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ABSTRACT

We study the active sequential hypothesis testing problem, also known as pure
exploration: given a new task, the learner adaptively collects data from the environ-
ment to efficiently determine an underlying correct hypothesis. A classical instance
of this problem is the task of identifying the best arm in a multi-armed bandit
problem (a.k.a. BAI, Best-Arm Identification), where actions index hypotheses.
Another important case is generalized search, a problem of determining the correct
label through a sequence of strategically selected queries that indirectly reveal
information about the label. In this work, we introduce In-Context Pure Explo-
ration (ICPE), which meta-trains Transformers to map observation histories to
query actions and a predicted hypothesis, yielding a model that transfers in-context.
At inference time, ICPE actively gathers evidence on new tasks and infers the
true hypothesis without parameter updates. Across deterministic, stochastic, and
structured benchmarks, including BAI and generalized search, ICPE is competi-
tive with adaptive baselines while requiring no explicit modeling of information
structure. Our results support Transformers as practical architectures for general
sequential testing.

1 INTRODUCTION

Sequential architectures have shown striking in-context learning (ICL) abilities: given a short
sequence of examples, they can infer task structure and act without parameter updates (Lee et al.,
2023; Schaul & Schmidhuber, 2010; Bengio et al., 1990). While this behavior is well documented for
supervised input–output tasks, as well as regret minimization problems, many real problems demand
sequential experiment design: how do we allocate experiments to reliably infer an hypothesis? For
instance, imagine a librarian trying to figure out which book you want by asking a series of questions.
Similarly, in generalized search (Nowak, 2008), the learner adaptively chooses which tests to run, each
partitioning the hypothesis class, to identify the true hypothesis as quickly as possible. This raises
a natural question: can we leverage ICL for adaptive data collection and hypothesis identification
across a family of problems?

We study this question through the lens of Active Sequential Hypothesis Testing (ASHT) (Chernoff,
1992; Cohn et al., 1996), a.k.a. pure exloration (Degenne & Koolen, 2019), where an agent adaptively
performs measurements in an environment to identify a ground-truth hypothesis. In particular, we
study a Bayesian formulation of ASHT, where each environment is drawn from a family of possible
problemsM.

Classically, ASHT has been studied either (i) with a fixed confidence δ (i.e., stop as soon as the
predicted hypothesis is correct with error probability at most δ) (Jang et al., 2024) or (ii) a fixed
sampling budget (use N samples to predict the correct hypothesis) (Atsidakou et al., 2022). For
example, in the fixed-confidence setting one can use ASHT to minimize the number of DNA-based
tests performed to accurately detect cancer (Gan et al., 2021). Another canonical instantiation is
Best-Arm Identification (BAI) in stochastic multi-armed bandits (Audibert & Bubeck, 2010). In this
problem the agent sequentially selects an action (the query) and observes a noisy reward: the task is
to identify the action with the highest mean reward1. Other applications include medical diagnostics
(Berry et al., 2010), sensor management (Hero & Cochran, 2011) and recommender systems (Resnick
& Varian, 1997).

Despite substantial progress (Ghosh, 1991; Naghshvar & Javidi, 2013; Naghshvar et al., 2012;
Mukherjee et al., 2022), solving ASHT problems remains difficult. Even in simple tabular environ-

1Note that, in this particular case, the hypothesis space coincides with the query space of the agent.
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(a) (b)

Figure 1: (a) Generalized search example: ICPE starts from a masked image (left), and sequentially
reveals patches expected to reduce the posterior entropy over labels. It stops once the inferred label is
δ-correct (right). (b) After executing an action at, the agent observes xt+1. At inference time, the
data collected is used to infer an hypothesis.

ments, computing optimal sampling policies often requires strong modeling assumptions (known
observation models that do not depend on the history, and/or known inference rules) and solving
challenging (often nonconvex) programs (Al Marjani et al., 2021). This leaves open whether one can
learn, in a simple way, to both gather informative data and infer the correct hypothesis without such
assumptions.

To answer this question, we introduce In-Context Pure Explorer (ICPE), a Transformer-based
architecture meta-trained on a family of tasks to jointly learn a data-collection policy and an inference
rule, in both fixed-confidence and fixed-budget regimes. ICPE is a model that transfers in-context: at
inference time, ICPE gathers evidence on new tasks and infers the true hypothesis without parameter
updates (Schaul & Schmidhuber, 2010; Bengio et al., 1990).

The practical implementation of ICPE emerges naturally from the theory alone, showing how a
principled information-theoretic reward function can be used to train, using Reinforcement Learning
(RL), an optimal data-collection policy. Additionally, ICPE relaxes classical assumptions: the
data-generation mechanism P is unknown and may be history-dependent, and the mapping from data
to hypotheses is also unknown (we do not assume a known likelihood or a hand-designed test). These
facts, combined with the simple and practical implementation of ICPE, offer a new way to design
efficient ASHT methods in more general environments.

On BAI and generalized search tasks (deterministic, stochastic, structured), ICPE efficiently explores
and achieves performance comparable to instance-dependent algorithms, while requiring only a
forward pass at test time, and without requiring solving any complex optimization problem.

2 PROBLEM SETTING

The problem we consider is as follows: on an environment instance M ∼ P , sampled from a prior
P over an environment classM, the learner chooses actions (queries2) at in rounds t = 1, 2, . . .
and observes outcomes xt+1. The aim is to gather a trajectory Dt = (x1, a1, . . . , at−1, xt) that
is informative enough to identify an environment-specific ground-truth hypothesis H⋆ with high
probability.

Informally, we seek to answer the following question:

Given an environment M drawn from a prior P , how can we learn (i) a sampling policy π
that collects data D from M and (ii) an inference rule I such that I(D) reliably predicts H⋆?

Environments, sampling policy and hypotheses. We consider environments (M =
(X ,A, ρ, P,H⋆) with observation space X , action set A, initial observation law ρ ∈ ∆(X ), and a
(possibly history-dependent) generative mechanism P = (Pt)t≥1 such that xt+1 ∼ Pt(·|Dt, at). All
M ∈ M share the same X and A. The learner uses a (possibly randomized) policy π = (πt)t≥1
with at ∼ πt(·|Dt), and a sequence of inference rules I = (It)t≥1 with It : Dt → H for a finite
hypothesis setH. We assume throughout that H⋆ is induced by the environment via a measurable
functional h⋆, i.e., H⋆ := h⋆(ρ, P ), and is almost surely unique under P .
Example 2.1 (Best Arm Identification). In BAI an agent seeks to identify the best arm among K
arms. Upon selecting an action a at time t, it observes a random reward xt distributed according
to a distribution P (·|at). The goal is to identify a⋆ = argmaxa Ex∼P (·|a)[x] (so H⋆ = a⋆). Many

2The reason why denote “queries" as “actions" stems from the fact that the problem can be modeled similarly
to a Markov Decision Process (MDP)(Puterman, 2014), and queries correspond to actions in an MDP.
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algorithms exist for specific assumptions (Garivier & Kaufmann, 2016; Jedra & Proutiere, 2020),
but designs change drastically with the model, and extensions to richer settings can be difficult and
often non-convex (Marjani & Proutiere, 2021).

Fixed confidence and fixed budget regimes. Two regimes are usually considered in pure exploration:

• Fixed confidence: Given a target error level δ ∈ (0, 1), the learner chooses: (i) a stopping
time τ ∈ N that denotes the total number of queries and marks the random moment data
collection stops, (ii) a data-collection policy π, (iii) and an inference rule I that minimize
the expected total number of queries τ while meeting a correctness guarantee:

inf
τ,π,I

Eπ [τ ] s.t. Pπ (Iτ (Dτ ) = H⋆) ≥ 1− δ. (1)

where Pπ(·) denotes the probability of the underlying data collection process when π gathers
data from M , and M is sampled from a prior P .

• Fixed budget: For a given horizon N ∈ N, the learner chooses π and I to maximize the
chance of predicting the correct hypothesis after exactly N queries:

sup
π,I

Pπ (IN (DN ) = H⋆) . (2)

These two objectives capture the main operational modes of pure exploration: “stop when certain” and
“maximize accuracy over a fixed horizon". Further note that the problem we propose to solve extends
classical ASHT by allowing environment-specific, history-dependent observation kernels: xt+1 ∼
Pt(·|Dt, at). Standard formulations assume memoryless dependence only on (H⋆, at)(Naghshvar
& Javidi, 2013; Garivier & Kaufmann, 2016). Moreover, whereas ASHT/BAI typically use known
estimators (e.g., maximum likelihood), we learn the inference rule from data. Consequently, both the
sampling policy π and the inference rule I can depend on entire histories.

3 ICPE: IN-CONTEXT PURE EXPLORATION

In this section we describe ICPE, a meta-RL approach for solving eqs. (1) and (2). The implementa-
tion of ICPE is motivated from the theory. We first show that learning an optimal inference rule I
amounts to computing a posterior distribution. Secondly, the policy π can be learned using RL with
an appropriate reward function.

Importantly, the reward function used for training π emerges naturally from the problem formulation,
and it is not a user-chosen criterion, making it a principled information-theoretical reward function.
We now describe the theory, and then describe the practical implementation of ICPE.

3.1 THEORETICAL RESULTS

Our theoretical results highlight that the main quantity of interest, in both regimes in eqs. (1) and (2),
is the posterior distribution over the true hypothesis P(H⋆ = H|Dt). First, the optimal inference rule
I⋆ is based on this posterior. Secondly, this posterior naturally defines a reward function that can
characterize the optimality of a data-collection policy.

Throughout this section, we assume that X ⊂ R is compact and A,H are finite. We instantiateM
via a parametrized family {(Pω, ρω) : ω ∈ Ω} with Ω compact and ω 7→ (Pω, ρω) continuous, so a
prior on Ω induces a prior onM. For the sake of brevity, we provide informal statements here, and
refer the reader to app. B.1 for all the details.

We have the following result about the optimality of the inference, proved in app. B.1.2.
Proposition 3.1 (Inference Rule Optimality). Let t ≥ 1 and a policy π. The optimal inference rule to
supIt P

π(H⋆ = It(Dt)) is given by I⋆t (z) = argmaxH∈H P(H⋆ = H|Dt = z).

Concretely, prop. 3.1 identifies the optimal inference rule as the maximum a posteriori estimator
based on P(H⋆ = H|Dt), so that learning Iϕ amounts to learning this posterior. Based on this we
can now differentiate between the two settings.

Fixed budget. We begin with the simpler fixed budget case. The key idea is to show that the optimal
policy π⋆ maximizes an action-value function Q (Sutton & Barto, 2018). First, define the following
reward function: for t < N let rt(Dt) := 0, and for t = N set rN (DN ) = maxH P(H⋆ = H|DN ).

3
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In words, we assign a reward equal to the maximum value of the posterior distribution at the last time
step and 0 otherwise. Then, define VN (DN ) = rN (DN ) to be the optimal value at the last timestep
t = N . From this definition, we can recursively define the Q-function as follows:

Qt(Dt, a) = Ext+1|(Dt,a)[Vt+1((Dt, a, xt+1)︸ ︷︷ ︸
=Dt+1

)] and Vt(Dt) = max
a∈A

Qt(Dt, a) ∀t ≤ N − 1.

where “xt+1|(Dt, a)” denotes the posterior distribution of xt+1 given (Dt, a). Optimizing with
respect to this reward function yields an optimal solution to (2), which we formalize in the following
result proved in app. B.1.3.

Theorem 3.2 (Policy Optimality for Fixed Budget). For all t ≥ 1, define the policy π⋆
t (Dt) =

argmaxa∈AQt(D, a). Then, (π⋆, I⋆N ) (where I⋆N is as in prop. 3.1) are an optimal solution of
eq. (2), and we have that

sup
π,I

Pπ (IN (DN ) = H⋆) = Eπ⋆

[rN (DN )]. (3)

Simply speaking, thm. 3.2 indicates that an optimal exploration policy in the fixed-budget setting is
obtained by a greedy policy with respect to a Q-function whose terminal reward is the maximum
posterior mass rN (DN ) = maxH P(H⋆ = H | DN ) (and zero reward for all other timesteps). A
similar principle also holds for the fixed confidence setting.

Fixed confidence. In the fixed confidence setting, we first simplify the problem by noting that the
stopping time τ can be simply embedded as a stopping action astop in the policy π (see app. B.1.4
for a formal justification). Hence, we extend the action set as A ← A∪ {astop} and τ = inf{t ∈ N :
at = astop}. Then, as in classical ASHT literature (Naghshvar & Javidi, 2013), we study the dual
problem of eq. (1), that is:

inf
λ≥0

sup
π,I

Vλ(π, I), where Vλ(π, I) := −Eπ[τ ] + λ [Pπ (Iτ (Dτ ) = H⋆)− 1 + δ] . (4)

To show optimality of a policy, and satisfaction of the correctness constraint, there are 2 key obser-
vations to make: (1) one can show that the optimal inference rule I⋆ remains as in prop. B.2; (2)
solving eq. (4) amounts to solving an RL problem in π.

Indeed, similarly to the the fixed budget setting, for t ≥ 1 define the reward model as

rt,λ(Dt, a) = −1{a ̸=astop} + λ1{a=astop}max
H

P(H⋆ = H|Dt), (5)

which simply penalizes the policy for each extra timestep, accompanied by a reward proportional to
the maximum posterior value at the stopping time. Accordingly, we define the Q-function as

Qt,λ(Dt, a) = rt,λ(Dt, a) + 1{a̸=astop}Ext+1|(Dt,a)

[
max
a′

Qt+1,λ ((Dt, a, xt+1), a
′)
]
. (6)

Then, we have the following result (see app. B.1.5 and app. B.1.6 for a proof) indicating that
optimizing with respect to this reward function yields an optimal solution to (1).

Theorem 3.3 (Policy Optimality for Fixed Confidence). Let π⋆
t,λ(Dt) = argmaxa∈AQt,λ(Dt, a)

and π⋆
λ = (πt,λ)t. Then, for λ ≥ 0 the pair (I⋆, π⋆

λ) , with I⋆ = (I⋆t )t defined as in prop. 3.1, is
an optimal solution of supπ,I Vλ(π, I). Furthermore, under suitable identifiability conditions (see
assum. 2), any maximizer λ⋆ of eq. (4) guarantees that π⋆

λ⋆ satisfies the δ-correctness criterion.

Intuitively, for the fixed-confidence setting, we first recast the constrained problem in eq. (1) via a
Lagrangian dual, then prove that any admissible stopping rule τ can be represented as the selection
time of an absorbing stopping action astop. In thm. 3.3, we show that the resulting dual problem is
solved by a greedy policy on the Q-function defined via the reward in eq. (5), and that such policy
achieves the desired level of correctness, 1− δ. This result establishes that both an optimal δ-aware
stopping rule and exploration strategy can be learned on the extended action space A ∪ {astop}. In
the next section, we describe the practical implementation of ICPE based on these results using the
Transformer architecture.
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Algorithm 1 ICPE (In-Context Pure Exploration)
1: Input: Tasks distribution P; confidence δ; horizon N ; initial λ and hyper-parameter Tϕ, Tθ .

// Training phase
2: Initialize buffer B, networks Qθ, Iϕ and set θ̄ ← θ, ϕ̄← ϕ.
3: while Training is not over do
4: Sample environment M ∼ P with hypothesis H⋆, observe x1 ∼ ρ and set t← 1.
5: repeat
6: Execute action at = argmaxa Qθ(Dt, a) in M and observe xt+1.
7: Add partial trajectory (Dt, at, xt+1, H

⋆) to B and set t← t+ 1.
8: until at−1 = astop (fixed confidence) or t > N (fixed budget).
9: In the fixed confidence, update λ according to eq. (11).

10: Sample batch B ∼ B and update θ, ϕ using Linf(B;ϕ) (eq. (7)) and Lpolicy(B; θ) (eq. (8) or eq. (9)).
11: Every Tϕ steps set ϕ̄← ϕ (similarly, every Tθ steps set θ̄ ← θ).
12: end while

// Inference phase
13: Sample unknown environment M ∼ P .
14: Collect a trajectory DN (or Dτ in fixed confidence) according to a policy πt(Dt) = argmaxa Qθ(Dt, a),

until t = N (or at = astop).
15: Return ĤN = argmaxH Iϕ(H|DN ) (or Ĥτ = argmaxH Iϕ(H|Dτ ) in the fixed confidence)

3.2 PRACTICAL IMPLEMENTATION: THE ICPE ALGORITHM

We instantiate ICPE with two learners: an inference network Iϕ(H|Dt), parametrized by ϕ, that
approximates the posterior P(H⋆ = H|Dt) (cf. prop. 3.1) and a Q-network Qθ(Dt, a), parametrized
by θ, whose greedy policy defines πθ (and includes astop in the fixed confidence setting only). Both
networks are implemented using Transformer architectures, and, for practical reasons, we impose
a maximum trajectory length of N . This architecture handles both fixed budget (eq. (2)) and fixed
confidence (eq. (1)) settings. However, we find it important to explicitly note that while algorithm 1
abstracts the main ideas of ICPE in a unified way, in practice we train separate models for the
fixed-budget and fixed-confidence regimes, each with their own reward and Q-function as derived in
section 3.1.

Training phase. At training time ICPE interacts with an online environment: each episode draws an
instance M ∼ P and generates a trajectory. We maintain a buffer B with tuples (Dt, at, xt+1, H

⋆
M ),

where H⋆ is the true hypothesis for the sampled environment M (from a single tuple we also obtain
Dt+1 = (Dt, at, xt+1)). This buffer is used to sample mini-batches B ⊂ B to train (θ, ϕ). Lastly,
we treat each optimization in (ϕ, θ) (and λ too for the fixed confidence) separately, treating the other
variables as fixed.

Training of Iϕ. We train Iϕ to learn the posterior by SGD on the negative log-likelihood on a a batch
B ⊂ B of partial trajectories sampled from the buffer:

Linf(ϕ) = −
1

|B|
∑

(Dt,at,xt+1,H⋆)∈B

log Iϕ(H
⋆|Dt+1). (7)

In expectation this is (up to an additive constant) equivalent to minimizing the KL-divergence between
P(H⋆ = H|D) and Iϕ(H|D) (a similar loss is also used in (Lee et al., 2023)). Lastly, we also set
Ĥt = argmaxH Iϕ(H|Dt) to be predicted hypothesis with data Dt.

Training in the Fixed Budget. In the fixed budget we train θ using DQN (Mnih et al., 2015) and the
rewards defined in the previous section. We denote the target network Qθ̄, which is parameterized
by θ̄. Since rewards are defined in terms of Iϕ, to improve training stability we introduce a separate
target inference network Iϕ̄, parameterized by ϕ̄, which provides feedback for training θ. These target
networks are periodically updated, setting ϕ̄← ϕ every Tϕ steps (similarly, θ̄ ← θ every Tθ steps).

Hence, in the fixed budget, for a batch B ∼ B, we update θ by performing SGD on the following loss

Lpolicy(B; θ) =
1

|B|
∑

(Dt,at,xt+1)∈B

(
max
H

Iϕ̄(H|Dt) · 1{t=N} +max
a

Qθ̄(Dt+1, a)−Qθ(Dt, at)
)2

.

(8)
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Training in the Fixed Confidence. In this setting we train θ similarly to the fixed budget setting.
However, we also have a dedicated stop-action astop whose value depends solely on history. Thus, its
Q-value can be updated at any time, allowing retrospective evaluation of stopping. In other words,
Qθ(Dt, astop) can be updated for any sampled transition z ∈ B, even if the logged action at ̸= astop
(i.e., a “pretend to stop” update). This allows the model to retro-actively evaluate the quality of
stopping earlier in a trajectory.

Then, based on eq. (6), we update θ by performing SGD on the following Q-loss

Lpolicy(B; θ) =
1

|B|
∑

(Dt,at,xt+1)∈B

[
1{at ̸=astop} ·

(
−1 + max

a
Qθ̄(Dt+1, a)−Qθ(Dt, at)

)2
(9)

+
(
λmax

H
Iϕ̄(H|Dt)−Qθ(Dt, astop)

)2 ]
, (10)

and note that the loss depends on λ. We learn λ using a gradient descent update, which depends on
the correctness of the predicted hypothesis. We sample K trajectories {(D(i)

τ , H⋆
i )}Ki=1 with fixed

(θ, ϕ) and update λ with a small learning rate β:

λ← max [0, λ− β (p̂− 1 + δ)] , where p̂ =
1

K

K∑
i=1

1{argmaxH Iϕ(H|D(i)
τ )}=H⋆

i }
. (11)

The quantity p̂ can be used to assess when to stop training by checking its empirical convergence.
In the fixed confidence, in practice we can stop whenever p̂ ≥ 1 − δ is stable and λ is almost a
constant. However, to obtain rigorous guarantees care must be taken. In app. B.1.6 we discuss how to
provide formal guarantees on the δ-correctness of the resulting method, bsaed on a sequential testing
procedure.

Inference phase. At inference time ICPE operates by simple forwards passes. An unknown
task M ∼ P is sampled, and actions are selected according to a = argmaxa Qθ(Dt, a).
At the last timestep a hypothesis is predicted using ĤN = argmaxH Iϕ(H|DN ) (or Ĥτ =
argmaxH Iϕ(H|Dτ ) at the stopping time for the fixed confidence setting).

Theoretical guarantees. We derive finite-sample guarantees for the fixed-budget ICPE meta-
learning phase in a stylized setting in app. B.2. In thm. B.14 we derive a bound on the sub-
optimality of the policy π(k) at training epoch k in terms of stage-wise Bellman residuals and
concentrability coefficients. In thm. B.15, we additionally show how these residuals are controlled by
an approximation term (capturing how well the function class can represent the Bellman update) and
an estimation term that decays with the number and size of training batches. Together, these results
yield an explicit finite-sample performance bound for ICPE in an ideal scenario.

4 EMPIRICAL EVALUATION

We evaluate ICPE on a range of tasks: BAI on bandit problems, hypothesis testing in MDPs, and
general search problems (pixel sampling and binary search). For bandits, we consider different reward
structures: deterministic, stochastic, with feedback graphs and with hidden information. Due to space
limitations, refer to app. D for the results on bandit problem with feedback graphs and MDPs. Also
refer to app. C for details on the algorithms. In all experiments we use a target accuracy value of
δ = 0.1, and shaded areas indicate 95% confidence intervals computed via hierarchical bootstrapping
(see app. D for details).

4.1 BANDIT PROBLEMS

We now apply ICPE to the classical BAI problem within MAB tasks. For the MAB setting we have a
finite number of actions A = {1, . . . ,K}, corresponding to the actions in the MAB problem M . For
each action a, we define a corresponding reward distribution P (·|a) from which rewards are sampled
i.i.d. Then, P is a prior distribution on the actions’ rewards distributions. For the BAI problem, we
let the true hypothesis be H⋆ = argmaxa Ex∼P (·|a)[x], so that the goal is to identify the best action
(and thusH = A).

Stochastic Bandit Problems. We evaluate ICPE on stochastic bandit environments for both the
fixed confidence and fixed budget setting (with N = 30). Each action’s reward distribution is

6
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normally distributed νa = N (µa, 0.5
2), with (µa)a∈A drawn from P . In this case P is a uniform

distribution over problems with minimum gap maxa µa −maxb̸=a µa ≥ ∆0, with ∆0 = 0.4. Hence,
an algorithm could exploit this property to infer H⋆ more quickly. For this case, we also derive some
sample complexity bounds in app. B.
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Figure 2: Results for stochastic MABs with fixed confidence δ = 0.1 and N = 100: (a) average
stopping time τ ; (b) survival function of τ ; (c) probability of correctness Pπ(Ĥτ = H⋆).3

We compare against pure exploration baselines: TaS (Track-and-Stop) (Garivier & Kaufmann, 2016)
and TTPS (Top-Two) (Russo et al., 2018), which are principled choices for hypothesis testing
(asymptotically optimal or close to optimal allocations that target the most confusable hypotheses).
We also include an ablation, “I-DPT”, which uses our learned inference Iϕ(H|Dt) as in DPT (Lee
et al., 2023) and acts greedily with respect to the posterior (and a simple confidence-threshold stop);
this isolates the value of learning a query policy versus relying on posterior-driven greedy control.
Details for I-DPT are in app. C.

In fig. 2 are reported results for the fixed confidence. In fig. 2a we see how ICPE is able to find an
efficient strategy compared to other techniques. Interestingly, also I-DPT seems to achieve relatively
small sample complexities. However, the tail distribution of its τ is rather large compared to ICPE
(fig. 2b) and the correctness is smaller than 1− δ for large values of K. Methods like TaS and TTPS
achieve larger sample complexity, but also larger correctness values (fig. 2c). This is a well known
fact: theoretically-sound stopping rules, such as the ones used by TaS and TTPS, tend to be are overly
conservative (Garivier & Kaufmann, 2016).

Lastly, we verified the robustness of ICPE to distribution shifts. We trained ICPE in the stochastic
fixed-confidence bandit setting as described above, and then evaluated the trained model on bandit
instances drawn from shifted environment distributions. We report the results in app. D.1.2. Across
all experiments, we observed that both correctness and stopping time remain remarkably stable, with
only minor fluctuations within the reported confidence intervals. This suggests that ICPE is not
excessively sensitive to moderate shifts in the environment distribution around the training family.

Finally, for the sake of space, we refer the reader to app. D.1.2 for the results in the fixed budget
setting.

Deterministic Bandits. We also evaluated ICPE in deterministic bandit environments with a fixed
budget K, equal to the number of actions. Thus, ICPE needs to learn to select each action only
once to determine the optimal action. Since the rewards are deterministic, we cannot compare to
classical BAI methods, which are tailored for stochastic environments. Instead, we compare to: (i) a
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Figure 3: Deterministic bandits: (left) probability of correctly identifying the best action vs. K;
(right) average fraction of unique actions selected during exploration vs. K.
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uniform policy that uses a maximum likelihood estimator to estimate the best arm; (ii) DQN (Mnih
et al., 2013), which uses Dt as the state, and trains an I network to infer the true hypothesis; (iii) and
I-DPT, acts greedily with respect to the posterior of Iϕ, as in DPT.

Figure 3 reports the results: ICPE consistently identifies optimal actions (correctness ≈ 1) and learns
optimal sampling strategies (fraction of unique actions ≈ 1). Without being explicitly instructed to
“choose each action exactly once”, ICPE discovers on its own that sampling every action is exactly
what yields enough information to identify the best. While the optimal exploration strategy in this
setting is intuitive, baseline performance degrades sharply as the number of actions grows, illustrating
that existing exploration methods can fail even in such simple environments.

Bandit Problems with Hidden Information. To evaluate ICPE in structured settings, we introduce
bandit environments with latent informational dependencies, termed magic actions. In the single
magic action case, the magic action am’s reward is distributed according to N (µam , σ2

m), where
σm ∈ (0, 1) and µam

:= ϕ(argmaxa ̸=am
µa) encodes information about the optimal action’s identity

through an invertible mapping ϕ that is unknown to the learner. The index am is fixed, and the
mean rewards of the other actions (µa)a ̸=am

are sampled from P , a uniform distribution over models
guaranteeing that am, as defined above, is not optimal (see apps. B.5 and D.1.3 for more details).
Then, we define the reward distribution of the non-magic actions as N (µa, (1− σm)2).
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Figure 4: (a) Single magic action: average stopping time and the theoretical lower bound across
varying σm. (b) Magic chain: average stopping time between ICPE, I-IDS vs. number of magic
actions. (c) ICPE in a regret minimization task, with σm = 0.1.

In our first experiment, we vary the standard deviation σm in [0, 1]. This problem isolates whether
ICPE can detect and exploit latent informational dependencies (via a single diagnostic action that
encodes the optimal arm) and balance sampling across action based on varying uncertainty levels.

Regarding the baselines, applying classical baselines (e.g., TaS) here is nontrivial: the magic action is
coupled to the optimal arm via an unknown map ϕ, which would need to be encoded as inductive bias.
Instead, we compare ICPE to “I-IDS”, which is standard pure exploration IDS (Russo & Van Roy,
2018) instantiated on top of ICPE’s trained inference Iϕ for exploiting the magic action.

We evaluate in a fixed-confidence setting with error rate δ = 0.1. Figure 4a compares ICPE’s sample
complexity against a theoretical lower bound (see app. B). ICPE achieves sample complexities close
to the theoretical bound across all tested noise levels, consistently outperforming I-IDS.

Additionally, in fig. 4c we evaluate ICPE in a cumulative regret minimization setting, despite not
being explicitly optimized for regret minimization. At the stopping τ , ICPE commits to the identified
best action (i.e., explore-then-commit strategy). As shown in the results, ICPE outperforms classic
algorithms such as UCB, Thompson Sampling, and standard IDS initialized with Gaussian priors.

To further challenge ICPE, we introduce a multi-layered “magic chain” bandit environment, where
there is a sequence of n magic actions Am := {ai1 , . . . , ain} ⊂ A such that µaij

= ϕ(µaij+1
), and

µain
= ϕ(argmaxa/∈Am

µa). The first index i1 is known, and by following the chain, an agent can
uncover the best action in n steps. However, the optimal sample complexity depends on the ratio of
magic actions to non-magic arms. Varying the number of magic actions from 1 to 9 in a 10-actions
environment, Figure 4b demonstrates ICPE’s empirical performance, outperforming I-IDS.

4.2 GENERAL SEARCH PROBLEMS: PIXEL SAMPLING AND PROBABILISTIC BINARY SEARCH

We now evaluate the applicability of ICPE to general search problems, including structured real-world
examples.
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Agent Accuracy Avg. Regions Used
ICPE 0.91± 0.03 10.09± 0.11
Deep CMAB 0.66± 0.04 7.90± 0.09
Uniform 0.25± 0.04 10.42± 0.09

(b)

Figure 5: MNIST pixel-sampling task: (a) A chord between two digits indicates that their distributions
were not significantly different (p-value > 0.05, based on a pairwise chi-squared test), with thicker
chords representing higher p-values; (b) accuracy and performance (mean ± 95% CI)

Pixel sampling as generalized search. We introduce a classification task inspired by active per-
ception settings. We consider the MNIST images (LeCun et al., 1998), each partitioned into a set
of 36 distinct pixel patches, corresponding to the query space A = {1, . . . , 36}. The agent starts
from a blank (masked) image and, patch by patch, reveals pixels to quickly discover “what the
image is about.” After choosing a query at ∈ A the agent observes xt (the revealed patch) and
accumulates a partially observed image. After a budget N = 12, the agent outputs the predicted digit
ĤN ∈ {0, . . . , 9}.
For this setting we consider a slight variation of ICPE that may be of interest: we consider an
inference net I that is a pre-trained classifier, trained on fully revealed images from P . Using this
network, we benchmark ICPE against two baselines: standard uniform random sampling and Deep
Contextual Multi-Armed Bandit (Deep CMAB) (Collier & Llorens, 2018), which employs Bayesian
neural networks to sample from a posterior distribution (Deep CMAB uses as rewards the correctness
probabilities computed by I). Importantly, we cannot compare to methods such as DPT sinceA ≠ H,
the hypothesis space is different from the query space.

Table 5b reports the classification accuracy and number of regions sampled. ICPE achieves sub-
stantially better performance than both baselines using fewer regions. However, to analyze whether
ICPE learns a sampling strategy that adapts to the context of the task, we compare region selection
distributions across digit classes using pairwise chi-squared tests. ICPE exhibits significantly more
variation across classes than either baseline, as visualized in Figure 5a. This suggests ICPE adapts
its exploration to class-conditional structure, rather than applying a generic sampling policy.

Probabilistic binary search. We also evaluated ICPE’s capabilities to autonomously meta-learn
binary search. We define an action space of A = {1, . . . ,K}, with H⋆ ∈ A. Pulling an arm above
or below H⋆ yields a observation xt = −1 or xt = +1, respectively, providing directional feedback.
In tab. 1 we report results on 100 held-out tasks per setting. ICPE consistently achieves perfect
accuracy with worst-case stopping times that match the optimal log2(K) rate, demonstrating that it
has successfully learned binary search. While simple, this task illustrates ICPE’s broader potential to
learn efficient search strategies in domains where no hand-designed algorithm is available.

K Min Accuracy Mean Stop Time Max Stop Time log2 K

8 1.00 2.13± 0.12 3 3
16 1.00 2.93± 0.12 4 4
32 1.00 3.71± 0.15 5 5
64 1.00 4.50± 0.21 6 6

128 1.00 5.49± 0.23 7 7
256 1.00 6.61± 0.26 8 8

Table 1: ICPE performance on the binary search task as K increases.

5 DISCUSSION AND CONCLUSIONS

Our results position ICPE within a broader line of work on active sequential hypothesis test-
ing (Naghshvar & Javidi, 2013) and its close ties to exploration in RL (Sutton & Barto, 2018).
Regarding exploration, note that classical regret-minimization methods, including UCB variants (Auer
et al., 2002), posterior sampling (Osband et al., 2013; Russo & Van Roy, 2014), and regret-focused
IDS (Russo et al., 2018), optimize long-run reward, not hypothesis identification. On the other hand,
pure-exploration formulations in BAI (Audibert & Bubeck, 2010) yield sharp, instance-dependent
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procedures for hypothesis testing in fixed-confidence regimes (e.g., Track-and-Stop, Garivier &
Kaufmann, 2016). However, these approaches assume to know the problem structure, which is
not always possible if the user is not aware of such structure. Furthermore, computing an optimal
data-collection policy remains a challenge in more general scenarios (Al Marjani et al., 2021), and
we discuss some of these challenges in app. C.3.1.

ICPE uses Transformers (Vaswani et al., 2017) to learn, in-context, a data collection policy and and
inference rule. Transformers have demonstrated remarkable in-context learning capabilities (Brown
et al., 2020; Garg et al., 2022). In-context learning (Moeini et al., 2025) is a form of meta-RL
(Beck et al., 2023), where agents can solve new tasks without updating any parameters by simply
conditioning on histories. Building on this approach, Transformers can mimic posterior sampling
from offline data, as in DPT (Lee et al., 2023), or perform return-conditioning for regret minimization
(e.g., ICEE Dai et al., 2024). However, these approaches primarily target cumulative reward and
typically lack a learned, δ-aware stopping rule; applying them to hypothesis testing would require
altering objectives, data-collection protocol, and add stopping semantics. Moreover, in generalized
search where A ≠ H, additional modeling is needed to map hypotheses to actions.

ICPE addresses these gaps by learning to acquire information in-context. ICPE targets pure
exploration for identification: it splits inference and control, using a supervised inference network
to provide task-relevant information signals, while an RL-trained Transformer learns acquisition
policies that maximize information gain. This separation makes it possible to exploit rich, non-tabular
structures that are difficult to encode in hand-designed tests or confidence bounds.

Empirically, ICPE is competitive on unstructured bandits and extends naturally to structured and
deterministic settings. The results on the MNIST dataset highlights a key strength: ICPE adapts
sampling to the class-conditional structure. More broadly, ICPE suggests a path for data-driven
generalized search.

Limitations point to concrete avenues for future work. First, scaling to continuous or combinatorial
hypothesis spaces to deal with more general scenarios is an important direction. However, such
extensions require substantial further theoretical development, as rigorous formalisms for continuous
hypothesis-testing frameworks remain an active area of research, even in classical pure-exploration
settings (see, e.g., (Garivier & Kaufmann, 2021)). Second, extending ICPE to offline datasets is
also a promising research direction. When offline data can be used to construct a reliable simulator,
ICPE can already be applied directly. Moreover, even without such a simulator, ICPE could in
principle be meta-trained purely from logged data using offline RL methods (e.g., IQL, CQL), and
a systematic study of this offline regime is an important question for future work. Third, while the
main focus of this work is to introduce and analyze ICPE as a general framework that can address a
broad family of pure exploration problems, and we validate it on numerous BAI and active search
tasks, we view real-world experiments as a natural next step. ICPE holds the promise to discover
novel exploration and search algorithms in complex domains that do not offer a concrete way of
finding an optimal solution a priori, such as determining efficient sequences of proteins to test in a
lab (Amin et al., 2024), minimizing the number of tests required to detect cancer (Gan et al., 2021),
and expediting the design of materials with desired properties (Talapatra et al., 2018). In sum, we
believe ICPE advances pure exploration by leveraging in-context learning to discover task-adaptive
acquisition strategies, and it opens a route toward unifying classical sequential testing with learned,
structure-aware search policies that scale to real problems.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. All model architectures,
optimization procedures, and hyperparameters are described in detail in the paper (see Sections
2–3 and Appendix C–D). Experiments were conducted using Python 3.10.12 and standard libraries
including NumPy, SciPy, PyTorch, Pandas, Seaborn, Matplotlib, CVXPY, and Gurobi.

To facilitate replication, we provide our full source code under the MIT license. The code contains (i)
implementations of ICPE and all baselines, (ii) configuration files specifying the hyperparameters for
each experiment, and (iii) detailed instructions in the README.md file for installing dependencies
and running all experiments. Running the provided scripts will reproduce the main results reported in
the paper, including bandit, MDP, and generalized search benchmarks.
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APPENDIX

LIMITATIONS AND BROADER IMPACT

Finite vs continuous sets of hypotheses. A limitation of this work is the assumption that H is
finite. This is a common assumption in active sequential hypothesis testing, and the continuous case
is also referred to as active regression (Mukherjee et al., 2022). We believe our framework can be
extended to this case with a proper parametrization of the inference mapping I that allows to sample
from a continuous set.

On the prior set of problems P. One limitation of our approach is the assumption of access
to a prior set of problems P . Such set may lack a common structure, and need not be stationary.
Nonetheless, we view this as a useful starting point for developing more sophisticated methods.
A natural direction for future work is to extend our framework to an adversarial setting, in which
problem instances can evolve or even be chosen to thwart the learner.

Online training. Another limitation arises from assuming access to an online simulator from which
we can sample M ∼ P and training ICPE. Implicitely, this assumes access to H⋆ during training.
Learning how to generalize to setting where H⋆ is not perfectly known at training time is an exciting
research direction. Furthermore, our main focus is in the sequential process of starting from "no
data", to being able to predict the right hypothesis as quickly as possible (see the MNIST example).
We believe this framework to be valuable when one can build verifiable simulations to train policies
that transfer to real-world problems.

Practical limitations and transformers. A limitation of ICPE is the current limit N on the horizon
of the trajectory. This is due to the computation cost of training and using transformer architectures.
Future work could investigate how to extend this limit, or completely remove it.

Another technical limitation of ICPE is the hardness to scaling to larger problems. This is closely
related to the above limitation, and it is mainly an issue of investigating how to improve the current
architecture of ICPE and/or distribute training.

Lastly, we believe that ICPE does not use the full capabilities of transformer architectures. For
example, during training and evaluation, we always use the last hidden state of the transformer to
make prediction, while the other hidden states are left untouched.

Bayesian BAI. Some of our work falls within the Bayesian Best Arm Identification theoretical
framework. However, the Bayesian setting is less known compared to the frequentist one, and
only recently some work (Jang et al., 2024) studied the unstructured Gaussian case. Future work
should compare ICPE more thoroughly with Bayesian techniques once the Bayesian setting is more
developed.

Broader impact. This paper primarily focuses on foundational research in pure exploration prob-
lems. Although we do not directly address societal impacts, we recognize their importance. The
methods proposed here improve the sample efficiency of active sequential hypothesis testing proce-
dures, and could be applied in various contexts with societal implications. For instance, our technique
could be used in decision-making systems in healthcare, finance, and autonomous vehicles, where
biases or errors could have significant consequences. Therefore, while the immediate societal impact
of our work may not be evident, we urge future researchers and practitioners to carefully consider the
ethical implications and potential negative impacts in their specific applications
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A EXTENDED RELATED WORK

Exploration for Regret Minimization. The problem of exploration is particular relevant in RL
(Sutton & Barto, 2018), and many strategies have been introduced, often with the goal of minimizing
regret. Notably, approaches based on Posterior Sampling (Kaufmann et al., 2012; Osband et al.,
2013; Russo & Van Roy, 2014; Gopalan et al., 2014) and Upper Confidence Bounds (Auer et al.,
2002; 2008; Cappé et al., 2013; Lattimore & Hutter, 2012; Auer, 2002) have received significant
attention. However, the problem of minimizing regret is a relevant objective only when one cares
about the rewards accumulated so far, and does not answer the problem of how to efficiently gather
data to reach some desired goal. In this context, Information-Directed Sampling (IDS) (Russo &
Van Roy, 2014; Russo et al., 2018) has been proposed to strike a balance between minimizing regret
and maximizing information gain, where the latter is quantified as the mutual information between
the true optimal action and the subsequent observation. However, when the information structure is
unknown, it effectively becomes a significant challenge to exploit it. Importantly, if the state does not
encode the structure of the problem, RL techniques may not be able to exploit hidden information.

In-Context Learning, LLMs and Return Conditioned Learning. Recently, Transformers
(Vaswani et al., 2017; Chen et al., 2021) have demonstrated remarkable in-context learning ca-
pabilities (Brown et al., 2020; Garg et al., 2022). In-context learning (Moeini et al., 2025) is a form of
meta-RL (Beck et al., 2023), where agents can solve new tasks without updating any parameters by
simply conditioning on additional context such as their action-observation histories. When provided
with a few supervised input-output examples, a pretrained model can predict the most likely next
token (Lee et al., 2023). Building on this ability, Lee et al. (2023) recently showed that Transformers
can be trained in a supervised manner using offline data to mimic posterior sampling in reinforcement
learning. In (Krishnamurthy et al., 2024) the authors investigate the extent to which LLMs (Achiam
et al., 2023) can perform in-context exploration in multi-armed bandit problems. Similarly, other
works (Coda-Forno et al., 2023; Monea et al., 2024; Nie et al., 2024; Harris & Slivkins, 2025; Sun
et al., 2025) evaluate the in-context learning capabilities of LLMs in sequential decision making
problems, with (Harris & Slivkins, 2025) showing that LLMs can help at exploring large action
spaces with inherent semantics. On a different note, in (Arumugam & Griffiths, 2025) investigate how
to use LLMs to implement PSRL, leveraging the full expressivity and fluidity of natural language to
express the prior and current knowledge about the problem.

In (Dai et al., 2024) the authors presente ICEE (In-Context Exploration Exploitation), a method
closely related to ICPE. ICEE uses Transformer architectures to perform in-context exploration-
exploration for RL. ICEE tackles this challenge by expanding the framework of return conditioned
RL with in-context learning (Chen et al., 2021; Emmons et al., 2021). Return conditioned learning is
a type of technique where the agent learns the return-conditional distribution of actions in each state.
Actions are then sampled from the distribution of actions that receive high return. This methodoloy
was first proposed for the online RL setting by work on Upside Down RL (Srivastava et al., 2019)
and Reward Conditioned Policies (Kumar et al., 2019). Lastly, we note the important contribution of
RL2 (Duan et al., 2016), which proposes to represent an RL policy as the hidden state of an RNN,
whose weights are learned via RL. ICPE employs a similar idea, but focuses on a different objective
(identification), and splits the process into a supervised inference network that provides rewards to an
RL-trained transformer network that selects actions to maximize information gain.

Active Pure Exploration in Bandit and RL Problems. Other strategies consider the pure explo-
ration problem (Even-Dar et al., 2006; Audibert & Bubeck, 2010; Bubeck et al., 2011; Kaufmann
et al., 2016), or Best Arm Identification (BAI), in which the samples collected by the agent are no
longer perceived as rewards, and the agent must actively optimize its exploration strategy to identify
the optimal action. In this pure exploration framework, the task is typically formulated as a hypothesis
testing problem: given a desired goal, the agent must reject the hypothesis that the observed data
could have been generated by any environment whose behavior is fundamentally inconsistent with
the true environment (Garivier & Kaufmann, 2016). This approach leads to instance-dependent
exploration strategies that adapt to the difficulty of the environment and has been extensively studied
in the context of bandit problems under the fixed confidence setting (Even-Dar et al., 2006; Garivier
& Kaufmann, 2016; Degenne et al., 2019; Jang et al., 2024; Russo et al., 2025), where the objective
is to identify the optimal policy using the fewest number of samples while maintaining a specified
level of confidence. Similar ideas have been applied to Markov Decision Processes for identifying
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the best policy (Marjani & Proutiere, 2021; Marjani et al., 2021; Russo & Proutiere, 2023; Russo &
Vannella, 2025) or rapidly estimating the value of a given policy (Russo & Pacchiano, 2025). Another
setting is that of of identifying the best arm in MAB problems with a fixed horizon. In this case
characterizing the complexity of the problem is challenging, and this is an area of work that is less
developed compared to the fixed confidence one (Wang et al., 2023; Karnin et al., 2013; Audibert
& Bubeck, 2010; Atsidakou et al., 2022; Nguyen et al., 2025; Ghosh et al., 2024). Because of this
reason, we believe ICPE can help better understand the nuances of this specific setting.

However, while BAI strategy are powerful, they may be suboptimal when the underlying information
structure is not adequately captured within the hypothesis testing framework. Hence, the issue of
leveraging hidden environmental information, or problem with complex information structure remains
a difficult problem. Although IDS and BAI techniques offer frameworks to account for such structure,
extending these approaches to Deep Learning is difficult, particularly when the information structure
is unknown to the learner.

A closely related work is that of (Liu et al., 2024). In (Liu et al., 2024) the authors present empirical
evidence of skills and directed exploration emerging from using RL with a sparse reward and a
contrastive loss. They define a goal state, and encode a sparse reward using that goal state. Their
objective, which maximizes the probability of reaching the goal state, is similar to ours, where in our
framework the goal state would be a hypothesis. Note, however, that they do not learn an inference
network, and we do not assume the observations to possess the Markov property.

Active Learning and Active Sequential Hypothesis Testing In the problem of active sequen-
tial hypothesis testing (Chernoff, 1992; Ghosh, 1991; Lindley, 1956; Naghshvar & Javidi, 2013;
Naghshvar et al., 2012; Mukherjee et al., 2022; Gan et al., 2021), a learner is tasked with adaptively
performing a sequence of actions to identify an unknown property of the environment. Each action
yields noisy feedback about the true hypothesis, and the goal is to minimize the number of samples
required to make a confident and correct decision. Similarly, active learning (Cohn et al., 1996; Chen
et al., 2023) studies the problem of data selection, and, closely related, Bayesian Active Learning
(Golovin & Krause, 2011), or Bayesian experimental design (Rainforth et al., 2024), studies how
to adaptively select from a number of expensive tests in order to identify an unknown hypothesis
sampled from a known prior distribution.

Active sequential hypothesis testing generalizes the pure exploration setting in bandits and RL by
allowing for the identification of arbitrary hypotheses, rather than just the optimal action. However,
most existing approaches assume full knowledge of the observation model (Naghshvar & Javidi,
2013), which is the distribution of responses for each action under each hypothesis. While some
work has attempted to relax this assumption to partial knowledge (Cecchi & Hegde, 2017), it remains
highly restrictive in practice. As in bandit settings, real-world exploration and hypothesis testing
often proceed without access to the true observation model, requiring strategies that can learn both
the structure and the hypothesis from interaction alone.

Algorithm Discovery. Our method is also closely related to the problem of discovering algorithms
(Oh et al., 2020). In fact, one can argue that ICPE is effectively discovering active sampling
techniques. This is particularly important for BAI and Best Policy Identification (BPI) problems,
where often one needs to solve a computationally expensive optimization technique numerous times.
For BPI the problem is even more exacerbated, since the optimization problem is usually non-convex
(Marjani & Proutiere, 2021; Russo & Pacchiano, 2025).

Cognitive Theories of Exploration. Our approach draws inspiration from cognitive theories of
exploration. Indeed, in animals, exploration arises naturally from detecting mismatches between
sensory experiences and internal cognitive maps—mental representations encoding episodes and
regularities within environments (O’keefe & Nadel, 1979; Nadel & Peterson, 2013). Detection of
novelty prompts updates of these cognitive maps, a function strongly associated with the hippocampus
(Nadel, 1991; Lisman et al., 2017). Conversely, exploration can also be explicitly goal-directed:
psychological theories posit that an internal representation of goals, combined with cognitive maps
formed through experience, guides adaptive action selection (Kagan, 1972; Morris et al., 2022).
ICPE embodies these cognitive principles computationally: the exploration (π) network learns
an internal model (analogous to a cognitive map), while the inference (I) network encodes goal-
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directed evaluation. This interplay enables ICPE to effectively manage exploration as an adaptive,
structure-sensitive behavior.
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B THEORETICAL RESULTS

In this section we provide different theoretical results: first, we describe the theoretical results for
ICPE. Then, we discuss some sample complexity results for different MAB problems with structure.

B.1 ICPE: THEORETICAL RESULTS

In this subsection we present the theoretical results of ICPE. We begin by describing the problem
setup. After that, we present results for the fixed budget and fixed confidence regimes respectively.

B.1.1 PROBLEM SETUP

We now provide a formal definition of the underlying probability measures of the problem we consider.
To that aim, it is important to formally define what a model M is, as well as the definition of policy π
and inference rule I (infernece rules are also known as recommendation rules).

Spaces and σ-fields. We let X ⊂ R be nonempty, compact, and endowed with its Borel σ-field
B(X ). Let A = {1, . . . ,K} be a finite action set with the discrete σ-field 2A, and letH be a finite
hypothesis set with the discrete σ-field. Write ∆(X ) for the set of Borel probability measures on
(X ,B(X )), equipped with the topology of weak convergence and its Borel σ-field B(∆(X )).
For t ∈ N, define the trajectory space

Zt := (X ×A)t−1 ×X , zt = (x1, a1, . . . , at−1, xt),

with the product topology and Borel σ-field B(Zt). Since X is compact metric and A is finite, each
(Zt,B(Zt)) is standard Borel (in fact compact Polish). Set Z∞ := X × (A×X )N with the product
σ-field B(Z∞).

Observation dynamics and parameterization. To define the dynamics (ρ, P ) we introduce a
parametrization in ω ∈ Ω. We take (Ω, d) to be a compact metric with Borel σ-field B(Ω) and metric
d. For each ω ∈ Ω, we assume that ρ and P are functionals of ω:

• ρω ∈ ∆(X ) is the initial observation law (a Borel probability measure on X ).
• Pω

s ( · |zs, as) ∈ ∆(X ) is a Borel probability kernel for each round s ≥ 1: for every (zs, as),
Pω
s (·|zs, as) is a probability measure on (X ,B(X )), and for every C ∈ B(X ) the map

(zs, as) 7→ Pω
s (C|zs, as) is measurable.

We assume the following weak continuity in ω: for every bounded continuous f : X → R,

ω 7→
∫

f dρω and (ω, zs, as) 7→
∫

f(x′)Pω
s (dx′|zs, as) are continuous.

Equivalently, ω 7→ ρω and (ω, zs, as) 7→ Pω
s (·|zs, as) are continuous maps into ∆(X ) with the weak

topology.

Set of models (environments). To define the set of models, consider a mapping ϕ : Ω→ ∆(X )×∏
s≥1

(
∆(X )Zs×A

)
so that ϕ(ω) = (ρω, P

ω), where Pω := (Pω
s )s≥1. SetM♯ := ϕ(Ω) with the

product of weak topologies. We indicate by (ρ, P ) ∈ M♯ a model in this set (hence P = Pω for
some ω). By continuity of ϕ and compactness of Ω,M♯ is compact.

We also let h⋆ : ∆(X ) ×
∏

s≥1
(
∆(X )Zs×A

)
→ H, with H finite (with the discrete topology),

to be a Borel measurable mapping defining the ground truth hypothesis H⋆ = h⋆(ρ, P ) for a pair
(ρ, P ) ∈M♯. Then, we defineM as

M :=
{
(ρ, P, h⋆(ρ, P )) : (ρ, P ) ∈M♯

}
to be the push-forward set of environments4. Therefore, a prior Q on Ω induces a prior onM (and
M♯) by pushforward: P := Q ◦ (ω 7→ (ϕ(ω), h⋆(ϕ(ω))))−1 and P♯ := Q ◦ ϕ−1. In the following,
we mainly work withM♯ and use P and P♯ interchangeably whenever clear from the context.

4We omit X ,A from the definition since these sets are the same for all models inM♯.
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Policies and inference (recommendation) rules. A (possibly randomized) policy π = (πs)s≥1
is a sequence of Borel probability kernels πs( · |zs) ∈ ∆(A), s ≥ 1, with πs : (Zs,B(Zs)) →
(∆(A),B(∆(A))) measurable. Deterministic policies are the special case πs( · |zs) = δαs(zs) for
some measurable αs : Zs → A. An inference rule at timestep t is defined as any Borel map
It : Zt → H. We also define an inference rule as the collection I := (Is)s≥1.

Path laws and probability measures. Fix M ∈ M ♯, with M = (ρ, (Ps)s), and a policy
π = (πs)s≥1. By the Ionescu–Tulcea theorem, there exists a unique probability measure Pπ

M,t

on (Zt,B(Zt)) such that for all cylinder sets C = C1 × B1 × · · · × Bt−1 × Ct, with Ci ∈ B(X )
and Bi ⊂ A,

Pπ
M,t(C) =

∫
C1

ρ(dx1)

t−1∏
s=1

[∫
Bs

πs(das|zs)
∫
Cs+1

Ps(dxs+1 | zs, as)

]
,

equivalently,

Pπ
M,t(dzt) = ρ(dx1)

t−1∏
s=1

[
πs(das|zs)Ps(dxs+1|zs, as)

]
.

Analogously, one obtains a unique path measure Pπ
M on (Z∞,B(Z∞)).

Now, define the joint law onM♯ ×Zt by

Pπ
t (dM, dzt) := P(dM)Pπ

M,t(dzt),

and the trajectory marginal

Pπ
t (A) :=

∫
M♯

Pπ
M,t(A)P(dM), A ∈ B(Zt).

Similarly, we also define Pπ(dM,dz) on M ♯ ×Z∞ and Pπ(A) for A ∈ B(Z∞).

Lastly, since Ω and Zt are standard Borel, regular conditional probabilities exist on Ω × Zt; by
pushforward through ϕ they induce regular conditional probabilities onM♯ ×Zt, for all t ≥ 1.

B.1.2 POSTERIOR DISTRIBUTION OVER THE TRUE HYPOTHESIS AND INFERENCE RULE
OPTIMALITY

We first record a domination assumption that allows us to express likelihoods w.r.t. fixed reference
measures and obtain continuity.
Assumption 1 (Domination and joint continuity). There exist probability measures λ0, λ on
(X ,B(X )) such that, for all (ρ, P ) ∈M♯, s ∈ N, and (z, a) ∈ Zs ×A,

ρ(·)≪ λ0(·) and Ps(· | z, a)≪ λ(·).

We also let pω0 (x) := dρω

dλ0
(x) and pωs (x | z, a) :=

dPω
s (· | z,a)
dλ (x) be the corresponding densities

(versions chosen jointly measurable).

Remark. For compact X ⊂ R, such a dominating pair always exists (e.g., Lebesgue on X ).

Under assum. 1, define the (policy-independent) likelihood for (ω, z) ∈ Ω×Zt:

ℓt(M, z) := p0(x1)

t−1∏
s=1

ps(xs+1 | zs, as).

We now give a posterior kernel representation that is independent of π.
Lemma B.1 (Posterior kernel). For each t ∈ N there exists a probability kernel Rt : Zt×B(M ♯)→
[0, 1], independent of π, such that for every policy π and all A ∈ B(M ♯), Z ∈ B(Zt),

Pπ
t (M ∈ A, Dt ∈ Z) =

∫
Z

Rt(A|z)Pπ
M∼P,t(dz).

Consequently, for B ⊂ H,

Pt(H
⋆ ∈ B|Dt = z) := Rt

(
{(ρ, P ) ∈M♯ : h⋆(ρ, P ) ∈ B}|z

)
for Pπ

t -a.e. z.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Proof. Fix π and t. Define the reference measure on Zt (depending on π)

νπt (dz) := λ0(dx1)

t−1∏
s=1

[
πs(das|zs)λ(dxs+1)

]
.

By construction and assum. 1, Pπ
M,t ≪ νπt for every ω, and the Radon–Nikodym density is

dPπ
M,t

dνπt
(z) = ℓt(M, z),

which does not depend on π. Therefore,

Pπ
t (M ∈ A,Dt ∈ Z) =

∫
A

∫
Z

ℓt(M, z) νπt (dz)P(dM),

and

Pπ
t (Z) =

∫
Z

∫
M♯

ℓt(M, z)P(dM) νπt (dz).

Absolute continuity Pπ
t (A, ·)≪ Pπ

t (·) follows immediately, and the Radon–Nikodym derivative is
the displayed ratio, which we denote Rt(A|z). Standard arguments show Rt(·|z) is a probability
measure and z 7→ Rt(A|z) is measurable; independence of π is evident from the formula. Mapping
through h⋆ yields the posterior onH.

Define then

Pπ
t (H

⋆ = H) :=

∫
Zt

Pt(H
⋆ = H|Dt = z)Pπ

t (dz). (12)

We now provide a proof of the optimality of an inference rule. In the following, we use the following
quantity

rt(z) := max
H∈H

Pt(H
⋆ = H|Dt = z), (13)

which is the maximum value of the posterior distribution at time t for some dataset z.

Proposition B.2. Consider a fixed policy π. Let t ∈ N and z ∼ Pπ
t . For any t the optimal inference

rule to supIt P
π
t (H

⋆ = It(Dt)) is given by I⋆t (z) = argmaxH∈H Pt(H
⋆ = H|Dt = z) (break ties

according to some fixed ordering).

Proof. Fix a policy π and an inference rule It at timestep t. By definition, we have

Pπ
t (H

⋆ = It(Dt)) =

∫
Zt

∑
H∈H

1{It(z)=H}Pt(H
⋆ = H|Dt = z)Pπ

t (dz),

(Posterior independent of π)

≤
∫
Zt

max
H∈H

Pt(H
⋆ = H|Dt = z)Pπ

t (dz),

=

∫
Zt

rt(z)Pπ
t (dz).

However, for any Dt = z choosing It(z) = argmaxH∈H Pπ
t (H

⋆ = H|Dt = z) (break ties
according to some fix ordering⇒ hence It(z) is Borel measurable) yields that

Pπ
t (H

⋆ = It(Dt)) =

∫
Zt

rt(z)Pπ
t (dz),

which concludes the proof.
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B.1.3 FIXED BUDGET SETTING: OPTIMAL POLICY

We now turn our attention to the fixed budget setting. In particular, we prove that an optimal policy
π⋆
t in Dt attains the optimal value defined as Vt(Dt) = maxa Ext+1|(Dt,a)[Vt+1((Dt, a, xt+1)|Dt, a]

with VN (DN ) = maxH Pt(H
⋆ = H|DN ) (see a rigorous definition of xt+1|(Dt, a) below).

First, note that from prop. B.2 we can deduce that the optimal objective in the fixed budget satisfies,
for all t ≥ 1,

sup
π,It

Pπ
t (H

⋆ = It(Dt)) = sup
π

Eπ
t [rt(Dt)]

where rt(z) := maxH∈H Pt(H
⋆ = H|Dt = z).

We now show that there exists an optimal deterministic policy π⋆ that optimally solves the fixed budget
regime. First, define the following posterior mixture for any t ∈ N, X ∈ B(X ), (z, a) ∈ Zt ×A:

P̄t(x
′ ∈ X|z, a) :=

∫
M♯

Pt(X|z, a)Rt(dM |z), (14)

where Pt(·|z, a) is the transition function at step t in (M, z, a). This is simply the posterior x′|(z, a),
that in the main text of the manuscript is denoted by xt+1|(Dt, a).

Optimal value. Define the value at N ∈ N as VN (zN ) = rN (zN ) for any zN ∈ ZN , and define
the value function for zt ∈ Zt, a ∈ A as

Vt(zt) = max
a∈A

Qt(zt, a), Qt(zt, a) =

∫
X
Vt+1(zt, a, x

′︸ ︷︷ ︸
=zt+1

) P̄t(dx
′|zt, a), t = 1, . . . , N−1, (15)

For some ordering on A, for z ∈ Zt define π⋆
t (z) ∈ argmaxa∈AQt(z, a) (break ties according to

the ordering). We have the following result.
Proposition B.3. For any t ∈ {1, . . . , N − 1}, z ∈ Zt, the policy π⋆

t (z) ∈ argmaxa∈AQt(z, a)
(break ties according to a fixed ordering) is an optimal policy, that is

sup
π,IN

Pπ
N (H⋆

M = IN (DN )) = Eπ⋆

N [rN (DN )]. (16)

Proof. To prove the result, we use lem. B.4, which shows that Eπ
N [VN (DN )|Dt] ≤ Vt(Dt) holds

Pπ
t -almost surely for any policy π and t ∈ [T ], with equality if π = π⋆. Then, using this inequality

we can show that for t = 1, with z1 ∈ X , we have
Eπ
N [VN (DN )|D1 = z1] ≤ V1(z1)⇒ Eπ

N [rN (DN )] ≤ E1[V1(D1)],

with equality if π = π⋆, implying π⋆ is optimal since we can attain the r.h.s. (note that it does not
depend on π). Hence

sup
π,IN

Pπ
N (H⋆

M = IN (DN )) = sup
π

Eπ
N [rN (DN )] = Eπ⋆

N [rN (DN )].

where the first equality follows from prop. B.2.

We now prove the result used in the proof.
Lemma B.4. Consider the fixed budget setting with horizon N . For any policy π = (πs)s≥1,
t ∈ {1, . . . , N}, z ∈ Zt, we have

Eπ
N [VN (DN )|Dt = z] ≤ Vt(z) Pπ

M∼P,t-almost surely, (17)
with equality when π = π⋆.

Proof. We prove it by backward induction. For t = N the equality holds by definition. Assume it
holds for t+ 1, then at time t for any policy π we have

Eπ
N [VN (DN )|Dt = z] = Eπ

N [Eπ
N [VN (DN )|Dt+1]|Dt = z],

≤ Eπ
t+1[Vt+1(Dt+1)|Dt = z],

= Eπ
t [Qt(z, πt(z))|Dt = z],

≤ Vt(z),

and if π = π⋆ then both inequalities hold since they hold at t+ 1. Hence the result holds also for t,
which concludes the induction argument.
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B.1.4 FIXED CONFIDENCE SETTING: DUAL PROBLEM FORMULATION

In the fixed confidence setting we are interested in solving the following problem.

inf
τ,π,I

Eπ[τ ] subject to Pπ(H⋆ = Iτ (Dτ )) ≥ 1− δ, Eπ[τ ] <∞. (18)

where τ is a stopping time adapted to (σ(Dt))t (recall that it counts the total number of observations;
thus, if τ = t ⇒ we have observations x1, . . . , xt), π = (πs)s≥1, is a collection of policies, and
I = (Is)s≥1, is a sequence of recommendation rules. Furthermore, we have that Pπ(τ < ∞) = 1
(this follows from Eπ[τ ] <∞).

Dual problem and optimal recommendation rule In the following we focus on the dual problem
of eq. (18). First, we show what is the dual problem, and what is the optimal recomendation rule.
Proposition B.5. The Lagrangian dual of the problem in eq. (18) is given by

sup
λ≥0

inf
π,τ,I

Vλ(π, τ, I) = sup
λ≥0

inf
π,τ,I

λ(1− δ) + Eπ [τ − λPτ (H
⋆ = Iτ (Dτ )|Dτ )] , (19)

where λ ≥ 0 is the Lagrangian variable.

Proof. Since any feasible solution stops almost surely, we can also write

Pπ(H⋆
M = Iτ (Dτ )) =

∑
t≥1

Pπ
t (It(Dt) = H⋆, τ = t), (law of total probability)

=
∑
t≥1

Eπ
t

[
1{τ=t}1{H⋆=It(Dt)}

]
,

=
∑
t≥1

Eπ
t

[
Eπ
t

[
1{τ=t}1{H⋆=It(Dt)}

∣∣∣Dt

]]
, (tower rule)

=
∑
t≥1

Eπ
t

[
1{τ=t}Eπ

t

[
1{H⋆=It(Dt)}

∣∣∣Dt

]]
, ({τ = t} ∈ σ(Dt))

=
∑
t≥1

Eπ
t

[
1{τ=t}Pt(H

⋆ = It(Dt)|Dt)
]

(Outer expectation integrates over Dt)

where we used the fact that the posterior distribution does not depend on π (lem. B.1). Using this
decomposition, for λ ≥ 0 (the dual variable) we can write the Lagrangian dual of the problem as

Vλ(π, τ, I) := Eπ

τ + λ

1− δ −
∑
t≥1

1{τ=t}Pt(H
⋆ = It(Dt)|Dt)

 ,

= λ− λδ + Eπ

∑
t≥1

1{t≤τ} − λ1{τ=t}Pt(H
⋆ = It(Dt)|Dt)

 ,

where we used that Eπ[τ ] = Eπ [
∑τ

t=1 1] = Eπ
[∑∞

t=1 1{t≤τ}
]
.

For the dual problem, we now show we can embed the stopping rule as a stopping action. Define the
extended action space Ā := A ∪ {astop}, where astop is absorbing. We show that for every (τ, π, I)
there exists a policy π̄ = (π̄s)s≥1, with π̄s : Zs → ∆(Ā), such that Vλ(π, τ, I) = Vλ(π̄, I), where

Vλ(π̄, I) := λ(1− δ) + Eπ̄ [τ̄ − λPτ̄ (H
⋆ = Iτ̄ (Dτ̄ )|Dτ̄ )] .

and
τ̄ = inf{t : at = astop}.

At the beginning of round t, given Dt, the learner may stop by choosing astop (termination at t,
no new observation) or continue by choosing at ̸= astop and then observing xt+1. If the learner
decides to stop after seeing xt+1 , this is equivalent to choosing astop at round t + 1 , leading to
τ̄ = t+ 1 = τ .
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Lemma B.6. For every (π, τ, I) with τ ≥ 1 a.s., there exists a policy π̄ on Ā = A ∪ {astop} with
stopping rule τ̄ = inf{t : at = astop} such that Vλ(π, τ, I) = Vλ(π̄, I).

Proof. Since {τ = t} ∈ σ(Dt) note that there exists At ∈ B(Zt) such that {τ = t} = {Dt ∈ At}.
Define, for all t ≥ 1 and z ∈ Zt,

π̄t(astop|z) = 1{z∈At}, π̄t(a|z) = πt(a|z) (a ∈ A).

Clearly we have {τ̄ = t} = {at = astop} = {τ = t}, then

Vλ(π̄, I) = λ(1− δ) + Eπ̄ [τ̄ − λPτ̄ (H
⋆ = Iτ̄ (Dτ̄ )|Dτ̄ )] ,

= λ(1− δ) + Eπ̄

∑
t≥1

1{t≤τ̄} − λ1{τ̄=t}Pt(H
⋆ = It(Dt)|Dt)

 ,

= λ(1− δ) + Eπ̄

 τ̄∑
t≥1

1− λ1{at=astop}Pt(H
⋆ = It(Dt)|Dt)

 ,

= λ(1− δ) + Eπ̄

 τ∑
t≥1

1− λ1{τ=t}Pt(H
⋆ = It(Dt)|Dt)

 ,

= λ(1− δ) + Eπ

∑
t≥1

1{t≤τ} − λ1{τ=t}Pt(H
⋆ = It(Dt)|Dt)

 ,

= λ(1− δ) + Eπ [τ − λPτ (H
⋆ = Iτ (Dτ )|Dτ )] .

Then, in the following, we assume to work with the extended space Ā, and indicate by τ = inf{t :
at = astop} the stopping time. We avoid the bar notation for simplicity.

We now show what is the optimal infernece rule.

Proposition B.7. For any t ∈ N the optimal inference rule satisfies It(Dt) ∈ argmaxH∈H Pt(H
⋆ =

H|Dt = zt) (break ties according to some fixed ordering), where zt ∈ Zt. Moreover, we also have

sup
λ≥0

inf
π,I

Vλ(π, I) = sup
λ≥0

inf
π

λ(1− δ) + Eπ [τ − λrτ (Dτ )] , (20)

where τ = inf{t : at = astop} and rt(zt) := maxH Pt(H
⋆ = H|Dt = zt) .

Proof. First, we optimize over recommendation rules. For any t ∈ N, zt ∈ Zt define rt(zt) =
maxH∈H Pt(H

⋆ = H|Dt = zt) as before. Then, for fixed (π, τ) we have that

inf
I
Vλ(π, I) = λ− λδ + Eπ

inf
I

∑
t≥1

1{t≤τ} − λ1{τ=t}Pt(H
⋆ = It(Dt)|Dt)

 ,

= λ− λδ + Eπ

∑
t≥1

1{t≤τ} − λ1{τ=t} sup
It

Pt(It(Dt) = H⋆|Dt)

 ,

= λ− λδ + Eπ

∑
t≥1

1{t≤τ} − λ1{τ=t}rt(Dt)

 ,

where the last step follows from prop. B.2. Therefore, we can also conclude that

sup
λ≥0

inf
π,I

Vλ(π, I) = sup
λ≥0

inf
π

λ− λδ + Eπ [τ − λrτ (Dτ )] .
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B.1.5 FIXED CONFIDENCE SETTING: OPTIMAL POLICY

We now optimize over policies. Recall that A includes the stopping action, and τ = inf{t : at =
astop}. For t ∈ N, z ∈ Zt define the optimal value to go

Vt(z;λ) := inf
π:τ≥t

λ− λδ + Eπ [τ − t− λrτ (Dτ )|Dt = z] .

Also define the following optimal Q-function for z ∈ Zt, a ̸= astop

Qt(z, a;λ) := 1 +

∫
X
Vt+1(z, a, x

′︸ ︷︷ ︸
=z′

;λ) P̄t(dx
′|z, a)

where P̄t is the posterior mixture defined in eq. (14). We also set

Qt(z, astop;λ) := λ(1− δ − rt(z)).

Consider then the policy π⋆
λ = (π⋆

t )t, where π⋆
t (z;λ) ∈ argmina∈AQt(z, a;λ), where we break

ties according to some fixed ordering over A. We have then the following result.
Proposition B.8. π⋆

λ is a λ-optimal policy. Furthermore, the optimal value for z ∈ Zt satisfies

Vt(z;λ) = min
a

Qt(z, a;λ). (21)

Proof. Fix Dt = z, z ∈ Zt. Assume the optimal stopping action stops at τ = t for such z. Then
Vt(z;λ) = λ− λδ − λrt(z) = Qt(z, astop;λ).

Otherwise, assume the optimal stopping rule stops for τ > t. Then

Vt(z;λ) = inf
π:τ>t

λ− λδ + Eπ [τ − t− λrτ (Dτ )|Dt = z] ,

= inf
π:τ>t

1 + Eπ
a

[∫
X
Vt+1(z, a, x

′;λ) P̄t(dx
′|z, a)

]
,

= min
a ̸=astop

Qt(z, a;λ).

We then clearly obtain the lower bound

Vt(z;λ) ≥ min

{
λ(1− δ − rt(z)),min

a∈A
Qt(z, a;λ)

}
.

We now show that π⋆ achieves this value, and thus is optimal.

1. If τ = t, then λ(1−δ−rt(z) ≤ mina ̸=astop
Qt(z, a;λ) and the value to go for π⋆ is exactly

λ(1− δ − rt(z)).

2. if τ ̸= t, then λ(1 − δ − rt(z) ≥ mina ̸=astop
Qt(z, a;λ), and the value to go is

Qt(z, πt(z);λ) = mina Qt(z, a;λ) = Vt(z;λ).

Therefore, the value to go for π⋆ at time t in Dt = z attains the lower bound mina∈AQt(z, a;λ),
and is thus optimal. Applying the result from the previous proposition leads to the desired result.

B.1.6 FIXED CONFIDENCE SETTING: IDENTIFIABILITY AND CORRECTNESS

Lastly, to verify the correctness, we need to make an explicit identifiability assumption.
Assumption 2. For every δ > 0 there exists a policy π with Eπ[τ ] < ∞, such that Eπ[rτ (Dτ )] ≥
1− δ.

Now we show that the optimization problem solved by ICPE can lead to a δ-correct policy and
stopping rule. To that aim, define

S(λ) := argmin
π

Vλ(π), where Vλ(π) := λ(1− δ) + Eπ[τ − λrτ (Dτ )].

Observe that the set S(λ) is not empty since we know that π⋆
λ belongs to it. We have the following

result.
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Lemma B.9. Define the set Φ(λ) = {Eπ[rτ (Dτ )] : π ∈ S(λ)}. Then, any ϕ(λ) ∈ Φ(λ) is
non-decreasing and under assum. 2 any ϕ(λ) ∈ Φ(λ) satisfies limλ→∞ ϕ(λ) = 1.

Proof. We first prove the limit, and then prove the monotonicity.

Step 1: limλ→∞ ϕ(λ) = 1. For ϵ > 0 consider a policy πϵ such that Eπϵ [rτ (Dτ )] ≥ 1− ϵ.

Define g(λ) := infπ,I Vλ(π, I) = infπ Vλ(π).

Now, assume that some feasible minimizer π ∈ S(λ) satisfies Eπ[rτ (Dτ )] ≤ 1− 2ϵ. We proceed by
contradiction and show that this is not possible. First, note that

Vλ(πϵ)− g(λ) = Eπϵ [τ ]− Eπ[τ ] + λ(Eπ[rτ (Dτ )]− Eπϵ [rτ (Dτ )]).

Observe then that Eπ[rτ (Dτ )] − Eπϵ [rτ (Dτ )] ≤ −ϵ < 0. Therefore, we obtain that whenever
λ > Eπϵ [τ ]

ϵ we have that
Vλ(πϵ)− g(λ) ≤ Eπϵ [τ ]− λϵ < 0,

which is however a contradiction to g(λ) being a minimum. Hence, any feasible solution π ∈ S(λ)
must satisfy Eπ[rτ (Dτ )] > 1− 2ϵ for λ > Eπϵ [τ ]/ϵ. Since any π ∈ S(λ) satisfies Eπ[τ ] <∞, we
have that for any fixed ϵ > 0 we get limλ→∞ infπ∈S(λ) Eπ[rτ (Dτ )] > 1− 2ϵ. Since the statement
holds for any ϵ > 0, letting ϵ→ 0 yields the desired result.

Step 2: Monotonicity. Consider two feasible optimal solutions π1 ∈ S(λ1) and π2 ∈ S(λ2), with
λ2 > λ1. We have that

g(λ2)− Vλ1
(π1) ≤ Vλ2

(π1)− Vλ1
(π1) = (λ2 − λ1)(1− δ − Eπ1 [rτ1(Dτ1)])

and
g(λ1)− Vλ2

(π2) ≤ Vλ1
(π2)− Vλ2

(π2) = (λ1 − λ2)(1− δ − Eπ2 [rτ2(Dτ2)]).

Summing up, and using that g(λi) = Vλi(πi) we have that

0 ≤ (λ2 − λ1)(Eπ2 [rτ2(Dτ2)]− Eπ1 [rτ1(Dτ1)]).

Since λ2 > λ1, we must have that Eπ2 [rτ2(Dτ2)]−Eπ1 [rτ1(Dτ1)] ≥ 0. Since we chose the elements
in S arbitrarily, it implies that any ϕ(λ) ∈ Φ(λ) is non-decreasing.

Lastly, to verify the correctness, we use the fact that the sub-gradient of the optimal value of the dual
problem is non-decreasing. To show this result, we employ the following proposition from (Hantoute
& López, 2008) (see Prop. 3.1 therein), which characterizes the subdifferential of the supremum of a
family of affine functions.
Proposition B.10 (Subdifferential of the supremum of affine functions (Hantoute & López, 2008)).
Given a non-empty set {(at, bt) : t ∈ T } ⊂ R2, and the supremum function f(x) : R→ R ∪ {∞}

f(x) = sup{atx− bt : t ∈ T },
for every x ∈ domf we have

∂f(x) = ∩ϵ>0cl (conv{at : t ∈ Tϵ(x)}+B(x))

with
Tϵ(x) := {t ∈ T : atx− bt ≥ f(x)− ϵ},

and
B(x) := {y ∈ R : (y, yx) ∈ (conv{(at, bt) : t ∈ T })∞} ,

where C∞ is the recession cone of a set C and conv(·) denotes the closed convex hull of a set. In
particular, if x ∈ int(domf) we have

∂f(x) = ∩ϵ>0conv {at : t ∈ Tϵ(x)} .

This last proposition permits us to define the subdifferential of the supremum of affine functions, and,
as we see later, we can also find a lower bound on any subdifferential d ∈ ∂f(x).

We are now ready to state the identifiability result.
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Proposition B.11. Consider assum. 2, and, for simplicity, assume the set of optimal policies S(λ) is
a singleton for each λ. Then, an optimal solution (λ⋆, π⋆

λ⋆) satisfies

Pπ⋆
λ⋆ (H⋆

M = Ĥτ⋆
λ⋆
) ≥ 1− δ, (22)

for any critical point λ⋆ ∈ argmaxλ≥0 infπ,I Vλ(π, I).

Proof. Define g(λ) := infπ,I Vλ(π, I) = infπ Vλ(π). Clearly Vλ is differentiable with respect to λ
for all π, and we have ∂Vλ(π)/∂λ = 1− δ − Eπ[rτ (Dτ )].

Part 1: application of prop. B.10. We now derive the subdifferential of g(λ) for λ > 0. For t = π ∈
T , let at = −(1− δ − Eπ[rτ (Dτ )]) and bt = Eπ[τ ]. Then

−g(λ) = sup{atλ− bt : t ∈ T }.

By prop. B.10 it follows that for λ ∈ R

∂(−g(λ)) = ∩ϵ>0conv {at : t ∈ Tϵ(λ)} , Tϵ(λ) := {t ∈ T : atλ− bt ≥ −g(λ)− ϵ},

where ∂(−g(λ)) is the subdifferential of −g.

Using that S(λ) ⊆ Tϵ(λ) for all ϵ ≥ 0, we conclude that for any d ∈ ∂(−g(λ)) we have

−d ≥ inf
π∈S(λ)

1− δ − Eπ[rτ (Dτ )] = 1− δ − Eπ⋆
λ [rτ (Dτ )].

Defining ϕ(λ) = Eπ⋆
λ [rτ (Dτ )], we note that ϕ(λ) ∈ Φ(λ).

Next, consider the case λ = 0. From prop. B.10, we have

B(0) := {y ∈ R : (y, 0) ∈ (conv{(at, bt) : t ∈ T })∞} .

Let C = conv{(at, bt) : t ∈ T }. For a nonempty closed convex set C ⊂ R2 the recession cone is
defined as C∞ = {y ∈ R2|∀x ∈ C, ∀t ≥ 0 : x+ yt ∈ C}. By contradiction, assume (y, 0) ∈ C∞,
then for any (a, b) ∈ C, t ≥ 0 we have (a + yt, b) ∈ C. However, at ∈ [−1 + δ, δ] for all t ∈ T ,
bounded. Hence, there exists t > 0 such that a+ yt /∈ [−1 + δ, δ], which is a contradiction. Since y
is arbitrary, only the 0 element satisfies the condition, and thus B(0) = {0}. Therefore the set of
subdifferentials in 0 is simply given by ∂(−g(0)) = ∩ϵ>0conv {at : t ∈ Tϵ(0)}.

Part 2: critical points. Define the following value:

λ̄ := inf{λ ≥ 0 : ϕ(λ) ≥ 1− δ}.

By lem. B.9, since ϕ(λ) ∈ Φ(λ) we know that λ̄ <∞. Then, for any 0 ≤ λ < λ̄ we have that any
d ∈ ∂(−g(λ)) satisfies

−d ≥ 1− δ − ϕ+(λ) > 0

hence −d > 0 for 0 < λ < λ̄. Since −d is a superdifferential (we are maximizing g!), any critical
solution λ⋆ ∈ argmax g(λ) satisfies λ⋆ ∈ [λ̄,∞). Furthermore, such critical point exists: as λ→∞,
the differential −d becomes negative (since ϕ+(λ)→ 1 by lem. B.9), implying that g(λ) decreases.
Hence, the maximum is attained in λ⋆ ∈ [0,∞).

Then, since λ⋆ ∈ [λ̄,∞), we have that

1− δ ≤ ϕ(λ⋆) = Eπ⋆
λ⋆ [rτ⋆

λ⋆
(Dτ⋆

λ⋆
)] = Eπ⋆

λ⋆ [Pτ⋆
λ⋆
(H⋆

M = Ĥτ⋆
λ⋆
|Dτ⋆

λ⋆
)] = Pπ⋆

λ⋆ (H⋆
M = Ĥτ⋆

λ⋆
).
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Training-time certification and stopping. To obtain formal guarantees on correctness, note that
sequentially testing the accuracy p̂ during training, where

p̂ =
1

K

K∑
i=1

1{H⋆
i =argmaxH Iϕ(H|D(i)

τ )},

may not imply δ-correctness, unless we adopt the correct sequential test. Alternatively, one can
simply avoid to sequentially test the accuracy of the model, and simply stop training at a fixed number
of epochs TE , where TE is fixed a priori. Then, the user can test the model (θTE

, ϕTE
) on a number

of i.i.d. trajectories to evaluate a lower bound on the accuracy of the model (e.g., through a simple
Hoeffding bound).

On the other hand, if we want to stop training as soon as the model is δ-correct, then we should
employ a sequential testing procedure to decide when to stop. To that aim, we need to introduce
an additional confidence δ′ ∈ (0, 1/2). This value becomes the desired correctness of the method,
while δ is chosen to satisfy δ < δ′, with δ′ − δ sufficiently large. The reason is simple: by forcing
the model to be more accurate, it becomes easier (for the test that we use) to detect that the accuracy
crossed the threshold 1− δ′.

We employ the following procedure.

• At epoch t = 1, 2, . . . we evaluate (θt, ϕt, λt) on K i.i.d. rollouts (independent of the
training updates at epoch t, and sampled on K different environments Mi ∼ P).

– For each n ∈ {1, . . . ,K} let Zt,n ∈ {0, 1} indicate whether the returned hypothesis
on that rollout equals H⋆

i on the i-th environment, and set Xt =
1
K

∑K
n=1 Zt,n with

conditional mean pt := E[Zt,1 | Ft−1].
• We adopt the rule: fix η ∈ (0, 1) and stop at the first epoch

T := inf
{
t ≥ 1 :

1

t

t∑
s=1

Xs ≥ (1− δ′) +
1

t

√
2
(
1 + 1−δ′

B t
)
ln
(√

1+ 1−δ′
B t

η

) }
,

then freeze the parameters and return (θT , ϕT , λT ). The proposition below (an anytime
bound via a mixture-martingale) guarantees

P
(
∃t : 1

t

t∑
s=1

Xs crosses the boundary
∣∣∣ sup

t≥1
pt ≤ 1− δ′

)
≤ η,

so, with probability at least 1 − η, we only stop when the global null “pt ≤ 1 − δ′ for
all epochs” is false, i.e., there exists some s ≤ T with ps > 1 − δ′. If, in addition, the
epochwise performance is nondecreasing (p1 ≤ p2 ≤ · · · , a property that typically arises
when the method converges), then pT ≥ 1− δ′, and the returned model is δ′-correct with
confidence 1− η.

Proposition B.12 (Training correctness). Let (Ft)t≥1 be the training filtration, with Ft =
σ(x1, a1, x2, . . . , at−1, xt). For each epoch t let Zt,1, . . . , Zt,K be conditionally i.i.d. Ber(pt) given
Ft−1, with Xt := K−1

∑K
n=1 Zt,n and pt := E[Zt,1|Ft−1]. For η ∈ (0, 1), define the stopping time

T := inf

t ≥ 1 :
1

t

t∑
s=1

Xs ≥ (1− δ′) +
1

t

√
2
(
1 + 1−δ′

K t
)
ln
(√

1+ 1−δ′
K t

η

)  .

Assume further that with probability at least 1− ξ there exists a (finite, Ft-stopping) time t0 such that

pt+1 ≥ pt ∀ t ≥ t0, and sup
t≥t0

pt ≥ 1− δ. (23)

Then
P
(
T <∞, pT ≥ 1− δ′

)
≥ P(T <∞)− (η + ξ).

Proof. Let E be the event in (23). The idea is to construct an event G such that {T <∞} ∩ E ∩ G ⊆
{T <∞, pT ≥ 1− δ′}. On E , define the stopping time S = inf{t ≥ t0 : pt ≥ 1− δ′}.
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We let G = {T ≥ S}. Clearly, by prop. B.13 we have that on E the event G happens with probability
at-least 1− η. Therefore, on {T <∞} ∩ E ∩ G we have that T <∞ and pT ≥ pS ≥ 1− δ′, hence
{T <∞} ∩ E ∩ G ⊆ {T <∞, pT ≥ 1− δ′}.
Let A = {T <∞}. Using the following decomposition of A in disjoint regions

A = (A ∩ E ∩ G) ∪ (A ∩ E ∩ Gc) ∪ (A ∩ Ec),
we obtain

P(T <∞, pT ≥ 1− δ′) ≥ Pr({T <∞} ∩ E ∩ G),
= P({T <∞})− P({T <∞} ∩ E ∩ Gc)− P({T <∞} ∩ Ec),
≥ P({T <∞})− P(E ∩ Gc)− P(Ec),
= P({T <∞})− η − ξ.

Remark. Condition (23) is one natural way to formalize “monotone convergence from some epoch
t0 with high probability.” Under (23) the first epoch S with pS ≥ 1− δ′ exists a.s., and the anytime
validity ensures we do not stop before S except with probability at most η. Hence, upon stopping, the
returned snapshot is δ′-correct with probability at least 1− η − ξ. We also note that the event E is a
consequence of lem. B.9, from the monotonicity of Eπ[rτ (Dτ )] in λ.

Lastly, note that the test that we use considers the average over epochs of Xn. If δ′ = δ, this average
may take a long time to converge to 1− δ, and even to cross the threshold. Hence, we practically run
the algorithm with confidence δ, with δ < δ′ (where δ′ is the desired accuracy), so that (1/t)

∑
n Xn

converges to 1− δ > 1− δ′ (and this fact can help the test trigger earlier).

Lastly, we prove an anytime bound via a mixture-martingale on the repeated tests on pt.

Proposition B.13. For all t ≥ 1, B ∈ N, let Xt = 1
B

∑B
n=1 Zt,n, where, for each t, (Zt,n)

B
n=1

are conditionally i.i.d. Bernoulli random variables with mean pt given Ft−1, where Ft =
σ(x1, a1, x2, . . . , at−1, xt). Assume that supt≥1 pt ≤ 1− δ′. Then, for all η ∈ (0, 1) we have

P

∃t ≥ 1 :
1

t

t∑
n=1

Xn ≥ (1− δ′) +
1

t

√√√√√2

(
1 +

1− δ′

B
t

)
ln


√

1 + 1−δ′
B t

η


 ≤ η.

Proof. Let St =
∑t

i=1 Xi − pi.

For any λ ≥ 0, α > 0, let ϕt(λ) = αB
pt(1−pt)

lnE[e λ
B (Z−pt)|Ft−1] be the (normalized) CGF

of Z ∼ Ber(pt). Define Vt = pt(1−pt)
α be a measure of variance. Then, for Mt(λ) =

exp
(
λSt −

∑t
i=1 ϕi(λ)Vi

)
we get that

E [Mt(λ)|Ft−1] = E

[
exp

(
t∑

i=1

λ(Xi − pi)− ϕi(λ)Vi

)
|Ft−1

]
,

= Mt−1(λ)E [exp (λ(Xt − pt)− ϕt(λ)Vt) |Ft−1] ,

= Mt−1(λ)E

[
exp

(
λ(
∑B

n=1 Zt,n − pt)

B
−B lnE[e

λ
B (Z−pt)|Ft−1]

)
|Ft−1

]
,

= Mt−1(λ)
E
[
exp

(
λ(

∑B
n=1 Zt,n−pt)

B

)
|Ft−1

]
E[exp

(
λ
B (Z − pt)

)
|Ft−1]B

,

= Mt−1(λ)
E
[
exp

(
λ
B (Z − pt)

)
|Ft−1

]B
E[exp

(
λ
B (Z − pt)

)
|Ft−1]B

= Mt−1(λ).

Since Mt ≥ 0, λ ≥ 0, we have that Mt(λ) is a non-negative martingale (hence, also a super-
martingale).
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We use the method of mixtures to integrate Mt(λ) over a prior over λ. To do so, we need to find an
appropriate lower bound on Mt. Consider then ϕt(λ): we can use the fat that ϕt(λ) ≤ αλ2/(2B)

from the sub-gaussianity of Z. Then, choose a prior π(dλ) =
√
2/πe−λ

2/2dλ (a half normal). We
obtain∫ ∞

0

Mt(λ)π(dλ) =

∫ ∞
0

exp

(
λSt −

t∑
i=1

ϕi(λ)Vi

)
π(dλ),

≥
∫ ∞
0

exp

(
λSt −

t∑
i=1

αλ2

2B

1− δ′

α

)
π(dλ), (Vi ≤ pt/α ≤ (1− δ′)/α)

=
√
2/π

∫ ∞
0

exp

(
λSt −

λ2

2

[
1 +

(1− δ′)

B
t

])
dλ.

Since the Gaussian integral satisfies∫ ∞
0

e−aλ
2+bλ dλ = e

b2

4a

∫ ∞
0

e−a(λ−
b
2a )

2

dλ ≥ e
b2

4a

∫ ∞
0

e−ax
2

dx = e
b2

4a
1

2

√
π

a
,

for vt = (1− δ′)t/B we can lower bound the integral over Mt(λ) as∫ ∞
0

Mt(λ)π(dλ) ≥
1√

1 + vt
e

S2
t

2(1+vt) .

Therefore, by Ville’s inequality we obtain

P
(
∃t ≥ 1 :

∫ ∞
0

Mt(λ)π(dλ) ≥
1

η

)
≤ η.

Therefore, with probability 1− η for all t ≥ 1 we have

1√
1 + vt

e
S2
t

2(1+vt) <
1

η
⇒ St <

√
2(1 + vt) ln

(√
1 + vt
η

)
Since St ≥

∑t
i=1 Xi − (1− δ′), we obtain the desired result.
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B.2 META-TRAINING: FINITE SAMPLE ANALYSIS

Algorithm 2 Finite-budget idealized ICPE training
Inputs: Value function space F , posterior rewards rN , reference measure µ.
Init: choose Q(0) ∈ F ; for k ≥ 0 set π(k+1) = G(Q(k)) with π

(k+1)
t (z) ∈ argmaxa Q

(k)
t (z, a).

1: for k = 0, . . . do
2: Sampling: draw a batch Bk = {(z(i), a(i), t(i))}Bi=1 i.i.d. from µ.
3: for each (z, a, t) ∈ Bk do
4: sample x′ ∼ P̄t(· | z, a) and let z′ = (z, a, x′).
5: set targets:

Q̂
(k+1)
t (z, a)←

{
Q

(k)
t+1(z

′, π
(k+1)
t+1 (z′)

)
, t < N,

rN (z′), t = N.

6: end for
7: Regression: for each t = 1, . . . , N , fit

Q
(k+1)
t ∈ arg min

Q∈Ft

L̂t(Q, Q̂(k+1);Bk,t).

8: end for

We work in the Bayes/history MDP induced by the prior over environments. Let {Zt}Nt=1 be the
history spaces (as in ICPE), with z ∈ Zt encoding the full trajectory prefix up to stage t. The terminal
(posterior) reward is

rN (z) = max
H∈H

PN

(
H⋆ = H|DN = z),

with z ∈ ZN .

Reference sampling law. Let µ be a probability distribution on triples (z, a, t) ∈⋃N
t=1(Zt × A × {t}), with stage marginals µt on Zt × A. During training, all regression

samples are drawn i.i.d. from µ: this measure represents sampling from idealized replay buffer.

The next sample is then sampled according to x′ ∼ P̄t(· | z, a), where

P̄t(x
′ ∈ X|zt, a) :=

∫
M♯

Pt(X|zt, a)Rt(dM |zt), (24)

so that the next history is zt+1 = (zt, a, x
′).

Function class and Stage-wise Bellman operators. We let F ⊂
∏N

t=1{Zt ×A → [0, 1]} be the
Q-function class. For Q = (Qt)

N
t=1 ∈ F , define the stagewise greedy policy

πt = G(Qt) ∈ argmax
a∈A

Qt(·, a) (t = 1, . . . , N).

For a nonstationary policy π = (π1, . . . , πN ) and a Q-array Q = (Q1, . . . , QN ), define for t =
1, . . . , N, z ∈ Zt the operator

[Γπ
t Q] (z, a) := Ex′∼P̄t(·|z,a) [Qt+1 (z

′, πt+1(z
′))] , z′ = (z, a, x′).

At the last stage, with terminal posterior reward rN

[Γπ
NQ] (z, a) := rN (z) , ∀a.

We also define the optimal operator

Γ⋆
tQ(z, a) := E

[
1{t<N}max

a′
Qt+1(z

′, a′) + 1{t=N}rN (z)
]
.

In the following we write ΓπQ = (Γπ
1Q, . . . ,Γπ

NQ) and similarly for Γ⋆,G.

Given a policy π we also indicate by Qπ
t (z, a) the true Q-value of π at (z, a, t). Similarly, we define

the value as V π
t (z) = Qπ

t (z, πt(z)). We similarly define the optimal value V ⋆
t .
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Concentrability (w.r.t. µ). Let νπt be the occupancy measure on (zt) at stage t under policy π,
when the initial history is sampled from the prior-induced initial distribution ρ (where ρ is the initial
observation distribution in M ), that is

νπt (·) := Eπ
M∼P [ρP1 · · ·Pt−1(·)] .

with ν1(·) = EM∼P [ρ(·)].
Assumption 3. For all t = 1, . . . , N we assume that νπt ≪ µZ

t , where µZ
t is the marginal of µ on

Zt.

Define then the concentrability coefficients

c∞(t) := sup
π

∥∥∥∥ dνπtdµZ
t

∥∥∥∥
∞

.

Recall also assumption 1, which states that there exist probability measures λ0, λ on (X ,B(X )) such
that, for all (ρ, P ) ∈M♯, s ∈ N, and (z, a) ∈ Zs ×A,

ρ(·)≪ λ0(·) and Ps(·|z, a)≪ λ(·).

We make the following additional assumption.
Assumption 4. For all (ρ, P ) ∈ M ♯, s ∈ N and (z, a) ∈ Zs × A we assume that dρM (·)/dλ0(·)
and dPs(·|z, a)/dλ(·) are upper semicontinuous.

Hence, by compactness and upper semicontinuity there exist L0, L1 such that

sup
ρ∈M♯

sup
x∈X

dρ

dλ0
(x) ≤ L0, max

t=1,...,N
sup

P∈M♯

sup
x∈X ,z∈Zt,a∈A

dPt(·|z, a)
dλ

(x) ≤ L1.

Consequently, one can bound c∞ as follows

c∞(t) ≤ L0L
t
1.

Function class and losses. LetFt be a hypothesis class for Qt. We indicate by Bk ⊂ (Z×A×[N ])
a batch of samples, and by Bk,t = {(z, a, s) ∈ Bk : s = t}. Hence, for a batch Bk with targets
Q̂(k+1), define the empirical squared loss

L̂t(Q, Q̂(k+1);Bk,t) :=
1

|Bk,t|
∑

(zt,a)∈Bk,t

(
Qt(zt, a)− Q̂

(k+1)
t (zt, a)

)2
,

and the Monte Carlo targets are

Q̂
(k+1)
t (z, a) =

{
Q

(k)
t+1(z

′, π
(k+1)
t+1 (z′)), t < N,

rN (z′), t = N,
z′ = (z, a, x′), x′ ∼ P̄t(·|z, a).

with π(k+1) = G(Q(k)). We also define the true loss

L(Q(k), Q(k−1)) := E(z,a,t)∼µ

[(
Γπ(k)

t Q(k−1)(z, a)−Q
(k)
t (z, a)

)2]
,

and Lt(Q
(k), Q(k−1)) := E(z,a)∼µt

[(
Γπ(k)

t Q(k−1)(z, a)−Q
(k)
t (z, a)

)2]
. In the following, for

simplicity, we also write Lk,t := Lt(Q
(k), Q(k−1)).

In each epoch k a regression problem is solved, where the training set {(z(i), a(i), t(i), Q̂(k+1))} and
Q̂

(k+1)

t(i)
(z(i), a(i)) is an unbiased estimate of the target defined by ΓtQ.

B.2.1 MAIN RESULTS

The main results are the following ones.
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Error propagation. We first obtain a result on the error propagation that bounds the sub-optimality
of the policy at training epoch k. This result holds for a general function space F = (Ft)

N
t=1.

In the following, we denote the overlal value of a policy π by J(π) = Eπ
P [rN (zN )] and define

π⋆ ∈ arg supπ J(π).
Theorem B.14 (Sub-optimality of policy π(k)). Let J(π) = Eπ

P [rN (zN )] and π⋆ ∈ arg supπ J(π).
For k ≥ N + 1, we have that

|J(π⋆)− J(π(k))| ≤ ∥w∥2

√S
(1,N)
k−1 + 2

√√√√(N + 1)

k∑
u=k−N

S
(2,N)
u +

√
D

(1,N)
k


where w = (wu)

N
u=1 is the vector of concentrability coefficients, with wu := c∞(u)κu; S(a,b)

m =∑b
u=a Lm,u is the sum of losses for epoch m along the timesteps (a, a + 1, . . . , b); D

(a,b)
m =∑b

u=a Lm−u,u is the diagonal sum of losses.

Finite-sample performance bound. We now show how the losses that appear in the previous result
can be bounded to derive a finite-sample performance bounds.

To approximate the target, for each t = 1, . . . , N we consider a linear function space Ft of dimension
dt with bounded basis function {φt,i}dt

i=1 ∥φt,i∥∞ ≤ Cb. For each t we consider a linear family with
parameter αt ∈ Rdt and features ϕt : Zt×A → Rdt , thusFt = {(z, a) 7→ ϕt(z, a)

⊤αt : αt ∈ Rdt}.

At epoch k regression returns a linear predictor Q̃(k)
t . We then define the Q-function used by the

algorithm as the truncation Q
(k)
t = T(Q̃(k)

t ). In the analysis, Q(k)
t always denotes this truncated

version.
Theorem B.15 (Fixed-budget finite-sample training error). Fix δ ∈ (0, 1) and choose δ′ = δ/(4kN).
Suppose (i) the features are bounded, supz,a ∥ϕt(z, a)∥2 ≤ Cb; (ii) concentrability holds with
coefficients c∞(t) and κt; and (iii) the batch size satisfies

B ≥ 2

pminη2
log

4kN

δ
.

for some η ∈ (0, 1). Then, for k ≥ N + 1, with probability at least 1− δ,

|J(π⋆)− J(π(k))| ≤ O

NC0


√√√√ N∑

t=1

β2
t +

√√√√ N∑
t=1

dt
(1− η)pminB

log
4kN

δ

 ,

where βt = supQ∈F,π inff∈Ft ∥Γπ
t Q − f∥µt and C0 =

(∑N
t=1 c∞(t)2κ2

t

)1/2
, and pmin =

mint µ(t), where µ(t) is the marginal over timesteps of the buffer distribution.

Intuition. thm. B.14 shows that the performance gap J(π⋆)−J(π(k)) is controlled by how well each
step approximates the Bellman update: the terms S(1,N)

k−1 ,
∑k

u=k−N S
(2,N)
u , and D

(1,N)
k aggregate

the single–step squared Bellman residuals Lk,t across time and across a window of epochs, and the
concentrability vector w = (c∞(t) · κt)

N
t=1 measures how much these local errors can be amplified

when propagated along the trajectory distribution. The finite-sample bound in thm. B.15 then replaces
these abstract residuals with explicit statistical quantities: each Lk,t is bounded by an approximation
term βt (how well the function class can represent an exact update) plus an estimation term that
decays as

√
dt/((1− η)pminB). In other words, the final rate cleanly separates an approximation

error, captured by
√∑

t β
2
t , from a sample error, captured by

√∑
t dt/((1− η)pminB), and both are

scaled by the horizon N and the concentrability constant C0, which quantify how errors accumulate
along the history MDP.

B.2.2 CONVERGENCE ANALYSIS: PROOF OF THM. B.14

To prove thm. B.14, we follow an analysis similar to the one in (Scherrer et al., 2012). However,
note that their setting is quite different from ours: we do not have the classical discounted Bellman
operator, and as a consequence the proofs are different.

We begin by defining the following key quantities :
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1. At iteration k we indicate by π
(k)
t = G(Q(k−1)

t ) the greedy policy.

2. The one-step evaluation Q
(k)
t = Γπ(k)

t Q(k−1) + ϵ
(k)
t , and ϵ

(k)
t is the regression error and

Q
(k)
t is computed according to Q

(k)
t ∈ argminQ∈Ft L̂t(Q, Q̂(k)) for all t = 1, . . . , N . We

also write V
(k)
t (z) = [Γπ(k)

t Q(k−1)](z, π
(k)
t (z)).

3. We define V π(k)

t to be the value of π(k) under Γ, that is, the true value of π(k) with rewards
r. Similarly, we define Qπ(k)

t to be the Q-value.

4. The Bellman residual w.r.t. the next greedy policy: b(k)t = Q
(k)
t − Γπ(k+1)

t Q(k)

5. The performance gap ℓ
(k)
t = V ⋆

t − V π(k)

t ≥ 0.

6. Distance before approximation: d(k)t = V ⋆
t − V

(k)
t .

7. The shift: s(k)t = V
(k)
t − V π(k)

t .

Therefore ℓ(k)t = s
(k)
t + d

(k)
t : this is the quantity we wish to bound for t = 1. The proof of thm. B.14

is based on bounding st and dt separately. We begin by proving a lemma that we use repeatedly in
all of the proofs.

Lemma B.16. Let κt :=
√
esssupz maxa

1
µt(a|z) . Let µZ

t be the marginal of µt on Zt. Then, for
any t, measurable function ft : Zt → A, we have that

Ez∼µZ
t
[|ϵ(k)t (z, ft(z))|] ≤ κt

√
Lt(Q(k), Q(k−1)).

Proof. Consider |ϵ(k)t (z, ft(z))|, then

Ez∼µZ
t
[|ϵ(k)t (z, ft(z))|] = EµZ

t

[∑
a

1{ft(z)=a}|ϵ
(k)
t (z, a)|

]
,

= Ez∼µZ
t

[∑
a

√
µt(a|z)
µt(a|z)

1{ft(z)=a}|ϵ
(k)
t (z, a)|

]
,

≤

√√√√Ez∼µZ
t

[∑
a

1{ft(z)=a}

µt(a|z)

]
Ez∼µZ

t

[∑
a

|ϵ(k)t (z, a)|2µt(a|z)

]
,

(Cauchy-Schwartz)

≤

√
Ez∼µZ

t

[
1

µt(ft(z)|z)

]
E(z,a)∼µt

[
|ϵ(k)t (z, a)|2

]
,

≤ κt

√
Lt(Q(k), Q(k−1)). (by definition)

We now have the bound on d
(k+1)
t .

Lemma B.17. For t = 1, . . . , N , and all k ≥ 1 we have that

E
z∼νπ(k+1)

t

[
d
(k+1)
t (z)

]
≤ E

z∼νπ(k+1)
t

[
b
(k)
t (z, π

(k+1)
t (z))

]
+

N−t∑
j=0

c∞(t+ j)κt+j

√
Lk−j,t+j .

Proof. Consider d(k)N (z) = V ⋆
N (z) − V

(k)
N (z) = rN (z) − rN (z) = 0. Then d

(k)
N (z) = 0 for all

z ∈ ZN .
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For t < N we have
d
(k+1)
t (z) = V ⋆

t (z)− [Γπ(k+1)

t Q(k)](z, π
(k+1)
t (z)),

= max
a

Q⋆
t (z, a)− [Γπ(k+1)

t Q(k)](z, π
(k+1)
t (z)),

= max
a

Q⋆
t (z, a)− [Γπ(k+1)

t Q(k)](z, π
(k+1)
t (z))±Q

(k)
t (z, π

(k+1)
t (z)),

= max
a

Q⋆
t (z, a)−Q

(k)
t (z, π

(k+1)
t (z)) +Q

(k)
t (z, π

(k+1)
t (z))− [Γπ(k+1)

t Q(k)](z, π
(k+1)
t (z)),

= max
a

Q⋆
t (z, a)−Q

(k)
t (z, π

(k+1)
t (z)) + b

(k)
t (z, π

(k+1)
t (z)),

≤ max
a

[Q⋆
t (z, a)−Q

(k)
t (z, a)] + b

(k)
t (z, π

(k+1)
t (z)),

where the last step follows from the greediness of π(k+1)
t w.r.t. Q(k)

t . Define ∆(k)
t (z, a) = Q⋆

t (z, a)−
Q

(k)
t (z, a) and ∆

(k)
t (z) = maxa ∆

(k)
t (z, a). Then

d
(k+1)
t (z) ≤ ∆

(k)
t (z) + b

(k)
t (z, π

(k+1)
t (z)).

We are now tasked with bounding ∆
(k)
t . To that aim, observe that Q⋆

t = Γ⋆
tQ

⋆, thus

∆
(k)
t (z, a) = [Γ⋆

tQ
⋆](z, a)− [Γπ(k)

t Q(k−1)](z, a)− ϵ
(k)
t (z, a),

= Ez′∼P̄ (·|z,a)[V
⋆
t+1(z

′)−Q
(k−1)
t+1 (z′, π

(k)
t+1(z

′))]− ϵ
(k)
t (z, a),

= Ez′∼P̄ (·|z,a)[max
a′

Q⋆
t+1(z

′, a′)−Q
(k−1)
t+1 (z′, π

(k)
t+1(z

′))]− ϵ
(k)
t (z, a),

≤ Ez′∼P̄ (·|z,a)

[
∆

(k−1)
t+1 (z′)

]
− ϵ

(k)
t (z, a). (similarly to above)

Therefore, we have that

∆
(k)
t (z) ≤ max

a
Ez′∼P̄ (·|z,a)

[
∆

(k−1)
t+1 (z′)

]
+max

a
|ϵ(k)t (z, a)|,

from which we can recursively show that

E
z∼νπ(k+1)

t

[
∆

(k)
t (z)

]
≤

N−t∑
j=0

c∞(t+ j)κt+j

√
Lk−j,t+j

using lem. B.16.

We now have the bound on s
(k)
t .

Lemma B.18. For all t = 1, . . . , N and k we have that

E
z∼νπ(k)

t

[s
(k)
t (z)] =

N−t∑
j=1

E
z′∼νπ(k)

t+j

[
b
(k−1)
t+j (z′, π

(k)
t+j(z

′))
]
.

Proof. First, note that s(k)N (z) = 0 . Then, for t < N we have

s
(k)
t (z) = V

(k)
t (z)− V π(k)

t (z),

= [Γπ(k)

t Q(k−1)](z, π
(k)
t (z))−Qπ(k)

t (z, π
(k)
t (z)),

= E
x′|z,π(k)

t (z)

[
Q

(k−1)
t+1 (z′, π

(k)
t+1(z

′))− V π(k)

t+1 (z′)
∣∣∣ z′ = (z, π

(k)
t (z), x′)

]
,

= E
x′|z,π(k)

t (z)

[
b
(k−1)
t+1 (z′, π

(k)
t+1(z

′)) + [Γπ(k)

t+1Q
(k−1)](z′, π

(k)
t+1(z

′))− V π(k)

t+1 (z′)
∣∣∣ z′ = (z, π

(k)
t (z), x′)

]
,

= E
x′|z,π(k)

t (z)

[
b
(k−1)
t+1 (z′, π

(k)
t+1(z

′)) + V
(k)
t+1(z

′)− V π(k)

t+1 (z′)
∣∣∣ z′ = (z, π

(k)
t (z), x′)

]
,

= E
x′|z,π(k)

t (z)

[
b
(k−1)
t+1 (z′, π

(k)
t+1(z

′)) + s
(k)
t+1(z

′)
∣∣∣ z′ = (z, π

(k)
t (z), x′)

]
,

=

N−t∑
j=1

E
[
b
(k−1)
t+j (z′, π

(k)
t+j(z

′))
∣∣∣ zt = z, then follow π(k)

]
.
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Therefore

E
z∼νπ(k)

t

[s
(k)
t (z)] =

N−t∑
j=1

E
z′∼νπ(k)

t+j

[
b
(k−1)
t+j (z′, π

(k)
t+j(z

′))
]
.

Lemma B.19. For all t = 1, . . . , N,∀a ∈ A and epochs k ≥ N we have that

E
z∼νπ(k)

t

[
b
(k)
t (z, a)

∣∣∣π(k), . . . , π(k−(N−t)+1)
]

≤ c∞(t)κt

√
Lk,t + c∞(N)κN

[√
Lk−(N−t),N +

√
Lk−(N−t−1),N

]
+

N−t−1∑
j=1

c∞(t+ j)κt+j

[√
Lk−j,t+j +

√
Lk−j+1,t+j

]
.

Proof. (One-step recursion). For t < N write

b
(k)
t = Q

(k)
t − Γπ(k+1)

t Q(k),

= Γπ(k)

t Q(k−1) − Γπ(k+1)

t Q(k) + ϵ
(k)
t .

Use the definition of Γπ
t , we have that at time t = N we get b(k)N = ϵ

(k)
N . For t < N we get

b
(k)
t (z, a) = ϵ

(k)
t (z, a) + Ex′∼P̄t(·|z,a)

[
Q

(k−1)
t+1

(
z′, π

(k)
t+1(z

′)
)
−Q

(k)
t+1

(
z′, π

(k+1)
t+1 (z′)

) ∣∣∣ z′ = (z, a, x′)
]
,

=ϵ
(k)
t (z, a) + Ex′∼P̄t(·|z,a)

[
Q

(k−1)
t+1

(
z′, π

(k)
t+1(z

′)
)
−Q

(k)
t+1

(
z′, π

(k+1)
t+1 (z′)

)
±Q

(k)
t+1(z

′, π
(k)
t+1(z

′))
∣∣∣ z′ = (z, a, x′)

]
,

=ϵ
(k)
t (z, a) + Ex′∼P̄t(·|z,a)

[
Q

(k−1)
t+1

(
z′, π

(k)
t+1(z

′)
)
−Q

(k)
t+1(z

′, π
(k)
t+1(z

′))

+Q
(k)
t+1(z

′, π
(k)
t+1(z

′))−Q
(k)
t+1

(
z′, π

(k+1)
t+1 (z′)

) ∣∣∣ z′ = (z, a, x′)
]
,

≤ ϵ
(k)
t (z, a) + Ex′∼P̄t(·|z,a)

[
Q

(k−1)
t+1

(
z′, π

(k)
t+1(z

′)
)
−Q

(k)
t+1(z

′, π
(k)
t+1(z

′))
∣∣∣ z′ = (z, a, x′)

]
,

where in the last inequality, we used that Q
(k)
t+1(z

′, π
(k+1)
t+1 (z′)) ≥ Q

(k)
t+1(z

′, π
(k)
t+1(z

′)) (since
π(k+1) = G(Q(k)). Now, using the definition b

(k)
t+1 = Q

(k)
t+1 − Γπ(k+1)

t+1 Q(k), we continue with
Q

(k)
t+1 = Γπ(k)

t+1Q
(k−1) + ϵ

(k)
t+1

= ϵ
(k)
t (z, a) + Ex′∼P̄t(·|z,a)

[
Q

(k−1)
t+1

(
z′, π

(k)
t+1(z

′)
)
− [Γπ(k)

t+1Q
(k−1) + ϵ

(k)
t+1](z

′, π
(k)
t+1(z

′))
∣∣∣ z′ = (z, a, x′)

]
,

= ϵ
(k)
t (z, a) + Ex′∼P̄t(·|z,a)

[
b
(k−1)
t+1

(
z′, π

(k)
t+1(z

′)
)
− ϵ

(k)
t+1(z

′, π
(k)
t+1(z

′))
∣∣∣ z′ = (z, a, x′)

]
.

Therefore

b
(k)
t (z, a) ≤ ϵ

(k)
t (z, a) + Ex′∼P̄t(·|z,a)

[
b
(k−1)
t+1

(
z′, π

(k)
t+1(z

′)
)
− ϵ

(k)
t+1(z

′, π
(k)
t+1(z

′))
∣∣∣ z′ = (z, a, x′)

]
.

Thus

b
(k)
t (z, a) ≤ |ϵ(k)t (z, a)|+Ex′∼P̄t(·|z,a)

[
b
(k−1)
t+1

(
z′, π

(k)
t+1(z

′)
)
+ |ϵ(k)t+1(z

′, π
(k)
t+1(z

′))|
∣∣∣ z′ = (z, a, x′)

]
.

(Unrolling). Let zt+1 be the state observed after taking action a in z in round t. Then denote the
successive states by zt+j , sampled by following π(k). Then, unrolling the last upper bound yields

b
(k)
t (z, a) ≤ |ϵ(k)t (z, a)|+ E

[
|ϵ(k−1)t+1 (zt+1, π

(k)
t+1(zt+1))|+ b

(k−2)
t+2

(
zt+2, π

(k−1)
t+2 (zt+2)

)
+ |ϵ(k−1)t+2 (zt+2, π

(k−1)
t+2 (zt+2))|+ |ϵ(k)t+1(zt+1, π

(k)
t+1(zt+1))|

∣∣∣ zt = z, at = a
]
,

≤ E
[
|ϵ(k)t (zt, at)|+ |ϵ(k−(N−t))N (zN , π

(k−(N−t)+1)
N (zN ))|+ |ϵ(k−(N−t)+1)

N (zN , π
(k−(N−t)+1)
N (zN ))|

+

N−t−1∑
j=1

|ϵ(k−j)t+j (zt+j , π
(k−j+1)
t+j (zt+j))|+ |ϵ(k−j+1)

t+j (zt+j , π
(k−j+1)
t+j (zt+j))|

∣∣∣ zt = z, at = a
]
.
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Therefore, using lem. B.16

E
z∼νπ(k)

t

[
b
(k)
t (z, a)

∣∣∣π(k), . . . , π(k−(N−t)+1)
]

≤ c∞(t)κt

√
Lk,t + c∞(N)κN

[√
Lk−(N−t),N +

√
Lk−(N−t−1),N

]
+

N−t−1∑
j=1

c∞(t+ j)κt+j

[√
Lk−j,t+j +

√
Lk−j+1,t+j

]
.

We now prove the bound on J(π⋆)− J(π(k)) in thm. B.14, where J(π) = Eπ
P [rN (zN )].

Proof of thm. B.14. Note that 0 ≤ J(π⋆) − J(π(k)) = Ez∼ν1
[ℓ
(k)
1 (z)]. Using the decomposition

ℓ
(k)
1 = s

(k)
1 + d

(k)
1 and lems. B.17 and B.18, we obtain that

Ez∼ν1 [ℓ
(k)
1 (z)] = Ez∼ν1

[
s
(k)
1 (z)

]
+ Ez∼ν1

[
d
(k)
1 (z)

]
,

≤
N∑

u=2

E
z′∼νπ(k)

u

[
b(k−1)u (z′, π(k)

u (z′))
]
+ E

z∼νπ(k)

1

[
b
(k−1)
1 (z, π

(k)
1 (z))

]
+

N∑
u=1

c∞(u)κu

√
Lk−u,u,

=

N∑
u=1

E
z′∼νπ(k)

u

[
b(k−1)u (z′, π(k)

u (z′))
]
+

N∑
u=1

c∞(u)κu

√
Lk−u,u.

From lem. B.19 we know that

E
z∼νπ(k)

t

[
b
(k)
t (z, a)

∣∣∣π(k), . . . , π(k−(N−t)+1)
]
≤ c∞(t)κt

√
Lk,t + c∞(N)κN

[√
Lk−(N−t),N +

√
Lk−(N−t−1),N

]
+

N−t−1∑
j=1

c∞(t+ j)κt+j

[√
Lk−j,t+j +

√
Lk−j+1,t+j

]
.

hence

E
z∼νπ(k)

t

[
b
(k−1)
t (z, π

(k)
t (z))

]
≤ c∞(t)κt

√
Lk−1,t + c∞(N)κN

[√
Lk−(N−t)−1,N +

√
Lk−(N−t),N

]
+

N−t−1∑
j=1

c∞(t+ j)κt+j

[√
Lk−j−1,t+j +

√
Lk−j,t+j

]
.

Using the last inequality we obtain

N∑
u=1

E
z′∼νπ(k)

u

[
b(k−1)u (z′, π(k)

u (z′))
]
≤

N∑
u=1

c∞(u)κu

√
Lk−1,u + c∞(N)κN

[√
Lk−(N−u)−1,N +

√
Lk−(N−u),N

]
+

N∑
u=1

N−u−1∑
j=1

c∞(u+ j)κu+j

[√
Lk−j−1,u+j +

√
Lk−j,u+j

]
= (⋆).

Re-indexing the last term by s = u+ j, we have

(⋆) =

N∑
u=1

c∞(u)κu

√
Lk−1,u + c∞(N)κN

[√
Lk−(N−u)−1,N +

√
Lk−(N−u),N

]
+

N−1∑
s=2

c∞(s)κs

s−1∑
j=1

[√
Lk−j−1,s +

√
Lk−j,s

]
.
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At this point, define wu = c∞(u)κu, w
(a,b) = (wu)

b
u=a, Z(a,b)

m =
∑b

u=a

√
Lu,m and S

(a,b)
m =∑b

u=a Lm,u. Then,

(⋆) ≤ ∥w(1,N)∥2
√
S
(1,N)
k−1 + wN

[
Z

(k−N,k−1)
N + Z

(k−N+1,k)
N

]
(Applied Cauchy-Schwartz)

+

N−1∑
s=2

ws

[
Z(k−s,k−2)
s + Z(k−s+1,k−1)

s

]
,

≤ ∥w(1,N)∥2
√

S
(1,N)
k−1 + 2

N∑
s=2

wsZ
(k−s,k)
s , (Increased the sum range of Z)

≤ ∥w(1,N)∥2

√S
(1,N)
k−1 + 2

√√√√ N∑
s=2

(
Z

(k−s,k)
s

)2 . (By ∥w(2,N)∥2 ≤ ∥w(1,N)∥2)

Now, observe that

(
Z(k−s,k)
s

)2
=

(
k∑

u=k−s

√
Lu,s

)2

≤ (s+ 1)

(
k∑

u=k−s

Lu,s

)
≤ (N + 1)

k∑
u=k−N

Lu,s,

therefore
N∑
s=2

(N + 1)

k∑
u=k−N

Lu,s = (N + 1)

k∑
u=k−N

N∑
s=2

Lu,s = (N + 1)

k∑
u=k−N

S(2,N)
u .

Thus

(⋆) ≤ ∥w(1,N)∥2

√S
(1,N)
k−1 + 2

√√√√(N + 1)

k∑
u=k−N

S
(2,N)
u

 .

We can plug this back into the original bound on ℓ
(k)
1 . Define D

(a,b)
s =

∑b
u=a Ls−u,u to be the

diagonal sum of losses, then

Ez∼ν1 [|ℓ
(k)
1 (z)|] ≤ ∥w(1,N)∥2

√S
(1,N)
k−1 + 2

√√√√(N + 1)

k∑
u=k−N

S
(2,N)
u

+

N∑
u=1

c∞(u)κu

√
Lk−u,u,

≤ ∥w(1,N)∥2

√S
(1,N)
k−1 + 2

√√√√(N + 1)

k∑
u=k−N

S
(2,N)
u

+ ∥w(1,N)∥2
√
D

(1,N)
k ,

≤ ∥w(1,N)∥2

√S
(1,N)
k−1 + 2

√√√√(N + 1)

k∑
u=k−N

S
(2,N)
u +

√
D

(1,N)
k

 .

B.2.3 FINITE SAMPLE ANALYSIS: PROOF OF THM. B.15

Proof of thm. B.15. Preliminaries. We now consider the error due to the evaluation step. In
each epoch k a regression problem is solved, where the training set {(z(i), a(i), t(i), Q̂(k+1))} and
Q̂

(k+1)

t(i)
(z(i), a(i)) is an unbiased estimate of the target defined by ΓtQ.

To approximate the target, for each t = 1, . . . , N we consider a linear function space Ft of dimension
dt with bounded basis function {φt,i}dt

i=1 ∥φt,i∥∞ ≤ Cb. For each t we consider a linear family with
parameter αt ∈ Rdt and features ϕt : Zt×A → Rdt , thusFt = {(z, a) 7→ ϕt(z, a)

⊤αt : αt ∈ Rdt}.
Recall the losses
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Lk,t := E(z,a)∼µt

[(
Y

(k)
t (z, a)−Q

(k)
t (z, a)

)2]
,

where
Y

(k)
t (z, a) = [Γπ(k)

t Q(k−1)](z, a)

and we also define the error ϵ(k)t = Q
(k)
t − Y

(k)
t .

For a batch Bk we denote by Bk,t = {(z, a, s) ∈ Bk : s = t} the elements in that batch of size t,
and let nk,t = |Bk,t|.

We then let Yk,t = (Y
(k)
t (z, a))(z,a)∈Bk,t

(true targets) and Q̂k,t = (Q̂
(k)
t (z, a))(z,a)∈Bk,t

(noisy
targets), and define Fk,t = {Φk,tαt : αt ∈ Rdt}, where Φk,t = (ϕt(z, a)

⊤)(z,a)∈Bk,t
is a matrix

where each row corresponds to the features of some (z, a) ∈ Bk,t. We then denote by Πk,t the
L2(µ̂k,t)-projection on Fk,t, where µ̂k,t(z, a) =

∑
(z′,a′)∈Bk,t

δ(z′,a′)(z, a) is the empirical norm at
epoch k for timestep t. We also define Πt to be the L2(µt) projection on Ft, where µt is the marginal
over trajectories of µ at timesteps t.

We set Q̃k,t := Πk,tQ̂k,t = (Q̃
(k)
t (z, a))(z,a)∈Bk,t

, where Q̃
(k)
t is the result of linear regression

and its truncation (by 1) is Q
(k)
t (Q(k)

t = T(Q̃(k)
t )). Define also Ŷk,t := Πk,tYk,t and the errors

ξk,t := Yk,t − Q̂k,t and ξ̂k,t := Πk,tξk,t. We note that ξk,t has mean 0, and |(ξk,t)i| ≤ 1.

In the following, we denote by ∥f∥µt =
√∫

f(z, a)2dµt(z, a) the L2(µt)-norm of f , and similarly

we also indicate the L2(µ̂k,t)-norm (empirical) by ∥f∥µ̂k,t
=
√

1
nk,t

∑
(z,a)∈Bk,t

f(z, a)2.

Bounding the error. Our goal is to bound

∥e(k)t ∥µt
= ∥Y (k)

t −Q
(k)
t ∥µt

= ∥Y (k)
t − T(Q̃(k)

t )∥µt
.

By a variation of theorem 11.2 in (Györfi et al., 2002) (see (Lazaric et al., 2012) corollary 12), we
also know that

∥Y (k)
t − T(Q̃(k)

t )∥µt
− 2∥Yk,t − Q̃k,t∥µ̂k,t

≤ 24

√
2

nk,t
Λ(nk,t, dt, δ′).

with probability at least 1 − δ′, where Λ(nk,t, dt, δ
′) = 2(dt + 1) log(nk,t) + log( e

δ′ ) +

log
(
9(12e)2(dt+1)

)
. Therefore

∥Y (k)
t − T(Q̃(k)

t )∥µt
≤ 2∥Yk,t − Q̃k,t∥µ̂k,t

+ 24

√
2

nk,t
Λ(nk,t, dt, δ′).

So, for each t the error is

∥Yk,t − Q̃k,t∥µ̂k,t
≤ ∥Q̃k,t − Ŷk,t∥µ̂k,t

+ ∥Yk,t − Ŷk,t∥µ̂k,t
= ∥ξ̂k,t∥µ̂k,t

+ ∥Yk,t − Ŷk,t∥µ̂k,t
.

Furthermore ∥ξ̂k,t∥2µ̂k,t
= ⟨ξ̂k,t, ξ̂k,t⟩ = ⟨ξk,t, ξ̂k,t⟩ by the orthogonal projection, and, by an applica-

tion of a variation of Pollard’s inequality (Györfi et al., 2002) we have that

⟨ξk,t, ξ̂k,t⟩ ≤ 4∥ξ̂k,t∥µ̂k,t

√
2

nk,t
log

(
3(9e2nk,t)dt+1

δ′

)
holds with probability at least 1− δ′. Therefore, we are left with bounding ∥Yk,t − Ŷk,t∥µ̂k,t

.

Define α̂⋆
t as the parameter satisfying fα̂⋆

t
∈ Ft such that fα̂⋆

t
(z, a) = [Πk,tY

(k)
t ](z, a) for all

(z, a) ∈ Bk,t. Also define α⋆
t to be the optimal projection (w.r.t. µt) of Y (k)

t inFt, i.e., fα⋆
t
= ΠtY

(k)
t .

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Then, again by a variation of Theorem 11.2 Györfi et al. (2002) (see also (Lazaric et al., 2012) corollary
13), we have the following sequence of inequality

∥Yk,t − Ŷk,t∥µ̂k,t
= ∥Yk,t − fα̂⋆

t
∥µ̂k,t

,

≤ ∥Yk,t − fα⋆
t
∥µ̂t

,

≤ 2∥Y (k)
t − fα⋆

t
∥µt

+ 12

(
1 + ∥α⋆

t ∥2 sup
(z,a)∈Zt×A

∥ϕt(z, a)∥2

)√
2

nk,t
log

(
3

δ′

)
,

that hold with probability at least 1− δ′. In conclusion, we have shown that

∥e(k)t ∥µt
≤2

[
2∥Y (k)

t − fα⋆
t
∥µt

+ 12

(
1 + ∥α⋆

t ∥2 sup
(z,a)∈Zt×A

∥ϕt(z, a)∥2

)√
2

nk,t
log

(
3

δ′

)

+ 4

√
2

nk,t
log

(
3(9e2nk,t)dt+1

δ′

)]
+ 24

√
2

nk,t
Λ(nk,t, dt, δ′).

Union bound for the random batch. At this point, let µ(t) be the marginal of µ over the timesteps
t = 1, . . . , N . Let pmin = mint µ(t). Then nk,t := |Bk,t| ∼ Binom(B,µ(t)) and

P (nk,t ≤ (1− η)µ(t)B) ≤ exp

(
−µ(t)Bη2

2

)
,

≤ exp

(
−pminBη2

2

)
.

Therefore, for a fixed t for B = 2
η2pmin

log 1
δ′ we obtain that

P (nk,t ≥ (1− η)µ(t)B) ≥ 1− δ′.

Therefore, by setting δ = 4Nkδ′, through a union bound, we can conclude that

∥e(k)t ∥µt ≤ 4 inf
f∈Ft

∥Yk,t − f∥µt + ηt((1− η)pminB, dt, δ) + η′t((1− η)pminB, dt, δ),

holds with probability 1− δ for all i = 1, . . . , k, t = 1, . . . , N , where

ηt(n, dt, δ) = 32

√
2

n
log

(
4 · 27Nk(12e2n)2(dt+1)

3δ

)
,

η′t(n, dt, δ) = 24

(
1 + ∥α⋆

t ∥2 sup
(z,a)∈Zt×A

∥ϕt(z, a)∥2

)√
2

n
log

(
12Nk

δ

)
.

Bounding S
(a,b)
k in terms of the error. Let

βt = sup
Q∈Ft,π

inf
f∈Ft

∥Γπ
t Q− f∥µt

.

Since S
(a,b)
k =

∑b
u=a Lk,u and

√
Lk,t = ∥e(k)t ∥µt

, we have that√
S
(a,b)
k =

∥∥∥∥(√Lk,t

)b
t=a

∥∥∥∥
2

≤ 4∥(βt)
b
t=a∥2 + ∥(ηt)bt=a∥2 + ∥(η′t)bt=a∥2,

with probability 1− δ.

Similarly, we have that√√√√(N + 1)

k∑
u=k−N

S
(2,N)
u ≤

√
N + 1

√√√√ k∑
u=k−N

16∥(βt)Nt=2∥22 + ∥(ηt)Nt=2∥22 + ∥(η′t)Nt=2∥22,

≤ (N + 1)
√
16∥(βt)Nt=2∥22 + ∥(ηt)Nt=2∥22 + ∥(η′t)Nt=2∥22,

≤ (N + 1)
[
4∥(βt)

N
t=2∥2 + ∥(ηt)Nt=2∥2 + ∥(η′t)Nt=2∥2

]
.
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which holds with probability 1− δ.

Lastly, we consider
√
D

(1,N)
k where D

(1,N)
k =

∑N
u=1 Lk−u,u. We have with probability 1− δ

√
D

(1,N)
k =

√√√√ N∑
u=1

Lk−u,u ≤ 4∥(βt)
N
t=1∥2 + ∥(ηt)Nt=1∥2 + ∥(η′t)Nt=1∥2.

Therefore, in conclusion√
S
(1,N)
k−1 +

√√√√(N + 1)

k∑
u=k−N

S
(2,N)
u +

√
D

(1,N)
k

≤ 4∥(βt)
N
t=2∥2 + ∥(ηt)Nt=2∥2 + ∥(η′t)Nt=2∥2 + (N + 1)

[
4∥(βt)

N
t=2∥2 + ∥(ηt)Nt=2∥2 + ∥(η′t)Nt=2∥2

]
,

+ 4∥(βt)
N
t=1∥2 + ∥(ηt)Nt=1∥2 + ∥(η′t)Nt=1∥2,

≤ (N + 3)
[
4∥(βt)

N
t=1∥2 + ∥(ηt)Nt=1∥2 + ∥(η′t)Nt=1∥2

]
.

Conclusions. Therefore, we can conclude that, up to constants and logarithmic factors, we have that
with probability 1− δ

|J(π⋆)− J(π(k))| ≤ O

NC0

C1 +

√√√√ N∑
t=1

dt
(1− η)pminB

log
4kN

δ


provided B ≥ 2

pminη2 log
4kN
δ where η ∈ (0, 1), C0 :=

√∑N
t=1 c∞(t)2κ2

t and C1 :=
√∑N

t=1 β
2
t .

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

B.3 COMPARISON WITH INFORMATION DIRECTED SAMPLING

In pure exploration IDS (Russo & Van Roy, 2018) the main objective is to maximize the information
gain. For example, consider the BAI problem: we set αt(a) = P(Ĥ = a|Dt) to be the posterior
distribution of the optimal arm. Then, the information gain is defined through the following quantity

gt(a) = E[H(αt)−H(αt+1)|Dt, at = a],

which measures the expected reduction in entropy of the posterior distribution of the best arm due to
selecting arm a at time t.

For the BAI problem, the authors in (Russo & Van Roy, 2018) propose a myopic sampling policy
at ∈ argmaxa gt(a), which only considers the information gain from the next sample. The reason
for using a greedy policy stems from the fact that such a strategy is competitive with the optimal
policy in problems where the information gain satisfies a property named adaptive submodularity
(Golovin & Krause, 2011), a generalization of submodular set functions to adaptive policies. For
example, in the noiseless Optimal Decision Tree problem, it is known (Zheng et al., 2005) that a
greedy strategy based on the information gain is equivalent to a nearly-optimal (Dasgupta, 2004;
Golovin et al., 2010; Golovin & Krause, 2011) strategy named generalized binary search (GBS)
(Nowak, 2008; Bellala et al., 2010) , which maximizes the expected reduction of the version space
(the space of hypotheses consistent with the data observed so far). However, for the noisy case both
strategies perform poorly (Golovin et al., 2010).

The myopic pure exploration IDS strategy at ∈ argmaxa gt(a) can perform poorly in environments
where the sampling decisions influence the observation distributions, or where an action taken at time
t can greatly affect the complexity of the problem at a later stage (hence, IDS can perform poorly on
credit assignments problems).

First example. As a first example, consider a bandit problem with K arms, where the reward
for each arm ai is distributed according to N (µi, 1), with priors µ1 = δ0 and µi ∼ U([0, 1])
independently for each i ∈ {2, . . . ,K}. Thus, almost surely, the optimal arm a⋆ lies within
{2, . . . ,K}, and the goal is to estimate a⋆

We introduce the following twist: if arm a1 is sampled exactly twice, its reward distribution changes
permanently to a Dirac delta distribution δϕ(a⋆), where ϕ is a known invertible mapping. Consequently,
sampling arm a1 twice fully reveals the identity of a⋆. However, if arm a1 has not yet been sampled,
the expected immediate information gain at any step t is zero, i.e., gt(a1) = 0, since arm a1 is already
known to be suboptimal. In contrast, the immediate information gain for any other arm remains
strictly positive. Therefore, under this setting and for nontrivial values of (σ,K), the myopic IDS
strategy cannot achieve the optimal constant sample complexity, and instead scales linearly in K.

Second example. Another example is a bandit environment containing a chain of two magic actions
{1,m}, where the index of the first magic action (1) is known. Action 1 reveals the index m, and
pulling arm m subsequently identifies the best arm with certainty. In this scenario, IDS is myopic
and typically neglects arm 1 because of its inability to plan more than 1-step ahead in the future.
However, depending on the total number of arms and reward variances, IDS may still select arm 1 if
doing so significantly reduces the set of candidate best arms faster than pulling other arms (e.g., if the
variance is significantly large). The following theorem illustrates the sub-optimality of IDS.
Theorem B.20. Consider a bandit environment with a chain of 2 magic actions. The reward of the
regular arms is N (µa, 1) with µa ∼ U([0, 1]), a ̸= 1,m. For K ≥ 7 there exists δ0 ∈ (0, 1/2) such
that for any δ ≤ δ0, we have that IDS is not sample optimal in the fixed confidence setting.

Proof of thm. B.20. Let Yt,a be the random reward observed upon selecting arm at = a . We use that

gt(a) = It(A
⋆;Yt,a) = KL

(
P(A⋆,Yt,a|Dt)

P(A⋆|Dt)P(Yt,a|Dt)

)
, with D1 containing an empty observation. The

proof relies on showing that action a1 is not chosen during the first two rounds for large values of K.

In the proofs, for brevity, we write Pt(·) = P(·|Dt). Observe the following lemmas.

Lemma B.21. Let Yt,a be the random reward observed upon selecting arm at = a and let St,a =
1{at = a is magic}. Under the assumption that the agent knows with absolute certainty that a is
magic after observing Yt,a, we have that It(A⋆;Yt,a) = It(A

⋆;Yt,a, St,a).
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Proof. Note that
It(A

⋆;Yt,a, St,a) = Ht(Yt,a, St,a)−Ht(Yt,a, St|A⋆).

Note that by assumption we have that Ht(St,a|Yt,a) = 0. Then, the first term can also be rewritten as

Ht(Yt,a, St) = Ht(St,a|Yt,a) +Ht(Yt,a) = Ht(Yt, a).

Similarly, we also have Ht(Yt,a, St,a|A⋆) = Ht(St,a|Yt,a, A
⋆) + Ht(Yt,a|A⋆) = Ht(Yt,a|A⋆).

Henceforth
It(A

⋆;Yt,a, St,a) = Ht(Yt,a)−Ht(Yt,a|A⋆) = It(A
⋆;Yt,a).

Using the decomposition from the previous lemma we can rewrite the mutual information between
A⋆ and Yt,a as

It(A
⋆;Yt,a) = It(A

⋆;Yt,a, St,a) = It(A
⋆;Yt,a|St,a) + It(A

⋆;St,a).

Lemma B.22. Let Et = {(a1, . . . , at−1) are not magic actions}, with E1 = ∅. Under at = 1 we

have that It(A⋆;Yt,1|Et, at = 1) = log
(

K−|At|−1
K−|At|−2

)
where At = {a|∃i < t : at = a} is the unique

number of actions chosen in t ∈ {1, . . . , t− 1}.

Proof. We use that Pt(St,1 = 1|at = 1) = 1. Hence, for arm 1 we have

It(A
⋆;St,1|Et, at = 1) = Ht(St,1|Et, at = 1)−Ht(St,1|A⋆, Et, at = 1),

= 0− 0 = 0.

Then, we have

It(A
⋆;Yt,1|St,1, Et, at = 1) = It(A

⋆;Yt,1|St,1 = 1, Et, at = 1),

= KL (Pt(A
⋆, Yt,1|at = 1, Et)||Pt(A

⋆|at = 1, Et)Pt(Yt,1|at = 1, Et)) ,
= KL (Pt(Yt,1|A⋆, at = 1, Et)||Pt(Yt,1|at = 1, Et)) ,

= log

(
1/(K − |At| − 2)

1/(K − |At| − 1)

)
,

where we used that under Et exactly At regular arms have been pulled and recognised as regular; the
still-unrevealed set of candidates for the second magic arm has therefore size K − |At| − 1 (since
arm 1 is known to be magic). Thus the result follows from applying the previous lemma.

Lemma B.23. For any un-pulled arm a ̸= 1 at time t we have that It(A⋆;Yt,a|Et, at = a) ≥
1

K−|At|−1 log(K − |At| − 2).

Proof. To compute the mutual information we use that It(A⋆;Yt,a|Et) = It(A
⋆;Yt,a, St,a|Et) =

It(A
⋆;Yt,a|St,a, Et) + It(A

⋆;St,a|Et) ≥ It(A
⋆;Yt,a|St,a, Et).. We start by computing the first term

of this expression, and finding a non-trivial lower bound.

Note that for a ̸= 1 we have

It(A
⋆;Yt,a|St,a, Et, at = a) = Pt(St,a = 0|Et, at = a)It(A

⋆;Yt,a|St,a = 0, Et, at = a)

+ Pt(St,a = 1|Et, at = a)It(A
⋆;Yt,a|St,a = 1, Et, at = a),

≥ 1

K − |At| − 1
It(A

⋆;Yt,a|St,a = 1, Et, at = a),

where we used that under Et, we have a uniform prior over the remaining K − |At| − 1 un-pulled
arms, and the agent knows that arm 1 is magic.

If a ̸= 1 and St,a = 1, then a is the second magic arm. Therefore we have Pt(Yt,a|A⋆, St,a =
1, Et, at = a) = 1. Hence It(A

⋆;Yt,a|St,a = 1, Et) = log (K − |At| − 2) since Yt,a can only take
values uniformly over K − |At| − 2 arms under the event {St,a = 1, Et, at = a}.
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Lemma B.24. Assume a1 = j is a regular arm, pulled at the first timestep. Then I2(A
⋆;Y2,j |a1 =

j) ≤ 1
2 ln(1 +

1
12σ2 ).

Proof. First, note that

I2(A
⋆;Y2,j | a1 = j) ≤ I2(µj ;Y2,j | a1 = j) = H2(Y2,j |a1 = j)− 1

2
ln(2πeσ2)

Then, since Var2(Y2,j |a1 = j) = Var2(µj |a1 = j) + σ2 ≤ 1/12 + σ2. Therefore H2(Y2,j |a1 =
j) ≤ 1

2 ln(2πe(1/12 + σ2)). Hence I2(A
⋆;Y2,j |a1 = j) ≤ 1

2 ln(1 +
1

12σ2 ).

Hence, one can verify that for K ≥ 6 the first magic arm will never be chosen at the first timestep.
Similarly, at the second timestep the first magic arm will not be chosen if K ≥ 7.

Consider the fixed-confidence setting with some confidence level δ < 1/2. Let A1 =
{second magic arm sampled at t = 1} and A2 = {second magic arm sampled at t = 2}. Then,
the sample complexity of IDS satisfies E[τIDS |Ac

1,Ac
2] ≥ 3 for δ sufficiently small (since the sample

complexity scales as log(1/(2.4δ))).

We also have that at the first timestep the decision is uniform over {2, . . . ,K}. Lastly, if the first
sampled arm is not magic, then it’s a regular arm, and by the previous lemmas the information gain
of such arm will be smaller than the information gain of another un-pulled arm. In fact the inequality

log(x− 3)

x− 2
>

1

2
ln(1 +

1

12
)

it satisfied over x ∈ {5, . . . , 121}. Since it is sub-optimal to sample again the same regular arm, since
the information gain on all the other arms remains the same, we have that the decision at the second
timestep is again uniform over the remaining unchosen arms. Therefore

E[τIDS ] = E[τIDS |A1]P(A1) + E[τIDS |Ac
1]P(Ac

1),

=
1

K − 1
+

K − 2

K − 1
E[τIDS |Ac

1],

=
1

K − 1
+

K − 2

K − 1

(
E[τIDS |Ac

1,A2]
1

K − 2
+ E[τIDS |Ac

1,Ac
2]
K − 3

K − 2

)
,

≥ 1

K − 1
+

K − 2

K − 1

(
2

1

K − 2
+ 3

K − 3

K − 2

)
,

=
3

K − 1
+ 3

K − 3

K − 1
,

which is larger than 2 for K > 4. Since there is a policy with sample complexity 2, we have that IDS
cannot be sample optimal for K ∈ {7, . . . , 121}.
Similarly, for large values of K > 121, resampling the same regular arm at the second timestep leads
IDS to a sample complexity larger than 2. And therefore cannot be sample optimal.

B.4 SAMPLE COMPLEXITY BOUNDS FOR MAB PROBLEMS WITH FIXED MINIMUM GAP

We now derive a sample complexity lower bound for a MAB problem where the minimum gap is
known and the rewards are normally distributed.

Consider a MAB problem wit K arms {1, . . . ,K}. To each arm a is associated a reward distribution
νa = N (µa, σ

2) that is simply a Gaussian distribution. Let a⋆(µ) = argmaxa µa, and define the
gap in arm a to be ∆a(µ) = µa⋆(µ) − µa. In the following, without loss of generality, we assume
that a⋆(µ) = 1.

We define the minimum gap to be ∆min(µ) = mina̸=a⋆(µ) ∆a(µ). Assume now to know that
∆min ≥ ∆0 > 0.

Then, for any δ-correct algorithm, guaranteeing that at some stopping time τ the estimated optimal
arm âτ is δ-correct, i.e., Pµ(âτ ̸= a⋆(µ)) ≤ δ, we have the following result.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Theorem B.25. Consider a model µ satisfying ∆min ≥ ∆0 > 0. Then, for any δ-probably correct
method Alg, with δ ∈ (0, 1/2), we have that the optimal sample complexity is bounded as

1

max
(
∆2

0,
1∑

a̸=1 1/∆2
a

) ≤ inf
τ :Alg is δ-correct

Eµ[τ ]

2σ2kl(1− δ, δ)
≤ 2

∑
a

1

(∆a +∆0)2
,

with ∆1 = 0 and kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)). In particular, the solution
ωa ∝ 1/(∆a +∆0)

2 (up to a normalization constant) achieves the upper bound.

Proof. Step 1: Log-likelihood ratio. The initial part of the proof is rather standard, and follows the
same argument used in the Best Arm Identification and Best Policy Identification literature (Garivier
& Kaufmann, 2016; Russo & Vannella, 2025).

Define the set of models
S =

{
µ′ ∈ RK : ∆min(µ

′) ≥ ∆0

}
,

and the set of alternative models

Alt(µ) =

{
µ′ ∈ S : argmax

a
µ′a ̸= 1

}
.

Take the expected log-likelihood ratio between µ and µ′ ∈ Alt(µ) of the data observed up to τ

Λτ = log
dPµ(A1,R1,...,Aτ ,Rτ )
dPµ′ (A1,R1,...,Aτ ,Rτ )

, where At is the action taken in round t, and Rt is the reward observed
upon selecting At. Then, we can write

Λt =
∑
a

t∑
n=1

1{An=a} log
fa(Rn)

f ′a(Rn)

where fa, f ′a, are, respectively, the reward density for action a in the two models µ, µ′ with respect to
the Lebesgue measure. Letting Na(t) denote the number of times action a has been selected up to
round t, by an application of Wald’s lemma the expected log-likelihood ratio can be shown to be

Eµ[Λτ ] =
∑
a

Eµ[Na(τ)]KL(µa, µ
′
a)

where KL(µa, µ
′
a) is the KL divergence between two Gaussian distributionsN (µa, σ) andN (µ′a, σ)

(note that we have σ1 instead of σ for a = 1).

We also know from the information processing inequality (Kaufmann et al., 2016) that Eµ[Λτ ] ≥
supE∈Mτ

kl(Pµ(E),Pµ′(E)), whereMt = σ(A1, R1, . . . , At, Rt). We use the fact that the algo-
rithm is δ-correct: by choosing E = {âτ = a⋆} we obtain that Eµ[Λτ ] ≥ kl(1 − δ, δ), since
Pµ(E) ≥ 1− δ and Pµ′(E) = 1− Pµ′(âτ ̸= a⋆) ≤ 1− Pµ′(âτ = argmaxa µ

′
a) ≤ δ (we also used

the monotonicity properties of the Bernoulli KL divergence). Hence∑
a

Eµ[Na(τ)]KL(µa, µ
′
a) ≥ kl(1− δ, δ).

Letting ωa = Eµ[Na(τ)]/Eµ[τ ], we have that

Eµ[τ ]
∑
a

ωaKL(µa, µ
′
a) ≥ kl(1− δ, δ).

Lastly, optimizing over µ′ ∈ Alt(µ) and ω ∈ ∆(K) yields the bound:

Eµ[τ ] ≥ T ⋆(µ)kl(1− δ, δ),

where T ⋆(µ) is defined as

(T ⋆(µ))−1 = sup
ω∈∆(K)

inf
µ′∈Alt(µ)

∑
a

ωaKL(µa, µ
′
a).

Step 2: Optimization over the set of alternative models. We now face the problem of optimizing
over the set of alternative models.
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Defining Alta =
{
µ′ ∈ RK : µ′a − µ′b ≥ ∆0 ∀b ̸= a

}
, the set of alternative models can be decom-

posed as

Alt(µ) =

{
µ′ ∈ RK : argmax

a
µ′a ̸= 1, ∆min(µ

′) ≥ ∆0

}
,

= ∪a̸=1Alta.

Hence, the optimization problem over the alternative models becomes

inf
µ′∈Alt(µ)

∑
a

ωaKL(µa, µ
′
a) = min

ā ̸=1
inf

µ′∈Altā

∑
a

ωa
(µa − µ′a)

2

2σ2
.

The inner infimum over µ′ can then be written as

P ⋆
ā (ω) := inf

µ′∈RK

∑
a

ωa
(µa − µ′a)

2

2σ2
.

s.t. µ′ā − µ′b ≥ ∆0 ∀b ̸= ā.

(25)

While the problem is clearly convex, it does not yield an immediate closed form solution.

To that aim, we try to derive a lower bound and an upper bound of the value of this minimization
problem.

Step 3: Upper bound on P ⋆
ā . Note that an upper bound on minā̸=1 P

⋆
ā (ω) can be found by finding a

feasible solution µ′. Consider then the solution µ′1 = µ1 −∆, µ′ā = µ1 and µ′b = µb for all other
arms. Clearly We have that µ′ā − µ′b ≥ ∆0 for all b ̸= ā. Hence, we obtain

min
ā̸=1

P ⋆
ā (ω) ≤ ω1

∆2
0

2σ2
+min

ā̸=1
ωā

∆2
ā

2σ2
.

At this point, one can easily note that if ∆2
0

2σ2 ≥ 1
2σ2

∑
a ̸=1

1
∆2

a

, then supω∈∆(K) minā ̸=1 P
⋆
ā (ω) ≤

∆2
0

2σ2 .

This corresponds to the case where all the mass is given to ω1 = 1. Otherwise, the solution is to set
ω1 = 0 and ωa =

1/∆2
a∑

b 1/∆2
b

for a ̸= 1.

Hence, we conclude that

(T ⋆(µ))−1 = sup
ω∈∆(K)

min
ā̸=1

P ⋆
ā (ω) ≤

1

2σ2
max

(
∆2

0,
1∑

a ̸=1 1/∆
2
a

)
.

Step 4: Lower bound on P ⋆
ā . For the lower bound, note that we can relax the constraint to only

consider µ′ā − µ′1 ≥ ∆0. This relaxation enlarges the feasible set, and thus the infimum of this new
problem lower bounds P ⋆

ā (ω).

By doing so, since the other arms are not constrained, by convexity of the KL divergence at the
infimum we have µ′b = µb for all b /∈ {1, ā}. Therefore

P ⋆
ā (ω) ≥ inf

µ′:µ′
ā−µ′

1≥∆0

∑
a

ωa
(µa − µ′a)

2

2σ2
= inf

µ′:µ′
ā−µ′

1≥∆0

ω1
(µ1 − µ′1)

2

2σ2
+ ωā

(µā − µ′ā)
2

2σ2
.

Solving the KKT conditions we find the equivalent conditions µ′ā = µ′1 +∆0 and

ω1(µ1 − µ′1) + ωā(µā − µ′1 −∆0) = 0⇒ µ′1 =
ω1µ1 + ωāµā − ωā∆0

ω1 + ωā
.

Therefore
µ′ā =

ω1µ1 + ωāµā − ωā∆0

ω1 + ωā
+∆0 =

ω1µ1 + ωāµā + ω1∆0

ω1 + ωā
.

Plugging these solutions back in the value of the problem, we obtain

P ⋆
ā (ω) ≥

ω1ω
2
ā

(ω1 + ωā)2
(µ1 − µā +∆0)

2

2σ2
+

ωāω
2
1

(ω1 + ωā)2
(µā − µ1 −∆0)

2

2σ2
,

=
ω1ωā

ω1 + ωā

(µ1 − µā +∆0)
2

2σ2
,

=
ω1ωā

ω1 + ωā

(∆ā +∆0)
2

2σ2
.
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Let θa = ∆a +∆0, with θ1 = ∆0. We plug in a feasible solution ωa =
1/θ2

a∑
b 1/θ2

b
, yielding

(T ⋆(µ))−1 = sup
ω∈∆(K)

min
ā̸=1

P ⋆
ā (ω) ≥ min

ā ̸=1

1/(θ1θā)
2∑

b 1/θ
2
b (1/θ

2
1 + 1/θ2ā)

θ2ā
2σ2

,

= min
ā ̸=1

1∑
b 1/θ

2
b (1 + θ21/θ

2
ā)

1

2σ2
,

=
1

2σ2
∑

b 1/θ
2
b

min
ā̸=1

1

1 + θ21/θ
2
ā

,

≥ 1

2σ2
∑

b 1/θ
2
b

1

1 + θ21/∆
2
0

,

=
1

4σ2
∑

b 1/θ
2
b

.

B.5 SAMPLE COMPLEXITY LOWER BOUND FOR THE MAGIC ACTION MAB PROBLEM

We now consider a special class of models that embeds information about the optimal arm in the
mean reward of some of the arms. Let ϕ : R→ R be a strictly decreasing function over {2, . . . ,K}5.

Particularly, we make the following assumptions:

1. We consider mean rewards µ satisfying µ1 = ϕ(argmaxa̸=1 µa), and µ⋆ = maxa µa >
ϕ(2). Arm 1 is called "magic action", and with this assumption we are guaranteed that the
magic arm is not optimal, since

µ1
1

maxa µa
= ϕ(argmax

a̸=1
µa)

1

maxa µa
≤ ϕ(2)

1

maxa µa
< 1⇒ max

a
µa > µ1.

2. The rewards are normally distributed, with a fixed known standard deviation σ1 for the
magic arm, and fixed standard deviation σ for all the other arms.

Hence, define the set of models

S =

{
µ ∈ RK : µ1 = ϕ(argmax

a̸=1
µa),max

a
µa > ϕ(2)

}
,

and the set of alternative models

Alt(µ) =

{
µ′ ∈ S : argmax

a
µ′a ̸= a⋆

}
,

where a⋆ = argmaxa µa.

Then, for any δ-correct algorithm, guaranteeing that at some stopping time τ the estimated optimal
arm âτ is δ-correct, i.e., Pµ(âτ ̸= a⋆) ≤ δ, we have the following result.
Theorem B.26. For any δ-correct algorithm, the sample complexity lower bound on the magic action
problem is

Eµ[τ ] ≥ T ⋆(µ)kl(1− δ, δ), (26)
where kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)) and T ⋆(µ) is the characteristic time of
µ, defined as

(T ⋆(µ))−1 = max
ω∈∆(K)

min
a ̸=1,a⋆

ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
∑

b∈Ka(ω)

ωb
(µb −m(ω;Ka(ω))

2

2σ2
, (27)

where m(ω; C) =
∑

a∈C ωaµa∑
a∈C ωa

and the set Ka(ω) is defined as

Ka(ω) = {a} ∪ {b ∈ {2, . . . ,K} : µb ≥ m(ω; Cb ∪ {a}) and µb ≥ ϕ(2)} .
with Cx = {b ∈ {2, . . . ,K} : µb ≥ µx} for x ∈ [K].

5One could also consider strictly increasing functions.
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Proof. Step 1: Log-likelihood ratio. The initial part of the proof is rather standard, and follows the
same argument used in the Best Arm Identification and Best Policy Identification literature (Garivier
& Kaufmann, 2016).

Take the expected log-likelihood ratio between µ and µ′ ∈ Alt(µ) of the data observed up to τ

Λτ = log
dPµ(A1,R1,...,Aτ ,Rτ )
dPµ′ (A1,R1,...,Aτ ,Rτ )

, where At is the action taken in round t, and Rt is the reward observed
upon selecting At. Then, we can write

Λt =
∑
a

t∑
n=1

1{An=a} log
fa(Rn)

f ′a(Rn)

where fa, f ′a, are, respectively, the reward density for action a in the two models µ, µ′ with respect to
the Lebesgue measure. Letting Na(t) denote the number of times action a has been selected up to
round t, by an application of Wald’s lemma the expected log-likelihood ratio can be shown to be

Eµ[Λτ ] =
∑
a

Eµ[Na(τ)]KL(µa, µ
′
a)

where KL(µa, µ
′
a) is the KL divergence between two Gaussian distributionsN (µa, σ) andN (µ′a, σ)

(note that we have σ1 instead of σ for a = 1).

We also know from the information processing inequality (Kaufmann et al., 2016) that Eµ[Λτ ] ≥
supE∈Mτ

kl(Pµ(E),Pµ′(E)), whereMt = σ(A1, R1, . . . , At, Rt). We use the fact that the algo-
rithm is δ-correct: by choosing E = {âτ = a⋆} we obtain that Eµ[Λτ ] ≥ kl(1 − δ, δ), since
Pµ(E) ≥ 1− δ and Pµ′(E) = 1− Pµ′(âτ ̸= a⋆) ≤ 1− Pµ′(âτ = argmaxa µ

′
a) ≤ δ (we also used

the monotonicity properties of the Bernoulli KL divergence). Hence∑
a

Eµ[Na(τ)]KL(µa, µ
′
a) ≥ kl(1− δ, δ).

Letting ωa = Eµ[Na(τ)]/Eµ[τ ], we have that

Eµ[τ ]
∑
a

ωaKL(µa, µ
′
a) ≥ kl(1− δ, δ).

Lastly, optimizing over µ′ ∈ Alt(µ) and ω ∈ ∆(K) yields the bound:

Eµ[τ ] ≥ T ⋆(µ)kl(1− δ, δ),

where T ⋆(µ) is defined as

(T ⋆(µ))−1 = sup
ω∈∆(K)

inf
µ′∈Alt(µ)

∑
a

ωaKL(µa, µ
′
a).

Step 2: Optimization over the set of alternative models. We now face the problem of optimizing
over the set of alternative models. First, we observe that S = ∪a̸=a⋆{µ : µ1 = ϕ(a), µa > ϕ(2)}.
Therefore, we can write

Alt(µ) = ∪a/∈{1,a⋆} {µ′ : µ′1 = ϕ(a), µ′a > max(ϕ(2), µ′b) ∀b ̸= a} .

Hence, for a fixed a /∈ {1, a⋆}, the inner infimum becomes

inf
µ′∈RK

ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
∑
a̸=1

ωa
(µa − µ′a)

2

2σ2

s.t. µ′a ≥ max (ϕ(2), µ′b) ∀b,
µ′1 = ϕ(a).

(28)

To solve it, we construct the following Lagrangian

ℓ(µ′, θ) = ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
∑
b̸=1

ωb
(µb − µ′b)

2

2σ2
+
∑
b

θb (max (ϕ(2), µ′b)− µ′a) ,
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where θ ∈ RK
+ is the multiplier vector. From the KKT conditions we already know that θ1 = 0, θa = 0

and θb = 0 if µ′b ≤ ϕ(2), with b ∈ {2, . . . ,K}. In particular, we also know that either we have
µ′b = µ′a or µ′b = µb. Therefore, for µb ≤ ϕ(2) the solution is µ′b = µb, while for µb > ϕ(2) the
solution depends also on ω.

To fix the ideas, let K be the set of arms for which µ′b = µ′a at the optimal solution. Such set must
necessarily include arm a. Then, note that

∂ℓ

∂µ′a
= ωa

µ′a − µa

σ2
−
∑
b∈[K]

θb = 0.

and
∂ℓ

∂µ′b
= ωb

µ′b − µb

σ2
+ θb = 0 for b ̸= (1, a).

Then, using the observations derived above, we conclude that

µ′a =

∑
b∈K ωbµb∑
b∈K ωb

,

with µ′b = µ′a if b ∈ K, and µ′b = µb otherwise. However, how do we compute such set K?

First, K includes arm a. However, in general we have K ≠ {a} : if that were not true we would have
µ′a = µa and µ′b = µb for the other arms – but if any µb is greater than µa, then a is not optimal,
which is a contradiction. Therefore, also arm a⋆ is included in K, since any convex combination of
{µa} is necessarily smaller than µa⋆ . We apply this argument repeatedly for every arm b to obtain K.

Hence, for some set C ⊆ [K] define the average reward

m(ω; C) =
∑

a∈C ωaµa∑
a∈C ωa

,

and the set Cx = {a} ∪ {b ∈ {2, . . . ,K} : µb ≥ µx} for x ∈ [K]. Then,

K := K(ω) = {a} ∪ {b ∈ {2, . . . ,K} : µb ≥ m(ω; Cb) and µb ≥ ϕ(2)} .

In other words, K is the set of confusing arms for which the mean reward in the alternative model
changes. An arm b is confusing if the average reward m, taking into account b, is smaller than µb. If
this holds for b, then it must also hold all the arms b′ such that µb′ ≥ µb.

As a corollary, we have the following upper bound on T ⋆(µ).
Corollary B.27. We have that

T ⋆(µ) ≤ min
ω∈∆(K)

max
a ̸=1,a⋆

2σ2
1

ω1(ϕ(a⋆)− ϕ(a))2
.

In particular, for ϕ(x) = 1/x and a⋆ < K we have

T ⋆(µ) ≤ 2σ2(a⋆(a⋆ + 1))2,

while for a⋆ = K we get T ⋆(µ) ≤ 2σ2(a⋆(a⋆ − 1))2.

Proof. Let f1(a) = (ϕ(a⋆)−ϕ(a))2
2σ2

1
. For every weight vector ω ∈ ∆(K) and every a ̸= 1, a⋆, the

quantity

ga(ω) = ω1f1(a) +
∑
b∈Ka

ωb
(µb −m(ω;Ka))

2

2σ2

satisfies ga(ω) ≥ ω1f1(a) because the variance term is non–negative. Hence

(T ⋆(µ))−1 = max
ω∈∆(K)

min
a̸=1,a⋆

ga(ω) ≥ max
ω∈∆(K)

ω1 min
a ̸=1,a⋆

f1(a).

Since ω1 ≤ 1, the right–hand side is lower bounded by ω1 = 1, giving

(T ⋆(µ))−1 ≥ min
a ̸=1,a⋆

f1(a) =
1

2σ2
1

min
a ̸=1,a⋆

(
ϕ(a⋆)− ϕ(a)

)2
.
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Taking reciprocals yields

T ⋆(µ) ≤ 2σ2
1

min
a̸=1,a⋆

(ϕ(a⋆)− ϕ(a))2
= min

ω∈∆(K)
max
a ̸=1,a⋆

2σ2
1

ω1 (ϕ(a⋆)− ϕ(a))2
,

because the minimisation over ω clearly selects ω1 = 1. (This justifies the form stated in the
corollary.)

Specialising to ϕ(x) = 1/x. With ϕ(x) = 1/x the difference ϕ(a⋆)− ϕ(a) = 1
a⋆ − 1

a is positive for
all a > a⋆ and negative otherwise; its smallest non-zero magnitude is obtained for the closest index
to a⋆:

• If a⋆ < K, that index is a⋆ + 1, giving

min
a̸=1,a⋆

(ϕ(a⋆)− ϕ(a))2 =
( 1

a⋆
− 1

a⋆ + 1

)2
=

1[
a⋆(a⋆ + 1)

]2 .
• If a⋆ = K, the closest index is K − 1, leading to

min
a ̸=1,a⋆

(ϕ(a⋆)− ϕ(a))2 =
( 1

K − 1
− 1

K

)2
=

1[
a⋆(a⋆ − 1)

]2 .
Plugging each expression in the general upper bound above concludes the proof.

Finally, to get a better intuition of the main result, we can look at the 3-arms case: it is optimal to
only sample the magic arm iff |ϕ(a⋆)− ϕ(a)| > σ1(µa⋆−µa)

2σ .
Lemma B.28. With K = 3 we have that ω1 = 1 if and only if

|ϕ(a⋆)− ϕ(a)| > σ1(µa⋆ − µa)

2σ
,

and ω1 = 0 if the reverse inequality holds.

Proof. With 3 arms, from the proof of the theorem we know that Ka(ω) = {a, a⋆} for all ω. Letting
m(ω) = ωaµa+ωa⋆µa⋆

ωa+ωa⋆
, we obtain

(T ⋆(µ))−1 = max
ω∈∆(3)

ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
ωa(µa −m(ω))2 + ωa⋆(µa⋆ −m(ω))2

2σ2
.

Clearly the solution is ω1 = 1 as long as

(ϕ(a⋆)− ϕ(a))2

2σ2
1

> max
ω:ωa+ωa⋆=1

ωa(µa −m(ω))2 + ωa⋆(µa⋆ −m(ω))2

2σ2
.

To see why this is the case, let f1 = (ϕ(a⋆)−ϕ(a))2
2σ2

1
, f2(ωa, ωa⋆) = ωa(µa−m(ω))2

2σ2 and f3(ωa, ωa⋆) =

ωa⋆ (µa⋆−m(ω))2

2σ2 . Then, we can write

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) = ω1f1 + (1− ω1)

[
ωaf2
1− ω1

+
ωa⋆f3
1− ω1

]
.

Being a convex combination, this last term can be upper bounded as

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) ≤ max

(
f1,

ωaf2
1− ω1

+
ωa⋆f3
1− ω1

)
.

Now, note that also the term inside the bracket is a convex combination. Threfore, let ωa = (1−ω1)α
and ωa⋆ = (1− ω1)(1− α) for some α ∈ [0, 1]. We have that

m(ω) =
(1− ω1)αµa + (1− ω1)(1− α)µa⋆

1− ω1
= αµa + (1− α)µa⋆ .
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Hence, we obtain that

ωa(µa −m(ω))2 + ωa⋆(µa⋆ −m(ω))2

2(1− ω1)σ2
=

ωaf2 + ωa⋆f3
1− ω1

,

=
α(1− α)2(µa − µa⋆)2 + (1− α)α2(µa⋆ − µa)

2

2σ2
,

= α(1− α)
(1− α)(µa − µa⋆)2 + α(µa⋆ − µa)

2

2σ2
,

= α(1− α)
(µa − µa⋆)2

2σ2
.

Since this last term is maximized for α = 1/2, we obtain

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) ≤ max

(
f1,

(µa − µa⋆)2

8σ2

)
.

Since f1 is attained for ω1 = 1, we have that as long as f1 > (µa−µa⋆ )2

8σ2 , then the solution is ω1 = 1.

On the other hand, if (µa−µa⋆ )2

8σ2 > f1, then we can set ωa = (1 − ω1)/2 and ωa⋆ = (1 − ω1)/2,
leading to

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) = ω1f1 + (1− ω1)
(µa − µa⋆)2

8σ2
,

which is maximized at ω1 = 0.

B.6 SAMPLE COMPLEXITY BOUND FOR THE MULTIPLE MAGIC ACTIONS MAB PROBLEM

We now extend our analysis to the case where multiple magic actions can be present in the environment.
In contrast to the single magic action setting, here a chain of magic actions sequentially reveals
information about the location of the optimal action. Without loss of generality, assume that the first
n arms (with indices 1, . . . , n) are the magic actions, and the remaining K − n arms are non–magic.
The chain structure is such that pulling magic arm j (with 1 ≤ j < n) yields information about only
the location of the next magic arm j + 1, while pulling the final magic action (arm n) reveals the
identity of the optimal action. As before, we assume that the magic actions are informational only
and are never optimal.

To formalize the model, let ϕ : {1, . . . , n} → R be a strictly decreasing function. We assume that the
magic actions have fixed means given by

µj =

ϕ(j + 1), if j = 1, . . . , n− 1,

ϕ
(
argmaxa/∈{1,...,n} µa

)
, if j = n.

and that the non–magic arms satisfy

µ⋆ = max
a/∈{1,...,n}

µa > ϕ(n).

Thus, the optimal arm lies among the non–magic actions. Considering the noiseless case where the
rewards of all actions are fixed and the case where we can identify if an action is magic once revealed,
we have the following result.
Theorem B.29. Consider noiseless magic bandit problem with K arms and n magic actions. The
optimal sample complexity is upper bounded as

inf
Alg

EAlg[τ ] ≤ min

n,

K−n∑
j=1

 K−n∏
i=j+1

i

n− 1 + i

(1 + n− 1

n− 1 + j
min

(
n− 2

2
,
j(n− 1 + j)

j + 1

)) .

Proof. In the proof we derive a sample complexity bound for a policy based on some insights. We
use the assumption that upon observing a reward from a magic arm, the learner can almost surely
identify that the pulled arm is a magic arm.
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Let us define the state (m, r, l), where m denotes the number of remaining unrevealed magic actions
(m0 = n− 1), r denotes the number of remaining unrevealed non-magic actions (r0 = K − n), and
l is the binary indicator with value 1 if we have revealed any hidden magic action and 0 otherwise.

Before any observation the learner has no information about which n− 1 indices among {2, . . . ,K}
form the chain of intermediate magic arms. Hence, one can argue that at the first timestep is optimal
to sample uniformly at random an action in {2, . . . ,K}.
Upon observing a magic action, and thus we are in state (m, r, 1), we consider the following candidate
policies: (1) start from the revealed action and follow the chain, or (2) keep sampling unrevealed
actions uniformly at random until all non-magic actions are revealed. As previously discussed,
starting the chain from the initial magic action would be suboptimal and we do not consider it.

Upon drawing a hidden magic arm, let its chain index be j ∈ {2, . . . , n} (which is uniformly
distributed). The remaining cost to complete the chain is n− j, and hence its expected value is

E[n− j] =
n− 2

2
.

Therefore, the total expected cost for strategy (1) is

T1 =
n− 2

2
.

We can additionally compute the expected cost for strategy (2) as follows: if the last non-magic action
is revealed at step i, then among the first i− 1 draws there are exactly r − 1 non-magic arms. Since
there are

(
m+r
r

)
ways to place all r non-magic arms m+ r slots, we have

T2 = E[Draws until all non-magic revealed]

=

m+r∑
i=r

i · P[Last non-magic revealed at step i]

=

m+r∑
i=r

i ·
(
i−1
r−1
)(

m+r
r

)
=

r! ·m!

(m+ r)!

m+r∑
i=r

i

(
i− 1

r − 1

)

=
r! ·m!

(m+ r)!

m+r∑
i=r

i!

(r − 1)!(i− r)!

=
r! ·m!

(m+ r)!

m+r∑
i=r

r

(
i

r

)
=

r · r! ·m!

(m+ r)!

(
m+ r + 1

r + 1

)
=

r · r! ·m!

(m+ r)!
· (m+ r + 1) · (m+ r)!

(r + 1) · r! ·m!

=
r(m+ r + 1)

r + 1

Finally, we define a policy in (m, r, 1) as the one choosing between strategy 1 and strategy 2,
depending on which one achieves the minimum cost. Hence, the complexity of this policy is

V (m, r, 1) = min

(
n− 2

2
,
r(m+ r + 1)

r + 1

)
.

Now, before finding a magic arm, consider a policy that uniformly samples between the non-revealed
arms. Therefore, in (m, r, 0) we can achieve a complexity of 1+ m

m+rV (m−1, r, 1)+ r
m+rV (m, r−

1, 0). Since we can always achieve a sample complexity of n, we can find a policy with the following
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complexity:

V (m, r, 0) = min

(
n, 1 +

m

m+ r
V (m− 1, r, 1) +

r

m+ r
V (m, r − 1, 0)

)
= min

(
n, 1 +

m

m+ r
min

(
n− 2

2
,
r(m+ r)

r + 1

)
+

r

m+ r
V (m, r − 1, 0)

)

Given we always start with n− 1 hidden magic actions we can define a recursion in terms of just the
variable r as follows:

V (r) = 1 +
n− 1

n− 1 + r
T (r) +

r

n− 1 + r
V (r − 1),

where T (r) = min
(

n−2
2 , r(n−1+r)

r+1

)
. Letting A(r) = r

n−1+r and B(r) = 1 + n−1
n−1+rT (r), we can

write

V (r) = B(r) +A(r)V (r − 1),

Clearly V (0) = 0 since if all non-magic actions are revealed, then we know the optimal action
deterministically. Unrolling the recursion we get

V (1) = B(1),

V (2) = B(2) +A(2)B(1),

V (3) = B(3) +A(3)B(2) +A(3)A(2)B(1),

...

V (r) =

r∑
j=1

 r∏
i=j+1

A(i)

B(j).

Substituting back in our expression, we get

V (r) =

r∑
j=1

 r∏
i=j+1

i

n− 1 + i

(1 + n− 1

n− 1 + j
T (j)

)
.

Thus starting at r = K − n we get the following expression:

min

n,

K−n∑
j=1

 K−n∏
i=j+1

i

n− 1 + i

(1 + n− 1

n− 1 + j
min

(
n− 2

2
,
j(n− 1 + j)

j + 1

)) ,

which is also an upper bound on the optimal sample complexity.

To get a better intuition of the result, we also have the following corollary, which shows that we
should expect a scaling linear in n for small values of n (for large values the complexity tends instead
to "flatten").

Corollary B.30. Let T be the scaling in thm. B.29. We have that

min(n, (K − n)/2) ≲ T ≲ Cmin(n,K/2).

Proof. First, observe the scaling(
1 +

n− 1

n− 1 + j
min

(
n− 2

2
,
j(n− 1 + j)

j + 1

))
= O(n/2).
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At this point, note that
K−n∏
i=j+1

i

n− 1 + i
=

K−n∏
i=j+1

(
1 +

n− 1

i

)−1
.

Using that x
1+x ≤ log(1 + x) ≤ x, we have

log

K−n∏
i=j+1

i

n− 1 + i
=

K−n∑
i=j+1

− log

(
1 +

n− 1

i

)
≥ −(n− 1)

K−n∑
i=j+1

1

i
.

and

log

K−n∏
i=j+1

i

n− 1 + i
=

K−n∑
i=j+1

− log

(
1 +

n− 1

i

)
≤ −(n− 1)

K−n∑
i=j+1

1

n− 1 + i
.

Define Hn =
∑n

i=1 1/i to be the n-th Harmonic number, we also have

K−n∑
i=j+1

1

i
= HK−n −Hj .

Therefore

−(n− 1)(HK−n −Hj) ≤ log

K−n∏
i=j+1

i

n− 1 + i
≤ −(n− 1)(HK−1 −Hn+j−1)

Using that Hℓ ∼ log(ℓ) + γ +O(1/ℓ), where γ is the Euler–Mascheroni constant, we get(
j

K − n

)n−1

≲
K−n∏
i=j+1

i

n− 1 + i
≲

(
n+ j − 1

K − 1

)n−1

.

Therefore, we can bound
∑K−n

j=1

(
n+j−1
K−1

)n−1
using an integral bound

K−n∑
j=1

(
n+ j − 1

K − 1

)n−1

≤
∫ K−n

0

(
n+ x

K − 1

)n−1

dx ≤ e(K − 1)

n
.

From which follows that the original expression can be upper bounded by an expression scaling as
O(min(n, (K − 1)/2)).

Similarly, using that
∑K−n

j=1

(
j

K−n

)n−1
≥ (K − n)/n, we have that the lower bound scales as

min(n, (K − n)/2).
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C ALGORITHMS

In this section we present some of the algorithms more in detail. These includes: ICPE with fixed
horizon, I-DPT and I-IDS.

Recall that in ICPE we treat trajectories of data Dt = (x1, a1, . . . , xt) as sequences to be given as
input to sequential models, such as Transformers.

We define the input at timestep t to be passed to a transformer as st = (Dt,∅t:N ), with ∅t:N

indicating a null sequence of tokens for the remaining steps up to some pre-defined horizon N , with
s1 = (x1,∅1:N ).

To be more precise, letting (x∅
t , a

∅
t ) denote, respectively, the null elements in the state and action at

timestep t, we have ∅t:t+k = {x∅
t , a

∅
t+1, x

∅
t+1, · · · , a

∅
t+k−1, x

∅
t+k}.

The limit N is a practical upper bound on the horizon that limits the dimensionality of the state,
which is introduced for implementing the algorithm.

Algorithm 3 ICPE (In-Context Pure Exploration)
1: Input: Tasks distribution P; confidence δ; horizon N ; initial λ and hyper-parameter Tϕ, Tθ .

// Training phase
2: Initialize buffer B, networks Qθ, Iϕ and set θ̄ ← θ, ϕ̄← ϕ.
3: while Training is not over do
4: Sample environment M ∼ P with hypothesis H⋆, observe x1 ∼ ρ and set t← 1.
5: repeat
6: Execute action at = argmaxa Qθ(Dt, a) in M and observe xt+1.
7: Add partial trajectory (Dt,Dt+1, H

⋆) to B and set t← t+ 1.
8: until at−1 = astop or t > N .
9: In the fixed confidence, update λ according to eq. (11).

10: Sample batch B ∼ B and update θ, ϕ using Linf(B;ϕ) (eq. (7)) and Lpolicy(B; θ) (eq. (8) or eq. (9)).
11: Every Tϕ steps set ϕ̄← ϕ (similarly, every Tθ steps set θ̄ ← θ).
12: end while

// Inference phase
13: Sample unknown environment M ∼ P .
14: Collect a trajectory DN (or Dτ in fixed confidence) according to a policy πt(Dt) = argmaxa Qθ(Dt, a),

until t = N (or at = astop).
15: Return ĤN = argmaxH Iϕ(H|DN ) (or Ĥτ = argmaxH Iϕ(H|Dτ ) in the fixed confidence)

C.1 ICPE WITH FIXED CONFIDENCE

Optimizing the dual formulation
min
λ≥0

max
I,π

Vλ(π, I)

can be viewed as a multi-timescale stochastic optimization problem: the slowest timescale updates
the variable λ, an intermediate timescale optimizes over I , and the fastest refines the policy π.

MDP-like formulation. As shown in the theory, we can use the MDP formalism to define an RL
problem: we define a reward r that penalizes the agent at all timesteps, that is rt = −1, while at the
stopping-time we have rτ = −1 + λI(H⋆|Dτ ). Hence, a trajectory’s return can be written as

Gτ =

τ∑
t=1

rt = −τ + λI(H⋆|Dτ ).

Accordingly, one can define the Q-value of (π, I, λ) in a pair (Dτ , a).

Optimization over ϕ. We treat each optimization separately, employing a descent-ascent scheme.
The distribution I is modeled using a sequential architecture parameterized by ϕ, denoted by Iϕ.
Fixing (π, λ), the inner maximization in eq. (4) corresponds to

max
ϕ

Eπ[1{Ĥτ=H⋆}], with Ĥτ = argmax
H

Iϕ(H|Dτ ).
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We train ϕ via cross-entropy loss:

−
∑
H′

1{Ĥτ=H⋆} log Iϕ(H
′|Dτ ) = − log Iϕ(H

⋆|Dτ ),

averaged across trajectories in a batch.

Optimization over π. The policy π is defined as the greedy policy with respect to learned Q-values.
Therefore, standard RL techniques can learn the Q-function that maximizes the value in eq. (4)
given (λ, I). Denoting this function by Qθ, it is parameterized using a sequential architecture with
parameters θ.

We train Qθ using DQN (Mnih et al., 2015; Van Hasselt et al., 2016), employing a replay buffer
B and a target network Qθ̄ parameterized by θ̄. To maintain timescale separation, we introduce an
additional inference target network Iϕ̄, parameterized by ϕ̄, which provides stable training feedback
for θ. When (I, λ) are fixed, optimizing π reduces to maximizing:

−τ + λ log Iϕ(H
⋆|Dτ ).

Hence, we define the reward at the transition z = (Dn, aN ,Dn+1, d,H
⋆) (with the convention that

Dn+1 ← Dn if a = astop) as:

rλ(z) := −1 + dλ log Iϕ̄(H
⋆|Dn+1),

where d = 1{z is terminal} (z is terminal if the transition corresponds to the last timestep in a
horizon, or a = astop). Furthermore, for a transition z we define zstop := z|(a,Dn+1)←(astop,Dn) as
the same transition z with a← astop and D′n+1 ← Dn.

There is one thing to note: the logarithm in the reward is justified since the original problem can be
equivalently written as:

min
λ≥0

max
I,π
−Eπ[τ ] + λ

[
log
(
Pπ(Ĥτ = H⋆)

)
− log(1− δ)

]
,

after noting that we can apply the logarithm to the constraint in eq. (4), before considering the dual.
Thus the optimal solutions (I, π) remain the same.

Then, using classical TD-learning (Sutton & Barto, 2018), the training target for a transition z is
defined as:

yλ(z) = rλ(z) + (1− d)γmax
a′

Qθ̄(Dn+1, a
′),

where γ ∈ (0, 1] is the discount factor.

As discussed earlier, we have a dedicated stopping action astop, whose value depends solely on history.
Thus, its Q-value is updated retrospectively at any state s using an additional loss:

(rλ(zstop)−Qθ(s, astop))
2
.

Therefore, the overall loss that we consider for θ for a single transition z can be written as

1{a̸=astop} (yλ(z)−Qθ(s, a))
2
+ (rλ(zstop)−Qθ(s, astop))

2
,

where 1{a̸=astop} avoids double accounting for the stopping action.

To update parameters (θ, ϕ), we sample a batch B ∼ B from the replay buffer and apply gradient
updates as specified in the main text. Lastly, target networks are periodically updated.

Optimization over λ. We update λ by assessing the confidence of Iϕ at the stopping time according
to eq. (11), maintaining a slow ascent-descent optimization schedule for sufficiently small learning
rates.
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Cost implementation. Lastly, in practice, we optimize a reward rλ(z) = −c+ dIϕ̄(H
⋆|Dn+1), by

setting c = 1/λ, and noting that for a fixed λ the RL optimization remains the same. The reason why
we do so is due to the fact that with this expression we do not have the product λI(H⋆|Dn+1), which
makes the descent-ascent process more difficult.

We also use the following cost update

ct+1 = ct − β(1− δ − 1{H⋆=argmaxH I(H|Dτ )}).

To see why the cost can be updated in this way, define the parametrization λ = e−x. Then the
optimization problem becomes

min
x

max
I

min
π
−Eπ[τ ] + e−x

[
Pπ
(
H⋆ = Ĥτ

)
− 1 + δ

]
,

Letting ρ = Pπ
(
H⋆ = Ĥτ

)
− 1 + δ, the gradient update for x with a learning rate β simply is

xt+1 = xt − βe−xtρ,

implying that
− log(λt+1) = − log(λt)− βλtρ.

Defining ct = 1/λt, we have that

log(ct+1) = log(ct)− (βρ/ct)⇒ ct+1 = cte
βρ/ct .

Using then the approximation ex ≈ 1 + x, we find ct+1 = ct + βρ = ct − β(1 − δ −
1{H⋆=argmaxH I(H|Dτ )}).

Training vs Deployment. Thus far, our discussion of ICPE has focused on the training phase. After
training completes, the learned policy π and inference network I can be deployed directly: during
deployment, π both collects data and determines when to stop—either by triggering its stopping
action or upon reaching the horizon N .

C.2 ICPE WITH FIXED BUDGET

In the fixed budget setting (problem in eq. (2)) the MDP terminates at timestep N , and we set the
reward to be rt = 0 for t < N and rN = I(H⋆|DN ), with ĤN = argmaxH I(H|DN ) being the
inferred hypothesis. Accordingly, one can define the value of (π, I) using Q functions as beofre.

Practical implementation. The practical implementation for the fixed horizon follows closely that
of the fixed confidence setting, and we refer the reader to that section for most of the details. In this
case the reward in a transition z = (Dn, a,D′n+1, d,H

⋆) is defined as as:

rλ(z) := d log Iϕ̄(H
⋆|Dn+1), (29)

where d = 1{zis terminal}. Note that we can use the logarithm, since solving the original problem is
also equivalent to solving But note that the original problem is also equivalent to solving

max
I

max
π

log
(
Pπ
(
H⋆ = ĤN

))
, (30)

due to monotonicity of the logarithm.

The Q-values can be learned using classical TD-learning techniques (Sutton & Barto, 2018): to that
aim, for a transition z, we define the target:

yλ(z) = rλ(z) + (1− d)max
a′

Qθ̄(Dn+1, a
′). (31)

Then, the gradient updates are the same as for the fixed confidence setting.

C.3 OTHER ALGORITHMS

In this section we describe Track and Stop (TaS) (Garivier & Kaufmann, 2016), and some variants
such as I-IDS, I-DPT and the explore then commit variant of ICPE.
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C.3.1 TRACK AND STOP

Track and Stop (TaS, (Garivier & Kaufmann, 2016)) is an asymptotically optimal as δ → 0 for MAB
problems. For simplicity, we consider a Gaussian MAB problem with K actions, where the reward
of each action is normally distributed according to N (µa, σ

2), and let µ = (µa)a∈[K] denote the
model. The TaS algorithm consists of: (1) the model estimation procedure and recommender rule; (2)
the sampling rule, dictating which action to select at each timestep; (3) the stopping rule, defining
when enough evidence has been collected to identify the best action with sufficient confidence, and
therefore to stop the algorithm.

Estimation Procedure and Recommender Rule The algorithm maintains a maximum likelihood
estimate µ̂a(t) of the average reward for each arm based on the observations up to time t. Then, the
recommender rule is defined as ât = argmaxa µ̂a(t).

Sampling Rule. The sampling rule is based on the observation that any δ-correct algorithm, that is
an algorithm satisfying P(âτ = a⋆) ≥ 1− δ, with a⋆ = argmaxa µa, satisfies the following sample
complexity

E[τ ] ≥ T ⋆(µ)kl(1− δ, δ),

where kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)) and

(T ⋆(µ))−1 = sup
ω∈∆(K)

min
a ̸=a⋆

ωa⋆ωa

ωa + ωa⋆

∆2
a

2σ2
,

with ∆a = µa⋆−maxa̸=a⋆ µa. Interestingly, to design an algorithm with minimal sample complexity,

we can look at the solution ω⋆ = arg infω∈∆(K) T (ω;µ), with (T (ω))−1 = mina̸=a⋆
ωa⋆ωa

ωa+ωa⋆

∆2
a

2σ2 .

The solution ω⋆ provides the best proportion of draws, that is, an algorithm selecting an action a with
probability ω⋆

a matches the lower bound and is therefore optimal with respect to T ⋆. Therefore, an idea
is to ensure that Nt/t tracks ω⋆, where Nt is the visitation vector N(t) := [N1(t) . . . NK(t)]

⊤.

However, the average rewards (µa)a are initially unknown. A commonly employed idea (Garivier
& Kaufmann, 2016; Kaufmann et al., 2016) is to track an estimated optimal allocation ω⋆(t) =
arg infω∈∆(K) T (ω; µ̂(t)) using the current estimate of the model µ̂(t).

However, we still need to ensure that µ̂(t)→ µ. To that aim, we employ a D-tracking rule (Garivier &
Kaufmann, 2016), whcih guarantees that arms are sampled at a rate of

√
t. If there is an action a with

Na(t) ≤
√
t−K/2 then we choose at = a. Otherwise, choose the action at = argmina Na(t)−

tω⋆
a(t).

Stopping rule. The stopping rule determines when enough evidence has been collected to determine
the optimal action with a prescribed confidence level. The problem of determining when to stop can
be framed as a statistical hypothesis testing problem (Chernoff, 1959), where we are testing between
K different hypotheses (Ha : (µa > maxb ̸=b µa))a.

We consider the following statistic L(t) = tT (N(t)/t; µ̂(t))−1, which is a Generalized Likelihood
Ratio Test (GLRT), similarly as in (Garivier & Kaufmann, 2016). Comparing with the lower bound,
one needs to stop as soon as L(t) ≥ kl(δ, 1 − δ) ∼ ln(1/δ). However, to account for the random
fluctuations, a more natural threshold is β(t, δ) = ln((1 + ln(t))/δ), thus we use L(t) ≥ β(t, δ) for
stochastic MAB problems. We also refer the reader to (Kaufmann & Koolen, 2021) for more details.

Why computing the sampling rule can be difficult. To derive the sampling rule, one usually
first derives the characteristic time T ⋆(µ). Above, we discussed the case where the underlying
distributions are Gaussians, but in the more general case T ⋆ can be written as

T ⋆(µ)−1 = sup
w∈∆K

inf
λ∈Alt(µ)

K∑
a=1

ωaKL
(
Pµa , Pλa

)
,

where Alt(µ) is the set of alternatives under which the identity of the best arm changes, Pµ is the
distribution of rewards under µ (sim. for λ). Even though the objective is linear in ω for any fixed
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λ, the inner feasible set Alt(µ) can be a nonconvex set (“make some competitor optimal”), and the
map λ 7→ KL(Pµa

, Pλa
) is typically nonlinear and model–dependent. Even if these distributions are

known, no closed form is available in general.

When arms belong to a one–parameter exponential family, and the problem has no structure, the
optimal ω can be simply computed by applying (for example) the bisection method to a function
whose evaluations requires the resolution of K smooth scalar equations, thus linearly scaling in the
number of arms. Since this optimization problem is usually solved at each timestep (or every T
timesteps), the complexity scales in the horizon N and the number of arms K as NK.

For general distributions, the situation worsens, and may be intractable without additional modeling
assumptions. Lastly, note that the supremum over ω is a convex program in principle. First–order
methods such as Frank–Wolfe can be applied to find an approximate solution. However, any tractable
implementation presumes structural knowledge (e.g., an exponential–family model, smoothness) to
guarantee a number of necessary properties.

C.3.2 I -IDS

Algorithm 4 I-IDS

1: Input: Pre-trained inference network Iϕ; prior means and variances µa, σ
2
a for all a ∈ A; target

error threshold δ
2: Initialize: fa(x) = N (x | µa, σ

2
a) for each a

3: for t = 1, 2, . . . do
4: if maxa Iϕ(a | Dt−1) ≥ 1− δ then
5: return argmaxa Iϕ(a | Dt−1)
6: end if
7: for each arm a ∈ A do
8: Approximate information gain:

gt(a) = H (Iϕ(· | Dt−1))− Er∼p(r|a,Dt−1) [H (Iϕ(· | Dt−1, a, r))]

9: end for
10: Select action at = argmaxa gt(a)
11: Observe reward rt
12: Update dataset Dt = Dt−1 ∪ {(at, rt)}
13: end for

We implement a variant of Information Directed Sampling (IDS) (Russo & Van Roy, 2018), where
we use the inference network Iϕ learned during ICPE training as a posterior over optimal arms. This
approach enables IDS to exploit latent structure in the environment without explicitly modeling it via
a probabilistic model; instead, the learned I-network implicitly captures such structure.

By using the same inference network in both ICPE and I-IDS, we directly compare the exploration
policy learned by ICPE to the IDS heuristic applied on top of the same posterior distribution. While
computing the expected information gain in IDS requires intractable integrals, we approximate them
using a Monte Carlo grid of 30 candidate reward values per action. The full pseudocode for I-IDS is
given in Algorithm 4.

C.3.3 IN-CONTEXT EXPLORE-THEN-COMMIT

We implement an ICPE variant for regret minimization via an explore-then-commit framework. This
method reuses the exploration policy and inference network learned during fixed-confidence training.
The agent interacts with the environment using the learned exploration policy until it selects the
stopping action. At that point, it commits to the arm predicted to be optimal by the I-network and
repeatedly pulls that arm for the remainder of the episode. The full pseudo-code is provided in
Algorithm 5.
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Algorithm 5 In-Context Explore-then-Commit

1: Input: Environment M ∼ P(M); pre-trained critic network Qθ; pre-trained inference network
Iϕ

2: Initialize stopped← False
3: Observe initial state s1 ∼ ρ
4: for t = 1 to N do
5: if stopped = False and astop ̸= argmaxa Qθ(st, a) then
6: Execute at = argmaxa Qθ(st, a) and observe st+1

7: else if stopped = False and astop = argmaxa Qθ(st, a) then
8: Set stopped← True
9: Execute at = argmaxa Iϕ(st) and observe st+1

10: else
11: Execute at = argmaxa Iϕ(st) and observe st+1

12: end if
13: end for

C.3.4 I -DPT

We implement a variant of DPT (Lee et al., 2023) using the inference network. The idea is to act
greedily with respect to the posterior distribution I at inference time.

First, we train I using ICPE. Then, at deployment we act with respect to I: in round t we selection
action at = argmaxH I(H|Dt). Upon observing xt+1, we update Dt+1 and stop as soon as
argmaxH I(H|Dt) ≥ 1− δ.

C.4 TRANSFORMER ARCHITECTURE

Here we briefly describe the architecture of the inference network I and of the network Q.

Both networks are implemented using a Transformer architecture. For the inference network, it is
designed to predict a hypothesis H given a sequence of observations. Let the input tensor be denoted
by X ∈ RB×H×m, where:

• B is the batch size,
• H is the sequence length (horizon), and
• m = (d+ |A|), where d is the dimensionality of each observation xt.

The inference network operates as follows:

1. Embedding Layer: Each observation vector mt = (xt, at) is first embedded into a higher-
dimensional space of size de using a linear transformation followed by a GELU activation:
ht = GELU(Wembedmt + bembed), ht ∈ Rde .

2. Transformer Layers: The embedded sequence h ∈ RB×H×de is then passed through
multiple Transformer layers (specifically, a GPT-2 model configuration). The Transformer
computes self-attention over the embedded input to model dependencies among observations:

h′ = Transformer(h), h′ ∈ RB×H×de .

3. Output Layer: The final hidden state corresponding to the last element of the sequence
(h′:,−1,:) is fed into a linear output layer that projects it to logits representing the hypotheses:

o = Wouth
′
:,−1,: + bout, o ∈ RB×|H|.

4. Probability Estimation: The output logits are transformed into log-probabilities via a
log-softmax operation along the last dimension

log p(H|X) = log_softmax(o).

For Q, we use the same architecture, but do not take a log-softmax at the final step.
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Input X ∈ RB×H×d

Embedding Layer Linear + GELU

Transformer
(GPT-2)

Output LayerLinear

Log-softmax
log p(H|X)

Last hidden state

Figure 6: Model architecture for the inference network I (similarly for Q).

D EXPERIMENTS

This section provides additional experimental results, along with detailed training and evaluation
protocols to ensure clarity and reproducibility. All experiments were conducted using four NVIDIA
A100 GPUs.

For more informations about the hyper-parameters, we also refer the reader to the README.md file
in the code, as well as the training configurations in the configs/experiments folder.

Libraries used in the experiments. We set up our experiments using Python 3.10.12 (Van Rossum
& Drake Jr, 1995) (For more information, please refer to the following link http://www.python.
org), and made use of the following libraries: NumPy (Harris et al., 2020), SciPy (Virtanen et al.,
2020), PyTorch (Paszke et al., 2019), Seaborn (Waskom et al., 2017), Pandas (McKinney et al., 2010),
Matplotlib (Hunter, 2007), CVXPY (Diamond & Boyd, 2016), Wandb (Biewald, 2020), Gurobi
(Gurobi Optimization, LLC, 2024). Changes, and new code, are published under the MIT license. To
run the code, please, read the attached README file for instructions.

Hierarchical bootstrapping. For each experiment, we compute confidence intervals using hierar-
chical bootstrapping. Our data is organized at three levels: seed, environment, and trajectory. For
each training seed we evaluate multiple environments, and for each environment we roll out multiple
trajectories. Hierarchical bootstrapping allows us to correctly account for this nested structure when
estimating uncertainty. This approach captures variability across seeds, environments, and trajectories,
yielding a more reliable characterization of performance compared to classical bootstrapping.

To fix the ideas, consider the following random-effects model

Ya,b,c = µ+ αa + βa,b, + γa,b,c, αa ∼ N (0, σ2
seed), βa,b ∼ N (0, σ2

env), γa,b,c ∼ N (0, σ2
traj),

and let Ȳ = 1
mKN

∑m
a=1

∑k
b=1

∑N
c=1(Ya,b,c) with m seeds, K environments per seed and N

trajectories per environment.
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The variance of Ȳ then is Var(Ȳ ) =
σ2

seed
m +

σ2
env

mK +
σ2

traj

mKN , which hierarchical bootstrapping accounts
for. Instead, a naive bootstrap over the mKN trajectories targets Varnaive(Ȳ ) ≈ Var(Ya,b,c)

mKN =
σ2

seed+σ2
env+σ2

traj

mKN , which effectively reduces the contribution at the seed-level by a factor KN .

D.1 BANDIT PROBLEMS

Here, we provide the implementation and evaluation details for the bandit experiments reported in
Section 4.1, covering deterministic, stochastic, and structured settings. Note that for this setting the
observations are simply the observed rewards, i.e., xt = rt.

Model Architecture and Optimization. For all bandit tasks, ICPE uses a Transformer with 3
layers, 2 attention heads, hidden dimension 256, GELU activations, and dropout of 0.1 applied to
attention, embeddings, and residuals (see also app. C.4 for a description of the architecture). Layer
normalization uses ϵ = 10−5. Inputs are one-hot action-reward pairs with positional encodings.
Models are trained using Adam with learning rates between 1× 10−4 and 1× 10−6, and batch sizes
from 128 to 1024 depending on task complexity.

D.1.1 DETERMINISTIC BANDITS WITH FIXED BUDGET

Each environment consists of K arms, where K ∈ {4, 6, 8, . . . , 20}. Mean rewards for each arm are
sampled uniformly from [0, 1], and rewards are deterministic (i.e., zero variance). Agents interact
with the environment for exactly K steps and are then required to predict the optimal arm. Success
is measured by the probability of correctly identifying the best arm. We also compute the average
number of unique arms selected during training episodes as a proxy for exploration diversity.

ICPE is compared against three baselines in the deterministic setting: Uniform Sampling, which
selects arms uniformly at random; DQN, a deep Q-network trained directly on environmental rewards
(Mnih et al., 2013); and I-DPT, which performs posterior sampling using ICPE’s I-network (Lee
et al., 2023). All methods were evaluated over five seeds, with 900 environments per seed. 95%
confidence intervals were computed with hierarchical bootstrapping.
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Figure 7: Deterministic bandits: (left) probability of correctly identifying the best action vs. K;
(right) average fraction of unique actions selected during exploration vs. K.

D.1.2 STOCHASTIC BANDITS PROBLEMS

In the stochastic Gaussian bandit setting, we evaluate ICPE on best-arm identification tasks with
K ∈ {4, 6, 8, . . . , 14}. Arm means are sampled uniformly from [0, 0.4K], with a guaranteed
minimum gap of 1/K between the top two arms. All arms have a fixed reward standard deviation of
0.5. The target confidence level is set to δ = 0.1.

We compare ICPE against several widely used baselines: Top-Two Probability Sampling (TTPS) (Jour-
dan et al., 2022), Track-and-Stop (TaS) (Garivier & Kaufmann, 2016), Uniform Sampling, and I-DPT.
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For I-DPT, stopping occurs when the predicted optimal arm has estimated confidence at least 1− δ.
For TTPS and TaS, we apply the classical stopping rule based on the characteristic time T ⋆(Nt/t; µ̂t)
(explained in app. C.3.1):

t · T ⋆(Nt/t; µ̂t) ≥ log

(
1 + log t

δ

)
.

Each method is evaluated over three seeds, with 300 environments, and 15 trajectories per environment.
95% confidence intervals were computed with hierarchical bootstrapping.
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Figure 8: Results for stochastic MABs with fixed confidence δ = 0.1 and N = 100: (a) average
stopping time τ ; (b) survival function of τ ; (c) probability of correctness Pπ(H⋆ = Ĥτ ).

Does ICPE learn randomized policies? An intriguing question is whether ICPE is capable of
learning randomized policies. Intuitively, one might expect randomized methods, such as actor-critic
algorithms, to perform better. However, we observe that this is not the case for ICPE. Crucially,
the inherent randomness of the environment, when passed as input to the transformer architecture,
already serves as a source of stochasticity. Thus, although ICPE employs a deterministic mapping
(via DQN) from observed trajectories, these trajectories themselves constitute random variables,
rendering the policy’s output effectively stochastic. To illustrate this, we examine an ICPE policy
trained with fixed confidence (δ = 0.1) in a setting with K = 14 actions (see the two rightmost plots
in fig. 9). By analyzing 100 trajectories from this environment and computing an averaged policy, we
clearly observe how trajectory randomness influences the policy’s outputs. Specifically, exploration
intensity peaks around the middle of the horizon and diminishes as the confidence level increases.

Does ICPE resembles Track and Stop? In fig. 9 (left figure) we compare an ICPE policy trained
in the fixed confidence setting (δ = 0.1) with an almost optimal version of TaS, that can be easily
computed without solving any optimization problem. Let ∆̂t(a) = µ̂ât

(t) − maxa ̸=ât
µ̂a, where

µ̂a(t) is the empirical reward of arm a in round t and ât = argmaxa µ̂a(t) is the estimated optimal
arm. Then, the approximate TaS policy is defined as

πt(a) =
1/∆̂a(t)∑
b 1/∆̂b(t)

,
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Figure 9: Statistics of ICPE with fixed confidence on 100 trajectories from a single environment,
with K = 14. From left to right: Total variation error between the average ICPE policy and the
approximate Track and Stop policy; entropy of the average policy of ICPE; probabilities of the
average ICPE policy, with pmax representing the maximum probability and pα the α-quantile.

with ∆̂ât
(t) = mina ̸=ât

∆̂a(t). In the figure we sampled 100 trajectories from a single environment
with K = 14, and computed an average ICPE policy. Then, we compared this policy to the
approximate TaS policy, and computed the total variation. We can see that the two policies are
not always similar. We believe this is due to the fact that ICPE is exploiting prior information on
the environment, including the minimum gap assumption, and the fact that the average rewards are
bounded in [0, 0.4K].

4 6 8 10 12 14
Number of Actions

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ilit

y 
of

 C
or

re
ct

ne
ss

TaS
ICPE
Uniform
TTPS
I-DPT

Figure 10: Correctness Pπ(H⋆ = ĤN ) for stochastic MABs with fixed budget N = 30.

Is ICPE robust to distribution shift? As an in-context learning method, ICPE is designed to be
meta-trained on the same family of tasks on which it will be deployed. That said, understanding
robustness to changes in the environment distribution is important for assessing practicality. Therefore,
we trained ICPE in the stochastic fixed-confidence bandit setting described above, where environments
are sampled from a uniform distribution over Gaussian bandits with a minimum gap. At test time,
we then evaluated the same trained model on bandit instances drawn from shifted environment
distributions. We constructed these shifts by sampling reward means from a symmetric Dirichlet
distribution with parameter α chosen so that

KL(Dir(α, . . . , α) ∥Dir(1, . . . , 1)) = target KL,

thereby controlling the divergence from the uniform training distribution. Intuitively, varying the
target KL controls how concentrated generated samples are with respect to the simplex. ICPE’s
correctness and average stopping time across a range of KL values and number of actions is reported in
tab. 2. Across all experiments, we observe that both correctness and stopping time remain remarkably
stable, with only minor fluctuations within the reported confidence intervals. This suggests that ICPE
is not excessively sensitive to moderate shifts in the environment distribution around the training
family.
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KL Divergence
From Uniform Number of Actions = 4 Number of Actions = 6

Correctness Avg. Stop Time Correctness Avg. Stop Time

0.00 0.91 ± 0.01 7.76 ± 0.20 0.91 ± 0.01 9.78 ± 0.22
0.25 0.91 ± 0.01 7.59 ± 0.19 0.91 ± 0.01 9.97 ± 0.26
0.50 0.90 ± 0.01 7.65 ± 0.21 0.91 ± 0.01 9.79 ± 0.26
1.00 0.90 ± 0.01 7.68 ± 0.20 0.90 ± 0.01 9.89 ± 0.28
2.00 0.89 ± 0.01 7.63 ± 0.21 0.90 ± 0.01 9.86 ± 0.28
4.00 0.89 ± 0.01 7.73 ± 0.22 0.90 ± 0.01 10.07 ± 0.28

KL Divergence
From Uniform Number of Actions = 8 Number of Actions = 10

Correctness Avg. Stop Time Correctness Avg. Stop Time

0.00 0.90 ± 0.01 11.37 ± 0.22 0.91 ± 0.01 15.41 ± 0.37
0.25 0.89 ± 0.01 11.45 ± 0.26 0.92 ± 0.01 15.13 ± 0.37
0.50 0.89 ± 0.01 11.54 ± 0.26 0.91 ± 0.01 15.35 ± 0.40
1.00 0.90 ± 0.01 11.33 ± 0.24 0.90 ± 0.01 15.33 ± 0.42
2.00 0.89 ± 0.01 11.41 ± 0.28 0.91 ± 0.01 15.54 ± 0.41
4.00 0.88 ± 0.01 11.47 ± 0.28 0.91 ± 0.01 15.22 ± 0.40

KL Divergence
From Uniform Number of Actions = 12 Number of Actions = 14

Correctness Avg. Stop Time Correctness Avg. Stop Time

0.00 0.91 ± 0.01 18.86 ± 0.51 0.91 ± 0.01 22.23 ± 0.72
0.25 0.91 ± 0.02 18.28 ± 0.52 0.92 ± 0.01 22.63 ± 0.71
0.50 0.91 ± 0.01 18.55 ± 0.53 0.91 ± 0.01 22.18 ± 0.75
1.00 0.90 ± 0.01 18.78 ± 0.52 0.91 ± 0.01 22.36 ± 0.72
2.00 0.91 ± 0.01 19.00 ± 0.60 0.91 ± 0.01 22.57 ± 0.75
4.00 0.91 ± 0.01 18.52 ± 0.54 0.91 ± 0.01 22.97 ± 0.75

Table 2: ICPE performance on stochastic fixed-confidence (δ = 0.1, N = 100) bandits when test
environments drift from the uniform training distribution by a prescribed KL distance (symmetric
Dirichlet). Reported values are 95% confidence intervals computed via hierarchical bootstrapping.

D.1.3 BANDIT PROBLEMS WITH HIDDEN INFORMATION

Magic Action Environments We evaluate ICPE in bandit environments where certain actions
reveal information about the identity of the optimal arm, testing its ability to uncover and exploit
latent structure under the fixed-confidence setting.

Each environment contains K = 5 arms. Non-magic arms have mean rewards sampled uniformly
from [1, 5], while the mean reward of the designated magic action (always arm 1) is defined as
µm = ϕ(argmaxa ̸=am µa) with ϕ(i) = i/K. The magic action is not the optimal arm, but it
encodes information about which of the other arms is. To control the informativeness of this signal,
we vary the standard deviation of the magic arm σm ∈ {0.0, 0.1, . . . , 1.0}, while fixing the standard
deviation of all other arms to σ = 1− σm.

ICPE is trained under the fixed-confidence setting with a target confidence level of 0.9. For each σm,
we compare ICPE’s sample complexity to two baselines: (1) the average theoretical lower bound
computed for the problem computed via averaging the result of Theorem B.26 over numerous envi-
ronmental mean rewards, and (2) I-IDS, a pure-exploration information-directed sampling algorithm
that uses ICPE’s I-network for posterior estimation. All methods are over 500 environments, with 10
trajectories per environment. 95% confidence intervals are computed using hierarchical bootstrapping
with two levels.

Beyond the exploration efficiency analysis shown in Figure 4a, we also assess the correctness of
each method’s final prediction and its usage of the magic action. As shown in Figure 11a, both

69



3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

ICPE and I-IDS consistently achieve the target accuracy of 0.9, validating their reliability under the
fixed-confidence formulation.

Figure 11b plots the proportion of total actions that were allocated to the magic arm across different
values of σm. While both methods adapt their reliance on the magic action as its informativeness
degrades, I-IDS tends to abandon it earlier. This behavior suggests that ICPE is better able to retain
and exploit structured latent information beyond what is captured by simple heuristics for expected
information gain.
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Figure 11: (a) Final prediction accuracy across varying levels of noise in the magic action (σm). Both
ICPE and I-IDS consistently achieve the target confidence threshold of 0.9. (b) Percentage of actions
allocated to the magic arm as a function of σm. ICPE continues to exploit the magic action longer
than I-IDS, suggesting more robust use of latent structure.

We also assess ICPE’s performance in a regret minimization setting. We define an In-Context
Explore-then-Commit variant of ICPE, which explores until the I-network reaches confidence 1− δ,
then repeatedly selects the estimated optimal action. We compare this policy’s cumulative regret to
that of three standard algorithms: UCB, Thompson Sampling, and IDS, each initialized with Gaussian
priors. For this evaluation, we fix σm = 0.1, σ = 0.9, and δ = 0.01.

Implementation details for I-IDS and In-Context Explore-then-Commit are provided in Sections
C.3.2 and C.3.3 respectively.

Magic Chain Environments To assess ICPE’s ability to perform multi-step reasoning over latent
structure, we evaluate it in environments where identifying the optimal arm requires sequentially
uncovering a chain of informative actions. In these magic chain environments, each magic action
reveals partial information about the next, culminating in identification of the best arm.

We use K = 10 arms and vary the number of magic actions n ∈ {1, 2, . . . , 9}. Mean rewards for
magic actions are defined recursively as:

µij =

ϕ(ij+1), if j = 1, . . . , n− 1,

ϕ
(
argmaxa/∈{i1,...,in} µa

)
, if j = n,

where ϕ(i) = i/K, and the remaining arms have mean rewards sampled uniformly from [1, 2]. All
rewards are deterministic (zero variance).

ICPE is trained under the fixed-confidence setting with δ = 0.99. For each n, five models are trained
across five seeds. We compare ICPE’s average stopping time to the theoretical optimum (computed
via Theorem B.29) and to the I-IDS baseline equipped with access to the I-network. Each model
is evaluated over 1000 test environments per seed. 95% confidence intervals are computed using
hierarchical bootstrapping.

In interpreting the results from Figure 4b, we observe that for environments with one or two magic
actions, ICPE reliably learns the optimal policy of following the magic chain to completion. In these
cases, the agent is able to identify the optimal arm without ever directly sampling it, by exploiting the
structured dependencies embedded in the reward signals of the magic actions. Figure 12 illustrates a
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representative trajectory from the two-magic-arm setting, where the first magic action reveals the
location of the second, which in turn identifies the optimal arm. The episode terminates without
requiring the agent to explicitly sample the best arm itself.

Figure 12: Example trajectory in the 2-magic-arm environment. ICPE follows the magic chain: the
first magic action reveals the second, which identifies the optimal arm.

For environments with more than two magic actions, however, ICPE learns a different strategy. As
the length of the magic chain increases, the expected sample complexity of following the chain from
the start becomes suboptimal. Instead, ICPE learns to randomly sample actions until it encounters
one of the magic arms and then proceeds to follow the chain from that point onward. This behavior
represents an efficient, learned compromise between exploration cost and informativeness. Figure 13
shows an example trajectory from the six-magic-arm setting, where the agent initiates random
sampling until it lands on a magic action, then successfully follows the remaining chain to identify
the optimal arm.

Figure 13: Example trajectory in the 6-magic-arm environment. Rather than starting from the first
magic action, ICPE samples randomly until finding a magic action and then follows the chain to the
optimal arm.

D.2 SEMI-SYNTHETIC PIXEL SAMPLING

To evaluate ICPE in a setting that more closely resembles real-world decision-making tasks, we
designed a semi-synthetic environment based on the MNIST dataset (LeCun et al., 1998), where the
agent must adaptively reveal image regions to classify a digit while minimizing the number of pixels
observed. This experiment serves as a proof-of-concept for using ICPE in perceptual tasks where
observations are costly and information must be acquired efficiently.

Environment Details. Each MNIST image is partitioned into 36 non-overlapping 5 × 5 pixel
regions, defining an action space of size K = 36. At each timestep, the agent selects a region to

71



3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2026

reveal, progressively unmasking the image. The agent begins with a fully masked image and has a
fixed budget of N = 12 steps to acquire information and make a prediction.

To prevent overfitting and encourage generalizable policies, we apply strong augmentations at each
episode: random rotations (±30◦), translations (up to 2 pixels), Gaussian noise (N (0, 0.1)), elastic
deformations, and random contrast adjustments. These augmentations ensure that agents cannot
memorize specific pixel layouts and must instead learn adaptive exploration strategies.

Model Architecture and Optimization. Due to the visual nature of the task, we use a convolutional
encoder rather than a transformer. The ICPE critic network combines a CNN image encoder with a
separate action-count encoder. The CNN consists of 3 convolutional blocks with 16 base channels,
followed by max pooling and global average pooling. The action counts (which track how often
each region has been sampled) are passed through a linear embedding layer with 32 output units,
followed by ReLU activation and LayerNorm. The image and action embeddings are concatenated
and processed through two residual MLP layers, producing Q-values over actions. The I-network
shares the same architecture but outputs logits over 10 digit classes.

All models are implemented in PyTorch and trained with Adam using a learning rate of 1× 10−4.
Training is performed over 500,000 episodes using 40 parallel environment instances. We use a
batch size of 128, a replay buffer of size 100,000, and a discount factor γ = 0.999. The Q-network
is updated using Polyak averaging with coefficient 0.01, and the I-network is updated every two
steps using 30 bootstrap batches. To populate the buffer initially, we perform 10 batches of bootstrap
updates before standard training begins. Gradients are clipped to a maximum norm of 2.

Pretraining the Inference Network. To provide stable reward signals and ensure consistency with
baselines, we pretrain a separate CNN classifier to predict digit labels from fully revealed images.
This classifier consists of three convolutional layers with max pooling, followed by two linear layers
and a softmax head. The classifier is trained on the same augmented data used during ICPE training
and is frozen during exploration learning. Its softmax confidence for the correct digit is used as
the reward signal. This setup simulates realistic scenarios in which high-quality predictive models
already exist for fully observed data (e.g., in clinical diagnosis).

Evaluation. We compare ICPE to two baselines: Uniform Sampling, which selects image regions
uniformly at random at each timestep, and Deep CMAB (Collier & Llorens, 2018), a contextual bandit
algorithm that uses a Bayesian neural network to model p(r | x, a) and performs posterior sampling
via dropout.

The Deep CMAB model uses a convolutional encoder to extract image features, which are concate-
nated with a learned embedding of the action count vector. The combined representation is passed
through a multilayer perceptron with dropout applied to each hidden layer. At each decision point, the
agent samples a dropout rate from a uniform distribution over (0, 1) and uses the resulting forward
pass as a sample from the posterior over rewards (Thompson sampling). The reward signal for
each action is computed using the pretrained MNIST classifier: specifically, the increase in softmax
probability for the correct digit class after a new region is revealed.

We train Deep CMAB for 100,000 episodes using Adam optimization. During training, the agent
interacts with multiple MNIST instances in parallel, and updates its model based on the marginal
improvement in confidence after each action. The model learns to maximize this incremental reward
signal by associating particular visual contexts with the most informative actions.

For each trained model, we sample 1000 test environments and report on (1) the average final
classification accuracy by the pretrained classifier at the end of trajectory, and (2) the average number
of regions used before prediction. Confidence intervals are computed via bootstrapping.

Adaptive Sampling Analysis. To assess whether agents learn digit-specific exploration strategies,
we analyze the distribution of selected image regions across digit classes. For each agent, we compute
pairwise chi-squared tests between all digit pairs, testing whether the distributions of selected regions
are statistically distinguishable.

To ensure sufficient support for the test, we only compare digit pairs that each have at least five
trajectories and remove actions that appear in fewer than five total samples across the two classes. For
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each qualifying digit pair, we construct a 2× K̃ contingency table, where K̃ is the number of region
indices that are meaningfully used by either digit. The rows correspond to digit classes, and each
column counts how many samples from each class selected the corresponding region at least once.

We apply the chi-squared test of independence to each contingency table. A low p-value indicates that
the region selection distributions for the two digits are significantly different, suggesting digit-specific
adaptation. By comparing the number and strength of significant differences across agents, we
evaluate the extent to which each method tailors its exploration policy to the structure of the input
class.

We visualize the resulting pairwise p-values in Figure 14 using a heatmap. Each cell shows the
chi-squared test p-value between a pair of digits. Lower values (blue cells) indicate greater divergence
in sampling behavior, and thus more adaptive and digit-specific strategies.
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Figure 14: Pairwise chi-squared test p-values for region selection distributions across digit classes.
Lower values indicate more statistically distinct exploration behaviors.

For further intuition into the sampling process, Figure 15 shows a representative example of the ICPE
pipeline progressively revealing image regions and correctly classifying the digit ‘2’. This highlights
the interplay between exploration and inference as the agent strategically uncovers informative
regions to guide its decision.

To illustrate the impact of input corruption, Figure 16 presents an example where ICPE fails to
correctly classify the digit. Although the agent successfully reveals the central body of the digit, the
applied augmentations distort the image to the extent that the digit becomes visually ambiguous. In
this case, the agent incorrectly predicts an ‘8’ when the true label is a ‘9’, underscoring the challenge
introduced by realistic image corruptions in this setting.

D.3 MDP PROBLEMS: MAGIC ROOM

The Magic Room is a sequential decision-making environment structured as a K ×K grid-shaped
room containing four doors, each positioned at the midpoint of one of the four walls (top, bottom,
left, right). At the beginning of each episode, exactly one of these doors is randomly chosen to be the
correct door (H⋆), unknown to the agent.

The agent’s goal is to identify and pass through the correct door. Each episode lasts for a maximum
of N = K2 time steps, during which the agent navigates the grid, observes clues, and attempts
to determine the correct door. Two binary clues, each randomly assigned a location within the
sub-grid [1, 1]× [K − 1,K − 1], are placed in the room at the start of each episode. Each clue has a
binary value, randomly set to either −1 or 1. Collecting both clues provides sufficient information to
unambiguously determine the correct door, given that the agent has learned the mapping from clue
configurations to door identity.

At each time step t, the agent observes the state vector:

xt = (zt, yt, c1,t, c2,t, rt),

where:
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True Image
Step 1

Prediction: 4, Confidence (0.11)
Step 2

Prediction: 1, Confidence (0.17)
Step 3

Prediction: 1, Confidence (0.33)

Step 4
Prediction: 5, Confidence (0.74)

Step 5
Prediction: 5, Confidence (0.78)

Step 6
Prediction: 1, Confidence (0.47)

Step 7
Prediction: 1, Confidence (0.47)

Step 8
Prediction: 2, Confidence (0.99)

Step 9
Prediction: 2, Confidence (1.00)

Step 10
Prediction: 2, Confidence (1.00)

Step 11
Prediction: 2, Confidence (1.00)

Figure 15: Illustrative example of the ICPE agent revealing regions of an MNIST digit and correctly
classifying it as a ‘2’. The sequence shows the intermediate revealed image and predicted label at
each timestep.

True Image
Step 1

Prediction: 4, Confidence (0.11)
Step 2

Prediction: 3, Confidence (0.19)
Step 3

Prediction: 5, Confidence (0.19)

Step 4
Prediction: 5, Confidence (0.28)

Step 5
Prediction: 4, Confidence (0.39)

Step 6
Prediction: 4, Confidence (0.47)

Step 7
Prediction: 9, Confidence (0.53)

Step 8
Prediction: 9, Confidence (0.56)

Step 9
Prediction: 8, Confidence (0.76)

Step 10
Prediction: 8, Confidence (0.62)

Step 11
Prediction: 8, Confidence (0.64)

Figure 16: Example of an incorrect classification due to aggressive data augmentations. Although the
agent reveals the central region of the digit, the distortions cause it to misclassify a ‘9’ as an ‘8’.

• (zt, yt) are the agent’s current coordinates on the grid.

• ci,t ∈ {−1, 0, 1} indicates the status of clue i: it equals 0 if clue i has not yet been observed
by the agent, or it equals either −1 or 1 if the clue has been observed.

• rt ∈ {0, 1} represents the reward received at time t. Specifically, upon passing through a
door:

– If the chosen door is the correct one, the agent receives a reward of 1 with probability
1
4 , and a reward of 0 otherwise.

– If the chosen door is incorrect, the agent always receives a reward of 0.
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C1

C2

Start

Figure 17: Magic room: example of trajectory of the
icpe agent.

An episode terminates when the agent chooses to pass through any of the four doors, irrespective of
correctness, or when the horizon N = K2 steps is reached. Upon termination, the agent is required
to explicitly select which door it believes to be the correct one.

Method Average Correctness Average Stopping Time

K = 6 K = 8 K = 6 K = 8

ICPE 0.953 (0.940, 0.968) 0.948 (0.941, 0.954) 13.721 (13.298, 14.165) 27.704 (27.296, 28.086)

Table 3: Magic Room: correctness and stopping times (mean and 95% CI) for K = 6 and K = 8.

This setup provides two distinct strategies for the agent:

1. Luck-based strategy: The agent directly attempts to pass through a door, observing the
reward to determine correctness. A positive reward conclusively indicates the correct door;
a zero reward provides no additional information.

2. Inference-based strategy: The agent efficiently navigates the room, locates both clues to
deduce the identity of the correct door, and subsequently exits through that door.

Thus, optimal behavior requires an effective exploration of the room to finish as quickly as possible.
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Figure 18: Magic room environment. Left: survival function P(τ > t) for K = 6 and K = 8. Right:
density of the correctness for K = 6 and K = 8.

We trained ICPE on 3 seeds, using the fixed confidence setting (disabling the stopping action) using
δ = 0.05 and evaluated the policies on 4500 episodes for K = 6 and K = 8. In tab. 3 are shown the
statistics of the average correctness and of the stopping time.

In fig. 17 we can see a sample trajectory taken by ICPE. Starting from the middle of the room, ICPE
follows a path that allows to find the clues C1, C2 in the green area. As soon as the second clue is
found, it goes through the closest door.

In fig. 18, we present the survival functions of the stopping time τ for environments with grid sizes
K = 6, 8, alongside the corresponding correctness densities. Lastly, fig. 19 illustrates the relationship
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Figure 19: Magic room environment. Relationship among agent correctness, the number of clues
observed, and the stopping time.

among agent correctness, the number of clues observed, and the stopping time. Specifically, smaller
stopping times correlate with fewer observed clues, leading to lower correctness. Conversely, when
the agent observes both clues, it consistently selects the correct door, demonstrating that it has
effectively learned the association between the clues and the correct hypothesis.

D.4 EXPLORATION ON FEEDBACK GRAPHS

In the standard bandits setting we studied in Section 4.1, the learner observes the reward of the selected
action, while in full-information settings, all rewards are revealed. Feedback graphs generalize this
spectrum by specifying, via a directed graph G which additional rewards are observed when a
particular action is chosen. Each node corresponds to an action, and an edge from u to v means that
playing u may reveal feedback about v.

While feedback graphs have been widely studied for regret minimization (Mannor & Shamir, 2011),
their use in pure exploration remains relatively underexplored (Russo et al., 2025). We study them
here as a challenging and structured testbed for in-context exploration. Unlike unstructured bandits,
these environments contain latent relational structure and stochastic feedback dependencies that must
be inferred and exploited to explore efficiently.

Formally, we define a feedback graph as an adjacency matrix G ∈ [0, 1]K×K , where Gu,v denotes
the probability that playing action u reveals the reward of action v. The learner observes a feedback
vector r ∈ RK , where each coordinate is revealed independently with probability Gu,v:

rv ∼
{
N (µv, σ

2), with probability Gu,v,

no observation, otherwise.

This setting allows us to test whether ICPE can learn to uncover and leverage latent graph structure
to guide exploration. As in the bandits setting, we have a finite number of actions A = {1, . . . ,K},
corresponding to the actions (or vertices) in a feedback graph G. The learner’s goal is to identify the
best action, where H⋆ = argmaxa µa. At each time step t, the observation is the partially observed
reward vector xt = rt.

We evaluate performance on best-arm identification tasks across three representative feedback graph
families:

• Loopy Star Graph (Figure 20): A star-shaped graph with self-loops, parameterized by
(p, q, r). The central node observes itself with probability q, one neighboring node with
probability p, and all others with probability r. When p is small, it may be suboptimal to
pull the central node, requiring the agent to adapt its strategy accordingly.

• Ring Graph (Figure 21): A cyclic graph where each node observes its right neighbor with
probability p and its left neighbor with probability 1 − p. Effective exploration requires
reasoning about which neighbors provide more informative feedback.
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Figure 20: Loopy star graph.
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Figure 21: Ring graph.
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graph.

• Loopless Clique Graph (Figure 22): A fully connected graph with no self-loops. Edge
probabilities are defined as:

Gu,v =


0 if u = v,
p
u if v ̸= u and v is odd,
1− p

u otherwise.

Here, informativeness varies systematically with action index, requiring the learner to infer
which actions are most useful.

These environments offer a diverse testbed for evaluating whether ICPE can uncover and exploit
complex feedback structures without direct access to the underlying graph.

Fixed-Horizon. For each graph family, mean rewards were sampled uniformly from [0, 1] with
fixed variance 0.2, using hyperparameters: (p, q, r) = (0.25, 0.3, 0.35) for the loopy star graph,
p = 0.3 for the ring, and p = 0.5 for the loopless clique. We considered both small (K = 5, H = 25)
and large (K = 10, H = 50) environments.

ICPE was compared to three baselines: Uniform Sampling, EXP3.G (Rouyer et al., 2022), and
Tas-FG (Russo et al., 2025). All methods performed maximum likelihood inference at the end of the
trajectory. Table 4 reports the average probability of correctly identifying the best arm.

Algorithm Loopy Star Loopless Clique Ring
Small Large Small Large Small Large

ICPE 0.88 ± 0.01 0.59 ± 0.02 0.95 ± 0.01 0.79 ± 0.04 0.79 ± 0.01 0.51 ± 0.03
TasFG 0.82 ± 0.01 0.73 ± 0.02 0.84 ± 0.01 0.83 ± 0.01 0.70 ± 0.02 0.56 ± 0.02

EXP3.G 0.66 ± 0.02 0.40 ± 0.01 0.84 ± 0.01 0.78 ± 0.02 0.77 ± 0.02 0.52 ± 0.02
Uniform 0.73 ± 0.02 0.60 ± 0.02 0.86 ± 0.01 0.79 ± 0.02 0.78 ± 0.02 0.62 ± 0.02

Table 4: Probability of correctly identifying the best arm. Small environments: K = 5, H = 25;
Large: K = 10, H = 50. Results reported as mean ± 95% CI.

ICPE outperforms all baselines in small environments across all graph families, highlighting its ability
to learn efficient strategies from experience. Performance slightly degrades in larger environments,
likely due to difficulty in credit assignment over long horizons. Still, ICPE remains competitive,
validating its capacity to generalize across graph-structured settings.

Fixed-Confidence. We next tested ICPE in a fixed-confidence setting, using the same graph
families but setting the optimal arm’s mean to 1 and all others to 0.5 to facilitate faster convergence.
ICPE was trained for K = 4, 6, . . . , 14 with a target error rate of δ = 0.1. We compared it to
Uniform Sampling, EXP3.G, and Tas-FG using a shared stopping rule from (Russo et al., 2025).
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Figure 23: Sample complexity comparison under the fixed-confidence setting for: (a) Loopy Star, (b)
Loopless Clique, and (c) Ring graphs.

As shown in Figure 23, ICPE consistently achieves significantly lower sample complexity than all
baselines. This suggests that ICPE is able to meta-learn the underlying structure of the feedback
graphs and leverage this knowledge to explore more efficiently than uninformed strategies. These
results align with expectations: when environments share latent structure, learning to explore from
experience offers a substantial advantage over fixed heuristics that cannot adapt across tasks.

D.5 META-LEARNING BINARY SEARCH

To test ICPE’s ability to recover classical exploration algorithms, we evaluate whether it can au-
tonomously meta-learn binary search.

We define an action space of A = {1, . . . ,K}, where K is the upper bound on the possible location
of the hidden target H⋆ ∼ A. Pulling an arm above or below H⋆ yields a observation xt = −1 or
xt = +1, respectively—providing directional feedback.

We train ICPE under the fixed-confidence setting for K = 23, . . . , 28, using 150,000 in-context
episodes and a target error rate of δ = 0.01. Evaluation was conducted on 100 held-out tasks per
setting. We report the minimum accuracy, mean stopping time, and worst-case stopping time, and
compare against the theoretical binary search bound O (log2 K).

Number of Actions (K) Minimum Accuracy Mean Stopping Time Max Stopping Time log2 K

8 1.00 2.13± 0.12 3 3
16 1.00 2.93± 0.12 4 4
32 1.00 3.71± 0.15 5 5
64 1.00 4.50± 0.21 6 6

128 1.00 5.49± 0.23 7 7
256 1.00 6.61± 0.26 8 8

Table 5: ICPE performance on the binary search task as the number of actions K increases.

As shown in Table 5, ICPE consistently achieves perfect accuracy with worst-case stopping times
that match the optimal log2(K) rate, demonstrating that it has successfully rediscovered binary search
purely from experience. While simple, this task illustrates ICPE’s broader potential to learn efficient
search strategies in domains where no hand-designed algorithm is available.
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