li. Greedy approximation algorithms for active sequential hypothesis
 637 testing. *Advances in Neural Information Processing Systems*, 34:5012–5024, 2021.

639 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
 640 in-context? a case study of simple function classes. *Advances in Neural Information Processing*
 641 *Systems*, 35:30583–30598, 2022.

642 Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence. In
 643 *Conference on Learning Theory*, pp. 998–1027. PMLR, 2016.

644 Aurélien Garivier and Emilie Kaufmann. Nonasymptotic sequential tests for overlapping hypotheses
 645 applied to near-optimal arm identification in bandit models. *Sequential Analysis*, 40(1):61–96,
 646 2021.

647 Bashkar K Ghosh. A brief history of sequential analysis. *Handbook of sequential analysis*, 1, 1991.

648 Debamita Ghosh, Manjesh Kumar Hanawal, and Nikola Zlatanov. Fixed budget best arm identification
 649 in unimodal bandits. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856.
 650

651 Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active
 652 learning and stochastic optimization. *Journal of Artificial Intelligence Research*, 42:427–486,
 653 2011.

654 Daniel Golovin, Andreas Krause, and Debajyoti Ray. Near-optimal bayesian active learning with
 655 noisy observations. *Advances in Neural Information Processing Systems*, 23, 2010.

656 Aditya Gopalan, Shie Mannor, and Yishay Mansour. Thompson sampling for complex online
 657 problems. In *International conference on machine learning*, pp. 100–108. PMLR, 2014.

658 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL <https://www.gurobi.com>.

659 László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. *A Distribution-Free Theory of
 660 Nonparametric Regression*. Springer Series in Statistics. Springer, New York, NY, 2002. ISBN 978-
 661 0-387-95441-7 978-0-387-22442-8. doi: 10.1007/b97848. URL <http://link.springer.com/10.1007/b97848>.

662 A Hantoute and MA López. Characterizations of the subdifferential of the supremum of convex
 663 functions. *Journal of Convex Analysis*, 15:831–858, 2008.

664 Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
 665 Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
 666 Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
 667 del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
 668 Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
 669 with NumPy. *Nature*, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2.
 670 URL <https://doi.org/10.1038/s41586-020-2649-2>.

671 Keegan Harris and Aleksandrs Slivkins. Should you use your large language model to explore or
 672 exploit? *arXiv preprint arXiv:2502.00225*, 2025.

673 Alfred O. Hero and Douglas Cochran. Sensor management: Past, present, and future. *IEEE Sensors
 674 Journal*, 11(12):3064–3075, 2011. doi: 10.1109/JSEN.2011.2167964.

675 John D Hunter. Matplotlib: A 2d graphics environment. *Computing in science & engineering*, 9(3):
 676 90–95, 2007.

677 Kyoungseok Jang, Junpei Komiyama, and Kazutoshi Yamazaki. Fixed confidence best arm identifica-
 678 tion in the bayesian setting. *Advances in Neural Information Processing Systems*, 37, 2024.

679 Yassir Jedra and Alexandre Proutiere. Optimal best-arm identification in linear bandits. *Advances in
 680 Neural Information Processing Systems*, 33:10007–10017, 2020.

681 Marc Jourdan, Rémy Degenne, Dorian Baudry, Rianne de Heide, and Emilie Kaufmann. Top two
 682 algorithms revisited. *Advances in Neural Information Processing Systems*, 35:26791–26803, 2022.

683 Jerome Kagan. Motives and development. *Journal of personality and social psychology*, 22(1):51,
 684 1972.

685 Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
 686 In *International conference on machine learning*, pp. 1238–1246. PMLR, 2013.

687 Emilie Kaufmann and Wouter M Koolen. Mixture martingales revisited with applications to sequential
 688 tests and confidence intervals. *Journal of Machine Learning Research*, 22(246):1–44, 2021.

689 Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: An asymptotically
 690 optimal finite-time analysis. In *International conference on algorithmic learning theory*, pp.
 691 199–213. Springer, 2012.

692 Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm identification
 693 in multi-armed bandit models. *The Journal of Machine Learning Research*, 17(1):1–42, 2016.

702 Akshay Krishnamurthy, Keegan Harris, Dylan J. Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
 703 large language models explore in-context? In *Advances in Neural Information Processing Systems*,
 704 volume 37, 2024.

705 Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies. *arXiv preprint*
 706 *arXiv:1912.13465*, 2019.

708 Tor Lattimore and Marcus Hutter. Pac bounds for discounted mdps. In *Algorithmic Learning Theory:*
 709 *23rd International Conference, ALT 2012, Lyon, France, October 29-31, 2012. Proceedings* 23, pp.
 710 320–334. Springer, 2012.

711 Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Finite-sample analysis of least-
 712 squares policy iteration. *Journal of Machine Learning Research*, 13(98):3041–3074, 2012. URL
 713 <http://jmlr.org/papers/v13/lazaric12a.html>.

714 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 715 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

717 Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
 718 Brunskill. Supervised pretraining can learn in-context reinforcement learning. *Advances in Neural*
 719 *Information Processing Systems*, 36:43057–43083, 2023.

720 Dennis V Lindley. On a measure of the information provided by an experiment. *The Annals of*
 721 *Mathematical Statistics*, 27(4):986–1005, 1956.

723 John Lisman, György Buzsáki, Howard Eichenbaum, Lynn Nadel, Charan Ranganath, and A David
 724 Redish. Viewpoints: how the hippocampus contributes to memory, navigation and cognition.
 725 *Nature neuroscience*, 20(11):1434–1447, 2017.

726 Grace Liu, Michael Tang, and Benjamin Eysenbach. A single goal is all you need: Skills and
 727 exploration emerge from contrastive rl without rewards, demonstrations, or subgoals. *arXiv*
 728 *preprint arXiv:2408.05804*, 2024.

729 Shie Mannor and Ohad Shamir. From bandits to experts: On the value of side-observations. In
 730 *Advances in Neural Information Processing Systems*, volume 24, 2011.

732 Aymen Al Marjani and Alexandre Proutiere. Adaptive sampling for best policy identification in
 733 markov decision processes. In *International Conference on Machine Learning*, pp. 7459–7468.
 734 PMLR, 2021.

735 Aymen Al Marjani, Aurélien Garivier, and Alexandre Proutiere. Navigating to the best policy in
 736 markov decision processes. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 737 2021.

739 Wes McKinney et al. Data structures for statistical computing in python. In *Proceedings of the 9th*
 740 *Python in Science Conference*, volume 445, pp. 51–56. Austin, TX, 2010.

741 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
 742 Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint*
 743 *arXiv:1312.5602*, 2013.

745 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 746 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
 747 through deep reinforcement learning. *Nature*, 518(7540):529–533, 2015.

748 Amir Moeini, Jiuqi Wang, Jacob Beck, Ethan Blaser, Shimon Whiteson, Rohan Chandra, and
 749 Shangtong Zhang. A survey of in-context reinforcement learning. *arXiv preprint arXiv:2502.07978*,
 750 2025.

751 Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. Llms are in-context reinforce-
 752 ment learners. *arXiv preprint arXiv:2410.05362*, 2024.

754 Laurel S Morris, Mora M Grehl, Sarah B Rutter, Marishka Mehta, and Margaret L Westwater. On
 755 what motivates us: a detailed review of intrinsic v. extrinsic motivation. *Psychological medicine*,
 52(10):1801–1816, 2022.

756 Subhojoyoti Mukherjee, Ardhendu S Tripathy, and Robert Nowak. Chernoff sampling for active
 757 testing and extension to active regression. In *International Conference on Artificial Intelligence
 758 and Statistics*, pp. 7384–7432. PMLR, 2022.

759

760 Lynn Nadel. The hippocampus and space revisited. *Hippocampus*, 1(3):221–229, 1991.

761 Lynn Nadel and Mary A Peterson. The hippocampus: part of an interactive posterior representational
 762 system spanning perceptual and memorial systems. *Journal of Experimental Psychology: General*,
 763 142(4):1242, 2013.

764

765 Mohammad Naghshvar and Tara Javidi. Active sequential hypothesis testing. *The Annals of Statistics*,
 766 41(6):2703–2738, 2013.

767 Mohammad Naghshvar, Tara Javidi, and Kamalika Chaudhuri. Noisy bayesian active learning. In
 768 *2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton)*, pp.
 769 1626–1633. IEEE, 2012.

770

771 Nicolas Nguyen, Imad Aouali, András György, and Claire Vernade. Prior-Dependent Allocations for
 772 Bayesian Fixed-Budget Best-Arm Identification in Structured Bandits. In *Proceedings of The 28th
 773 International Conference on Artificial Intelligence and Statistics*, pp. 379–387. PMLR, April 2025.

774 Allen Nie, Yi Su, Bo Chang, Jonathan N Lee, Ed H Chi, Quoc V Le, and Minmin Chen. Evolve:
 775 Evaluating and optimizing llms for exploration. *arXiv preprint arXiv:2410.06238*, 2024.

776

777 Robert Nowak. Generalized binary search. In *2008 46th annual Allerton conference on communica-
 778 tion, control, and computing*, pp. 568–574. IEEE, 2008.

779

780 Junhyuk Oh, Matteo Hessel, Wojciech M Czarnecki, Zhongwen Xu, Hado P van Hasselt, Satinder
 781 Singh, and David Silver. Discovering reinforcement learning algorithms. *Advances in Neural
 782 Information Processing Systems*, 33:1060–1070, 2020.

783

784 John O’keefe and Lynn Nadel. Précis of o’keefe & nadel’s the hippocampus as a cognitive map.
Behavioral and Brain Sciences, 2(4):487–494, 1979.

785

786 Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
 787 posterior sampling. *Advances in Neural Information Processing Systems (NeurIPS)*, 26, 2013.

788

789 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 790 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 791 high-performance deep learning library. *Advances in Neural Information Processing Systems
 (NeurIPS)*, 32, 2019.

792

793 Martin L Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John
 794 Wiley & Sons, 2014.

795

796 Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie Bickford Smith. Modern bayesian
 797 experimental design. *Statistical Science*, 39(1):100–114, 2024.

798

799 Paul Resnick and Hal R Varian. Recommender systems. *Communications of the ACM*, 40(3):56–58,
 1997.

800

801 Chloé Rouyer, Dirk van der Hoeven, Nicolò Cesa-Bianchi, and Yevgeny Seldin. A near-optimal
 802 best-of-both-worlds algorithm for online learning with feedback graphs. *Advances in Neural
 803 Information Processing Systems*, 35:35035–35048, 2022.

804

805 Alessio Russo and Aldo Pacchiano. Adaptive exploration for multi-reward multi-policy evaluation.
arXiv preprint arXiv:2502.02516, 2025.

806

807 Alessio Russo and Alexandre Proutiere. Model-free active exploration in reinforcement learning.
Advances in Neural Information Processing Systems, 36:54740–54753, 2023.

808

809 Alessio Russo and Filippo Vannella. Multi-reward best policy identification. *Advances in Neural
 810 Information Processing Systems*, 37:105583–105662, 2025.

810 Alessio Russo, Yichen Song, and Aldo Pacchiano. Pure exploration with feedback graphs. In *Proceedings*
 811 *of The 28th International Conference on Artificial Intelligence and Statistics*, Proceedings
 812 of Machine Learning Research. PMLR, 2025.

813 Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. *Mathematics of*
 814 *Operations Research*, 39(4):1221–1243, 2014.

815 Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sampling.
 816 *Operations Research*, 66(1):230–252, 2018.

817 Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
 818 thompson sampling. *Foundations and Trends® in Machine Learning*, 11(1):1–96, 2018.

819 Tom Schaul and Jürgen Schmidhuber. Metalearning. *Scholarpedia*, 5(6):4650, 2010.

820 Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, and Matthieu Geist. Approximate
 821 modified policy iteration. In *Proceedings of the 29th international conference on international*
 822 *conference on machine learning*, pp. 1889–1896, 2012.

823 Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaskowski, and Jürgen Schmidhuber.
 824 Training agents using upside-down reinforcement learning. *CoRR*, abs/1912.02877, 2019. URL
 825 <http://arxiv.org/abs/1912.02877>.

826 Jiahang Sun, Zhiyong Wang, Runhan Yang, Chenjun Xiao, John Lui, and Zhongxiang Dai. Large
 827 language model-enhanced multi-armed bandits. *arXiv preprint arXiv:2502.01118*, 2025.

828 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

829 Anjana Talapatra, Shahin Boluki, Thien Duong, Xiaoning Qian, Edward Dougherty, and Raymundo
 830 Arróyave. Autonomous efficient experiment design for materials discovery with bayesian model
 831 averaging. *Physical Review Materials*, 2(11):113803, 2018.

832 Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
 833 learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.

834 Guido Van Rossum and Fred L Drake Jr. *Python reference manual*. Centrum voor Wiskunde en
 835 Informatica Amsterdam, 1995.

836 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 837 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information*
 838 *Processing Systems*, volume 30, 2017.

839 Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
 840 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
 841 Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
 842 Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
 843 Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
 844 Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
 845 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nature*
 846 *Methods*, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

847 Po-An Wang, Ruo-Chun Tzeng, and Alexandre Proutiere. Best arm identification with fixed budget: A
 848 large deviation perspective. *Advances in Neural Information Processing Systems*, 36:16804–16815,
 849 2023.

850 Michael Waskom, Olga Botvinnik, Drew O’Kane, Paul Hobson, Saulius Lukauskas, David C
 851 Gemperline, Tom Augspurger, Yaroslav Halchenko, John B. Cole, Jordi Warmenhoven, Julian
 852 de Ruiter, Cameron Pye, Stephan Hoyer, Jake Vanderplas, Santi Villalba, Gero Kunter, Eric
 853 Quintero, Pete Bachant, Marcel Martin, Kyle Meyer, Alistair Miles, Yoav Ram, Tal Yarkoni,
 854 Mike Lee Williams, Constantine Evans, Clark Fitzgerald, Brian, Chris Fonnesbeck, Antony Lee,
 855 and Adel Qalieh. mwaskom/seaborn: v0.8.1 (september 2017), September 2017.

856 Alice X Zheng, Irina Rish, and Alina Beygelzimer. Efficient test selection in active diagnosis via
 857 entropy approximation. In *Conference on Uncertainty in Artificial Intelligence*, 2005.

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Appendix

CONTENTS

1	Introduction	1
2	Problem Setting	2
3	ICPE: In-Context Pure Exploration	3
3.1	Theoretical Results	3
3.2	Practical Implementation: the ICPE algorithm	5
4	Empirical Evaluation	6
4.1	Bandit Problems	6
4.2	General Search Problems: Pixel Sampling and Probabilistic Binary Search	8
5	Discussion and Conclusions	9
Reproducibility Statement		10
Limitations and Broader Impact		19
A	Extended Related Work	20
B	Theoretical Results	23
B.1	ICPE: Theoretical Results	23
B.1.1	Problem setup	23
B.1.2	Posterior distribution over the true hypothesis and inference rule optimality	24
B.1.3	Fixed budget setting: optimal policy	26
B.1.4	Fixed confidence setting: dual problem formulation	27
B.1.5	Fixed confidence setting: optimal policy	29
B.1.6	Fixed confidence setting: identifiability and correctness	29
B.2	Meta-training: Finite Sample Analysis	35
B.2.1	Main results	36
B.2.2	Convergence Analysis: Proof of thm. B.14	37
B.2.3	Finite Sample Analysis: Proof of thm. B.15	42
B.3	Comparison with Information Directed Sampling	46
B.4	Sample Complexity Bounds for MAB Problems with Fixed Minimum Gap	48
B.5	Sample Complexity Lower Bound for the Magic Action MAB Problem	51
B.6	Sample Complexity Bound for the Multiple Magic Actions MAB Problem	55
C	Algorithms	59

918	C.1	ICPE with Fixed Confidence	59
919	C.2	ICPE with Fixed Budget	61
920	C.3	Other Algorithms	61
921	C.3.1	Track and Stop	62
922	C.3.2	<i>I</i>-IDS	63
923	C.3.3	In-Context Explore-then-Commit	63
924	C.3.4	<i>I</i>-DPT	64
925	C.4	Transformer Architecture	64
926			
927	D	Experiments	65
928	D.1	Bandit Problems	66
929	D.1.1	Deterministic Bandits with Fixed Budget	66
930	D.1.2	Stochastic Bandits Problems	66
931	D.1.3	Bandit Problems with Hidden Information	69
932	D.2	Semi-Synthetic Pixel Sampling	71
933	D.3	MDP Problems: Magic Room	73
934	D.4	Exploration on Feedback Graphs	76
935	D.5	Meta-Learning Binary Search	78
936			
937			
938			
939			
940			
941			
942			
943			
944			
945			
946			
947			
948			
949			
950			
951			
952			
953			
954			
955			
956			
957			
958			
959			
960			
961			
962			
963			
964			
965			
966			
967			
968			
969			
970			
971			

972 APPENDIX
973974 LIMITATIONS AND BROADER IMPACT
975976 **Finite vs continuous sets of hypotheses.** A limitation of this work is the assumption that \mathcal{H} is
977 finite. This is a common assumption in active sequential hypothesis testing, and the continuous case
978 is also referred to as *active regression* (Mukherjee et al., 2022). We believe our framework can be
979 extended to this case with a proper parametrization of the inference mapping I that allows to sample
980 from a continuous set.
981982 **On the prior set of problems \mathcal{P} .** One limitation of our approach is the assumption of access
983 to a prior set of problems \mathcal{P} . Such set may lack a common structure, and need not be stationary.
984 Nonetheless, we view this as a useful starting point for developing more sophisticated methods.
985 A natural direction for future work is to extend our framework to an adversarial setting, in which
986 problem instances can evolve or even be chosen to thwart the learner.
987988 **Online training.** Another limitation arises from assuming access to an online simulator from which
989 we can sample $M \sim \mathcal{P}$ and training **ICPE**. Implicitly, this assumes access to H^* during training.
990 Learning how to generalize to setting where H^* is not perfectly known at training time is an exciting
991 research direction. Furthermore, our main focus is in the sequential process of starting from "no
992 data", to being able to predict the right hypothesis as quickly as possible (see the MNIST example).
993 We believe this framework to be valuable when one can build verifiable simulations to train policies
994 that transfer to real-world problems.
995996 **Practical limitations and transformers.** A limitation of **ICPE** is the current limit N on the horizon
997 of the trajectory. This is due to the computation cost of training and using transformer architectures.
998 Future work could investigate how to extend this limit, or completely remove it.
9991000 Another technical limitation of **ICPE** is the hardness to scaling to larger problems. This is closely
1001 related to the above limitation, and it is mainly an issue of investigating how to improve the current
1002 architecture of **ICPE** and/or distribute training.
10031004 Lastly, we believe that **ICPE** does not use the full capabilities of transformer architectures. For
1005 example, during training and evaluation, we always use the last hidden state of the transformer to
1006 make prediction, while the other hidden states are left untouched.
10071008 **Bayesian BAI.** Some of our work falls within the Bayesian Best Arm Identification theoretical
1009 framework. However, the Bayesian setting is less known compared to the frequentist one, and
1010 only recently some work (Jang et al., 2024) studied the unstructured Gaussian case. Future work
1011 should compare **ICPE** more thoroughly with Bayesian techniques once the Bayesian setting is more
1012 developed.
10131014 **Broader impact.** This paper primarily focuses on foundational research in pure exploration problems.
1015 Although we do not directly address societal impacts, we recognize their importance. The
1016 methods proposed here improve the sample efficiency of active sequential hypothesis testing
1017 procedures, and could be applied in various contexts with societal implications. For instance, our technique
1018 could be used in decision-making systems in healthcare, finance, and autonomous vehicles, where
1019 biases or errors could have significant consequences. Therefore, while the immediate societal impact
1020 of our work may not be evident, we urge future researchers and practitioners to carefully consider the
1021 ethical implications and potential negative impacts in their specific applications
1022
1023
1024
1025

1026 A EXTENDED RELATED WORK

1028 **Exploration for Regret Minimization.** The problem of exploration is particular relevant in RL
 1029 ([Sutton & Barto, 2018](#)), and many strategies have been introduced, often with the goal of minimizing
 1030 regret. Notably, approaches based on Posterior Sampling ([Kaufmann et al., 2012](#); [Osband et al., 2013](#);
 1031 [Russo & Van Roy, 2014](#); [Gopalan et al., 2014](#)) and Upper Confidence Bounds ([Auer et al., 2002](#);
 1032 [2008](#); [Cappé et al., 2013](#); [Lattimore & Hutter, 2012](#); [Auer, 2002](#)) have received significant
 1033 attention. However, the problem of minimizing regret is a relevant objective only when one cares
 1034 about the rewards accumulated so far, and does not answer the problem of how to efficiently gather
 1035 data to reach some desired goal. In this context, *Information-Directed Sampling* (IDS) ([Russo &](#)
 1036 [Van Roy, 2014](#); [Russo et al., 2018](#)) has been proposed to strike a balance between minimizing regret
 1037 and maximizing information gain, where the latter is quantified as the mutual information between
 1038 the true optimal action and the subsequent observation. However, when the information structure is
 1039 unknown, it effectively becomes a significant challenge to exploit it. Importantly, if the state does not
 1040 encode the structure of the problem, RL techniques may not be able to exploit hidden information.

1041 **In-Context Learning, LLMs and Return Conditioned Learning.** Recently, Transformers
 1042 ([Vaswani et al., 2017](#); [Chen et al., 2021](#)) have demonstrated remarkable in-context learning ca-
 1043 pabilities ([Brown et al., 2020](#); [Garg et al., 2022](#)). In-context learning ([Moeini et al., 2025](#)) is a form of
 1044 meta-RL ([Beck et al., 2023](#)), where agents can solve new tasks without updating any parameters by
 1045 simply conditioning on additional context such as their action-observation histories. When provided
 1046 with a few supervised input-output examples, a pretrained model can predict the most likely next
 1047 token ([Lee et al., 2023](#)). Building on this ability, [Lee et al. \(2023\)](#) recently showed that Transformers
 1048 can be trained in a supervised manner using offline data to mimic posterior sampling in reinforcement
 1049 learning. In ([Krishnamurthy et al., 2024](#)) the authors investigate the extent to which LLMs ([Achiam](#)
 1050 [et al., 2023](#)) can perform in-context exploration in multi-armed bandit problems. Similarly, other
 1051 works ([Coda-Forno et al., 2023](#); [Monea et al., 2024](#); [Nie et al., 2024](#); [Harris & Slivkins, 2025](#); [Sun](#)
 1052 [et al., 2025](#)) evaluate the in-context learning capabilities of LLMs in sequential decision making
 1053 problems, with ([Harris & Slivkins, 2025](#)) showing that LLMs can help at exploring large action
 1054 spaces with inherent semantics. On a different note, in ([Arumugam & Griffiths, 2025](#)) investigate how
 1055 to use LLMs to implement PSRL, leveraging the full expressivity and fluidity of natural language to
 1056 express the prior and current knowledge about the problem.

1057 In ([Dai et al., 2024](#)) the authors present ICEE (In-Context Exploration Exploitation), a method
 1058 closely related to **ICPE**. ICEE uses Transformer architectures to perform in-context exploration-
 1059 exploration for RL. ICEE tackles this challenge by expanding the framework of return conditioned
 1060 RL with in-context learning ([Chen et al., 2021](#); [Emmons et al., 2021](#)). Return conditioned learning is
 1061 a type of technique where the agent learns the return-conditional distribution of actions in each state.
 1062 Actions are then sampled from the distribution of actions that receive high return. This methodology
 1063 was first proposed for the online RL setting by work on Upside Down RL ([Srivastava et al., 2019](#))
 1064 and Reward Conditioned Policies ([Kumar et al., 2019](#)). Lastly, we note the important contribution of
 1065 RL² ([Duan et al., 2016](#)), which proposes to represent an RL policy as the hidden state of an RNN,
 1066 whose weights are learned via RL. **ICPE** employs a similar idea, but focuses on a different objective
 1067 (identification), and splits the process into a supervised inference network that provides rewards to an
 1068 RL-trained transformer network that selects actions to maximize information gain.

1069 **Active Pure Exploration in Bandit and RL Problems.** Other strategies consider the *pure explo-
 1070 ration problem* ([Even-Dar et al., 2006](#); [Audibert & Bubeck, 2010](#); [Bubeck et al., 2011](#); [Kaufmann](#)
 1071 [et al., 2016](#)), or Best Arm Identification (BAI), in which the samples collected by the agent are no
 1072 longer perceived as rewards, and the agent must actively optimize its exploration strategy to identify
 1073 the optimal action. In this pure exploration framework, the task is typically formulated as a hypothesis
 1074 testing problem: given a desired goal, the agent must reject the hypothesis that the observed data
 1075 could have been generated by any environment whose behavior is fundamentally inconsistent with
 1076 the true environment ([Garivier & Kaufmann, 2016](#)). This approach leads to instance-dependent
 1077 exploration strategies that adapt to the difficulty of the environment and has been extensively studied
 1078 in the context of bandit problems under the fixed confidence setting ([Even-Dar et al., 2006](#); [Garivier](#)
 1079 & [Kaufmann, 2016](#); [Degenne et al., 2019](#); [Jang et al., 2024](#); [Russo et al., 2025](#)), where the objective
 is to identify the optimal policy using the fewest number of samples while maintaining a specified
 level of confidence. Similar ideas have been applied to Markov Decision Processes for identifying

1080 the best policy (Marjani & Proutiere, 2021; Marjani et al., 2021; Russo & Proutiere, 2023; Russo &
 1081 Vannella, 2025) or rapidly estimating the value of a given policy (Russo & Pacchiano, 2025). Another
 1082 setting is that of identifying the best arm in MAB problems with a fixed horizon. In this case
 1083 characterizing the complexity of the problem is challenging, and this is an area of work that is less
 1084 developed compared to the fixed confidence one (Wang et al., 2023; Karnin et al., 2013; Audibert
 1085 & Bubeck, 2010; Atsidakou et al., 2022; Nguyen et al., 2025; Ghosh et al., 2024). Because of this
 1086 reason, we believe **ICPE** can help better understand the nuances of this specific setting.

1087 However, while BAI strategy are powerful, they may be suboptimal when the underlying information
 1088 structure is not adequately captured within the hypothesis testing framework. Hence, the issue of
 1089 leveraging hidden environmental information, or problem with complex information structure remains
 1090 a difficult problem. Although IDS and BAI techniques offer frameworks to account for such structure,
 1091 extending these approaches to Deep Learning is difficult, particularly when the information structure
 1092 is unknown to the learner.

1093 A closely related work is that of (Liu et al., 2024). In (Liu et al., 2024) the authors present empirical
 1094 evidence of skills and directed exploration emerging from using RL with a sparse reward and a
 1095 contrastive loss. They define a goal state, and encode a sparse reward using that goal state. Their
 1096 objective, which maximizes the probability of reaching the goal state, is similar to ours, where in our
 1097 framework the goal state would be a hypothesis. Note, however, that they do not learn an inference
 1098 network, and we do not assume the observations to possess the Markov property.

1099 **Active Learning and Active Sequential Hypothesis Testing** In the problem of active sequential
 1100 hypothesis testing (Chernoff, 1992; Ghosh, 1991; Lindley, 1956; Naghshvar & Javidi, 2013;
 1101 Naghshvar et al., 2012; Mukherjee et al., 2022; Gan et al., 2021), a learner is tasked with adaptively
 1102 performing a sequence of actions to identify an unknown property of the environment. Each action
 1103 yields noisy feedback about the true hypothesis, and the goal is to minimize the number of samples
 1104 required to make a confident and correct decision. Similarly, active learning (Cohn et al., 1996; Chen
 1105 et al., 2023) studies the problem of data selection, and, closely related, Bayesian Active Learning
 1106 (Golovin & Krause, 2011), or Bayesian experimental design (Rainforth et al., 2024), studies how
 1107 to adaptively select from a number of expensive tests in order to identify an unknown hypothesis
 1108 sampled from a known prior distribution.

1109 Active sequential hypothesis testing generalizes the pure exploration setting in bandits and RL by
 1110 allowing for the identification of arbitrary hypotheses, rather than just the optimal action. However,
 1111 most existing approaches assume full knowledge of the observation model (Naghshvar & Javidi,
 1112 2013), which is the distribution of responses for each action under each hypothesis. While some
 1113 work has attempted to relax this assumption to partial knowledge (Cecchi & Hegde, 2017), it remains
 1114 highly restrictive in practice. As in bandit settings, real-world exploration and hypothesis testing
 1115 often proceed without access to the true observation model, requiring strategies that can learn both
 1116 the structure and the hypothesis from interaction alone.

1117
 1118 **Algorithm Discovery.** Our method is also closely related to the problem of discovering algorithms
 1119 (Oh et al., 2020). In fact, one can argue that **ICPE** is effectively discovering active sampling
 1120 techniques. This is particularly important for BAI and Best Policy Identification (BPI) problems,
 1121 where often one needs to solve a computationally expensive optimization technique numerous times.
 1122 For BPI the problem is even more exacerbated, since the optimization problem is usually non-convex
 1123 (Marjani & Proutiere, 2021; Russo & Pacchiano, 2025).

1124
 1125 **Cognitive Theories of Exploration.** Our approach draws inspiration from cognitive theories of
 1126 exploration. Indeed, in animals, exploration arises naturally from detecting mismatches between
 1127 sensory experiences and internal cognitive maps—mental representations encoding episodes and
 1128 regularities within environments (O’keefe & Nadel, 1979; Nadel & Peterson, 2013). Detection of
 1129 novelty prompts updates of these cognitive maps, a function strongly associated with the hippocampus
 1130 (Nadel, 1991; Lisman et al., 2017). Conversely, exploration can also be explicitly goal-directed:
 1131 psychological theories posit that an internal representation of goals, combined with cognitive maps
 1132 formed through experience, guides adaptive action selection (Kagan, 1972; Morris et al., 2022).
 1133 **ICPE** embodies these cognitive principles computationally: the exploration (π) network learns
 an internal model (analogous to a cognitive map), while the inference (I) network encodes goal-

1134 directed evaluation. This interplay enables **ICPE** to effectively manage exploration as an adaptive,
1135 structure-sensitive behavior.

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188 **B THEORETICAL RESULTS**

1190 In this section we provide different theoretical results: first, we describe the theoretical results for
1191 **ICPE**. Then, we discuss some sample complexity results for different MAB problems with structure.
1192

1193 **B.1 ICPE: THEORETICAL RESULTS**

1195 In this subsection we present the theoretical results of **ICPE**. We begin by describing the problem
1196 setup. After that, we present results for the fixed budget and fixed confidence regimes respectively.
1197

1198 **B.1.1 PROBLEM SETUP**

1199 We now provide a formal definition of the underlying probability measures of the problem we consider.
1200 To that aim, it is important to formally define what a model M is, as well as the definition of policy π
1201 and inference rule I (infernece rules are also known as recommendation rules).
1202

1203 **Spaces and σ -fields.** We let $\mathcal{X} \subset \mathbb{R}$ be nonempty, compact, and endowed with its Borel σ -field
1204 $\mathcal{B}(\mathcal{X})$. Let $\mathcal{A} = \{1, \dots, K\}$ be a finite action set with the discrete σ -field $2^{\mathcal{A}}$, and let \mathcal{H} be a finite
1205 hypothesis set with the discrete σ -field. Write $\Delta(\mathcal{X})$ for the set of Borel probability measures on
1206 $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$, equipped with the topology of weak convergence and its Borel σ -field $\mathcal{B}(\Delta(\mathcal{X}))$.
1207

1208 For $t \in \mathbb{N}$, define the trajectory space

1209
$$\mathcal{Z}_t := (\mathcal{X} \times \mathcal{A})^{t-1} \times \mathcal{X}, \quad z_t = (x_1, a_1, \dots, a_{t-1}, x_t),$$

1210 with the product topology and Borel σ -field $\mathcal{B}(\mathcal{Z}_t)$. Since \mathcal{X} is compact metric and \mathcal{A} is finite, each
1211 $(\mathcal{Z}_t, \mathcal{B}(\mathcal{Z}_t))$ is standard Borel (in fact compact Polish). Set $\mathcal{Z}_\infty := \mathcal{X} \times (\mathcal{A} \times \mathcal{X})^{\mathbb{N}}$ with the product
1212 σ -field $\mathcal{B}(\mathcal{Z}_\infty)$.
1213

1214 **Observation dynamics and parameterization.** To define the dynamics (ρ, P) we introduce a
1215 parametrization in $\omega \in \Omega$. We take (Ω, d) to be a compact metric with Borel σ -field $\mathcal{B}(\Omega)$ and metric
1216 d . For each $\omega \in \Omega$, we assume that ρ and P are functionals of ω :

1217

1218 - $\rho_\omega \in \Delta(\mathcal{X})$ is the initial observation law (a Borel probability measure on \mathcal{X}).
1219 - $P_s^\omega(\cdot | z_s, a_s) \in \Delta(\mathcal{X})$ is a Borel probability *kernel* for each round $s \geq 1$: for every (z_s, a_s) ,
1220 $P_s^\omega(\cdot | z_s, a_s)$ is a probability measure on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$, and for every $C \in \mathcal{B}(\mathcal{X})$ the map
1221 $(z_s, a_s) \mapsto P_s^\omega(C | z_s, a_s)$ is measurable.

1222 We assume the following *weak continuity* in ω : for every bounded continuous $f : \mathcal{X} \rightarrow \mathbb{R}$,

1223
$$\omega \mapsto \int f \, d\rho_\omega \quad \text{and} \quad (\omega, z_s, a_s) \mapsto \int f(x') P_s^\omega(dx' | z_s, a_s) \quad \text{are continuous.}$$

1226 Equivalently, $\omega \mapsto \rho_\omega$ and $(\omega, z_s, a_s) \mapsto P_s^\omega(\cdot | z_s, a_s)$ are continuous maps into $\Delta(\mathcal{X})$ with the weak
1227 topology.
1228

1229 **Set of models (environments).** To define the set of models, consider a mapping $\phi : \Omega \rightarrow \Delta(\mathcal{X}) \times$
1230 $\prod_{s \geq 1} (\Delta(\mathcal{X})^{\mathcal{Z}_s \times \mathcal{A}})$ so that $\phi(\omega) = (\rho_\omega, P^\omega)$, where $P^\omega := (P_s^\omega)_{s \geq 1}$. Set $\mathcal{M}^\sharp := \phi(\Omega)$ with the
1231 product of weak topologies. We indicate by $(\rho, P) \in \mathcal{M}^\sharp$ a model in this set (hence $P = P^\omega$ for
1232 some ω). By continuity of ϕ and compactness of Ω , \mathcal{M}^\sharp is compact.
1233

1234 We also let $h^* : \Delta(\mathcal{X}) \times \prod_{s \geq 1} (\Delta(\mathcal{X})^{\mathcal{Z}_s \times \mathcal{A}}) \rightarrow \mathcal{H}$, with \mathcal{H} finite (with the discrete topology),
1235 to be a Borel measurable mapping defining the ground truth hypothesis $H^* = h^*(\rho, P)$ for a pair
1236 $(\rho, P) \in \mathcal{M}^\sharp$. Then, we define \mathcal{M} as

1237
$$\mathcal{M} := \{(\rho, P, h^*(\rho, P)) : (\rho, P) \in \mathcal{M}^\sharp\}$$

1238 to be the push-forward set of environments⁴. Therefore, a prior Q on Ω induces a prior on \mathcal{M} (and
1239 \mathcal{M}^\sharp) by pushforward: $\mathcal{P} := Q \circ (\omega \mapsto (\phi(\omega), h^*(\phi(\omega))))^{-1}$ and $\mathcal{P}^\sharp := Q \circ \phi^{-1}$. In the following,
1240 we mainly work with \mathcal{M}^\sharp and use \mathcal{P} and \mathcal{P}^\sharp interchangeably whenever clear from the context.
1241

1242 ⁴We omit \mathcal{X}, \mathcal{A} from the definition since these sets are the same for all models in \mathcal{M}^\sharp .

Policies and inference (recommendation) rules. A (possibly randomized) policy $\pi = (\pi_s)_{s \geq 1}$ is a sequence of Borel probability kernels $\pi_s(\cdot | z_s) \in \Delta(\mathcal{A})$, $s \geq 1$, with $\pi_s : (\mathcal{Z}_s, \mathcal{B}(\mathcal{Z}_s)) \rightarrow (\Delta(\mathcal{A}), \mathcal{B}(\Delta(\mathcal{A})))$ measurable. Deterministic policies are the special case $\pi_s(\cdot | z_s) = \delta_{\alpha_s(z_s)}$ for some measurable $\alpha_s : \mathcal{Z}_s \rightarrow \mathcal{A}$. An inference rule at timestep t is defined as any Borel map $I_t : \mathcal{Z}_t \rightarrow \mathcal{H}$. We also define an inference rule as the collection $I := (I_s)_{s \geq 1}$.

Path laws and probability measures. Fix $M \in M^\sharp$, with $M = (\rho, (P_s)_s)$, and a policy $\pi = (\pi_s)_{s \geq 1}$. By the Ionescu–Tulcea theorem, there exists a unique probability measure $\mathbb{P}_{M,t}^\pi$ on $(\mathcal{Z}_t, \mathcal{B}(\mathcal{Z}_t))$ such that for all cylinder sets $C = C_1 \times B_1 \times \cdots \times B_{t-1} \times C_t$, with $C_i \in \mathcal{B}(\mathcal{X})$ and $B_i \subset \mathcal{A}$,

$$\mathbb{P}_{M,t}^\pi(C) = \int_{C_1} \rho(dx_1) \prod_{s=1}^{t-1} \left[\int_{B_s} \pi_s(da_s | z_s) \int_{C_{s+1}} P_s(dx_{s+1} | z_s, a_s) \right],$$

equivalently,

$$\mathbb{P}_{M,t}^\pi(dz_t) = \rho(dx_1) \prod_{s=1}^{t-1} [\pi_s(da_s | z_s) P_s(dx_{s+1} | z_s, a_s)].$$

Analogously, one obtains a unique path measure \mathbb{P}_M^π on $(\mathcal{Z}_\infty, \mathcal{B}(\mathcal{Z}_\infty))$.

Now, define the joint law on $\mathcal{M}^\sharp \times \mathcal{Z}_t$ by

$$\mathbf{P}_t^\pi(dM, dz_t) := \mathcal{P}(dM) \mathbb{P}_{M,t}^\pi(dz_t),$$

and the trajectory marginal

$$\mathbb{P}_t^\pi(A) := \int_{\mathcal{M}^\sharp} \mathbb{P}_{M,t}^\pi(A) \mathcal{P}(dM), \quad A \in \mathcal{B}(\mathcal{Z}_t).$$

Similarly, we also define $\mathbf{P}^\pi(dM, dz)$ on $M^\sharp \times \mathcal{Z}_\infty$ and $\mathbb{P}^\pi(A)$ for $A \in \mathcal{B}(\mathcal{Z}_\infty)$.

Lastly, since Ω and \mathcal{Z}_t are standard Borel, regular conditional probabilities exist on $\Omega \times \mathcal{Z}_t$; by pushforward through ϕ they induce regular conditional probabilities on $\mathcal{M}^\sharp \times \mathcal{Z}_t$, for all $t \geq 1$.

B.1.2 POSTERIOR DISTRIBUTION OVER THE TRUE HYPOTHESIS AND INFERENCE RULE OPTIMALITY

We first record a domination assumption that allows us to express likelihoods w.r.t. fixed reference measures and obtain continuity.

Assumption 1 (Domination and joint continuity). *There exist probability measures λ_0, λ on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ such that, for all $(\rho, P) \in \mathcal{M}^\sharp$, $s \in \mathbb{N}$, and $(z, a) \in \mathcal{Z}_s \times \mathcal{A}$,*

$$\rho(\cdot) \ll \lambda_0(\cdot) \quad \text{and} \quad P_s(\cdot | z, a) \ll \lambda(\cdot).$$

We also let $p_0^\omega(x) := \frac{d\rho_\omega}{d\lambda_0}(x)$ and $p_s^\omega(x | z, a) := \frac{dP_s^\omega(\cdot | z, a)}{d\lambda}(x)$ be the corresponding densities (versions chosen jointly measurable).

Remark. For compact $\mathcal{X} \subset \mathbb{R}$, such a dominating pair always exists (e.g., Lebesgue on \mathcal{X}).

Under assum. 1, define the (policy-independent) likelihood for $(\omega, z) \in \Omega \times \mathcal{Z}_t$:

$$\ell_t(M, z) := p_0(x_1) \prod_{s=1}^{t-1} p_s(x_{s+1} | z_s, a_s).$$

We now give a posterior kernel representation that is independent of π .

Lemma B.1 (Posterior kernel). *For each $t \in \mathbb{N}$ there exists a probability kernel $R_t : \mathcal{Z}_t \times \mathcal{B}(M^\sharp) \rightarrow [0, 1]$, independent of π , such that for every policy π and all $A \in \mathcal{B}(M^\sharp)$, $Z \in \mathcal{B}(\mathcal{Z}_t)$,*

$$\mathbf{P}_t^\pi(M \in A, \mathcal{D}_t \in Z) = \int_Z R_t(A | z) \mathbb{P}_{M \sim \mathcal{P}, t}^\pi(dz).$$

Consequently, for $B \subset \mathcal{H}$,

$$\mathbb{P}_t(H^* \in B | \mathcal{D}_t = z) := R_t(\{(\rho, P) \in \mathcal{M}^\sharp : h^*(\rho, P) \in B\} | z) \quad \text{for } \mathbb{P}_t^\pi\text{-a.e. } z.$$

1296 *Proof.* Fix π and t . Define the reference measure on \mathcal{Z}_t (depending on π)
 1297

1298
$$\nu_t^\pi(dz) := \lambda_0(dx_1) \prod_{s=1}^{t-1} [\pi_s(da_s|z_s) \lambda(dx_{s+1})].$$

 1299
 1300

1301 By construction and assum. 1, $\mathbb{P}_{M,t}^\pi \ll \nu_t^\pi$ for every ω , and the Radon–Nikodym density is
 1302

1303
$$\frac{d\mathbb{P}_{M,t}^\pi}{d\nu_t^\pi}(z) = \ell_t(M, z),$$

 1304
 1305

1306 which does not depend on π . Therefore,
 1307

1308
$$\mathbf{P}_t^\pi(M \in A, \mathcal{D}_t \in Z) = \int_A \int_Z \ell_t(M, z) \nu_t^\pi(dz) \mathcal{P}(dM),$$

 1309

1310 and
 1311

1312
$$\mathbb{P}_t^\pi(Z) = \int_Z \int_{\mathcal{M}^\sharp} \ell_t(M, z) \mathcal{P}(dM) \nu_t^\pi(dz).$$

 1313

1314 Absolute continuity $\mathbf{P}_t^\pi(A, \cdot) \ll \mathbb{P}_t^\pi(\cdot)$ follows immediately, and the Radon–Nikodym derivative is
 1315 the displayed ratio, which we denote $R_t(A|z)$. Standard arguments show $R_t(\cdot|z)$ is a probability
 1316 measure and $z \mapsto R_t(A|z)$ is measurable; independence of π is evident from the formula. Mapping
 1317 through h^* yields the posterior on \mathcal{H} . \square
 1318

1319 Define then
 1320

1321
$$\mathbb{P}_t^\pi(H^* = H) := \int_{\mathcal{Z}_t} \mathbb{P}_t(H^* = H | \mathcal{D}_t = z) \mathbb{P}_t^\pi(dz). \quad (12)$$

 1322

1323 We now provide a proof of the optimality of an inference rule. In the following, we use the following
 1324 quantity

1325
$$r_t(z) := \max_{H \in \mathcal{H}} \mathbb{P}_t(H^* = H | \mathcal{D}_t = z), \quad (13)$$

 1326

1327 which is the maximum value of the posterior distribution at time t for some dataset z .
 1328

1329 **Proposition B.2.** Consider a fixed policy π . Let $t \in \mathbb{N}$ and $z \sim \mathbb{P}_t^\pi$. For any t the optimal inference
 1330 rule to $\sup_{I_t} \mathbb{P}_t^\pi(H^* = I_t(\mathcal{D}_t))$ is given by $I_t^*(z) = \arg \max_{H \in \mathcal{H}} \mathbb{P}_t(H^* = H | \mathcal{D}_t = z)$ (break ties
 1331 according to some fixed ordering).

1332
 1333 *Proof.* Fix a policy π and an inference rule I_t at timestep t . By definition, we have
 1334

1335
$$\mathbb{P}_t^\pi(H^* = I_t(\mathcal{D}_t)) = \int_{\mathcal{Z}_t} \sum_{H \in \mathcal{H}} \mathbf{1}_{\{I_t(z)=H\}} \mathbb{P}_t(H^* = H | \mathcal{D}_t = z) \mathbb{P}_t^\pi(dz),$$

 1336
 1337 (Posterior independent of π)
 1338
 1339
$$\leq \int_{\mathcal{Z}_t} \max_{H \in \mathcal{H}} \mathbb{P}_t(H^* = H | \mathcal{D}_t = z) \mathbb{P}_t^\pi(dz),$$

 1340
 1341
$$= \int_{\mathcal{Z}_t} r_t(z) \mathbb{P}_t^\pi(dz).$$

 1342
 1343

1344 However, for any $\mathcal{D}_t = z$ choosing $I_t(z) = \arg \max_{H \in \mathcal{H}} \mathbb{P}_t^\pi(H^* = H | \mathcal{D}_t = z)$ (break ties
 1345 according to some fix ordering \Rightarrow hence $I_t(z)$ is Borel measurable) yields that
 1346

1347
$$\mathbb{P}_t^\pi(H^* = I_t(\mathcal{D}_t)) = \int_{\mathcal{Z}_t} r_t(z) \mathbb{P}_t^\pi(dz),$$

 1348
 1349

which concludes the proof. \square

1350 B.1.3 FIXED BUDGET SETTING: OPTIMAL POLICY
1351

1352 We now turn our attention to the fixed budget setting. In particular, we prove that an optimal policy
1353 π_t^* in \mathcal{D}_t attains the optimal value defined as $V_t(\mathcal{D}_t) = \max_a \mathbb{E}_{x_{t+1}|(\mathcal{D}_t, a)}[V_{t+1}((\mathcal{D}_t, a, x_{t+1})|\mathcal{D}_t, a)]$
1354 with $V_N(\mathcal{D}_N) = \max_H \mathbb{P}_t(H^* = H|\mathcal{D}_N)$ (see a rigorous definition of $x_{t+1}|(\mathcal{D}_t, a)$ below).

1355 First, note that from prop. B.2 we can deduce that the optimal objective in the fixed budget satisfies,
1356 for all $t \geq 1$,

$$1357 \sup_{\pi, I_t} \mathbb{P}_t^{\pi}(H^* = I_t(\mathcal{D}_t)) = \sup_{\pi} \mathbb{E}_t^{\pi}[r_t(\mathcal{D}_t)]$$

1359 where $r_t(z) := \max_{H \in \mathcal{H}} \mathbb{P}_t(H^* = H|\mathcal{D}_t = z)$.

1360 We now show that there exists an optimal deterministic policy π^* that optimally solves the fixed budget
1361 regime. First, define the following posterior mixture for any $t \in \mathbb{N}, X \in \mathcal{B}(\mathcal{X}), (z, a) \in \mathcal{Z}_t \times \mathcal{A}$:

$$1363 \bar{P}_t(x' \in X|z, a) := \int_{\mathcal{M}^{\sharp}} P_t(X|z, a) R_t(dM|z), \quad (14)$$

1364 where $P_t(\cdot|z, a)$ is the transition function at step t in (M, z, a) . This is simply the posterior $x'|z, a$,
1365 that in the main text of the manuscript is denoted by $x_{t+1}|(\mathcal{D}_t, a)$.

1367 **Optimal value.** Define the value at $N \in \mathbb{N}$ as $V_N(z_N) = r_N(z_N)$ for any $z_N \in \mathcal{Z}_N$, and define
1368 the value function for $z_t \in \mathcal{Z}_t, a \in \mathcal{A}$ as

$$1370 V_t(z_t) = \max_{a \in \mathcal{A}} Q_t(z_t, a), \quad Q_t(z_t, a) = \int_{\mathcal{X}} V_{t+1}(\underbrace{z_t, a, x'}_{=z_{t+1}}) \bar{P}_t(dx'|z_t, a), \quad t = 1, \dots, N-1, \quad (15)$$

1372 For some ordering on \mathcal{A} , for $z \in \mathcal{Z}_t$ define $\pi_t^*(z) \in \arg \max_{a \in \mathcal{A}} Q_t(z, a)$ (break ties according to
1373 the ordering). We have the following result.

1375 **Proposition B.3.** *For any $t \in \{1, \dots, N-1\}, z \in \mathcal{Z}_t$, the policy $\pi_t^*(z) \in \arg \max_{a \in \mathcal{A}} Q_t(z, a)$
1376 (break ties according to a fixed ordering) is an optimal policy, that is*

$$1377 \sup_{\pi, I_N} \mathbb{P}_N^{\pi}(H_M^* = I_N(\mathcal{D}_N)) = \mathbb{E}_N^{\pi^*}[r_N(\mathcal{D}_N)]. \quad (16)$$

1379 *Proof.* To prove the result, we use lem. B.4, which showss that $\mathbb{E}_N^{\pi}[V_N(\mathcal{D}_N)|\mathcal{D}_t] \leq V_t(\mathcal{D}_t)$ holds
1380 \mathbb{P}_t^{π} -almost surely for any policy π and $t \in [T]$, with equality if $\pi = \pi^*$. Then, using this inequality
1381 we can show that for $t = 1$, with $z_1 \in \mathcal{X}$, we have

$$1383 \mathbb{E}_N^{\pi}[V_N(\mathcal{D}_N)|\mathcal{D}_1 = z_1] \leq V_1(z_1) \Rightarrow \mathbb{E}_N^{\pi}[r_N(\mathcal{D}_N)] \leq \mathbb{E}_1[V_1(\mathcal{D}_1)],$$

1384 with equality if $\pi = \pi^*$, implying π^* is optimal since we can attain the r.h.s. (note that it does not
1385 depend on π). Hence

$$1386 \sup_{\pi, I_N} \mathbb{P}_N^{\pi}(H_M^* = I_N(\mathcal{D}_N)) = \sup_{\pi} \mathbb{E}_N^{\pi}[r_N(\mathcal{D}_N)] = \mathbb{E}_N^{\pi^*}[r_N(\mathcal{D}_N)].$$

1388 where the first equality follows from prop. B.2. \square

1389 We now prove the result used in the proof.

1391 **Lemma B.4.** *Consider the fixed budget setting with horizon N . For any policy $\pi = (\pi_s)_{s \geq 1}$,
1392 $t \in \{1, \dots, N\}, z \in \mathcal{Z}_t$, we have*

$$1393 \mathbb{E}_N^{\pi}[V_N(\mathcal{D}_N)|\mathcal{D}_t = z] \leq V_t(z) \quad \mathbb{P}_{M \sim \mathcal{P}, t}^{\pi}-\text{almost surely}, \quad (17)$$

1394 with equality when $\pi = \pi^*$.

1396 *Proof.* We prove it by backward induction. For $t = N$ the equality holds by definition. Assume it
1397 holds for $t + 1$, then at time t for any policy π we have

$$1398 \mathbb{E}_N^{\pi}[V_N(\mathcal{D}_N)|\mathcal{D}_t = z] = \mathbb{E}_N^{\pi}[\mathbb{E}_N^{\pi}[V_N(\mathcal{D}_N)|\mathcal{D}_{t+1}]|\mathcal{D}_t = z],$$

$$1399 \leq \mathbb{E}_{t+1}^{\pi}[V_{t+1}(\mathcal{D}_{t+1})|\mathcal{D}_t = z],$$

$$1400 = \mathbb{E}_t^{\pi}[Q_t(z, \pi_t(z))|\mathcal{D}_t = z],$$

$$1401 \leq V_t(z),$$

1402 and if $\pi = \pi^*$ then both inequalities hold since they hold at $t + 1$. Hence the result holds also for t ,
1403 which concludes the induction argument. \square

1404 B.1.4 FIXED CONFIDENCE SETTING: DUAL PROBLEM FORMULATION
14051406 In the fixed confidence setting we are interested in solving the following problem.
1407

1408
$$\inf_{\tau, \pi, I} \mathbb{E}^\pi[\tau] \quad \text{subject to} \quad \mathbb{P}^\pi(H^* = I_\tau(\mathcal{D}_\tau)) \geq 1 - \delta, \mathbb{E}^\pi[\tau] < \infty. \quad (18)$$

1409

1410 where τ is a stopping time adapted to $(\sigma(\mathcal{D}_t))_t$ (recall that it counts the total number of observations;
1411 thus, if $\tau = t \Rightarrow$ we have observations x_1, \dots, x_t), $\pi = (\pi_s)_{s \geq 1}$, is a collection of policies, and
1412 $I = (I_s)_{s \geq 1}$, is a sequence of recommendation rules. Furthermore, we have that $\mathbb{P}^\pi(\tau < \infty) = 1$
1413 (this follows from $\mathbb{E}^\pi[\tau] < \infty$).1414 **Dual problem and optimal recommendation rule** In the following we focus on the dual problem
1415 of eq. (18). First, we show what is the dual problem, and what is the optimal recommendation rule.
14161417 **Proposition B.5.** *The Lagrangian dual of the problem in eq. (18) is given by*

1418
$$\sup_{\lambda \geq 0} \inf_{\pi, \tau, I} V_\lambda(\pi, \tau, I) = \sup_{\lambda \geq 0} \inf_{\pi, \tau, I} \lambda(1 - \delta) + \mathbb{E}^\pi[\tau - \lambda \mathbb{P}_\tau(H^* = I_\tau(\mathcal{D}_\tau) | \mathcal{D}_\tau)], \quad (19)$$

1419

1420 where $\lambda \geq 0$ is the Lagrangian variable.
14211422 *Proof.* Since any feasible solution stops almost surely, we can also write
1423

1424
$$\begin{aligned} \mathbb{P}^\pi(H_M^* = I_\tau(\mathcal{D}_\tau)) &= \sum_{t \geq 1} \mathbb{P}_t^\pi(I_t(\mathcal{D}_t) = H^*, \tau = t), && \text{(law of total probability)} \\ 1425 \\ 1426 &= \sum_{t \geq 1} \mathbb{E}_t^\pi \left[\mathbf{1}_{\{\tau=t\}} \mathbf{1}_{\{H^*=I_t(\mathcal{D}_t)\}} \right], \\ 1427 \\ 1428 &= \sum_{t \geq 1} \mathbb{E}_t^\pi \left[\mathbb{E}_t^\pi \left[\mathbf{1}_{\{\tau=t\}} \mathbf{1}_{\{H^*=I_t(\mathcal{D}_t)\}} \middle| \mathcal{D}_t \right] \right], && \text{(tower rule)} \\ 1429 \\ 1430 &= \sum_{t \geq 1} \mathbb{E}_t^\pi \left[\mathbf{1}_{\{\tau=t\}} \mathbb{E}_t^\pi \left[\mathbf{1}_{\{H^*=I_t(\mathcal{D}_t)\}} \middle| \mathcal{D}_t \right] \right], && (\{\tau = t\} \in \sigma(\mathcal{D}_t)) \\ 1431 \\ 1432 &= \sum_{t \geq 1} \mathbb{E}_t^\pi \left[\mathbf{1}_{\{\tau=t\}} \mathbb{P}_t(H^* = I_t(\mathcal{D}_t) | \mathcal{D}_t) \right] \\ 1433 \\ 1434 & \quad \text{(Outer expectation integrates over } \mathcal{D}_t\text{)} \end{aligned}$$

1435

1436 where we used the fact that the posterior distribution does not depend on π (lem. B.1). Using this
1437 decomposition, for $\lambda \geq 0$ (the dual variable) we can write the Lagrangian dual of the problem as
1438

1439
$$\begin{aligned} 1440 V_\lambda(\pi, \tau, I) &:= \mathbb{E}^\pi \left[\tau + \lambda \left(1 - \delta - \sum_{t \geq 1} \mathbf{1}_{\{\tau=t\}} \mathbb{P}_t(H^* = I_t(\mathcal{D}_t) | \mathcal{D}_t) \right) \right], \\ 1441 \\ 1442 &= \lambda - \lambda \delta + \mathbb{E}^\pi \left[\sum_{t \geq 1} \mathbf{1}_{\{t \leq \tau\}} - \lambda \mathbf{1}_{\{\tau=t\}} \mathbb{P}_t(H^* = I_t(\mathcal{D}_t) | \mathcal{D}_t) \right], \\ 1443 \\ 1444 & \quad \text{□} \end{aligned}$$

1445

1446 where we used that $\mathbb{E}^\pi[\tau] = \mathbb{E}^\pi[\sum_{t=1}^\tau 1] = \mathbb{E}^\pi[\sum_{t=1}^\infty \mathbf{1}_{\{t \leq \tau\}}]$.
14471448 For the dual problem, we now show we can embed the stopping rule as a stopping action. Define the
1449 extended action space $\bar{\mathcal{A}} := \mathcal{A} \cup \{a_{\text{stop}}\}$, where a_{stop} is absorbing. We show that for every (τ, π, I)
1450 there exists a policy $\bar{\pi} = (\bar{\pi}_s)_{s \geq 1}$, with $\bar{\pi}_s : \mathcal{Z}_s \rightarrow \Delta(\bar{\mathcal{A}})$, such that $V_\lambda(\pi, \tau, I) = V_\lambda(\bar{\pi}, I)$, where
1451

1452
$$V_\lambda(\bar{\pi}, I) := \lambda(1 - \delta) + \mathbb{E}^{\bar{\pi}}[\bar{\tau} - \lambda \mathbb{P}_{\bar{\tau}}(H^* = I_{\bar{\tau}}(\mathcal{D}_{\bar{\tau}}) | \mathcal{D}_{\bar{\tau}})].$$

1453

1454 and
1455

1456
$$\bar{\tau} = \inf\{t : a_t = a_{\text{stop}}\}.$$

1457

1458 At the beginning of round t , given \mathcal{D}_t , the learner may stop by choosing a_{stop} (termination at t ,
1459 no new observation) or continue by choosing $a_t \neq a_{\text{stop}}$ and then observing x_{t+1} . If the learner
1460 decides to stop after seeing x_{t+1} , this is equivalent to choosing a_{stop} at round $t+1$, leading to
1461 $\bar{\tau} = t+1 = \tau$.

1458 **Lemma B.6.** For every (π, τ, I) with $\tau \geq 1$ a.s., there exists a policy $\bar{\pi}$ on $\bar{\mathcal{A}} = \mathcal{A} \cup \{a_{\text{stop}}\}$ with
 1459 stopping rule $\bar{\tau} = \inf\{t : a_t = a_{\text{stop}}\}$ such that $V_\lambda(\pi, \tau, I) = V_\lambda(\bar{\pi}, \bar{\tau}, I)$.
 1460

1461 *Proof.* Since $\{\tau = t\} \in \sigma(\mathcal{D}_t)$ note that there exists $A_t \in \mathcal{B}(\mathcal{Z}_t)$ such that $\{\tau = t\} = \{\mathcal{D}_t \in A_t\}$.
 1462 Define, for all $t \geq 1$ and $z \in \mathcal{Z}_t$,

$$1463 \quad \bar{\pi}_t(a_{\text{stop}}|z) = \mathbf{1}_{\{z \in A_t\}}, \quad \bar{\pi}_t(a|z) = \pi_t(a|z) \quad (a \in \mathcal{A}).$$

1464 Clearly we have $\{\bar{\tau} = t\} = \{a_t = a_{\text{stop}}\} = \{\tau = t\}$, then

$$\begin{aligned} 1465 \quad V_\lambda(\bar{\pi}, I) &= \lambda(1 - \delta) + \mathbb{E}^{\bar{\pi}} [\bar{\tau} - \lambda \mathbb{P}_{\bar{\pi}}(H^* = I_{\bar{\tau}}(\mathcal{D}_{\bar{\tau}})|\mathcal{D}_{\bar{\tau}})], \\ 1466 \\ 1467 \quad &= \lambda(1 - \delta) + \mathbb{E}^{\bar{\pi}} \left[\sum_{t \geq 1} \mathbf{1}_{\{t \leq \bar{\tau}\}} - \lambda \mathbf{1}_{\{\bar{\tau} = t\}} \mathbb{P}_t(H^* = I_t(\mathcal{D}_t)|\mathcal{D}_t) \right], \\ 1468 \\ 1469 \quad &= \lambda(1 - \delta) + \mathbb{E}^{\bar{\pi}} \left[\sum_{t \geq 1}^{\bar{\tau}} 1 - \lambda \mathbf{1}_{\{a_t = a_{\text{stop}}\}} \mathbb{P}_t(H^* = I_t(\mathcal{D}_t)|\mathcal{D}_t) \right], \\ 1470 \\ 1471 \quad &= \lambda(1 - \delta) + \mathbb{E}^{\bar{\pi}} \left[\sum_{t \geq 1}^{\tau} 1 - \lambda \mathbf{1}_{\{\tau = t\}} \mathbb{P}_t(H^* = I_t(\mathcal{D}_t)|\mathcal{D}_t) \right], \\ 1472 \\ 1473 \quad &= \lambda(1 - \delta) + \mathbb{E}^{\pi} \left[\sum_{t \geq 1} \mathbf{1}_{\{t \leq \tau\}} - \lambda \mathbf{1}_{\{\tau = t\}} \mathbb{P}_t(H^* = I_t(\mathcal{D}_t)|\mathcal{D}_t) \right], \\ 1474 \\ 1475 \quad &= \lambda(1 - \delta) + \mathbb{E}^{\pi} [\tau - \lambda \mathbb{P}_\tau(H^* = I_\tau(\mathcal{D}_\tau)|\mathcal{D}_\tau)]. \\ 1476 \\ 1477 \quad & \end{aligned}$$

□

1478 Then, in the following, we assume to work with the extended space $\bar{\mathcal{A}}$, and indicate by $\tau = \inf\{t : a_t = a_{\text{stop}}\}$ the stopping time. We avoid the bar notation for simplicity.

1479 We now show what is the optimal inference rule.

1480 **Proposition B.7.** For any $t \in \mathbb{N}$ the optimal inference rule satisfies $I_t(\mathcal{D}_t) \in \arg \max_{H \in \mathcal{H}} \mathbb{P}_t(H^* = H|\mathcal{D}_t = z_t)$ (break ties according to some fixed ordering), where $z_t \in \mathcal{Z}_t$. Moreover, we also have

$$1481 \quad \sup_{\lambda \geq 0} \inf_{\pi, I} V_\lambda(\pi, I) = \sup_{\lambda \geq 0} \inf_{\pi} \lambda(1 - \delta) + \mathbb{E}^\pi [\tau - \lambda r_\tau(\mathcal{D}_\tau)], \quad (20)$$

1482 where $\tau = \inf\{t : a_t = a_{\text{stop}}\}$ and $r_t(z_t) := \max_H \mathbb{P}_t(H^* = H|\mathcal{D}_t = z_t)$.

1483 *Proof.* First, we optimize over recommendation rules. For any $t \in \mathbb{N}, z_t \in \mathcal{Z}_t$ define $r_t(z_t) = \max_{H \in \mathcal{H}} \mathbb{P}_t(H^* = H|\mathcal{D}_t = z_t)$ as before. Then, for fixed (π, τ) we have that

$$\begin{aligned} 1484 \quad \inf_I V_\lambda(\pi, I) &= \lambda - \lambda \delta + \mathbb{E}^\pi \left[\inf_I \sum_{t \geq 1} \mathbf{1}_{\{t \leq \tau\}} - \lambda \mathbf{1}_{\{\tau = t\}} \mathbb{P}_t(H^* = I_t(\mathcal{D}_t)|\mathcal{D}_t) \right], \\ 1485 \\ 1486 \quad &= \lambda - \lambda \delta + \mathbb{E}^\pi \left[\sum_{t \geq 1} \mathbf{1}_{\{t \leq \tau\}} - \lambda \mathbf{1}_{\{\tau = t\}} \sup_{I_t} \mathbb{P}_t(I_t(\mathcal{D}_t) = H^*|\mathcal{D}_t) \right], \\ 1487 \\ 1488 \quad &= \lambda - \lambda \delta + \mathbb{E}^\pi \left[\sum_{t \geq 1} \mathbf{1}_{\{t \leq \tau\}} - \lambda \mathbf{1}_{\{\tau = t\}} r_t(\mathcal{D}_t) \right], \\ 1489 \\ 1490 \quad & \end{aligned}$$

1491 where the last step follows from prop. B.2. Therefore, we can also conclude that

$$1492 \quad \sup_{\lambda \geq 0} \inf_{\pi, I} V_\lambda(\pi, I) = \sup_{\lambda \geq 0} \inf_{\pi} \lambda - \lambda \delta + \mathbb{E}^\pi [\tau - \lambda r_\tau(\mathcal{D}_\tau)].$$

□

1512 B.1.5 FIXED CONFIDENCE SETTING: OPTIMAL POLICY
1513

1514 We now optimize over policies. Recall that \mathcal{A} includes the stopping action, and $\tau = \inf\{t : a_t =$
1515 $a_{\text{stop}}\}$. For $t \in \mathbb{N}$, $z \in \mathcal{Z}_t$ define the optimal value to go

$$1516 \quad V_t(z; \lambda) := \inf_{\pi: \tau \geq t} \lambda - \lambda\delta + \mathbb{E}^\pi [\tau - t - \lambda r_\tau(\mathcal{D}_\tau) | \mathcal{D}_t = z].$$

1518 Also define the following optimal Q -function for $z \in \mathcal{Z}_t$, $a \neq a_{\text{stop}}$
1519

$$1520 \quad Q_t(z, a; \lambda) := 1 + \int_{\mathcal{X}} \underbrace{V_{t+1}(z, a, x'; \lambda)}_{=z'} \bar{P}_t(dx' | z, a)$$

1523 where \bar{P}_t is the posterior mixture defined in eq. (14). We also set

$$1524 \quad Q_t(z, a_{\text{stop}}; \lambda) := \lambda(1 - \delta - r_t(z)).$$

1525 Consider then the policy $\pi_\lambda^* = (\pi_t^*)_t$, where $\pi_t^*(z; \lambda) \in \arg \min_{a \in \mathcal{A}} Q_t(z, a; \lambda)$, where we break
1526 ties according to some fixed ordering over \mathcal{A} . We have then the following result.

1527 **Proposition B.8.** π_λ^* is a λ -optimal policy. Furthermore, the optimal value for $z \in \mathcal{Z}_t$ satisfies

$$1529 \quad V_t(z; \lambda) = \min_a Q_t(z, a; \lambda). \quad (21)$$

1531 *Proof.* Fix $\mathcal{D}_t = z$, $z \in \mathcal{Z}_t$. Assume the optimal stopping action stops at $\tau = t$ for such z . Then
1532 $V_t(z; \lambda) = \lambda - \lambda\delta - \lambda r_t(z) = Q_t(z, a_{\text{stop}}; \lambda)$.

1533 Otherwise, assume the optimal stopping rule stops for $\tau > t$. Then

$$1535 \quad \begin{aligned} V_t(z; \lambda) &= \inf_{\pi: \tau > t} \lambda - \lambda\delta + \mathbb{E}^\pi [\tau - t - \lambda r_\tau(\mathcal{D}_\tau) | \mathcal{D}_t = z], \\ 1536 &= \inf_{\pi: \tau > t} 1 + \mathbb{E}_a^\pi \left[\int_{\mathcal{X}} V_{t+1}(z, a, x'; \lambda) \bar{P}_t(dx' | z, a) \right], \\ 1537 &= \min_{a \neq a_{\text{stop}}} Q_t(z, a; \lambda). \end{aligned}$$

1541 We then clearly obtain the lower bound

$$1543 \quad V_t(z; \lambda) \geq \min \left\{ \lambda(1 - \delta - r_t(z)), \min_{a \in \mathcal{A}} Q_t(z, a; \lambda) \right\}.$$

1545 We now show that π^* achieves this value, and thus is optimal.

- 1547 1. If $\tau = t$, then $\lambda(1 - \delta - r_t(z)) \leq \min_{a \neq a_{\text{stop}}} Q_t(z, a; \lambda)$ and the value to go for π^* is exactly
1548 $\lambda(1 - \delta - r_t(z))$.
- 1549 2. if $\tau \neq t$, then $\lambda(1 - \delta - r_t(z)) \geq \min_{a \neq a_{\text{stop}}} Q_t(z, a; \lambda)$, and the value to go is
1550 $Q_t(z, \pi_t(z); \lambda) = \min_a Q_t(z, a; \lambda) = V_t(z; \lambda)$.

1552 Therefore, the value to go for π^* at time t in $\mathcal{D}_t = z$ attains the lower bound $\min_{a \in \mathcal{A}} Q_t(z, a; \lambda)$,
1553 and is thus optimal. Applying the result from the previous proposition leads to the desired result. \square

1555 B.1.6 FIXED CONFIDENCE SETTING: IDENTIFIABILITY AND CORRECTNESS
1556

1557 Lastly, to verify the correctness, we need to make an explicit identifiability assumption.

1558 **Assumption 2.** For every $\delta > 0$ there exists a policy π with $\mathbb{E}^\pi[\tau] < \infty$, such that $\mathbb{E}^\pi[r_\tau(\mathcal{D}_\tau)] \geq$
1559 $1 - \delta$.

1560 Now we show that the optimization problem solved by ICPE can lead to a δ -correct policy and
1561 stopping rule. To that aim, define

$$1563 \quad \mathcal{S}(\lambda) := \arg \min_{\pi} V_\lambda(\pi), \text{ where } V_\lambda(\pi) := \lambda(1 - \delta) + \mathbb{E}^\pi[\tau - \lambda r_\tau(\mathcal{D}_\tau)].$$

1564 Observe that the set $\mathcal{S}(\lambda)$ is not empty since we know that π_λ^* belongs to it. We have the following
1565 result.

1566 **Lemma B.9.** Define the set $\Phi(\lambda) = \{\mathbb{E}^\pi[r_\tau(\mathcal{D}_\tau)] : \pi \in \mathcal{S}(\lambda)\}$. Then, any $\phi(\lambda) \in \Phi(\lambda)$ is
 1567 non-decreasing and under assum. 2 any $\phi(\lambda) \in \Phi(\lambda)$ satisfies $\lim_{\lambda \rightarrow \infty} \phi(\lambda) = 1$.
 1568

1569 *Proof.* We first prove the limit, and then prove the monotonicity.
 1570

1571 Step 1: $\lim_{\lambda \rightarrow \infty} \phi(\lambda) = 1$. For $\epsilon > 0$ consider a policy π_ϵ such that $\mathbb{E}^{\pi_\epsilon}[r_\tau(\mathcal{D}_\tau)] \geq 1 - \epsilon$.
 1572

1573 Define $g(\lambda) := \inf_{\pi, I} V_\lambda(\pi, I) = \inf_\pi V_\lambda(\pi)$.
 1574

1575 Now, assume that some feasible minimizer $\pi \in \mathcal{S}(\lambda)$ satisfies $\mathbb{E}^\pi[r_\tau(\mathcal{D}_\tau)] \leq 1 - 2\epsilon$. We proceed by
 1576 contradiction and show that this is not possible. First, note that
 1577

$$V_\lambda(\pi_\epsilon) - g(\lambda) = \mathbb{E}^{\pi_\epsilon}[\tau] - \mathbb{E}^\pi[\tau] + \lambda(\mathbb{E}^\pi[r_\tau(\mathcal{D}_\tau)] - \mathbb{E}^{\pi_\epsilon}[r_\tau(\mathcal{D}_\tau)]).$$

1578 Observe then that $\mathbb{E}^\pi[r_\tau(\mathcal{D}_\tau)] - \mathbb{E}^{\pi_\epsilon}[r_\tau(\mathcal{D}_\tau)] \leq -\epsilon < 0$. Therefore, we obtain that whenever
 1579 $\lambda > \frac{\mathbb{E}^{\pi_\epsilon}[\tau]}{\epsilon}$ we have that
 1580

$$V_\lambda(\pi_\epsilon) - g(\lambda) \leq \mathbb{E}^{\pi_\epsilon}[\tau] - \lambda\epsilon < 0,$$

1581 which is however a contradiction to $g(\lambda)$ being a minimum. Hence, any feasible solution $\pi \in \mathcal{S}(\lambda)$
 1582 must satisfy $\mathbb{E}^\pi[r_\tau(\mathcal{D}_\tau)] > 1 - 2\epsilon$ for $\lambda > \mathbb{E}^{\pi_\epsilon}[\tau]/\epsilon$. Since any $\pi \in \mathcal{S}(\lambda)$ satisfies $\mathbb{E}^\pi[\tau] < \infty$, we
 1583 have that for any fixed $\epsilon > 0$ we get $\lim_{\lambda \rightarrow \infty} \inf_{\pi \in \mathcal{S}(\lambda)} \mathbb{E}^\pi[r_\tau(\mathcal{D}_\tau)] > 1 - 2\epsilon$. Since the statement
 1584 holds for any $\epsilon > 0$, letting $\epsilon \rightarrow 0$ yields the desired result.
 1585

1586 Step 2: Monotonicity. Consider two feasible optimal solutions $\pi_1 \in \mathcal{S}(\lambda_1)$ and $\pi_2 \in \mathcal{S}(\lambda_2)$, with
 1587 $\lambda_2 > \lambda_1$. We have that
 1588

$$g(\lambda_2) - V_{\lambda_1}(\pi_1) \leq V_{\lambda_2}(\pi_1) - V_{\lambda_1}(\pi_1) = (\lambda_2 - \lambda_1)(1 - \delta - \mathbb{E}^{\pi_1}[r_{\tau_1}(\mathcal{D}_{\tau_1})])$$

1589 and
 1590

$$g(\lambda_1) - V_{\lambda_2}(\pi_2) \leq V_{\lambda_1}(\pi_2) - V_{\lambda_2}(\pi_2) = (\lambda_1 - \lambda_2)(1 - \delta - \mathbb{E}^{\pi_2}[r_{\tau_2}(\mathcal{D}_{\tau_2})]).$$

1591 Summing up, and using that $g(\lambda_i) = V_{\lambda_i}(\pi_i)$ we have that
 1592

$$0 \leq (\lambda_2 - \lambda_1)(\mathbb{E}^{\pi_2}[r_{\tau_2}(\mathcal{D}_{\tau_2})] - \mathbb{E}^{\pi_1}[r_{\tau_1}(\mathcal{D}_{\tau_1})]).$$

1593 Since $\lambda_2 > \lambda_1$, we must have that $\mathbb{E}^{\pi_2}[r_{\tau_2}(\mathcal{D}_{\tau_2})] - \mathbb{E}^{\pi_1}[r_{\tau_1}(\mathcal{D}_{\tau_1})] \geq 0$. Since we chose the elements
 1594 in \mathcal{S} arbitrarily, it implies that any $\phi(\lambda) \in \Phi(\lambda)$ is non-decreasing. \square
 1595

1596 Lastly, to verify the correctness, we use the fact that the sub-gradient of the optimal value of the dual
 1597 problem is non-decreasing. To show this result, we employ the following proposition from (Hantoute
 1598 & López, 2008) (see Prop. 3.1 therein), which characterizes the subdifferential of the supremum of a
 1599 family of affine functions.
 1600

1601 **Proposition B.10** (Subdifferential of the supremum of affine functions (Hantoute & López, 2008)).
 1602 Given a non-empty set $\{(a_t, b_t) : t \in \mathcal{T}\} \subset \mathbb{R}^2$, and the supremum function $f(x) : \mathbb{R} \rightarrow \mathbb{R} \cup \{\infty\}$

$$f(x) = \sup\{a_t x - b_t : t \in \mathcal{T}\},$$

1603 for every $x \in \text{dom } f$ we have
 1604

$$\partial f(x) = \cap_{\epsilon > 0} \text{cl}(\text{conv}\{a_t : t \in \mathcal{T}_\epsilon(x)\} + B(x))$$

1605 with
 1606

$$\mathcal{T}_\epsilon(x) := \{t \in \mathcal{T} : a_t x - b_t \geq f(x) - \epsilon\},$$

1607 and
 1608

$$B(x) := \{y \in \mathbb{R} : (y, yx) \in (\overline{\text{conv}}\{(a_t, b_t) : t \in \mathcal{T}\})_\infty\},$$

1609 where C_∞ is the recession cone of a set C and $\overline{\text{conv}}(\cdot)$ denotes the closed convex hull of a set. In
 1610 particular, if $x \in \text{int}(\text{dom } f)$ we have
 1611

$$\partial f(x) = \cap_{\epsilon > 0} \overline{\text{conv}}\{a_t : t \in \mathcal{T}_\epsilon(x)\}.$$

1612 This last proposition permits us to define the subdifferential of the supremum of affine functions, and,
 1613 as we see later, we can also find a lower bound on any subdifferential $d \in \partial f(x)$.
 1614

1615 We are now ready to state the identifiability result.
 1616

1620 **Proposition B.11.** Consider assum. 2, and, for simplicity, assume the set of optimal policies $\mathcal{S}(\lambda)$ is
 1621 a singleton for each λ . Then, an optimal solution $(\lambda^*, \pi_{\lambda^*}^*)$ satisfies
 1622

$$1623 \boxed{\mathbf{P}^{\pi_{\lambda^*}^*}(H_M^* = \hat{H}_{\tau_{\lambda^*}^*}) \geq 1 - \delta,} \quad (22)$$

1625 for any critical point $\lambda^* \in \arg \max_{\lambda \geq 0} \inf_{\pi, I} V_\lambda(\pi, I)$.
 1626

1628 *Proof.* Define $g(\lambda) := \inf_{\pi, I} V_\lambda(\pi, I) = \inf_{\pi} V_\lambda(\pi)$. Clearly V_λ is differentiable with respect to λ
 1629 for all π , and we have $\partial V_\lambda(\pi) / \partial \lambda = 1 - \delta - \mathbb{E}^\pi[r_\tau(\mathcal{D}_\tau)]$.
 1630

1631 *Part 1: application of prop. B.10.* We now derive the subdifferential of $g(\lambda)$ for $\lambda > 0$. For $t = \pi \in$
 1632 \mathcal{T} , let $a_t = -(1 - \delta - \mathbb{E}^\pi[r_\tau(\mathcal{D}_\tau)])$ and $b_t = \mathbb{E}^\pi[\tau]$. Then
 1633

$$1634 -g(\lambda) = \sup\{a_t \lambda - b_t : t \in \mathcal{T}\}.$$

1636 By prop. B.10 it follows that for $\lambda \in \mathbb{R}$

$$1637 \partial(-g(\lambda)) = \cap_{\epsilon > 0} \overline{\text{conv}}\{a_t : t \in \mathcal{T}_\epsilon(\lambda)\}, \quad \mathcal{T}_\epsilon(\lambda) := \{t \in \mathcal{T} : a_t \lambda - b_t \geq -g(\lambda) - \epsilon\},$$

1639 where $\partial(-g(\lambda))$ is the subdifferential of $-g$.
 1640

1641 Using that $\mathcal{S}(\lambda) \subseteq \mathcal{T}_\epsilon(\lambda)$ for all $\epsilon \geq 0$, we conclude that for any $d \in \partial(-g(\lambda))$ we have

$$1642 -d \geq \inf_{\pi \in \mathcal{S}(\lambda)} 1 - \delta - \mathbb{E}^\pi[r_\tau(\mathcal{D}_\tau)] = 1 - \delta - \mathbb{E}^{\pi_\lambda^*}[r_\tau(\mathcal{D}_\tau)].$$

1645 Defining $\phi(\lambda) = \mathbb{E}^{\pi_\lambda^*}[r_\tau(\mathcal{D}_\tau)]$, we note that $\phi(\lambda) \in \Phi(\lambda)$.
 1646

1647 Next, consider the case $\lambda = 0$. From prop. B.10, we have
 1648

$$1649 B(0) := \{y \in \mathbb{R} : (y, 0) \in (\overline{\text{conv}}\{(a_t, b_t) : t \in \mathcal{T}\})_\infty\}.$$

1650 Let $C = \overline{\text{conv}}\{(a_t, b_t) : t \in \mathcal{T}\}$. For a nonempty closed convex set $C \subset \mathbb{R}^2$ the recession cone is
 1651 defined as $C_\infty = \{y \in \mathbb{R}^2 \mid \forall x \in C, \forall t \geq 0 : x + yt \in C\}$. By contradiction, assume $(y, 0) \in C_\infty$,
 1652 then for any $(a, b) \in C, t \geq 0$ we have $(a + yt, b) \in C$. However, $a_t \in [-1 + \delta, \delta]$ for all $t \in \mathcal{T}$,
 1653 bounded. Hence, there exists $t > 0$ such that $a + yt \notin [-1 + \delta, \delta]$, which is a contradiction. Since y
 1654 is arbitrary, only the 0 element satisfies the condition, and thus $B(0) = \{0\}$. Therefore the set of
 1655 subdifferentials in 0 is simply given by $\partial(-g(0)) = \cap_{\epsilon > 0} \overline{\text{conv}}\{a_t : t \in \mathcal{T}_\epsilon(0)\}$.
 1656

1657 *Part 2: critical points.* Define the following value:
 1658

$$1659 \bar{\lambda} := \inf\{\lambda \geq 0 : \phi(\lambda) \geq 1 - \delta\}.$$

1660 By lem. B.9, since $\phi(\lambda) \in \Phi(\lambda)$ we know that $\bar{\lambda} < \infty$. Then, for any $0 \leq \lambda < \bar{\lambda}$ we have that any
 1661 $d \in \partial(-g(\lambda))$ satisfies
 1662

$$1663 -d \geq 1 - \delta - \phi^+(\lambda) > 0$$

1664 hence $-d > 0$ for $0 < \lambda < \bar{\lambda}$. Since $-d$ is a superdifferential (we are maximizing g !), any critical
 1665 solution $\lambda^* \in \arg \max g(\lambda)$ satisfies $\lambda^* \in [\bar{\lambda}, \infty)$. Furthermore, such critical point exists: as $\lambda \rightarrow \infty$,
 1666 the differential $-d$ becomes negative (since $\phi^+(\lambda) \rightarrow 1$ by lem. B.9), implying that $g(\lambda)$ decreases.
 1667 Hence, the maximum is attained in $\lambda^* \in [0, \infty)$.
 1668

1669 Then, since $\lambda^* \in [\bar{\lambda}, \infty)$, we have that
 1670

$$1671 1 - \delta \leq \phi(\lambda^*) = \mathbb{E}^{\pi_{\lambda^*}^*}[r_{\tau_{\lambda^*}^*}(\mathcal{D}_{\tau_{\lambda^*}^*})] = \mathbb{E}^{\pi_{\lambda^*}^*}[\mathbf{P}_{\tau_{\lambda^*}^*}(H_M^* = \hat{H}_{\tau_{\lambda^*}^*} | \mathcal{D}_{\tau_{\lambda^*}^*})] = \mathbf{P}^{\pi_{\lambda^*}^*}(H_M^* = \hat{H}_{\tau_{\lambda^*}^*}).$$

1672

1673

□

1674
1675 **Training-time certification and stopping.** To obtain formal guarantees on correctness, note that
1676 sequentially testing the accuracy \hat{p} during training, where
1677

$$1678 \hat{p} = \frac{1}{K} \sum_{i=1}^K \mathbf{1}_{\{H_i^* = \arg \max_H I_\phi(H | \mathcal{D}_\tau^{(i)})\}},$$

1680 may not imply δ -correctness, unless we adopt the correct sequential test. Alternatively, one can
1681 simply avoid to sequentially test the accuracy of the model, and simply stop training at a fixed number
1682 of epochs T_E , where T_E is fixed a priori. Then, the user can test the model $(\theta_{T_E}, \phi_{T_E})$ on a number
1683 of i.i.d. trajectories to evaluate a lower bound on the accuracy of the model (e.g., through a simple
1684 Hoeffding bound).

1685 On the other hand, if we want to stop training as soon as the model is δ -correct, then we should
1686 employ a sequential testing procedure to decide when to stop. To that aim, we need to introduce
1687 an additional confidence $\delta' \in (0, 1/2)$. This value becomes the desired correctness of the method,
1688 while δ is chosen to satisfy $\delta < \delta'$, with $\delta' - \delta$ sufficiently large. The reason is simple: by forcing
1689 the model to be more accurate, it becomes easier (for the test that we use) to detect that the accuracy
1690 crossed the threshold $1 - \delta'$.

1691 We employ the following procedure.

1692 • At epoch $t = 1, 2, \dots$ we evaluate $(\theta_t, \phi_t, \lambda_t)$ on K i.i.d. rollouts (independent of the
1693 training updates at epoch t , and sampled on K different environments $M_i \sim \mathcal{P}$).
1694 – For each $n \in \{1, \dots, K\}$ let $Z_{t,n} \in \{0, 1\}$ indicate whether the returned hypothesis
1695 on that rollout equals H_i^* on the i -th environment, and set $X_t = \frac{1}{K} \sum_{n=1}^K Z_{t,n}$ with
1696 conditional mean $p_t := \mathbb{E}[Z_{t,1} | \mathcal{F}_{t-1}]$.
1697 • We adopt the rule: fix $\eta \in (0, 1)$ and stop at the first epoch

$$1698 T := \inf \left\{ t \geq 1 : \frac{1}{t} \sum_{s=1}^t X_s \geq (1 - \delta') + \frac{1}{t} \sqrt{2 \left(1 + \frac{1-\delta'}{B} t \right) \ln \left(\frac{\sqrt{1+\frac{1-\delta'}{B}} t}{\eta} \right)} \right\},$$

1700 then *freeze* the parameters and return $(\theta_T, \phi_T, \lambda_T)$. The proposition below (an anytime
1701 bound via a mixture-martingale) guarantees
1702

$$1703 \mathbb{P} \left(\exists t : \frac{1}{t} \sum_{s=1}^t X_s \text{ crosses the boundary} \mid \sup_{t \geq 1} p_t \leq 1 - \delta' \right) \leq \eta,$$

1704 so, with probability at least $1 - \eta$, we only stop when the global null “ $p_t \leq 1 - \delta'$ for
1705 all epochs” is false, i.e., there exists some $s \leq T$ with $p_s > 1 - \delta'$. If, in addition, the
1706 epochwise performance is nondecreasing ($p_1 \leq p_2 \leq \dots$, a property that typically arises
1707 when the method converges), then $p_T \geq 1 - \delta'$, and the returned model is δ' -correct with
1708 confidence $1 - \eta$.

1709 **Proposition B.12** (Training correctness). *Let $(\mathcal{F}_t)_{t \geq 1}$ be the training filtration, with $\mathcal{F}_t =$
1710 $\sigma(x_1, a_1, x_2, \dots, a_{t-1}, x_t)$. For each epoch t let $Z_{t,1}, \dots, Z_{t,K}$ be conditionally i.i.d. $\text{Ber}(p_t)$ given
1711 \mathcal{F}_{t-1} , with $X_t := K^{-1} \sum_{n=1}^K Z_{t,n}$ and $p_t := \mathbb{E}[Z_{t,1} | \mathcal{F}_{t-1}]$. For $\eta \in (0, 1)$, define the stopping time
1712*

$$1713 T := \inf \left\{ t \geq 1 : \frac{1}{t} \sum_{s=1}^t X_s \geq (1 - \delta') + \frac{1}{t} \sqrt{2 \left(1 + \frac{1-\delta'}{K} t \right) \ln \left(\frac{\sqrt{1+\frac{1-\delta'}{K}} t}{\eta} \right)} \right\}.$$

1714 Assume further that with probability at least $1 - \xi$ there exists a (finite, \mathcal{F}_t -stopping) time t_0 such that
1715

$$1716 p_{t+1} \geq p_t \quad \forall t \geq t_0, \text{ and } \sup_{t \geq t_0} p_t \geq 1 - \delta. \quad (23)$$

1717 Then

$$1718 \mathbb{P}(T < \infty, p_T \geq 1 - \delta') \geq \mathbb{P}(T < \infty) - (\eta + \xi).$$

1719 *Proof.* Let \mathcal{E} be the event in (23). The idea is to construct an event \mathcal{G} such that $\{T < \infty\} \cap \mathcal{E} \cap \mathcal{G} \subseteq$
1720 $\{T < \infty, p_T \geq 1 - \delta'\}$. On \mathcal{E} , define the stopping time $S = \inf\{t \geq t_0 : p_t \geq 1 - \delta'\}$.

We let $\mathcal{G} = \{T \geq S\}$. Clearly, by prop. B.13 we have that on \mathcal{E} the event \mathcal{G} happens with probability at-least $1 - \eta$. Therefore, on $\{T < \infty\} \cap \mathcal{E} \cap \mathcal{G}$ we have that $T < \infty$ and $p_T \geq p_S \geq 1 - \delta'$, hence $\{T < \infty\} \cap \mathcal{E} \cap \mathcal{G} \subseteq \{T < \infty, p_T \geq 1 - \delta'\}$.

Let $A = \{T < \infty\}$. Using the following decomposition of A in disjoint regions

$$A = (A \cap \mathcal{E} \cap \mathcal{G}) \cup (A \cap \mathcal{E} \cap \mathcal{G}^c) \cup (A \cap \mathcal{E}^c),$$

we obtain

$$\begin{aligned} \mathbb{P}(T < \infty, p_T \geq 1 - \delta') &\geq \Pr(\{T < \infty\} \cap \mathcal{E} \cap \mathcal{G}), \\ &= \mathbb{P}(\{T < \infty\}) - \mathbb{P}(\{T < \infty\} \cap \mathcal{E} \cap \mathcal{G}^c) - \mathbb{P}(\{T < \infty\} \cap \mathcal{E}^c), \\ &\geq \mathbb{P}(\{T < \infty\}) - \mathbb{P}(\mathcal{E} \cap \mathcal{G}^c) - \mathbb{P}(\mathcal{E}^c), \\ &= \mathbb{P}(\{T < \infty\}) - \eta - \xi. \end{aligned}$$

□

Remark. Condition (23) is one natural way to formalize ‘‘monotone convergence from some epoch t_0 with high probability.’’ Under (23) the first epoch S with $p_S \geq 1 - \delta'$ exists a.s., and the anytime validity ensures we do not stop before S except with probability at most η . Hence, upon stopping, the returned snapshot is δ' -correct with probability at least $1 - \eta - \xi$. We also note that the event \mathcal{E} is a consequence of lem. B.9, from the monotonicity of $\mathbb{E}^\pi[r_\tau(\mathcal{D}_\tau)]$ in λ .

Lastly, note that the test that we use considers the average over epochs of X_n . If $\delta' = \delta$, this average may take a long time to converge to $1 - \delta$, and even to cross the threshold. Hence, we practically run the algorithm with confidence δ , with $\delta < \delta'$ (where δ' is the desired accuracy), so that $(1/t) \sum_n X_n$ converges to $1 - \delta > 1 - \delta'$ (and this fact can help the test trigger earlier).

Lastly, we prove an anytime bound via a mixture-martingale on the repeated tests on p_t .

Proposition B.13. *For all $t \geq 1, B \in \mathbb{N}$, let $X_t = \frac{1}{B} \sum_{n=1}^B Z_{t,n}$, where, for each t , $(Z_{t,n})_{n=1}^B$ are conditionally i.i.d. Bernoulli random variables with mean p_t given \mathcal{F}_{t-1} , where $\mathcal{F}_t = \sigma(x_1, a_1, x_2, \dots, a_{t-1}, x_t)$. Assume that $\sup_{t \geq 1} p_t \leq 1 - \delta'$. Then, for all $\eta \in (0, 1)$ we have*

$$\mathbb{P} \left(\exists t \geq 1 : \frac{1}{t} \sum_{n=1}^t X_n \geq (1 - \delta') + \frac{1}{t} \sqrt{2 \left(1 + \frac{1 - \delta'}{B} t \right) \ln \left(\frac{\sqrt{1 + \frac{1 - \delta'}{B} t}}{\eta} \right)} \right) \leq \eta.$$

Proof. Let $S_t = \sum_{i=1}^t X_i - p_i$.

For any $\lambda \geq 0, \alpha > 0$, let $\phi_t(\lambda) = \frac{\alpha B}{p_t(1-p_t)} \ln \mathbb{E}[e^{\frac{\lambda}{B}(Z-p_t)} | \mathcal{F}_{t-1}]$ be the (normalized) CGF of $Z \sim \text{Ber}(p_t)$. Define $V_t = \frac{p_t(1-p_t)}{\alpha}$ be a measure of variance. Then, for $M_t(\lambda) = \exp(\lambda S_t - \sum_{i=1}^t \phi_i(\lambda) V_i)$ we get that

$$\begin{aligned} \mathbb{E}[M_t(\lambda) | \mathcal{F}_{t-1}] &= \mathbb{E} \left[\exp \left(\sum_{i=1}^t \lambda(X_i - p_i) - \phi_i(\lambda) V_i \right) | \mathcal{F}_{t-1} \right], \\ &= M_{t-1}(\lambda) \mathbb{E}[\exp(\lambda(X_t - p_t) - \phi_t(\lambda) V_t) | \mathcal{F}_{t-1}], \\ &= M_{t-1}(\lambda) \mathbb{E} \left[\exp \left(\frac{\lambda(\sum_{n=1}^B Z_{t,n} - p_t)}{B} - B \ln \mathbb{E}[e^{\frac{\lambda}{B}(Z-p_t)} | \mathcal{F}_{t-1}] \right) | \mathcal{F}_{t-1} \right], \\ &= M_{t-1}(\lambda) \frac{\mathbb{E} \left[\exp \left(\frac{\lambda(\sum_{n=1}^B Z_{t,n} - p_t)}{B} \right) | \mathcal{F}_{t-1} \right]}{\mathbb{E}[\exp(\frac{\lambda}{B}(Z-p_t)) | \mathcal{F}_{t-1}]^B}, \\ &= M_{t-1}(\lambda) \frac{\mathbb{E} \left[\exp \left(\frac{\lambda}{B}(Z-p_t) \right) | \mathcal{F}_{t-1} \right]^B}{\mathbb{E}[\exp(\frac{\lambda}{B}(Z-p_t)) | \mathcal{F}_{t-1}]^B} = M_{t-1}(\lambda). \end{aligned}$$

Since $M_t \geq 0, \lambda \geq 0$, we have that $M_t(\lambda)$ is a non-negative martingale (hence, also a super-martingale).

We use the method of mixtures to integrate $M_t(\lambda)$ over a prior over λ . To do so, we need to find an appropriate lower bound on M_t . Consider then $\phi_t(\lambda)$: we can use the fact that $\phi_t(\lambda) \leq \alpha\lambda^2/(2B)$ from the sub-gaussianity of Z . Then, choose a prior $\pi(d\lambda) = \sqrt{2/\pi}e^{-\lambda^2/2}d\lambda$ (a half normal). We obtain

$$\begin{aligned} \int_0^\infty M_t(\lambda) \pi(d\lambda) &= \int_0^\infty \exp\left(\lambda S_t - \sum_{i=1}^t \phi_i(\lambda) V_i\right) \pi(d\lambda), \\ &\geq \int_0^\infty \exp\left(\lambda S_t - \sum_{i=1}^t \frac{\alpha\lambda^2}{2B} \frac{1-\delta'}{\alpha}\right) \pi(d\lambda), \quad (V_i \leq p_t/\alpha \leq (1-\delta')/\alpha) \\ &= \sqrt{2/\pi} \int_0^\infty \exp\left(\lambda S_t - \frac{\lambda^2}{2} \left[1 + \frac{(1-\delta')}{B} t\right]\right) d\lambda. \end{aligned}$$

Since the Gaussian integral satisfies

$$\int_0^\infty e^{-a\lambda^2+b\lambda} d\lambda = e^{\frac{b^2}{4a}} \int_0^\infty e^{-a(\lambda-\frac{b}{2a})^2} d\lambda \geq e^{\frac{b^2}{4a}} \int_0^\infty e^{-ax^2} dx = e^{\frac{b^2}{4a}} \frac{1}{2} \sqrt{\frac{\pi}{a}},$$

for $v_t = (1-\delta')t/B$ we can lower bound the integral over $M_t(\lambda)$ as

$$\int_0^\infty M_t(\lambda) \pi(d\lambda) \geq \frac{1}{\sqrt{1+v_t}} e^{\frac{S_t^2}{2(1+v_t)}}.$$

Therefore, by Ville's inequality we obtain

$$\mathbb{P}\left(\exists t \geq 1 : \int_0^\infty M_t(\lambda) \pi(d\lambda) \geq \frac{1}{\eta}\right) \leq \eta.$$

Therefore, with probability $1 - \eta$ for all $t \geq 1$ we have

$$\frac{1}{\sqrt{1+v_t}} e^{\frac{S_t^2}{2(1+v_t)}} < \frac{1}{\eta} \Rightarrow S_t < \sqrt{2(1+v_t) \ln\left(\frac{\sqrt{1+v_t}}{\eta}\right)}$$

Since $S_t \geq \sum_{i=1}^t X_i - (1-\delta')$, we obtain the desired result. \square

1836 B.2 META-TRAINING: FINITE SAMPLE ANALYSIS
18371838 **Algorithm 2** Finite-budget idealized ICPE training
18391840 **Inputs:** Value function space \mathcal{F} , posterior rewards r_N , reference measure μ .
18411841 **Init:** choose $Q^{(0)} \in \mathcal{F}$; for $k \geq 0$ set $\pi^{(k+1)} = \mathcal{G}(Q^{(k)})$ with $\pi_t^{(k+1)}(z) \in \arg \max_a Q_t^{(k)}(z, a)$.
18421842 1: **for** $k = 0, \dots$ **do**
1843 2: **Sampling:** draw a batch $B_k = \{(z^{(i)}, a^{(i)}, t^{(i)})\}_{i=1}^B$ i.i.d. from μ .
1844 3: **for each** $(z, a, t) \in B_k$ **do**
1845 4: sample $x' \sim \bar{P}_t(\cdot | z, a)$ and let $z' = (z, a, x')$.
1846 5: set targets:
1847

1848
$$\hat{Q}_t^{(k+1)}(z, a) \leftarrow \begin{cases} Q_{t+1}^{(k)}(z', \pi_{t+1}^{(k+1)}(z')), & t < N, \\ r_N(z'), & t = N. \end{cases}$$

1849

1850 6: **end for**
1851 7: **Regression:** for each $t = 1, \dots, N$, fit

1852
$$Q_t^{(k+1)} \in \arg \min_{Q \in \mathcal{F}_t} \hat{\mathcal{L}}_t(Q, \hat{Q}^{(k+1)}; B_{k,t}).$$

1853

1854 8: **end for**
18551856
1857 We work in the Bayes/history MDP induced by the prior over environments. Let $\{\mathcal{Z}_t\}_{t=1}^N$ be the
1858 history spaces (as in ICPE), with $z \in \mathcal{Z}_t$ encoding the full trajectory prefix up to stage t . The terminal
1859 (posterior) reward is

1860
$$r_N(z) = \max_{H \in \mathcal{H}} \mathbb{P}_N(H^* = H | \mathcal{D}_N = z),$$

1861

1862 with $z \in \mathcal{Z}_N$.
18631864 **Reference sampling law.** Let μ be a probability distribution on triples $(z, a, t) \in$
1865 $\bigcup_{t=1}^N (\mathcal{Z}_t \times \mathcal{A} \times \{t\})$, with stage marginals μ_t on $\mathcal{Z}_t \times \mathcal{A}$. During training, all regression
1866 samples are drawn i.i.d. from μ : this measure represents sampling from idealized replay buffer.
18671868 The next sample is then sampled according to $x' \sim \bar{P}_t(\cdot | z, a)$, where
1869

1870
$$\bar{P}_t(x' \in X | z_t, a) := \int_{\mathcal{M}^{\#}} P_t(X | z_t, a) R_t(dM | z_t), \quad (24)$$

1871

1872 so that the next history is $z_{t+1} = (z_t, a, x')$.
18731874 **Function class and Stage-wise Bellman operators.** We let $\mathcal{F} \subset \prod_{t=1}^N \{\mathcal{Z}_t \times \mathcal{A} \rightarrow [0, 1]\}$ be the
1875 Q -function class. For $Q = (Q_t)_{t=1}^N \in \mathcal{F}$, define the stagewise greedy policy
1876

1877
$$\pi_t = \mathcal{G}(Q_t) \in \arg \max_{a \in \mathcal{A}} Q_t(\cdot, a) \quad (t = 1, \dots, N).$$

1878 For a nonstationary policy $\pi = (\pi_1, \dots, \pi_N)$ and a Q -array $Q = (Q_1, \dots, Q_N)$, define for $t =$
1879 $1, \dots, N, z \in \mathcal{Z}_t$ the operator
1880

1881
$$[\Gamma_t^{\pi} Q](z, a) := \mathbb{E}_{x' \sim \bar{P}_t(\cdot | z, a)} [Q_{t+1}(z', \pi_{t+1}(z'))], \quad z' = (z, a, x').$$

1882

At the last stage, with terminal posterior reward r_N
1883

1884
$$[\Gamma_N^{\pi} Q](z, a) := r_N(z), \quad \forall a.$$

1885

We also define the optimal operator
1886

1887
$$\Gamma^* Q(z, a) := \mathbb{E} \left[\mathbf{1}_{\{t < N\}} \max_{a'} Q_{t+1}(z', a') + \mathbf{1}_{\{t=N\}} r_N(z) \right].$$

1888

In the following we write $\Gamma^{\pi} Q = (\Gamma_1^{\pi} Q, \dots, \Gamma_N^{\pi} Q)$ and similarly for Γ^* , \mathcal{G} .
1889Given a policy π we also indicate by $Q_t^{\pi}(z, a)$ the true Q -value of π at (z, a, t) . Similarly, we define
the value as $V_t^{\pi}(z) = Q_t^{\pi}(z, \pi_t(z))$. We similarly define the optimal value V_t^* .

1890 **Concentrability (w.r.t. μ).** Let ν_t^π be the occupancy measure on (z_t) at stage t under policy π ,
 1891 when the initial history is sampled from the prior-induced initial distribution ρ (where ρ is the initial
 1892 observation distribution in M), that is
 1893

$$1894 \nu_t^\pi(\cdot) := \mathbb{E}_{M \sim \mathcal{P}} [\rho P_1 \cdots P_{t-1}(\cdot)].$$

1895 with $\nu_1(\cdot) = \mathbb{E}_{M \sim \mathcal{P}} [\rho(\cdot)]$.

1896 **Assumption 3.** For all $t = 1, \dots, N$ we assume that $\nu_t^\pi \ll \mu_t^Z$, where μ_t^Z is the marginal of μ on
 1897 \mathcal{Z}_t .
 1898

1899 Define then the concentrability coefficients
 1900

$$1901 c_\infty(t) := \sup_{\pi} \left\| \frac{d\nu_t^\pi}{d\mu_t^Z} \right\|_\infty.$$

1903 Recall also assumption 1, which states that there exist probability measures λ_0, λ on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ such
 1904 that, for all $(\rho, P) \in \mathcal{M}^\sharp$, $s \in \mathbb{N}$, and $(z, a) \in \mathcal{Z}_s \times \mathcal{A}$,

$$1906 \rho(\cdot) \ll \lambda_0(\cdot) \quad \text{and} \quad P_s(\cdot|z, a) \ll \lambda(\cdot).$$

1907 We make the following additional assumption.

1908 **Assumption 4.** For all $(\rho, P) \in \mathcal{M}^\sharp$, $s \in \mathbb{N}$ and $(z, a) \in \mathcal{Z}_s \times \mathcal{A}$ we assume that $d\rho_M(\cdot)/d\lambda_0(\cdot)$
 1909 and $dP_s(\cdot|z, a)/d\lambda(\cdot)$ are upper semicontinuous.
 1910

1911 Hence, by compactness and upper semicontinuity there exist L_0, L_1 such that
 1912

$$1913 \sup_{\rho \in \mathcal{M}^\sharp} \sup_{x \in \mathcal{X}} \frac{d\rho}{d\lambda_0}(x) \leq L_0, \quad \max_{t=1, \dots, N} \sup_{P \in \mathcal{M}^\sharp} \sup_{x \in \mathcal{X}, z \in \mathcal{Z}_t, a \in \mathcal{A}} \frac{dP_t(\cdot|z, a)}{d\lambda}(x) \leq L_1.$$

1915 Consequently, one can bound c_∞ as follows
 1916

$$1917 c_\infty(t) \leq L_0 L_1^t.$$

1919 **Function class and losses.** Let \mathcal{F}_t be a hypothesis class for Q_t . We indicate by $B_k \subset (\mathcal{Z} \times \mathcal{A} \times [N])$
 1920 a batch of samples, and by $B_{k,t} = \{(z, a, s) \in B_k : s = t\}$. Hence, for a batch B_k with targets
 1921 $\hat{Q}^{(k+1)}$, define the empirical squared loss

$$1923 \hat{\mathcal{L}}_t(Q, \hat{Q}^{(k+1)}; B_{k,t}) := \frac{1}{|B_{k,t}|} \sum_{(z_t, a) \in B_{k,t}} \left(Q_t(z_t, a) - \hat{Q}_t^{(k+1)}(z_t, a) \right)^2,$$

1925 and the Monte Carlo targets are
 1926

$$1927 \hat{Q}_t^{(k+1)}(z, a) = \begin{cases} Q_{t+1}^{(k)}(z', \pi_{t+1}^{(k+1)}(z')), & t < N, \\ r_N(z'), & t = N, \end{cases} \quad z' = (z, a, x'), \quad x' \sim \bar{P}_t(\cdot|z, a).$$

1930 with $\pi^{(k+1)} = \mathcal{G}(Q^{(k)})$. We also define the true loss
 1931

$$1932 \mathcal{L}(Q^{(k)}, Q^{(k-1)}) := \mathbb{E}_{(z, a, t) \sim \mu} \left[\left(\Gamma_t^{\pi^{(k)}} Q^{(k-1)}(z, a) - Q_t^{(k)}(z, a) \right)^2 \right],$$

1934 and $\mathcal{L}_t(Q^{(k)}, Q^{(k-1)}) := \mathbb{E}_{(z, a) \sim \mu_t} \left[\left(\Gamma_t^{\pi^{(k)}} Q^{(k-1)}(z, a) - Q_t^{(k)}(z, a) \right)^2 \right]$. In the following, for
 1935 simplicity, we also write $\mathcal{L}_{k,t} := \mathcal{L}_t(Q^{(k)}, Q^{(k-1)})$.
 1936

1938 In each epoch k a regression problem is solved, where the training set $\{(z^{(i)}, a^{(i)}, t^{(i)}, \hat{Q}_t^{(k+1)})\}$ and
 1939 $\hat{Q}_{t^{(i)}}^{(k+1)}(z^{(i)}, a^{(i)})$ is an unbiased estimate of the target defined by $\Gamma_t Q$.
 1940

1942 B.2.1 MAIN RESULTS

1943 The main results are the following ones.

1944 **Error propagation.** We first obtain a result on the error propagation that bounds the sub-optimality
 1945 of the policy at training epoch k . This result holds for a general function space $\mathcal{F} = (\mathcal{F}_t)_{t=1}^N$.
 1946 In the following, we denote the overall value of a policy π by $J(\pi) = \mathbb{E}_{\mathcal{P}}^{\pi}[r_N(z_N)]$ and define
 1947 $\pi^* \in \arg \sup_{\pi} J(\pi)$.

1948 **Theorem B.14** (Sub-optimality of policy $\pi^{(k)}$). *Let $J(\pi) = \mathbb{E}_{\mathcal{P}}^{\pi}[r_N(z_N)]$ and $\pi^* \in \arg \sup_{\pi} J(\pi)$.
 1949 For $k \geq N + 1$, we have that*

$$1950 \quad |J(\pi^*) - J(\pi^{(k)})| \leq \|w\|_2 \left[\sqrt{S_{k-1}^{(1,N)}} + 2 \sqrt{(N+1) \sum_{u=k-N}^k S_u^{(2,N)}} + \sqrt{D_k^{(1,N)}} \right]$$

1951 where $w = (w_u)_{u=1}^N$ is the vector of concentrability coefficients, with $w_u := c_{\infty}(u)\kappa_u$; $S_m^{(a,b)} =$
 1952 $\sum_{u=a}^b \mathcal{L}_{m,u}$ is the sum of losses for epoch m along the timesteps $(a, a+1, \dots, b)$; $D_m^{(a,b)} =$
 1953 $\sum_{u=a}^b \mathcal{L}_{m-u,u}$ is the diagonal sum of losses.

1954 **Finite-sample performance bound.** We now show how the losses that appear in the previous result
 1955 can be bounded to derive a finite-sample performance bounds.

1956 To approximate the target, for each $t = 1, \dots, N$ we consider a linear function space \mathcal{F}_t of dimension
 1957 d_t with bounded basis function $\{\varphi_{t,i}\}_{i=1}^{d_t}$. $\|\varphi_{t,i}\|_{\infty} \leq C_b$. For each t we consider a linear family with
 1958 parameter $\alpha_t \in \mathbb{R}^{d_t}$ and features $\phi_t : \mathcal{Z}_t \times \mathcal{A} \rightarrow \mathbb{R}^{d_t}$, thus $\mathcal{F}_t = \{(z, a) \mapsto \phi_t(z, a)^\top \alpha_t : \alpha_t \in \mathbb{R}^{d_t}\}$.

1959 At epoch k regression returns a linear predictor $\tilde{Q}_t^{(k)}$. We then define the Q -function used by the
 1960 algorithm as the truncation $Q_t^{(k)} = \mathbb{T}(\tilde{Q}_t^{(k)})$. In the analysis, $Q_t^{(k)}$ always denotes this truncated
 1961 version.

1962 **Theorem B.15** (Fixed-budget finite-sample training error). *Fix $\delta \in (0, 1)$ and choose $\delta' = \delta/(4kN)$.
 1963 Suppose (i) the features are bounded, $\sup_{z,a} \|\phi_t(z, a)\|_2 \leq C_b$; (ii) concentrability holds with
 1964 coefficients $c_{\infty}(t)$ and κ_t ; and (iii) the batch size satisfies*

$$1965 \quad B \geq \frac{2}{p_{\min} \eta^2} \log \frac{4kN}{\delta}.$$

1966 for some $\eta \in (0, 1)$. Then, for $k \geq N + 1$, with probability at least $1 - \delta$,

$$1967 \quad |J(\pi^*) - J(\pi^{(k)})| \leq O \left(NC_0 \left[\sqrt{\sum_{t=1}^N \beta_t^2} + \sqrt{\sum_{t=1}^N \frac{d_t}{(1-\eta)p_{\min}B} \log \frac{4kN}{\delta}} \right] \right),$$

1968 where $\beta_t = \sup_{Q \in \mathcal{F}, \pi} \inf_{f \in \mathcal{F}_t} \|\Gamma_t^{\pi} Q - f\|_{\mu_t}$ and $C_0 = (\sum_{t=1}^N c_{\infty}(t)^2 \kappa_t^2)^{1/2}$, and $p_{\min} =$
 1969 $\min_t \mu_t$, where μ_t is the marginal over timesteps of the buffer distribution.

1970 **Intuition.** thm. B.14 shows that the performance gap $J(\pi^*) - J(\pi^{(k)})$ is controlled by how well each
 1971 step approximates the Bellman update: the terms $S_{k-1}^{(1,N)}$, $\sum_{u=k-N}^k S_u^{(2,N)}$, and $D_k^{(1,N)}$ aggregate
 1972 the single-step squared Bellman residuals $\mathcal{L}_{k,t}$ across time and across a window of epochs, and the
 1973 concentrability vector $w = (c_{\infty}(t) \cdot \kappa_t)_{t=1}^N$ measures how much these local errors can be amplified
 1974 when propagated along the trajectory distribution. The finite-sample bound in thm. B.15 then replaces
 1975 these abstract residuals with explicit statistical quantities: each $\mathcal{L}_{k,t}$ is bounded by an *approximation*
 1976 term β_t (how well the function class can represent an exact update) plus an *estimation* term that
 1977 decays as $\sqrt{d_t}/((1-\eta)p_{\min}B)$. In other words, the final rate cleanly separates an approximation
 1978 error, captured by $\sqrt{\sum_t \beta_t^2}$, from a sample error, captured by $\sqrt{\sum_t d_t}/((1-\eta)p_{\min}B)$, and both are
 1979 scaled by the horizon N and the concentrability constant C_0 , which quantify how errors accumulate
 1980 along the history MDP.

1981 B.2.2 CONVERGENCE ANALYSIS: PROOF OF THM. B.14

1982 To prove thm. B.14, we follow an analysis similar to the one in (Scherrer et al., 2012). However,
 1983 note that their setting is quite different from ours: we do not have the classical discounted Bellman
 1984 operator, and as a consequence the proofs are different.

1985 We begin by defining the following key quantities :

1998 1. At iteration k we indicate by $\pi_t^{(k)} = \mathcal{G}(Q_t^{(k-1)})$ the greedy policy.
 1999

2000 2. The one-step evaluation $Q_t^{(k)} = \Gamma_t^{\pi^{(k)}} Q^{(k-1)} + \epsilon_t^{(k)}$, and $\epsilon_t^{(k)}$ is the regression error and
 2001 $Q_t^{(k)}$ is computed according to $Q_t^{(k)} \in \arg \min_{Q \in \mathcal{F}_t} \hat{\mathcal{L}}_t(Q, \hat{Q}^{(k)})$ for all $t = 1, \dots, N$. We
 2002 also write $V_t^{(k)}(z) = [\Gamma_t^{\pi^{(k)}} Q^{(k-1)}](z, \pi_t^{(k)}(z))$.
 2003

2004 3. We define $V_t^{\pi^{(k)}}$ to be the value of $\pi^{(k)}$ under Γ , that is, the true value of $\pi^{(k)}$ with rewards
 2005 r . Similarly, we define $Q_t^{\pi^{(k)}}$ to be the Q -value.
 2006

2007 4. The Bellman residual w.r.t. the next greedy policy: $b_t^{(k)} = Q_t^{(k)} - \Gamma_t^{\pi^{(k+1)}} Q^{(k)}$
 2008

2009 5. The performance gap $\ell_t^{(k)} = V_t^* - V_t^{\pi^{(k)}} \geq 0$.
 2010

2011 6. Distance before approximation: $d_t^{(k)} = V_t^* - V_t^{(k)}$.
 2012

2013 7. The shift: $s_t^{(k)} = V_t^{(k)} - V_t^{\pi^{(k)}}$.

2014 Therefore $\ell_t^{(k)} = s_t^{(k)} + d_t^{(k)}$: this is the quantity we wish to bound for $t = 1$. The proof of thm. B.14
 2015 is based on bounding s_t and d_t separately. We begin by proving a lemma that we use repeatedly in
 2016 all of the proofs.

2017 **Lemma B.16.** *Let $\kappa_t := \sqrt{\text{esssup}_z \max_a \frac{1}{\mu_t(a|z)}}$. Let μ_t^Z be the marginal of μ_t on \mathcal{Z}_t . Then, for
 2018 any t , measurable function $f_t : \mathcal{Z}_t \rightarrow \mathcal{A}$, we have that*

$$2019 \mathbb{E}_{z \sim \mu_t^Z} [|\epsilon_t^{(k)}(z, f_t(z))|] \leq \kappa_t \sqrt{\mathcal{L}_t(Q^{(k)}, Q^{(k-1)})}.$$

2020 *Proof.* Consider $|\epsilon_t^{(k)}(z, f_t(z))|$, then

$$\begin{aligned} 2021 \mathbb{E}_{z \sim \mu_t^Z} [|\epsilon_t^{(k)}(z, f_t(z))|] &= \mathbb{E}_{\mu_t^Z} \left[\sum_a \mathbf{1}_{\{f_t(z)=a\}} |\epsilon_t^{(k)}(z, a)| \right], \\ 2022 &= \mathbb{E}_{z \sim \mu_t^Z} \left[\sum_a \sqrt{\frac{\mu_t(a|z)}{\mu_t(a|z)}} \mathbf{1}_{\{f_t(z)=a\}} |\epsilon_t^{(k)}(z, a)| \right], \\ 2023 &\leq \sqrt{\mathbb{E}_{z \sim \mu_t^Z} \left[\sum_a \frac{\mathbf{1}_{\{f_t(z)=a\}}}{\mu_t(a|z)} \right] \mathbb{E}_{z \sim \mu_t^Z} \left[\sum_a |\epsilon_t^{(k)}(z, a)|^2 \mu_t(a|z) \right]}, \\ 2024 &\quad \text{(Cauchy-Schwartz)} \\ 2025 &\leq \sqrt{\mathbb{E}_{z \sim \mu_t^Z} \left[\frac{1}{\mu_t(f_t(z)|z)} \right] \mathbb{E}_{(z,a) \sim \mu_t} [|\epsilon_t^{(k)}(z, a)|^2]}, \\ 2026 &\leq \kappa_t \sqrt{\mathcal{L}_t(Q^{(k)}, Q^{(k-1)})}. \end{aligned}$$

(by definition) □

2027 We now have the bound on $d_t^{(k+1)}$.

2028 **Lemma B.17.** *For $t = 1, \dots, N$, and all $k \geq 1$ we have that*

$$2029 \mathbb{E}_{z \sim \nu_t^{\pi^{(k+1)}}} [d_t^{(k+1)}(z)] \leq \mathbb{E}_{z \sim \nu_t^{\pi^{(k+1)}}} [b_t^{(k)}(z, \pi_t^{(k+1)}(z))] + \sum_{j=0}^{N-t} c_\infty(t+j) \kappa_{t+j} \sqrt{\mathcal{L}_{k-j,t+j}}.$$

2030 *Proof.* Consider $d_N^{(k)}(z) = V_N^*(z) - V_N^{(k)}(z) = r_N(z) - r_N(z) = 0$. Then $d_N^{(k)}(z) = 0$ for all
 2031 $z \in \mathcal{Z}_N$.

2052 For $t < N$ we have
2053 $d_t^{(k+1)}(z) = V_t^*(z) - [\Gamma_t^{\pi^{(k+1)}} Q^{(k)}](z, \pi_t^{(k+1)}(z)),$
2054 $= \max_a Q_t^*(z, a) - [\Gamma_t^{\pi^{(k+1)}} Q^{(k)}](z, \pi_t^{(k+1)}(z)),$
2055 $= \max_a Q_t^*(z, a) - [\Gamma_t^{\pi^{(k+1)}} Q^{(k)}](z, \pi_t^{(k+1)}(z)) \pm Q_t^{(k)}(z, \pi_t^{(k+1)}(z)),$
2056 $= \max_a Q_t^*(z, a) - Q_t^{(k)}(z, \pi_t^{(k+1)}(z)) + Q_t^{(k)}(z, \pi_t^{(k+1)}(z)) - [\Gamma_t^{\pi^{(k+1)}} Q^{(k)}](z, \pi_t^{(k+1)}(z)),$
2057 $= \max_a Q_t^*(z, a) - Q_t^{(k)}(z, \pi_t^{(k+1)}(z)) + b_t^{(k)}(z, \pi_t^{(k+1)}(z)),$
2058 $\leq \max_a [Q_t^*(z, a) - Q_t^{(k)}(z, a)] + b_t^{(k)}(z, \pi_t^{(k+1)}(z)),$
2059

2060 where the last step follows from the greediness of $\pi_t^{(k+1)}$ w.r.t. $Q_t^{(k)}$. Define $\Delta_t^{(k)}(z, a) = Q_t^*(z, a) -$
2061 $Q_t^{(k)}(z, a)$ and $\Delta_t^{(k)}(z) = \max_a \Delta_t^{(k)}(z, a)$. Then

$$2062 d_t^{(k+1)}(z) \leq \Delta_t^{(k)}(z) + b_t^{(k)}(z, \pi_t^{(k+1)}(z)).$$

2063 We are now tasked with bounding $\Delta_t^{(k)}$. To that aim, observe that $Q_t^* = \Gamma_t^* Q^*$, thus

$$2064 \Delta_t^{(k)}(z, a) = [\Gamma_t^* Q^*](z, a) - [\Gamma_t^{\pi^{(k)}} Q^{(k-1)}](z, a) - \epsilon_t^{(k)}(z, a),$$

$$2065 = \mathbb{E}_{z' \sim \bar{P}(\cdot|z, a)} [V_{t+1}^*(z') - Q_{t+1}^{(k-1)}(z', \pi_{t+1}^{(k)}(z'))] - \epsilon_t^{(k)}(z, a),$$

$$2066 = \mathbb{E}_{z' \sim \bar{P}(\cdot|z, a)} [\max_{a'} Q_{t+1}^*(z', a') - Q_{t+1}^{(k-1)}(z', \pi_{t+1}^{(k)}(z'))] - \epsilon_t^{(k)}(z, a),$$

$$2067 \leq \mathbb{E}_{z' \sim \bar{P}(\cdot|z, a)} [\Delta_{t+1}^{(k-1)}(z')] - \epsilon_t^{(k)}(z, a). \quad (\text{similarly to above})$$

2068 Therefore, we have that

$$2069 \Delta_t^{(k)}(z) \leq \max_a \mathbb{E}_{z' \sim \bar{P}(\cdot|z, a)} [\Delta_{t+1}^{(k-1)}(z')] + \max_a |\epsilon_t^{(k)}(z, a)|,$$

2070 from which we can recursively show that

$$2071 \mathbb{E}_{z \sim \nu_t^{\pi^{(k+1)}}} [\Delta_t^{(k)}(z)] \leq \sum_{j=0}^{N-t} c_\infty(t+j) \kappa_{t+j} \sqrt{\mathcal{L}_{k-j, t+j}}$$

2072 using lem. B.16. □

2073 We now have the bound on $s_t^{(k)}$.

2074 **Lemma B.18.** For all $t = 1, \dots, N$ and k we have that

$$2075 \mathbb{E}_{z \sim \nu_t^{\pi^{(k)}}} [s_t^{(k)}(z)] = \sum_{j=1}^{N-t} \mathbb{E}_{z' \sim \nu_{t+j}^{\pi^{(k)}}} [b_{t+j}^{(k-1)}(z', \pi_{t+j}^{(k)}(z'))].$$

2076 *Proof.* First, note that $s_N^{(k)}(z) = 0$. Then, for $t < N$ we have

$$2077 s_t^{(k)}(z) = V_t^{(k)}(z) - V_t^{\pi^{(k)}}(z),$$

$$2078 = [\Gamma_t^{\pi^{(k)}} Q^{(k-1)}](z, \pi_t^{(k)}(z)) - Q_t^{\pi^{(k)}}(z, \pi_t^{(k)}(z)),$$

$$2079 = \mathbb{E}_{x'|z, \pi_t^{(k)}(z)} [Q_{t+1}^{(k-1)}(z', \pi_{t+1}^{(k)}(z')) - V_{t+1}^{\pi^{(k)}}(z') \mid z' = (z, \pi_t^{(k)}(z), x')],$$

$$2080 = \mathbb{E}_{x'|z, \pi_t^{(k)}(z)} [b_{t+1}^{(k-1)}(z', \pi_{t+1}^{(k)}(z')) + [\Gamma_{t+1}^{\pi^{(k)}} Q^{(k-1)}](z', \pi_{t+1}^{(k)}(z')) - V_{t+1}^{\pi^{(k)}}(z') \mid z' = (z, \pi_t^{(k)}(z), x')],$$

$$2081 = \mathbb{E}_{x'|z, \pi_t^{(k)}(z)} [b_{t+1}^{(k-1)}(z', \pi_{t+1}^{(k)}(z')) + V_{t+1}^{(k)}(z') - V_{t+1}^{\pi^{(k)}}(z') \mid z' = (z, \pi_t^{(k)}(z), x')],$$

$$2082 = \mathbb{E}_{x'|z, \pi_t^{(k)}(z)} [b_{t+1}^{(k-1)}(z', \pi_{t+1}^{(k)}(z')) + s_{t+1}^{(k)}(z') \mid z' = (z, \pi_t^{(k)}(z), x')],$$

$$2083 = \sum_{j=1}^{N-t} \mathbb{E} [b_{t+j}^{(k-1)}(z', \pi_{t+j}^{(k)}(z')) \mid z_t = z, \text{ then follow } \pi^{(k)}].$$

2106 Therefore

$$\mathbb{E}_{z \sim \nu_t^{\pi^{(k)}}} [s_t^{(k)}(z)] = \sum_{j=1}^{N-t} \mathbb{E}_{z' \sim \nu_{t+j}^{\pi^{(k)}}} [b_{t+j}^{(k-1)}(z', \pi_{t+j}^{(k)}(z'))].$$

2110 \square

2111 **Lemma B.19.** For all $t = 1, \dots, N, \forall a \in \mathcal{A}$ and epochs $k \geq N$ we have that

$$\begin{aligned} \mathbb{E}_{z \sim \nu_t^{\pi^{(k)}}} [b_t^{(k)}(z, a) \mid \pi^{(k)}, \dots, \pi^{(k-(N-t)+1)}] \\ \leq c_\infty(t) \kappa_t \sqrt{\mathcal{L}_{k,t}} + c_\infty(N) \kappa_N \left[\sqrt{\mathcal{L}_{k-(N-t),N}} + \sqrt{\mathcal{L}_{k-(N-t-1),N}} \right] \\ + \sum_{j=1}^{N-t-1} c_\infty(t+j) \kappa_{t+j} \left[\sqrt{\mathcal{L}_{k-j,t+j}} + \sqrt{\mathcal{L}_{k-j+1,t+j}} \right]. \end{aligned}$$

2120 *Proof. (One-step recursion).* For $t < N$ write

$$\begin{aligned} b_t^{(k)} &= Q_t^{(k)} - \Gamma_t^{\pi^{(k+1)}} Q^{(k)}, \\ &= \Gamma_t^{\pi^{(k)}} Q^{(k-1)} - \Gamma_t^{\pi^{(k+1)}} Q^{(k)} + \epsilon_t^{(k)}. \end{aligned}$$

2125 Use the definition of Γ_t^{π} , we have that at time $t = N$ we get $b_N^{(k)} = \epsilon_N^{(k)}$. For $t < N$ we get

$$\begin{aligned} b_t^{(k)}(z, a) &= \epsilon_t^{(k)}(z, a) + \mathbb{E}_{x' \sim \bar{P}_t(\cdot|z, a)} \left[Q_{t+1}^{(k-1)}(z', \pi_{t+1}^{(k)}(z')) - Q_{t+1}^{(k)}(z', \pi_{t+1}^{(k+1)}(z')) \mid z' = (z, a, x') \right], \\ &= \epsilon_t^{(k)}(z, a) + \mathbb{E}_{x' \sim \bar{P}_t(\cdot|z, a)} \left[Q_{t+1}^{(k-1)}(z', \pi_{t+1}^{(k)}(z')) - Q_{t+1}^{(k)}(z', \pi_{t+1}^{(k+1)}(z')) \pm Q_{t+1}^{(k)}(z', \pi_{t+1}^{(k)}(z')) \mid z' = (z, a, x') \right], \\ &= \epsilon_t^{(k)}(z, a) + \mathbb{E}_{x' \sim \bar{P}_t(\cdot|z, a)} \left[Q_{t+1}^{(k-1)}(z', \pi_{t+1}^{(k)}(z')) - Q_{t+1}^{(k)}(z', \pi_{t+1}^{(k)}(z')) \right. \\ &\quad \left. + Q_{t+1}^{(k)}(z', \pi_{t+1}^{(k)}(z')) - Q_{t+1}^{(k)}(z', \pi_{t+1}^{(k+1)}(z')) \mid z' = (z, a, x') \right], \\ &\leq \epsilon_t^{(k)}(z, a) + \mathbb{E}_{x' \sim \bar{P}_t(\cdot|z, a)} \left[Q_{t+1}^{(k-1)}(z', \pi_{t+1}^{(k)}(z')) - Q_{t+1}^{(k)}(z', \pi_{t+1}^{(k)}(z')) \mid z' = (z, a, x') \right], \end{aligned}$$

2136 where in the last inequality, we used that $Q_{t+1}^{(k)}(z', \pi_{t+1}^{(k+1)}(z')) \geq Q_{t+1}^{(k)}(z', \pi_{t+1}^{(k)}(z'))$ (since
2137 $\pi^{(k+1)} = \mathcal{G}(Q^{(k)})$). Now, using the definition $b_{t+1}^{(k)} = Q_{t+1}^{(k)} - \Gamma_{t+1}^{\pi^{(k+1)}} Q^{(k)}$, we continue with
2138 $Q_{t+1}^{(k)} = \Gamma_{t+1}^{\pi^{(k)}} Q^{(k-1)} + \epsilon_{t+1}^{(k)}$

$$\begin{aligned} &= \epsilon_t^{(k)}(z, a) + \mathbb{E}_{x' \sim \bar{P}_t(\cdot|z, a)} \left[Q_{t+1}^{(k-1)}(z', \pi_{t+1}^{(k)}(z')) - [\Gamma_{t+1}^{\pi^{(k)}} Q^{(k-1)} + \epsilon_{t+1}^{(k)}](z', \pi_{t+1}^{(k)}(z')) \mid z' = (z, a, x') \right], \\ &= \epsilon_t^{(k)}(z, a) + \mathbb{E}_{x' \sim \bar{P}_t(\cdot|z, a)} \left[b_{t+1}^{(k-1)}(z', \pi_{t+1}^{(k)}(z')) - \epsilon_{t+1}^{(k)}(z', \pi_{t+1}^{(k)}(z')) \mid z' = (z, a, x') \right]. \end{aligned}$$

2143 Therefore

$$b_t^{(k)}(z, a) \leq \epsilon_t^{(k)}(z, a) + \mathbb{E}_{x' \sim \bar{P}_t(\cdot|z, a)} \left[b_{t+1}^{(k-1)}(z', \pi_{t+1}^{(k)}(z')) - \epsilon_{t+1}^{(k)}(z', \pi_{t+1}^{(k)}(z')) \mid z' = (z, a, x') \right].$$

2146 Thus

$$b_t^{(k)}(z, a) \leq |\epsilon_t^{(k)}(z, a)| + \mathbb{E}_{x' \sim \bar{P}_t(\cdot|z, a)} \left[b_{t+1}^{(k-1)}(z', \pi_{t+1}^{(k)}(z')) + |\epsilon_{t+1}^{(k)}(z', \pi_{t+1}^{(k)}(z'))| \mid z' = (z, a, x') \right].$$

2150 *(Unrolling).* Let z_{t+1} be the state observed after taking action a in z in round t . Then denote the
2151 successive states by z_{t+j} , sampled by following $\pi^{(k)}$. Then, unrolling the last upper bound yields

$$\begin{aligned} b_t^{(k)}(z, a) &\leq |\epsilon_t^{(k)}(z, a)| + \mathbb{E} \left[|\epsilon_{t+1}^{(k-1)}(z_{t+1}, \pi_{t+1}^{(k)}(z_{t+1}))| + b_{t+2}^{(k-2)}(z_{t+2}, \pi_{t+2}^{(k-1)}(z_{t+2})) \right. \\ &\quad \left. + |\epsilon_{t+2}^{(k-1)}(z_{t+2}, \pi_{t+2}^{(k-1)}(z_{t+2}))| + |\epsilon_{t+1}^{(k)}(z_{t+1}, \pi_{t+1}^{(k)}(z_{t+1}))| \mid z_t = z, a_t = a \right], \\ &\leq \mathbb{E} \left[|\epsilon_t^{(k)}(z_t, a_t)| + |\epsilon_N^{(k-(N-t))}(z_N, \pi_N^{(k-(N-t)+1)}(z_N))| + |\epsilon_N^{(k-(N-t)+1)}(z_N, \pi_N^{(k-(N-t)+1)}(z_N))| \right. \\ &\quad \left. + \sum_{j=1}^{N-t-1} |\epsilon_{t+j}^{(k-j)}(z_{t+j}, \pi_{t+j}^{(k-j+1)}(z_{t+j}))| + |\epsilon_{t+j}^{(k-j+1)}(z_{t+j}, \pi_{t+j}^{(k-j+1)}(z_{t+j}))| \mid z_t = z, a_t = a \right]. \end{aligned}$$

2160 Therefore, using lem. B.16
 2161

$$\begin{aligned}
 & \mathbb{E}_{z \sim \nu_t^{\pi^{(k)}}} \left[b_t^{(k)}(z, a) \mid \pi^{(k)}, \dots, \pi^{(k-(N-t)+1)} \right] \\
 & \leq c_\infty(t) \kappa_t \sqrt{\mathcal{L}_{k,t}} + c_\infty(N) \kappa_N \left[\sqrt{\mathcal{L}_{k-(N-t),N}} + \sqrt{\mathcal{L}_{k-(N-t-1),N}} \right] \\
 & + \sum_{j=1}^{N-t-1} c_\infty(t+j) \kappa_{t+j} \left[\sqrt{\mathcal{L}_{k-j,t+j}} + \sqrt{\mathcal{L}_{k-j+1,t+j}} \right].
 \end{aligned}$$

2168 □
 2169
 2170

2171 We now prove the bound on $J(\pi^*) - J(\pi^{(k)})$ in thm. B.14, where $J(\pi) = \mathbb{E}_{\mathcal{P}}^{\pi}[r_N(z_N)]$.
 2172

2173 *Proof of thm. B.14.* Note that $0 \leq J(\pi^*) - J(\pi^{(k)}) = \mathbb{E}_{z \sim \nu_1}[\ell_1^{(k)}(z)]$. Using the decomposition
 2174 $\ell_1^{(k)} = s_1^{(k)} + d_1^{(k)}$ and lems. B.17 and B.18, we obtain that
 2175

$$\begin{aligned}
 \mathbb{E}_{z \sim \nu_1}[\ell_1^{(k)}(z)] &= \mathbb{E}_{z \sim \nu_1} \left[s_1^{(k)}(z) \right] + \mathbb{E}_{z \sim \nu_1} \left[d_1^{(k)}(z) \right], \\
 &\leq \sum_{u=2}^N \mathbb{E}_{z' \sim \nu_u^{\pi^{(k)}}} \left[b_u^{(k-1)}(z', \pi_u^{(k)}(z')) \right] + \mathbb{E}_{z \sim \nu_1^{\pi^{(k)}}} \left[b_1^{(k-1)}(z, \pi_1^{(k)}(z)) \right] + \sum_{u=1}^N c_\infty(u) \kappa_u \sqrt{\mathcal{L}_{k-u,u}}, \\
 &= \sum_{u=1}^N \mathbb{E}_{z' \sim \nu_u^{\pi^{(k)}}} \left[b_u^{(k-1)}(z', \pi_u^{(k)}(z')) \right] + \sum_{u=1}^N c_\infty(u) \kappa_u \sqrt{\mathcal{L}_{k-u,u}}.
 \end{aligned}$$

2184 From lem. B.19 we know that
 2185

$$\begin{aligned}
 \mathbb{E}_{z \sim \nu_t^{\pi^{(k)}}} \left[b_t^{(k)}(z, a) \mid \pi^{(k)}, \dots, \pi^{(k-(N-t)+1)} \right] &\leq c_\infty(t) \kappa_t \sqrt{\mathcal{L}_{k,t}} + c_\infty(N) \kappa_N \left[\sqrt{\mathcal{L}_{k-(N-t),N}} + \sqrt{\mathcal{L}_{k-(N-t-1),N}} \right] \\
 &+ \sum_{j=1}^{N-t-1} c_\infty(t+j) \kappa_{t+j} \left[\sqrt{\mathcal{L}_{k-j,t+j}} + \sqrt{\mathcal{L}_{k-j+1,t+j}} \right].
 \end{aligned}$$

2191 hence
 2192

$$\begin{aligned}
 \mathbb{E}_{z \sim \nu_t^{\pi^{(k)}}} \left[b_t^{(k-1)}(z, \pi_t^{(k)}(z)) \right] \\
 &\leq c_\infty(t) \kappa_t \sqrt{\mathcal{L}_{k-1,t}} + c_\infty(N) \kappa_N \left[\sqrt{\mathcal{L}_{k-(N-t)-1,N}} + \sqrt{\mathcal{L}_{k-(N-t),N}} \right] \\
 &+ \sum_{j=1}^{N-t-1} c_\infty(t+j) \kappa_{t+j} \left[\sqrt{\mathcal{L}_{k-j-1,t+j}} + \sqrt{\mathcal{L}_{k-j,t+j}} \right].
 \end{aligned}$$

2199 Using the last inequality we obtain
 2200

$$\begin{aligned}
 \sum_{u=1}^N \mathbb{E}_{z' \sim \nu_u^{\pi^{(k)}}} \left[b_u^{(k-1)}(z', \pi_u^{(k)}(z')) \right] &\leq \sum_{u=1}^N c_\infty(u) \kappa_u \sqrt{\mathcal{L}_{k-1,u}} + c_\infty(N) \kappa_N \left[\sqrt{\mathcal{L}_{k-(N-u)-1,N}} + \sqrt{\mathcal{L}_{k-(N-u),N}} \right] \\
 &+ \sum_{u=1}^N \sum_{j=1}^{N-u-1} c_\infty(u+j) \kappa_{u+j} \left[\sqrt{\mathcal{L}_{k-j-1,u+j}} + \sqrt{\mathcal{L}_{k-j,u+j}} \right] = (\star).
 \end{aligned}$$

2207 Re-indexing the last term by $s = u + j$, we have
 2208

$$\begin{aligned}
 (\star) &= \sum_{u=1}^N c_\infty(u) \kappa_u \sqrt{\mathcal{L}_{k-1,u}} + c_\infty(N) \kappa_N \left[\sqrt{\mathcal{L}_{k-(N-u)-1,N}} + \sqrt{\mathcal{L}_{k-(N-u),N}} \right] \\
 &+ \sum_{s=2}^{N-1} c_\infty(s) \kappa_s \sum_{j=1}^{s-1} \left[\sqrt{\mathcal{L}_{k-j-1,s}} + \sqrt{\mathcal{L}_{k-j,s}} \right].
 \end{aligned}$$

At this point, define $w_u = c_\infty(u)\kappa_u$, $w^{(a,b)} = (w_u)_{u=a}^b$, $Z_m^{(a,b)} = \sum_{u=a}^b \sqrt{\mathcal{L}_{u,m}}$ and $S_m^{(a,b)} = \sum_{u=a}^b \mathcal{L}_{m,u}$. Then,

$$\begin{aligned}
2217 \quad (\star) &\leq \|w^{(1,N)}\|_2 \sqrt{S_{k-1}^{(1,N)}} + w_N \left[Z_N^{(k-N, k-1)} + Z_N^{(k-N+1, k)} \right] \quad (\text{Applied Cauchy-Schwartz}) \\
2218 \quad &+ \sum_{s=2}^{N-1} w_s \left[Z_s^{(k-s, k-2)} + Z_s^{(k-s+1, k-1)} \right], \\
2219 \quad &\leq \|w^{(1,N)}\|_2 \sqrt{S_{k-1}^{(1,N)}} + 2 \sum_{s=2}^N w_s Z_s^{(k-s, k)}, \quad (\text{Increased the sum range of } Z) \\
2220 \quad &\leq \|w^{(1,N)}\|_2 \left[\sqrt{S_{k-1}^{(1,N)}} + 2 \sqrt{\sum_{s=2}^N \left(Z_s^{(k-s, k)} \right)^2} \right]. \quad (\text{By } \|w^{(2,N)}\|_2 \leq \|w^{(1,N)}\|_2) \\
2221 \quad & \\
2222 \quad & \\
2223 \quad & \\
2224 \quad & \\
2225 \quad & \\
2226 \quad & \\
2227 \quad & \\
2228 \quad &
\end{aligned}$$

Now, observe that

$$\begin{aligned} & \left(Z_s^{(k-s, k)} \right)^2 = \left(\sum_{u=k-s}^k \sqrt{\mathcal{L}_{u,s}} \right)^2 \leq (s+1) \left(\sum_{u=k-s}^k \mathcal{L}_{u,s} \right) \leq (N+1) \sum_{u=k-N}^k \mathcal{L}_{u,s}, \end{aligned}$$

therefore

$$\sum_{s=2}^N (N+1) \sum_{u=k-N}^k \mathcal{L}_{u,s} = (N+1) \sum_{u=k-N}^k \sum_{s=2}^N \mathcal{L}_{u,s} = (N+1) \sum_{u=k-N}^k S_u^{(2,N)}.$$

Thus

$$(\star) \leq \|w^{(1,N)}\|_2 \left[\sqrt{S_{k-1}^{(1,N)}} + 2 \sqrt{(N+1) \sum_{u=k-N}^k S_u^{(2,N)}} \right].$$

We can plug this back into the original bound on $\ell_1^{(k)}$. Define $D_s^{(a,b)} = \sum_{u=a}^b \mathcal{L}_{s-u,u}$ to be the diagonal sum of losses, then

$$\begin{aligned}
\mathbb{E}_{z \sim \nu_1} [|\ell_1^{(k)}(z)|] &\leq \|w^{(1,N)}\|_2 \left[\sqrt{S_{k-1}^{(1,N)}} + 2 \sqrt{(N+1) \sum_{u=k-N}^k S_u^{(2,N)}} \right] + \sum_{u=1}^N c_\infty(u) \kappa_u \sqrt{\mathcal{L}_{k-u,u}}, \\
&\leq \|w^{(1,N)}\|_2 \left[\sqrt{S_{k-1}^{(1,N)}} + 2 \sqrt{(N+1) \sum_{u=k-N}^k S_u^{(2,N)}} \right] + \|w^{(1,N)}\|_2 \sqrt{D_k^{(1,N)}}, \\
&\leq \|w^{(1,N)}\|_2 \left[\sqrt{S_{k-1}^{(1,N)}} + 2 \sqrt{(N+1) \sum_{u=k-N}^k S_u^{(2,N)}} + \sqrt{D_k^{(1,N)}} \right].
\end{aligned}$$

B.2.3 FINITE SAMPLE ANALYSIS: PROOF OF THM. B.15

2260 Proof of thm. B.15. Preliminaries. We now consider the error due to the evaluation step. In
 2261 each epoch k a regression problem is solved, where the training set $\{(z^{(i)}, a^{(i)}, t^{(i)}, \hat{Q}^{(k+1)})\}$ and
 2262 $\hat{Q}_{t^{(i)}}^{(k+1)}(z^{(i)}, a^{(i)})$ is an unbiased estimate of the target defined by $\Gamma_t Q$.
 2263

To approximate the target, for each $t = 1, \dots, N$ we consider a linear function space \mathcal{F}_t of dimension d_t with bounded basis function $\{\varphi_{t,i}\}_{i=1}^{d_t} \|\varphi_{t,i}\|_\infty \leq C_b$. For each t we consider a linear family with parameter $\alpha_t \in \mathbb{R}^{d_t}$ and features $\phi_t : \mathcal{Z}_t \times \mathcal{A} \rightarrow \mathbb{R}^{d_t}$, thus $\mathcal{F}_t = \{(z, a) \mapsto \phi_t(z, a)^\top \alpha_t : \alpha_t \in \mathbb{R}^{d_t}\}$.

Recall the losses

2268

$$\mathcal{L}_{k,t} := \mathbb{E}_{(z,a) \sim \mu_t} \left[\left(Y_t^{(k)}(z, a) - Q_t^{(k)}(z, a) \right)^2 \right],$$

2271 where

$$Y_t^{(k)}(z, a) = [\Gamma_t^{\pi^{(k)}} Q^{(k-1)}](z, a)$$

2274 and we also define the error $\epsilon_t^{(k)} = Q_t^{(k)} - Y_t^{(k)}$.
2275

2276 For a batch B_k we denote by $B_{k,t} = \{(z, a, s) \in B_k : s = t\}$ the elements in that batch of size t ,
2277 and let $n_{k,t} = |B_{k,t}|$.

2278 We then let $Y_{k,t} = (Y_t^{(k)}(z, a))_{(z,a) \in B_{k,t}}$ (*true targets*) and $\hat{Q}_{k,t} = (\hat{Q}_t^{(k)}(z, a))_{(z,a) \in B_{k,t}}$ (*noisy
2279 targets*), and define $\mathcal{F}_{k,t} = \{\Phi_{k,t} \alpha_t : \alpha_t \in \mathbb{R}^{d_t}\}$, where $\Phi_{k,t} = (\phi_t(z, a)^\top)_{(z,a) \in B_{k,t}}$ is a matrix
2280 where each row corresponds to the features of some $(z, a) \in B_{k,t}$. We then denote by $\Pi_{k,t}$ the
2281 $L_2(\hat{\mu}_{k,t})$ -projection on $\mathcal{F}_{k,t}$, where $\hat{\mu}_{k,t}(z, a) = \sum_{(z',a') \in B_{k,t}} \delta_{(z',a')}(z, a)$ is the empirical norm at
2282 epoch k for timestep t . We also define Π_t to be the $L_2(\mu_t)$ projection on \mathcal{F}_t , where μ_t is the marginal
2283 over trajectories of μ at timesteps t .
2284

2285 We set $\tilde{Q}_{k,t} := \Pi_{k,t} \hat{Q}_{k,t} = (\tilde{Q}_t^{(k)}(z, a))_{(z,a) \in B_{k,t}}$, where $\tilde{Q}_t^{(k)}$ is the result of linear regression
2286 and its truncation (by 1) is $Q_t^{(k)}$ ($Q_t^{(k)} = \mathbb{T}(\tilde{Q}_t^{(k)})$). Define also $\hat{Y}_{k,t} := \Pi_{k,t} Y_{k,t}$ and the errors
2287 $\xi_{k,t} := Y_{k,t} - \hat{Q}_{k,t}$ and $\hat{\xi}_{k,t} := \Pi_{k,t} \xi_{k,t}$. We note that $\xi_{k,t}$ has mean 0, and $|\langle \xi_{k,t} \rangle_i| \leq 1$.
2288

2289 In the following, we denote by $\|f\|_{\mu_t} = \sqrt{\int f(z, a)^2 d\mu_t(z, a)}$ the $L_2(\mu_t)$ -norm of f , and similarly
2290 we also indicate the $L_2(\hat{\mu}_{k,t})$ -norm (empirical) by $\|f\|_{\hat{\mu}_{k,t}} = \sqrt{\frac{1}{n_{k,t}} \sum_{(z,a) \in B_{k,t}} f(z, a)^2}$.
2291

2292 **Bounding the error.** Our goal is to bound

$$\|e_t^{(k)}\|_{\mu_t} = \|Y_t^{(k)} - Q_t^{(k)}\|_{\mu_t} = \|Y_t^{(k)} - \mathbb{T}(\tilde{Q}_t^{(k)})\|_{\mu_t}.$$

2293 By a variation of theorem 11.2 in (Györfi et al., 2002) (see (Lazaric et al., 2012) corollary 12), we
2294 also know that

$$\|Y_t^{(k)} - \mathbb{T}(\tilde{Q}_t^{(k)})\|_{\mu_t} - 2\|Y_{k,t} - \tilde{Q}_{k,t}\|_{\hat{\mu}_{k,t}} \leq 24 \sqrt{\frac{2}{n_{k,t}} \Lambda(n_{k,t}, d_t, \delta')}.$$

2295 with probability at least $1 - \delta'$, where $\Lambda(n_{k,t}, d_t, \delta') = 2(d_t + 1) \log(n_{k,t}) + \log(\frac{e}{\delta'}) +$
2296 $\log(9(12e)^{2(d_t+1)})$. Therefore

$$\|Y_t^{(k)} - \mathbb{T}(\tilde{Q}_t^{(k)})\|_{\mu_t} \leq 2\|Y_{k,t} - \tilde{Q}_{k,t}\|_{\hat{\mu}_{k,t}} + 24 \sqrt{\frac{2}{n_{k,t}} \Lambda(n_{k,t}, d_t, \delta')}.$$

2297 So, for each t the error is

$$\|Y_{k,t} - \tilde{Q}_{k,t}\|_{\hat{\mu}_{k,t}} \leq \|\tilde{Q}_{k,t} - \hat{Y}_{k,t}\|_{\hat{\mu}_{k,t}} + \|Y_{k,t} - \hat{Y}_{k,t}\|_{\hat{\mu}_{k,t}} = \|\hat{\xi}_{k,t}\|_{\hat{\mu}_{k,t}} + \|Y_{k,t} - \hat{Y}_{k,t}\|_{\hat{\mu}_{k,t}}.$$

2298 Furthermore $\|\hat{\xi}_{k,t}\|_{\hat{\mu}_{k,t}}^2 = \langle \hat{\xi}_{k,t}, \hat{\xi}_{k,t} \rangle = \langle \xi_{k,t}, \hat{\xi}_{k,t} \rangle$ by the orthogonal projection, and, by an application
2299 of a variation of Pollard's inequality (Györfi et al., 2002) we have that

$$\langle \xi_{k,t}, \hat{\xi}_{k,t} \rangle \leq 4\|\hat{\xi}_{k,t}\|_{\hat{\mu}_{k,t}} \sqrt{\frac{2}{n_{k,t}} \log \left(\frac{3(9e^2 n_{k,t})^{d_t+1}}{\delta'} \right)}$$

2300 holds with probability at least $1 - \delta'$. Therefore, we are left with bounding $\|Y_{k,t} - \hat{Y}_{k,t}\|_{\hat{\mu}_{k,t}}$.
2301

2302 Define $\hat{\alpha}_t^*$ as the parameter satisfying $f_{\hat{\alpha}_t^*} \in \mathcal{F}_t$ such that $f_{\hat{\alpha}_t^*}(z, a) = [\Pi_{k,t} Y_t^{(k)}](z, a)$ for all
2303 $(z, a) \in B_{k,t}$. Also define α_t^* to be the optimal projection (w.r.t. μ_t) of $Y_t^{(k)}$ in \mathcal{F}_t , i.e., $f_{\alpha_t^*} = \Pi_t Y_t^{(k)}$.
2304

Then, again by a variation of Theorem 11.2 [Györfi et al. \(2002\)](#) (see also [Lazaric et al., 2012](#)) corollary 13), we have the following sequence of inequality

$$\begin{aligned} \|Y_{k,t} - \hat{Y}_{k,t}\|_{\hat{\mu}_{k,t}} &= \|Y_{k,t} - f_{\alpha_t^*}\|_{\hat{\mu}_{k,t}}, \\ &\leq \|Y_{k,t} - f_{\alpha_t^*}\|_{\hat{\mu}_t}, \\ &\leq 2\|Y_t^{(k)} - f_{\alpha_t^*}\|_{\mu_t} + 12 \left(1 + \|\alpha_t^*\|_2 \sup_{(z,a) \in \mathcal{Z}_t \times \mathcal{A}} \|\phi_t(z, a)\|_2 \right) \sqrt{\frac{2}{n_{k,t}} \log \left(\frac{3}{\delta'} \right)}, \end{aligned}$$

that hold with probability at least $1 - \delta'$. In conclusion, we have shown that

$$\begin{aligned} \|e_t^{(k)}\|_{\mu_t} &\leq 2\|Y_t^{(k)} - f_{\alpha_t^*}\|_{\mu_t} + 12 \left(1 + \|\alpha_t^*\|_2 \sup_{(z,a) \in \mathcal{Z}_t \times \mathcal{A}} \|\phi_t(z, a)\|_2 \right) \sqrt{\frac{2}{n_{k,t}} \log \left(\frac{3}{\delta'} \right)} \\ &\quad + 4\sqrt{\frac{2}{n_{k,t}} \log \left(\frac{3(9e^2 n_{k,t})^{d_t+1}}{\delta'} \right)} + 24\sqrt{\frac{2}{n_{k,t}} \Lambda(n_{k,t}, d_t, \delta')}. \end{aligned}$$

Union bound for the random batch. At this point, let $\mu(t)$ be the marginal of μ over the timesteps $t = 1, \dots, N$. Let $p_{\min} = \min_t \mu(t)$. Then $n_{k,t} := |B_{k,t}| \sim \text{Binom}(B, \mu(t))$ and

$$\begin{aligned} \mathbb{P}(n_{k,t} \leq (1 - \eta)\mu(t)B) &\leq \exp \left(-\frac{\mu(t)B\eta^2}{2} \right), \\ &\leq \exp \left(-\frac{p_{\min}B\eta^2}{2} \right). \end{aligned}$$

Therefore, for a fixed t for $B = \frac{2}{\eta^2 p_{\min}} \log \frac{1}{\delta'}$ we obtain that

$$\mathbb{P}(n_{k,t} \geq (1 - \eta)\mu(t)B) \geq 1 - \delta'.$$

Therefore, by setting $\delta = 4Nk\delta'$, through a union bound, we can conclude that

$$\|e_t^{(k)}\|_{\mu_t} \leq 4 \inf_{f \in \mathcal{F}_t} \|Y_{k,t} - f\|_{\mu_t} + \eta_t((1 - \eta)p_{\min}B, d_t, \delta) + \eta'_t((1 - \eta)p_{\min}B, d_t, \delta),$$

holds with probability $1 - \delta$ for all $i = 1, \dots, k$, $t = 1, \dots, N$, where

$$\begin{aligned} \eta_t(n, d_t, \delta) &= 32\sqrt{\frac{2}{n} \log \left(\frac{4 \cdot 27Nk(12e^2 n)^{2(d_t+1)}}{3\delta} \right)}, \\ \eta'_t(n, d_t, \delta) &= 24 \left(1 + \|\alpha_t^*\|_2 \sup_{(z,a) \in \mathcal{Z}_t \times \mathcal{A}} \|\phi_t(z, a)\|_2 \right) \sqrt{\frac{2}{n} \log \left(\frac{12Nk}{\delta} \right)}. \end{aligned}$$

Bounding $S_k^{(a,b)}$ in terms of the error. Let

$$\beta_t = \sup_{Q \in \mathcal{F}_t, \pi} \inf_{f \in \mathcal{F}_t} \|\Gamma_t^\pi Q - f\|_{\mu_t}.$$

Since $S_k^{(a,b)} = \sum_{u=a}^b \mathcal{L}_{k,u}$ and $\sqrt{\mathcal{L}_{k,t}} = \|e_t^{(k)}\|_{\mu_t}$, we have that

$$\sqrt{S_k^{(a,b)}} = \left\| \left(\sqrt{\mathcal{L}_{k,t}} \right)_{t=a}^b \right\|_2 \leq 4\|(\beta_t)_{t=a}^b\|_2 + \|(\eta_t)_{t=a}^b\|_2 + \|(\eta'_t)_{t=a}^b\|_2,$$

with probability $1 - \delta$.

Similarly, we have that

$$\begin{aligned} \sqrt{(N+1) \sum_{u=k-N}^k S_u^{(2,N)}} &\leq \sqrt{N+1} \sqrt{\sum_{u=k-N}^k 16\|(\beta_t)_{t=2}^N\|_2^2 + \|(\eta_t)_{t=2}^N\|_2^2 + \|(\eta'_t)_{t=2}^N\|_2^2}, \\ &\leq (N+1) \sqrt{16\|(\beta_t)_{t=2}^N\|_2^2 + \|(\eta_t)_{t=2}^N\|_2^2 + \|(\eta'_t)_{t=2}^N\|_2^2}, \\ &\leq (N+1) [4\|(\beta_t)_{t=2}^N\|_2 + \|(\eta_t)_{t=2}^N\|_2 + \|(\eta'_t)_{t=2}^N\|_2]. \end{aligned}$$

2376 which holds with probability $1 - \delta$.
 2377

2378 Lastly, we consider $\sqrt{D_k^{(1,N)}}$ where $D_k^{(1,N)} = \sum_{u=1}^N \mathcal{L}_{k-u,u}$. We have with probability $1 - \delta$
 2379

$$2380 \sqrt{D_k^{(1,N)}} = \sqrt{\sum_{u=1}^N \mathcal{L}_{k-u,u}} \leq 4\|(\beta_t)_{t=1}^N\|_2 + \|(\eta_t)_{t=1}^N\|_2 + \|(\eta'_t)_{t=1}^N\|_2.$$

2383 Therefore, in conclusion
 2384

$$2385 \sqrt{S_{k-1}^{(1,N)}} + \sqrt{(N+1) \sum_{u=k-N}^k S_u^{(2,N)}} + \sqrt{D_k^{(1,N)}} \\ 2386 \leq 4\|(\beta_t)_{t=2}^N\|_2 + \|(\eta_t)_{t=2}^N\|_2 + \|(\eta'_t)_{t=2}^N\|_2 + (N+1) [4\|(\beta_t)_{t=2}^N\|_2 + \|(\eta_t)_{t=2}^N\|_2 + \|(\eta'_t)_{t=2}^N\|_2], \\ 2387 + 4\|(\beta_t)_{t=1}^N\|_2 + \|(\eta_t)_{t=1}^N\|_2 + \|(\eta'_t)_{t=1}^N\|_2, \\ 2388 \leq (N+3) [4\|(\beta_t)_{t=1}^N\|_2 + \|(\eta_t)_{t=1}^N\|_2 + \|(\eta'_t)_{t=1}^N\|_2].$$

2393 **Conclusions.** Therefore, we can conclude that, up to constants and logarithmic factors, we have that
 2394 with probability $1 - \delta$

$$2395 |J(\pi^*) - J(\pi^{(k)})| \leq O \left(NC_0 \left[C_1 + \sqrt{\sum_{t=1}^N \frac{d_t}{(1-\eta)p_{\min}B} \log \frac{4kN}{\delta}} \right] \right)$$

2396 provided $B \geq \frac{2}{p_{\min}\eta^2} \log \frac{4kN}{\delta}$ where $\eta \in (0, 1)$, $C_0 := \sqrt{\sum_{t=1}^N c_\infty(t)^2 \kappa_t^2}$ and $C_1 := \sqrt{\sum_{t=1}^N \beta_t^2}$.
 2397 \square

2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429

2430
2431

B.3 COMPARISON WITH INFORMATION DIRECTED SAMPLING

2432
2433
2434
2435
2436

In pure exploration IDS (Russo & Van Roy, 2018) the main objective is to maximize the *information gain*. For example, consider the BAI problem: we set $\alpha_t(a) = \mathbb{P}(\hat{H} = a | \mathcal{D}_t)$ to be the posterior distribution of the optimal arm. Then, the information gain is defined through the following quantity

$$g_t(a) = \mathbb{E}[H(\alpha_t) - H(\alpha_{t+1}) | \mathcal{D}_t, a_t = a],$$

2437
2438

which measures the expected reduction in entropy of the posterior distribution of the best arm due to selecting arm a at time t .

2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449

For the BAI problem, the authors in (Russo & Van Roy, 2018) propose a *myopic* sampling policy $a_t \in \arg \max_a g_t(a)$, which only considers the information gain from the next sample. The reason for using a greedy policy stems from the fact that such a strategy is competitive with the optimal policy in problems where the information gain satisfies a property named *adaptive submodularity* (Golovin & Krause, 2011), a generalization of submodular set functions to adaptive policies. For example, in the noiseless Optimal Decision Tree problem, it is known (Zheng et al., 2005) that a greedy strategy based on the information gain is equivalent to a nearly-optimal (Dasgupta, 2004; Golovin et al., 2010; Golovin & Krause, 2011) strategy named *generalized binary search* (GBS) (Nowak, 2008; Bellala et al., 2010), which maximizes the expected reduction of the *version space* (the space of hypotheses consistent with the data observed so far). However, for the noisy case both strategies perform poorly (Golovin et al., 2010).

2450
2451
2452
2453

The myopic pure exploration IDS strategy $a_t \in \arg \max_a g_t(a)$ can perform poorly in environments where the sampling decisions influence the observation distributions, or where an action taken at time t can greatly affect the complexity of the problem at a later stage (hence, IDS can perform poorly on credit assignments problems).

2454
2455
2456
2457
2458

First example. As a first example, consider a bandit problem with K arms, where the reward for each arm a_i is distributed according to $\mathcal{N}(\mu_i, 1)$, with priors $\mu_1 = \delta_0$ and $\mu_i \sim \mathcal{U}([0, 1])$ independently for each $i \in \{2, \dots, K\}$. Thus, almost surely, the optimal arm a^* lies within $\{2, \dots, K\}$, and the goal is to estimate a^*

2459
2460
2461
2462
2463
2464
2465

We introduce the following twist: if arm a_1 is sampled exactly twice, its reward distribution changes permanently to a Dirac delta distribution $\delta_{\phi(a^*)}$, where ϕ is a known invertible mapping. Consequently, sampling arm a_1 twice fully reveals the identity of a^* . However, if arm a_1 has not yet been sampled, the expected immediate information gain at any step t is zero, i.e., $g_t(a_1) = 0$, since arm a_1 is already known to be suboptimal. In contrast, the immediate information gain for any other arm remains strictly positive. Therefore, under this setting and for nontrivial values of (σ, K) , the myopic IDS strategy cannot achieve the optimal constant sample complexity, and instead scales linearly in K .

2466
2467
2468
2469
2470
2471
2472

Second example. Another example is a bandit environment containing a chain of two magic actions $\{1, m\}$, where the index of the first magic action (1) is known. Action 1 reveals the index m , and pulling arm m subsequently identifies the best arm with certainty. In this scenario, IDS is myopic and typically neglects arm 1 because of its inability to plan more than 1-step ahead in the future. However, depending on the total number of arms and reward variances, IDS may still select arm 1 if doing so significantly reduces the set of candidate best arms faster than pulling other arms (e.g., if the variance is significantly large). The following theorem illustrates the sub-optimality of IDS.

2473
2474
2475

Theorem B.20. *Consider a bandit environment with a chain of 2 magic actions. The reward of the regular arms is $\mathcal{N}(\mu_a, 1)$ with $\mu_a \sim \mathcal{U}([0, 1])$, $a \neq 1, m$. For $K \geq 7$ there exists $\delta_0 \in (0, 1/2)$ such that for any $\delta \leq \delta_0$, we have that IDS is not sample optimal in the fixed confidence setting.*

2476
2477
2478
2479
2480
2481

Proof of thm. B.20. Let $Y_{t,a}$ be the random reward observed upon selecting arm $a_t = a$. We use that $g_t(a) = I_t(A^*; Y_{t,a}) = \text{KL} \left(\frac{\mathbb{P}(A^*, Y_{t,a} | \mathcal{D}_t)}{\mathbb{P}(A^* | \mathcal{D}_t) \mathbb{P}(Y_{t,a} | \mathcal{D}_t)} \right)$, with \mathcal{D}_1 containing an empty observation. The proof relies on showing that action a_1 is not chosen during the first two rounds for large values of K .

In the proofs, for brevity, we write $\mathbb{P}_t(\cdot) = \mathbb{P}(\cdot | \mathcal{D}_t)$. Observe the following lemmas.

2482
2483

Lemma B.21. *Let $Y_{t,a}$ be the random reward observed upon selecting arm $a_t = a$ and let $S_{t,a} = \mathbb{1}\{a_t = a \text{ is magic}\}$. Under the assumption that the agent knows with absolute certainty that a is magic after observing $Y_{t,a}$, we have that $I_t(A^*; Y_{t,a}) = I_t(A^*, Y_{t,a}, S_{t,a})$.*

2484 *Proof.* Note that

$$I_t(A^*; Y_{t,a}, S_{t,a}) = H_t(Y_{t,a}, S_{t,a}) - H_t(Y_{t,a}, S_t|A^*).$$

2485 Note that by assumption we have that $H_t(S_{t,a}|Y_{t,a}) = 0$. Then, the first term can also be rewritten as

$$H_t(Y_{t,a}, S_t) = H_t(S_{t,a}|Y_{t,a}) + H_t(Y_{t,a}) = H_t(Y_{t,a}).$$

2486 Similarly, we also have $H_t(Y_{t,a}, S_{t,a}|A^*) = H_t(S_{t,a}|Y_{t,a}, A^*) + H_t(Y_{t,a}|A^*) = H_t(Y_{t,a}|A^*)$.
2487 Henceforth

$$I_t(A^*; Y_{t,a}, S_{t,a}) = H_t(Y_{t,a}) - H_t(Y_{t,a}|A^*) = I_t(A^*; Y_{t,a}).$$

□

2488 Using the decomposition from the previous lemma we can rewrite the mutual information between
2489 A^* and $Y_{t,a}$ as

$$I_t(A^*; Y_{t,a}) = I_t(A^*; Y_{t,a}, S_{t,a}) = I_t(A^*; Y_{t,a}|S_{t,a}) + I_t(A^*; S_{t,a}).$$

2490 **Lemma B.22.** *Let $\mathcal{E}_t = \{(a_1, \dots, a_{t-1}) \text{ are not magic actions}\}$, with $\mathcal{E}_1 = \emptyset$. Under $a_t = 1$ we
2491 have that $I_t(A^*; Y_{t,1}|\mathcal{E}_t, a_t = 1) = \log\left(\frac{K-|\mathcal{A}_t|-1}{K-|\mathcal{A}_t|-2}\right)$ where $\mathcal{A}_t = \{a | \exists i < t : a_t = a\}$ is the unique
2492 number of actions chosen in $t \in \{1, \dots, t-1\}$.*

2493 *Proof.* We use that $\mathbb{P}_t(S_{t,1} = 1|a_t = 1) = 1$. Hence, for arm 1 we have

$$\begin{aligned} I_t(A^*; S_{t,1}|\mathcal{E}_t, a_t = 1) &= H_t(S_{t,1}|\mathcal{E}_t, a_t = 1) - H_t(S_{t,1}|A^*, \mathcal{E}_t, a_t = 1), \\ &= 0 - 0 = 0. \end{aligned}$$

2494 Then, we have

$$\begin{aligned} I_t(A^*; Y_{t,1}|S_{t,1}, \mathcal{E}_t, a_t = 1) &= I_t(A^*; Y_{t,1}|S_{t,1} = 1, \mathcal{E}_t, a_t = 1), \\ &= \text{KL}(\mathbb{P}_t(A^*, Y_{t,1}|a_t = 1, \mathcal{E}_t) || \mathbb{P}_t(A^*|a_t = 1, \mathcal{E}_t)\mathbb{P}_t(Y_{t,1}|a_t = 1, \mathcal{E}_t)), \\ &= \text{KL}(\mathbb{P}_t(Y_{t,1}|A^*, a_t = 1, \mathcal{E}_t) || \mathbb{P}_t(Y_{t,1}|a_t = 1, \mathcal{E}_t)), \\ &= \log\left(\frac{1/(K-|\mathcal{A}_t|-2)}{1/(K-|\mathcal{A}_t|-1)}\right), \end{aligned}$$

2495 where we used that under \mathcal{E}_t exactly \mathcal{A}_t regular arms have been pulled and recognised as regular; the
2496 still-unrevealed set of candidates for the second magic arm has therefore size $K - |\mathcal{A}_t| - 1$ (since
2497 arm 1 is known to be magic). Thus the result follows from applying the previous lemma. □

2498 **Lemma B.23.** *For any un-pulled arm $a \neq 1$ at time t we have that $I_t(A^*; Y_{t,a}|\mathcal{E}_t, a_t = a) \geq$
2499 $\frac{1}{K-|\mathcal{A}_t|-1} \log(K - |\mathcal{A}_t| - 2)$.*

2500 *Proof.* To compute the mutual information we use that $I_t(A^*; Y_{t,a}|\mathcal{E}_t) = I_t(A^*; Y_{t,a}, S_{t,a}|\mathcal{E}_t) =$
2501 $I_t(A^*; Y_{t,a}|S_{t,a}, \mathcal{E}_t) + I_t(A^*; S_{t,a}|\mathcal{E}_t) \geq I_t(A^*; Y_{t,a}|S_{t,a}, \mathcal{E}_t)$. We start by computing the first term
2502 of this expression, and finding a non-trivial lower bound.

2503 Note that for $a \neq 1$ we have

$$\begin{aligned} I_t(A^*; Y_{t,a}|S_{t,a}, \mathcal{E}_t, a_t = a) &= \mathbb{P}_t(S_{t,a} = 0|\mathcal{E}_t, a_t = a)I_t(A^*; Y_{t,a}|S_{t,a} = 0, \mathcal{E}_t, a_t = a) \\ &\quad + \mathbb{P}_t(S_{t,a} = 1|\mathcal{E}_t, a_t = a)I_t(A^*; Y_{t,a}|S_{t,a} = 1, \mathcal{E}_t, a_t = a), \\ &\geq \frac{1}{K - |\mathcal{A}_t| - 1}I_t(A^*; Y_{t,a}|S_{t,a} = 1, \mathcal{E}_t, a_t = a), \end{aligned}$$

2504 where we used that under \mathcal{E}_t , we have a uniform prior over the remaining $K - |\mathcal{A}_t| - 1$ un-pulled
2505 arms, and the agent knows that arm 1 is magic.

2506 If $a \neq 1$ and $S_{t,a} = 1$, then a is the second magic arm. Therefore we have $\mathbb{P}_t(Y_{t,a}|A^*, S_{t,a} =$
2507 $1, \mathcal{E}_t, a_t = a) = 1$. Hence $I_t(A^*; Y_{t,a}|S_{t,a} = 1, \mathcal{E}_t) = \log(K - |\mathcal{A}_t| - 2)$ since $Y_{t,a}$ can only take
2508 values uniformly over $K - |\mathcal{A}_t| - 2$ arms under the event $\{S_{t,a} = 1, \mathcal{E}_t, a_t = a\}$.

□

2538 **Lemma B.24.** Assume $a_1 = j$ is a regular arm, pulled at the first timestep. Then $I_2(A^*; Y_{2,j}|a_1 = j) \leq \frac{1}{2} \ln(1 + \frac{1}{12\sigma^2})$.
 2539
 2540

2541 *Proof.* First, note that
 2542

2543 $I_2(A^*; Y_{2,j} | a_1 = j) \leq I_2(\mu_j; Y_{2,j} | a_1 = j) = H_2(Y_{2,j} | a_1 = j) - \frac{1}{2} \ln(2\pi e \sigma^2)$
 2544

2545 Then, since $\text{Var}_2(Y_{2,j}|a_1 = j) = \text{Var}_2(\mu_j|a_1 = j) + \sigma^2 \leq 1/12 + \sigma^2$. Therefore $H_2(Y_{2,j}|a_1 = j) \leq \frac{1}{2} \ln(2\pi e(1/12 + \sigma^2))$. Hence $I_2(A^*; Y_{2,j}|a_1 = j) \leq \frac{1}{2} \ln(1 + \frac{1}{12\sigma^2})$. \square
 2546
 2547

2548 Hence, one can verify that for $K \geq 6$ the first magic arm will never be chosen at the first timestep.
 2549 Similarly, at the second timestep the first magic arm will not be chosen if $K \geq 7$.
 2550

2551 Consider the fixed-confidence setting with some confidence level $\delta < 1/2$. Let $\mathcal{A}_1 = \{ \text{second magic arm sampled at } t = 1 \}$ and $\mathcal{A}_2 = \{ \text{second magic arm sampled at } t = 2 \}$. Then,
 2552 the sample complexity of IDS satisfies $\mathbb{E}[\tau_{IDS} | \mathcal{A}_1^c, \mathcal{A}_2^c] \geq 3$ for δ sufficiently small (since the sample
 2553 complexity scales as $\log(1/(2.4\delta))$).
 2554

2555 We also have that at the first timestep the decision is uniform over $\{2, \dots, K\}$. Lastly, if the first
 2556 sampled arm is not magic, then it's a regular arm, and by the previous lemmas the information gain
 2557 of such arm will be smaller than the information gain of another un-pulled arm. In fact the inequality
 2558

$$\frac{\log(x-3)}{x-2} > \frac{1}{2} \ln(1 + \frac{1}{12})$$

2559 it satisfied over $x \in \{5, \dots, 121\}$. Since it is sub-optimal to sample again the same regular arm, since
 2560 the information gain on all the other arms remains the same, we have that the decision at the second
 2561 timestep is again uniform over the remaining unchosen arms. Therefore
 2562

$$\begin{aligned} \mathbb{E}[\tau_{IDS}] &= \mathbb{E}[\tau_{IDS} | \mathcal{A}_1] \mathbb{P}(\mathcal{A}_1) + \mathbb{E}[\tau_{IDS} | \mathcal{A}_1^c] \mathbb{P}(\mathcal{A}_1^c), \\ &= \frac{1}{K-1} + \frac{K-2}{K-1} \mathbb{E}[\tau_{IDS} | \mathcal{A}_1^c], \\ &= \frac{1}{K-1} + \frac{K-2}{K-1} \left(\mathbb{E}[\tau_{IDS} | \mathcal{A}_1^c, \mathcal{A}_2] \frac{1}{K-2} + \mathbb{E}[\tau_{IDS} | \mathcal{A}_1^c, \mathcal{A}_2^c] \frac{K-3}{K-2} \right), \\ &\geq \frac{1}{K-1} + \frac{K-2}{K-1} \left(2 \frac{1}{K-2} + 3 \frac{K-3}{K-2} \right), \\ &= \frac{3}{K-1} + 3 \frac{K-3}{K-1}, \end{aligned}$$

2563 which is larger than 2 for $K > 4$. Since there is a policy with sample complexity 2, we have that IDS
 2564 cannot be sample optimal for $K \in \{7, \dots, 121\}$.
 2565

2566 Similarly, for large values of $K > 121$, resampling the same regular arm at the second timestep leads
 2567 IDS to a sample complexity larger than 2. And therefore cannot be sample optimal.
 2568 \square
 2569

2570 B.4 SAMPLE COMPLEXITY BOUNDS FOR MAB PROBLEMS WITH FIXED MINIMUM GAP

2571 We now derive a sample complexity lower bound for a MAB problem where the minimum gap is
 2572 known and the rewards are normally distributed.
 2573

2574 Consider a MAB problem with K arms $\{1, \dots, K\}$. To each arm a is associated a reward distribution
 2575 $\nu_a = \mathcal{N}(\mu_a, \sigma^2)$ that is simply a Gaussian distribution. Let $a^*(\mu) = \arg \max_a \mu_a$, and define the
 2576 gap in arm a to be $\Delta_a(\mu) = \mu_{a^*(\mu)} - \mu_a$. In the following, without loss of generality, we assume
 2577 that $a^*(\mu) = 1$.
 2578

2579 We define the minimum gap to be $\Delta_{\min}(\mu) = \min_{a \neq a^*(\mu)} \Delta_a(\mu)$. Assume now to know that
 2580 $\Delta_{\min} \geq \Delta_0 > 0$.
 2581

2582 Then, for any δ -correct algorithm, guaranteeing that at some stopping time τ the estimated optimal
 2583 arm \hat{a}_τ is δ -correct, i.e., $\mathbb{P}_\mu(\hat{a}_\tau \neq a^*(\mu)) \leq \delta$, we have the following result.
 2584

2592
2593 **Theorem B.25.** Consider a model μ satisfying $\Delta_{\min} \geq \Delta_0 > 0$. Then, for any δ -probably correct
2594 method Alg , with $\delta \in (0, 1/2)$, we have that the optimal sample complexity is bounded as
2595

$$\frac{1}{\max\left(\Delta_0^2, \frac{1}{\sum_{a \neq 1} 1/\Delta_a^2}\right)} \leq \inf_{\tau: \text{Alg is } \delta\text{-correct}} \frac{\mathbb{E}_\mu[\tau]}{2\sigma^2 \text{kl}(1-\delta, \delta)} \leq 2 \sum_a \frac{1}{(\Delta_a + \Delta_0)^2},$$

2596 with $\Delta_1 = 0$ and $\text{kl}(x, y) = x \log(x/y) + (1-x) \log((1-x)/(1-y))$. In particular, the solution
2597 $\omega_a \propto 1/(\Delta_a + \Delta_0)^2$ (up to a normalization constant) achieves the upper bound.
2598

2600 *Proof.* **Step 1: Log-likelihood ratio.** The initial part of the proof is rather standard, and follows the
2601 same argument used in the Best Arm Identification and Best Policy Identification literature (Garivier
2602 & Kaufmann, 2016; Russo & Vannella, 2025).
2603

2604 Define the set of models
2605

$$\mathcal{S} = \{\mu' \in \mathbb{R}^K : \Delta_{\min}(\mu') \geq \Delta_0\},$$

2606 and the set of alternative models
2607

$$\text{Alt}(\mu) = \left\{ \mu' \in \mathcal{S} : \arg \max_a \mu'_a \neq 1 \right\}.$$

2610 Take the expected log-likelihood ratio between μ and $\mu' \in \text{Alt}(\mu)$ of the data observed up to τ
2611 $\Lambda_\tau = \log \frac{d\mathbb{P}_\mu(A_1, R_1, \dots, A_\tau, R_\tau)}{d\mathbb{P}_{\mu'}(A_1, R_1, \dots, A_\tau, R_\tau)}$, where A_t is the action taken in round t , and R_t is the reward observed
2612 upon selecting A_t . Then, we can write
2613

$$\Lambda_t = \sum_a \sum_{n=1}^t \mathbf{1}_{\{A_n=a\}} \log \frac{f_a(R_n)}{f'_a(R_n)}$$

2614 where f_a, f'_a , are, respectively, the reward density for action a in the two models μ, μ' with respect to
2615 the Lebesgue measure. Letting $N_a(t)$ denote the number of times action a has been selected up to
2616 round t , by an application of Wald's lemma the expected log-likelihood ratio can be shown to be
2617

$$\mathbb{E}_\mu[\Lambda_\tau] = \sum_a \mathbb{E}_\mu[N_a(\tau)] \text{KL}(\mu_a, \mu'_a)$$

2618 where $\text{KL}(\mu_a, \mu'_a)$ is the KL divergence between two Gaussian distributions $\mathcal{N}(\mu_a, \sigma)$ and $\mathcal{N}(\mu'_a, \sigma)$
2619 (note that we have σ_1 instead of σ for $a = 1$).
2620

2621 We also know from the information processing inequality (Kaufmann et al., 2016) that $\mathbb{E}_\mu[\Lambda_\tau] \geq$
2622 $\sup_{\mathcal{E} \in \mathcal{M}_\tau} \text{kl}(\mathbb{P}_\mu(\mathcal{E}), \mathbb{P}_{\mu'}(\mathcal{E}))$, where $\mathcal{M}_t = \sigma(A_1, R_1, \dots, A_t, R_t)$. We use the fact that the algo-
2623 rithm is δ -correct: by choosing $\mathcal{E} = \{\hat{a}_\tau = a^*\}$ we obtain that $\mathbb{E}_\mu[\Lambda_\tau] \geq \text{kl}(1-\delta, \delta)$, since
2624 $\mathbb{P}_\mu(\mathcal{E}) \geq 1-\delta$ and $\mathbb{P}_{\mu'}(\mathcal{E}) = 1 - \mathbb{P}_{\mu'}(\hat{a}_\tau \neq a^*) \leq 1 - \mathbb{P}_{\mu'}(\hat{a}_\tau = \arg \max_a \mu'_a) \leq \delta$ (we also used
2625 the monotonicity properties of the Bernoulli KL divergence). Hence
2626

$$\sum_a \mathbb{E}_\mu[N_a(\tau)] \text{KL}(\mu_a, \mu'_a) \geq \text{kl}(1-\delta, \delta).$$

2627 Letting $\omega_a = \mathbb{E}_\mu[N_a(\tau)]/\mathbb{E}_\mu[\tau]$, we have that
2628

$$\mathbb{E}_\mu[\tau] \sum_a \omega_a \text{KL}(\mu_a, \mu'_a) \geq \text{kl}(1-\delta, \delta).$$

2629 Lastly, optimizing over $\mu' \in \text{Alt}(\mu)$ and $\omega \in \Delta(K)$ yields the bound:
2630

$$\mathbb{E}_\mu[\tau] \geq T^*(\mu) \text{kl}(1-\delta, \delta),$$

2631 where $T^*(\mu)$ is defined as
2632

$$(T^*(\mu))^{-1} = \sup_{\omega \in \Delta(K)} \inf_{\mu' \in \text{Alt}(\mu)} \sum_a \omega_a \text{KL}(\mu_a, \mu'_a).$$

2633 **Step 2: Optimization over the set of alternative models.** We now face the problem of optimizing
2634 over the set of alternative models.
2635

2646 Defining $\text{Alt}_a = \{\mu' \in \mathbb{R}^K : \mu'_a - \mu'_b \geq \Delta_0 \ \forall b \neq a\}$, the set of alternative models can be decom-
 2647 posed as
 2648

$$\begin{aligned} 2649 \quad \text{Alt}(\mu) &= \left\{ \mu' \in \mathbb{R}^K : \arg \max_a \mu'_a \neq 1, \ \Delta_{\min}(\mu') \geq \Delta_0 \right\}, \\ 2650 \\ 2651 &= \cup_{a \neq 1} \text{Alt}_a. \end{aligned}$$

2652 Hence, the optimization problem over the alternative models becomes
 2653

$$2654 \quad \inf_{\mu' \in \text{Alt}(\mu)} \sum_a \omega_a \text{KL}(\mu_a, \mu'_a) = \min_{\bar{a} \neq 1} \inf_{\mu' \in \text{Alt}_{\bar{a}}} \sum_a \omega_a \frac{(\mu_a - \mu'_a)^2}{2\sigma^2}. \\ 2655$$

2656 The inner infimum over μ' can then be written as
 2657

$$\begin{aligned} 2658 \quad P_{\bar{a}}^*(\omega) &:= \inf_{\mu' \in \mathbb{R}^K} \sum_a \omega_a \frac{(\mu_a - \mu'_a)^2}{2\sigma^2}. \\ 2659 \\ 2660 &\text{s.t. } \mu'_{\bar{a}} - \mu'_b \geq \Delta_0 \quad \forall b \neq \bar{a}. \end{aligned} \tag{25}$$

2661 While the problem is clearly convex, it does not yield an immediate closed form solution.
 2662

2663 To that aim, we try to derive a lower bound and an upper bound of the value of this minimization
 2664 problem.
 2665

2666 **Step 3: Upper bound on $P_{\bar{a}}^*$.** Note that an upper bound on $\min_{\bar{a} \neq 1} P_{\bar{a}}^*(\omega)$ can be found by finding a
 2667 feasible solution μ' . Consider then the solution $\mu'_1 = \mu_1 - \Delta$, $\mu'_{\bar{a}} = \mu_1$ and $\mu'_b = \mu_b$ for all other
 2668 arms. Clearly We have that $\mu'_{\bar{a}} - \mu'_b \geq \Delta_0$ for all $b \neq \bar{a}$. Hence, we obtain
 2669

$$\min_{\bar{a} \neq 1} P_{\bar{a}}^*(\omega) \leq \omega_1 \frac{\Delta_0^2}{2\sigma^2} + \min_{\bar{a} \neq 1} \omega_{\bar{a}} \frac{\Delta_{\bar{a}}^2}{2\sigma^2}.$$

2670 At this point, one can easily note that if $\frac{\Delta_0^2}{2\sigma^2} \geq \frac{1}{2\sigma^2 \sum_{a \neq 1} \frac{1}{\Delta_a^2}}$, then $\sup_{\omega \in \Delta(K)} \min_{\bar{a} \neq 1} P_{\bar{a}}^*(\omega) \leq \frac{\Delta_0^2}{2\sigma^2}$.
 2671

2672 This corresponds to the case where all the mass is given to $\omega_1 = 1$. Otherwise, the solution is to set
 2673 $\omega_1 = 0$ and $\omega_a = \frac{1/\Delta_a^2}{\sum_b 1/\Delta_b^2}$ for $a \neq 1$.
 2674

2675 Hence, we conclude that
 2676

$$(T^*(\mu))^{-1} = \sup_{\omega \in \Delta(K)} \min_{\bar{a} \neq 1} P_{\bar{a}}^*(\omega) \leq \frac{1}{2\sigma^2} \max \left(\Delta_0^2, \frac{1}{\sum_{a \neq 1} 1/\Delta_a^2} \right).$$

2677 **Step 4: Lower bound on $P_{\bar{a}}^*$.** For the lower bound, note that we can relax the constraint to only
 2678 consider $\mu'_{\bar{a}} - \mu'_1 \geq \Delta_0$. This relaxation enlarges the feasible set, and thus the infimum of this new
 2679 problem lower bounds $P_{\bar{a}}^*(\omega)$.
 2680

2681 By doing so, since the other arms are not constrained, by convexity of the KL divergence at the
 2682 infimum we have $\mu'_b = \mu_b$ for all $b \notin \{1, \bar{a}\}$. Therefore
 2683

$$P_{\bar{a}}^*(\omega) \geq \inf_{\mu' : \mu'_{\bar{a}} - \mu'_1 \geq \Delta_0} \sum_a \omega_a \frac{(\mu_a - \mu'_a)^2}{2\sigma^2} = \inf_{\mu' : \mu'_{\bar{a}} - \mu'_1 \geq \Delta_0} \omega_1 \frac{(\mu_1 - \mu'_1)^2}{2\sigma^2} + \omega_{\bar{a}} \frac{(\mu_{\bar{a}} - \mu'_{\bar{a}})^2}{2\sigma^2}.$$

2684 Solving the KKT conditions we find the equivalent conditions $\mu'_{\bar{a}} = \mu'_1 + \Delta_0$ and
 2685

$$\omega_1(\mu_1 - \mu'_1) + \omega_{\bar{a}}(\mu_{\bar{a}} - \mu'_{\bar{a}} - \Delta_0) = 0 \Rightarrow \mu'_1 = \frac{\omega_1 \mu_1 + \omega_{\bar{a}} \mu_{\bar{a}} - \omega_{\bar{a}} \Delta_0}{\omega_1 + \omega_{\bar{a}}}.$$

2686 Therefore
 2687

$$\mu'_{\bar{a}} = \frac{\omega_1 \mu_1 + \omega_{\bar{a}} \mu_{\bar{a}} - \omega_{\bar{a}} \Delta_0}{\omega_1 + \omega_{\bar{a}}} + \Delta_0 = \frac{\omega_1 \mu_1 + \omega_{\bar{a}} \mu_{\bar{a}} + \omega_1 \Delta_0}{\omega_1 + \omega_{\bar{a}}}.$$

2688 Plugging these solutions back in the value of the problem, we obtain
 2689

$$\begin{aligned} 2690 \quad P_{\bar{a}}^*(\omega) &\geq \frac{\omega_1 \omega_{\bar{a}}^2}{(\omega_1 + \omega_{\bar{a}})^2} \frac{(\mu_1 - \mu_{\bar{a}} + \Delta_0)^2}{2\sigma^2} + \frac{\omega_{\bar{a}} \omega_1^2}{(\omega_1 + \omega_{\bar{a}})^2} \frac{(\mu_{\bar{a}} - \mu_1 - \Delta_0)^2}{2\sigma^2}, \\ 2691 \\ 2692 &= \frac{\omega_1 \omega_{\bar{a}}}{\omega_1 + \omega_{\bar{a}}} \frac{(\mu_1 - \mu_{\bar{a}} + \Delta_0)^2}{2\sigma^2}, \\ 2693 \\ 2694 &= \frac{\omega_1 \omega_{\bar{a}}}{\omega_1 + \omega_{\bar{a}}} \frac{(\Delta_{\bar{a}} + \Delta_0)^2}{2\sigma^2}. \end{aligned}$$

2700 Let $\theta_a = \Delta_a + \Delta_0$, with $\theta_1 = \Delta_0$. We plug in a feasible solution $\omega_a = \frac{1/\theta_a^2}{\sum_b 1/\theta_b^2}$, yielding
 2701

$$\begin{aligned}
 2702 (T^*(\mu))^{-1} &= \sup_{\omega \in \Delta(K)} \min_{\bar{a} \neq 1} P_{\bar{a}}^*(\omega) \geq \min_{\bar{a} \neq 1} \frac{1/(\theta_1 \theta_{\bar{a}})^2}{\sum_b 1/\theta_b^2 (1/\theta_1^2 + 1/\theta_{\bar{a}}^2)} \frac{\theta_{\bar{a}}^2}{2\sigma^2}, \\
 2703 &= \min_{\bar{a} \neq 1} \frac{1}{\sum_b 1/\theta_b^2 (1 + \theta_1^2/\theta_{\bar{a}}^2)} \frac{1}{2\sigma^2}, \\
 2704 &= \frac{1}{2\sigma^2 \sum_b 1/\theta_b^2} \min_{\bar{a} \neq 1} \frac{1}{1 + \theta_1^2/\theta_{\bar{a}}^2}, \\
 2705 &\geq \frac{1}{2\sigma^2 \sum_b 1/\theta_b^2} \frac{1}{1 + \theta_1^2/\Delta_0^2}, \\
 2706 &= \frac{1}{4\sigma^2 \sum_b 1/\theta_b^2}.
 \end{aligned}$$

□

2715 B.5 SAMPLE COMPLEXITY LOWER BOUND FOR THE MAGIC ACTION MAB PROBLEM

2716 We now consider a special class of models that embeds information about the optimal arm in the
 2717 mean reward of some of the arms. Let $\phi : \mathbb{R} \rightarrow \mathbb{R}$ be a strictly decreasing function over $\{2, \dots, K\}$ ⁵.

2718 Particularly, we make the following assumptions:

2719

- 2720 1. We consider mean rewards μ satisfying $\mu_1 = \phi(\arg \max_{a \neq 1} \mu_a)$, and $\mu^* = \max_a \mu_a > \phi(2)$. Arm 1 is called "magic action", and with this assumption we are guaranteed that the
 2721 magic arm is not optimal, since

$$2722 \mu_1 \frac{1}{\max_a \mu_a} = \phi(\arg \max_{a \neq 1} \mu_a) \frac{1}{\max_a \mu_a} \leq \phi(2) \frac{1}{\max_a \mu_a} < 1 \Rightarrow \max_a \mu_a > \mu_1.$$

2723

- 2724 2. The rewards are normally distributed, with a fixed known standard deviation σ_1 for the
 2725 magic arm, and fixed standard deviation σ for all the other arms.

2726 Hence, define the set of models

$$2727 \mathcal{S} = \left\{ \mu \in \mathbb{R}^K : \mu_1 = \phi(\arg \max_{a \neq 1} \mu_a), \max_a \mu_a > \phi(2) \right\},$$

2728 and the set of alternative models

$$2729 \text{Alt}(\mu) = \left\{ \mu' \in \mathcal{S} : \arg \max_a \mu'_a \neq a^* \right\},$$

2730 where $a^* = \arg \max_a \mu_a$.

2731 Then, for any δ -correct algorithm, guaranteeing that at some stopping time τ the estimated optimal
 2732 arm \hat{a}_τ is δ -correct, i.e., $\mathbb{P}_\mu(\hat{a}_\tau \neq a^*) \leq \delta$, we have the following result.

2733 **Theorem B.26.** *For any δ -correct algorithm, the sample complexity lower bound on the magic action
 2734 problem is*

$$2735 \mathbb{E}_\mu[\tau] \geq T^*(\mu) \text{kl}(1 - \delta, \delta), \tag{26}$$

2736 where $\text{kl}(x, y) = x \log(x/y) + (1 - x) \log((1 - x)/(1 - y))$ and $T^*(\mu)$ is the characteristic time of
 2737 μ , defined as

$$2738 (T^*(\mu))^{-1} = \max_{\omega \in \Delta(K)} \min_{a \neq 1, a^*} \omega_1 \frac{(\phi(a^*) - \phi(a))^2}{2\sigma_1^2} + \sum_{b \in \mathcal{K}_a(\omega)} \omega_b \frac{(\mu_b - m(\omega; \mathcal{K}_a(\omega)))^2}{2\sigma^2}, \tag{27}$$

2739 where $m(\omega; \mathcal{C}) = \frac{\sum_{a \in \mathcal{C}} \omega_a \mu_a}{\sum_{a \in \mathcal{C}} \omega_a}$ and the set $\mathcal{K}_a(\omega)$ is defined as

$$2740 \mathcal{K}_a(\omega) = \{a\} \cup \{b \in \{2, \dots, K\} : \mu_b \geq m(\omega; \mathcal{C}_b \cup \{a\}) \text{ and } \mu_b \geq \phi(2)\}.$$

2741 with $\mathcal{C}_x = \{b \in \{2, \dots, K\} : \mu_b \geq \mu_x\}$ for $x \in [K]$.

2742
 2743 ⁵One could also consider strictly increasing functions.

2754 **Proof. Step 1: Log-likelihood ratio.** The initial part of the proof is rather standard, and follows the
 2755 same argument used in the Best Arm Identification and Best Policy Identification literature (Garivier
 2756 & Kaufmann, 2016).

2757 Take the expected log-likelihood ratio between μ and $\mu' \in \text{Alt}(\mu)$ of the data observed up to τ
 2758 $\Lambda_\tau = \log \frac{d\mathbb{P}_\mu(A_1, R_1, \dots, A_\tau, R_\tau)}{d\mathbb{P}_{\mu'}(A_1, R_1, \dots, A_\tau, R_\tau)}$, where A_t is the action taken in round t , and R_t is the reward observed
 2760 upon selecting A_t . Then, we can write

$$2761 \quad 2762 \quad \Lambda_t = \sum_a \sum_{n=1}^t \mathbf{1}_{\{A_n=a\}} \log \frac{f_a(R_n)}{f'_a(R_n)}$$

2763 where f_a, f'_a , are, respectively, the reward density for action a in the two models μ, μ' with respect to
 2764 the Lebesgue measure. Letting $N_a(t)$ denote the number of times action a has been selected up to
 2765 round t , by an application of Wald's lemma the expected log-likelihood ratio can be shown to be
 2766

$$2767 \quad \mathbb{E}_\mu[\Lambda_\tau] = \sum_a \mathbb{E}_\mu[N_a(\tau)] \text{KL}(\mu_a, \mu'_a)$$

2768 where $\text{KL}(\mu_a, \mu'_a)$ is the KL divergence between two Gaussian distributions $\mathcal{N}(\mu_a, \sigma)$ and $\mathcal{N}(\mu'_a, \sigma)$
 2769 (note that we have σ_1 instead of σ for $a = 1$).

2770 We also know from the information processing inequality (Kaufmann et al., 2016) that $\mathbb{E}_\mu[\Lambda_\tau] \geq$
 2771 $\sup_{\mathcal{E} \in \mathcal{M}_\tau} \text{kl}(\mathbb{P}_\mu(\mathcal{E}), \mathbb{P}_{\mu'}(\mathcal{E}))$, where $\mathcal{M}_\tau = \sigma(A_1, R_1, \dots, A_\tau, R_\tau)$. We use the fact that the algo-
 2772 rithm is δ -correct: by choosing $\mathcal{E} = \{\hat{a}_\tau = a^*\}$ we obtain that $\mathbb{E}_\mu[\Lambda_\tau] \geq \text{kl}(1 - \delta, \delta)$, since
 2773 $\mathbb{P}_\mu(\mathcal{E}) \geq 1 - \delta$ and $\mathbb{P}_{\mu'}(\mathcal{E}) = 1 - \mathbb{P}_{\mu'}(\hat{a}_\tau \neq a^*) \leq 1 - \mathbb{P}_{\mu'}(\hat{a}_\tau = \arg \max_a \mu'_a) \leq \delta$ (we also used
 2774 the monotonicity properties of the Bernoulli KL divergence). Hence

$$2775 \quad \sum_a \mathbb{E}_\mu[N_a(\tau)] \text{KL}(\mu_a, \mu'_a) \geq \text{kl}(1 - \delta, \delta).$$

2776 Letting $\omega_a = \mathbb{E}_\mu[N_a(\tau)]/\mathbb{E}_\mu[\tau]$, we have that

$$2777 \quad \mathbb{E}_\mu[\tau] \sum_a \omega_a \text{KL}(\mu_a, \mu'_a) \geq \text{kl}(1 - \delta, \delta).$$

2778 Lastly, optimizing over $\mu' \in \text{Alt}(\mu)$ and $\omega \in \Delta(K)$ yields the bound:

$$2779 \quad \mathbb{E}_\mu[\tau] \geq T^*(\mu) \text{kl}(1 - \delta, \delta),$$

2780 where $T^*(\mu)$ is defined as

$$2781 \quad (T^*(\mu))^{-1} = \sup_{\omega \in \Delta(K)} \inf_{\mu' \in \text{Alt}(\mu)} \sum_a \omega_a \text{KL}(\mu_a, \mu'_a).$$

2782 **Step 2: Optimization over the set of alternative models.** We now face the problem of optimizing
 2783 over the set of alternative models. First, we observe that $\mathcal{S} = \cup_{a \neq a^*} \{\mu : \mu_1 = \phi(a), \mu_a > \phi(2)\}$.
 2784 Therefore, we can write

$$2785 \quad \text{Alt}(\mu) = \cup_{a \notin \{1, a^*\}} \{\mu' : \mu'_1 = \phi(a), \mu'_a > \max(\phi(2), \mu'_b) \forall b \neq a\}.$$

2786 Hence, for a fixed $a \notin \{1, a^*\}$, the inner infimum becomes

$$2787 \quad \inf_{\mu' \in \mathbb{R}^K} \omega_1 \frac{(\phi(a^*) - \phi(a))^2}{2\sigma_1^2} + \sum_{a \neq 1} \omega_a \frac{(\mu_a - \mu'_a)^2}{2\sigma^2} \quad (28)$$

$$2788 \quad \text{s.t. } \mu'_a \geq \max(\phi(2), \mu'_b) \quad \forall b,$$

$$2789 \quad \mu'_1 = \phi(a).$$

2790 To solve it, we construct the following Lagrangian

$$2791 \quad \ell(\mu', \theta) = \omega_1 \frac{(\phi(a^*) - \phi(a))^2}{2\sigma_1^2} + \sum_{b \neq 1} \omega_b \frac{(\mu_b - \mu'_b)^2}{2\sigma^2} + \sum_b \theta_b (\max(\phi(2), \mu'_b) - \mu'_a),$$

2808 where $\theta \in \mathbb{R}_+^K$ is the multiplier vector. From the KKT conditions we already know that $\theta_1 = 0, \theta_a = 0$
 2809 and $\theta_b = 0$ if $\mu'_b \leq \phi(2)$, with $b \in \{2, \dots, K\}$. In particular, we also know that either we have
 2810 $\mu'_b = \mu'_a$ or $\mu'_b = \mu_b$. Therefore, for $\mu_b \leq \phi(2)$ the solution is $\mu'_b = \mu_b$, while for $\mu_b > \phi(2)$ the
 2811 solution depends also on ω .

2812 To fix the ideas, let \mathcal{K} be the set of arms for which $\mu'_b = \mu'_a$ at the optimal solution. Such set must
 2813 necessarily include arm a . Then, note that

$$2815 \quad \frac{\partial \ell}{\partial \mu'_a} = \omega_a \frac{\mu'_a - \mu_a}{\sigma^2} - \sum_{b \in [K]} \theta_b = 0.$$

2817 and

$$2819 \quad \frac{\partial \ell}{\partial \mu'_b} = \omega_b \frac{\mu'_b - \mu_b}{\sigma^2} + \theta_b = 0 \quad \text{for } b \neq (1, a).$$

2821 Then, using the observations derived above, we conclude that

$$2822 \quad \mu'_a = \frac{\sum_{b \in \mathcal{K}} \omega_b \mu_b}{\sum_{b \in \mathcal{K}} \omega_b},$$

2824 with $\mu'_b = \mu'_a$ if $b \in \mathcal{K}$, and $\mu'_b = \mu_b$ otherwise. However, how do we compute such set \mathcal{K} ?

2826 First, \mathcal{K} includes arm a . However, in general we have $\mathcal{K} \neq \{a\}$: if that were not true we would have
 2827 $\mu'_a = \mu_a$ and $\mu'_b = \mu_b$ for the other arms – but if any μ_b is greater than μ_a , then a is not optimal,
 2828 which is a contradiction. Therefore, also arm a^* is included in \mathcal{K} , since any convex combination of
 2829 $\{\mu_a\}$ is necessarily smaller than μ_{a^*} . We apply this argument repeatedly for every arm b to obtain \mathcal{K} .

2830 Hence, for some set $\mathcal{C} \subseteq [K]$ define the average reward

$$2832 \quad m(\omega; \mathcal{C}) = \frac{\sum_{a \in \mathcal{C}} \omega_a \mu_a}{\sum_{a \in \mathcal{C}} \omega_a},$$

2834 and the set $\mathcal{C}_x = \{a\} \cup \{b \in \{2, \dots, K\} : \mu_b \geq \mu_x\}$ for $x \in [K]$. Then,

$$2835 \quad \mathcal{K} := \mathcal{K}(\omega) = \{a\} \cup \{b \in \{2, \dots, K\} : \mu_b \geq m(\omega; \mathcal{C}_b) \text{ and } \mu_b \geq \phi(2)\}.$$

2837 In other words, \mathcal{K} is the set of *confusing arms* for which the mean reward in the alternative model
 2838 changes. An arm b is *confusing* if the average reward m , taking into account b , is smaller than μ_b . If
 2839 this holds for b , then it must also hold all the arms b' such that $\mu_{b'} \geq \mu_b$. \square

2841 As a corollary, we have the following upper bound on $T^*(\mu)$.

2842 **Corollary B.27.** *We have that*

$$2844 \quad T^*(\mu) \leq \min_{\omega \in \Delta(K)} \max_{a \neq 1, a^*} \frac{2\sigma_1^2}{\omega_1(\phi(a^*) - \phi(a))^2}.$$

2846 In particular, for $\phi(x) = 1/x$ and $a^* < K$ we have

$$2848 \quad T^*(\mu) \leq 2\sigma^2(a^*(a^* + 1))^2,$$

2849 while for $a^* = K$ we get $T^*(\mu) \leq 2\sigma^2(a^*(a^* - 1))^2$.

2851 *Proof.* Let $f_1(a) = \frac{(\phi(a^*) - \phi(a))^2}{2\sigma_1^2}$. For every weight vector $\omega \in \Delta(K)$ and every $a \neq 1, a^*$, the
 2852 quantity

$$2854 \quad g_a(\omega) = \omega_1 f_1(a) + \sum_{b \in \mathcal{K}_a} \omega_b \frac{(\mu_b - m(\omega; \mathcal{K}_a))^2}{2\sigma^2}$$

2856 satisfies $g_a(\omega) \geq \omega_1 f_1(a)$ because the variance term is non-negative. Hence

$$2858 \quad (T^*(\mu))^{-1} = \max_{\omega \in \Delta(K)} \min_{a \neq 1, a^*} g_a(\omega) \geq \max_{\omega \in \Delta(K)} \omega_1 \min_{a \neq 1, a^*} f_1(a).$$

2859 Since $\omega_1 \leq 1$, the right-hand side is lower bounded by $\omega_1 = 1$, giving

$$2861 \quad (T^*(\mu))^{-1} \geq \min_{a \neq 1, a^*} f_1(a) = \frac{1}{2\sigma_1^2} \min_{a \neq 1, a^*} (\phi(a^*) - \phi(a))^2.$$

2862 Taking reciprocals yields
 2863

$$2864 T^*(\mu) \leq \frac{2\sigma_1^2}{\min_{a \neq 1, a^*} (\phi(a^*) - \phi(a))^2} = \min_{\omega \in \Delta(K)} \max_{a \neq 1, a^*} \frac{2\sigma_1^2}{\omega_1 (\phi(a^*) - \phi(a))^2},$$

$$2865$$

$$2866$$

2867 because the minimisation over ω clearly selects $\omega_1 = 1$. (This justifies the form stated in the
 2868 corollary.)

2869 **Specialising to** $\phi(x) = 1/x$. With $\phi(x) = 1/x$ the difference $\phi(a^*) - \phi(a) = \frac{1}{a^*} - \frac{1}{a}$ is positive for
 2870 all $a > a^*$ and negative otherwise; its smallest non-zero magnitude is obtained for the *closest* index
 2871 to a^* :

2872

- 2873 • If $a^* < K$, that index is $a^* + 1$, giving

$$2875 \min_{a \neq 1, a^*} (\phi(a^*) - \phi(a))^2 = \left(\frac{1}{a^*} - \frac{1}{a^* + 1} \right)^2 = \frac{1}{[a^*(a^* + 1)]^2}.$$

$$2876$$

$$2877$$

- 2878 • If $a^* = K$, the closest index is $K - 1$, leading to

$$2880 \min_{a \neq 1, a^*} (\phi(a^*) - \phi(a))^2 = \left(\frac{1}{K - 1} - \frac{1}{K} \right)^2 = \frac{1}{[a^*(a^* - 1)]^2}.$$

$$2881$$

$$2882$$

2883 Plugging each expression in the general upper bound above concludes the proof. \square

2884 Finally, to get a better intuition of the main result, we can look at the 3-arms case: it is optimal to
 2885 only sample the magic arm iff $|\phi(a^*) - \phi(a)| > \frac{\sigma_1(\mu_{a^*} - \mu_a)}{2\sigma}$.

2886 **Lemma B.28.** *With $K = 3$ we have that $\omega_1 = 1$ if and only if*

$$2889 |\phi(a^*) - \phi(a)| > \frac{\sigma_1(\mu_{a^*} - \mu_a)}{2\sigma},$$

$$2890$$

2891 and $\omega_1 = 0$ if the reverse inequality holds.

2892

2893 *Proof.* With 3 arms, from the proof of the theorem we know that $\mathcal{K}_a(\omega) = \{a, a^*\}$ for all ω . Letting
 2894 $m(\omega) = \frac{\omega_a \mu_a + \omega_{a^*} \mu_{a^*}}{\omega_a + \omega_{a^*}}$, we obtain

$$2896 (T^*(\mu))^{-1} = \max_{\omega \in \Delta(3)} \omega_1 \frac{(\phi(a^*) - \phi(a))^2}{2\sigma_1^2} + \frac{\omega_a(\mu_a - m(\omega))^2 + \omega_{a^*}(\mu_{a^*} - m(\omega))^2}{2\sigma^2}.$$

$$2897$$

2898 Clearly the solution is $\omega_1 = 1$ as long as

$$2900 \frac{(\phi(a^*) - \phi(a))^2}{2\sigma_1^2} > \max_{\omega: \omega_a + \omega_{a^*} = 1} \frac{\omega_a(\mu_a - m(\omega))^2 + \omega_{a^*}(\mu_{a^*} - m(\omega))^2}{2\sigma^2}.$$

$$2901$$

2902 To see why this is the case, let $f_1 = \frac{(\phi(a^*) - \phi(a))^2}{2\sigma_1^2}$, $f_2(\omega_a, \omega_{a^*}) = \frac{\omega_a(\mu_a - m(\omega))^2}{2\sigma^2}$ and $f_3(\omega_a, \omega_{a^*}) =$
 2903 $\frac{\omega_{a^*}(\mu_{a^*} - m(\omega))^2}{2\sigma^2}$. Then, we can write
 2904

$$2906 \omega_1 f_1 + \omega_a f_2(\omega_a, \omega_{a^*}) + \omega_{a^*} f_3(\omega_a, \omega_{a^*}) = \omega_1 f_1 + (1 - \omega_1) \left[\frac{\omega_a f_2}{1 - \omega_1} + \frac{\omega_{a^*} f_3}{1 - \omega_1} \right].$$

$$2907$$

2908 Being a convex combination, this last term can be upper bounded as

$$2910 \omega_1 f_1 + \omega_a f_2(\omega_a, \omega_{a^*}) + \omega_{a^*} f_3(\omega_a, \omega_{a^*}) \leq \max \left(f_1, \frac{\omega_a f_2}{1 - \omega_1} + \frac{\omega_{a^*} f_3}{1 - \omega_1} \right).$$

$$2911$$

2912 Now, note that also the term inside the bracket is a convex combination. Therefore, let $\omega_a = (1 - \omega_1)\alpha$
 2913 and $\omega_{a^*} = (1 - \omega_1)(1 - \alpha)$ for some $\alpha \in [0, 1]$. We have that
 2914

$$2915 m(\omega) = \frac{(1 - \omega_1)\alpha \mu_a + (1 - \omega_1)(1 - \alpha) \mu_{a^*}}{1 - \omega_1} = \alpha \mu_a + (1 - \alpha) \mu_{a^*}.$$

2916 Hence, we obtain that

$$\begin{aligned}
 \frac{\omega_a(\mu_a - m(\omega))^2 + \omega_{a^*}(\mu_{a^*} - m(\omega))^2}{2(1 - \omega_1)\sigma^2} &= \frac{\omega_a f_2 + \omega_{a^*} f_3}{1 - \omega_1}, \\
 &= \frac{\alpha(1 - \alpha)^2(\mu_a - \mu_{a^*})^2 + (1 - \alpha)\alpha^2(\mu_{a^*} - \mu_a)^2}{2\sigma^2}, \\
 &= \alpha(1 - \alpha) \frac{(1 - \alpha)(\mu_a - \mu_{a^*})^2 + \alpha(\mu_{a^*} - \mu_a)^2}{2\sigma^2}, \\
 &= \alpha(1 - \alpha) \frac{(\mu_a - \mu_{a^*})^2}{2\sigma^2}.
 \end{aligned}$$

2927 Since this last term is maximized for $\alpha = 1/2$, we obtain

$$\omega_1 f_1 + \omega_a f_2(\omega_a, \omega_{a^*}) + \omega_{a^*} f_3(\omega_a, \omega_{a^*}) \leq \max \left(f_1, \frac{(\mu_a - \mu_{a^*})^2}{8\sigma^2} \right).$$

2931 Since f_1 is attained for $\omega_1 = 1$, we have that as long as $f_1 > \frac{(\mu_a - \mu_{a^*})^2}{8\sigma^2}$, then the solution is $\omega_1 = 1$.

2933 On the other hand, if $\frac{(\mu_a - \mu_{a^*})^2}{8\sigma^2} > f_1$, then we can set $\omega_a = (1 - \omega_1)/2$ and $\omega_{a^*} = (1 - \omega_1)/2$,
2934 leading to

$$\omega_1 f_1 + \omega_a f_2(\omega_a, \omega_{a^*}) + \omega_{a^*} f_3(\omega_a, \omega_{a^*}) = \omega_1 f_1 + (1 - \omega_1) \frac{(\mu_a - \mu_{a^*})^2}{8\sigma^2},$$

2935 which is maximized at $\omega_1 = 0$. \square

2939 B.6 SAMPLE COMPLEXITY BOUND FOR THE MULTIPLE MAGIC ACTIONS MAB PROBLEM

2941 We now extend our analysis to the case where multiple magic actions can be present in the environment.
2942 In contrast to the single magic action setting, here a *chain* of magic actions sequentially reveals
2943 information about the location of the optimal action. Without loss of generality, assume that the first
2944 n arms (with indices $1, \dots, n$) are the magic actions, and the remaining $K - n$ arms are non-magic.
2945 The chain structure is such that pulling magic arm j (with $1 \leq j < n$) yields information about only
2946 the location of the next magic arm $j + 1$, while pulling the final magic action (arm n) reveals the
2947 identity of the optimal action. As before, we assume that the magic actions are informational only
2948 and are never optimal.

2949 To formalize the model, let $\phi : \{1, \dots, n\} \rightarrow \mathbb{R}$ be a strictly decreasing function. We assume that the
2950 magic actions have fixed means given by

$$\mu_j = \begin{cases} \phi(j + 1), & \text{if } j = 1, \dots, n - 1, \\ \phi\left(\arg \max_{a \notin \{1, \dots, n\}} \mu_a\right), & \text{if } j = n. \end{cases}$$

2955 and that the non-magic arms satisfy

$$\mu^* = \max_{a \notin \{1, \dots, n\}} \mu_a > \phi(n).$$

2958 Thus, the optimal arm lies among the non-magic actions. Considering the noiseless case where the
2959 rewards of all actions are fixed and the case where we can identify if an action is magic once revealed,
2960 we have the following result.

2961 **Theorem B.29.** *Consider noiseless magic bandit problem with K arms and n magic actions. The
2962 optimal sample complexity is upper bounded as*

$$\inf_{\text{Alg}} \mathbb{E}_{\text{Alg}}[\tau] \leq \min \left(n, \sum_{j=1}^{K-n} \left(\prod_{i=j+1}^{K-n} \frac{i}{n-1+i} \right) \left(1 + \frac{n-1}{n-1+j} \min \left(\frac{n-2}{2}, \frac{j(n-1+j)}{j+1} \right) \right) \right).$$

2968 *Proof.* In the proof we derive a sample complexity bound for a policy based on some insights. We
2969 use the assumption that upon observing a reward from a magic arm, the learner can almost surely
identify that the pulled arm is a magic arm.

Let us define the state (m, r, l) , where m denotes the number of remaining unrevealed magic actions ($m_0 = n - 1$), r denotes the number of remaining unrevealed non-magic actions ($r_0 = K - n$), and l is the binary indicator with value 1 if we have revealed any hidden magic action and 0 otherwise.

Before any observation the learner has no information about which $n - 1$ indices among $\{2, \dots, K\}$ form the chain of intermediate magic arms. Hence, one can argue that at the first timestep is optimal to sample uniformly at random an action in $\{2, \dots, K\}$.

Upon observing a magic action, and thus we are in state $(m, r, 1)$, we consider the following candidate policies: (1) start from the revealed action and follow the chain, or (2) keep sampling unrevealed actions uniformly at random until all non-magic actions are revealed. As previously discussed, starting the chain from the initial magic action would be suboptimal and we do not consider it.

Upon drawing a hidden magic arm, let its chain index be $j \in \{2, \dots, n\}$ (which is uniformly distributed). The remaining cost to complete the chain is $n - j$, and hence its expected value is

$$\mathbb{E}[n - j] = \frac{n - 2}{2}.$$

Therefore, the total expected cost for strategy (1) is

$$T_1 = \frac{n - 2}{2}.$$

We can additionally compute the expected cost for strategy (2) as follows: if the last non-magic action is revealed at step i , then among the first $i - 1$ draws there are exactly $r - 1$ non-magic arms. Since there are $\binom{m+r}{r}$ ways to place all r non-magic arms $m + r$ slots, we have

$$\begin{aligned} T_2 &= \mathbb{E}[\text{Draws until all non-magic revealed}] \\ &= \sum_{i=r}^{m+r} i \cdot \mathbb{P}[\text{Last non-magic revealed at step } i] \\ &= \sum_{i=r}^{m+r} i \cdot \frac{\binom{i-1}{r-1}}{\binom{m+r}{r}} \\ &= \frac{r! \cdot m!}{(m+r)!} \sum_{i=r}^{m+r} i \binom{i-1}{r-1} \\ &= \frac{r! \cdot m!}{(m+r)!} \sum_{i=r}^{m+r} \frac{i!}{(r-1)!(i-r)!} \\ &= \frac{r! \cdot m!}{(m+r)!} \sum_{i=r}^{m+r} r \binom{i}{r} \\ &= \frac{r \cdot r! \cdot m!}{(m+r)!} \binom{m+r+1}{r+1} \\ &= \frac{r \cdot r! \cdot m!}{(m+r)!} \cdot \frac{(m+r+1) \cdot (m+r)!}{(r+1) \cdot r! \cdot m!} \\ &= \frac{r(m+r+1)}{r+1} \end{aligned}$$

Finally, we define a policy in $(m, r, 1)$ as the one choosing between strategy 1 and strategy 2, depending on which one achieves the minimum cost. Hence, the complexity of this policy is

$$V(m, r, 1) = \min \left(\frac{n - 2}{2}, \frac{r(m+r+1)}{r+1} \right).$$

Now, before finding a magic arm, consider a policy that uniformly samples between the non-revealed arms. Therefore, in $(m, r, 0)$ we can achieve a complexity of $1 + \frac{m}{m+r} V(m-1, r, 1) + \frac{r}{m+r} V(m, r-1, 0)$. Since we can always achieve a sample complexity of n , we can find a policy with the following

3024 complexity:

3025

$$3026 \quad V(m, r, 0) = \min \left(n, 1 + \frac{m}{m+r} V(m-1, r, 1) + \frac{r}{m+r} V(m, r-1, 0) \right)$$

3027

$$3028 \quad = \min \left(n, 1 + \frac{m}{m+r} \min \left(\frac{n-2}{2}, \frac{r(m+r)}{r+1} \right) + \frac{r}{m+r} V(m, r-1, 0) \right)$$

3029

3030

3031

3032 Given we always start with $n - 1$ hidden magic actions we can define a recursion in terms of just the

3033 variable r as follows:

3034

$$3035 \quad V(r) = 1 + \frac{n-1}{n-1+r} T(r) + \frac{r}{n-1+r} V(r-1),$$

3036

3037

3038 where $T(r) = \min \left(\frac{n-2}{2}, \frac{r(n-1+r)}{r+1} \right)$. Letting $A(r) = \frac{r}{n-1+r}$ and $B(r) = 1 + \frac{n-1}{n-1+r} T(r)$, we can

3039 write

3040

3041

$$3042 \quad V(r) = B(r) + A(r)V(r-1),$$

3043

3044 Clearly $V(0) = 0$ since if all non-magic actions are revealed, then we know the optimal action

3045 deterministically. Unrolling the recursion we get

3046

$$3047 \quad V(1) = B(1),$$

3048

$$3049 \quad V(2) = B(2) + A(2)B(1),$$

3050

$$3051 \quad V(3) = B(3) + A(3)B(2) + A(3)A(2)B(1),$$

3052

$$3053 \quad \dots$$

3054

$$3055 \quad V(r) = \sum_{j=1}^r \left(\prod_{i=j+1}^r A(i) \right) B(j).$$

3056 Substituting back in our expression, we get

3057

3058

$$3059 \quad V(r) = \sum_{j=1}^r \left(\prod_{i=j+1}^r \frac{i}{n-1+i} \right) \left(1 + \frac{n-1}{n-1+j} T(j) \right).$$

3060

Thus starting at $r = K - n$ we get the following expression:

3061

$$3062 \quad \min \left(n, \sum_{j=1}^{K-n} \left(\prod_{i=j+1}^{K-n} \frac{i}{n-1+i} \right) \left(1 + \frac{n-1}{n-1+j} \min \left(\frac{n-2}{2}, \frac{j(n-1+j)}{j+1} \right) \right) \right),$$

3063

3064

which is also an upper bound on the optimal sample complexity.

3065

□

3066

3067

3068 To get a better intuition of the result, we also have the following corollary, which shows that we

3069 should expect a scaling linear in n for small values of n (for large values the complexity tends instead

3070 to "flatten").

3071

3072 **Corollary B.30.** *Let T be the scaling in thm. B.29. We have that*

3073

$$3074 \quad \min(n, (K-n)/2) \lesssim T \lesssim C \min(n, K/2).$$

3075

3076

3077 *Proof.* First, observe the scaling

$$3078 \quad \left(1 + \frac{n-1}{n-1+j} \min \left(\frac{n-2}{2}, \frac{j(n-1+j)}{j+1} \right) \right) = O(n/2).$$

3078

At this point, note that

3079

3080

3081

3082

3083

$$\prod_{i=j+1}^{K-n} \frac{i}{n-1+i} = \prod_{i=j+1}^{K-n} \left(1 + \frac{n-1}{i}\right)^{-1}.$$

Using that $\frac{x}{1+x} \leq \log(1+x) \leq x$, we have

3084

3085

3086

3087

$$\log \prod_{i=j+1}^{K-n} \frac{i}{n-1+i} = \sum_{i=j+1}^{K-n} -\log \left(1 + \frac{n-1}{i}\right) \geq -(n-1) \sum_{i=j+1}^{K-n} \frac{1}{i}.$$

and

3088

3089

3090

$$\log \prod_{i=j+1}^{K-n} \frac{i}{n-1+i} = \sum_{i=j+1}^{K-n} -\log \left(1 + \frac{n-1}{i}\right) \leq -(n-1) \sum_{i=j+1}^{K-n} \frac{1}{n-1+i}.$$

3091

3092

Define $H_n = \sum_{i=1}^n 1/i$ to be the n -th Harmonic number, we also have

3093

3094

3095

$$\sum_{i=j+1}^{K-n} \frac{1}{i} = H_{K-n} - H_j.$$

3096

Therefore

3097

3098

3099

3100

$$-(n-1)(H_{K-n} - H_j) \leq \log \prod_{i=j+1}^{K-n} \frac{i}{n-1+i} \leq -(n-1)(H_{K-1} - H_{n+j-1})$$

3101

Using that $H_\ell \sim \log(\ell) + \gamma + O(1/\ell)$, where γ is the Euler–Mascheroni constant, we get

3102

3103

3104

3105

$$\left(\frac{j}{K-n}\right)^{n-1} \lesssim \prod_{i=j+1}^{K-n} \frac{i}{n-1+i} \lesssim \left(\frac{n+j-1}{K-1}\right)^{n-1}.$$

3106

3107

Therefore, we can bound $\sum_{j=1}^{K-n} \left(\frac{n+j-1}{K-1}\right)^{n-1}$ using an integral bound

3108

3109

3110

$$\sum_{j=1}^{K-n} \left(\frac{n+j-1}{K-1}\right)^{n-1} \leq \int_0^{K-n} \left(\frac{n+x}{K-1}\right)^{n-1} dx \leq \frac{e(K-1)}{n}.$$

3111

From which follows that the original expression can be upper bounded by an expression scaling as $O(\min(n, (K-1)/2))$.

3112

3113

3114

Similarly, using that $\sum_{j=1}^{K-n} \left(\frac{j}{K-n}\right)^{n-1} \geq (K-n)/n$, we have that the lower bound scales as $\min(n, (K-n)/2)$. \square

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132 **C ALGORITHMS**
3133

3134 In this section we present some of the algorithms more in detail. These includes: **ICPE** with fixed
3135 horizon, *I*-DPT and *I*-IDS.

3136 Recall that in **ICPE** we treat trajectories of data $\mathcal{D}_t = (x_1, a_1, \dots, x_t)$ as sequences to be given as
3137 input to sequential models, such as Transformers.

3138 We define the input at timestep t to be passed to a transformer as $s_t = (\mathcal{D}_t, \emptyset_{t:N})$, with $\emptyset_{t:N}$
3139 indicating a null sequence of tokens for the remaining steps up to some pre-defined horizon N , with
3140 $s_1 = (x_1, \emptyset_{1:N})$.

3141 To be more precise, letting $(x_t^\emptyset, a_t^\emptyset)$ denote, respectively, the null elements in the state and action at
3142 timestep t , we have $\emptyset_{t:t+k} = \{x_t^\emptyset, a_{t+1}^\emptyset, x_{t+1}^\emptyset, \dots, a_{t+k-1}^\emptyset, x_{t+k}^\emptyset\}$.

3143 The limit N is a practical upper bound on the horizon that limits the dimensionality of the state,
3144 which is introduced for implementing the algorithm.

3145

3146 **Algorithm 3** **ICPE** (In-Context Pure Exploration)

3147

3148 1: **Input:** Tasks distribution \mathcal{P} ; confidence δ ; horizon N ; initial λ and hyper-parameter T_ϕ, T_θ .
3149 // Training phase
3150 2: Initialize buffer \mathcal{B} , networks Q_θ, I_ϕ and set $\bar{\theta} \leftarrow \theta, \bar{\phi} \leftarrow \phi$.
3151 3: **while** Training is not over **do**
3152 4: Sample environment $M \sim \mathcal{P}$ with hypothesis H^* , observe $x_1 \sim \rho$ and set $t \leftarrow 1$.
3153 5: **repeat**
3154 6: Execute action $a_t = \arg \max_a Q_\theta(\mathcal{D}_t, a)$ in M and observe x_{t+1} .
3155 7: Add partial trajectory $(\mathcal{D}_t, \mathcal{D}_{t+1}, H^*)$ to \mathcal{B} and set $t \leftarrow t + 1$.
3156 8: **until** $a_{t-1} = a_{\text{stop}}$ or $t > N$.
3157 9: In the fixed confidence, update λ according to eq. (11).
3158 10: Sample batch $B \sim \mathcal{B}$ and update θ, ϕ using $\mathcal{L}_{\text{inf}}(B; \phi)$ (eq. (7)) and $\mathcal{L}_{\text{policy}}(B; \theta)$ (eq. (8) or eq. (9)).
3159 11: Every T_ϕ steps set $\phi \leftarrow \phi$ (similarly, every T_θ steps set $\theta \leftarrow \theta$).
3160 12: **end while**

3161 // Inference phase
3162 13: Sample unknown environment $M \sim \mathcal{P}$.
3163 14: Collect a trajectory \mathcal{D}_N (or \mathcal{D}_τ in fixed confidence) according to a policy $\pi_t(\mathcal{D}_t) = \arg \max_a Q_\theta(\mathcal{D}_t, a)$,
3164 until $t = N$ (or $a_t = a_{\text{stop}}$).
3165 15: **Return** $\hat{H}_N = \arg \max_H I_\phi(H|\mathcal{D}_N)$ (or $\hat{H}_\tau = \arg \max_H I_\phi(H|\mathcal{D}_\tau)$ in the fixed confidence)

3166 **C.1 ICPE WITH FIXED CONFIDENCE**

3167 Optimizing the dual formulation

3168
$$\min_{\lambda \geq 0} \max_{I, \pi} V_\lambda(\pi, I)$$

3169 can be viewed as a multi-timescale stochastic optimization problem: the slowest timescale updates
3170 the variable λ , an intermediate timescale optimizes over I , and the fastest refines the policy π .

3171 **MDP-like formulation.** As shown in the theory, we can use the MDP formalism to define an RL
3172 problem: we define a reward r that penalizes the agent at all timesteps, that is $r_t = -1$, while at the
3173 stopping-time we have $r_\tau = -1 + \lambda I(H^*|\mathcal{D}_\tau)$. Hence, a trajectory's return can be written as

3174
$$G_\tau = \sum_{t=1}^{\tau} r_t = -\tau + \lambda I(H^*|\mathcal{D}_\tau).$$

3175 Accordingly, one can define the Q -value of (π, I, λ) in a pair (\mathcal{D}_τ, a) .

3176 **Optimization over ϕ .** We treat each optimization separately, employing a descent-ascent scheme.
3177 The distribution I is modeled using a sequential architecture parameterized by ϕ , denoted by I_ϕ .
3178 Fixing (π, λ) , the inner maximization in eq. (4) corresponds to

3179
$$\max_{\phi} \mathbb{E}^\pi[\mathbf{1}_{\{\hat{H}_\tau = H^*\}}], \quad \text{with } \hat{H}_\tau = \arg \max_H I_\phi(H|\mathcal{D}_\tau).$$

3186 We train ϕ via cross-entropy loss:
 3187

$$3188 - \sum_{H'} \mathbf{1}_{\{\hat{H}_\tau = H^*\}} \log I_\phi(H' | \mathcal{D}_\tau) = -\log I_\phi(H^* | \mathcal{D}_\tau),$$

3190 averaged across trajectories in a batch.
 3191

3193 **Optimization over π .** The policy π is defined as the greedy policy with respect to learned Q -values.
 3194 Therefore, standard RL techniques can learn the Q -function that maximizes the value in eq. (4)
 3195 given (λ, I) . Denoting this function by Q_θ , it is parameterized using a sequential architecture with
 3196 parameters θ .

3197 We train Q_θ using DQN (Mnih et al., 2015; Van Hasselt et al., 2016), employing a replay buffer
 3198 \mathcal{B} and a target network $Q_{\bar{\theta}}$ parameterized by $\bar{\theta}$. To maintain timescale separation, we introduce an
 3199 additional inference target network $I_{\bar{\phi}}$, parameterized by $\bar{\phi}$, which provides stable training feedback
 3200 for θ . When (I, λ) are fixed, optimizing π reduces to maximizing:
 3201

$$3202 -\tau + \lambda \log I_\phi(H^* | \mathcal{D}_\tau).$$

3203 Hence, we define the reward at the transition $z = (\mathcal{D}_n, a_n, \mathcal{D}_{n+1}, d, H^*)$ (with the convention that
 3204 $\mathcal{D}_{n+1} \leftarrow \mathcal{D}_n$ if $a = a_{\text{stop}}$) as:
 3205

$$3207 r_\lambda(z) := -1 + d \lambda \log I_{\bar{\phi}}(H^* | \mathcal{D}_{n+1}),$$

3208 where $d = \mathbf{1}\{z \text{ is terminal}\}$ (z is terminal if the transition corresponds to the last timestep in a
 3209 horizon, or $a = a_{\text{stop}}$). Furthermore, for a transition z we define $z_{\text{stop}} := z|_{(a, \mathcal{D}_{n+1}) \leftarrow (a_{\text{stop}}, \mathcal{D}_n)}$ as
 3210 the same transition z with $a \leftarrow a_{\text{stop}}$ and $\mathcal{D}'_{n+1} \leftarrow \mathcal{D}_n$.
 3211

3212 There is one thing to note: the logarithm in the reward is justified since the original problem can be
 3213 equivalently written as:
 3214

$$3215 \min_{\lambda \geq 0} \max_{I, \pi} -\mathbb{E}^\pi[\tau] + \lambda \left[\log \left(\mathbb{P}^\pi(\hat{H}_\tau = H^*) \right) - \log(1 - \delta) \right],$$

3217 after noting that we can apply the logarithm to the constraint in eq. (4), before considering the dual.
 3218 Thus the optimal solutions (I, π) remain the same.

3219 Then, using classical TD-learning (Sutton & Barto, 2018), the training target for a transition z is
 3220 defined as:
 3221

$$3222 y_\lambda(z) = r_\lambda(z) + (1 - d)\gamma \max_{a'} Q_{\bar{\theta}}(\mathcal{D}_{n+1}, a'),$$

3223 where $\gamma \in (0, 1]$ is the discount factor.
 3224

3225 As discussed earlier, we have a dedicated stopping action a_{stop} , whose value depends solely on history.
 3226 Thus, its Q -value is updated retrospectively at any state s using an additional loss:
 3227

$$3228 (r_\lambda(z_{\text{stop}}) - Q_\theta(s, a_{\text{stop}}))^2.$$

3229 Therefore, the overall loss that we consider for θ for a single transition z can be written as
 3230

$$3231 \mathbf{1}_{\{a \neq a_{\text{stop}}\}} (y_\lambda(z) - Q_\theta(s, a))^2 + (r_\lambda(z_{\text{stop}}) - Q_\theta(s, a_{\text{stop}}))^2,$$

3233 where $\mathbf{1}_{\{a \neq a_{\text{stop}}\}}$ avoids double accounting for the stopping action.
 3234

3235 To update parameters (θ, ϕ) , we sample a batch $B \sim \mathcal{B}$ from the replay buffer and apply gradient
 3236 updates as specified in the main text. Lastly, target networks are periodically updated.
 3237

3238 **Optimization over λ .** We update λ by assessing the confidence of I_ϕ at the stopping time according
 3239 to eq. (11), maintaining a slow ascent-descent optimization schedule for sufficiently small learning
 rates.

3240 **Cost implementation.** Lastly, in practice, we optimize a reward $r_\lambda(z) = -c + dI_{\bar{\phi}}(H^*|\mathcal{D}_{n+1})$, by
 3241 setting $c = 1/\lambda$, and noting that for a fixed λ the RL optimization remains the same. The reason why
 3242 we do so is due to the fact that with this expression we do not have the product $\lambda I(H^*|\mathcal{D}_{n+1})$, which
 3243 makes the descent-ascent process more difficult.

3244 We also use the following cost update

$$3246 \quad c_{t+1} = c_t - \beta(1 - \delta - \mathbf{1}_{\{H^* = \arg \max_H I(H|\mathcal{D}_\tau)\}}).$$

3247 To see why the cost can be updated in this way, define the parametrization $\lambda = e^{-x}$. Then the
 3248 optimization problem becomes

$$3250 \quad \min_x \max_I \min_\pi -\mathbb{E}\pi[\tau] + e^{-x} \left[\mathbb{P}^\pi \left(H^* = \hat{H}_\tau \right) - 1 + \delta \right],$$

3252 Letting $\rho = \mathbb{P}^\pi \left(H^* = \hat{H}_\tau \right) - 1 + \delta$, the gradient update for x with a learning rate β simply is

$$3254 \quad x_{t+1} = x_t - \beta e^{-x_t} \rho,$$

3255 implying that

$$3257 \quad -\log(\lambda_{t+1}) = -\log(\lambda_t) - \beta \lambda_t \rho.$$

3258 Defining $c_t = 1/\lambda_t$, we have that

$$3259 \quad \log(c_{t+1}) = \log(c_t) - (\beta \rho / c_t) \Rightarrow c_{t+1} = c_t e^{\beta \rho / c_t}.$$

3261 Using then the approximation $e^x \approx 1 + x$, we find $c_{t+1} = c_t + \beta \rho = c_t - \beta(1 - \delta -$
 3262 $\mathbf{1}_{\{H^* = \arg \max_H I(H|\mathcal{D}_\tau)\}})$.

3264 **Training vs Deployment.** Thus far, our discussion of **ICPE** has focused on the training phase. After
 3265 training completes, the learned policy π and inference network I can be deployed directly: during
 3266 deployment, π both collects data and determines when to stop—either by triggering its stopping
 3267 action or upon reaching the horizon N .

3268 C.2 **ICPE** WITH FIXED BUDGET

3270 In the fixed budget setting (problem in eq. (2)) the MDP terminates at timestep N , and we set the
 3271 reward to be $r_t = 0$ for $t < N$ and $r_N = I(H^*|\mathcal{D}_N)$, with $\hat{H}_N = \arg \max_H I(H|\mathcal{D}_N)$ being the
 3272 inferred hypothesis. Accordingly, one can define the value of (π, I) using Q functions as before.

3274 **Practical implementation.** The practical implementation for the fixed horizon follows closely that
 3275 of the fixed confidence setting, and we refer the reader to that section for most of the details. In this
 3276 case the reward in a transition $z = (\mathcal{D}_n, a, \mathcal{D}'_{n+1}, d, H^*)$ is defined as as:

$$3277 \quad r_\lambda(z) := d \log I_{\bar{\phi}}(H^*|\mathcal{D}_{n+1}), \quad (29)$$

3279 where $d = \mathbf{1}\{z \text{ is terminal}\}$. Note that we can use the logarithm, since solving the original problem is
 3280 also equivalent to solving But note that the original problem is also equivalent to solving

$$3282 \quad \max_I \max_\pi \log \left(\mathbb{P}^\pi \left(H^* = \hat{H}_N \right) \right), \quad (30)$$

3283 due to monotonicity of the logarithm.

3285 The Q -values can be learned using classical TD-learning techniques (Sutton & Barto, 2018): to that
 3286 aim, for a transition z , we define the target:

$$3287 \quad y_\lambda(z) = r_\lambda(z) + (1 - d) \max_{a'} Q_{\bar{\theta}}(\mathcal{D}_{n+1}, a'). \quad (31)$$

3289 Then, the gradient updates are the same as for the fixed confidence setting.

3291 C.3 OTHER ALGORITHMS

3293 In this section we describe Track and Stop (TaS) (Garivier & Kaufmann, 2016), and some variants
 3294 such as I -IDS, I -DPT and the explore then commit variant of **ICPE**.

3294 C.3.1 TRACK AND STOP
3295

3296 Track and Stop (TaS, (Garivier & Kaufmann, 2016)) is an asymptotically optimal as $\delta \rightarrow 0$ for MAB
3297 problems. For simplicity, we consider a Gaussian MAB problem with K actions, where the reward
3298 of each action is normally distributed according to $\mathcal{N}(\mu_a, \sigma^2)$, and let $\mu = (\mu_a)_{a \in [K]}$ denote the
3299 model. The TaS algorithm consists of: (1) the model estimation procedure and recommender rule; (2)
3300 the sampling rule, dictating which action to select at each timestep; (3) the stopping rule, defining
3301 when enough evidence has been collected to identify the best action with sufficient confidence, and
3302 therefore to stop the algorithm.

3303 **Estimation Procedure and Recommender Rule** The algorithm maintains a maximum likelihood
3304 estimate $\hat{\mu}_a(t)$ of the average reward for each arm based on the observations up to time t . Then, the
3305 recommender rule is defined as $\hat{a}_t = \arg \max_a \hat{\mu}_a(t)$.
3306

3307 **Sampling Rule.** The sampling rule is based on the observation that any δ -correct algorithm, that is
3308 an algorithm satisfying $\mathbb{P}(\hat{a}_\tau = a^*) \geq 1 - \delta$, with $a^* = \arg \max_a \mu_a$, satisfies the following sample
3309 complexity

$$3310 \mathbb{E}[\tau] \geq T^*(\mu) \text{kl}(1 - \delta, \delta),$$

3311 where $\text{kl}(x, y) = x \log(x/y) + (1 - x) \log((1 - x)/(1 - y))$ and
3312

$$3313 (T^*(\mu))^{-1} = \sup_{\omega \in \Delta(K)} \min_{a \neq a^*} \frac{\omega_{a^*} \omega_a}{\omega_a + \omega_{a^*}} \frac{\Delta_a^2}{2\sigma^2},$$

3314 with $\Delta_a = \mu_{a^*} - \max_{a \neq a^*} \mu_a$. Interestingly, to design an algorithm with minimal sample complexity,
3315 we can look at the solution $\omega^* = \arg \inf_{\omega \in \Delta(K)} T(\omega; \mu)$, with $(T(\omega))^{-1} = \min_{a \neq a^*} \frac{\omega_{a^*} \omega_a}{\omega_a + \omega_{a^*}} \frac{\Delta_a^2}{2\sigma^2}$.
3316

3317 The solution ω^* provides the best proportion of draws, that is, an algorithm selecting an action a with
3318 probability ω_a^* matches the lower bound and is therefore optimal with respect to T^* . Therefore, an idea
3319 is to ensure that N_t/t tracks ω^* , where N_t is the visitation vector $N(t) := [N_1(t) \dots N_K(t)]^\top$.
3320

3321 However, the average rewards $(\mu_a)_a$ are initially unknown. A commonly employed idea (Garivier
3322 & Kaufmann, 2016; Kaufmann et al., 2016) is to track an estimated optimal allocation $\omega^*(t) =$
3323 $\arg \inf_{\omega \in \Delta(K)} T(\omega; \hat{\mu}(t))$ using the current estimate of the model $\hat{\mu}(t)$.
3324

3325 However, we still need to ensure that $\hat{\mu}(t) \rightarrow \mu$. To that aim, we employ a D-tracking rule (Garivier &
3326 Kaufmann, 2016), which guarantees that arms are sampled at a rate of \sqrt{t} . If there is an action a with
3327 $N_a(t) \leq \sqrt{t} - K/2$ then we choose $a_t = a$. Otherwise, choose the action $a_t = \arg \min_a N_a(t) -$
3328 $t\omega_a^*(t)$.
3329

3330 **Stopping rule.** The stopping rule determines when enough evidence has been collected to determine
3331 the optimal action with a prescribed confidence level. The problem of determining when to stop can
3332 be framed as a statistical hypothesis testing problem (Chernoff, 1959), where we are testing between
3333 K different hypotheses $(\mathcal{H}_a : (\mu_a > \max_{b \neq b} \mu_b))_a$.
3334

3335 We consider the following statistic $L(t) = tT(N(t)/t; \hat{\mu}(t))^{-1}$, which is a Generalized Likelihood
3336 Ratio Test (GLRT), similarly as in (Garivier & Kaufmann, 2016). Comparing with the lower bound,
3337 one needs to stop as soon as $L(t) \geq \text{kl}(\delta, 1 - \delta) \sim \ln(1/\delta)$. However, to account for the random
3338 fluctuations, a more natural threshold is $\beta(t, \delta) = \ln((1 + \ln(t))/\delta)$, thus we use $L(t) \geq \beta(t, \delta)$ for
3339 stochastic MAB problems. We also refer the reader to (Kaufmann & Koolen, 2021) for more details.
3340

3341 **Why computing the sampling rule can be difficult.** To derive the sampling rule, one usually
3342 first derives the characteristic time $T^*(\mu)$. Above, we discussed the case where the underlying
3343 distributions are Gaussians, but in the more general case T^* can be written as
3344

$$3345 T^*(\mu)^{-1} = \sup_{\omega \in \Delta_K} \inf_{\lambda \in \text{Alt}(\mu)} \sum_{a=1}^K \omega_a \text{KL}(P_{\mu_a}, P_{\lambda_a}),$$

3346 where $\text{Alt}(\mu)$ is the set of alternatives under which the identity of the best arm changes, P_μ is the
3347 distribution of rewards under μ (sim. for λ). Even though the objective is linear in ω for any fixed

3348 λ , the inner feasible set $\text{Alt}(\mu)$ can be a nonconvex set (“make some competitor optimal”), and the
 3349 map $\lambda \mapsto \text{KL}(P_{\mu_a}, P_{\lambda_a})$ is typically nonlinear and model-dependent. Even if these distributions are
 3350 known, no closed form is available in general.

3351 When arms belong to a one-parameter exponential family, and the problem has no structure, the
 3352 optimal ω can be simply computed by applying (for example) the bisection method to a function
 3353 whose evaluations requires the resolution of K smooth scalar equations, thus linearly scaling in the
 3354 number of arms. Since this optimization problem is usually solved at each timestep (or every T
 3355 timesteps), the complexity scales in the horizon N and the number of arms K as NK .

3356 For general distributions, the situation worsens, and may be intractable without additional modeling
 3357 assumptions. Lastly, note that the supremum over ω is a convex program in principle. First-order
 3358 methods such as Frank-Wolfe can be applied to find an approximate solution. However, any tractable
 3359 implementation presumes structural knowledge (e.g., an exponential-family model, smoothness) to
 3360 guarantee a number of necessary properties.

3363 C.3.2 I -IDS

3366 Algorithm 4 I -IDS

```

3367 1: Input: Pre-trained inference network  $I_\phi$ ; prior means and variances  $\mu_a, \sigma_a^2$  for all  $a \in \mathcal{A}$ ; target
3368   error threshold  $\delta$ 
3369 2: Initialize:  $f_a(x) = \mathcal{N}(x | \mu_a, \sigma_a^2)$  for each  $a$ 
3370 3: for  $t = 1, 2, \dots$  do
3371   4:   if  $\max_a I_\phi(a | \mathcal{D}_{t-1}) \geq 1 - \delta$  then
3372     5:       return  $\arg \max_a I_\phi(a | \mathcal{D}_{t-1})$ 
3373   6:   end if
3374   7:   for each arm  $a \in \mathcal{A}$  do
3375     8:       Approximate information gain:
3376       
$$g_t(a) = H(I_\phi(\cdot | \mathcal{D}_{t-1})) - \mathbb{E}_{r \sim p(r|a, \mathcal{D}_{t-1})} [H(I_\phi(\cdot | \mathcal{D}_{t-1}, a, r))]$$

3377   9:   end for
3378 10:  Select action  $a_t = \arg \max_a g_t(a)$ 
3379 11:  Observe reward  $r_t$ 
3380 12:  Update dataset  $\mathcal{D}_t = \mathcal{D}_{t-1} \cup \{(a_t, r_t)\}$ 
3381 13: end for

```

3384 We implement a variant of Information Directed Sampling (IDS) (Russo & Van Roy, 2018), where
 3385 we use the inference network I_ϕ learned during ICPE training as a posterior over optimal arms. This
 3386 approach enables IDS to exploit latent structure in the environment without explicitly modeling it via
 3387 a probabilistic model; instead, the learned I -network implicitly captures such structure.

3388 By using the same inference network in both ICPE and I -IDS, we directly compare the exploration
 3389 policy learned by ICPE to the IDS heuristic applied on top of the same posterior distribution. While
 3390 computing the expected information gain in IDS requires intractable integrals, we approximate them
 3391 using a Monte Carlo grid of 30 candidate reward values per action. The full pseudocode for I -IDS is
 3392 given in Algorithm 4.

3395 C.3.3 IN-CONTEXT EXPLORE-THEN-COMMIT

3397 We implement an ICPE variant for regret minimization via an *explore-then-commit* framework. This
 3398 method reuses the exploration policy and inference network learned during fixed-confidence training.
 3399 The agent interacts with the environment using the learned exploration policy until it selects the
 3400 stopping action. At that point, it commits to the arm predicted to be optimal by the I -network and
 3401 repeatedly pulls that arm for the remainder of the episode. The full pseudo-code is provided in
 Algorithm 5.

3402 **Algorithm 5** In-Context Explore-then-Commit

3403 1: **Input:** Environment $M \sim \mathcal{P}(\mathcal{M})$; pre-trained critic network Q_θ ; pre-trained inference network
 3404 I_ϕ

3405 2: Initialize $stopped \leftarrow \text{False}$

3406 3: Observe initial state $s_1 \sim \rho$

3407 4: **for** $t = 1$ to N **do**

3408 5: **if** $stopped = \text{False}$ **and** $a_{\text{stop}} \neq \arg \max_a Q_\theta(s_t, a)$ **then**

3409 6: Execute $a_t = \arg \max_a Q_\theta(s_t, a)$ and observe s_{t+1}

3410 7: **else if** $stopped = \text{False}$ **and** $a_{\text{stop}} = \arg \max_a Q_\theta(s_t, a)$ **then**

3411 8: Set $stopped \leftarrow \text{True}$

3412 9: Execute $a_t = \arg \max_a I_\phi(s_t)$ and observe s_{t+1}

3413 10: **else**

3414 11: Execute $a_t = \arg \max_a I_\phi(s_t)$ and observe s_{t+1}

3415 12: **end if**

3416 13: **end for**

3417

3418 C.3.4 *I*-DPT

3419

3420 We implement a variant of DPT (Lee et al., 2023) using the inference network. The idea is to act
 3421 greedily with respect to the posterior distribution I at inference time.

3422 First, we train I using **ICPE**. Then, at deployment we act with respect to I : in round t we selection
 3423 action $a_t = \arg \max_H I(H|D_t)$. Upon observing x_{t+1} , we update D_{t+1} and stop as soon as
 3424 $\arg \max_H I(H|D_t) \geq 1 - \delta$.

3425

3426 C.4 TRANSFORMER ARCHITECTURE

3427

3428 Here we briefly describe the architecture of the inference network I and of the network Q .

3429 Both networks are implemented using a Transformer architecture. For the inference network, it is
 3430 designed to predict a hypothesis H given a sequence of observations. Let the input tensor be denoted
 3431 by $X \in \mathbb{R}^{B \times H \times m}$, where:

3432

- B is the batch size,
- H is the sequence length (horizon), and
- $m = (d + |\mathcal{A}|)$, where d is the dimensionality of each observation x_t .

3437 The inference network operates as follows:

3438

1. **Embedding Layer:** Each observation vector $m_t = (x_t, a_t)$ is first embedded into a higher-dimensional space of size d_e using a linear transformation followed by a GELU activation:
 $h_t = \text{GELU}(W_{\text{embed}}m_t + b_{\text{embed}})$, $h_t \in \mathbb{R}^{d_e}$.
2. **Transformer Layers:** The embedded sequence $h \in \mathbb{R}^{B \times H \times d_e}$ is then passed through multiple Transformer layers (specifically, a GPT-2 model configuration). The Transformer computes self-attention over the embedded input to model dependencies among observations:

$$h' = \text{Transformer}(h), \quad h' \in \mathbb{R}^{B \times H \times d_e}.$$

3. **Output Layer:** The final hidden state corresponding to the last element of the sequence $(h'_{:, -1, :})$ is fed into a linear output layer that projects it to logits representing the hypotheses:

$$o = W_{\text{out}}h'_{:, -1, :} + b_{\text{out}}, \quad o \in \mathbb{R}^{B \times |\mathcal{H}|}.$$

4. **Probability Estimation:** The output logits are transformed into log-probabilities via a log-softmax operation along the last dimension

$$\log p(H|X) = \text{log_softmax}(o).$$

3454 For Q , we use the same architecture, but do not take a log-softmax at the final step.

3455

Figure 6: Model architecture for the inference network I (similarly for Q).

D EXPERIMENTS

This section provides additional experimental results, along with detailed training and evaluation protocols to ensure clarity and reproducibility. All experiments were conducted using four NVIDIA A100 GPUs.

For more informations about the hyper-parameters, we also refer the reader to the `README.md` file in the code, as well as the training configurations in the `configs/experiments` folder.

Libraries used in the experiments. We set up our experiments using Python 3.10.12 (Van Rossum & Drake Jr, 1995) (For more information, please refer to the following link <http://www.python.org>), and made use of the following libraries: NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), PyTorch (Paszke et al., 2019), Seaborn (Waskom et al., 2017), Pandas (McKinney et al., 2010), Matplotlib (Hunter, 2007), CVXPY (Diamond & Boyd, 2016), Wandb (Biewald, 2020), Gurobi (Gurobi Optimization, LLC, 2024). Changes, and new code, are published under the MIT license. To run the code, please, read the attached `README` file for instructions.

Hierarchical bootstrapping. For each experiment, we compute confidence intervals using hierarchical bootstrapping. Our data is organized at three levels: seed, environment, and trajectory. For each training seed we evaluate multiple environments, and for each environment we roll out multiple trajectories. Hierarchical bootstrapping allows us to correctly account for this nested structure when estimating uncertainty. This approach captures variability across seeds, environments, and trajectories, yielding a more reliable characterization of performance compared to classical bootstrapping.

To fix the ideas, consider the following random-effects model

$$Y_{a,b,c} = \mu + \alpha_a + \beta_{a,b} + \gamma_{a,b,c}, \quad \alpha_a \sim \mathcal{N}(0, \sigma_{\text{seed}}^2), \quad \beta_{a,b} \sim \mathcal{N}(0, \sigma_{\text{env}}^2), \quad \gamma_{a,b,c} \sim \mathcal{N}(0, \sigma_{\text{traj}}^2),$$

and let $\bar{Y} = \frac{1}{mKN} \sum_{a=1}^m \sum_{b=1}^k \sum_{c=1}^N (Y_{a,b,c})$ with m seeds, K environments per seed and N trajectories per environment.

The variance of \bar{Y} then is $\text{Var}(\bar{Y}) = \frac{\sigma_{\text{seed}}^2}{m} + \frac{\sigma_{\text{env}}^2}{mK} + \frac{\sigma_{\text{traj}}^2}{mKN}$, which hierarchical bootstrapping accounts for. Instead, a naive bootstrap over the mKN trajectories targets $\text{Var}_{\text{naive}}(\bar{Y}) \approx \frac{\text{Var}(Y_{a,b,c})}{mKN} = \frac{\sigma_{\text{seed}}^2 + \sigma_{\text{env}}^2 + \sigma_{\text{traj}}^2}{mKN}$, which effectively reduces the contribution at the seed-level by a factor KN .

D.1 BANDIT PROBLEMS

Here, we provide the implementation and evaluation details for the bandit experiments reported in Section 4.1, covering deterministic, stochastic, and structured settings. Note that for this setting the observations are simply the observed rewards, i.e., $x_t = r_t$.

Model Architecture and Optimization. For all bandit tasks, **ICPE** uses a Transformer with 3 layers, 2 attention heads, hidden dimension 256, GELU activations, and dropout of 0.1 applied to attention, embeddings, and residuals (see also app. C.4 for a description of the architecture). Layer normalization uses $\epsilon = 10^{-5}$. Inputs are one-hot action-reward pairs with positional encodings. Models are trained using Adam with learning rates between 1×10^{-4} and 1×10^{-6} , and batch sizes from 128 to 1024 depending on task complexity.

D.1.1 DETERMINISTIC BANDITS WITH FIXED BUDGET

Each environment consists of K arms, where $K \in \{4, 6, 8, \dots, 20\}$. Mean rewards for each arm are sampled uniformly from $[0, 1]$, and rewards are deterministic (i.e., zero variance). Agents interact with the environment for exactly K steps and are then required to predict the optimal arm. Success is measured by the probability of correctly identifying the best arm. We also compute the average number of unique arms selected during training episodes as a proxy for exploration diversity.

ICPE is compared against three baselines in the deterministic setting: *Uniform Sampling*, which selects arms uniformly at random; *DQN*, a deep Q-network trained directly on environmental rewards (Mnih et al., 2013); and *I-DPT*, which performs posterior sampling using **ICPE**'s *I*-network (Lee et al., 2023). All methods were evaluated over five seeds, with 900 environments per seed. 95% confidence intervals were computed with hierarchical bootstrapping.

Figure 7: Deterministic bandits: (left) probability of correctly identifying the best action vs. K ; (right) average fraction of unique actions selected during exploration vs. K .

D.1.2 STOCHASTIC BANDITS PROBLEMS

In the stochastic Gaussian bandit setting, we evaluate **ICPE** on best-arm identification tasks with $K \in \{4, 6, 8, \dots, 14\}$. Arm means are sampled uniformly from $[0, 0.4K]$, with a guaranteed minimum gap of $1/K$ between the top two arms. All arms have a fixed reward standard deviation of 0.5. The target confidence level is set to $\delta = 0.1$.

We compare **ICPE** against several widely used baselines: *Top-Two Probability Sampling (TTPS)* (Jourdan et al., 2022), *Track-and-Stop (TaS)* (Garivier & Kaufmann, 2016), *Uniform Sampling*, and *I-DPT*.

For *I-DPT*, stopping occurs when the predicted optimal arm has estimated confidence at least $1 - \delta$. For *TPPS* and *TaS*, we apply the classical stopping rule based on the characteristic time $T^*(N_t/t; \hat{\mu}_t)$ (explained in app. C.3.1):

$$t \cdot T^*(N_t/t; \hat{\mu}_t) \geq \log\left(\frac{1 + \log t}{\delta}\right).$$

Each method is evaluated over three seeds, with 300 environments, and 15 trajectories per environment. 95% confidence intervals were computed with hierarchical bootstrapping.

Figure 8: Results for stochastic MABs with fixed confidence $\delta = 0.1$ and $N = 100$: (a) average stopping time τ ; (b) survival function of τ ; (c) probability of correctness $\mathbb{P}^\pi(H^* = \hat{H}_\tau)$.

Does ICPE learn randomized policies? An intriguing question is whether **ICPE** is capable of learning randomized policies. Intuitively, one might expect randomized methods, such as actor-critic algorithms, to perform better. However, we observe that this is not the case for **ICPE**. Crucially, the inherent randomness of the environment, when passed as input to the transformer architecture, already serves as a source of stochasticity. Thus, although **ICPE** employs a deterministic mapping (via DQN) from observed trajectories, these trajectories themselves constitute random variables, rendering the policy’s output effectively stochastic. To illustrate this, we examine an **ICPE** policy trained with fixed confidence ($\delta = 0.1$) in a setting with $K = 14$ actions (see the two rightmost plots in fig. 9). By analyzing 100 trajectories from this environment and computing an averaged policy, we clearly observe how trajectory randomness influences the policy’s outputs. Specifically, exploration intensity peaks around the middle of the horizon and diminishes as the confidence level increases.

Does ICPE resembles Track and Stop? In fig. 9 (left figure) we compare an **ICPE** policy trained in the fixed confidence setting ($\delta = 0.1$) with an almost optimal version of *TaS*, that can be easily computed without solving any optimization problem. Let $\hat{\Delta}_t(a) = \hat{\mu}_{\hat{a}_t}(t) - \max_{a \neq \hat{a}_t} \hat{\mu}_a$, where $\hat{\mu}_a(t)$ is the empirical reward of arm a in round t and $\hat{a}_t = \arg \max_a \hat{\mu}_a(t)$ is the estimated optimal arm. Then, the approximate *TaS* policy is defined as

$$\pi_t(a) = \frac{1/\hat{\Delta}_a(t)}{\sum_b 1/\hat{\Delta}_b(t)},$$

Figure 9: Statistics of **ICPE** with fixed confidence on 100 trajectories from a single environment, with $K = 14$. From left to right: Total variation error between the average **ICPE** policy and the approximate Track and Stop policy; entropy of the average policy of **ICPE**; probabilities of the average **ICPE** policy, with p_{\max} representing the maximum probability and p_{α} the α -quantile.

with $\hat{\Delta}_{\hat{a}_t}(t) = \min_{a \neq \hat{a}_t} \hat{\Delta}_a(t)$. In the figure we sampled 100 trajectories from a single environment with $K = 14$, and computed an average **ICPE** policy. Then, we compared this policy to the approximate TaS policy, and computed the total variation. We can see that the two policies are not always similar. We believe this is due to the fact that **ICPE** is exploiting prior information on the environment, including the minimum gap assumption, and the fact that the average rewards are bounded in $[0, 0.4K]$.

Figure 10: Correctness $\mathbb{P}^{\pi}(H^* = \hat{H}_N)$ for stochastic MABs with fixed budget $N = 30$.

Is ICPE robust to distribution shift? As an in-context learning method, ICPE is designed to be meta-trained on the same family of tasks on which it will be deployed. That said, understanding robustness to changes in the environment distribution is important for assessing practicality. Therefore, we trained ICPE in the stochastic fixed-confidence bandit setting described above, where environments are sampled from a uniform distribution over Gaussian bandits with a minimum gap. At test time, we then evaluated the same trained model on bandit instances drawn from *shifted* environment distributions. We constructed these shifts by sampling reward means from a symmetric Dirichlet distribution with parameter α chosen so that

$$\text{KL}(\text{Dir}(\alpha, \dots, \alpha) \parallel \text{Dir}(1, \dots, 1)) = \text{target KL},$$

thereby controlling the divergence from the uniform training distribution. Intuitively, varying the target KL controls how concentrated generated samples are with respect to the simplex. ICPE's correctness and average stopping time across a range of KL values and number of actions is reported in tab. 2. Across all experiments, we observe that both correctness and stopping time remain remarkably stable, with only minor fluctuations within the reported confidence intervals. This suggests that ICPE is not excessively sensitive to moderate shifts in the environment distribution around the training family.

3672 3673 3674 3675	3676 3677 3678 3679 3680 3681	KL Divergence From Uniform	Number of Actions = 4		Number of Actions = 6	
			Correctness	Avg. Stop Time	Correctness	Avg. Stop Time
0.00	0.91 ± 0.01	7.76 ± 0.20	0.91 ± 0.01	9.78 ± 0.22		
0.25	0.91 ± 0.01	7.59 ± 0.19	0.91 ± 0.01	9.97 ± 0.26		
0.50	0.90 ± 0.01	7.65 ± 0.21	0.91 ± 0.01	9.79 ± 0.26		
1.00	0.90 ± 0.01	7.68 ± 0.20	0.90 ± 0.01	9.89 ± 0.28		
2.00	0.89 ± 0.01	7.63 ± 0.21	0.90 ± 0.01	9.86 ± 0.28		
4.00	0.89 ± 0.01	7.73 ± 0.22	0.90 ± 0.01	10.07 ± 0.28		
3682 3683 3684 3685	3686 3687 3688 3689 3690 3691	KL Divergence From Uniform	Number of Actions = 8		Number of Actions = 10	
			Correctness	Avg. Stop Time	Correctness	Avg. Stop Time
0.00	0.90 ± 0.01	11.37 ± 0.22	0.91 ± 0.01	15.41 ± 0.37		
0.25	0.89 ± 0.01	11.45 ± 0.26	0.92 ± 0.01	15.13 ± 0.37		
0.50	0.89 ± 0.01	11.54 ± 0.26	0.91 ± 0.01	15.35 ± 0.40		
1.00	0.90 ± 0.01	11.33 ± 0.24	0.90 ± 0.01	15.33 ± 0.42		
2.00	0.89 ± 0.01	11.41 ± 0.28	0.91 ± 0.01	15.54 ± 0.41		
4.00	0.88 ± 0.01	11.47 ± 0.28	0.91 ± 0.01	15.22 ± 0.40		
3692 3693 3694	3695 3696 3697 3698 3699 3700	KL Divergence From Uniform	Number of Actions = 12		Number of Actions = 14	
			Correctness	Avg. Stop Time	Correctness	Avg. Stop Time
0.00	0.91 ± 0.01	18.86 ± 0.51	0.91 ± 0.01	22.23 ± 0.72		
0.25	0.91 ± 0.02	18.28 ± 0.52	0.92 ± 0.01	22.63 ± 0.71		
0.50	0.91 ± 0.01	18.55 ± 0.53	0.91 ± 0.01	22.18 ± 0.75		
1.00	0.90 ± 0.01	18.78 ± 0.52	0.91 ± 0.01	22.36 ± 0.72		
2.00	0.91 ± 0.01	19.00 ± 0.60	0.91 ± 0.01	22.57 ± 0.75		
4.00	0.91 ± 0.01	18.52 ± 0.54	0.91 ± 0.01	22.97 ± 0.75		

Table 2: ICPE performance on stochastic fixed-confidence ($\delta = 0.1, N = 100$) bandits when test environments drift from the uniform training distribution by a prescribed KL distance (symmetric Dirichlet). Reported values are 95% confidence intervals computed via hierarchical bootstrapping.

D.1.3 BANDIT PROBLEMS WITH HIDDEN INFORMATION

Magic Action Environments We evaluate **ICPE** in bandit environments where certain actions reveal information about the identity of the optimal arm, testing its ability to uncover and exploit latent structure under the fixed-confidence setting.

Each environment contains $K = 5$ arms. Non-magic arms have mean rewards sampled uniformly from $[1, 5]$, while the mean reward of the designated *magic action* (always arm 1) is defined as $\mu_m = \phi(\arg \max_{a \neq a_m} \mu_a)$ with $\phi(i) = i/K$. The magic action is not the optimal arm, but it encodes information about which of the other arms is. To control the informativeness of this signal, we vary the standard deviation of the magic arm $\sigma_m \in \{0.0, 0.1, \dots, 1.0\}$, while fixing the standard deviation of all other arms to $\sigma = 1 - \sigma_m$.

ICPE is trained under the fixed-confidence setting with a target confidence level of 0.9. For each σ_m , we compare **ICPE**’s sample complexity to two baselines: (1) the average theoretical lower bound computed for the problem computed via averaging the result of Theorem B.26 over numerous environmental mean rewards, and (2) *I-IDS*, a pure-exploration information-directed sampling algorithm that uses **ICPE**’s *I*-network for posterior estimation. All methods are over 500 environments, with 10 trajectories per environment. 95% confidence intervals are computed using hierarchical bootstrapping with two levels.

Beyond the exploration efficiency analysis shown in Figure 4a, we also assess the correctness of each method’s final prediction and its usage of the magic action. As shown in Figure 11a, both

3726 **ICPE** and *I-IDS* consistently achieve the target accuracy of 0.9, validating their reliability under the
 3727 fixed-confidence formulation.

3728 Figure 11b plots the proportion of total actions that were allocated to the magic arm across different
 3729 values of σ_m . While both methods adapt their reliance on the magic action as its informativeness
 3730 degrades, *I-IDS* tends to abandon it earlier. This behavior suggests that **ICPE** is better able to retain
 3731 and exploit structured latent information beyond what is captured by simple heuristics for expected
 3732 information gain.

(a)

(b)

3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747 Figure 11: (a) Final prediction accuracy across varying levels of noise in the magic action (σ_m). Both
 3748 **ICPE** and *I-IDS* consistently achieve the target confidence threshold of 0.9. (b) Percentage of actions
 3749 allocated to the magic arm as a function of σ_m . **ICPE** continues to exploit the magic action longer
 3750 than *I-IDS*, suggesting more robust use of latent structure.

3751 We also assess **ICPE**’s performance in a regret minimization setting. We define an *In-Context*
 3752 *Explore-then-Commit* variant of **ICPE**, which explores until the *I*-network reaches confidence $1 - \delta$,
 3753 then repeatedly selects the estimated optimal action. We compare this policy’s cumulative regret to
 3754 that of three standard algorithms: *UCB*, *Thompson Sampling*, and *IDS*, each initialized with Gaussian
 3755 priors. For this evaluation, we fix $\sigma_m = 0.1$, $\sigma = 0.9$, and $\delta = 0.01$.

3756 Implementation details for *I-IDS* and In-Context Explore-then-Commit are provided in Sections
 3757 C.3.2 and C.3.3 respectively.

3758 **Magic Chain Environments** To assess **ICPE**’s ability to perform multi-step reasoning over latent
 3759 structure, we evaluate it in environments where identifying the optimal arm requires sequentially
 3760 uncovering a chain of informative actions. In these *magic chain* environments, each magic action
 3761 reveals partial information about the next, culminating in identification of the best arm.

3762 We use $K = 10$ arms and vary the number of magic actions $n \in \{1, 2, \dots, 9\}$. Mean rewards for
 3763 magic actions are defined recursively as:

$$\mu_{i_j} = \begin{cases} \phi(i_{j+1}), & \text{if } j = 1, \dots, n-1, \\ \phi\left(\arg \max_{a \notin \{i_1, \dots, i_n\}} \mu_a\right), & \text{if } j = n, \end{cases}$$

3764 where $\phi(i) = i/K$, and the remaining arms have mean rewards sampled uniformly from $[1, 2]$. All
 3765 rewards are deterministic (zero variance).

3766 **ICPE** is trained under the fixed-confidence setting with $\delta = 0.99$. For each n , five models are trained
 3767 across five seeds. We compare **ICPE**’s average stopping time to the theoretical optimum (computed
 3768 via Theorem B.29) and to the *I-IDS* baseline equipped with access to the *I*-network. Each model
 3769 is evaluated over 1000 test environments per seed. 95% confidence intervals are computed using
 3770 hierarchical bootstrapping.

3771 In interpreting the results from Figure 4b, we observe that for environments with one or two magic
 3772 actions, **ICPE** reliably learns the optimal policy of following the magic chain to completion. In these
 3773 cases, the agent is able to identify the optimal arm without ever directly sampling it, by exploiting the
 3774 structured dependencies embedded in the reward signals of the magic actions. Figure 12 illustrates a

representative trajectory from the two-magic-arm setting, where the first magic action reveals the location of the second, which in turn identifies the optimal arm. The episode terminates without requiring the agent to explicitly sample the best arm itself.

Initial State												
?	?	?	?	?	?	?	?	?	?	?	?	Stop
Step 1: Selected Action 0												
0.400	?	?	?	?	?	?	?	?	?	?	?	Stop
Step 2: Selected Action 4												
0.400	?	?	?	0.900	?	?	?	?	?	?	?	Stop
Step 3: Selected STOP												
0.400	?	?	?	0.900	?	?	?	?	?	?	?	STOP

Figure 12: Example trajectory in the 2-magic-arm environment. **ICPE** follows the magic chain: the first magic action reveals the second, which identifies the optimal arm.

For environments with more than two magic actions, however, **ICPE** learns a different strategy. As the length of the magic chain increases, the expected sample complexity of following the chain from the start becomes suboptimal. Instead, **ICPE** learns to randomly sample actions until it encounters one of the magic arms and then proceeds to follow the chain from that point onward. This behavior represents an efficient, learned compromise between exploration cost and informativeness. Figure 13 shows an example trajectory from the six-magic-arm setting, where the agent initiates random sampling until it lands on a magic action, then successfully follows the remaining chain to identify the optimal arm.

Initial State												
?	?	?	?	?	?	?	?	?	?	?	?	Stop
Step 1: Selected Action 7												
?	?	?	?	?	?	?	?	1.299	?	?	?	Stop
Step 2: Selected Action 4												
?	?	?	?	0.600	?	?	1.299	?	?	?	?	Stop
Step 3: Selected Action 6												
?	?	?	?	0.600	?	0.500	1.299	?	?	?	?	Stop
Step 4: Selected Action 5												
?	?	?	?	0.600	0.200	0.500	1.299	?	?	?	?	Stop
Step 5: Selected Action 2												
?	?	0.900	?	0.600	0.200	0.500	1.299	?	?	?	?	Stop
Step 6: Selected Action 9												
?	?	0.900	?	0.600	0.200	0.500	1.299	?	1.916	?	?	Stop
Step 7: Selected STOP												
?	?	0.900	?	0.600	0.200	0.500	1.299	?	1.916	?	?	STOP

Figure 13: Example trajectory in the 6-magic-arm environment. Rather than starting from the first magic action, **ICPE** samples randomly until finding a magic action and then follows the chain to the optimal arm.

D.2 SEMI-SYNTHETIC PIXEL SAMPLING

To evaluate **ICPE** in a setting that more closely resembles real-world decision-making tasks, we designed a semi-synthetic environment based on the MNIST dataset (LeCun et al., 1998), where the agent must adaptively reveal image regions to classify a digit while minimizing the number of pixels observed. This experiment serves as a proof-of-concept for using **ICPE** in perceptual tasks where observations are costly and information must be acquired efficiently.

Environment Details. Each MNIST image is partitioned into 36 non-overlapping 5×5 pixel regions, defining an action space of size $K = 36$. At each timestep, the agent selects a region to

3834 reveal, progressively unmasking the image. The agent begins with a fully masked image and has a
 3835 fixed budget of $N = 12$ steps to acquire information and make a prediction.
 3836

3837 To prevent overfitting and encourage generalizable policies, we apply strong augmentations at each
 3838 episode: random rotations ($\pm 30^\circ$), translations (up to 2 pixels), Gaussian noise ($\mathcal{N}(0, 0.1)$), elastic
 3839 deformations, and random contrast adjustments. These augmentations ensure that agents cannot
 3840 memorize specific pixel layouts and must instead learn adaptive exploration strategies.
 3841

3842 **Model Architecture and Optimization.** Due to the visual nature of the task, we use a convolutional
 3843 encoder rather than a transformer. The **ICPE** critic network combines a CNN image encoder with a
 3844 separate action-count encoder. The CNN consists of 3 convolutional blocks with 16 base channels,
 3845 followed by max pooling and global average pooling. The action counts (which track how often
 3846 each region has been sampled) are passed through a linear embedding layer with 32 output units,
 3847 followed by ReLU activation and LayerNorm. The image and action embeddings are concatenated
 3848 and processed through two residual MLP layers, producing Q -values over actions. The I -network
 3849 shares the same architecture but outputs logits over 10 digit classes.
 3850

3851 All models are implemented in PyTorch and trained with Adam using a learning rate of 1×10^{-4} .
 3852 Training is performed over 500,000 episodes using 40 parallel environment instances. We use a
 3853 batch size of 128, a replay buffer of size 100,000, and a discount factor $\gamma = 0.999$. The Q -network
 3854 is updated using Polyak averaging with coefficient 0.01, and the I -network is updated every two
 3855 steps using 30 bootstrap batches. To populate the buffer initially, we perform 10 batches of bootstrap
 3856 updates before standard training begins. Gradients are clipped to a maximum norm of 2.
 3857

3858 **Pretraining the Inference Network.** To provide stable reward signals and ensure consistency with
 3859 baselines, we pretrain a separate CNN classifier to predict digit labels from fully revealed images.
 3860 This classifier consists of three convolutional layers with max pooling, followed by two linear layers
 3861 and a softmax head. The classifier is trained on the same augmented data used during **ICPE** training
 3862 and is frozen during exploration learning. Its softmax confidence for the correct digit is used as
 3863 the reward signal. This setup simulates realistic scenarios in which high-quality predictive models
 3864 already exist for fully observed data (e.g., in clinical diagnosis).
 3865

3866 **Evaluation.** We compare **ICPE** to two baselines: *Uniform Sampling*, which selects image regions
 3867 uniformly at random at each timestep, and *Deep CMAB* (Collier & Llorens, 2018), a contextual bandit
 3868 algorithm that uses a Bayesian neural network to model $p(r | x, a)$ and performs posterior sampling
 3869 via dropout.
 3870

3871 The Deep CMAB model uses a convolutional encoder to extract image features, which are concatenated
 3872 with a learned embedding of the action count vector. The combined representation is passed
 3873 through a multilayer perceptron with dropout applied to each hidden layer. At each decision point, the
 3874 agent samples a dropout rate from a uniform distribution over $(0, 1)$ and uses the resulting forward
 3875 pass as a sample from the posterior over rewards (Thompson sampling). The reward signal for
 3876 each action is computed using the pretrained MNIST classifier: specifically, the increase in softmax
 3877 probability for the correct digit class after a new region is revealed.
 3878

3879 We train Deep CMAB for 100,000 episodes using Adam optimization. During training, the agent
 3880 interacts with multiple MNIST instances in parallel, and updates its model based on the marginal
 3881 improvement in confidence after each action. The model learns to maximize this incremental reward
 3882 signal by associating particular visual contexts with the most informative actions.
 3883

3884 For each trained model, we sample 1000 test environments and report on (1) the average final
 3885 classification accuracy by the pretrained classifier at the end of trajectory, and (2) the average number
 3886 of regions used before prediction. Confidence intervals are computed via bootstrapping.
 3887

3888 **Adaptive Sampling Analysis.** To assess whether agents learn digit-specific exploration strategies,
 3889 we analyze the distribution of selected image regions across digit classes. For each agent, we compute
 3890 pairwise chi-squared tests between all digit pairs, testing whether the distributions of selected regions
 3891 are statistically distinguishable.
 3892

3893 To ensure sufficient support for the test, we only compare digit pairs that each have at least five
 3894 trajectories and remove actions that appear in fewer than five total samples across the two classes. For
 3895

3888 each qualifying digit pair, we construct a $2 \times \tilde{K}$ contingency table, where \tilde{K} is the number of region
 3889 indices that are meaningfully used by either digit. The rows correspond to digit classes, and each
 3890 column counts how many samples from each class selected the corresponding region at least once.
 3891

3892 We apply the chi-squared test of independence to each contingency table. A low p-value indicates that
 3893 the region selection distributions for the two digits are significantly different, suggesting digit-specific
 3894 adaptation. By comparing the number and strength of significant differences across agents, we
 3895 evaluate the extent to which each method tailors its exploration policy to the structure of the input
 3896 class.

3897 We visualize the resulting pairwise p-values in Figure 14 using a heatmap. Each cell shows the
 3898 chi-squared test p-value between a pair of digits. Lower values (blue cells) indicate greater divergence
 3899 in sampling behavior, and thus more adaptive and digit-specific strategies.

3913 Figure 14: Pairwise chi-squared test p-values for region selection distributions across digit classes.
 3914 Lower values indicate more statistically distinct exploration behaviors.

3915
 3916 For further intuition into the sampling process, Figure 15 shows a representative example of the **ICPE**
 3917 pipeline progressively revealing image regions and correctly classifying the digit ‘2’. This highlights
 3918 the interplay between exploration and inference as the agent strategically uncovers informative
 3919 regions to guide its decision.

3920 To illustrate the impact of input corruption, Figure 16 presents an example where **ICPE** fails to
 3921 correctly classify the digit. Although the agent successfully reveals the central body of the digit, the
 3922 applied augmentations distort the image to the extent that the digit becomes visually ambiguous. In
 3923 this case, the agent incorrectly predicts an ‘8’ when the true label is a ‘9’, underscoring the challenge
 3924 introduced by realistic image corruptions in this setting.

3926 D.3 MDP PROBLEMS: MAGIC ROOM

3927 The Magic Room is a sequential decision-making environment structured as a $K \times K$ grid-shaped
 3928 room containing four doors, each positioned at the midpoint of one of the four walls (top, bottom,
 3929 left, right). At the beginning of each episode, exactly one of these doors is randomly chosen to be the
 3930 correct door (H^*), unknown to the agent.

3931
 3932 The agent’s goal is to identify and pass through the correct door. Each episode lasts for a maximum
 3933 of $N = K^2$ time steps, during which the agent navigates the grid, observes clues, and attempts
 3934 to determine the correct door. Two binary clues, each randomly assigned a location within the
 3935 sub-grid $[1, 1] \times [K - 1, K - 1]$, are placed in the room at the start of each episode. Each clue has a
 3936 binary value, randomly set to either -1 or 1 . Collecting both clues provides sufficient information to
 3937 unambiguously determine the correct door, given that the agent has learned the mapping from clue
 3938 configurations to door identity.

3939 At each time step t , the agent observes the state vector:

$$3940 \quad x_t = (z_t, y_t, c_{1,t}, c_{2,t}, r_t),$$

3941 where:

3961 Figure 15: Illustrative example of the **ICPE** agent revealing regions of an MNIST digit and correctly
3962 classifying it as a ‘2’. The sequence shows the intermediate revealed image and predicted label at
3963 each timestep.

3983 Figure 16: Example of an incorrect classification due to aggressive data augmentations. Although the
3984 agent reveals the central region of the digit, the distortions cause it to misclassify a ‘9’ as an ‘8’.
3985

- (z_t, y_t) are the agent’s current coordinates on the grid.
- $c_{i,t} \in \{-1, 0, 1\}$ indicates the status of clue i : it equals 0 if clue i has not yet been observed by the agent, or it equals either -1 or 1 if the clue has been observed.
- $r_t \in \{0, 1\}$ represents the reward received at time t . Specifically, upon passing through a door:
 - If the chosen door is the correct one, the agent receives a reward of 1 with probability $\frac{1}{4}$, and a reward of 0 otherwise.
 - If the chosen door is incorrect, the agent always receives a reward of 0.

Figure 17: Magic room: example of trajectory of the icpe agent.

An episode terminates when the agent chooses to pass through any of the four doors, irrespective of correctness, or when the horizon $N = K^2$ steps is reached. Upon termination, the agent is required to explicitly select which door it believes to be the correct one.

Method	Average Correctness		Average Stopping Time	
	$K = 6$	$K = 8$	$K = 6$	$K = 8$
ICPE	0.953 (0.940, 0.968)	0.948 (0.941, 0.954)	13.721 (13.298, 14.165)	27.704 (27.296, 28.086)

Table 3: Magic Room: correctness and stopping times (mean and 95% CI) for $K = 6$ and $K = 8$.

This setup provides two distinct strategies for the agent:

1. **Luck-based strategy:** The agent directly attempts to pass through a door, observing the reward to determine correctness. A positive reward conclusively indicates the correct door; a zero reward provides no additional information.
2. **Inference-based strategy:** The agent efficiently navigates the room, locates both clues to deduce the identity of the correct door, and subsequently exits through that door.

Thus, optimal behavior requires an effective exploration of the room to finish as quickly as possible.

Figure 18: Magic room environment. Left: survival function $\mathbb{P}(\tau > t)$ for $K = 6$ and $K = 8$. Right: density of the correctness for $K = 6$ and $K = 8$.

We trained **ICPE** on 3 seeds, using the fixed confidence setting (disabling the stopping action) using $\delta = 0.05$ and evaluated the policies on 4500 episodes for $K = 6$ and $K = 8$. In tab. 3 are shown the statistics of the average correctness and of the stopping time.

In fig. 17 we can see a sample trajectory taken by **ICPE**. Starting from the middle of the room, **ICPE** follows a path that allows to find the clues C_1, C_2 in the green area. As soon as the second clue is found, it goes through the closest door.

In fig. 18, we present the survival functions of the stopping time τ for environments with grid sizes $K = 6, 8$, alongside the corresponding correctness densities. Lastly, fig. 19 illustrates the relationship

Figure 19: Magic room environment. Relationship among agent correctness, the number of clues observed, and the stopping time.

among agent correctness, the number of clues observed, and the stopping time. Specifically, smaller stopping times correlate with fewer observed clues, leading to lower correctness. Conversely, when the agent observes both clues, it consistently selects the correct door, demonstrating that it has effectively learned the association between the clues and the correct hypothesis.

D.4 EXPLORATION ON FEEDBACK GRAPHS

In the standard bandits setting we studied in Section 4.1, the learner observes the reward of the selected action, while in full-information settings, all rewards are revealed. Feedback graphs generalize this spectrum by specifying, via a directed graph G which additional rewards are observed when a particular action is chosen. Each node corresponds to an action, and an edge from u to v means that playing u may reveal feedback about v .

While feedback graphs have been widely studied for regret minimization (Mannor & Shamir, 2011), their use in pure exploration remains relatively underexplored (Russo et al., 2025). We study them here as a challenging and structured testbed for in-context exploration. Unlike unstructured bandits, these environments contain latent relational structure and stochastic feedback dependencies that must be inferred and exploited to explore efficiently.

Formally, we define a feedback graph as an adjacency matrix $G \in [0, 1]^{K \times K}$, where $G_{u,v}$ denotes the probability that playing action u reveals the reward of action v . The learner observes a feedback vector $r \in \mathbb{R}^K$, where each coordinate is revealed independently with probability $G_{u,v}$:

$$r_v \sim \begin{cases} \mathcal{N}(\mu_v, \sigma^2), & \text{with probability } G_{u,v}, \\ \text{no observation}, & \text{otherwise.} \end{cases}$$

This setting allows us to test whether **ICPE** can learn to uncover and leverage latent graph structure to guide exploration. As in the bandits setting, we have a finite number of actions $\mathcal{A} = \{1, \dots, K\}$, corresponding to the actions (or vertices) in a feedback graph G . The learner’s goal is to identify the best action, where $H^* = \arg \max_a \mu_a$. At each time step t , the observation is the partially observed reward vector $x_t = r_t$.

We evaluate performance on best-arm identification tasks across three representative feedback graph families:

- **Loopy Star Graph** (Figure 20): A star-shaped graph with self-loops, parameterized by (p, q, r) . The central node observes itself with probability q , one neighboring node with probability p , and all others with probability r . When p is small, it may be suboptimal to pull the central node, requiring the agent to adapt its strategy accordingly.
- **Ring Graph** (Figure 21): A cyclic graph where each node observes its right neighbor with probability p and its left neighbor with probability $1 - p$. Effective exploration requires reasoning about which neighbors provide more informative feedback.

Figure 20: Loopy star graph.

Figure 21: Ring graph.

Figure 22: Loopless clique graph.

- **Loopless Clique Graph** (Figure 22): A fully connected graph with no self-loops. Edge probabilities are defined as:

$$G_{u,v} = \begin{cases} 0 & \text{if } u = v, \\ \frac{p}{u} & \text{if } v \neq u \text{ and } v \text{ is odd,} \\ 1 - \frac{p}{u} & \text{otherwise.} \end{cases}$$

425
426
427
428 Here, informativeness varies systematically with action index, requiring the learner to infer
429 which actions are most useful.

430 These environments offer a diverse testbed for evaluating whether **ICPE** can uncover and exploit
431 complex feedback structures without direct access to the underlying graph.

432
433
434 **Fixed-Horizon.** For each graph family, mean rewards were sampled uniformly from $[0, 1]$ with
435 fixed variance 0.2, using hyperparameters: $(p, q, r) = (0.25, 0.3, 0.35)$ for the loopy star graph,
436 $p = 0.3$ for the ring, and $p = 0.5$ for the loopless clique. We considered both small ($K = 5, H = 25$)
437 and large ($K = 10, H = 50$) environments.

438 **ICPE** was compared to three baselines: Uniform Sampling, EXP3.G (Rouyer et al., 2022), and
439 Tas-FG (Russo et al., 2025). All methods performed maximum likelihood inference at the end of the
440 trajectory. Table 4 reports the average probability of correctly identifying the best arm.

441
442
443
444
445

Algorithm	Loopy Star		Loopless Clique		Ring	
	Small	Large	Small	Large	Small	Large
ICPE	0.88 ± 0.01	0.59 ± 0.02	0.95 ± 0.01	0.79 ± 0.04	0.79 ± 0.01	0.51 ± 0.03
TasFG	0.82 ± 0.01	0.73 ± 0.02	0.84 ± 0.01	0.83 ± 0.01	0.70 ± 0.02	0.56 ± 0.02
EXP3.G	0.66 ± 0.02	0.40 ± 0.01	0.84 ± 0.01	0.78 ± 0.02	0.77 ± 0.02	0.52 ± 0.02
Uniform	0.73 ± 0.02	0.60 ± 0.02	0.86 ± 0.01	0.79 ± 0.02	0.78 ± 0.02	0.62 ± 0.02

446
447 Table 4: Probability of correctly identifying the best arm. Small environments: $K = 5, H = 25$;
448 Large: $K = 10, H = 50$. Results reported as mean \pm 95% CI.

449
450 **ICPE** outperforms all baselines in small environments across all graph families, highlighting its ability
451 to learn efficient strategies from experience. Performance slightly degrades in larger environments,
452 likely due to difficulty in credit assignment over long horizons. Still, **ICPE** remains competitive,
453 validating its capacity to generalize across graph-structured settings.

454
455 **Fixed-Confidence.** We next tested **ICPE** in a fixed-confidence setting, using the same graph
456 families but setting the optimal arm’s mean to 1 and all others to 0.5 to facilitate faster convergence.
457 **ICPE** was trained for $K = 4, 6, \dots, 14$ with a target error rate of $\delta = 0.1$. We compared it to
458 Uniform Sampling, EXP3.G, and Tas-FG using a shared stopping rule from (Russo et al., 2025).

Figure 23: Sample complexity comparison under the fixed-confidence setting for: (a) Loopy Star, (b) Loopless Clique, and (c) Ring graphs.

As shown in Figure 23, **ICPE** consistently achieves significantly lower sample complexity than all baselines. This suggests that **ICPE** is able to meta-learn the underlying structure of the feedback graphs and leverage this knowledge to explore more efficiently than *uninformed* strategies. These results align with expectations: when environments share latent structure, learning to explore from experience offers a substantial advantage over fixed heuristics that cannot adapt across tasks.

D.5 META-LEARNING BINARY SEARCH

To test **ICPE**’s ability to recover classical exploration algorithms, we evaluate whether it can autonomously meta-learn binary search.

We define an action space of $\mathcal{A} = \{1, \dots, K\}$, where K is the upper bound on the possible location of the hidden target $H^* \sim \mathcal{A}$. Pulling an arm above or below H^* yields a observation $x_t = -1$ or $x_t = +1$, respectively—providing directional feedback.

We train **ICPE** under the fixed-confidence setting for $K = 2^3, \dots, 2^8$, using 150,000 in-context episodes and a target error rate of $\delta = 0.01$. Evaluation was conducted on 100 held-out tasks per setting. We report the minimum accuracy, mean stopping time, and worst-case stopping time, and compare against the theoretical binary search bound $O(\log_2 K)$.

Number of Actions (K)	Minimum Accuracy	Mean Stopping Time	Max Stopping Time	$\log_2 K$
8	1.00	2.13 ± 0.12	3	3
16	1.00	2.93 ± 0.12	4	4
32	1.00	3.71 ± 0.15	5	5
64	1.00	4.50 ± 0.21	6	6
128	1.00	5.49 ± 0.23	7	7
256	1.00	6.61 ± 0.26	8	8

Table 5: **ICPE** performance on the binary search task as the number of actions K increases.

As shown in Table 5, **ICPE** consistently achieves perfect accuracy with worst-case stopping times that match the optimal $\log_2(K)$ rate, demonstrating that it has successfully rediscovered binary search purely from experience. While simple, this task illustrates **ICPE**’s broader potential to learn efficient search strategies in domains where no hand-designed algorithm is available.