DISCRETE INVERSION: A CONTROLLABLE LATENT SPACE FOR MASKED GENERATIVE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Discrete diffusion models have achieved notable success in tasks like image generation and masked language modeling, yet they face limitations in controlled content editing. This paper introduces Discrete Inversion, the first approach to enable precise inversion for discrete diffusion models, including multinomial diffusion and masked generative models. By recording noise sequences and masking patterns during the forward diffusion process, Discrete Inversion facilitates accurate reconstruction and controlled edits without the need for predefined masks or attention map manipulation. We demonstrate the effectiveness of our method across both image and text domains, evaluating it on models like VQ-Diffusion, Paella, and RoBERTa. Our results show that Discrete Inversion not only preserves high fidelity in the original data but also enables flexible and user-friendly editing in discrete spaces, significantly advancing the capabilities of discrete generative models.

022 023 024

1 INTRODUCTION

Diffusion models have emerged as a powerful class of generative models, demonstrating remarkable success in image synthesis [\(Ho et al., 2020;](#page-11-0) [Song et al., 2020;](#page-12-0) [Nichol & Dhari](#page-12-1)[wal, 2021\)](#page-12-1). These models learn to generate data by iteratively denoising samples from a simple noise distribution, effectively reversing a diffusion process that gradually corrupts data. Broadly, diffusion models can be categorized into continuous and discrete types.

033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 Continuous diffusion models operate in continuous spaces, leveraging stochastic differential equations (SDEs) or their deterministic counterparts, ordinary differential equations (ODEs), to model the forward and reverse diffusion processes [\(Song et al., 2020;](#page-12-0) [2021\)](#page-12-3). Advances such as flow matching [\(Lipman](#page-11-1) [et al., 2022;](#page-11-1) [Liu et al., 2022;](#page-11-2) [Albergo & Vanden-](#page-10-0)[Eijnden, 2022;](#page-10-0) [Albergo et al.\)](#page-10-1) have enhanced their efficiency and flexibility. These models have been successfully applied in various domains, including image editing [\(Meng et al., 2021;](#page-12-4) [Avrahami et al.,](#page-10-2) [2022;](#page-10-2) [Mokady et al., 2022;](#page-12-5) [Han et al., 2024;](#page-11-3) [Zhang](#page-13-0) [et al., 2023b\)](#page-13-0), medical imaging [\(He et al., 2023\)](#page-11-4), and solving inverse problems [\(Chung et al., 2022;](#page-10-3) [Stathopoulos et al., 2024\)](#page-12-6). In image editing, continuous diffusion models enable controlled manipulation of images while preserving consistency with the underlying data distribution. A key capability enabling this is *inversion*—the process of reversing the diffusion model to recover the original noise vector or latent representation that could have generated a

Black and white eat dog on floor

Figure 1: Illustration of the limitation of masked inpainting method. Here, we want to change the cat to a dog. Inpainting with masked generation inadvertently modifies the orientation of the head, resulting in a less favourable result. With our discrete inversion, we are able to edit the image while preserving other properties of the object being edited. This is achieved by injecting the information from the input image into the logit space. Dotted red box indicates the mask, base model is Paella [\(Rampas et al.,](#page-12-2) [2022\)](#page-12-2).

052 053 given data sample. Two main inversion approaches exist: deterministic inversion using ODEs (e.g., DDIM Inversion [\(Song et al., 2021\)](#page-12-3)) and stochastic inversion by recording noise sequences (e.g., CycleDiffusion [\(Wu & De la Torre, 2022\)](#page-12-7), DDPM Inversion [\(Dhariwal & Nichol, 2021\)](#page-10-4)).

Figure 2: Here we demonstrate the two types of reconstruction and editing paradigms, namely ODE-based and Non-ODE based. (a,c) shows the ODE-based editing and reconstructions, while it provides accurate editing and reconstruction performances, it highly depends on the underlying ODE trajectory, which is not feasible in the discrete diffusion. However, the Non-ODE editing samples a trajectory by directly adding noise to x_0 and record the difference between the predicted x_{t-1} and the sampled x_{t-1} as indicated in the red arrow. In this way, we are able to reconstruct/edit the image without the strong condition of having an underlying ODE.

073 074

070 071 072

075

076 077

078 079 080 081 082 083 084 085 086 087 Discrete diffusion models are designed for inherently discrete data such as text or image tokens [\(Esser et al., 2021b\)](#page-11-5). They adapt the diffusion framework to discrete spaces by defining appropriate transition kernels that corrupt and restore discrete data [\(Hoogeboom et al., 2021;](#page-11-6) [Austin et al.,](#page-10-5) [2021;](#page-10-5) [Gu et al., 2022\)](#page-11-7). Prominent examples include multinomial diffusion [\(Hoogeboom et al., 2021;](#page-11-6) [Gu et al., 2022\)](#page-11-7), D3PM [\(Austin et al., 2021\)](#page-10-5), and masked generative models like MaskGIT [\(Chang](#page-10-6) [et al., 2022\)](#page-10-6), Muse [\(Chang et al., 2023\)](#page-10-7). Despite their success in generation tasks, discrete diffusion models face limitations in controlled content editing. For instance, masked generative models achieve image editing through masked inpainting, where regions are masked and regenerated based on new conditions. However, this approach lacks the ability to inject information from the masked area into the inpainting process, limiting fine-grained control over the editing outcome, as illustrated in Figure [1.](#page-0-0)

088 089 090 091 092 093 094 095 096 097 098 099 Moreover, existing ODE-based inversion techniques developed for continuous diffusion models are not directly applicable to discrete diffusion models due to inherent differences in data representation and diffusion processes. This gap hinders the ability to perform precise inversion and controlled editing in discrete spaces. To address this challenge, we propose **Discrete Inversion** (Discrete Inversion for Controllable Editing), the first inversion algorithm for discrete diffusion models to the best of our knowledge. Our method extends the stochastic inversion approach to discrete diffusion models, including both multinomial diffusion and masked generative models. The core idea is to record the noise sequence needed to recover a stochastic trajectory in the reverse diffusion process. Specifically, given an artificial trajectory where latent states have low correlation, we fit reverse sampling steps to this trajectory and save the residuals between targets and predictions. This process *imprints* the information of the original input data into the recorded residuals. During editing or inference, the residuals are added back, allowing us to inject and control the amount of information introduced into the inference process.

100 101 102 103 104 105 106 107 Our approach enables accurate reconstruction of the original input data and facilitates controlled editing without the need for predefined masks or attention map manipulation. It provides a flexible framework for fine-grained content manipulation in discrete spaces, overcoming the limitations of existing methods. We validate the effectiveness of Discrete Inversion through extensive experiments on both image and text modalities. We evaluate our method on models such as VQ-Diffusion [\(Gu](#page-11-7) [et al., 2022\)](#page-11-7), Paella [\(Rampas et al., 2022\)](#page-12-2), and RoBERTa [\(Liu et al., 2019\)](#page-11-8), demonstrating its versatility across different types of discrete generative models. Additionally, we introduce a novel text-editing dataset to further showcase our method's capabilities and to facilitate future research in this area. Contributions of this paper can be summarized as follows:

- We introduce Discrete Inversion, an inversion algorithm for discrete diffusion models, including multinomial diffusion and masked generative models. By recording and injecting noise sequences or masking patterns, Discrete Inversion enables accurate reconstruction and controlled editing of discrete data without predefined masks or attention manipulation.
	- We validate the effectiveness of Discrete Inversion through comprehensive experiments on both image and text modalities, demonstrating its versatility across different types of discrete generative models.
	- We show that our approach can transform a model primarily trained for understanding tasks, such as RoBERTa, into a competitive generative model for text generation and editing, illustrating the potential for extending discrete diffusion models to new applications.
- **118 119 120**

2 RELATED WORK

122 123 124 125 126 127 128 Discrete Diffusion. D3PM [\(Austin et al., 2021\)](#page-10-5) and Multinomial Diffusion [\(Hoogeboom et al.,](#page-11-6) [2021\)](#page-11-6) spearheaded the study of diffusion processes in discrete spaces by developing a corruption mechanism for categorical data. Following those works, [Esser et al.](#page-10-8) [\(2021a\)](#page-10-8) and [Gu et al.](#page-11-7) [\(2022\)](#page-11-7) introduced the VQ-GAN as a way to discretize the image into tokens. Additionally, [Campbell et al.](#page-10-9) [\(2022\)](#page-10-9) proposed discrete diffusion models with continuous time, while [Lou et al.](#page-11-9) [\(2023\)](#page-11-9) extended score matching [\(Song & Ermon, 2019\)](#page-12-8) to discrete spaces by learning probability ratios. [Gat et al.](#page-11-10) [\(2024\)](#page-11-10) proposed discrete flow matching to extend the flow matching to discrete space.

129 130 131 132 133 134 135 136 137 138 139 Masked Sequence Modeling has been widely used in representation learning for natural language processing. In models like BERT [\(Devlin et al., 2018\)](#page-10-10) and RoBERTa [\(Liu et al., 2019\)](#page-11-8), masked tokens ([MASK]) are predicted based on the surrounding context, excelling in text completion and embedding representation learning. Wang $& Cho$ [\(2019\)](#page-12-9) first interpreted the BERT model as a Markov Random Field and studied its generative perspective. Mask-Predict [\(Ghazvininejad et al.,](#page-11-11) [2019\)](#page-11-11) proposed a similar iterative remask-and-repredict algorithm for machine translation. For image generation, Paella [\(Rampas et al., 2022\)](#page-12-2) adapts this approach for text-conditional image generation by renoising tokens instead of masking (like in MaskGIT [\(Chang et al., 2022\)](#page-10-6) and Muse [\(Chang et al., 2023\)](#page-10-7)). These models can be viewed as a special case of discrete diffusion models by introducing an *absorbing state* [\(Austin et al., 2021\)](#page-10-5). The inference process of these models is typically heuristic and follows a renoise-and-repredict scheme.

140 141 142 143 144 145 146 147 148 Diffusion inversion. Diffusion inversion aims to find an encoding or latent representation of the input signal that can be used to reconstruct the original data. Traditional approaches to diffusion inversion are based on neural ODEs [\(Chen et al., 2018\)](#page-10-11), such as DDIM inversion [\(Song et al., 2021\)](#page-12-3) and flow matching [\(Lipman et al., 2022;](#page-11-1) [Liu et al., 2022\)](#page-11-2), where deterministic trajectories are used for inversion. Another class of methods focuses on stochastic differential equations (SDEs) [\(Song](#page-12-0) [et al., 2020\)](#page-12-0), including models like CycleDiffusion [\(Wu & De la Torre, 2022\)](#page-12-7) and DDPM Inversion [\(Huberman-Spiegelglas et al., 2024\)](#page-11-12), which rely on tracking noise or residuals along a stochastic path to recover the input. Our approach generalizes the concept of DDPM Inversion by extending it to discrete diffusion models, enabling effective inversion in both continuous and discrete settings.

149 150 151 152 153 154 155 156 157 158 159 160 161 Inversion-based image editing. DDIM inversion [\(Song et al., 2021\)](#page-12-3) has served as a foundational technique for various diffusion-based image editing approaches. In many image editing tasks, DDIM-type methods are often employed alongside guidance techniques like Prompt-to-Prompt [\(Hertz et al., 2022\)](#page-11-13), which manipulate cross-attention maps, as well as self-attention maps, as demonstrated by approaches like Plug-and-Play [\(Tumanyan et al., 2023\)](#page-12-10), TF-ICON [\(Lu et al.,](#page-11-14) [2023\)](#page-11-14), and StyleAligned [\(Hertz et al., 2024\)](#page-11-15). On the other hand, DDPM inversion-based approaches [\(Huberman-Spiegelglas et al., 2024\)](#page-11-12) are known for their user-friendly nature, as they typically do not require complex attention map manipulations. These approaches are also versatile and can integrate with semantic guidance techniques, such as SEGA [Brack et al.](#page-10-12) [\(2023\)](#page-10-12) and LEDITS++ [Brack et al.](#page-10-13) [\(2024\)](#page-10-13), enabling broader applicability. To address issues such as inaccurate reconstruction and error accumulation, Null-text Inversion [\(Mokady et al., 2022\)](#page-12-5) introduces testtime optimization of null embeddings, ensuring the reconstruction trajectory aligns more closely with the DDIM inversion path. Negative-prompt Inversion [\(Miyake et al., 2023;](#page-12-11) [Han et al., 2024\)](#page-11-3) further improves time efficiency by providing a closed-form solution to an approximate inversion problem, reducing computational costs while maintaining competitive reconstruction quality.

162 163 3 METHODS

3.1 PRELIMINARIES

166 167 168 169 170 171 172 Denoting $x_0 \in \{1, ..., K\}^D$ as a data point of dimension D. We use $v(x_t^{(i)})$ to denote the one hot column vector representation of the *i*-th entry of x_t . To simplify notation, in the following we drop index i and any function that operates on vector x_t is populated along its dimension. Diffusion model defines a Markov chain $q(\mathbf{x}_{1:T} | \mathbf{x}_0) = \Pi_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_{t-1})$ that gradually add noise to the data x_0 for T times so that x_T contains little to no information. Discrete diffusion model [\(Hoogeboom](#page-11-6) [et al., 2021;](#page-11-6) [Austin et al., 2021;](#page-10-5) [Gu et al., 2022\)](#page-11-7) proposed an alternative likelihood-based model for categorical data, and defines the forward process following:

$$
\begin{array}{c} 173 \\ 174 \end{array}
$$

164 165

$$
q(xt|xt-1) = \text{Cat}(\mathbf{v}(x_t); \mathbf{p} = \mathbf{Q}_t \mathbf{v}(x_{t-1})).
$$
\n(1)

where Q_t is the transition matrix between adjacent states following mask-and-replace strategy, and $Cat(\cdot; p)$ denotes the categorical distribution with probabilities p. The posterior distribution given x_0 has a closed-form solution,

$$
q\left(x_{t-1}|x_t,x_0\right) = \frac{\left(\mathbf{Q}_t^{\top} \mathbf{v}(x_t)\right) \odot \left(\overline{\mathbf{Q}}_{t-1} \mathbf{v}(x_0)\right)}{\mathbf{v}(x_t)^{\top} \overline{\mathbf{Q}}_t \mathbf{v}(x_0)}.
$$
\n(2)

182 where $\overline{Q}_t = Q_t \cdots Q_1$ is the cumulative transition matrix. The details of Q_t and \overline{Q}_t are given in the supplementary materials. The inference process is as below:

$$
\pi_{\theta}(x_t, t) = p_{\theta}\left(x_{t-1}|x_t\right) = \sum_{\tilde{x}_0=1}^{K} q\left(x_{t-1}|x_t, \tilde{x}_0\right) p_{\theta}\left(\tilde{x}_0|x_t\right),\tag{3}
$$

with $p_{\theta}(\tilde{x}_0|x_t)$ is parameterized by a neural network. We gradually denoise from x_T to x_0 using [3.](#page-3-0) For numerical stability, the implementation uses log space instead of probability space. Masked generative models can be viewed as a special case of multinomial diffusion models with an additional *absorbing* state (or the [MASK] state). Its training objective can be viewed as a reweighted ELBO [\(Bond-Taylor et al., 2022\)](#page-10-14).

3.2 DISCRETE INVERSION

194 195 196 197 198 199 200 201 202 203 204 205 206 207 Non ODE-based inversion. ODE-based generative models, such as DDIM and flow matching, define an ODE trajectory. Due to the deterministic nature of ODEs, inversion can be achieved by solving the ODE using the Euler method in forward direction, ensuring reconstruction based on the inherent properties of the ODE. In contrast, another line of research focuses on SDE-based models, such as CycleDiffusion [\(Wu & De la Torre, 2022\)](#page-12-7) and DDPM Inversion [\(Huberman-Spiegelglas](#page-11-12) [et al., 2024\)](#page-11-12). Broadly speaking, these approaches ensure reconstruction by recording the noises or residuals that are required to reproduce the stochastic trajectory. CycleDiffusion records the Gaussian noise z_t during sampling from posterior $p(x_{t-1}|x_t, x_0 = x_0)$ and injects information of the input signal by feeding the true x_0 . DDPM Inversion, on the other hand, incorporates information into z_t by fitting the reverse process into an artificial stochastic trajectory obtained by independent q-sample. For both CycleDiffusion and DDPM Inversion, the key idea is to utilize the Gaussian reparameterization trick, $x = \mu + \sigma z \Leftrightarrow x \sim \mathcal{N}(x; \mu, \sigma^2)$, and keeping track of the "noise" that could have generated the sample from mean. For discrete diffusion models, we utilize the Gumbel-Max trick [\(Maddison et al., 2014;](#page-12-12) [Jang et al., 2016\)](#page-11-16), $x = \arg \max \log(\pi) + g \Leftrightarrow x \sim \text{Cat}(x; \pi)$. Figure [2](#page-1-0) provides an intuition of the proposed method.

208 209 210 211 212 213 214 215 Inverting masked generative models. For masked generative modeling, the stochastic trajectory ${x_t}$ is constructed according to the specific inference algorithm of the model in use. For example, in Paella [Rampas et al.](#page-12-2) [\(2022\)](#page-12-2), the masking is *inclusive*, meaning that as the time step t increases, the set of masked tokens grows. In contrast, the Unleashing Transformer [Bond-Taylor et al.](#page-10-14) [\(2022\)](#page-10-14) employs *random* masking at each step, where masks are generated independently using the q-sample function. Without loss of generality, we define a denoiser function \mathcal{D}_{θ} (parameterized by θ). This denoiser outputs the *logits* of the predicted unmasked data given the noisy tokens x_t . Since the inference of DDPM or multinomial diffusion is different from masked modeling, where xt−¹ is *not* sampled from a posterior given x_t . Instead, x_t is obtained from sampled \hat{x}_{0} _t by re-noising. Since **216 217 218** the categorical sampling happens at sampling from the denoiser's prediction, we therefore define an corresponding latent sequence:

$$
\hat{\boldsymbol{y}}_{0|t} = \log(p_{\theta}(\boldsymbol{x}_0|\boldsymbol{x}_t)) = \mathcal{D}_{\theta}(\boldsymbol{x}_t, t) \tag{4}
$$

219 220 221

 $\boldsymbol{z}_t := \boldsymbol{y}_0 - \hat{\boldsymbol{y}}_{0|t}.$. (5)

With our proposed latent space, accurate reconstruction is guaranteed. However, for editing tasks, this level of precision may not be ideal if the latent variable z_t dominates the generation process. The detailed algorithm is given in Algorithm [1.](#page-4-0)

To provide more flexibility, we introduce the hyperparameters τ , λ_1 , and λ_2 , which allow for finer control over the editing process. Specifically, τ represents the starting (and largest) timestep at which the editing process begins, while λ_1 controls the amount of information injected from the original input, and λ_2 governs the introduction of random noise.

Noise injection. We discuss three strategies as follows:

Linear. This is a natural form inspired by the Gumbel-Max trick: thinking of $\lambda_1 \cdot z$ as a correction term, then $\log(\pi) + \lambda_1 \cdot z$ is the corrected logit and λ_2 is the inverse of temperature of the logit to control the sharpness of the resulting categorical distribution, as

$$
\begin{aligned} &\arg\max\left(\log(\bm{\pi})+\lambda_1\cdot \bm{z}+\lambda_2\cdot \bm{g}\right) \\ &=\arg\max\big(\frac{1}{\lambda_2}\left(\log(\bm{\pi})+\lambda_1\cdot \bm{z}\right)+\bm{g}\big), ~~\lambda_2>0. \end{aligned}
$$

260 λ_1 then controls how much correction we would like to introduce in the original logit.

261 262 263 264 265 *Variance preserving.* From another perspective, z is the artificial "Gumbel" noise that could have been sampled to realize the target tokens. Then, if we treat z as Gumbel noise and want to perturb it with random Gumbel noise, addition does not result in a Gumbel distribution. One way is to approximate this sum with another Gumbel distribution. If $G_1 \sim$ Gumbel (μ_1, β_1) , $G_2 \sim$ Gumbel (μ_2, β_2) and $G = \lambda_1 G_1 + \lambda_2 G_2$, then the moment matching *Gumbel approximation* for G is

$$
266 \t\t Gumbel(\mu_G, \beta_G), \quad \text{with}
$$

- **267 268** $\beta_G = \sqrt{\lambda_1^2 \beta_1^2 + \lambda_2^2 \beta_2^2},$
- **269**
	- $\mu_G = \lambda_1 \mu_1 + \lambda_2 \mu_2 + \gamma (\lambda_1 \beta_1 + \lambda_2 \beta_2 \beta_G),$

270 271 where $\gamma \approx 0.5772$ is the Euler-Mascheroni constant. We consider the *variance preserving* form:

$$
\tilde{\bm{y}} = \log(\bm{\pi}) + \sqrt{\lambda_1} \cdot \bm{z} + \sqrt{\lambda_2} \cdot \bm{g}, \ \ \lambda_1 + \lambda_2 = 1.
$$

272 273 274

Max. The third way is inspired by the property of Gumbel distribution [\(Wikipedia contributors,](#page-12-13) [2024\)](#page-12-13), that if G_1, G_2 are iid random variables following Gumbel(μ, β) then max $\{G_1, G_2\} - \beta \log 2$ follows the same distribution. We also consider the *max* function for noise injection:

$$
\tilde{\bm{y}} = \log(\bm{\pi}) + \max\{\lambda_1\cdot \bm{z}, \lambda_2\cdot \bm{g}\}.
$$

We empirically find that *linear* strategy gives best results.

280 Inverting multinomial diffusion is more straightforward given its inference is similar to DDPM. We start by sampling a stochastic trajectory, $\{x_t\}$, a sequence of independent q -sample's from $q(x_t|x_0)$ (we populate the following sampling operation along the dimension of x_t),

$$
x_t = \arg \max \left(\log \left(q(x_t | x_0) \right) + \mathbf{g} \right), \text{ with} \tag{6}
$$

$$
q(x_t|x_0) = \text{Cat}(x_t; \mathbf{p} = \overline{\mathbf{Q}}_t \mathbf{v}(x_0))
$$
 and $\mathbf{g} \sim \text{Gumbel}(\mathbf{0}, \mathbf{I}).$

Note that here we use the Gumbel softmax trick [\(Jang et al., 2016\)](#page-11-16), which is equivalent to sampling from categorical distribution $q(x_t|x_0)$.

$$
y_{t-1} = \log(\text{onehot}(x_{t-1})), \text{ and } (7)
$$

$$
\hat{\boldsymbol{y}}_{t-1} = \log(\boldsymbol{\pi}_{\theta}(\boldsymbol{x}_t, t)),\tag{8}
$$

$$
z_t := y_{t-1} - \hat{y}_{t-1} \tag{9}
$$

291 292 293 Note that here the latent $z_t \in \mathbb{R}^{D \times K}$. In this reverse process, the latent space $\{x_T, z_T, z_{t-1}, ..., z_1\}$ together with the fixed discrete diffusion model π_{θ} also uniquely define the same stochastic trajectory $x_0, x_1, ..., x_T$. The detailed algorithm is given in Algorithm [2.](#page-4-1)

294 295 296

297

318

320

3.3 ANALYSIS

298 299 300 301 Here we provide an analysis to quantify the amount of information encoded in latent. Since the inversion involves model forward function call which is difficult to analyze. We describe in the following a simple yet prototypical example of DDPM, where the posterior mean can be computed in closed-form thus allows us to compute the mutual information.

Remark 3.1. *Given a simple Gaussian DDPM with* $x_0 \sim \mathcal{N}(0, I)$ *, latents* { z_t } *are obtained with DDPM inversion [\(Huberman-Spiegelglas et al., 2024\)](#page-11-12), then the mutual information between* z_t *and* x_0 *is:*

$$
I(\boldsymbol{z}_t; \boldsymbol{x}_0) = \frac{D}{2} \log \Bigl(\frac{\beta_t^2 \overline{\alpha}_{t-1} + 1 - \overline{\alpha}_{t-1} + \alpha_t (1 - \overline{\alpha}_t)}{1 - \overline{\alpha}_{t-1} + \alpha_t (1 - \overline{\alpha}_t)} \Bigr). \tag{10}
$$

The mutual information between z_t and x_0 is shown in Figure [3.](#page-6-0) We observe that the amount of information encoded from x_0 into z_t decreases as t increases, motivating us to explore different scheduling strategies for λ 's (see Supplementary Materials).

4 EXPERIMENTS

314 315 316 317 In this section, we demonstrate the effectiveness of our proposed inversion methods on both image and language diffusion models. Our experiments show that the methods can preserve identity in both vision and language tasks while successfully making the intended changes. The implementation details can be reviewed in Supplementary Materials.

319 4.1 IMAGE DIFFUSION MODEL

321 322 323 For the image diffusion model, we mainly investigate the use of absorbing state discrete model [\(Austin et al., 2021\)](#page-10-5) including a masked generative model, Paella, and a multinomial diffusion model, VQ-Diffusion. We demonstrate the inversion reconstruction ability and image editing performance in both categories with our Discrete Inversion.

324 325	Method	Metric			
326	Inverse+Model		PSNR \uparrow LPIPS _{\times10} 3 \downarrow	$MSE_{\times 10^4}$	$SSIM_{\times 10^2}$ \uparrow
327	Inpainting+Paella	10.50	565.11	1002.09	30.13
328	Ours+Paella	30.91	39.81	11.07	90.22
329	$Ours^{\dagger}+Paella$	Inf	0.07	0.01	99.99
330					

331 332 333 334 Table 1: **Inversion Reconstruction performance** \dagger The metric is calculated between the original image and its inverted counterpart. Due to the encoding and decoding steps in the VQ-VAE process, some inaccuracies are introduced by the quantization. The PSNR is inf due to the reconstruction of our method yielding the same image after the VQ-VAE process.

346

364 365

337 338 339 340 341 342 343 344 345 Dataset. The Prompt-based Image Editing Benchmark (PIE-Bench) by [\(Ju et al., 2023\)](#page-11-17) is a recently introduced dataset designed to evaluate text-to-image (T2I) editing methods. The dataset assesses language-guided image editing in 9 different scenarios with 700 images. The benchmark's detailed annotations and variety of editing tasks were instrumental in thoroughly assessing our method's capabilities, ensuring a fair and consistent comparison with existing approaches.

4.1.1 INVERSION RECONSTRUCTION

Figure 3: Mutual information between z_t and x_0 . Computed with a simple DDPM with $x_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$

347 348 349 350 351 In this section, we evaluate the accuracy of inversion without editing. This is achieved by first inverting the image and then using the recorded latent code to reconstruct the original image.

352 353 354 Evaluation Metrics Here, we evaluate the image similarity by PSNR, LPIPS, MSE and SSIM of the original and the generated image under the same prompt with Discrete Inversion and masked generation.

355 356 357 358 359 360 361 362 363 Quantitative Analysis. The reconstruction performance of our method, as shown in Table [1,](#page-6-1) far surpasses the baseline Inpainting + Paella model across all metrics. In the case of masked inpainting, all image tokens are replaced with randomly sampled tokens, meaning the model lacks any prior information about the original image. As a result, the reconstructed image differs significantly from the one being inverted, leading to lower similarity scores. In contrast, our method demonstrates near-perfect reconstruction, as indicated by the metrics, and notably produces an identical image without the errors typically introduced by the VQ-VAE quantization process, as seen in the results marked with †. This highlights the superior accuracy and consistency of our approach in generating high-fidelity reconstructions.

4.1.2 EDITING PERFORMANCE

366 367 368 In this section, we discuss the editing performance of our proposed method. Since there is no discrete diffusion inversion exists, we compare our method with masked generation as indicated in the original paper. In addition to that, we also demonstrate the metric from continuous counterparts.

369 370 371 372 373 374 375 376 377 Evaluation Metrics. To demonstrate the effectiveness and efficiency of our proposed inversion method, we employ eight metrics covering three key aspects: structure distance, background preservation, and edit prompt-image consistency, as outlined in [Ju et al.](#page-11-17) [\(2023\)](#page-11-17). We utilize the structure distance metric proposed by [Tumanyan et al.](#page-12-10) [\(2023\)](#page-12-10) to measure the structural similarity between the original and generated images. To evaluate how well the background is preserved outside the annotated editing mask, we use Peak Signal-to-Noise Ratio (PSNR), Learned Perceptual Image Patch Similarity (LPIPS) [\(Zhang et al., 2018\)](#page-13-1), Mean Squared Error (MSE), and Structural Similarity Index Measure (SSIM) [\(Wang et al., 2004\)](#page-12-14). We also assess the consistency between the edit prompt and the generated image using CLIP [\(Radford et al., 2021\)](#page-12-15) Similarity Score [\(Wu et al., 2021\)](#page-13-2), which is calculated over the whole image and specifically within the regions defined by the editing mask.

Table 2: **Editing Performance.** We present quantitative results for our proposed method compared to continuous diffusion model (Stable Diffusion v1.4) with DDIM inversion and image inpainting with discrete masked generation model Paella. P2P stands for Prompt-to-Prompt [\(Hertz et al., 2022\)](#page-11-13), whereas "Prompt" refers to editing solely through the forward edit prompt. Entries marked with asteroids ($*$) are quoted from [Ju et al.](#page-11-17) [\(2023\)](#page-11-17). \dagger : For VQ-Diffusion, we down-sample the image to 256×256 .

Table 3: **Background Preservation.** Quantitative comparison of background preservation between our proposed method and DDIM+SD 1.4, achieved by masking the edited region and calculating image similarity with the unedited masked image. The inpainting is served as upper bound since only the masked region are edited and background are not modified.

409 410 411 412 413 414 415 416 417 418 419 420 421 Results. In Table [2,](#page-7-0) we demonstrate the quantitative result of Discrete Inversion using Paella and VQ-Diffusion compared to continuous diffusion model and also inpainting. Notably, our approach with the Paella model achieves the lowest structure distance 11.34, outperforming all other methods, including the continuous diffusion models. Additionally, while the DDPM Inversion with Stable Diffusion v1.4 shows the highest CLIP similarity scores for both whole and edited regions, our method maintains competitive CLIP similarity with Paella. Given the significant reduction in structure distance, our method offers a superior balance between structural preservation and semantic alignment in edits. Furthermore, when combined with VQ-Diffusion, our method continues to show strong performance. The results in Table [3](#page-7-1) clearly demonstrate the superior background preservation capabilities of our method compared to DDIM+SD1.4. All four metrics underscore the structural consistency of our approach in preserving the unedited regions of the image. These results show the effectiveness of our method in maintaining background integrity during editing and provide evidence that information about the original image is instilled into the latent space of Discrete Inversion.

422 423 424 425 In Figure [4](#page-8-0) , we show the editing results for both Paella and VQ-Diffusion using our Discrete Inversion method. Both models successfully modify real images according to the target prompts. In all cases, our results exhibit both high fidelity to the input image and adherence to the target prompt. Additionally, we show the visualization of ControlNet Inpainting and SDEdit results in Figure [11.](#page-23-0)

426

427 428 4.2 LANGUAGE DIFFUSION MODEL

429 430 431 In this section, we evaluate Discrete Inversion on RoBERTa [\(Liu et al., 2019\)](#page-11-8), a text discrete diffusion model, to generate sentences with opposing sentiments while preserving structural similarities. We begin with two prompts—one with a positive sentiment and another with a negative sentiment. Each prompt contains two sentences: the first sentence indicates the sentiment type and sets the

Figure 4: Visualization of editing results. Editing results for our method using Paella and VO-Diffusion are presented, along with their corresponding prompts. The results demonstrate that our method can effectively modify the input image according to the target prompt while preserving the image structure. Editing with masked generative model (Paella [\(Rampas et al., 2022\)](#page-12-2)) is more stable and easier than with multinomial diffusion models (VQ-Diffusion [\(Gu et al., 2022\)](#page-11-7)).

 contextual background, and the second sentence is the target for inversion and generation. Initially, we invert the second sentence of the negative sentiment prompt using the entire prompt as context, which produces a noised token representation of that sentence. Next, we condition the model on the positive sentiment by concatenating the first sentence of the positive sentiment prompt with the noised token of the inverted negative sentence. This setup guides the model to generate a new second sentence that mirrors the structure of the original negative sentence but expresses a positive sentiment instead. Through this process, we assess the model's capability to invert and generate text that aligns with a specified sentiment while retaining the original sentence's structural elements.

 Inversion Process. In our experiment, we specifically focus on inverting the second sentence, indicated as red in Table [6,](#page-22-0) while keeping the first sentence intact (black), as it usually contains essential context. During the reverse process, we aim to reconstruct/edit the second sentence by recovering it from the noised tokens acquired in the inversion phase.

 Dataset Generation. In order to evaluate the editing performance, we designed and proposed a new dataset called Sentiment Editing. The objective is to edit the sentiment of the sentence while preserving the structure of the sentence and also sticking to the theme of the sentence. Please refer to supplementary materials for the process of generating the dataset and more examples.

4.2.1 INVERSION RECONSTRUCTION

 Similar to the image generation section, we first demonstrate the inversion and reconstruction capabilities of the proposed methods. This process involves inverting the sentences, followed by using the same prompt to generate the reconstructed version of the second sentence.

486 487 488 489 Evaluation Metric. For reconstruction, we use Hit Rate, which is defined as the proportion of cases where each method generates an identical sentence to the original. In addition, we compute the Semantic Textual Similarity (STS) score by measuring the cosine similarity between the sentence embeddings, using the model proposed by [Reimers](#page-12-16) [\(2019\)](#page-12-16) *et al*.

Quantitative Analysis. Table [4](#page-9-0) compares Discrete Inversion with Masked Generation using RoBERTa across two metrics: Accuracy and Semantic Textual Similarity. Our method significantly surpasses Masked Generation in both metrics, demonstrating that our z_t latent space effectively captures the information of the sentence being inverted and facilitates its subsequent reconstruction.

500 501 502 503 504 eration and Discrete Inversion method using as a classifier. RoBERTa as the language model.

Table 4: Text Inversion Reconstruction Per-Table 5: Text Editing Performance. Evaluation formance. Quantitative comparisons of the text of the text editing performance between Masked reconstruction performance by Masked Gen-Generation and Discrete Inversion using ChatGPT

506 4.2.2 SENTENCE EDITING

508 509 510 511 512 In this section, we evaluate the editing performance of the proposed inversion method on RoBERTa. In Table [6,](#page-22-0) the sentence shown in black under the negative prompt column is input during the inversion process. The sentence that is being inverted is displayed in red. For editing, the prompt is then substituted with the black sentence on the right, and noise is added at the end for the forward process. The output of the forward process for the noise is presented in blue.

513 514 515 516 517 518 Evaluation Metric. For the sentence editing task, we evaluate the generated sentences based on two criteria: (1) structural preservation, which assesses whether the sentence structure is retained, and (2) sentiment correctness, which evaluates whether the sentiment of the edited sentence aligns with the sentiment of the original prompt. Both the structural preservation rate and sentiment correctness rate are calculated using ChatGPT-4 [\(Achiam et al., 2023\)](#page-10-15) as a classifier. The details of using ChatGPT for evaluation can be reviewed in Supplementary Materials.

519 520 521 522 523 524 Results. Table [5](#page-9-0) presents a comparative analysis of two text editing methods that both employ RoBERTa, focusing on the effectiveness in terms of Structure Preservation and Sentiment Correctness. Our method significantly outperforms masked generation in both metrics. This difference highlights the superior capability of our inversion method to encode the original structure of the text in the latent space and the flexibility to adjust its sentiment more accurately. In Table [6,](#page-22-0) we demonstrate both the initial prompt and the edited result. Our approach retains the sentence structure of the negative prompt while modifying its sentiment to a more positive one.

525 526

527

505

507

5 CONCLUSION AND DISCUSSION

528 529 530 531 532 533 534 535 536 537 538 539 In this paper, we introduced Discrete Inversion, an inversion algorithm for discrete diffusion models, including multinomial diffusion and masked generative models. By leveraging recorded noise sequences and masking patterns during the reverse diffusion process, Discrete Inversion enables accurate reconstruction and flexible editing of discrete data without the need for predefined masks or cross-attention manipulation. Our experiments across multiple models and modalities demonstrate the effectiveness of Discrete Inversion in preserving data fidelity while enhancing editing capabilities. While Discrete Inversion shows promise, we empirically find that editing with multinomial diffusion models may not work as robustly as with masked generative models. Furthermore, it may appear less effective in style transfer tasks, such as transforming an image of a cat into a silver cat statue. Interesting future directions include: (1) developing a more theoretical analysis of mutual information and convergence for continuous and discrete inversion algorithms, (2) extending Discrete Inversion to score distillation sampling [\(Poole et al.\)](#page-12-17), and (3) exploring the integration of Semantic Guidance [\(Brack et al., 2023;](#page-10-12) [2024\)](#page-10-13) within discrete settings.

540 541 REFERENCES

567 568 569

581 582 583

586

591

542 543 544 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

- **545 546 547** Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants. *arXiv preprint arXiv:2209.15571*, 2022.
- **548 549 550** Michael Samuel Albergo, Nicholas Matthew Boffi, Michael Lindsey, and Eric Vanden-Eijnden. Multimarginal generative modeling with stochastic interpolants. In *The Twelfth International Conference on Learning Representations*.
- **551 552 553 554** Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured denoising diffusion models in discrete state-spaces. *Advances in Neural Information Processing Systems*, 34:17981–17993, 2021.
- **555 556 557** Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of natural images. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18208–18218, 2022.
- **558 559 560 561 562** Sam Bond-Taylor, Peter Hessey, Hiroshi Sasaki, Toby P Breckon, and Chris G Willcocks. Unleashing transformers: Parallel token prediction with discrete absorbing diffusion for fast highresolution image generation from vector-quantized codes. In *European Conference on Computer Vision*, pp. 170–188. Springer, 2022.
- **563 564 565** Manuel Brack, Felix Friedrich, Dominik Hintersdorf, Lukas Struppek, Patrick Schramowski, and Kristian Kersting. Sega: Instructing diffusion using semantic dimensions. *arXiv preprint arXiv:2301.12247*, 2023.
- **566 570** Manuel Brack, Felix Friedrich, Katharia Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian Kersting, and Apolinário Passos. Ledits++: Limitless image editing using text-to-image models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8861–8870, 2024.
- **571 572 573** Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and Arnaud Doucet. A continuous time framework for discrete denoising models. *Advances in Neural Information Processing Systems*, 35:28266–28279, 2022.
	- Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative image transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11315–11325, 2022.
- **578 579 580** Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image generation via masked generative transformers. *arXiv preprint arXiv:2301.00704*, 2023.
	- Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. *Advances in neural information processing systems*, 31, 2018.
- **584 585** Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion posterior sampling for general noisy inverse problems. *arXiv preprint arXiv:2209.14687*, 2022.
- **587 588** Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.
- **589 590** Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in Neural Information Processing Systems*, 34, 2021.
- **592 593** Patrick Esser, Robin Rombach, Andreas Blattmann, and Bjorn Ommer. Imagebart: Bidirectional context with multinomial diffusion for autoregressive image synthesis. *Advances in neural information processing systems*, 34:3518–3532, 2021a.

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In *CVPR*, pp. 12873–12883, 2021b. Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and Yaron Lipman. Discrete flow matching. *arXiv preprint arXiv:2407.15595*, 2024. Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel decoding of conditional masked language models. *arXiv preprint arXiv:1904.09324*, 2019. Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10696–10706, 2022. Ligong Han, Song Wen, Qi Chen, Zhixing Zhang, Kunpeng Song, Mengwei Ren, Ruijiang Gao, Anastasis Stathopoulos, Xiaoxiao He, Yuxiao Chen, et al. Proxedit: Improving tuning-free real image editing with proximal guidance. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 4291–4301, 2024. Xiaoxiao He, Chaowei Tan, Ligong Han, Bo Liu, Leon Axel, Kang Li, and Dimitris N Metaxas. Dmcvr: Morphology-guided diffusion model for 3d cardiac volume reconstruction. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 132– 142. Springer, 2023. Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt image editing with cross attention control. *arXiv preprint arXiv:2208.01626*, 2022. Amir Hertz, Andrey Voynov, Shlomi Fruchter, and Daniel Cohen-Or. Style aligned image generation via shared attention. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4775–4785, 2024. Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020. Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forre, and Max Welling. Argmax flows ´ and multinomial diffusion: Learning categorical distributions. *Advances in Neural Information Processing Systems*, 34:12454–12465, 2021. Inbar Huberman-Spiegelglas, Vladimir Kulikov, and Tomer Michaeli. An edit friendly ddpm noise space: Inversion and manipulations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12469–12478, 2024. Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv preprint arXiv:1611.01144*, 2016. Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and Qiang Xu. Direct inversion: Boosting diffusion-based editing with 3 lines of code. *arXiv preprint arXiv:2310.01506*, 2023. Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022. Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint arXiv:1907.11692*, 2019. Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating the ratios of the data distribution. *arXiv preprint arXiv:2310.16834*, 2023. Shilin Lu, Yanzhu Liu, and Adams Wai-Kin Kong. Tf-icon: Diffusion-based training-free crossdomain image composition. In *Proceedings of the IEEE/CVF International Conference on Com-*

puter Vision, pp. 2294–2305, 2023.

662

673 674

678

684

- **648 649 650** Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sampling. *Advances in neural information processing systems*, 27, 2014.
- **651 652 653** Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Image synthesis and editing with stochastic differential equations. *arXiv preprint arXiv:2108.01073*, 2021.
- **654 655 656** Daiki Miyake, Akihiro Iohara, Yu Saito, and Toshiyuki Tanaka. Negative-prompt inversion: Fast image inversion for editing with text-guided diffusion models. *arXiv preprint arXiv:2305.16807*, 2023.
	- Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for editing real images using guided diffusion models. *arXiv preprint arXiv:2211.09794*, 2022.
- **660 661** Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In *International Conference on Machine Learning*, pp. 8162–8171. PMLR, 2021.
- **663 664** Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion. In *The Eleventh International Conference on Learning Representations*.
- **665 666 667 668** Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PMLR, 2021.
- **669 670 671 672** Dominic Rampas, Pablo Pernias, and Marc Aubreville. A novel sampling scheme for text-and image-conditional image synthesis in quantized latent spaces. *arXiv preprint arXiv:2211.07292*, 2022.
	- N Reimers. Sentence-bert: Sentence embeddings using siamese bert-networks. *arXiv preprint arXiv:1908.10084*, 2019.
- **675 676 677** Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International Conference on Learning Representations*, 2021. URL [https://openreview.net/](https://openreview.net/forum?id=St1giarCHLP) [forum?id=St1giarCHLP](https://openreview.net/forum?id=St1giarCHLP).
- **679 680** Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. *Advances in Neural Information Processing Systems*, 32, 2019.
- **681 682 683** Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint arXiv:2011.13456*, 2020.
- **685 686 687** Anastasis Stathopoulos, Ligong Han, and Dimitris Metaxas. Score-guided diffusion for 3d human recovery. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 906–915, 2024.
	- Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for text-driven image-to-image translation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1921–1930, 2023.
- **691 692 693** Alex Wang and Kyunghyun Cho. Bert has a mouth, and it must speak: Bert as a markov random field language model. *arXiv preprint arXiv:1902.04094*, 2019.
- **694 695 696** Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600– 612, 2004.
- **697 698 699 700** Wikipedia contributors. Gumbel distribution — Wikipedia, The Free Encyclopedia. [https:](https://en.wikipedia.org/wiki/Gumbel_distribution) [//en.wikipedia.org/wiki/Gumbel_distribution](https://en.wikipedia.org/wiki/Gumbel_distribution), 2024. [Online; accessed 8- October-2024].
- **701** Chen Henry Wu and Fernando De la Torre. Unifying diffusion models' latent space, with applications to cyclediffusion and guidance. *arXiv preprint arXiv:2210.05559*, 2022.

A DETAILS ON MULTINOMIAL DIFFUSION MODELS

Definition of Q_t with mask-and-replace strategy. Following mask-and-replace strategy as:

$$
\boldsymbol{Q}_t = \begin{bmatrix} \alpha_t + \beta_t & \beta_t & \beta_t & \cdots & 0 \\ \beta_t & \alpha_t + \beta_t & \beta_t & \cdots & 0 \\ \beta_t & \beta_t & \alpha_t + \beta_t & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \gamma_t & \gamma_t & \gamma_t & \cdots & 1 \end{bmatrix},
$$
(11)

given $\alpha_t \in [0,1], \beta_t = (1 - \alpha_t - \gamma_t)/K$ and γ_t the probability of a token to be replaced with a [MASK] token.

Cumulative transition matrix. The cumulative transition matrix \overline{Q}_t and $q(x_t|x_0)$ can be computed via closed form:

$$
\bar{Q}_t \boldsymbol{v}(x_0) = \bar{\alpha}_t \boldsymbol{v}(x_0) + (\bar{\gamma}_t - \bar{\beta}_t) \boldsymbol{v}(K+1) + \bar{\beta}_t \mathbf{1}
$$
\n(12)

√

 $\sqrt{1-\overline{\alpha}_t}\boldsymbol{\epsilon}'$

where $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i, \bar{\gamma}_t = 1 - \prod_{i=1}^t (1 - \gamma_i)$, and $\bar{\beta}_t = (1 - \bar{\alpha}_t - \bar{\gamma}_t) / (K + 1)$ can be calculated and stored in advance.

776 777 778

B ANALYSIS ON MUTUAL INFORMATION

 $\boldsymbol{z}_t = \boldsymbol{x}'_{t-1} - \hat{\mu}_t(\boldsymbol{x}_t)$

Proof of Remark [3.1.](#page-5-1)

Proof. We assumed that x_0 satisfies standard Gaussian distribution $\mathcal{N}(0, I_D)$. Since

$$
\boldsymbol{x}_t = \sqrt{\alpha_t} \boldsymbol{x}_{t-1} + \sqrt{1-\alpha_t} \boldsymbol{\epsilon}_t
$$

where both x_{t-1} and ϵ_t are independent standard Gaussian random variables, x_t is also standard Gaussian, and in each dimension

$$
Cov(\boldsymbol{x}_t, \boldsymbol{x}_{t-1}) = \sqrt{\alpha_t},
$$

which leads to

$$
\hat{\mu}_t(\boldsymbol{x}_t) = \mathbb{E}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) = \sqrt{\alpha_t} \boldsymbol{x}_t.
$$

Therefore,

$$
\begin{array}{c} 792 \\ 793 \end{array}
$$

$$
\overline{\mathcal{G}}
$$

794

795 796

797 798 799

$$
= (\sqrt{\overline{\alpha}_{t-1}}x_0 + \sqrt{1 - \overline{\alpha}_{t-1}}\epsilon) - \sqrt{\alpha_t}(\sqrt{\overline{\alpha}_t}x_0 + \sqrt{1 - \overline{\alpha}_{t-1}}\epsilon) - \sqrt{\alpha_t}(\sqrt{\overline{\alpha}_t}x_0 + \sqrt{1 - \overline{\alpha}_{t-1}}\epsilon + \sqrt{\alpha_t(1 - \overline{\alpha}_t)}\epsilon'.
$$

Let

$$
E = \sqrt{1 - \overline{\alpha}_{t-1}} \epsilon + \sqrt{\alpha_t (1 - \overline{\alpha}_t)} \epsilon'
$$

800 801 which is a Gaussian error term independent to x_0 with mean 0 and variance $1 - \overline{\alpha}_{t-1} + \alpha_t(1 - \overline{\alpha}_t)$. Thus we can calculate the mutual information

802
\n803
\n804
\n805
\n806
\n807
\n808
\n809
\n808
\n
$$
I(z_t; x_0) = H(z_t) - H(z_t|x_0)
$$
\n
$$
= H(z_t) - H(E)
$$
\n805
\n806
\n807
\n808
\n809
\n809
\n
$$
= \frac{D}{2} \log(2\pi e(\beta_t^2 \overline{\alpha}_{t-1} + 1 - \overline{\alpha}_{t-1} + \alpha_t(1 - \overline{\alpha}_t)) - \frac{D}{2} \log(2\pi e(1 - \overline{\alpha}_{t-1} + \alpha_t(1 - \overline{\alpha}_t))
$$
\n
$$
= \frac{D}{2} \log(\frac{\beta_t^2 \overline{\alpha}_{t-1} + 1 - \overline{\alpha}_{t-1} + \alpha_t(1 - \overline{\alpha}_t)}{1 - \overline{\alpha}_{t-1} + \alpha_t(1 - \overline{\alpha}_t)}).
$$

 \Box

Figure 5: Reconstruction and editing result with Discrete Inversion and Paella.

C IMPLEMENTATION DETAILS

For all reconstruction task, we employ a $\tau = 1.0$ and $\lambda_1 = 1.0$, $\lambda_2 = 0.0$ with 32 sampling steps and 26 renoising steps.

The hyper-parameters for Paella editing experiment is CFG= 10.0 , $\lambda_1 = 0.7$, $\lambda_2 = 0.3$ and $\tau = 0.9$. The hyper-parameters for VQ-Diffusion in editing is CFG= 5.0, $\lambda_1 = 0.2$, $\lambda_2 = 0.8$.

For sentiment editing task with RoBERTa, we utilize two sets of hyperparameter: $\tau = 0.7, \lambda_1 = 0.2$, $\lambda_2 = 0.8$ and $\tau = 0.7$, $\lambda_1 = 0.25$, $\lambda_2 = 0.75$.

All models are implemented in PyTorch 2.0 and inferenced on a single NVIDIA A100 40GB.

D ABLATION STUDY

 In this section, we analyze the impact of varying hyperparameters $\lambda_1, \lambda_2, \tau$, and CFG scale on the quality of image generation and adherence to textual descriptions, quantified through Structure Distance and CLIP similarity. The hyperparameters play specific roles: λ controls the amount of noise introduced in each reverse step, τ governs the percentage of tokens replaced with random tokens during inversion, and Classifier-Free Guidance (CFG) scales the influence of the text prompt during image synthesis. To limit the search space and simplify the ablation, we choose $\lambda_1 = \lambda$ and $\lambda_2 = 1 - \lambda$ and vary the value of λ . Evaluation metrics are given in Figure [8.](#page-18-0)

 Effect of λ_1 and λ_2 : With a fixed CFG of 10.0, the graphs indicate that increasing λ results in a rise in Structure Distance, suggesting a decline in structural integrity of the images. This increase in noise appears to allow for greater exploration of the generative space at the expense of some loss in image clarity.

-
-
-
-
-
-

Figure 7: Image Editing with Diversity. Due to the stochastic nature of our method, we can generate diverse outputs. The first three rows illustrate variations in both inversion masks and injected Gumbel noise ($\lambda_1 = 0.7$, $\lambda_2 = 0.3$). The last two rows demonstrate variations using only inversion masks ($\lambda_1 = 1$, $\lambda_2 = 0$).

-
-
-
-
-

Figure 8: The effect of hyperparameters $\lambda_1, \lambda_2, \tau$, CFG on the Structure Distance (\downarrow) and CLIP similarity (\uparrow) with addition function as noise inject function. In our implementation, to limit the search space, we choose $\lambda_1 = \lambda$ and $\lambda_2 = 1 - \lambda$ for simplicity.

1002 1003 1004 1005 Effect of τ : Higher τ values, particularly at 0.9, show a notable rise in Structure Distance as CLIP similarity increases. This implies that more token replacement can lead to images that align better with the text prompts but may suffer in maintaining structural fidelity, likely due to x_T contains less information of the original image while λ injects additional noise during editing phase.

1006 1007 1008 1009 1010 1011 1012 Effect of CFG Scale: Varying CFG at a fixed λ of 0.7 and τ of 0.9 reveals that higher CFG values substantially improve Structure Distance, but to an extent (CFG of 10). Beyond this point, further increases in CFG do not yield significant improvements in structural quality, indicating a diminishing return on higher guidance levels. This plateau suggests that while increasing CFG helps in aligning the generated images more closely with the text prompts initially, the benefits in structural integrity and clarity become less visible as CFG values exceed a certain threshold. This finding underscores the need for a balanced approach in setting CFG, where too much guidance may not necessarily lead to better outcomes in terms of image quality and fidelity to the textual description.

1013 1014 1015 1016 1017 1018 Effect of noise injection function: We also conducted evaluations using a variance-preserving noise injection function by setting $\lambda_1 = \sqrt{\lambda}$ and $\lambda_2 = \sqrt{1 - \lambda}$. The results of these experiments are presented in Figure [9.](#page-19-0) As for the max function, we performed a manual inspection of the visual examples generated with this function. The quality of these examples was noticeably inferior, we therefore omit the corresponding evaluation curves from our analysis.

1019 1020 1021 1022 1023 1024 1025 In conclusion, this ablation study demonstrates that increasing λ and τ can enhance adherence to text prompts through broader explorations in generative spaces, yet this benefit is offset by a decrease in the structural quality of the images. On the other hand, raising CFG values enhances the structural integrity of images to a certain threshold, after which the improvements plateau, indicating a ceiling to the effectiveness of higher CFG settings. This analysis offers empirical guidance for selecting hyperparameters, balancing the trade-offs between text alignment and image quality to optimize image synthesis outcomes.

Figure 9: The effect of hyperparameters λ_1, λ_2 with variance preserving scheme. We set $\lambda_1 = \sqrt{\overline{\lambda}}$ λ and $\lambda_2 = \sqrt{1 - \lambda}$.

E ADDITIONAL RESULTS ON IMAGE EDITING

1056 1057 Reconstruction result with Paella. In Figure [5](#page-15-0) we demonstrates the inversion reconstruction result with Paella using our proposed method.

1058 1059 1060 1061 Image editing with diversity. As shown in Figure [7,](#page-17-0) our method enables diverse image editing results through stochastic variation. The first three rows demonstrate the impact of varying both the inversion masks and the injected Gumbel noise, while the last two rows focus on variations produced by changing only the inversion masks.

F ADDITIONAL RESULTS ON TEXT EDITING

Dataset generation. To generate the dataset, we utilize ChatGPT-4o with the following prompt:

User

Generate 200 pairs of sentences that contains the same meaning, but one with positive sentiment and one with negative sentiment. For both positive sentiment and negative sentiment, you need to write two sentences with the first part being a hint of the sentiment and the second part being the actual content. The first part for both sentences should be same. write in the format like:

hint. positive.

hint. negative.

1076 1077 1078 1079 Make sure that there are two lines for each pairs. Also, the hint should provide enough context and both positive and negative sentiment should be related to the hint. Do not repeat the hint, also make sure that there is only two sentences in each of the line, one is the hint and the other is about the sentiment.

1120 1121 Figure 10: The effect of different λ schedule on the Structure Distance (\downarrow) and CLIP similarity (†). In our implementation, to limit the search space, we choose $\lambda_1 = \lambda$ and $\lambda_2 = 1 - \lambda$ for simplicity.

- **1122 1123 1124**
- **1125**
- **1126 1127**
- **1128**
- **1129**
- **1130**
- **1131**
- **1132**
- **1133**

1185 satisfied. Use 1 for satisfied and 0 for not satisfied. The sentences are given below:

- **1186** The event was a complete disaster.
- **1187** This event was a fantastic comedy game.

1189 1190

1191 1192

1193 1194 1195

1206 1207

1210

1212

H TEXT EDITING RESULTS

ChatGPT

1 1

1217 1218 1219 Table 6: Editing results of our method with RoBERTa. The sentences in black are the prompts used for inversion and editing in their respective column. The sentence in red is the one being inverted, and the blue sentence represents the editing result.

1220 1221

1222 1223 1224

I ADDITIONAL COMPARISONS

1225 1226 1227 Additional baselines. We compare with SDEdit [Meng et al.](#page-12-4) [\(2021\)](#page-12-4) and ControlNet [Zhang et al.](#page-13-3) $(2023a)^{1}$ $(2023a)^{1}$ $(2023a)^{1}$ $(2023a)^{1}$. Results are shown in Figure [11](#page-23-0) and Table [7.](#page-23-1)

1228 1229 1230 Noise injection functions. We compare various noise injection functions, including taking the maximum of Gumbel noise and the recorded noise, as well as the variance-preserving noise injection function.

1231 1232 1233 Mask schedule functions. In Figure [13,](#page-24-0) we present four types of mask scheduling functions: (a, c) concave up and (b, d) concave down. Our results indicate that concave up mask scheduling functions perform better than their concave down counterparts. Quantitative results are shown in Table [8.](#page-26-0)

1234 1235 1236 1237 Comparison between inclusive and random masks. To understand the impact of randomness in the masking schedule, we illustrate masks that are inclusive compared to totally random. Inclusive mask is mask schedule that are increasingly growing, which is used in Paella, compared to randomly sampled masks.

1238

1239

¹We use the ControlNet-InPaint model based on Stable Diffusion v1.5: [https://github.com/](https://github.com/mikonvergence/ControlNetInpaint) [mikonvergence/ControlNetInpaint](https://github.com/mikonvergence/ControlNetInpaint)

 and inference.

	Structure	CLIP Similarity	
Mask Schedule	Distance $\times 10^3 \downarrow$	Whole \uparrow	Edited \uparrow
(a): $1 - \cos(t \cdot \pi/2)$ (b): $\cos((t-1) \cdot \pi/2)$ (c): $1 - \sqrt{1-t}$	7.54	23.48	20.96
	25.39	23.56	21.24
	5.11	22.99	20.50
(d): \sqrt{t}	26.35	23.59	21.36
(e) : t	11.34	23.79	21.23

Table 8: Comparison with different masking schedule. (a): $1-\cos(t \cdot \pi/2)$, (b): $\cos((t-1) \cdot \pi/2)$, (c): Table 8: Comparison
1 – $\sqrt{1-t}$, (d): \sqrt{t} .