Published as a conference paper at COLM 2025

Interpreting the Latent Structure of Operator Precedence in
Language Models

Dharunish Yugeswardeenoo Harshil Nukala Cole Blondin
Sean O’Brien Vasu Sharma Kevin Zhu

Algoverse Al Research

3101 Park Blvd, Palo Alto, CA 94306, USA

dharyugi@gmail.com, harshiln14@gmail.com, cole@algoverseairesearch.org
seobrien@ucsd.edu, sharma.vasu55@gmail.com, kevin@algoverseairesearch.org

Abstract

Large Language Models (LLMs) have demonstrated impressive reasoning
capabilities but continue to struggle with arithmetic tasks. Prior works
largely focus on outputs or prompting strategies, leaving the open question
of the internal structure through which models do arithmetic computation.
In this work, we investigate whether LLMs encode operator precedence in
their internal representations via the open-source instruction-tuned LLaMA
3.2-3B model. We constructed a dataset of arithmetic expressions with three
operands and two operators, varying the order and placement of parenthe-
ses. Using this dataset, we trace whether intermediate results appear in the
residual stream of the instruction-tuned LLaMA 3.2-3B model. We apply
interpretability techniques such as logit lens, linear classification probes,
and UMAP geometric visualization. Our results show that intermediate
computations are present in the residual stream, particularly after MLP
blocks. We also find that the model linearly encodes precedence in each
operator’s embeddings post attention layer. We introduce partial embed-
ding swap, a technique that modifies operator precedence by exchanging
high-impact embedding dimensions between operators.

1 Introduction

Large Language Models (LLMs) have shown impressive reasoning across a wide range
of language tasks (Wei et al. (2022); Chowdhery et al. (2022); OpenAl et al. (2024)). Yet
they are notorious for struggling with arithmetic reasoning, often producing incorrect
calculations or implausible outputs (Mirzadeh et al. (2024); Bubeck et al. (2023)). Particularly,
these errors are prominent in smaller models and remain poorly understood (Gangwar
et al. (2025); Kim et al. (2024)). While recent work has shed light on how MLP layers and
attention heads contribute to arithmetic reasoning, most of the studies focused on the natural
language prompts and correct outputs, overlooking the processing of operator precedence
and intermediate calculation steps (Zhang et al. (2024); Stolfo et al. (2023); Zhao et al. (2024)).

We examine LLMs beyond just natural language framing and understand how arithmetic
expressions are internally processed. Specifically, we focus on the model’s ability of handling
order of operations in its step-by-step computation. For instance, when prompting the model
to evaluate expressions like 1 + 1 x 2, does the model compute 1 X 2 before the addition
operation, or does it treat the prompt in a linear sequence irrespective of mathematical
hierarchy?

We employ a broad set of interpretability techniques including the logit lens, linear probes,
partial embedding swaps, and geometric visualization via UMAP (nostalgebraist (2020);
Alain & Bengio (2018); Mclnnes et al. (2020)). All experiments are conducted on the open-
source, instruction-tuned LLaMA 3.2-3B model.

Published as a conference paper at COLM 2025

2 Related Works

Arithmetic Reasoning in Language Models. While LLMs demonstrate strong general
reasoning abilities, numerous prior works have shown persistent inconsistencies for arith-
metic tasks, especially when the prompted operations require multi-step computation and
manipulation (Mirzadeh et al. (2024); Bubeck et al. (2023); Zhao et al. (2024)). These failures
are particularly underlined in smaller models and remain poorly understood (Gangwar et al.
(2025); Kim et al. (2024)). In a recent study (Boye & Moell (2025)), the authors evaluated arith-
metic computations across multiple different models and observed frequent inconsistencies,
such as over-reliance on numerical patterns and flawed logic, even when final answers were
correct. In another study (Lewkowycz et al. (2022)), the authors have explored the use of
prompting strategies, like chain-of-thought reasoning to support numerical computation.

Mechanistic Interpretability and Internal Components. Research in mechanistic inter-
pretability has focused on identifying functional components, often referred to as “circuits”,
that are responsible for specific model behaviors. A circuit refers to a subnetwork of model
components that offers a faithful representation of how a model solves a particular task,
such as a mathematical computation (Nainani et al. (2024)). For example, Zhang et al. (2024)
investigates the internal structure of LLMs during arithmetic tasks, showing that fine-tuning
a small subset of attention heads and MLPs can enhance arithmetic performance without
compromising other abilities. These components are consistent across tasks and leads to
overall better arithmetic performances. (Stolfo et al. (2023)) adopts a causal mediation
framework to trace the influence of certain internal components that contribute the most to
arithmetic prediction. However, their focus is limited in scope to focus on final predictions,
rather than analyzing intermediate computational steps.

3 Experimental Procedure

3.1 Model

In this work, we utilize the open-source, instruction-tuned LLaMA 3.2-3B model (Meta
Platforms, Inc. (2024)).

Dataset Creation. We constructed a synthetic dataset consisting of arithmetic expressions
with three operands and two binary operators. The dataset was designed to systematically
test both syntactic and semantic precedence. We consider operands a,b,c € {1,2,...,9}
and select operator pairs (01,02) from the following mixed-precedence sets: { (+, %), (-, *), (+,
/), (-, /) } Only mixed-precedence operator combinations are used to ensure meaningful
precedence distinctions. For each combination of operands and operator pairs, we generate
six structural variations: left-parenthesized: (a 01 b) 0, c, right-parenthesized: a 01 (b0, ¢),
flipped left-parenthesized: (a 0, b) 01 ¢, flipped right-parenthesized: a 0, (b 01 ¢), no-
parentheses (natural order): a 01 b 0, ¢, no-parentheses (flipped): a 0, b 01 ¢. These
expressions allow us to isolate the model’s handling of precedence both with and without
explicit grouping via parentheses. For simplicity, prompts were selected such that all
calculations, including intermediate steps, involved only positive whole numbers. In total
8547 prompts were created, but only prompts in which the model could predict the correct
answer as the top logit were used to accurately examine model behavior. The model could
answer 4401 equations correctly.

Logit Lens to Trace Intermediate Computation. Before assessing how the model encodes
operator precedence, we first examine whether it performs intermediate computations
internally prior to generating the final output. For example, given the prompt “2 +3 * 3
=", we investigate whether the model computes the intermediate product 3 x 3 = 9 before
arriving at the final result of 11. To account for linguistic variability in output tokens, we
consider multiple surface forms (e.g., “11”, “eleven”, “eleventh”) as valid representations
of the intermediate value. Using a dataset of 4,401 prompts for which the model produces
correct final answers, we utilize the logit lens technique (nostalgebraist (2020)), projecting

each layer’s residual stream through the model’s unembedding matrix to obtain logits over

Published as a conference paper at COLM 2025

the vocabulary. We then extract the top 10 tokens by logit magnitude and check whether
any of them match the expected intermediate result.

Linear Probe for Latent Intermediate Computation. It is possible that the model performs
intermediate computations internally, even when the corresponding value does not appear
among the top logits. To further investigate this hypothesis, we train a linear probe (Alain
& Bengio (2018)) to predict the intermediate value directly from the model’s activations at
each layer, providing a complementary measure of whether such computations are linearly
encoded.

Operator Precedence in Embedding. To investigate whether operator precedence is en-
coded in specific dimensions of the model’s internal representations, we introduce partial
embedding swap. Consider the prompt “3 + 4 * 5 = 7, where the correct evaluation yields
the answer 23, adhering to standard arithmetic precedence. However, evaluating the ex-
pression strictly left-to-right results in the incorrect answer 35. We apply the algorithm
described in Appendix A.2 to probe the embedding space. We selectively swap individual
dimensions between the hidden representations of the ”+” and ”*” operator tokens. If such
a perturbation induces the model to shift its prediction from 23 to 35, it provides evidence
that those dimensions contribute to encoding precedence. This intervention is performed
incrementally by swapping one dimension at a time and measuring the resulting change in
the logit score assigned to the token “35”. Dimensions are then ranked according to their
influence on increasing this logit. In the final phase of the experiment, we perform prefix
swaps of the top k most influential dimensions to determine the minimal subset required to
elevate “35” to the top-ranked prediction.

Low-dimensional Projection of Embeddings. UMAP is a non-linear dimensionality reduc-
tion technique that facilitates the visualization and analysis of high-dimensional data by
projecting it into a low-dimensional space (McInnes et al. (2020)). While specific embedding
dimensions appeared to correlate with operator precedence, we employed UMAP to project
the activation vectors corresponding to operator tokens from a curated set of prompts. These
prompts varied only in the type and position of operators, allowing for controlled compar-
isons. Importantly, only prompts for which the model produced the correct answer were
included, ensuring that the visualizations reflected meaningful internal representations. We
labeled each operator using the following format: [position of the operator] [operator name]
[precedence applied to the operator]. E.g., for a prompt "2* (3 +4) =", the labels are "1m2”
and "2p1”. The multiplication sign appears first in the expression but will be evaluated
second, and the plus sign appears second in the equation but will be evaluated first.

Logistic Probe to Identify Precedence. We employ linear probes (Alain & Bengio (2018)) to
investigate whether operator precedence is linearly encoded in the internal representations
of the model. We construct a dataset of arithmetic prompts containing two operations whose
evaluation order determines the final result. To ensure alignment between model behavior
and target labels, we include only correctly answered prompts. For each valid prompt, we
extract activations at operator token positions from both pre- and post-attention within
layer 0. A logistic regression classifier was trained to predict whether a given arithmetic
operator (e.g., +, *) corresponds to the first or second operation to be evaluated in a two-step
arithmetic expression (e.g., distinguishing between "(2+3)*4="and "(2*3)+4="
). Input to the probe consists of activation vectors associated with operator tokens in the
prompt. The model is trained to predict either 0 or 1 based on whether the operator is
evaluated first or second, respectively. For each probe, the activation vectors and binary
labels are split into training and test sets (80%/20%). By comparing probe accuracy across
the two extraction points (before and after attention), we assess whether and to what extent
attention enhances the linear decodability of operator precedence.

4 Results and Analysis

Intermediate Calculation. Out of 4401 prompts, the intermediate calculation appeared 2799
times as the top logit, roughly 63.6%. The layers in which the calculation was discovered
ranged from layer 16 - 27 for the LLaMA 3.2-3B model. This distribution is shown in Figure
1. To investigate whether it is the attention block or the MLP layer that introduces the

Published as a conference paper at COLM 2025

R Squared Values of Linear Probe on Intermediate Calculation Layer-wise Detection of Intermediate Values

0.95
0.9
0.85
0.8
0.75 I
-
0 15 20 25

0 5 1
layer Layer Index

R squared
o g e
g 8 8 8 8 8 8

Count of Intermediate Value Detections

8
8

°

Figure 1: (Left) shows that intermediate calculations are linearly encoded in the model’s

activations after layer 0, as indicated by high R? scores. (Right) Layer-wise detection
frequency of intermediate computations in the residual streams at each layer. Detection
peaks around layers 18-19, suggesting that the model most strongly represents intermediate
computations in the later layers of its forward pass.

2% position and Operator Labels

10 2" precedence ip1
8 2m2

1p2
2m1
6 im1

27 position and 2p2

- N 1% precedence 1m2
a 4 2p1

1 position and 151
2 1% precedence 242
2 2d1
0 1d1
) 2 1% position and
2% precedence

-15 -10 -5 0 5 10 15 20 -5 0 5 10 15

Figure 2: Low dimensional projection of operator token embeddings before (left) and after
(right) the attention block in layer 0. After attention, embeddings separate by operator
position and precedence, suggesting that attention encodes operator precedence information

intermediate logit, we apply the unembedding matrix to the outputs of each component at
the layer where the intermediate logit first appears. In all cases, we find that the intermediate
answer token’s logit becomes the top-ranked logit only after the MLP block, indicating that
this component is responsible for producing the intermediate computation. Figure 1 strongly
suggests that the intermediate calculation is linearly encoded in the model activations after
layer 0.

Operator Precedence. We were able to successfully alter the model’s highest logit in multiple
instances using partial embedding swap, examples shown in Appendix A.3. Our UMAP
projection is shown in Figure 2. We found that operators who matched in both position
and precedence were clustered near each other. Our logistic regression probe recieved 100%
accuracy on our test set, strongly indicating the presence of operator precedence.

Conclusion

In this work, we analyze the internal representations of the LLaMA 3.2-3B model when
processing arithmetic expressions involving three operands. Our findings indicate that
the model performs intermediate computations internally, with such information becom-
ing most linearly decodable in the deeper layers of the network. Through probing and
intervention, we identify specific embedding dimensions that plausibly encode operator
precedence, and demonstrate that modifying these dimensions via partial embedding swaps
can systematically alter the model’s arithmetic predictions. Additionally, UMAP projections

Published as a conference paper at COLM 2025

of operator token embeddings reveal that the model organizes operations based on both
their position in the expression and their evaluation precedence.

References

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear
classifier probes, 2018. URL https://arxiv.org/abs/1610.01644.

Johan Boye and Birger Moell. Large language models and mathematical reasoning failures,
2025. URL https://arxiv.org/abs/2502.11574.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,
Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid
Palangi, Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early
experiments with gpt-4, 2023. URL https://arxiv.org/abs/2303.12712.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari,
Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Hen-
ryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov,
Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,
Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways,
2022. URL https://arxiv.org/abs/2204.02311.

Neeraj Gangwar, Suma P Bhat, and Nickvash Kani. Integrating arithmetic learning improves
mathematical reasoning in smaller models, 2025. URL https://arxiv.org/abs/2502.
12855.

Bumjun Kim, Kunha Lee, Juyeon Kim, and Sangam Lee. Small language models are equation
reasoners, 2024. URL https://arxiv.org/abs/2409.12393.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai
Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning
problems with language models, 2022. URL https://arxiv.org/abs/2206.14858.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction, 2020. URL https://arxiv.org/abs/1802.03426.

Meta Platforms, Inc. Meta Llama 3.2 3B Instruct Model Card. https://huggingface.co/
meta-1lama/Llama-3.2-3B-Instruct, 2024. Hugging Face Model Card for Llama 3.2 3B
Instruct.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
Mehrdad Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical
reasoning in large language models, 2024. URL https://arxiv.org/abs/2410.05229.

Jatin Nainani, Sankaran Vaidyanathan, AJ Yeung, Kartik Gupta, and David Jensen. Adaptive
circuit behavior and generalization in mechanistic interpretability, 2024. URL https:
//arxiv.org/abs/2411.16105.

nostalgebraist. interpreting gpt: the logit lens, 2020. URL https://www.lesswrong.com/
posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-1lens.

https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/2502.11574
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2502.12855
https://arxiv.org/abs/2502.12855
https://arxiv.org/abs/2409.12393
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/1802.03426
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2411.16105
https://arxiv.org/abs/2411.16105
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens

Published as a conference paper at COLM 2025

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat,
Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao,
Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brak-
man, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie
Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen,
Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings,
Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien
Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simén Posada Fishman,
Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun
Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han,
Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade
Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost
Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali
Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick,
Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt
Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis,
Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike,
Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam
Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil,
David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg
Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan,
Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy
Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila
Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth
Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Fran-
cis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario
Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr,
John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah
Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina
Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski
Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thomp-
son, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry
Tworek, Juan Felipe Cerén Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss,
Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sher-
win Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan,
Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.
URL https://arxiv.org/abs/2303.08774.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation
of arithmetic reasoning in language models using causal mediation analysis, 2023. URL
https://arxiv.org/abs/2305.15054.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large
language models, 2022. URL https://arxiv.org/abs/2206.07682.

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.15054
https://arxiv.org/abs/2206.07682

Published as a conference paper at COLM 2025

Wei Zhang, Chaoqun Wan, Yonggang Zhang, Yiu ming Cheung, Xinmei Tian, Xu Shen, and
Jieping Ye. Interpreting and improving large language models in arithmetic calculation,
2024. URL https://arxiv.org/abs/2409.01659.

Haiyan Zhao, Fan Yang, Bo Shen, Himabindu Lakkaraju, and Mengnan Du. Towards
uncovering how large language model works: An explainability perspective, 2024. URL
https://arxiv.org/abs/2402.10688.

A Appendix

Al Logit Lens Visual

Top-10 Predicted Tokens per Layer (Colored by Logit Values) Given Prompt: (8 +4)*2 ="

- C (, D B on Logit value
widow neum iple deprec... Bray laz ension 20
neum Nothing esign arel achs idente Respon...
.Design ued Sized cu AUT Dipl igkeit uck & esign 18
igg ras adu heiro Jlicenses Is izon aldo creek
powering Equiva... ipping aldo Reside... Thick Yours eH ocab assigning
Equiva... =14 corrid missions Ukr missions ertas powering [ipping 16
© powering Equiva... ewis o stamps Thick resh empowe... eras
Equiva... L powering -1 ewis lias Glory ilden Emblem ilter
ilden helicopt powering ilter igers massage Intercept hec cdb ewis
powering L] .mutable stown ilden inha hec Crap phone
powering ilden ERRU tip pakistan plais hi] isia nets
Vik i ds rieg answer helicopt attends
o] carn i RESULT pressing E —— —— inner eliness Dost transf...
E powering ughter Wel answer windsh... oval Ein kal quint
Copying lift sphere powering kar plane copies "7 anship
ogi twelve kus apel anship smelling nul kids ® BUT
nul kus twelve fol 12 apel doubly sixteen Dou Tarif
twelve sixteen 12 nul 16 Twelve tw salad octave ingly
sixteen twelve 16 12 nul fourteen octave een ingly Twelve
12 twelve sixteen Twelve 16 Laurel twenties Yus ogi Twin
12 16 twelve sixteen Twelve cente Twin doubly ele Twice
12 Twelve XII sixteen 16 arin ulls twenties twe
12 16 sixteen ulls twelve ENTE ingle inscri... Hull
sixteen 12 24 16 twelve UTE -lock 22 (1]
24 16 12 sixteen 22 18 20 14 192
24 (22 12 16 ? \n 18 e
27 24 16 12 4 20 88 1 44 48 36
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Top-k Rank

Figure 3: This figure presents the top-10 tokens ranked by their logit scores obtained via the
logit lens method after each transformer layer. For the input expression under consideration,
the intermediate computed value is “12”. Notably, the token corresponding to "12” (or its
lexical variant “twelve”) emerges prior to the final output token. This observation provides
evidence of the model internally representing intermediate computational steps before
producing the final answer.

A.2 Partial Embedding Swap Algorithm

https://arxiv.org/abs/2409.01659
https://arxiv.org/abs/2402.10688

Published as a conference paper at COLM 2025

Algorithm 1 Identifying Influential Embedding Dimensions via Activation Swapping

Input: Prompt P, model M, dimension count 4, top-k value topk, Operator 1 Position Pos;,

Operator 2 Position Pos;

Output: Sorted list of top contributing dimensions

Compute precedence-consistent answer token ftarget and left-to-right answer token #,¢,)

Compute original logits ¢°''8 «— M (P)

orig

targe

Initialize contribution vector C + [0] € R?

for each dimension index e = 1 to d do
Define hook that swaps dimension e of Pos; and Pos; tokens in the residual stream

Compute patched logits: £(¢) <— M(P) with hook applied at layer 0

Extract patched logit: Et(gget — (O[-1, trarget]

9: Set contribution: Cle] < Et(szget - Ef;riget
10: end for

11: Rank dimensions by descending C|[e] and select top-topk
12: return Sorted list of top contributing dimensions and their scores

Extract original logit for target token: £y, 5 < °8[—1, frarget]

Algorithm 2 Cumulative Dimension Patching to Shift Model Prediction

Input: Prompt P, model M, sorted contribution list [(e1, Aly), ..., (eg, Alt)]
Output: Number of dimensions needed to force precedence-aligned out-
put
1: Compute original prediction Jorig — arg max M (P)[—1]
2: fork=1totdo
3: Define hook that swaps dimensions ey, . .., ¢ of Pos; and Pos; tokens in the residual
stream

4. Compute patched logits: £(X) «+— M (P) with hook applied at layer 0
5: Extract target logit ét(fr)get «— () [—1, trarget]
6: Compute prediction ¥ « arg max ¢(F)[—1]
7. if 90 = tigrpet then
8: return k {Minimal number of swaps needed}
9: endif
10: end for

11: return {All dimensions swapped but no change observed}

Published as a conference paper at COLM 2025

A.3 Partial Embedding Swap Analysis

20 Line
19 ——— Swapped_precedence_logit
Top_Logit
18 19 Actual_precedence_logit

Logits
Logits

1000 2000 3000 0 1000 2000 3000

Embedding dimension Embedding dimension

Figure 4: (left) "2 + 3 * 3 = ” and (right) "4 + 8 / 4 = 7. The swapped-precedence-logit
(blue) tracks the logit of the swapped (incorrect precedence) answer after patching, the
actual-precedence-logit (green) tracks the logit of the correct answer, and the fop-logit (red)
shows the logit of the model’s predicted token. In both examples, a subset of embedding
dimensions substantially modulate the precedence-sensitive logit values, indicating that
operator precedence information is sparsely localized across specific dimensions of the
residual stream activations.

	Introduction
	Related Works
	Experimental Procedure
	Model

	Results and Analysis
	Appendix
	Logit Lens Visual
	Partial Embedding Swap Algorithm
	Partial Embedding Swap Analysis

