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Abstract

We introduce Open-Reasoner-Zero, the first open source implementation of large-
scale reasoning-oriented RL training on the base model focusing on scalability,
simplicity and accessibility. Through extensive experiments, we demonstrate that a
minimalist approach, vanilla PPO with GAE (λ = 1, γ = 1) and straightforward
rule-based rewards, without any KL regularization, is sufficient to scale up both
benchmark performance and response length, replicating the scaling phenomenon
observed in DeepSeek-R1-Zero. Using the same base model, Qwen2.5-32B base,
as DeepSeek-R1-Zero-Qwen-32B, our implementation achieves superior perfor-
mance across AIME2024, MATH500, and GPQA Diamond, while demonstrating
remarkable efficiency—requiring only 1/10 of the training steps compared to the
DeepSeek-R1-Zero pipeline. We validate that this recipe generalizes well across
diverse training domains and different model families without algorithmic modi-
fications. Moreover, our analysis not only covers training dynamics and ablation
for critical design choices, but also quantitatively shows how the learned critic
in Reasoner-Zero training effectively identifies and devalues repetitive response
patterns, yielding more robust advantage estimations and enhancing training stabil-
ity. Embracing the principles of open-source, we release our source code, training
data, and various model weights, fostering reproducibility and encouraging further
exploration of the properties of related models.

1 Introduction

Large-scale reinforcement learning (RL) training of language models on reasoning tasks has emerged
as a promising paradigm for mastering complex problem-solving skills. Recent breakthroughs,
particularly OpenAI’s o1 [1] and DeepSeek’s R1-Zero [2], have demonstrated remarkable training
time scaling: as the training computation scales up, both the model’s benchmark performance and
response length consistently and steadily increase without any sign of saturation. Inspired by these
advancements, we aim to explore this new scaling phenomenon by conducting large-scale RL training,
even applying it directly to base models, an approach we refer to as Reasoner-Zero training.

In this work, we introduce Open-Reasoner-Zero (ORZ), the first open-source implementation of
large-scale reasoning-oriented RL training on large language models (LLMs) with our empirical
best practices, designed to be robust, scalable and simple-to-follow. Under Reasoner-Zero paradigm,
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Figure 1: Evaluation performance of Open-Reasoner-Zero-{7B, 32B} on benchmarks (averaged on
16 responses) during training. Using the same base model, Qwen2.5-32B base, as DeepSeek-R1-Zero-
Qwen-32B, Open-Reasoner-Zero-32B achieves superior performance on AIME2024, MATH500, and
GPQA Diamond benchmarks—requiring only a tenth of the training steps.

LLMs are trained to master diverse reasoning skills under verifiable rewards, spanning arithmetic,
logic, coding and common-sense reasoning (e.g., scientific problems, numerical reasoning, natural
language understanding and even creative writing). While DeepSeek’s R1-Zero outlined their training
pipeline briefly, we provide a comprehensive study of our training strategy, with in-depth insights into
overcoming training instability from value estimation perspectives in RL. Our goal is to democratize
advanced RL training techniques accessible to the broader research community.

Our proposed Open-Reasoner-Zero, built on the same Qwen2.5-32B base model as DeepSeek-R1-
Zero-Qwen-32B, achieves superior performance on challenging benchmarks including AIME24,
MATH500, and GPQA Diamond, while requiring only 1/10 of the training steps. Through extensive
ablation studies, we summarize some key findings. Specifically, we find that vanilla PPO using GAE
(λ = 1 and γ = 1) and without any KL-related regularization, combined with a straightforward
rule-based reward, is sufficient to achieve steady scalability in both benchmark performances and
response length across varying model sizes, different model families, and diverse task distributions,
when trained on large-scale carefully curated datasets. Furthermore, we investigate several critical
aspects of Reasoner-Zero training: (1) training dynamics, including how performance and response
length evolve throughout training; (2) value and advantage estimation effectiveness, illustrating how
PPO’s learned critic model leads to robust advantage estimates; and (3) comprehensive ablation
studies on key design choices. These investigations provide valuable insights into the mechanisms
behind successful large-scale reasoning-oriented RL training.

Our primary contributions are as follows:

1. We provide a fully open-source implementation of large-scale RL training directly on a base
LLM, a strategy we refer to as Open-Reasoner-Zero.

2. We present novel insights crucial for achieving stable and scalable Reasoner-Zero train-
ing, encompassing key findings regarding effective design choices, alongside a thorough
investigation for advantage estimation.

3. We validate the generalizability of our recipe across different model sizes, various model
families and diverse task domains.
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Figure 2: Train-time Scale up on Train Reward and Response Length of Open-Reasoner-Zero (ORZ) -
{0.5B, 1.5B, 7B, 32B}. Train Reward and Response Length increase steadily, demonstrating consistent
scalability across model sizes. Interestingly, the ORZ-32B Response Length exhibits fluctuations
without negatively impacting training stability, highlighting the robustness of our minimalist recipe.

4. We release comprehensive resources including code, data, and model to the community.

2 Scale-up Reinforcement Learning from a Base Model

In this section, we describe the strategy and critical components for scale-up reasoning-oriented
RL directly from a base model. Concretely, we begin by reviewing essential background on Gen-
eralized Advantage Estimation (GAE) [3] and Proximal Policy Optimization (PPO) [4] algorithms.
Subsequently, we discuss key insights derived from our comprehensive ablation experiments that
enable successful scale-up RL training. Finally, we detail the fundamental yet critical implementation
settings for our approach, covering data curation, prompt design, and reward function specification.

2.1 RL Algorithm

We adopt the PPO [4] as the core RL algorithm, diverging from the GRPO used in DeepSeek-R1-
Zero [2]. Specifically, for each input question q (i.e., prompt), the policy model generates a group
of responses {o1, o2, ..., on}, where n represents the number of sampled responses (i.e., rollout size
per prompt). Each response oi constitutes a trajectory τi = (s0, a0, ..., sTi−1, aTi−1), where st is the
state (prompt + previously generated tokens) and at is the token generated at step t (i.e., token t).
Using our rule-based reward function, each trajectory receives a single terminal reward Ri ∈ {0, 1},
assigned at the end of the sequence (rt = 0 for t < Ti − 1, rTi−1 = Ri).

We utilize GAE [3] to estimate the advantage Ât for each token. The general GAE formula is:

Â
GAE(γ,λ)
t =

T−t−1∑
k=0

(γλ)kδt+k, (1)

where δt+k = rt+k + γVϕ(st+k+1) − Vϕ(st+k) is the Temporal Difference (TD) error, Vϕ is the
value function parameterized by ϕ, γ is the discount factor, and λ controls the bias-variance trade-off.

The general PPO objective updates the policy parameters θ to maximize a clipped surrogate objective
function, and the value parameters ϕ to minimize the error between the value estimate Vϕ(st) and a
target value V target

t , typically the discounted return. The standard objectives are:

JPPO(θ) = Eτ∼πθold

[
T−1∑
t=0

min
(
ρt(θ)Ât, clip(ρt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (2)

Jvalue(ϕ) =
1

2
Eτ∼πθold

[
T−1∑
t=0

(Vϕ(st)− V target
t )2

]
, (3)

where ρt(θ) =
πθ(at|st)
πθold (at|st) is the probability ratio, and the clipping parameter ϵ is set to 0.2 in our

cases. Commonly, V target
t is the estimated discounted return Gt = Â

GAE(γ,λ)
t + Vϕ(st).
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Table 1: Comparison of Open-Reasoner-Zero-32B with DeepSeek-R1-Zero-Qwen-32B DAPO-
Qwen-32B on reasoning-related benchmarks. DeepSeek-R1-Zero-Qwen-32B results are from [2].
DAPO-Qwen-32B* results were obtained using our evaluation metric on the released checkpoint.

Model AIME 2024 AIME 2025 MATH500 GPQA Dia.
DeepSeek-R1-Zero-Qwen-32B 47.0 - 91.6 55.0
DAPO-Qwen-32B [5] 50.0 - - -
DAPO-Qwen-32B* 48.3 37.9 71.8 16.0

Open-Reasoner-Zero-32B 48.1 36.0 92.2 55.5

2.2 Key Design Principles

In this study, we explore best practices for reasoning-oriented RL training, emphasizing stability and
scalability. Our key findings are summarized as follows:

Choosing PPO over GRPO We select PPO over GRPO due to its superior value estimation en-
abled by a learned critic. This critic facilitates accurate token-level value estimation, effectively
identifying and devaluing detrimental patterns such as repetitive behaviors, named credit assignment.
Consequently, PPO achieves notably more robust advantage estimation compared to GRPO. Lacking
a dedicated value network, GRPO struggles to distinguish genuinely correct responses from those
occurring within negative patterns (e.g., repetitive loops). This deficiency can misdirect reinforce-
ment, leading to training instability and eventual collapse, an observation supported by community
discussions2. Detailed analysis is provided in Section 3.3.

Algorithm Implementations. Our empirical studies suggests that vanilla PPO already provides a
highly stable and robust training across different model scales and training durations, without the
need for additional algorithmic modifications. Nonetheless, appropriate implementations matter.
Through extensive experiments, we found that the choice of GAE parameters substantially impacts
performance in reasoning-oriented tasks. Specifically, the discount factor γ controls the effective
sequence length considered during training: a lower γ assigns exponentially decreasing weights to
future rewards, inducing the model to prematurely terminate generation in order to more immediately
obtain rewards. On the other hand, the GAE parameter λ balances bias and variance in advantage
estimation. Crucially, in large-scale training scenarios, the substantial data volume naturally mitigates
variance concerns, encouraging us to adopt a bias-free configuration. Consequently, by setting γ = 1
and λ = 1, we fully capture the long-term dependencies critical for reasoning tasks and achieve
stable training. Fortuitously, this also leads to a significant simplification of the GAE advantage
computation in our case:

Â
GAE(γ=1,λ=1)
t = R− Vϕ(st), (4)

Jvalue(ϕ) =
1

2
Eτ∼πθold

[
T−1∑
t=0

(Vϕ(st)−R)2

]
, (5)

where R is the single terminal reward. Detailed derivation and pseudocode can be seen in appendix.

Removing KL regularization. We achieve stable training without relying on any KL-based
regularization techniques (e.g., KL shaped rewards and loss), different from the de facto RLHF
community [6] and Reasoner model [7, 2]. Intuitively, KL regularization constrains the policy
model to remain close to the original base model distribution, potentially limiting exploration during
policy optimization. By omitting KL regularization, our approach offers several practical advantages:
(1) it obviates the need to navigate the large and challenging-to-tune design space inherent to KL
regularization, greatly simplifying the training procedure; and (2) it lowers computational overhead
and memory usage, eliminating the need to load the weight of a separate reference model and calculate
log probabilities using it. Together, these benefits facilitate efficient and scalable large-scale RL
training.

2OpenR1: discussion about vanilla GRPO reproduction link.
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Figure 3: Ablation studies for key design choices in Open-Reasoning-Zero (ORZ). We use reward
on training set or MATH500 as model performance metrics. Left. Comparison of different GAE λ
values. Mid. Comparisons of KL-related regularizations. Right. Data scale ablation study. These
findings collectively inform our minimalist yet effective ORZ training recipe.

Minimal Reward Function Design. In contrast to approaches such as DeepSeek R1, which utilize
a dedicated format reward to enforce structured reasoning (e.g., enclosing thought processes within
<think>...</think>), we demonstrate that the simplest, rule-based reward function is not only sufficient
but also optimal, as minimal design leaves no room for potential reward hacking. Notably, even
unaligned base models quickly adpot to desired format, suggesting this is a straightforward task
without requiring complex reward engineering.

Scale up Training Data. We identify that scaling up data quantity and diversity is pivotal for
Reasoner-Zero training. While training on limited academic datasets like MATH train set leads to
quick performance plateaus, our curated large-scale diverse dataset demonstrates impressive potential
for continuous improvement without signs of saturation on both training and test sets.

2.3 Detailed Settings

We instantiate our ORZ approach by utilizing the Qwen2.5-{7B, 32B} base models as our main
foundation. This methodology involves directly launching large-scale RL from these base models,
bypassing any preliminary fine-tuning stages such as supervised fine-tuning (SFT) or distillation,
a strategy also explored in recent works [8, 9]. Inspired by DeepSeek-R1-Zero [2], we design
our prompt template to elicit the model to utilize inference computation, gradually mastering the
reasoning ability, as shown in the Appendix. We detail our implementation below, focusing on the
key components that enable effective and robust reasoning-oriented RL at scale.

Data Curation. With careful consideration of scalability and robustness, our training data comprises
tens of thousands of carefully curated question and answer pairs consisting of math and general
reasoning tasks. Specifically, we curate our dataset through a comprehensive collection and cleaning
process. First, we collect public data from various sources, including AIME (up to 2023), MATH [10],
Numina-Math collection [11], Tulu3 MATH [12], OpenR1-Math-220k [13] and AoPS forum. We
also synthesize general reasoning tasks using programmatic approaches as additional enrichment.
These include logical puzzles, multi-step reasoning problems, and counterfactual scenarios that
require the model to apply structured thinking across diverse domains. Considering the RL training
paradigm’s reliance on accurate reward signals, we exclude problems that are challenging to evaluate
with our rule-based reward function, such as proof-oriented problems. This careful filtering ensures
accurate and consistent reward computation during training, essential for stable policy optimization.
We also employ LLM-based filtering to evaluate problem difficulty, removing samples with extreme
pass rates to maintain a balanced dataset.
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Table 2: Generalization performance of Open-Reasoner-Zero on MMLU and MMLU_PRO bench-
marks. ORZ achieves superior performance on both benchmarks through RL training on reasoning
tasks alone, surpassing Qwen2.5-Instruct without additional instruction tuning.

Model MMLU MMLU_PRO
Qwen2.5-32B-Base 83.3 55.1
Qwen2.5-32B-Instruct 83.2 69.2
DAPO-Qwen-32B 79.7 64.5
Open-Reasoner-Zero-32B 84.9 74.4

Reward Function. Unlike DeepSeek-R1-Zero [2], our scale-up RL training employs a minimalist
rule-based reward function that solely checks answer correctness, without any additional format
rewards. Specifically, this reward function is designed to extract the content between ‘<answer>‘ and
‘</answer>‘ tags during training and compare it with the reference answer. To maintain clarity and
simplicity in scale-up RL, we implement a binary reward scheme - awarding a reward of 1 for exact
matches with the reference answer, and 0 for all other cases. Surprisingly, we found that under our
designed prompt even unaligned base model can yield well-formatted responses in high probability.
Moreover, the base model can quickly learn the correct format and reinforce it for reasoning and
answering incentivized by our simple rule-based reward function alone, as shown in Figure 4.

3 Experiments

In this section, we present comprehensive experimental results and analysis of our Open-Reasoner-
Zero models. We begin with an in-depth analysis of training results and ablation studies. We then
investigate the correctness and effectiveness of the value function. Finally, we discuss the evaluation
results and in-depth analyze the training process. Hyperparameters are provided in the Appendix.

3.1 Training Results

We highlight key findings from our training experiments, examining performance through training
reward, response lengths, and generation quality to provide a concise view of learning dynamics.

Figure 2 shows the training reward and average response length curves of our experiments for ORZ-
{32, 7, 1.5, 0.5}B, where we observe consistent improvements in both metrics during training. This
indicates that the models are effectively learning the desired reasoning behaviors.

To further understand the characteristics of the generated responses, Figure 4 (Right) illustrates the
average length of all responses compared to the average length of responses that are correct and
incorporate reflection steps. We identify five representative reflection patterns (‘"wait,"‘, ‘"recheck"‘,
‘"retry"‘, ‘"alternatively,"‘, and ‘"however,"‘) and use this to determine whether a response is reflective,
following a methodology similar to [14]. Notably, the average length of correct responses that utilize
reflection is consistently greater than the overall average response length across all training steps.
Furthermore, both of these length metrics exhibit a clear upward trend as training progresses.

3.2 Ablation Study

GAE Analysis. We investigated the impact of different GAE λ values and found λ=1.0 to yield
superior training stability and final performance. As shown in Figure 3 (Left), training with GAE
λ=1.0 resulted in a reward that rapidly increases and then steadily grows, consistently outperforming
λ=0.95, which exhibited much slower reward progression. In the Response Length, the GAE λ=1.0
curve maintains a reasonable increasing spead during the training process; while the GAE λ=0.95
leading to collapsed length dynamics. These findings indicate that GAE λ=1.0 can better balance the
training stability and generation quality.

KL Regularization Analysis. We assessed the impact of KL Loss and Penalty on the performance
and training dynamics of ORZ-7B. Figure 3 (Mid) clearly shows that omitting both KL Loss and
Penalty (W/O. KL) achieve optimal training stability, performance, and response length scaling. Both
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Figure 4: Left. Correct Format Ratio. Results demonstrate rapid adoption of structured reasoning
patterns even by the base model trained on a simple outcome reward function, suggesting complex
reward functions are unnecessary for Reasoner-Zero. Right. Reflection patterns in generation.
Average Correct Reflection Length consistently exceeds Average Response Length during training.

KL Loss and KL Penalty mechanism not only slow down the training process but also consume addi-
tional computational resources. Furthermore, eliminating these components reduces hyperparameter
tuning burden and implementation complexity, which is crucial for scaling up RL training effectively.

Data Scale. We compared training with our ORZ 57k dataset against a classic academic dataset,
MATH train 7.5k. As depicted in Figure 3 (Right), leveraging the larger ORZ 57k dataset leads to
sustained improvements in both training reward and response length. In contrast, training with the
smaller MATH train 7.5k dataset results in performance—both reward and length—plateauing early.
These results underscore the pivotal role of data scale in enhancing training performance and affirm
that increasing training data quantity can effectively improve the model’s reasoning capabilities.

Reasoner-Zero Training on Smaller Models. To demonstrate the robustness and versatility of
our ORZ training methodology, we extend the same training pipeline to smaller-scale models,
specifically Qwen2.5-{0.5,1.5}B. The evaluation results clearly indicate that our minimalist RL
approach consistently improves reasoning capabilities even at substantially smaller model sizes.
Remarkably, meaningful performance gains are observable even at the scale as small as 0.5B
parameters. Detailed training curves for these smaller models are provided in the Appendix.

Reasoner-Zero Training Across Diverse Domains. To test whether the ORZ recipe transfers
beyond mathematics, we trained ORZ-7B in a mixed-domain setting (Math+Code+Puzzle+Instruction-
Following at 40%:40%:15%:5%), while keeping all algorithmic settings unchanged. As summarized
in Table 3, the ORZ-7B-Mixed-Domain model delivers large gains on non-math evaluations as well,
without sacrificing mathematical competence. These results confirm that our ORZ recipe generalizes
seamlessly across heterogeneous task distributions without requiring algorithmic modifications.

Reasoner-Zero Training Across Different Model Families. We validate portability by applying
the ORZ recipe to Llama-3.1-8B Base in the same mixed-domain setting, adjusting only the learning
rate (from 1e-6 to 5e-7). Training remained stable with steady reward and response-length growth (see
Figure 6). As detailed in Table 4, the resulting ORZ-Llama-3.1-8B model demonstrates substantial
improvements over the base model. These results confirm that the ORZ methodology is architecture-
agnostic and generalizes effectively beyond the Qwen model family.

Training on Distillation Models. We further investigate preliminary results on applying the ORZ
training pipeline to distilled models to enhance their reasoning capabilities. This two-stage approach
follows DeepSeek-R1 [2]. Table 5 shows that our model yields essential further gains, with ORZ-R1-
Distill-Qwen-14B outperforming larger distilled models like R1-Distill-Qwen-32B.

3.3 Analysis for Critic and Advantage Estimation

To further investigate the impact of our RL algorithm choices, particularly the preference for PPO over
GRPO, we conducted detailed analyses of the learned value function (i.e., critic), and its downstream
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To solve the problem of finding the expected number of pairs of adjacent cards such that one is black and the other is red in a standard 
52-card deck dealt out in a circle, we can use the concept of linearity of expectation.

First, note that a standard deck has 26 red cards and 26 black cards. When the cards are dealt out in a circle, there are 52 pairs of

…
Ignore some normal reasoning to save space

…
So, \(E[X_i] = \frac{26}{51}\) for each \(i\). Therefore, the expected number of pairs of adjacent cards that are one red and one black 
is:
\[ E[X] = \sum_{i=1}^{52} E[X_i] = 52 \times \frac{26}{51} = \frac{1352}{51}. \]

Simplifying the fraction, we get:
\[ \frac{1352}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = 
\frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = 
\frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = 

…
Ignore the repetitive part to save space
…

\frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} =
\frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = 
\frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \times 26}{51} = 
\frac{52 \times 26}{51} = \frac{52 \times 26}{51} = \frac{52 \ \<|endoftext|>

Visualization of Value Approximations

Figure 5: Left. Advantage comparison between PPO and GRPO on repetitive tokens. Our PPO are
more negative advantages to repetitive patterns than GRPO, demonstrating superior penalization
of undesirable. Right. Visualization of value approximations showing how Vϕ(st) assigns lower
values (red) to repetitive patterns and higher values (green) to coherent text, reflecting how the critic
effectively identifies undesirable generation patterns.

effects. Our analyses reveal how the accurate critic influences advantage estimations and eventually
translates into more effective policy updates compared to GRPO without critic.

Qualitatively, we observed that the value function Vϕ(st) learned during PPO training effectively
identifies repetitive patterns (i.e., excessive repetition), which consistently occurs when a sudden
collapse of vanilla GRPO as described in Section 2.2. As illustrated in Figure 5 (Right), states st
containing such repetitions are typically assigned lower values by Vϕ (i.e., lower expected future
returns) compared to states with coherent patterns, a phenomenon known as credit assignment.

To quantify how this precise credit assignment benefits policy optimization, we performed a com-
parative analysis of advantage estimations between our PPO setup and a hypothetical GRPO setup,
focusing on repetitive tokens. Inspired by Kimi k1.5[7], we first identified all tokens that appear after
the onset of the first noteworthy repetitive pattern within a generation, which we designate as tokens
with repetitive patterns. We then calculated the average advantage assigned to these specific tokens
by our PPO GAE (λ = 1, γ = 1) setting (which includes batch-level advantage normalization). This
was contrasted with the average advantage that GRPO would have assigned to the exact same tokens.

Figure 5 demonstrate during our ORZ-7B training, advantage assignments of our PPO configuration
are consistently lower (i.e., more negative) to these tokens with repetitive patterns compared to
GRPO across the majority of training iterations. This finding reveals PPO’s superior ability to
penalize undesirable patterns, thereby fostering a more precise and robust learning signal that actively
discourages degenerate outputs and promotes higher-quality responses, consistent with our empirical
observations in large-scale RL. More detailed analyses are provided in the Appendix.

3.4 Evaluation Results

We present a comprehensive analysis of our results, demonstrating the effectiveness of ORZ across
different model scales and benchmarks. Our experiments evaluate both training efficiency and
reasoning performance, highlighting the scalability and generalization capabilities of our approach.

In our experiments, ORZ-32B demonstrates significant advancements in both efficiency and perfor-
mance, as shown in Figure 1. The model achieves superior accuracies across all benchmarks, notably
outperforming DeepSeek-R1-Zero-Qwen2.5-32B, while only requiring an order of magnitude fewer
training steps. Moreover, we also compare ORZ-32B with DAPO-32B, another recent Reasoner-Zero
model in Table 1. ORZ achieves comparable performance on AIME while requiring fewer the training
iterations used by DAPO. Note that ORZ remarkably outperforms DAPO on MATH500 and GPQA
Diamond. We observed that the released DAPO tends to answer with integer numbers (e.g., "Answer:
2") even in multiple-choice questions without integers in the options. We hypothesize this behavior
is related to their data curation and formatting approach, which transforms every answer into an
integer for verification disambiguation. This limitation highlights the advantages of our data curation
methodology, with high coverage and preprocessing to handle diverse answer formats correctly.
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Table 3: The ORZ recipe transfers seamlessly to a mixed-domain setting without algorithmic changes.
This approach yields substantial gains in coding (LCB), puzzle task (BBEH) and instruction following
(IFEVAL) compared to the math-only training, yet no performance drop on math benchmarks.

Model AIME24 GPQA Dia. LCB IFEVAL BBEH
Qwen2.5-7B-Instruct 10.1 35.7 17.1 55.8 10.3

ORZ-7B 17.9 36.6 2.3 37.6 4.0
ORZ-7B-Mixed-Domain 18.2 39.0 22.2 71.9 12.4

Table 4: The ORZ recipe generalizes robustly across different model families, delivering strong gains
on diverse benchmarks when applied to Llama-3.1-8B Base model in the mixed-domain setting .

Model AIME24 GPQA Dia. IFEVAL MMLU MMLU_PRO
Llama-3.1-8B-Base 0.16 14.29 15.96 27.83 10.56
ORZ-Llama-3.1-8B 0.31 27.27 68.67 60.02 33.51

We further illustrate the training dynamics of Open-Reasoner-Zero models across various sizes
in Figure 2. Training Reward and Response Length demonstrate consistent and steady growth
across all scales, highlighting the scalability of our minimalist reinforcement learning approach.
Interestingly, the Response Length curve of the ORZ-32B model exhibits noticeable fluctuations,
yet these fluctuations do not negatively impact training stability or the continuous growth of reward.
This phenomenon indicates the robustness of our method against temporary variations in generated
sequence lengths and motivates further investigation into understanding and leveraging this behavior.

Finally, we present the generalization capabilities of our models on comprehensive benchmarks like
MMLU and MMLU_PRO. As shown in Table 2, ORZ-32B models demonstrate strong generalization
capabilities, significantly outperforming Qwen2.5-Instruct-32B on MMLU, MMLU_PRO through
pure scaled-up RL training on reasoning-oriented tasks, without any additional instruction tuning.

4 Related Work

Scaling RL on Base Models for Reasoning The approach that applies RL directly to base models
to master complex reasoning skills, referred to as Reasoner-Zero training, has gain far-reaching
attention [2]. While several recent works [15, 16, 17] have proposed detailed training recipes for
Reasoner-Zero approaches in pilot studies, ORZ stands as the first fully open-source implementation
of large-scale reinforcement learning applied directly to base language models for reasoning.

Concurrent efforts have also explored Reasoner-Zero training at scale. DAPO [5] matches ORZ’s
AIME performance, but uses roughly fivefold more training iterations and underperforms on other
benchmarks, potentially due to its data processing strategies. While VAPO [18] reports stronger
AIME2024 accuracy with a similar iteration budget as DAPO, it scales less efficiently compared to
ORZ, reaching only about 60% of ORZ’s score at the same iteration budget. Notably, ORZ employs a
simpler algorithm design avoiding the value function learning challenges faced by others, establishing
it as a more effective and accessible baseline for future research.

Scaling RL on Reasoning-Enhanced Models Another important line of work [2, 8, 19, 20]
endeavors to scale up RL training on reasoning-enhanced Models. Theses models typically first
acquire advanced reasoning patterns from existing reasoning models or high-quality human-labeled
data [21, 22, 23, 24, 25] through techniques such as SFT distillation or other cold-start approaches.
A key advantage of this pre-instruction is that the subsequent RL training is more stablem and these
models can achieve superior performance under the same RL compute budget compared to the
Reasoner-Zero training. We validate that ORZ recipe is also highly effective for such distilled models.

Our Contributions In contrast to previous work, ORZ offers the most comprehensive open
framework for Reasoner-Zero training. Our main contributions include: (1) a simple yet scalable
RL algorithm implementation that serves as a strong and accessible baseline for future research; (2)
extensive configurations and benchmarks spanning models from 0.5B to 32B parameters; (3) the
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Figure 6: Train-time scale up on Train Reward and Response Length of ORZ-Llama-3.1-8B in the
mixed-domain setting. The application of the ORZ recipe exhibits stable training dynamics on a
different model architecture, confirming its robustness and model-family-agnostic nature.

Table 5: The ORZ training recipe enables the DeepSeek-R1-Distill-Qwen-14B model to grasp
advanced reasoning patterns distilled from stronger reasoning models, substantially boosting its
performance. This ORZ-R1-Distill-Qwen-14B achieves strong results on reasoning benchmarks,
even surpassing the larger DeepSeek-R1-Distill-Qwen-32B model.

Model AIME2024 AIME2025 MATH500 GPQA Dia.
DeepSeek-R1-Distill-Qwen-14B 69.7 49.1 93.9 59.1
DeepSeek-R1-Distill-Qwen-32B 72.6 60.0 94.3 62.1
ORZ-R1-Distill-Qwen-14B 75.2 60.0 95.6 60.4

largest verified reasoning dataset; and (4) state-of-the-art training efficiency with minimal iterations.
Together, these efforts establish a foundational open framework for large-scale RL research on LLMs,
enabling broader community participation in advancing reasoning capabilities.

5 Limitations

While ORZ demonstrates significant advancements in scaling reasoning-oriented RL training, we
acknowledge certain limitations in the current work. Firstly, our investigation primarily focuses on
mathematical and general reasoning tasks. We have not included results on code generation or other
programming-related reasoning tasks. Exploring the efficacy of ORZ on code-based benchmarks, or
investigating the potential benefits and challenges of combining mathematical and code reasoning
within a unified training framework, remains a critical aspect of developing comprehensive reasoning
agents. Secondly, while we successfully implement training time scaling in RL, we have yet to
fully explore test time scaling like OpenAI o1. Future work should investigate scaling test time
computation through multi-turn interactions for contextual reasoning, value models for trajectory
assessment, and multi-agent scenarios for developing more sophisticated reasoning strategies.

6 Conclusion and Discussions

We present Open-Reasoner-Zero (ORZ), the first comprehensive open-source implementation of
large-scale reasoning-oriented RL training. Our experiments show that vanilla PPO with GAE (λ = 1,
γ = 1) and simple rule-based rewards, without KL regularization, effectively scales reasoning
capabilities in language models. This minimalist approach achieves competitive results compared to
DeepSeek-R1-Zero while using significantly fewer training iterations. Our work provides in-depth
analysis on training dynamics, model behaviors, and advantage estimation. These insights offer
practical guidance on scaling RL for complex reasoning tasks, addressing common challenges in
stability and convergence. By releasing our complete training resources—code, configurations, data,
and model weights across various sizes—we aim to democratize access to reasoning-oriented RL and
provide valuable insights for the community.
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In this Supplementary Material, we provide more elaboration on the implementation details, experi-
ment results, and qualitative results. Specifically, we present more evaluation results in Section A,
thorough implementations of the model training in Section B, and additional analyses and experi-
ments in Section C and D. These materials offer deeper insights into our methodology, experimental
validation, and qualitative findings that support the conclusions presented in the main text.

A More Evaluation Results

In this section, we provide detailed results from evaluating ORZ models of varying parameter counts
(0.5B, 1.5B, 7B, and 32B) across multiple reasoning-oriented benchmarks. Specifically, we report
performance on AIME 2024, AIME 2025, MATH500, and GPQA Diamond. The results (see
Table 6) clearly demonstrate consistent improvements in reasoning ability with increased model
size, underscoring the strong scaling properties of our minimalist RL setup. We release these
comprehensive evaluation results as a reference to facilitate further research and reproducibility. We
also provide the training performance curves for ORZ-{0.5B, 1.5B} in Figure 7.

Table 6: Reasoning-oriented benchmark performance across Open-Reasoner-Zero model sizes.
Model AIME 2024 AIME 2025 MATH500 GPQA Dia.
ORZ-0.5B 1.0 0.2 31.0 12.1
ORZ-1.5B 3.5 1.0 58.0 16.8
ORZ-7B 17.9 15.6 81.4 36.6
ORZ-32B 48.1 36.0 92.2 55.5

B Detailed Setting for Training

We initialize both our policy and critic networks with Qwen-2.5 base models (7B and 32B variants),
where value head is randomly initialized from U(−

√
5,
√
5) with no bias term. The policy and

critic do not share weights during training. For both policy and critic networks, we employ AdamW
optimizer with β = [0.9, 0.95] without weight decay. The learning rates are set to 1 × 10−6 and
5 × 10−6 for the policy and critic networks, respectively. The learning rate schedulers are both
constant learning rate with linear warm-up of 50 optimizer steps. We employ sample packing during
training. Prompt for ORZ model training and evaluation are provided in Table 7.

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user
with the answer. The reasoning process and answer are enclosed within <think> </think> and
<answer> </answer> tags, respectively, i.e., <think> reasoning process here </think>
<answer> answer here </answer>. User: You must put your answer inside <answer> </answer> tags, i.e.,
<answer> answer here </answer>. And your final answer will be extracted automatically by the \boxed{} tag.
{{prompt}}
Assistant: <think>

Table 7: Template for Open-Reasoner-Zero. prompt will be replaced with the specific reasoning
question during generation.

Each generation step contains 128 unique prompts sampled from the dataset, and policy generates 64
responses per prompt with temperature and top-p both set to 1.0. To maintain training stability, we
implement strict on-policy optimization for the policy network, where each generation corresponds
to exactly one policy optimization step. The critic network, being less sensitive to off-policy updates,
processes the experiences in 12 mini-batches, effectively performing 12 optimization steps per
iteration. We apply batch level advantage normalization in the training. Notably, our training process
operates stably without any KL-related regularization terms or entropy bonuses, demonstrating that
vanilla PPO can achieve stable training without these commonly used stabilization techniques.

For the 32B variant, we introduce an additional "annealing" training stage inspired by analogous
practices in large language model pre-training [26]. Specifically, we leverage the training process of
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Figure 7: Evaluation performance of Open-Reasoner-Zero-{0.5B, 1.5B}. We report the average
accuracy on the benchmark dataset for each question with 16 responses.

our 32B model itself to identify challenging and high-quality prompts for this annealing stage. We
pinpoint 13k particularly difficult prompts, defined as those where the model achieves fewer than 4
correct answers out of a total of 64 attempts during the first 1100 steps of training. These identified
prompts are then selectively used in a final training stage of 100 additional steps and apply a linear
learning rate decay schedule, reducing to 3×10−7. This targeted training phase is explicitly designed
to enhance the model’s capability on more complex reasoning tasks.

For the training of the ORZ-R1-Distill-Qwen-14B model, we initialized its weights from the
DeepSeek-R1-Distill-Qwen-14B model. We utilize the mined 13k difficult prompts as training
data. All other hyperparameters follow the basic configuration of the ORZ model family. The
reported results correspond to the checkpoint at 300 training iterations.

C Additional Analyses and Experiments

C.1 More Analysis for Critic and Advantage Estimation

As noted in the main text, vanilla GRPO often suffers from significant training instability, a phe-
nomenon also observed in many community implementations. This instability typically manifests
as a deterioration in generation quality midway through training, with models tending to produce
repetitive or incoherent text. Our large-scale experimental validation strongly corroborates these
observations and highlights the superior training stability of PPO compared to GRPO, as shown in
Figure 8.

C.2 Ablation on Data Curation

Based on our analysis of data quality issues, we conduct comprehensive ablation studies to evaluate
how different data curation strategies affect model training stability and performance. Motivated by
OpenR1’s finding [13] that SFT performance degradation on Chinese subsets was due to simpler
question patterns, we experiment with two data curation approaches: using English-only data versus
using both English and Chinese data. As shown in Figure 9, the English-only dataset yields superior
training stability and final model performance.
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Figure 8: PPO vs. GRPO stability in the ORZ-7B setting. GRPO empirically demonstrates severe
training instability around 240 training steps: its reward suddenly destabilizes, and responses degen-
erate as both Truncate Rate and Average Repeat Score surge to 1.0. In contrast, PPO maintains stable
rewards and low Truncate/Repeat Scores throughout.
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Figure 9: Data Curation Ablation. CN represents Chinese data and EN represents English data.
English-only dataset yields superior training stability and final model performance.

D Derivation and Code for PPO with GAE(γ = 1, λ = 1)

This section provides a detailed derivation for the GAE in the specific case where γ = 1 and λ = 1.

We substitute γ = 1 and λ = 1 into the general GAE formulation (defined in the main text).
Recall that δt+k = rt+k + γVϕ(st+k+1) − Vϕ(st+k). With γ = 1, this becomes δt+k = rt+k +
Vϕ(st+k+1)− Vϕ(st+k). Thus:

Â
GAE(γ=1,λ=1)
t =

T−t−1∑
k=0

(1 · 1)kδt+k

=

T−t−1∑
k=0

(rt+k + Vϕ(st+k+1)− Vϕ(st+k))

=

T−t−1∑
k=0

rt+k +

T−t−1∑
k=0

(
Vϕ(st+k+1)− Vϕ(st+k)

)
(6)

= R− Vϕ(st) (7)

The step from (6) to (7) follows because: (i) the sum of rewards
∑T−t−1

k=0 rt+k equals the single
terminal reward R for the trajectory, as intermediate rewards are zero; and (ii) the second sum∑T−t−1

k=0

(
Vϕ(st+k+1)−Vϕ(st+k)

)
is a telescoping series that evaluates to Vϕ(sT )−Vϕ(st), where

sT is the terminal state, and Vϕ(sT ) = 0.
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Now we derive the simplified form for the value target V target
t . As defined in the main text, we have:

V target
t = Â

GAE(1,1)
t + Vϕ(st)

= (R− Vϕ(st)) + Vϕ(st)

= R (8)

Substituting this simplified target V target
t = R into the general value loss formulation (defined in the

main text):

Jvalue(ϕ) =
1

2
Eτ∼πθold

[
T−1∑
t=0

(Vϕ(st)−R)2

]
(9)

We also provide a detailed algorithm implementation in 1.

Algorithm 1 PPO with GAE(γ = 1, λ = 1)

Require: Initial policy parameters θ0, initial value parameters ϕ0, prompt dataset D.
Require: Hyperparameters: clip range ϵ, trajectories per prompt n, minibatch size M .

1: Initialize policy πθ ← πθ0 , value function Vϕ ← Vϕ0
.

2: Initialize θold ← θ0, ϕold ← ϕ0.
3: for iteration = 1, 2, ... do
4: Initialize experience buffer B ← ∅.
5: ▷ — Rollout Phase —
6: Sample batch of prompts {qj} from D.
7: for all prompts qj in the batch do
8: Generate trajectory τ = (s0, a0, ..., sT−1, aT−1) using policy πθold .
9: Compute terminal reward R ∈ {0, 1} for τ .

10: Compute value estimate V old
t = Vϕold(st).

11: Compute advantage Ât = R− V old
t . ▷ Using γ = 1, λ = 1

12: Store tuple (τ, log πθold(at|st), R, Ât) in buffer B.
13: end for
14: ▷ — Update Phase —
15: ▷ Update critic model
16: for all minibatches (τ,R) from B do
17: Compute current critic value Vϕ(st).
18: LVF(ϕ) =

1
2 (Vϕ(s)−R)2.

19: Backward and update ϕ
20: end for
21: ▷ Update policy model
22: for all minibatches (τ, log πold(a|s), R, Â) from B do
23: Compute current policy log-probability log πθ(a|s).
24: Calculate probability ratio ρ(θ) = exp(log πθ(a|s)− log πold(a|s)).
25: LCLIP(θ) = min

(
ρ(θ)Â, clip(ρ(θ), 1− ϵ, 1 + ϵ)Â

)
.

26: Backward and update θ
27: end for
28: Update old parameters: θold ← θ, ϕold ← ϕ.
29: end for
Ensure: Final policy parameters θ.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 1 as introduction reflects main contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 5 discusses the limitation of our work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper builds upon established algorithms (PPO and GAE) whose theoreti-
cal foundations and proofs are well-documented in prior literature. We do not introduce new
theoretical results requiring formal proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We release all our training resources, including training code, curated data,
detailed settings, and various model weights.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release all our training resources, including training code, curated data,
detailed settings, and various model weights.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We release all our training resources, including training code, curated data,
detailed settings, and various model weights.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our main results are evaluated using the avg@16 metric, which aggregates
performance across multiple runs. This statistical reporting ensures the reliability and
reproducibility of our findings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: Our experiments were conducted across various computational environments
due to resource constraints. The performance of our models can be verified through our
released checkpoints rather than through exact hardware specifications.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work aligns with NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work does not have potential negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All code and data are following licenses properly. And all related works are
cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release all our training resources, including training code, curated data,
detailed settings, and various model weights.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not involve crowdsourcing nor research with human subjects in this
paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not involve crowdsourcing nor research with human subjects in this
paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLM for any core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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