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ABSTRACT

Strong Differential Privacy (DP) and Optimization guarantees are two desirable
properties for a method in Federated Learning (FL). However, existing algorithms
do not achieve both properties at once: they either have optimal DP guarantees
but rely on restrictive assumptions such as bounded gradients/bounded data het-
erogeneity, or they ensure strong optimization performance but lack DP guaran-
tees. To address this gap in the literature, we propose and analyze a new method
called Clip21-SGDM based on a novel combination of clipping, heavy-ball mo-
mentum, and Error Feedback. In particular, for non-convex smooth distributed
problems with clients having arbitrarily heterogeneous data, we prove that Clip21-
SGDM has optimal convergence rate and also optimal (local-)DP neighborhood.
Our numerical experiments on non-convex logistic regression and training of neu-
ral networks highlight the superiority of Clip21-SGDM over baselines in terms of
the optimization performance for a given DP-budget.

1 INTRODUCTION

Federated Learning (Konecny et al., 2016; McMahan et al., 2017a) is a modern training paradigm
where multiple (possibly heterogeneous) clients aim to jointly train a machine learning model with-
out sacrificing the privacy of their own data. This setup presents several noticeable challenges
in terms of algorithm design affecting different aspects of training, including communication ef-
ficiency, partial participation of clients, data heterogeneity, security, and privacy (Kairouz et al.,
2021; Wang et al., 2021). As a result, numerous optimization methods for Federated Learning (FL)
have been introduced in recent years. However, despite extensive research in the field, achieving
both strong optimization convergence and robust differential privacy (DP) guarantees (Dwork et al.,
2014) simultaneously in an FL algorithm remains challenging due to the conflicting nature of these
objectives. Indeed, most of the results in the field of DP are obtained by adding noise (e.g. Gaussian
noise) to the method’s update (Abadi et al., 2016; Chen et al., 2020) in order to protect the client’s
data that could be potentially reconstructed from the updates. Unfortunately, this approach results
in less accurate updates, which negatively affects the convergence. Moreover, to ensure DP, this
mechanism should be applied to the method with bounded updates, which is typically achieved via
gradient clipping (Pascanu et al., 2013).

Further complicating the issue, naive distributed Clipped Gradient Descent (Clip-GD) is not guaran-
teed to converge (Khirirat et al., 2023) when clients have heterogeneous data (even in the absence
of any additive DP-noise), which is a common scenario in FL. To address this issue Khirirat et al.
(2023) apply the EF21 mechanism — originally developed by Richtarik et al. (2021) for contractive
compression operators to improve the standard Error Feedback (Seide et al., 2014) — to Clip-GD,
resulting in a method known as Clip21-GD. Khirirat et al. (2023) show that in contrast to Clip-GD,
Clip21-GD converges with O(1/T) rate for smooth non-convex problems with arbitrary heteroge-
neous data on clients. However, their analysis is limited to the case of full-batched gradients and
does not work with DP-noise. This leads us to the natural question:

Is it possible to design a method that combines both strong optimization performance
and DP guarantees in a stochastic setting?

Our contribution. In this paper, we provide a positive answer to the above question by introduc-
ing a new method, named Clip21-SGDM, which incorporates clipping, error feedback and heavy-ball
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momentum (Polyak, 1964) in a novel way. For smooth non-convex distributed optimization prob-
lems, we show that Clip21-SGDM (i) converges with optimal O(1/T) rate when the workers compute
full gradients, (ii) converges with optimal O(1/v»T) high-probability convergence rate when the
workers use stochastic gradients with sub-Gaussian noise, and (iii) has optimal local DP-error when
DP-noise is added to the clients’ updates. We also prove that Clip21-SGD is not guaranteed to con-
verge in the stochastic case, underscoring the need for changes in the algorithm. Our experiments
on logistic regression and neural networks highlight the robustness of Clip21-SGDM to the choice of
clipping level and indicate Clip21-SGDM’s superiority over Clip-SGD and Clip21-SGD in terms of
optimization performance for a given DP-budget.

1.1 PROBLEM FORMULATION AND ASSUMPTIONS

We consider the optimization problem of the form

min [f(m) = iZfl(m)] (1)

z€Rd

that typically appears in many machine learning applications and is standard for Federated Learning.
Here x denotes the parameters of a model, f; represents the loss associated with the local dataset D;
of worker ¢ € [n], and f is an average loss across all workers participating in the training process.

We make two main assumptions on the problem. The first one is smoothness, which is standard for
non-convex optimization (Carmon et al., 2020; Danilova et al., 2022). In addition, we also assume
that f(z) is uniformly lower bounded since otherwise, problem (1) is intractable.

Assumption 1. We assume that each individual loss function f; is L-smooth, i.e., for any z,y € R?

and i € [n] we have
IVfi(x) = Vfi(y)ll < Lllx — yl|. @)
Moreover, we assume that f* = inf cga f(z) > —o0.

We also note that our analysis can be easily generalized to the case when L depends on f;.

Next, since computation of the full gradients is expensive in many practical applications, it is natural
to consider the case when clients compute stochastic gradients. We make the following assumption
on the stochastic noise of these gradients.

Assumption 2. We assume that each worker i has access to a o-sub-Gaussian unbiased estimator
Vfi(z,€) of a local gradient ¥ f;(x), i.e., for some' o > 0 and any x € R? and Vi € [n] we have

E[Vfi(z,&)] = Vfi(x), E [exp (19:1°/5*)] <exp(1), 3)
where & denotes the source of the stochasticity and 0; ==V f;(z,€) — V fi(x).

Although this assumption is stronger than bounded variance, it is standard for the high-probability?
analysis of SGD-type methods with polylogarithmic dependence on the confidence level (Ne-
mirovski et al., 2009; Ghadimi & Lan, 2012). The second part of (3) is equivalent to Pr (||0¢|| > b) <
2 exp (—bz/ (20—2)) up to a constant factor in o2 (Vershynin, 2018). We also note that it is possible
to show high-probability bounds for SGD-type methods with polylogarithmic dependence on the
confidence level when the noise has sub-Weibull tails (Madden et al., 2024), i.e., the noise can be
even heavier but it affects the polylogarithmic factors.

Finally, we provide two important definitions for this work. The first one is the definition of the
clipping operator, which is a non-linear map from R? to R? parameterized by the clipping thresh-
old/level 7 > 0 and defined as

_T_ , if > T,
Tel® 1 2|l > 7 (4)

x, if ||z < 7.

clip, (z) == {

Next, we will use the following classical definition of (e, §)-Differential Privacy, which introduces
plausible deniability into the output of a learning algorithm.

"For simplicity, we define 9/0 := 0. Then, (3) with & = 0 implies V f;(z, £) = V f;(x) almost surely.
We elaborate on the reasons why we focus on high-probability analysis in Section 3.2.
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Definition 1 ((¢, §)-Differential Privacy (Dwork et al., 2014)). A randomized method M : D — R
satisfies (g, 0)-Differential Privacy ((e, §)-DP) if for any adjacent D, D" € D (e.g., if D and D’ are
datasets, then the adjacency means that D and D’ differ in 1 sample) and for any S C R

Pr(M(D) e S) <efPr(M(D') e S)+4. ®)

In this definition, the smaller ¢, § are, the more private the method is. Intuitively, if inequality (5)
holds with small values of € and 6, it becomes difficult to infer the specific data point that differs
between two similar datasets based solely on the output of M.

1.2 RELATED WORK

Differential Privacy. The most common approach to obtaining DP guarantees is to clip each
client’s update, i.e., by bounding their /5 norm, and adding a calibrated amount of Gaussian noise to
each update or the average. This is typically sufficient to obscure the influence of any single client
(McMahan et al., 2017b). Commonly, two scenarios of the DP model are considered: the central
model and the local model. In the first setting, central privacy, a trusted server collects updates and
adds noise only before updating the server-side model. This ensures that client data remains private
from external parties. In the second setting, local privacy, client data is protected even from the
server by clipping and adding noise to updates locally before sending them to the server, ensuring
privacy from both the server and other clients (Kasiviswanathan et al., 2011; Allouah et al., 2024).
The local privacy setting offers stronger privacy against untrusted servers but results in poorer learn-
ing performance due to the need for more noise to obscure individual updates (Chan et al., 2012;
Duchi et al., 2018). This can be improved by using a secure shuffler (Erlingsson et al., 2019; Balle
et al., 2019), which permutes updates, or a secure aggregator (Bonawitz et al., 2017), which sums
updates before sending them to the server. These methods anonymize updates and enhance privacy
while maintaining reasonable learning performance, even without a fully trusted server. Finally,
(Chaudhuri et al., 2022; Hegazy et al., 2024) show that when DP is required, one can also achieve
compression of updates for free.

In this work, we adopt the local DP model by injecting Gaussian noise into each client’s update.
However, the average noise can also be viewed as noise added to the average update. Therefore,
Clip21-SGDM is compatible with all the aforementioned techniques and can also be applied to the
central DP model with a smaller amount of noise.

Distributed methods with clipping. In the single-node regime, Clip-SGD has been analyzed un-
der various assumptions by many authors (Zhang et al., 2020b;c;a; Gorbunov et al., 2020a; Cutkosky
& Mehta, 2021; Sadiev et al., 2023; Liu et al., 2023). Of course, these results can be generalized to
the multi-node case if clipping is applied to the aggregated (e.g. averaged) vector, although mini-
batching requires a refined analysis when the noise is heavy-tailed(Kornilov et al., 2024). However,
to get DP, clipping has to be applied to the vectors communicated by clients to the server. In this
regime, Clip-SGD is not guaranteed to converge even without any stochastic noise in the gradients
(Chen et al., 2020; Khirirat et al., 2023). There exist several approaches to bypass this limitation
that can be split into two lines of work. The first one relies on explicit or implicit assumptions about
bounded heterogeneity. More precisely, Liu et al. (2022) analyze a version of Local-SGD/FedAvg
(Mangasarian, 1995; McMahan et al., 2017a) with gradient clipping for homogeneous data case as-
suming that the stochastic gradients have symmetric distribution around their mean and Wei et al.
(2020) consider Local-SGD with clipping of the models and analyze its convergence under bounded
heterogeneity assumption. Moreover, the boundedness of the stochastic gradient is another assump-
tion used in the literature but it implies the boundedness of gradients’ heterogeneity of clients as
well. This assumption is used in numerous works, including: i) Zhang et al. (2022) in the analysis
of a version of FedAvg with clipping of model difference (also empirically studied by Geyer et al.
(2017)), ii) Noble et al. (2022) who propose and analyze a version of SCAFFOLD (Karimireddy
et al., 2020) with gradient clipping (DP-SCAFFOLD), iii) Li & Chi (2023) who propose and ana-
lyze a version of BEER (Li et al., 2021) with gradient clipping (PORTER) under bounded gradient
and/or bounded data heterogeneity assumption, and iv) Allouah et al. (2024) who study a version
of Gossip-SGD (Nedic & Ozdaglar, 2009) with gradient clipping (DECOR). Although most of the
mentioned works have rigorous DP guarantees, the corresponding methods are not guaranteed to
converge for arbitrary heterogeneous problems.
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The second line of work focuses on the clipping of shifted (stochastic) gradient. In particular, Khiri-
rat et al. (2023) proposed and analyzed Clip21-GD, which is based on the application of EF21
(Richtérik et al., 2021) to the clipping operator, and Gorbunov et al. (2024) develop and analyze
methods that apply clipping to the difference of stochastic gradients and learnable shift — an idea
that was initially proposed by Mishchenko et al. (2019) to handle data heterogeneity in the Dis-
tributed Learning with unbiased communication compression. However, the analysis from (Khirirat
et al., 2023) is limited to the noiseless regime, i.e., full-batched gradients are computed on work-
ers, and both of the mentioned works do not provide’ DP guarantees. We also note that clipping
of gradient differences is helpful in tolerating Byzantine attacks in the partial participation regime
(Malinovsky et al., 2023).

Error Feedback. Error Feedback (EF) (Seide et al., 2014) is a popular technique for incorporating
communication compression into Distributed/Federated Learning. However, for non-convex smooth
problems, the existing analysis of EF is provided either for the single-node case or relies on restric-
tive assumptions such as boundedness of the gradient/compression error or boundedness of the data
heterogeneity (gradient dissimilarity) (Stich et al., 2018; Stich & Karimireddy, 2019; Karimireddy
et al., 2019; Koloskova et al., 2019; Beznosikov et al., 2023; Tang et al., 2019; Xie et al., 2020;
Sahu et al., 2021). Moreover, the convergence bounds for EF also depend on the data heterogeneity,
which is not an artifact of the analysis as illustrated in the experiments on strongly convex problems
Gorbunov et al. (2020b). Richtarik et al. (2021) address this limitation and propose a new version
of Error Feedback called EF21. However, the existing analysis of EF21-SGD requires the usage of
large batch sizes to achieve any predefined accuracy (Fatkhullin et al., 2021). It turns out that the
large batch size requirement is unavoidable for EF21-SGD to converge, but this issue can be fixed
using momentum (Fatkhullin et al., 2024). Momentum is also helpful in the decentralized extensions
of Error Feedback (Yau & Wai, 2022; Huang et al., 2023; Islamov et al., 2024).

2 NON-CONVERGENCE OF Clip-SGD AND Clip21-SGD

We start with a discussion of the key limitations of Clip-SGD (Algortihm 1) and Clip21-SGD (Algo-
rithm 2) — their potential non-convergence.

Algorithm 1 Clip-SGD (Abadi et al., 2016) Algorithm 2 Clip21-SGD (Khirirat et al., 2023)
Input: z° € R? stepsize v > 0, clipping pa- Input: 2°,¢° € RY, stepsize v > 0, clipping
rameter 7 > 0 parameter 7 > 0
1: Initialize g9 = ¢° forall i € [n]
1: fort =0,...,T —1do 2: fort=0,...,7—1do
3: ot = gt — ygt
2: for i = 1,...,n in parallel do 4 for:=1,...,nin parallel do
. 5: et = clip (Vi 167 — gh)
3 gt = clip,(Vfi(at, &) 6: gf“ gt C§+1
4: end for 7 end for
50 g =0 8 gt =g+ g
6: 2t = gt — gt
7: end for 9: end for

We start by restating the example from (Chen et al., 2020) illustrating the potential non-convergence
of Clip-SGD even when full gradients are computed on clients (Clip-GD).

Example 1 (Non-Convergence of Clip-GD (Chen et al., 2020)). Letn = 2,d = 1, and fi(z) =
1(z —3)2, fo(x) = 1(x + 3)? in problem (1) having a unique solution z* = 0. Consider Clip-GD
with 7 = 1 applied to this problem. If for some ¢, we have z' € [—2,2] in Clip-GD, then g* = 0
and zt = z' for any t > tg, which can be seen via direct calculations. In particular, for any

20 € [~2, 2], the method does not move away from z°.

3The proof of the DP guarantee by Khirirat et al. (2023) relies on the condition for some C' > 1 and
v,0, > 0 that implies min{v? 62} > Cmax{v? 02}. The latter one holds if and only if v = o, = 0,
which means that no noise is added to the method since o2 is the variance of DP-noise.
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Figure 1: Left: behavior of stochastic Clip21-SGD and Clip21-SGDM without DP noise (see Algo-
rithm 3) initialized at 2° = (0,—0.07) T, with stepsize v = 1/v7T where T = 10%, i.e., close to
the solution and small stepsize. We observe that Clip21-SGD escapes the good neighborhood of the
solution for the problem from Theorem 1 withn = 1, L = 2,0 = 5, and varying 7 € {1,0.1,0.01}.
In contrast, Clip21-SGDM remains stable around the solution. Right: convergence of Clip21-SGD
does not improve with the increase of n for the same problem.

To address the non-convergence of Clip-GD, Khirirat et al. (2023) propose Clip21-GD that applies
the clipping operator to the difference between V f;(z'*1) and the shift g!, which is designed to
approximate V f;(x?). In the deterministic case, this strategy ensures that after a certain number of
steps, clipping turns off on all clients since ||V f;(x!T1) — g!|| becomes smaller than 7 for all i €
[n] eventually. However, when workers compute stochastic gradients instead of the full gradients,
Clip21-SGD can be non-convergent as well. To illustrate this, we consider the ideal version of
Clip21-SGD with stochastic gradients, i.e., instead of g, we use V f;(z'*1) as a shift:

1 n
el =gt — gt gt = - ng7 (6)

gt = Vi) + clip (Ve 1) = Vfi(a"™) ™
The next theorem shows that even this (ideal) version of stochastic Clip21-SGD fails to converge
even for a simple quadratic problem with sub-Gaussian noise.

Theorem 1. Let Lo > 0,0 < v < 1/L,n = 1. There exists a convex, L-smooth problem, clipping
parameter T < 39V3/10, and an unbiased stochastic gradient satisfying Assumption 2 such that the
method (6) is run with a stepsize v and clipping parameter 7, then for all z° € {(0, m(()Q)) € R? |

(1951 2 i {19767 |

Moreover, fix 0 < ¢ < L/v2 and 2° = (0,-1)"
gradients is bounded by o*/B where B is a batch size. If B < 270%/(60¢*
have E [||V f(2T)||?] > &% forall T > 0.

x?z) < 0} we have

l\D

. Let the sub-Gaussian variance of stochastic
)y and T > €/(3v/10), then we

We also illustrate the above result with simple numerical experiments reported in Figure 1. The left
figure shows that Clip21-SGD diverges from the initial function sub-optimality level while the right
one demonstrates non-improvement with the number of workers n — one of the desired properties
of algorithms for FL.

3  Clip21-SGDM: NEW METHOD AND THEORETICAL RESULTS

This section introduces Clip21-SGDM (Algorithm 3), a novel distributed method with clipping that
can be viewed as an enhanced version of Clip21-SGD, integrating momentum and DP-noise. That is,
to control the noise coming from the stochastic gradients, we introduce momentum buffers {Uf}ie[n]

on the clients and clip {vfJrl — gf}ie[n] in contrast to the stochastic version of Clip21-SGD that
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Algorithm 3 Clip21-SGDM

1: Input: 2°,¢°,v° € R (by default ¢° = v° = 0), momentum parameter 3 € (0, 1], stepsize
v > 0, clipping parameter 7 > 0, DP-variance parameter o2 > ()

2: Set g? = g" and v{ = v forall i € [n]

3: fort=0,...,T—1do

4 g+l = gt gt
5: fori=1,...,ndo )
1
6: vt = (1= B)vf + BV fi(a"*, &)
7: T~ N(0,021) only for DP version
8: it = chpT( B gh) ittt
9: gf“ gh it - wf“ = gf + clip, (v — g})

10: end for

11: gt+1 _g + 1 Z’L L erl
12: end for

applies clipping to potentially noisier vectors {V f; (21, 5;5 - gf}ie[n]. Moreover, similarly to
Clip21-SGD — which can be seen as EF21 (Richtdrik et al., 2021) where the compression operator is
replaced by clipping — Clip21-SGDM can also be interpreted as EF21M (Fatkhullin et al., 2024) with
the same replacement. However, both EF21 and EF21M rely on the contractiveness property of the
compression operator C(z), i.e., the (randomized) mapping C : R — R< should satisfy

E[|Cc(z) — z|*] < (1 —v)|jz|* forsome v € (0,1], ®)

where the expectation is w.r.t. the randomness of C. As shown and discussed by Khirirat et al.
(2023), clipping satisfies a condition that resembles (8) namely

0 if ||z < T,

. | ©)
Ielie- (o) =l {(1 umu) I, il >

but there is a significant difference: if ||x|| > 7, the contraction factor is dependent of x and can
be arbitrarily close to 1. To circumvent this issue, Khirirat et al. (2023) prove via induction that
for all iterates of Clip21-SGD, the vectors V f;(z'*!) — g! have norms bounded by some constant
depending on the starting point. We show that a similar statement holds for Clip21-SGDM when the
clients compute full-batched gradients and no DP-noise is added, and we start our analysis with this
important special case. We also present the results in the stochastic case with and without DP noise.

3.1 ANALYSIS IN THE DETERMINISTIC CASE

The next result derives a convergence rate for Clip21-SGDM when V f;(z!*+! ¢ty = Vfi(at)
almost surely, i.e., Assumption 2 holds with o = 0.

Theorem 2 (Simplified). Let Assumptions 1 and 2 with o = 0 hold. Let B := max; ||V f;(z°)|| >
37 and A > f(x°) — f*. Then there exists a stepsize v < /121 and momentum parameter 3 = 4L~y
such that the iterates of Clip21-SGDM (Algorithm 3) converge with the rate

TZIIVf ||2<O<LA)- (10)

Moreover, after at most 2B/~ iterations, the clipping will eventually be turned off for all workers.

Proof sketch. The proof of Theorem 2 (and all following ones) relies on the same Lyapunov function
that is used by Fatkhullin et al. (2024) in the analysis of EF21M:

& = fat)— 1+ T E S gt WlZHt VAGOI?+ 3ot = V11 ()

n
N i=1

In the definition of ®?, the only parameter that was not introduced earlier in the paper is 17, and
it hides the main technical difficulty of the proof. That is, by induction we prove that ||v
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gt|l < 7/n for some n defined in the proof. This bound is essential in deriving a descent of each
term in the Lyapunov function. In view of (9) and (8), this allows us to consider clipping as a
contractive compression operator for vectors vf“ — g! generated by the method, and also this allows
us to use the same Lyapunov function as in the analysis of EF21M. We defer the detailed proof to
Appendix D. O

The above result establishes a O(1/T) convergence rate that is optimal for non-convex smooth first-
order optimization (Carmon et al., 2020; 2021). This result matches the one obtained by Khirirat
et al. (2023), and, in particular, similarly to Clip21-SGD, Clip21-SGDM turns off clipping on each
client after a finite number of steps ¢ satisfying ||vi T — g¢|| < 7. We also emphasize that Theorem 2
holds without bounded heterogeneity/gradient assumption. In contrast, even with bounded hetero-
geneity/gradient assumption, many existing convergence results in the non-convex case (Liu et al.,
2022; Zhang et al., 2022; Li & Chi, 2023; Allouah et al., 2024) do not recover the O(1/7) rate in the
noiseless regime.

3.2 ANALYSIS IN THE STOCHASTIC CASE WITHOUT DP-NOISE

Next, we turn to the stochastic setting where each worker has access to local gradient estimators
satisfying Assumption 2. For simplicity, we first consider the case when no DP noise is added.

Theorem 3. Let Assumptions 1 and 2 hold and oo € (0,1). Let B := max; ||V fi(z°)| > 37
and A > ®°. Then there exists a stepsize ~y and momentum parameter [3 such that the iterates of
Clip21-SGDM (Algorithm 3) satisfy with probability at least 1 — «

1= o ~(LA o(WVIA+B+o)
f;IIVf(a: JIP<0 <T+ N : (12)

where O hides constant and logarithmic factors, and higher order terms that decrease in T

Proof sketch. The core of the proof is similar to the one of Theorem 2. However, in contrast to
the deterministic case, the vectors vf 1 gf are stochastic, meaning that under Assumption 2, they
can have arbitrarily large norms. Therefore, we focus on the high-probability analysis and prove by
induction that the vectors vf“ — g! are bounded with high probability, meaning that clipping can
be seen as a contractive compressor with high probability for the vectors vf“ — g! generated by the
method. The proof is also based on a refined estimation of sums of martingale difference sequences;
see the details in Appendix G. O

This result demonstrates that Clip21-SGDM achieves an optimal O(1/v/»T) (Arjevani et al., 2023)
rate in the stochastic setting. In contrast to the previous works establishing similar rates (Liu et al.,
2022; Noble et al., 2022; Allouah et al., 2024), our result does not rely on the boundedness of the
gradients or data heterogeneity. Moreover, when ¢ = 0 (no stochastic noise), the rate from (12)
becomes O(1/T), recovering the one given by Theorem 2.

3.3 ANALYSIS IN THE STOCHASTIC CASE WITH DP-NOISE

Finally, we provide the convergence result for Clip21-SGDM with DP-noise.

Theorem 4. Let Assumptions I and 2 hold and o € (0,1). Let A > ®°. Then there exists a
stepsize v and momentum parameter [3 such that the iterates of Clip21-SGDM (Algorithm 3) with the
DP-noise variance o2 with probability at least 1 — « satisfy

LAVdo, (LA)Y$55/3 (LA)4/90.5/9d5/180.3/9
N S CY (1)

1 T-1 _
=S IvSEF <0

t=0
where O hides constant and logarithmic factors, and higher order terms decreasing in T.

In the special case of local Differential Privacy, the noise level has to be chosen in a specific way. In
this setting, we obtain the following privacy-utility trade-off.
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Figure 2: Comparison of tuned Clip-SGD, Clip21-SGD, and Clip21-SGDM on logistic regression
with non-convex regularization for various clipping radii 7 with mini-batch (two left) and Gaussian-
added (two right) stochastic gradients. The final gradient norm is averaged over the last 100 itera-
tions.

Corollary 1. Let Assumptions 1 and 2 hold and « € (0,1). Let A > ®° and o, be chosen as
o, = 0O (g, /T log %) . Then there exists a stepsize v and momentum parameter [ such that the
iterates of Clip21-SGDM (Algorithm 3) with probability at least 1 — « satisfy local (¢, §)-DP and

T—1
% Y IviEhF <o <LA¢&> : (14)
t=0

\/ne

where O hides constant and logarithmic factors, and terms decreasing in 7.

To obtain local (&, d)-DP guarantees we follow Theorem 1 in (Abadi et al., 2016). This privacy-
utility trade-off matches the known lower bound for locally private algorithms (Duchi et al., 2018).
Overall, Theorems 2 and 3 and Corollary 1 indicate that Clip21-SGDM achieves optimal convergence
rates in both deterministic and stochastic regime, and also has an optimal privacy-utility trade-off.
These results are derived without assuming the boundedness of the gradients/data heterogeneity.

4 EXPERIMENTS

In this section, we provide an empirical evaluation of the proposed algorithm against baselines such
as Clip21-SGD (Khirirat et al., 2023) and Clip-SGD. The learning rate and momentum (for Clip21-
SGDM) are tuned in all experiments. We refer to Appendix H for the detailed description of tuning.

4.1 STOCHASTIC SETTING

First, we test the convergence of Clip-SGD, Clip21-SGD, and the proposed Clip21-SGDM algorithms
with stochastic gradients for various clipping radii 7 on several workloads. These results demon-
strate the significance of using the momentum technique to achieve better performance.

4.1.1 NON-CONVEX LOGISTIC REGRESSION

We demonstrate the performance of all algorithms without adding noise for privacy but with stochas-
tic gradients. We consider two cases: adding Gaussian noise to full local gradient V f;(x) and
mini-batch stochastic gradient. We conduct experiments on logistic regression with non-convex reg-

2
ularization, namely, f;(z) = * >ty log(1 + exp(—bija;x)) + A 27:1 li—;? which is a typical

problem considered in previous works (Khirirat et al., 2023; Li & Chi, 2023). We use the Duke and
Leukemia LibSVM (Chang & Lin, 2011) datasets.

We plot the gradient norm averaged across the last 100 iterations and 3 different runs in Figure 2.
The results demonstrate the resilience of Clip21-SGDM to the choice of the clipping radius 7 : it
achieves a smaller or similar gradient norm compared to two other algorithms over all values of 7.
This is especially visible when the clipping radius 7 is small. These experimental findings align
with the theoretical results presented in this work. Besides, the convergence plots are presented in
Figure 7. The results demonstrate faster convergence for Clip21-SGDM than that of Clip21-SGD and
Clip-SGD.
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4.1.2 TRAINING RESNET20 AND VGG16

Next, we conduct experiments in training Resnet20 (He et al., 2016) and VGG16 (Simonyan &
Zisserman, 2014) models on CIFAR10 dataset (Krizhevsky et al., 2009)*. The results are averaged
across 3 different random seeds and shown in Figure 3 (the clipping operator is applied on all weights
simultaneously) and Figure 4 (the clipping operator is applied layer-wise). We plot the test accuracy
and train loss at the last point of the training. The results show that the performance of Clip-SGD
consistently deteriorates as the clipping radius 7 decreases, while Clip21-SGD and Clip21-SGDM are
more stable to the changes of 7. Moreover, Clip21-SGDM outperforms Clip21-SGD for small values
of 7 reaching smaller train loss and larger test accuracy that supports the theoretical claims of this
paper. For the convergence curves we refer to Figures 8 to 11.

4.2 ADDING GAUSSIAN NOISE FOR DP

In the second set of experiments, we test the performance of algorithms with additive Gaussian
noise to preserve privacy. Since DP noise variance o, typically scales with the clipping radius 7
(e.g., see Corollary 1), we conduct the following set of experiments: we fix a noise-clipping ratio
from {0.1,1.0,10} for logistic regression and from {0.1,0.3,1.0,3.0,10.0} for neural networks,
and find such 7 that gives the lowest final gradient norm, train loss, or test accuracy depending on
the considered workload. The high values of the noise-clipping ratio correspond to stronger DP
guarantees, while low values stand for weaker DP guarantees.

4.2.1 NON-CONVEX LOGISTIC REGRESSION

We provide the convergence results for non-convex logistic regression in Figure 5 where the gradient
norm is averaged over the last 100 iterations and 5 random seeds. We demonstrate that Clip21-
SGDM can achieve a smaller gradient norm for all values of the noise-clipping ratio than Clip-SGD.
Besides, the performance of Clip21-SGD does not improve even if the noise-clipping ratio is small,
demonstrating the importance of the use of momentum.

4.2.2 TRAINING NEURAL NETWORKS WITH DP NOISE

Next, we conduct experiments on training CNN and MLP models on MNIST dataset (Deng, 2012)
varying the noise-clipping ratio. We highlight that it is a standard experiment setting considered in
the literature on differential privacy (Papernot et al., 2020; Li & Chi, 2023; Allouah et al., 2024).
The performance results are reported in Figure 6. We observe that no algorithm outperforms others

“We use the code base from (Horvath & Richtarik, 2020) with small modifications.
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across all values of the noise-clipping ratio in terms of the train loss. However, Clip-SGD typically
attains smaller train loss than Clip21-SGDM for a large value of the noise-clipping ratio while Clip21-
SGDM achieves smaller train loss Clip-SGD when that ratio is small.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced a new method called Clip21-SGDM and proved that it achieves an op-
timal convergence rate and optimal privacy-utility trade-off without assuming boundedness of the
gradients or boundedness of the data heterogeneity. Notably, several interesting directions remain
unexplored. The first one is related to the generalization of the derived results to the case when
stochastic gradients have heavy-tailed noise. Next, it would be interesting to study AdaGrad/Adam-
type (Streeter & McMahan, 2010; Duchi et al., 2011; Kingma & Ba, 2014) versions of Clip21-SGDM
due to their practical superiority over SGD in solving Deep Learning problems. Finally, it is impor-
tant to extend the current analysis of Clip21-SGDM to the case when generalized smoothness is
satisfied (Zhang et al., 2020b).
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A NOTATION

For shortness, in all proofs, we use the following notation

* 17 1 -
5t = f(a:t)*f ’ Vt :EZHQf*UfHQv
=1

. 1 &

Pt = - S olf = VP, Ph= ot = VD,
i=1

R i= ot — a2,

#1” and n = % where B is defined in each section (it is
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We additionally denote n! =

different in deterministic and stochastic settings). Besides, we define Z; := {i € [n] | |Jvf —g!™!|| >
T}

We denote 0! = Vf;(z',&l) — Vfi(2'). From Assumption 2, we have that 6! is zero-centered
o-sub-Gaussian random vector conditioned at 2%, namely

2

b
E [0} | =] =0, Pr(|6f] >b) <2exp (-202) Vb > 0. (15)

t oot 15 gt
Moreover, we define an average of 6 as 6" .= -3 " | 0.

B USEFUL LEMMAS

Lemma 1 (Lemma C.3 in (Gorbunov et al., 2019)). Let {£ k}kN:1 be the sequence of random vectors
with values in R™ such that

E ¢k | Ek—1,---,&1] = 0 almost surely, Vk € {1,..., N},
and set Sy = Z,If:l &k Assume that the sequence {&; }4_, are sub-Gaussian, i.e.

E [exp (I€17/0? | €k—1,-..,&1)] < exp(1) almost surely, V& € {1,..., N},

where o9, ..., 0N are some positive numbers. Then for all v > 0

Pr | [[Snl > (V2+27) < exp(—1"/3). (16)

Lemma 2 (Modification of Lemma 1 in (Li et al., 2021)). Let * = f(z!) — f*, 2!+ = 2t — 44!,

and the stepsize v < ﬁ Then

v 1 1 —
67 <0 = ZIVFEHIT = et =P+ 3 llgk = ol + Al = VEEDIP a7
i=1

Lemma 3 (Lemma 4.1 in (Khirirat et al., 2023)). The clipping operator satisfies for any 2 € R?
| clip, (2) - 2| < max {||z] - 7,0} . (18)

Lemma 4 (Property of smooth functions). Let ¢: R? — R be L-smooth and lower bounded by
¢* € R,ie. ¢p(x) > ¢* forany x € R?. Then we have

IVo(z)|* < 2L(¢(x) — ¢*). (19)

Proof. Tt is a standard property of smooth functions. We refer to Theorem 4.23 of (Orabona, 2019).
O

17
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C PROOF OF THEOREM 1

Proof. The case n = 1. Let us consider the problem f(z) = Z|/z||%. Let vectors {Zj}§:1 are

defined as
(N (0 [iE (-3 [
27\ Vior 274 V1o 7 \-4) V1o
Note that we have
9 2702 9 2402 302
21l = = 22l = =+ —_,
100 50 4
meaning that 7 < ||z;|| for all i € [3]. We define the stochastic gradient as V f(z*, &) = V f(2') +

&' = La' + & where £ is picked uniformly at random from {z1, 22, 23 }. Simple calculations verify
that Assumption 2 holds for such noise. Next, the update rule of the method (6) in the case n = 1 is

l2s]* =

ot =2t —ygt =2t — y(Vf(2) + clip, (Vf(a!, &) — V(xh))) = 2t — Lyz' — yclip, (&).

Since 7 < ||z]|| for any i € {1,2, 3} clipping is always active and we have

. 1 1 ..
E [clip,(¢")] = 3 clip,(z1) + 3 clip,(22) + = chpT(z;»,)
1 T n 1 7 1 7
= 7721 —
El e T P N PY

17’0\[ +17‘0’\[0+17’0'73—3
T 333 10 \O 34\f0 10 \4 35/80c 10 \—4

-0

Thus, we obtain

oo ()5 (0) T
S (”3?2)) T G) (1= (1= L)),

Therefore, since I?Q) < 0 we have

E (IV/@")I?] = E [|La"|?)
= |[E [£a"]|* + E ||| 2" ~ E [La"] |

> |[E [£a]||"
411;5 (1_(1_1—”) ) + L ((1_“)%?2) - 15% (1_ (1 —Lv)T»
2 2
*116 (1= 0= 1)) 4 (= LTI 4 - (1 1)

(1= 0= 1)) (= LT VO

,J;

18
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2

Note that the function a(1 — )? + 2%b > 2. Applying this result for a = Iz,b = [V f(2°)|]?,

and z = (1 — Lvy)T we get

I £(20)|12 72

The case n > 1. If n > 1 then we can consider a similar example where each client is quadratic
L|2|? and the stochastic gradient is constructed as V f;(zt, £!) = V f;(2!) + & = Lat + £! where
5;? is sampled uniformly at random from vectors {21, 22, 23} such that

(3 302 {0 302 (-3 302
A=\0) V1o 27 W/ Vios 7 \—4)Vi0B

Then, Assumption 2 is satisfied with @*/B. Therefore, if x?Q) =—_l,e< %, and 7 > 35%’ this

24302 < 2752

implies that B < =27 =0.7» and

7_2
E (196717 2 g min {1V AP 5 b 2 22

45
O
D PROOF OF THEOREM 2
Lemma 5. Let each f; be L-smooth. Then we have the following inequality
loi ™t = gl < max {0, v} — gi M| = 7} + BLANg'l| + BIV fi(a") = vill. (20)

Proof. We have
o = gt 2 11— B)ot + BV fila ) — ¢t
< ot — gt + BIV it — ol
" e {0, ot — gt — 7} + BIV ) — V)] + BIVFi(at) — ol
& e {0, 10t — gt = 7} + BLI — 2t + BIV ) — o]
Y max {0, o} — gt~} = 7} + BLANlg" || + BIV filat) — ol

where (4) follows from the update rule of v! in deterministic case; (i) from triangle inequality; (7i7)
from the update rule of g!, properties of clipping from Lemma 3, and triangle inequality; (iv) from
L-smoothness of f;; (v) from the update rule of z*. O

Lemma 6. Let each f; be L-smooth and A > ®°. Assume that the following inequalities hold
1. ¢t~ < V6ALA + 3(B — 7);
2. |V fi(a'™") v < VALA + 3(B - 7);

3. |lvf =g < B:

(3

Then we have

gt < VOALA + 3(B — 7). @1

19
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Proof. We have

Q)
lg*ll =

Zg +clip, (vf — g; )

%vaimt)+(v§—Vfi(xt))+chpT(v g )~ (Wi =g

< IIVf O+ = lev = Vi)l +~ ZmaX{O lof —gi Ml =7},

where (i) follows from the update rule g% (i7) from tr1angle 1nequahty and clipping properties from
Lemma 3. We continue to bound ||g¢|| as follows
() _ _ 1 _
lg"ll < VDI + V") = VDI + Y A=B)llvi "t = Vi) + B -7
i=1
() _ _ 1 _ _
< V@I IVIE) = VA + = (0= B)lvi™" = Vi@ )]

=1

1 n

gZ AV Fi(a') = Vi D+ B —7
(2i1)
< VRL(f@ ) — )+ Ly2 - B)lg I+ (1 - B vaf 'V +B -7
"< VRL® 4 2L g+ (1 - vat Vi +B -7

<§>\/ﬁ+2m(\/ﬁ4ﬁ+3(3T))+(m+2(37))+37

= (V2+16Ly +2) VLA + (6Ly + 1+ 3/2) (B - 7),

where (i) follows from triangle inequality and update of v}, and assumption 3 in the statement of the
lemma; (43) from triangle inequality; (i7¢) from properties of smooth function from Lemma 4 and
update rule of z¢; (iv) from the definition of ®%; (v) from assumption 1,2, and 6 in the statement of

the lemma. Since v < 12L < 616{,then 16Ly+v2+2 < 8,andy < 12L,then 6Ly+5/2<3. O

Lemma 7. Let each f; be L-smooth and A > ®°. Let the following inequalities hold
1. 4Ly = fand y < 2 i
2. |Vfilat™t) — o7 < VALA + 3(B - 7);
3. l¢" 7| < V64LA + 3(B — 7).
Then we have 3
IV fi(zh) —of|| < VALA + 5(3—7’) Vi € [n]. (22)
Proof. We have
@)
IV fi(z") =il = |V fi(a') = (1 = B)v;~
= (1= AIVFila") = v~
(44)
< (L=B)Lylg" I+ A =BV fila"™) — v
) 3
< 1y (VEILA +3(B 7)) + (1 - §) (M+ S - T)>
(

8)/2)(B — ),

L= BV il

d

= (8L +2(1 = B)VLA + (3Ly + 301~

20
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where (i) follows from the update rule of v{; (i) from triangle inequality, smoothness, and update of
xt; (44i) from assumption 2-3 of the statement of the lemma. Since 4Ly = 3, then 4Ly+2(1—f3) =
2and 3Ly +3(1-A)2 = 3Ly + 3(1 — 4Ly) < 3. O

Lemma 8. Let each f; be L-smooth, A > ®" and i € Z;. Let the following inequalities hold
1. B=4Lvyand 8 < 3;
2.7 < RIVIES
3.7 < sy
4. ||lg*| < V6ALA +3(B — 7);
5. [V filat) — ol < VALA + 3(B 7).
Then
-

o7 = gil < i =g = 5 (23)

Proof. Since i € Ty, then |[v} — g!~!|| > 7, thus from Lemma 5 we have
it = gill < lloi = gi 'l = 7+ BLYNlg' | + BIV fi(a") — i
et — gt 7t %L’y (VBALA +3(B~7)) + 8 <JM+ ;’(BT)>
= |lvf = g{ M| = 7+ (4L + 268)VLA + (3L9/2+ 35/2) (B — 1),

where () follows from assumptions 4-5 of the statement of the lemma. Since 8 = 4Ly, we have

15
loi™ = gill < llvi = 7" = 7+ 12LyVLA + - Ly(B = 7).

Since v < m, then 12L7\/II < 7, and since v < m, then 12—5L7(B —-7) < I
Therefore, we have
o™ = ghll < llof =gt~ = 5
O
Lemma 9. Let each f; be L-smooth. Then P! decreases as
P+l < (1- By + ?’éth. 24)

Proof. We have

[ = AP LI = Bt + BV L) - VA
— (1= BRIV () — o
18t )t~ VA
(1= 820+ 25) |V hila) - V()P
(444) 312
< =)ot - v+ 2

where (i) follows from the update rule of v{; (ii) from the inequality |la + b[|* < (1 + 3/2)]|a||* +
(1 +2/8)||b]|%; (iii) from smoothness. Averaging the inequalities above across i € [n], we get the
statement of the lemma. O

th _ xt+1H27

Similarly, we can get the descent of P*.

21
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Lemma 10. Let each f; be L-smooth. Then P? decreases as
3L2

Pt+1 _ Pt
S(A-pB)P + 3

R (25)

Now we present the descent of Vi,
Lemma 11. Let each f; be L-smooth. Let [|[v} — g/~ !|| < B forall i € [n]. Then

_ _ 45 48212
lgi —oflI> < (L =m)llgi " = vi P+ ——llof " = Vfi(="H)|* + p ——R'"L

Proof. Since |[vf — ¢!~ !|| < B, we have ! > 7. Thus, we have

: @ . /
gt —vt||> = [lgi " + clip, (vf — gi™t) — vf|?
(i)

< (1 —nh)?lgi " = ol?

(443)

< (1=m?gt =il

(v) _ _

= (1=n)llg;™ = (1= B)v;~ = BV fila")|?

(v) _ _ - -

< (=0’ +p)llg™" =i P+ A =021+ p B2 v = Vi)

(i) _ B . B

< A=m*A+p)llg™" = o P+ 200 =)’ (A + p7 )BT = Va2

21— (Lt p)EE - ),
where (i) follows from the update rule of g¢; (i) from properties of clipping from Lemma 3; (ii
from the fact that ! > n; (iv) from the update rule of v!; (v) from the inequality |ja + bH2
(1 +7/2)||la||® + (1 + 2/7)||b||* for any positive r; (vi) from the inequality [ja + b||*> < (1
r/2)|lal* + (1 +2/r)||b||? for any positive 7 and smoothness. If we choose p = 7/2, we get

_ _ 452 B _ 4[321;2
lgi = oflI* < (L =m)llgi ™" =i H|* + TIIvf P ViR + -

0)
<
_|_

R
O

Theorem 5 (Full statement of Theorem 2). Let Assumptions 1 holds. Let B == max; |V f;(2°)| >
37 and A > ®O. Assume the following inequalities hold

1. stepsize restrictions: v <

1 T T

1207 < movia: Y S sore=ry @d
2 1682L%2 , 48L% ,
Z_ _ > 0;

2. momentum restrictions: 5 = 4Ly < %
Then the Lyapunov function decreases as
P <@t - ZVIEN,
therefore we obtain
TZIIVf ||2<0( ) (26)
Moreover, after at most % iterations, the clipping operator will be turned off for all workers.

Proof. We prove the main theorem by induction. The conventional choice is
Vi H=vl=g7"'=0, & '=+oc.
We will show that

22
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1. the Lyapunov function decreases as ®'! < & — 2|V f(z")||?;
2. |lgtll < VALA + 3(B — 7);

3 ot — Vi) < VATA + 3(B - 7);

4 and ot — g < B -

First, we prove that the base of induction holds.

Base of induction.
Lo =g = llof ]l = BIV fi(2®)]| < $B < Bholds;

=15 (g7 ' +elip (v —g; ') = L 30 clip, (BV fi(2?)). Therefore, we have

lg°Il <

LS YA + (el (V1% — BV ()

=1

< BIVF (@O + = Zmax{oﬁllm ) -}

N—f)+B-r1
< \/64LA—|—3(B—T).

3. We have
[0 = V fi(z") || = BV fi(2°) — V fi(a°)
<(1-p)B

< VALA + g(B—T)

4. @0 <@t — Z||Vf(z~)||> = ! holds.

Transition of induction. Assume that for i we have that for all ¢ € [0, K]

1. & < A;
2. ||l¢tll < VB4LA +3(B — 7);
3. [lvt = Vfi(at)| < VALA + 3(B —7);
4. vt =gl < Bfori € T,.

CASE |Zk+1| > 0. Since all requirements of Lemma 8 are satisfied at iteration X we get for all
RS IK—H
K+1 K K K-1 T T
o7 =g 1< vt —g; ||*§§B*§~
Similarly due to the assumption of induction, from Lemma 6 we get that

lg™ I < V6ALA +3(B — 7),

and from Lemma 7 3

IV fi (@5 +h) — o T < VALA + 5(B=7).
This means that steps 1-3 in the assumption of the induction are also verified for step K + 1.
The remaining part is the descent of the Lyapunov function. For VX+! we have Lemma 11 since

lof " — gl < B-3

4P g AL

n Ui

‘7K+1 < (1 _ ,'7)‘71( + RK

23
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Combining this result with the claims of Lemmas 2, 9 and 10 we get

PEH — sE+1 ¢ VK41 | 47515K+1 4+ I pK+1
U U

0 K2 L pr | TK K
IV @)l 47R +VE + 4P

+ 21 ((1—77)X7K+4ﬁ215K 4ﬂ2L2RK)
n n n
4~p ~  3L2 K)
il L —B\P o=
+ " ((1 B)P" + 3 R
b — B\ PK g K)
+ 3 ((1 B)P™ + 3 R
vﬁ

Y 15
— VI + SV A —ntm) + <P 1=+ 5)
1652 L2 48L2 1212
,rlg 72_ 772 72_ BQ 72 RK
1632 L? 4817 1212
- 72_ = 72_ 7 72 RK.

¥ 1
+ 6PK(1_B+B)_47<1_

1
<pk _ 7 Kyiz2_ 2 (1
< o - 1)) 47(

; 2 2.2 1 1212 122 2 1
Since we choose 3 = 64L°77, then —z; = 64L2 > and — 453 V2 = —mY > 3

Therefore,

1652L2 , 48L% , 120° , 2 168°L* , 48/:272>O

2
1- V- g V2o V- 2 0,
Us n? p? 3 U n?

by the choice of . Thus, we get
R < @F — V(™).
In particular, this implies % +1 < @K < A,

K+1 K+1

CASE |Zx 41| = 0. Inthis case ™ = 1 forall i € [n], i.e. clip, (vETt — gi) = v — gk
that leads to gK'H = viK'H. Thus, VE+1 = 0. We can perform similar steps as before for ®#+!
and get less restrictive inequality

~ 1 ASL2 , 12I2
B < o - L - (1 Bt - B2 R

Again, 1 — 4237—%272 — 1%% v > % %72 > 0 which is satisfied by the choice of .

We conclude that in both cases the Lyapunov function decreases as @1 < &% — 2|V f(25)|2,
and consequently, ¥ +1 < A. This finalizes the induction step. Therefore, we can guarantee that
for all iterations ¢ € [0,T — 1] we have

A
<Pt - IIVf NI? = ZIIVf |7 <

Moreover the proof shows that the clipping operator will be eventually turned off since v} —
1| < B — 2, ie. after at most 22 iterations. O
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Remark 1. With v; ' = g;! = 0 we have
0 _ 50 0|12 4 4’75 1 2
o0 =%+ WZ | elip (8V£:(a")) = BVAEI + Z IV £:(2°)]

+ %(1 —8)* |V

<504 2] Zmax{uw =705+ 25 L - Zm I?
iaf 82|V )

4
LA?
%*Zmax{(HVfi(wO)n—T 0} + ZHW I*

+
3
2

We have the stepsize restriction

9 G4LAN2 48122
2 6y A8l 27)
3 n? U

For inequality of the form ay? + by < 1 the stepsize restriction of the form v < \/El 5 is tight up

. 2
to a constant factor 2, i.e. NGRS

2021)). Using this lemma in our case we get that the stepsize satisfying Equation (27) should also
satisfy

RN N
2y + 46

This implies that L2y? < Tz and L?4% < ” . Consequently, it also satisfies 7 < — f

(from the
last inequality). Therefore, we have

GM Zmax{um )| = 7)2 o}+ ZHsz )12

6+(6Llf+ o) > Zn SO,

which is independent of 7, and can be use as a bound for A.

q)O

350
2
350
2
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E PROOF OF THEOREM 4

We define constants a, b, and c as follows that will be used later in the proofs:

a= (\/i-i- 24/3log G(T(jl)> Vdo,\/T/n,

b? = 20%log (G(T;&;l)n) , (28)

2
6(7T+1
= (\/5—1—2 3log(+)> o?,
e

where 7' is the number of iterations, n is the number of workers, d is the dimension of the problem,
o is from Assumption 2, o € (0, 1) is a constant, and o, is the variance of DP noise.

Lemma 12. Let each f; be L-smooth. Then we have the following inequality with probability 1
[o; 7t = gill < max {0, [ — g; " | = 7} + BLANg"|| + BIIV fulz") — o}l + BI67TH. 29
Proof. We have
ot = gfll 2111 = B)ot + B fi(a 1 €Y — ol
< ot = g+ BIV A €4 — ol
D ot — clip, (v} — :7) = g1 + BIV At €)= o

(iv)

< max {0, o} — g/t = 7} + BIV AT € = Vi)
+BIVEET) = Vi)l + BV fila') = v

(v)

< max {0, Jvf — g = 7} + BLI2" — 2! + BIV fila') - of| + B10FH|

(v1) B

2 max {0, [[v! — gt 1| = 7} + BLA|lg'| + BIIV fi(ah) — vl || + B0,

where (7) follows from the update rule of v!; (ii) from triangle inequality; (7ii) from the update rule
of g!; (iv) from the properties of the clipping operator from Lemma 3 and triangle inequality; (v)
from smoothness; (vi) from the update rule of z*. O

Let us choose p € [0.2,0.8]. With this choice we have 3z!~? > 4z for any z € (0,1/12].
Lemma 13. Let each f; be L-smooth and A > ®°. Assume that the following inequalities hold

Lg% = %Z?ﬂg?%
2. llgt1|| < VBALA + 3(B — 7) + 3b + 3a;

3. | Vfi(at=Y) — ol < VALA + 2(B — 1) + 2b+ (Ly)Pa for all i € [n];

4. vt — gt < Bforalli € [n];
5.7 < wr

6. 16} < bforalli € [n];

7 sl s ] < w

8. 1> 2>4Ly;

9. o1 <2A.
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Then we have

lg'|l < V6ALA + 3(B — 7) + 3b -+ 3a. (30)

Proof. We start as follows

gl

1< 1
-1 . t—1
gt +E§10hp7v_gz )+EE wk
1=
n

LSV + (o~ V) + clip, (0f — g7~ (o — g 7))

i=1

ERE PRI

<\|Vf O+ - ZHU = Vi)l + — ZmaX{O lvf = gi Ml =7}

n

n
Z clip, (v!™ — gf %) —|—wffl] 1 Z [9572 + clipT(vf t- gzt 2)}
i=1

n-
=1

1
gt 2y 2
n

where (i) follows from the update rule of g*; (44) from the triangle inequality and the properties of
the clipping operator from Lemma 3. Cancelling terms inside the norm in the last term above we
obtain

g 2 IV £+~ lev Vi) + - ZmaX{O lvf = g7l =7}

t n

n
DN R DID I
i=1

I=t—11=1

+

(zz)HVf M+ = Z”” — Vi) + = Zmax{O”v g =)

t n
PRI

n °
=1 1i=1

where (i1) follows from performing similar steps as in (¢) and having in mind assumption 1 from
the statement of the lemma.

We continue to bound ||g*|| in the following way
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(4) n
Ig'll < IVFE D+ IV f(2") = V] + %Z [(1 =Bt + BV fi(a, &) — V fi(a")|
i=1

+B—-1+ % Z wa
=1 1i=1
(id) n
< IVAEHI+ IV f(") = VD] + %Z (1= B)oi ™ + BV fi(a') = Vfi(a")|
i=1
[_3 n . 1 t n .
+EZH0’H+B_T+ EZZ%
i=1 =1 1i=1

n

(444)
< IVFE D+ IV AE) ~ VA + = S0 = A - Tt

=1
s IS HIVAG A DS B LSS
i1 ' Z n ' gt '

n :
=1

where (i) follows from triangle inequality, the update rule of v!, and properties of the clipping
operator from Lemma 3; (4¢) and (¢4¢) from triangle inequality. Using smoothness of f we continue

(%)
lo'll < VLG = ) + Ly(2 = B)llg" | + (1 - B vaf el
# o 4B =7 D]
i=1 ]
< VRLBT + 204 lg" )+ (1 - 8 Zuvt V)

Iy s

=1 1i=1

BN ot
N7 e+ B -
+ni§:1 164 + B — 7 +

(i1)
< VALA + 2Ly (\/64LA +3(B—7)+3b+ 3a)
3
+(1-7) (\/4LA+2(B—T)+2b+(L7)pa) +B—-1+pb+a

< (16Ly +4) VLA + (6Ly + 1+ 3/2) (B — 1) + b(6Ly + 2(1 — 3) + j)
+a(6Ly + (Ly)P(1 - B) + 1),
where (i) follows from Lemma 4 and smoothness; from (iz) from assumptions 2-4 in the statement
of the lemma.

The claim of the lemma comes by noticing that since v < 12 o7 < 1 L , then 16 Ly+4 < 8. Moreover,
6Ly +1+3/2<1/2+4 1+ 3/2 = 3. Next, we have that

6Ly +2(1-p)+8<3<6Ly<1+0,
which is satisfied if 12Ly < 1, and

1 1
6Lv+(Lv)p(1—ﬂ)+1§§+(1/12)p+1§§+1+1<3,

where the last inequality holds for any p € [0.2,0.8] since 8 < 1 and Ly < 1/12. O
Lemma 14. Let each f; is L-smooth and A > ®°. Assume the following inequalities hold

1.
Loy < w5
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2. 3(Ly)'=P = max{4L~,3(Ly)' 7P} < B < 15;

3. |V fi(zt=1t) — vf_1|| < VALA + %(B —7)+ 2b+ (Lv)Pa;
41071 < b;

5. |lg"= 1| < V64LA + 3(B — 7) + 3b + 3a.

Then we have 5
IV fi(z") — vl < VALA + 5(B—T)+2b+ (Ly)Pa. (31)

Proof. We have

IVfiat) — ot L [V Filat) — (1 Bpi=! — BV fi(at, €|
(41)
< (L= B)IVSila") =o'+ BIVSfilah) = Vfi(=", &)
(444)
< (1= B)LAllg" M + (1 = BV fi(a' ) — ol + B]|6%]]

Cas iy (\/64LA +3(B—7)+3b+ 3a>

+(1-75) (\/4LA + g(B —-7)+2b+ (Lv)pa) + b
= (8L +2(1 — B))VLA + (3L 4 30-8)/2)(B — )
+ (BLy +2(1 = B) + B)b+ (BLy + (L)’ (1 = B))a,

where (i) follows from the update rule of v; (i¢) from the triangle inequality; (i7¢) from triangle
inequality, smoothness, and the update rule of x*; (iv) from assumptions 2-4 of the lemma. Since
8 = 6L, then

8Ly +2(1—-pB) <2& 4Ly < B,
BLy+ 2(1-B) < 3 2 < B,
3Ly+2(1-B)+B8<2& 3Ly < B,
3Ly + (Ly)P(1 = B) < (L)P & 3Ly < (Ly)"8 & 3(L7)' 77 < B,
where the last inequalities in each line hold by the choice of (. O
Lemma 15. Let each f; be L-smooth, A > <I>O, and ¢ € Z,. Let the following inequalities hold
1. 120y < 1;
2. 1> B >max{4Ly,3(Ly)' P} = 3(Ly)' 7,
3. < 5=
4. B < wmEm=—
5. 8 < 355
6. 8< (&) "
7. g%l < V6ALA + 3(B — 7) + 3b + 3a;
8. 1071 < by

9. |Vfi(xt) —vt|| < VALA + 2(B — 7) + 2b+ (Ly)Pa.

>For p € [1/5,0.8] we have 32" ™7 > 4z for any = € [0, 1/12).
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Then

o ** — -5

2 (32)

gz” < ||’U _gz

Proof. Since i € Ty, then |[vf — g! | > 7, thus from Lemma 12 we have
[0t = gl < llvf = gi ™| = 7 + BLAllg" || + BIIV fiz") — ofl| + 8167
(1)
< ot = g7t = 7+ Ly (VEALA + 3(B — 7) + 3b + 3a)
3
+ B <\/4LA + 5(3 —7)+2b+ (L’y)pa) + b

= |Jvf — ¢! = 7 4 (8Ly + 28)VLA + (3L + 38/2)(B — 7) 4 (3Ly + 28)b
+ 3Ly + (Lv)"B)a,

where () follows from assumptions 7-9 of the lemma. Since 4Ly < 3 we have
(8Ly + 2B)VLA < ABVIA < %

where 5 < < Since 4Ly < 8 we have

32\/T
(3L +3‘3> (B < 8B -7 <

Since 4Ly < 8 we have

T
87
where § < 18(3 SE—
15 T

L b< — -

3Ly +36)b <~ g

where < Since 3(Ly)1~P < 3 we have

30b

(3L + (Ly)PB) a < 6(3/3)T7a <
where 3 < (4;7)1_1) . Thus we have

_ T _
[0 = gil < llvi =g = +4- g =i =g = 5

Lemma 16. Let |[0!™!|| < bforall i € [n]. Let each f; be L-smooth. Then P! decreases as

3L? t 9,2, 2 t (o1 gl
+ R B0+ SR B) Y (o = VEAE™) 6. (33)

ﬁt-s—l _ ﬁt
<(1-5) 5 2

Proof. We have

Jof! = VP (1 - gt + AV filat €)= Vit
=11 = B)(vi = Vfi(a™) + BV ("™, &F1) = V(™))
= (1= B)?|lvi = VFi(a" 1> + 526,71
+26(1 = B){vi = Vfi(a"1), ;")

(i5)

< (1= B0+ ) ot — V()|
(1= A1+ BV fila?) — VhilatH) | + 5252
+2B(1 = B) (v} — Vfi(a'*h),60F1)

h) 2

< (1= Bt — Vit + %th -

+ 25(1 - ﬂ)(”f - Vfi($t+1>, 9§+1>7

xtJrl ”2 + 62b2
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where (i) follows from the update rule of v?; (i) from ||z +y|* < (1 -i—r)||x\|2 +(14+771Y)|y||?* for
any z,y € R% and r > 0; (iii) from the smoothness and inequalities (1 — 3)%(1 + B/2) < (1 — B)
and (1 — B)(1 +2/p) < 3/s. Averaging the inequalities above across all i € [n] we get the lemma
statement.

Similarly, we can get the descent of P?.
Lemma 17. Let ||0*+!|] < -, and each f; be L-smooth. Then P* decreases as

P < (1= )P+ 3§2Rf B4 28(1 - B) (0" — V() 04,

Proof. For shortness, we denote Vf(z!,¢") = 137" Vf(2'¢) and 68 =
L3, Vi(at, ) = Vi(a?). Then we have

ot = VN2 L (1= B)ot + BV f (!, €FY) — Vf(atH)|2
— (1= B) (et — Vi(atY)) + BVt €71) - Vf(att))|?
= (1- B2t — V@Y 2 + 52002
+28(1 - B)(vt — Vf(att), 0+
st )t - VP
2
F =PRIV A - VAP + 525

1281 - B)ut — Vf(atH), 00
(iid) L2
< (- Bt — VP + %nx

£28(1— )i’ — V(") 0+,
where (i) follows from the update rule of v!; (i7) from ||z +y||? < (1+7)||z||* + (1 +771)||y||* for

any z,y € R% and r > 0; (4ii) from the smoothness and inequalities (1 — 3)%(1 + 8/2) < (1 — )
and (1 —B)*(1+2/p) < 3/s. O

t t+112 202
T+ BT —

Now we present the descent of Vi,
Lemma 18. Let ||0f| < bforalli € [n], each f; be L-smooth, and ||v} — g/~ || < Bforalli € [n].

Then
2
ot —ol? < (1 —n>||gf-1—vf—1|\2+%uvf-l—Vfi<xf-1>\|2+
+2(1=n)2B{(g; " —vi ) + BT = Vfi(a'h), 68)
21— BBV i) — V(")) ).

Moreover, averaging the inequalities across all ¢ € [n] we get

4ﬂpt1 4871
n

45217
Lv R4+ 8%0% (34)

Vi< (1 —-nVit+ R 4 522 (35)

n

+ %(1 —n)?BY (g = vl + BT = V(e ) + BV (@'Y = Vfi(a)), 6]).

i=1

Proof. Since ||vf —gi7!| < B, we have ! > n € (0, 1). Thus, we have

o2 2 |lgtt + clip, (of — g1 — lgi ™ —wvf = (vf = g™ 1) - /It —at M|

<@ =n)?lgi™" =il < (1 =m)?llgi ™t =il

llgi — vf|? =
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where (7) follows from the update rule of g¢. We can rewrite RHS in the above inequality as follows
using the update rule of v!

lgi = vilI> < (1 =n)?llgi ™" = (1= Byvy " = BV fi(a', €)1
=(1—n)lgi™" = (1= Bl = BV fi(a") — BoY|?
= (1 =n)?llg; ™" = (1= P~ = BV fi(a")|I* + (1 — n)* 5216}
+2(1=n)?Blgi ™t = (1= )i~ — BV fi(a"), 6F)

Therefore, we have

ot — ol € (1= m2lglt = (1= Byl — BV + 52
Lol 2Bl — (1— Bl — AV (), 8

(i4)
< A=A+l = v P+ A =2+ p Bl = Vi)
+ A% +2(1—n)*Blgi " — (1= Byvi ™" — BV fila"), 0))

(i)

< A=A+l = o P20 = 0?1+ p B o = Vi)
+2(1=n)* (1 +p7 )L 2" = 2 + 52
+2(1-n)*p <(t PeoT) BT = Vi), 6)

+2(1=n)*BB(V fi(a'™") = Vfi(a")),6)),

where (i) follows from the assumption of the lemma; (i) from the inequality ||z + y|> < (1 +
r)|lz)|? + (1 + r~1)|y||? for any z,y € R? and r > 0; from ||z + y||? < 2||z[|* + 2|y for any
x,y € R? and smoothness.

If we choose p = 1/2, we get the final bound

o+ 2

gt = vill* < (1 =mllgi " — —— ;7" = Vi TP

ABPL% 1 | a2y -1 _ -1 t—1 t—1yy pt
TR + 0207 +2(1 = n)?B((g; " — i) + Bloi T = Vfi(e")), 6)

+2(1 = n)?B(B(V fi(a'™1) = V fi(a")), 07)
O

Theorem 6 (Full statement of Theorem 4). Let Assumptions 1 and 2 hold, B =
max; {|Vfi(z°)||} + b > 7, probability constant o € (0,1), constants a,b, and c be defined as
in(28), p=0.8,and A > ®°. Let us run Algorithm 3 for T iterations with DP noise with variance
0. Assume the following inequalities hold

1. stepsize restrictions:

i) 120y < 1;

i)
2 166°L% , 4817 ,
37 T 20

- )

2. momentum restrictions:

') 1> 5 > max{4L% 3Ly)~P} = 3(Ly)t?;
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vi) and momentum restrictions defined in (38), (39), (40), (41), (42), (44), (43), and (45);

Then with probability 1 — o we have

T-1 1 5 4 5 5
1 ~ [ L2AVdo,, LA)so3 LA)sos5diso)
Tzvf(xt)HzSO( Vo, | (L8177 (LA)Ietd%o )

=0 9 9

Tnr Tsné T
where O hides constant and logarithmic factors, and higher order terms decreasing in T.

—1 -1

Proof. We prove the main theorem by induction. The conventional choice V f;(z 7, &) = v+ =

g7 ' =0,0"1 =0
Let us define an event E, for each ¢t € {0,...,T} such that the following inequalities hold for all
ke{0,...,t}

L. |[vf — gf Y| < Bfori € Iy;
2. |lgF|| < VBALA + 3(B — 7) + 3b + 3a;
3. ||vlk — Vfl(:rk)H < VALA + %(B —7)+2b+ (Ly)Pa;

4. ||0¥|| < bforalli € [n] and ||0F| < =

5. % ;@:11 diea wi| < a
6. PF < 2A;
7.
k-1 n
A= T 30 ((oh = o)+ B0k - VA) + VA - V). 00
=0 1=1
8 52 k=1 n k—1
- 73772 (1=8) 3> (v = Vila),0:7) +29(1 = B) Y (o' = Vf(a'),0")
=0 =1 =0
) S SO A - VA0
71772 [ 4 s Vs

l

Il
<
.
Il
-

k—1
+29(1 = B) Y (Vf(a') - Vf(a't),077).
=0

Denote the events ©f, O and N1 as

O = (Il 20}, O ={I6'] 2 =}, and N'* :—{

respectively. From Assumption 2 we have

: b? o
Pr(©;) < 2exp ~553) = ST

where the last equality is by definition of b2. Therefore, Pr(@z) >1- m.

Besides, notice that the constant ¢ in (28) can be viewed as

6(7T+1
c= (\/§+ 2b3)0 where bg = 310g w
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Now we can use Lemma 1 to bound Pr(©?). Since all 6! are independent o-sub-Gaussian random
vectors, then we have

Pr ( z": 91
i=1

We also use Lemma 1 to bound Pr(N?'). Indeed, since all w! are independent Gaussian random
vectors, then we have

t n
l
DD

=1 =1

with b3 = 3log (@) .

zcﬁ)ﬂr(netnzjﬁ)@xp( 8= s

> (V2 + 2by) ZZoid < exp(—t3/3) = ﬁ.

=1 =1

This implies that

t n
1
ee [ 323
gt
due to the choice of a from (28):

a = (V2+2by)o,Vd\/T/n where b3 = 3log 6T+
[0

Note that with this choice of a we have that the above is true for any ¢t € {1,7T}, i.e. Pr(N*) >
1 — oy forall t € {1,T}.

“>§6<T+1>

Now we prove that Pr(E;) > 1 — (t+1) forall ¢ € {0,.. — 1}. First, we show that the base of
induction holds.

Base of induction.

B+3sB

Lo fop =g || = oIl = BIV fi(2, &)]| = BlI6 | +BIIV £i(a°)|| < 3b+3B <
B holds with probability 1 — (T R Indeed, we have

N[
NO[—=

0 b? o
Pr(©;7) < 2exp ~557 :m

Therefore, we have

(0% (0%

n6%) = 1-Pr(Un,e0) >1-% Nl =1
Pr(ﬂizle)i)—l Pr(U,07) > 1 ZPr(@Z) 1 n6(T+1)n 1 6(T+1)

Moreover, by concentration inequality we have
@

Pr(67) < 6(T+1)

This means that the probability of the event that each H% 211:1 Yo

and ||0°| < 7, and is at least

62l < b,

S 6(T+1) _”6n(T'+1) S 6(T+1) =1 2T +1)

2. We have already shown that

Pl"( Za>§6(T+1)7

implying that || L > | w!|| < a with probability at least 1 —

1 n
n2w

i=1

6(Ta+1)'
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3.9°=235" (g7 +clip, (00 —g; ") = 237 clip, (BV f;(2°, £D)). Therefore, we have

Z BV fi(a”) + BO7 + (clip, (BV fi(2”,&))) — BV fi”, E?))‘

< BIVf(x ||+BZ||00||+ Zmax{o BIV £i(a®, &) - 7}

< BV2L(f(2°) — f(z*)) + gz 16711+ — Zmax {0, BIV £i (=)l + BIOTN — 7}

I /\

Svara + 2 25 LI by 2 IV 7

IN

V64LA +28b+ B — T
< V64LA + ;B —74+b<V64LA+3(B — 1)+ 2b+ (Ly)Pa
The inequalities above again hold in ﬂ?zl@?, i.e. with probability at least 1 — M%M'
4. We have
[0 = Vfi(@®) ]| = [V fi(2®, &) = V fi(z®) || < b.

This bound holds with probability at least 1 — 0

sy because it holds in N}, ©;.

5. Inequalities 5 obviously also hold, as ®° < 2¢Y < 2A by the choice of A.

Therefore, we conclude that the inequalities 1-7 hold with a probability at least

Pr (@0 N (m;;lé?) mﬁt) >1 - Pr(@°) — ZPr (©9) — Pr(N°)

>1—L—n o _ o
=T 6T+ 1) 6n(T+1) 6(T+1)

(&% (0%

e [
2T +1) T+1
ie. Pr(Ep) > 1 — 7757 holds. This is the base of the induction.

Transition step of induction.

—K41 =K+1 —K+1 .
CASE |[Zx 41| > 0. Assume that all events © * ,0; Tand N take place, ie. |05 <

b, 0K+ < 5 forall i € [n] fﬂz !

ot n (ﬂ? 1®K+1) ANEH Then, by the assumptions of the induction, from Lemma 15 we
getforall ¢ € Ty

_ T T
o — gl < o — g M-S < B
Therefore, from Lemma 13 we get that

g% T < V64LA + 3(B — 1) + 3b + 3a,

and from Lemma 14
3
||Vfi(xK+1) — UiKHH < VALA + §(B —7)+2b+ (Lvy)Pa

This means that 1-5 in the induction assumption are also verified for the step K + 1.
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Since we have for all ¢t € {0,..., K + 1} that inequalities 1-5 are verified, then we can write for
each t € {0, K} by Lemmas 2 and 16 to 18 the following

Pl — ttl 4 Zf/tﬂ 475Pt+1 lptﬂ
n B

<o = J|VF@)|- m v
[jZLZ

% ((1 — )Vt —— — R'4 p%?
b 2802 Yo(g! — o) + B0~ V() + BV fulat) - Vfi<xt+1>>,ef+l>>
=1
4B 3L : - . .
JFnQ( 3R+62b2+ ﬂl— ;vaf +1)79i+1>>
+ g( —i—SéRt—&-ﬁQCn+2ﬂ(1—B)(vt—Vf(xt+1)79t+1)>

Rearranging terms we get

<0 SISO+ SV )+ ”5Pf (6+1=8)+ 5P (B+1-)

1, 161262 , 4812 , 121;2 ) o (BPy  4yB° 2B
_ R <1 YA — + — +C?

v - v -
7> n> (2

+ 20 2 D ((gh = ob) + Blof = Vfileh) + BV fila') = V file"™*)), 0,7

nn i=1
8752 - t t\ pt+1 t t\ pt+1
o L= 8) D (vl = VA, 67 + 2v(1 - B0 — V£ ("),
=1
8735 (1= 8) S (Vi) = Vi), o)
=1

+29(1 = B)(Vf(a") = V'),

Using stepsize restriction (vi) we get rid of the term with R? and obtain

3
Htt+l S(I)t_%”vf( )||2+b2 (B '7_’_4'75 )_’_62’75
n n n

+ %(1 o 77) Z«gf - Uf) + ﬁ(’Uf — sz(xt)) + ﬁ(sz(wt) _ vfi(xt+1))79;t+l>

i=1

+ 835 (1 5) i@f = Vi@, 077 + 29(1 = B) (o' = Vf(ah), 0"
i=1
2 n
= ) Y VA - VA, 60
=1

+29(1 = B)(V (') = Vf(2'"),07).
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Now we sum all the inequalities above for ¢ € {0,..., K} and get

K 3
K+1 o g0 _ 7 2 5 (B ’Y 4B 278
P <o 5 E IVF(")||? + Kb ( o + Kc o

t=0
K n
+ %u =0)* DD (gt —vl) + Bk = Vi) + AV fila!) = Vi), 0
t=0 i=1
8’7ﬂ2 K n K
o =B 2D (ol = VE@E,6) + 201 = B) Y (" - V@), 0
. 62 tI:(O zzl t=0
o (1= B) 20D (V) = V), 0
t=0 i=1
K
+2y(1—=B) Y (Vf(a") = Vf(a't),0). (37)

~+
Il
o

Rearranging terms we get

2 3

- 4

2 VAP < @0 — @R 4 K32 (517 Z]ﬁ ) +Kc Wf
t=0

K n
#2000y S (o~ o) + B0t - TAl) + VA - V), 6
t=0 i=1
] ﬁQ K n K
+ 7’:772 (1=8)3" D (= Vfilah), 05y +2v(1 = ) (vt — Vf(ah), 01
t=0 i=1 t=0
8 62 K n
+ ;]n (1-8) Y S (Vfilat) - Vfilatth), 644
t=0 i=1
K
+29(1—-8)Y (VS Fatth), ot
t=0

Taking into account that Zfio |V f(x?)]|? > 0, we get that the event Ex N (ﬁf 1®K+1) nN'

implies

(bK+1<‘I)O+Kb2 (527 4763>—|—K 276
n n? n

K
+ 2B 0235 (gt — ) + Bt — V() + BV (et — Vfilat)), 60

K
ZZ (Wt — Vf(xh), 00

1 t=0 i=1

8 62 K n
o (L= B) 30D (V) = Vi), 0
t=0 i=1
K n
+ U= B S S (9 5t) - V.60,
t=0 i=1
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Now we define the following random vectors:

¢t = {g v ifllg—vl < B
1,é 0, otherwise

9

)

= {vf — Vfilat), if|lol —Vfi(z")| < VALA + %(B —7)+2b+ (Lv)Pa

0, otherwise

)

¢ {Vfiw) — Vi), VA!) = V@) < Ly (VEALA +3(B — ) + 3b+ 3a)
3,4

0, otherwise

b

e ot = Vf(al), if|lvt—Vf(2')|| £ VALA+ 3(B —71)+2b+ (Ly)Pa
477 o, otherwise

¢ o (VI = VI, VG - V] < 1y (\/64LA +3(B-7)+3b+ 3a)
o 0, otherwise .

By definition, all introduced random vectors ¢} ;,1 € [3],i € [n], (] 5 are bounded with probability

1. Moreover, by the deﬁmtlon of ® and definition of E; we get that the event Ex N 8" n

(ﬂf 1®K+1) nw" 1mp11es

Go=gl -0, &,=v-Vfia"), &, =Vfi@") - Vi),
=o' —Vf@h), &=V -V

K+1)

Therefore, the event Fg N 8" n (ﬁf 1© AN implies

4~ 33
<I>K“<<1>0+Kb2</87 i >+Kc2%8+ !
N n

t=0 i=1
@ ®
K n K n
2752 2 t+1 2752 2 t t+1
+ M2Y Y (G0 =1 =n)* Y Y (G0
) t=0 i=1 i t=0 i=1
® @
K n K n
8752 Y1 -5
+ 00 S+ I S S e
77 t=0 i=1 t=0 i=1
® ®
K n K n
8'752 t '7(1 ﬁ)
9 +1 3 9t+1
+ nn Z C& i) n Z < 57V >

t i=1 t=0 7=1

@%
®

BOUND OF THE TERM @©. For the term @ we have

(ﬁQ 1B° ) + k2B < (9([3/3)‘”’125 . 108([3/3)“1?) +3K02(5/2)?£~
n

U n? Ln Ln? n
By choosing 7 such that
1—p 1—p 1—p
LAn 372 LAn?\ 33 LAn \ %z-r
<min< 3 3 3| === 38
ps mm{ <216Tb2) ’ <48T62 P\ 72T %)
we get that
B2y 4B 278 A_A
Kb* [ — K2 < —
< n + n? + n 3 248

This bound holds with probability 1. Note that the worst dependency in the restriction on 3 in 7T is
1—p . .
O(1/T2=r) that comes from the last term in min .
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BOUND OF THE TERM @. For term @, let us enumerate random variables as
<C?,179%>7 R <<?,n7 0717.>7 <C11,170%>’ ] <<11,n7 9727,>? e <C1[,(17 9{(+1>7 U <C1{(n,97€(+1>7
i.e. first by index 7, then by index ¢. Then we have that the event Ex N (ﬂ?zlgfﬂ) implies

Pl
R ST A N PR O Y Y e ]
because {0/ 7'}, are independent. Let
4 2132
o3 = 762 .B?. 52

n2n
Since 92""1 is o-sub-Gaussian random vector, we have
232
4v°p ]
E [exp( (1=t 0
1 47%

2

) 11,0 — 1}
||el+1||2) e 1}

1 4 2
”f BQI%“IF) |z,i—1}
0' n

<E exp( i BQIIH‘HIQ) ll,z'—l]
e p(

HClz

252 B2 o2 n2n?

|| l+1||2
=E 2072 [li—1]| <exp(1).

Here E[- | I,4 — 1] means

E[ (¢ 1. 000), ... (G, 00h, . (). 01)] =0,

Therefore, we have by Lemma 1 with 07 = o3 that

i Cl KAl 0t+1

i=1

2’Yﬁ n)?

K n
Pr > (V24 V2b) 22432 Lk

t=0 i=1

K
=0

t

< exp(—ti/3)

T IA(T 1)
with b2 = 3log (@) Note that

2123272 K n 2 1p02
(V3 4+ VB 2243 50 < (V3 V) Z 36.52(5/3)

22
t=0 1=1 t=0 i=1 L*n
6B(3/3) 7o
= b K+1
(\[Jr\[ 1) Lo ( + )TL
=
- 8
because we choose
1-p
LA 2-p
5§3( v ) , and K+1<T. (39)
48v/2(1 + by)BoVT
This implies that
K n
QWB ‘ 1 A o
Pr ot ) Y
( E%Z:C“’ %) Sum+

with this choice of momentum parameter. The dependency on T is O(1/7 2 ).
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BOUND OF THE TERM ®. The bound in this case is similar to the previous one. Let

4,},254 2
o3 = (\/ ALA + - ( —7)+2b+ (Lv)pa> o,
n?n?

1 4y26* a7 plt1n2 X
E[exp<0§n2nz(1—n) (CFN-Ian) | 1,i—1
SE ex p( 1 4"/ B ||9l+1||2>:|
L o3
1 4’)/264 2 14+112 .
<E |exp e VALA + = ( —7)+2b+ (Ly)Pa ) 10,7 |1F) | i —1
2
_ 428" 3 S
<E |exp o (\/4LA + §(B —7)+2b+ (Lw)pa> -o?

47254 2
<\/4LA+ (B —T)+2b+(L7)pa> O i -1
n?n?

(Gl ,
exp | — 5 [1,i—1| <exp(l).

Therefore, we have by Lemma 1 that

ZZ <2 279t+1

t=0 =1

t=0 i=1

14(T + 1)’

=E

Pr

< exp(—ti/s) =

Note that

(V2 + V2by ) /(K + 1)n2Vnﬁ: 7 <\/4LA + 2(3 —7)+2b+ (L’y)pa)

<(V2+V2b)V/(K + 1)n18(ﬂ/L37)77;“7 <\/4LA + g(B —7)+2b+ (ﬂ/s)lppa>
A

<—.
8

because we choose

LA =
B <min< 3 nyn
288v/2(1 + b)ov/T (VALA + 3(B — 1) + 2b)
3 ( LAnyn ) =
288\/5(14-51)\/?0% ’
and K+1<T. (40)
This implies
2’Yﬂ2 K n o

Pr n)? oY > =) < ———.

( ; 142“ =8 ) T 14T +1)

Note that the worst dependency w.r.t. T is 0(1/T5<3:p> )since a ~ o, V/T ~T.
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BOUND OF THE TERM @. The bound in this case is similar to the previous one. Let

4L2 4 04 2
o3 = +2/8 (\/64LA +3B—-7)+3b+ Sa) o2,
nen
Then we have
47264

2 2.2
o5 n*n

E o (| 5

(=t i -1
[ 1 442 _

< foup (L 02 10817 10— 1]
L 4

I 142 2
<E |exp 75 -L?4? (V6ALA +3(B—7)+3b+3a) -[|67Y2) |1,i—1
77 1
O’

2444 —1
<E |exp [ i (\/64LA—|—3( —7')—|—3b+3a) .02}

4L2 4 24 1 4 2
ALYE % = (VGILA +3(B — 7) + 36+ 30) -e§+1||2) l,i—l]

n2772

||9ﬁ+1|\2
exp | 5 < exp(1).

Therefore, we have by Lemma 1 that

Pr (275 ZZ Cgﬂet-&-l

t=0 i=1
4L2442 2
> (V24 V2by) ZZ 5“ (\/64LA+3(B—T+b)+3a)
t=0 i=1
o

14(T+1)

=E

< exp(—ti/3) =
Note that

(V2 + V2b)) /(K + 1)n2LZ;ﬁ2" (\/64LA +3(B—1+b)+ Sa)

18(8 »
<V2(1 +b)/(K +1)n W (\/64LA +3(B—-1+0b)+ 3a)
A
<7
8
because we choose
B <min{ 3 Lany/n o
< min
288v/2(1 + by )ov/T <\/64LA +3(B -1+ b))
3< LA,’?\/E )41_2122
288v/2(1 + by )ovTa ’
and K+1<T. (41)

This implies

K n

Z Z«:S,za 9§+1>

t=0 i=1

A
> =

Pl a
Plr((l—n)2 > 8) Sm7

nmn

I (CE) N
Note that the worst dependency w.r.t. T is O(}/71z-» ) since a ~ T.
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BOUND OF THE TERM ®. The bound in this case is similar to the previous one. Let
2 34
2. 647 5

05 =

Then we have

2
<\/4LA+ =(B —T)+2b+(L7)pa> o2,
1 64~2p54 )
E {GXP (‘224(1 - 5)2<C§,¢79§+1>2 > | 1,4 — 1}
g5 nm

[ 1 64y 54 ,
< [ow (2L Ik 0P 1) i -1

L 5

[ 1 6472,84 2
<Eexp| 5= a 0 <V4LA+ (B —T)+2b+(Lv>Pa) O (i1

-1

649°5¢ ([ pox 3 2\

64’}/2ﬁ4

2
(\/4LA+ (B —T)-I-Qb-i-(L’y)pa) -|9§+1||2> | 1,i— 1]

[l ,
=E |exp | ——5— | [ [,i—1| <exp(1).
o

Therefore, we have by Lemma 1 that

Pr 8’Yﬁ ZZ szﬁHl

t=0 7=1
64~2 ﬁ o2 2
> (V2 +V2b)) ZZ <V4LA+ (B T)+2b+(L»y)pa>

t=0 i=1
o
< exp(—ti/3) = THT+1)
Note that

(V2 +V20)V/ (K + 1)n 87B <\/4LA+ (B T)+2b+(L7)pa)

72(8 R

<(V2+ V2b)V/ (K + 1)n (ﬁ)n <\/4LA +5(B=7)+2b+ (ﬁ/s)l—mz)

A
< —
-8

because we choose
9 372pp
B <min< 3 LAn*yn
1152V2(1 + b1)ov'T (\/M+ 3(B—1)+ 2b)
( LAYV )
3 )
1152v/2(1 + by )ovTa

This implies

n

K
Z Z <2 i et-i-l

t=0 i=1

Pr (8762

~ 3(1—p)
Note that the worst dependency w.r.t. T is 0(1/T2(3*P> ) since a ~ T.

= 8) = 14T + 1)
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BOUND OF THE TERM @. The bound in this case is similar to the previous one. Let

647234 2
02 = Z f (\/64LA—|—3(B—T+b) +3a) o2
nen

)i

Then we have
16 L2 4,84
B [e p( o2 nPpt

(1= 8)*(¢s.,0:)?

1 64’}/ ,34 .
< foxp (b I8P 100 ) 1= 1]
2
gE ( L2 2(\/64LA+3( —T—‘rb)—|—3a) -||9§+1||2> |l,i—1}
AL2y4 3 -1
<E exp<{6246 (\/64LA+3( 77+b)+3a> .02}
n*n

4L2 4 04
GdL*y 57 (\/64LA+3( b4 3a) ||e§+1||2> |l,i—1}

2774

[ ” z+1||2
=E|exp| ——=— ]|, < exp(1).
o2
Therefore, we have by Lemma 1 that
K n
8
Pr WB Z Cs ., 9t+1 >
L t=0 1=1
K O 642 45402 2
(V2 + V2by) ZZ (\/64LA+3(B—T+b)+3a)
t=0 i1=1
«
< 7.
< ep(-49) = gy
Note that

(V2 + V20 )/ (K + l)nSL;fijJ (\/64LA +3(B—7+b)+ 3a)

<(V2 4+ V2b,)/(K + n w(\/mmm( —T+b)+3a)

L2
A
< —
-8
because we choose
LAnR? o
£ < min n/n
1152V2(1 + by)o VT (VBALA + 3(B — 7+ 1))
( LAR/n )—
34561/2(1 + by )ovTa
and K+1<T. (43)
This implies
8762 W oy a
P SOOI > ) <

Note that the worst dependency w.r.t. T is (5(1/T31<2:§> ).
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BOUND OF THE TERM ®. The bound in this case is similar to the previous one. Let

4y? 3 2
o2 = n—’é <\/4LA + §(B —7)+2b+ (L*y)pa> o2,

)i

e ||9”1||2) w—@

2
6
B 2
<E |exp (% <\/4LA+ (B —T)+2b+(L’y)pa)> -||9§+1||2> |l,i—1]

Then we have

E [exp ( L
o

<E |exp

2

F(l — Bk, )

—1

[ 7322 <\/m + g(B —7)+ 2+ (L’y)pa)) : 02]

2
~2 3 .
— (\/4LA + 5(B —7)+2b+ (Lv)pa)> : |9§+1||2> | 1,i— 11

o () 15 1] <ty

Therefore, we have by Lemma 1 that

- [27(1 - 0)

> (V24 V2b)

o~
Il
<}
<
Il
—

K 72 3 2
Z _ ?02 . <\/4LA + §(B —7)+2b+ (Lfy)Pa))

< exp(—tifs) =
Note that

(V2 +V2b)\/(K + 1)n - 2%0 (\/4LA + g(B —7)+2b+ (Ly)%)

B/3) 7% .
<(V2+ V2b) /(K + 1)n - %0 (\/MJr %(B —7)+2b+ (B/g)wa>
n
A

<7

-8
because we choose

1-p
B <min< 3 LAyn
32v2(1 + by)oVT (VALA + 3(B — 7) +2b)
< LAVR )+
32v2(1 +b1)ovVTa ’
and K+1<T. (44)

This implies

Pr 271— _é < @ .
8 ) = 14T +1)

Note that the worst dependency w.r.t. T is O(1/T 20 ) since a ~ T.
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BOUND OF THE TERM ®. The bound in this case is similar to the previous one. Let

4L2 4 2
2 (\/64LA+3( —T+b)+3a) o2

US =

1 > i 1}
8

[exp( e W“P) - 1]

2
exp <L2 2(\/64LA+3( —T+b)+3a)~9§+1|2) |l,z’—11.

Then we have

E[exp( L4

’Y 2/ pl4+1\2
L-(1- B¢ 0

<E

Since 92“ is sub-Gaussian with parameter o2, then we can continue the chain of inequalities above
using the definition of o2

4L2 4
exp ([ 2’Y

4L2 4 2
(\/64LA+3( —T—I—b)+3a> -||9§+12) |l,z‘—1]

I+1
=E lexp (W)] < exp(1).

Therefore, we have by Lemma 1 that

271— S t+1y
Pr ZZ 500
—0 i=1

E

~(M+3(B7+b)+3a>2~02}_1

K n 2
> (V2 + V2by) ZZ (\/64LA+3( 77+b)+3a)
t=0 =1

(07

< exp(—43) = Ty

Note that

(V2 + V2by) /(K + D) - 2’;72 o (\/64LA +3(B—7+b)+ 3a)
<(V2 + V2by) (K + D) - %a (\/64LA +3(B—1+b)+ 3a)

A

< —

-8

because we choose
5 < min LA\/n
32v/2(1 + by)ov/T (s/64LA +3(B -1+ b))
LA =
( v > ; (45)
96v2(1 + b1)ovTa

and K+1<T. (46)

This implies

Pr (27 1-06

Note that the worst dependency w.r.t T is O(1/T

«
)<t
== 8 14T +1)

K n
Z Z <5 Al 0t+1

31— p))
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Final probability. Therefore, the probability event
Q=Ern0"tn ( 1®K+1) NN ' NEyNEsNEsNEeN EsN EeN EpN Es,

where each Eq-FEg denotes that each of 1-8-th terms is smaller than % implies that

(I)O
P+@+@+@+O+O+D+O <8 — = A,

i.e. 7 in the induction assumption holds. Moreover, this also implies that
PEH < + A < A+ A =2A,
i.e. 6 in the induction assumption holds. The probability Pr(F k1) can be lower bounded as follows
PI‘(EK+1) Z PI‘(Q)
=Pr(Bxn® 0 (M8 ) N N Be N Ba 0 Ba 1 B N Bs 0 Eo
NEo N E)
=1-Pr(Exu0fty (UL, 0f ") UNS T UEg UEs UEs UEe UEs U Ep
UE@ U E)

>1-Pr(Eg) — Pr(65+Y) ZPr (OKThy — Pr(NEFL) — Pr(Eg) — Pr(Eg)

— Pr(E@) — Pl“(E@) — Pr(E@) — PI(E@) — PF(E@) — PI(E)

(K+1) @ - a o
>1- - - - S
- T+1 6(T+1) ; 6n(T+1) 6(T+1) 14(T+1)
_1_a(K+2)
B T+1

This finalizes the transition step of induction. The result of the theorem follows by setting K =
T — 1. Indeed, from (37) we obtain

A
”an )P < 20— eKH 4 A <28 = an IP< = @)

Final rate. Now we have the following restrictions on the momentum parameter in terms of de-
pendency on T' from each bound of terms 1-8 correspondingly

526 (LAn) = <LA\/ﬁn) = (LA\/ﬁn) = <LA77\/E) e

To? BoVT VToa ovVTa
from term 1 from term 2 from term 3 from term 4
1-p 1-p 1-p 1-p
Cmn) ) Gm) G
U\/TCL 7 O'\/Ta O'\/TCL , O'\/TCL
from term 5 from term 7 from term 6 from term 8

Now we need to understand which stepsize restrictions give the worst 7' complexity. We have

15 <LAn)21P <LA\/ﬁn)21P <LA\/ﬁn)31P <LAn\f) e

L To? BoT VToa ovVTa
from term 1 from term 2 from term 3 from term 4
(LAUQ\/H>31P (LAUQ\M) 227 <LA¢5>1% (LAﬁ)i s
ovTa ' ovTa Ta ovTa .
from term 5 from term 7 from term 6 from term 8
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By (28) we get that

L1 <LAn)21P (LA\/ﬁn)QIP ( LAngy ) < LA ><>
L To? "\ BovT "\ ToVdo, "\ oTVdo, ’

from term 1 from term 2 from term 3 from term 4
9 1 9 1 1 1
( LAn*n ) 5=p ( LAn*n > 22=p) ( LAn ) T+p ( LAn ) 2 49)
- = ) e ) - = ) - = M
oTVdo,, O'T\/(jO’w oTVdo,, JT\/aaw
from term 5 from term 7 from term 6 from term 8

If we choose p = 0.8, then the worst power of 1" comes from the term @ and equals to é. The
second worst comes from the term ® and equals to %. These two terms give the rate of the form

_1
5 (LA (10? = LA (oTVdo,\ "
T \LAn T LAn
_1
_5 (Lﬁ)ﬁaﬂ (LA)ﬁgﬁdz(Hp) olt?
T n= T n T+
5
p=0.8 6 (LA)éO'E) (LA)%agdfisgﬁ
B T%n% T%nﬁ
Besides, we have the momentum restriction of the form 8 < (48%) 1-p that translates to
~ /T
<0(z,).
7= La

and therefore, gives an additional term in the rate of the form

& (LA \/;i\/z—“/naw> _ 5 (LAﬁow> '

T Tnrt

To conclude, we obtain with probability at least 1 — « that

T—-1 1 5 4 5 ,5 2

1 ~ [ LAV do,, LA)sos LA)soodiso?
TZ”Vf(xt)QS@( vio, | (LAVGY | (LARATdRo )
=0 9 9

1

Tnr Tsns T

CASE Zg 1 = 0. This case is even easier. The only change will be with the term next to Rf. We
will get

48L2
>0

B 48L2W2 B 12L272 J2
7> gz T3

instead of
1632 L2 9 48172 9 1212

1 2 7_7727_@

7 >0
as in the previous case. This difference comes from Lemma 18 because VE+L = 0. The rest is a
repetition of the previous derivations.

O
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F PROOF OF COROLLARY 1

Corollary 1. Let Assumptions 1 and 2 hold and o € (0,1). Let A > ®° and o, be chosen as
o, = 0O (g +/T log %) . Then there exists a stepsize 7 and momentum parameter S such that the
iterates of Clip21-SGDM (Algorithm 3) with probability at least 1 — « satisfy local (&, §)-DP and

1= o~ LAVE
TZQVW”'SO<¢M>7

where O hides constant and logarithmic factors, and terms decreasing in 7.

(14)

Proof. We need to plug in the value of o, inside (13). Indeed, we have that

~( LA LA)Y/655/3 LA)A/955/945/18

%} ﬁz\f+ (LA)°o . (LAY g / ST
VTnr € T1/6p5/6 T4/99,5/9

~( LAVd LA)Y/655/3 LA)YY/955/945/18 5/9
VTnr € T1/65/6 T4/97,5/9 -

_5 LAVAd  (LA)YSo5/3  (LA)Y965/9d5/1875/9
B Vne + T1/6,,5/6 + T1/60,5/9£5/9

Leaving only the terms that do not improve with 7" we get the result.

G PROOF OF THEOREM 3

We highlight that the proof of Theorem 3 mainly follows that of Theorem 4. The main difference
comes from the fact that stepsize and momentum restrictions become less demanding as in purely
stochastic setting (without DP noise) a = 0. In particular, we can choose p = 1. Therefore, we only
list the modified lemmas without the proofs.

Lemma 19. Let each f; be L-smooth. Then we have the following inequality with probability 1
o+ — gt | < max {0, [[of — g~ = 7} + BLAlG | + BIV fi(a") — vl + B8] (50)
Lemma 20. Let each f; be L-smooth and A > ®°. Assume that the following inequalities hold
Lg% =330 9
2. g Y| < V6ALA + 3(B — 1) + 3b;
3. Vfi(at=Y) — ol < VALA + (B — 1) + 2bforall i € [n];

4. vt — gt < Bforalli € [n];

5. 9< Bz

6. |16} < bforalli € [n];

7. 1> 8 >4Ly;

8. dI71 <2A.
Then we have

9"l < V64LA +3(B — 7) + 3b. (51)

Lemma 21. Let each f; is L-smooth and A > ®°. Assume the following inequalities hold

Ly < 5gs
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24y < B <1
3. Vfi(at=) — ol | < VALA + 3(B — 1) +2b;
41031 < b;

5. g < V64LA + 3(B — 1) + 3b.

Then we have 3
IV £i(a*) = vill < VALA + 5(B —7) + 2b. (52)

Lemma 22. Let each f; be L-smooth, A > ®°, and i € Z;. Let the following inequalities hold
1. 12Ly < 1
2.1>p8>4L~;
R
4. B < m;
5.8 < 555
- lg"l < VGALA + 3(B — 1) + 3b;

6 < b

)

8. [V fi(zt) —vi|| < VALA + 3(B — 1) +2b.
Then

_ T
ot = gill < llvi = 9§ = 5 (53)

Lemma 23. Let ||[§"!| < bforalli € [n]. Leteach f; be L-smooth. Then P' decreases as

Pl < (1-B)P! + 322}# + 82% + %5(1 —B)> (i = Vi, 0. (54)

i=1

Similarly, we can get the descent of P°.
Lemma 24. Let ||0'T1]| < - and each f; be L-smooth. Then P? decreases as

Pl < (1-pB)P' + ?’ngt + 820 +28(1 — B)(v' — Vf(z'Th), 011,

Now we present the descent of Vi,
Lemma 25. Let ||0¢| < bforalli € [n], each f; be L-smooth, and ||vf — g~ || < B foralli € [n].
Then

432 43212
ot = w11 < (L=l =P+ ol = VAP + R (59)
+2(L=n0)?B{(g; " — o) + Bl = Vilz"™), 67)
+2(1 =) BBV fi(a' ™) = Vi(a")), 65).
Moreover, averaging the inequalities across all ¢ € [n] we get
. . 4 2 4 2L2
Vi<@—-nVvi 4 %PH + %R“l + B8%b? (56)

n

+ %(1 =28 {(gi Tt — ol H Bloi T = VAT)) + BV fi(2" ) = Vfila)), 6).

i=1
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Theorem 7 (Full statement of Theorem 3). Let Assumptions 1 and 2 hold, B =
max; {|V fi(z°)||} + b > 7, probability constant o € (0,1), and A > ®°. Let us run Algorithm 3
for T iterations. Assume the following inequalities hold

1. stepsize restrictions:

i) 12Ly < 1;
i)
2 168°L% , 48L% ,_

g 772 7]2’)/77

2. momentum restrictions:
i) 1> B> 4Ly;
A=< 32\/7

i)

i) f < 18(B =%
) B
)

v < 500

v) and momentum restrictions defined in (59), (60), (61), (62), (63), (65), (64), and (66);

Then with probability 1 — o we have

TZ V7@ <O (”(*/E*B”)),

vTn

where O hides constant and logarithmic factors, and higher order terms decreasing in T.

Proof We prove the main theorem by induction. The conventional choice V f;(z 71, & b= v; 1=
-1 1_ 0
=0, =°.

Let us define an event E; for each ¢t € {0,...,T} such that the following inequalities hold for all
ke{0,...,t}

L. ||vF — gF7Y < Bfori € Iy

2. ||lg¥|l < V6ALA + 3(B — 1) + 3b;
3. |joF — Vfi(z*)|| < VALA + 3(B — 1) + 2b;
4. ||0¥|| < bforalli € [n] and ||0F| < =
5. dF < 2A;
6.
k—1 n
Az %(1 =)D ((gi — i) + Bvf — Vila") + BV fi(a!) = Vfi(a"T1)), 6F)
=0 1=1
8v5° . L I oy pgl+l B L= I I\ pgl+1
+ o =B 2D = V@) 6 + (1= 8) ) (v = Vf(a), 67
=0 =1 =0
8’)/52 k—1 n
+ -8 DY (Vi) = Vi, 0
=0 =1
k—1
+29(1 =) Y _(Vf(a) = V@), 07
=0
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Denote the events O and O'as

o = {||6!| > b}, and ©!':={|6 > (57

NG

respectively. From Assumption 2 we have

. b? o
Pr(©;) < 2exp 557 ) = ST+ 1)

where the last equality is by definition of b2. Therefore, Pr(8') > 1 — ST

Besides, notice that the constant ¢ in (28) can be viewed as
6(T+1
c=(V2+2b3)0 where b2 =3log g
Now we can use Lemma 1 to bound Pr(©?). Since all #! are independent o-sub-Gaussian random
vectors, then we have

Pr (
i=1

Do

Now we prove that Pr(E;) > 1 — "‘;tiill) forallt € {0,...,T — 1}. First, we show that the base of
induction holds.

Base of induction.

Lo =g, | = o2l = BIV£i(a®, &) = BIIOY | +BIV fia®)]| < 3b+3B < 3B+3B =
B holds with probability 1 — (T R Indeed, we have

0 b? o
Pr(@l) §2€Xp 7?"2 :m

Therefore, we have

« (0%

n 7%\ _ _ n 0 _ - 0y _1_ P
Pr(ﬂi:16i>fl Pr(Up,0¢) > 1-Y Pr(e) =1 ST Tn =TT

i=1
Moreover, by concentration inequality we have

Pr(0%) < ——

S 6(T+1)
This means that the probability of the event that each [|67]| < b, and ||6°|] < 7 and is at

least
« « «

"on(T+1) 6(T+1) :173(T—|—1)'

2. " =150 (g7 +clip, (00 —g; ") = L300 | clip, (BV fi(2,£D)). Therefore, we have

1—

lg°]l < Zﬁwl )+ 86 + (clip, (BY fi(a°, €0)) — BV fi(2°,€9))

< BIVf(x ||+ﬁZ||e°||+ Zmax{omw €0 =7}

< BVRL((@) — f(e) + %Z 621+ Zmax {081V £ |+ 8607 - 7}

S VRLE + 6Z|\e°n+ﬂ2m ) =7

< VGALA + 286+ BB —
< VBALA + 2B~ +b < VGALA +3(B — 1)+ 2
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The inequalities above again hold in ﬂ?zl@?, i.e. with probability at least 1 — ﬁm.

3. We have
v = V£i(2®)|| = [V fi(2®, &) = Vfi(2?)|| <b.

This bound holds with probability at least 1 — 0

(71 because it holds in ne,0,.

4. Inequalities 5 obviously also hold, as ®° < 2®° < 2A by the choice of A.

Therefore, we conclude that the inequalities 1-7 hold with a probability at least

0 n t 0 0 0
Pr(@ m(m 1@) ) — Pr(@%) ZPr@ — Pr(N)
Zl—i—nw o _ o
6(T +1) 6n(T+1) 6(T+1)
1 o «

e N P
2(T+1) ” T+1’
ie. Pr(Ep) > 1 — %5 holds. This is the base of the induction.

Transition step of induction.

CASE |Tx41| > 0. Assume that all events © ' and ©; take place, ie. [|05TY <
b, 0K+ < o foralli e [n]. For that we need to work in 8" n (ﬁf 1®K+1). Then,
by the assumptions of the induction, from Lemma 22 we get forall i € Zx 3

_ T T
o+ — gF || < W —gf Y - 5<B-3
Therefore, from Lemma 20 we get that
g+ < VBALA + 3(B — ) + 3b,

and from Lemma 21
3
IV — o4 < VALA + 2B ) + 2.

This means that 1-3 in the induction assumption are also verified for the step K + 1.

Since we have for all ¢ € {0,..., K + 1} that inequalities 1-3 are verified, then we can write for
each t € {0, K} by Lemmas 2 and 23 to 25 the following

P+l — g+l 4 lf}t+1 75pt+1 ZPtJrl
Ul n? B

<8 = IV IO - BT
!

45212

n % ((1 — )V R' + g%
v 2g0- Z 1B - Vi ))+5(Vf¢(fft)—Vfi(fft+1))a9§“>>
+ ‘?f( 33 R' + 8% + ﬁl— Xn:v — Vi ”1),9§+1>>
=
+ 1 SRS 280 B - VA0 )
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Rearranging terms we get

<0 SISO+ V1) 75Pt (B+1=8)+ 5P (B+1-7)

16L23? 48172 12L2 2 433
Rt( 6 ﬁ,),?f 8 2 72)+62<M+ ’Yf>+cz’7ﬂ
n n

4y e e
+ n%f(l =) ((gf —v}) + B} = Vfi(a") + BV fila') = V fi(a™1)), 0,7)
=1
8’}’52 . t t\ pt+l t ty pt+1
e (1—ﬁ>;<vi—m<x>,9i )+ 29(1 = B)(v" = Vf(a"),0")
875> o - oty oty il
preat B)D (Vfi(a') = Vfi(a'T), 00t
=1

+29(1 = B)(Vf(a") — V'), 0.

Using stepsize restriction (vi) we get rid of the term with R? and obtain

2 4 3
(btJrl S (bt _ ZHV,]C(CCt)”Q —|—b2 m + FYB —|—62ﬂ
U n? n

298

o D (g = o) + B} = VSile") + BV fula') = Vfi(a")), 0,7)
=1
8752 . t t\ pt+1 t t\ pt+1
o L= 8) Dl = VA, 07 + 2v(1 = B)(" = V£ (a"),0)
=1
+ 8;5 : (1=B) D (Vfi(z") = V i), 60
=1

T 2y(1— )V S(at) - V(). 6,

Now we sum all the inequalities above for ¢ € {0,..., K} and get

K 2,
(I)K—HS(I)O_lZva )H2—|-Kb2 (5 4yp° >—|—K Q’Yﬁ
2= K U K

D gk =) + B} — Vi(a") + BV fi(a) — V fi(a'Th), 00

K
>
t=0
8y . S . t+1 _ 2 o t+1
o B) ST S (wt — Vfilah), 00 + 291 - B) (ot — Vf(at),00)
t;(()
>

i=1 t=0
2 n
+ 221 83 S TAE) - VA0
t=0 i=1
K
+29(1-8)) (VS f(ztth), ottty (58)
t=0
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Rearranging terms we get

2 4 3
7ZHW P < @0 — oK 4 K32 <5n Z]f >+Kc2”f

K n
+%§u—»2§j§j (g1 — o) + B0t — T fi(a")) + BV fi(a") — Vfila"+1)),000)
t=0 i=1
8v5° o t ty pt+1 = t ty pt+1
o (1=8)Y D (v = Vfi(a"), 0 +29(1 = 8) Y _(v" = Vf(a),0")
t=0 i=1 t=0
8 ﬂ2 K n
+;;<J—mEZERVﬂ() Vi), 00
t=0 i=1
K
+29(1-p)) (VS V() 0.
t=0

Taking into account that 3 Zt:o [V f(z!)|* > 0, we get that the event Ex N (ﬂ? 1®K+1> AN’

implies

2 4 3
PEH < 90 4 Kb (*M+ 75 )—f—KcQW
noon n

+ %(1 —n)? ZZ<( E—ol) 4 Bt — Vi) + BV fi(at) — Vfi(z!Th)), 011

9 K B K
Al (1-5) ZZ@ — Vfi(at), 001 + H=p) > =it 0t
t=0 L

K n
o (1—5)ZZ<W( ) = Vi), 00

K n

2v(1—-p
+ PUZB S S 9 5t) - V.60,
t=0 i=1
Now we define the following random vectors:
¢t = {9 gl vl < B
L7770, otherwise

7

- {vf — Vfila?), if|lol —Vfi(z")| < VALA + %(B —7)+2b
2.t =

0, otherwise

)

)

o {Vfi(ast) CVLEY), Vi) — V)| < Ly (\/64LA +3(B-1)+ 3b)
3,0 =

0, otherwise

)

G ({7 VI I IO AR (5 ) 2

4 0, otherwise

5

o VI =V, VG - Ve < Ly (\/64LA +3(B-1)+ 3b) .
0, otherwise
By definition, all introduced random vectors (f ;, 1 € [3],i € [n], (] 5 are bounded with probability

1. Moreover, by the deﬁmtlon of ®¢ and definition of E; we get that the event Ex N 8" n

(ﬂ? 1®K+1> nv" 1mphes

Cf,z‘ = gf - Ufa C;,i = ”f - Vfi(zt)a Céz = Vfi(I )= Vfi(z tH)
(i=v"=Vf@), ¢=Vf@")-ViE"").
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Therefore, the event Fgx N 8" n (Of 1®K+1) AN implies
K By | P B 2B s :
Y (o T P NE T
" U ™ =0i=1
® ®
K n K n
2752 2932
+ n QZZ (:2 za9t+1 T(l—n)222< ‘§7i79$+1>
n t=0 i=1 Y t=0 i=1
® ®
K n K n
8752 27(1-8
+ 00 o+ I S S
" t=0 i=1 t=0 i=1
® ®
8 2 K n 2~(1 K n
o M) ) DA PR L ) RN

~
-
~
Il
<
<
Il
-

@ﬁ;
®

1=

BOUND OF THE TERM @©. For the term © we have

B2y 4yp3 2B B3 B B2
Kp? | =L KPP <Ky | =+ )+ K2~
<n+n2 thReS s ALy T2 ALn

By choosing 7 such that
1 1 1
) LAn\3 [(LAn>\* [LAn\?Z
< — 5
h< mm{(6Tb2) ’<24Tb2 "\ 672 &9

2 3
(/3 W)MCMQ,A:?
n

77+7) 24

we get that

This bound holds with probability 1. Note that the worst dependency in the restriction on 3 in 7T is
O(1/73) that comes from the last term in min .

BOUND OF THE TERM @. For term @, let us enumerate random variables as
0 pl 0 1 1 p2 1 2 K pK+1 K pK+1
<C1,1791>7"~7<<1,n79n>7<<1,1761>7""<C1,n76n>7"‘<C1,1791 >7"'7<C1,n76n >7

i.e. first by index ¢, then by index ¢. Then we have that the event Ex N (O?ﬂ@fﬂ_l) implies

298
n

E (1 —n)2(¢h,, 0 | <<i,i176£*i>,...7<d,1,ei“>,...,<c?,1,9%>} =0,

because {#. 71 }7_, are independent. Let

2= 4722622 . B2. 52
nen
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Since 05“ is o-sub-Gaussian random vector, we have

E |ex - 262 o 471 0l+1 2
P nZn? (1—n) <C1,m i)

)i

1 4’y B .
et ||al“||2) i 1}

B?W“HZ) e 1}

2 212
<E exp( o B ) 11— 1

47262 BQ o2 n2772

QZHHQ 1)1 < exp(1).

=E |exp

Here E[- | [,7 — 1] means
E [ | <d,i717 eiJ_rb’ ce <d,17911+1>7 RS} <<?,1’ 9%>] = O>

Therefore, we have by Lemma 1 with o7 = o3 that

2 K n 1 K n 4B2 ZBQO’Q
Pr > DD (L0 = (V2 VR | DY
t=0 i=1 t=0 1=1
< exp(—bi/s)
B «o
14T +1)
with b2 = 3log (@) Note that
K
AB2 2ﬁ202 B2B4g2
(V2 +v2by) ZZ < (V24 V2b) ZZ4L2n e
t=0 7=1 t=0 =1
b K+1
(\[-i-\[ 1)2Lm7 (K+1)n
A
< o
- 8
because we choose
1
LA 2
ﬁg( v ) , and K+1<T.
4v/2(1 4 b1)BoV/T
This implies that
275 K& A @
Pr )2 OH > = | €
< ;;Cl“ = ~14(T + 1)

with this choice of momentum parameter. The dependency on T is O(1/7%).

BOUND OF THE TERM @®. The bound in this case is similar to the previous one. Let

4~2 34 2
o3 = it -(\/4LA+ (B —7')—1—2()) o2,

”2772
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1 4,_),254
o2 n2n?

E oo (1m0 ) 101
[ 1 49°5

< foxp (5 2ol 10112
L 3

[ 1 47%4 2
<E|exp| 555 -(\/4LA+ (B T)+2b> O i -1

g5 17N

264 2
<E |exp [nn <\/4LA+ (B —T)+2b> .02]

-1

475 ? .
(\/4LA+ (B 7)+26) O i -1

[CAnS ,
exp | 5 [1,i—1| <exp(l).

Therefore, we have by Lemma 1 that

=E

27’52 )2 S t+1
Pr 1-mn) ZZC22,0+
" t=0 i=1
K oy 23452 3 2
> (V2 +V2b) ZZVTLW(\MLAH(B_TH%)
=0 i=1
o

< exp(—bi/3) = m,

Note that

(V2 +V20)V/ (K + 1)n 275 <\/4LA+ (B —T)+2b>
<(V2+V200) V(K + ng

<m+ (B T)+2b>

A
<—.
-8

because we choose

wl=

< LAnyn
~ \ 420+ b)oVT (VALA + 3(B - 1)+ 20)

and K+4+1<T. (61)

This implies

K n

Z Z«E,za 95+1>

t=0 i=1

2
Pr <22§(1 —1)°

>- )< 2

- 8) ~14(T+1)
Note that the worst dependency w.r.t. T is O(1/14).

BOUND OF THE TERM @. The bound in this case is similar to the previous one. Let

4L2 4 04
o3 = 2725(\/64LA+3( —T)+3b) o2,
n
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Then we have

1 4 2 24
E [exp (] VB 1y

2,2
oy n°n

-]

[ 1 44234
< o 5 e Il - 16141 1P) [ i =1
4

4L2 4 04 2 -1
<E exp([n%f (\/64LA+3(B—T)+3b+3a) -02}

4L2 4 24 1 4 2
ALY S 6'6 ~ (VBILA +3(B —7) +3b + 3a) -e§+1||2) l,i—l]

n2772

' ||9§+1H2
=E|exp| —5— || <exp(l).
o

Therefore, we have by Lemma 1 that

K moq12 ~ABAg2 2
2(\/§+\/§b1)$zzn2nz (\/64LA+3( —T—|—b))

< _b7/3) =
< exp(—tifs) =
Note that

(V2 +V20)V/ (K + 1)n QLZ;ﬂQ (\/64LA +3(B—740b)+ 3a)

<V2(1+b)V(E + 1)n8L "n (VLA +3(B —7+1))

<

oo 1>

because we choose

NG

LA
nn and K+1<ZT.

V2(1 + b1)oVT (\/64LA Y 3BT+ b)) ’
This implies

n

K
Z C2 ,40 9t+1

t=0 i=1

6]
< -
= 8) = 4T +1)

Pr (2’)’[32 n)?

Note that the worst dependency w.r.t. T is O(1/1%).

BOUND OF THE TERM ®. The bound in this case is similar to the previous one. Let

A~2 34 2
02:—67ﬁ (\/4LA+ (B —7')+2b> o2

5 nZn?

58

- 2 )
<E |exp (U f L2 2(\/64LA—|—3( —T)—|—3b—|—3a) .||9§+1||2> |l,i—1}
L 4
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Then we have

1 64y2ﬂ4 .
E {QXP (‘agw(l - ﬁ)2<C%,m9§+1>2 | li—1

[ 1 64
<E exp< Lo 5 T2 9”1”2) z,z—l]
L 5

i 1 42 4 2
<E exp( 267ﬁ <V4LA+ (B —T)+2b> .||9§+1||2)|l,i—11

24
o5 n4ny

-1

=1 |exp 81L2n2n*

2
645" : (\/m + g(B —-7)+ 2b> . 02]

204 2
64’5 (\/4LA+ (B —T)+2b> -9§+1||2> |m-11
n*nt

163> ,
=E |exp | ——5— | [ ,i—1| <exp(1).
o

Therefore, we have by Lemma 1 that

Pr 8’Yﬁ ZZ szﬁHl

t=0 7=1
64~2 ﬁ o2 2
> (V2 +V2b)) ZZ <V4LA+ (B T)+2b+(L»y)pa>

t=0 i=1
o
< exp(—ti/3) = THT+1)
Note that

(V2 +V20)V/ (K +1)n 875 <\/4LA + = ( —-7)+ 2b>

<(V24V20)/(K +1)n 250<\/4LA+ =(B —T)+2b>

A
<=
-8

because we choose

[

LAn*y/n
16v2(1 + by)ov/T (m +3(B-1)+ 2b)

and K+1<T. (63)

This implies

Pr (8’752

Note that the worst dependency w.r.t. T'is O(1/175).

BOUND OF THE TERM @. The bound in this case is similar to the previous one. Let

2
02 = 647 ﬁ (\/64LA+3( —T+b)) o2
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Then we have

oo

1 64L%+*p4

o2 nZipt

(1= B){¢s.0 0771

=

1 647
<E|e ( B Sk ||el+1||2) |u—1}
2
<E exp( - L? 2(\/64LA+3( —T—l—b)) -||9ﬁ+1|2> |Z,i—1]
4L2 4 04 2 -1
<E exp({Gznf (\/64LA+3(B—T+b)> ~02}

4L2 4 24
Gl 5 (\/64LA+3( —T-l—b) ||9l+1||2) | 1,i— 1}

2774

i 9{-‘:—1 2
=E e})<p<”12|| [1,i—1
o

Therefore, we have by Lemma 1 that

< exp(1).

875 S t+1
(3,00 05 >
[ ;z:l >
K n
(V24 V2b1), [ Y Z 6412 46402 <\/64LA +3(B—1+ b))2
=04
< exp(—ti/s) = ﬁ

Note that

(V2 + V2by )/ (K + 1)n8L;252" (\/64LA Y 3(B—71+ b))

<(V2+V2b)V(K +1)n

A
<=
-8

2L2 (\/64LA+3( —T—|—b))

because we choose

I

2
8 < LAn"vn and K+1<T.  (64)
2(1+ by)oVT (\/64LA +3(B-T+ b))
This implies

n

K
Z Z CS i) 0t+1

t=0 i=1

Pr <8762

e
8 > ~14T+1)
Note that the worst dependency w.r.t. T is O(1/T%).

BOUND OF THE TERM ®. The bound in this case is similar to the previous one. Let
472 3 2
0f = —5 <\/4LA + 5(B -7)+ 2b> o2,
n
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Then we have

14 2 2/ pl4+1\2
E [exp(gwu—ﬁ) (o

)i

[ 1 49° ,
<E [ox 5 I ||9”1||2) |m—1}

< \/4LA+ ( —T)+2b)>2~||9§“||2>|l,z’—1]

-1

exp
<E exp( \/4LA+ ( 7')+2b))2~a2]

2
lz (\/4LA + §(B -7)+ 2b)) : 9§+1||2> | 1,i— 1]

o (1) 15 1] <oty

Therefore, we have by Lemma 1 that

Pr [Mn‘ PSS o
K n 2
> (V2 + \/le)\l Z %02 . <\/4LA + g(B -7)+ 2b))
t=0 i=1
< exp(—ti/3) = (Ta+ 0’

Note that

(V2 +V2b)\/ (K + 1)n - 2%0 VALA + g(B -7) +2b>

(
<\/M+ “;’(B—T)+2b>

Bo
< 27
<(V2+V20) /(K + 1)n T

A

<7

-8

because we choose
B < LAyn and K+1<T. (65)

32v2(1 + by)ov/T (VALA + 3(B — 1) +2b)

2v(1 - 8
P(7

Note that the worst dependency w.r.t. T'is O(1/11/?).

This implies

n

K
Z <4 z70t+1

t=0 i=1

A «
Sl — .
= 8) = 14T +1)

BOUND OF THE TERM ®. The bound in this case is similar to the previous one. Let

4L2 4 2
o2 = (\/64LA—|—3( —T+b)) o2,
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Then we have
E i4 o 2/ ol-‘rl 2 Li—1
exp 2 2( B) <C57 % > | b
og n
<& op (LTI 10t ) 0 -1]

2
<E lexp <2 . (\/64LA+3( —T+b)) . ||9§+1||2> Z,il] .
o3

Since 0”1 is sub- Gau551an with parameter o2, then we can continue the chain of inequalities above

using the definition of ol

< |:4L2’}/4
exp B

2 4 2
4Ln (\/64LA+3( —T+b)) .|9§+1||2>|z,¢—1}

-1
E

-(\/m+3(B—T+b)+3a)2-az}

16512
=E |exp e < exp(1).
Therefore, we have by Lemma 1 that
K n
Pr 2’Y (1- or+1)y

dl’

t=0 1:1

K n
Z(\/iJrﬁbl ZZ

t=0 1
(0%
14(T+1)

~(\/64ﬁ+3(3—7+b))2

< exp(—¥/s) =

Note that

(V2 +Va) VK + n- 200 (VLA +3(B 7 + 1))

<(V2+v2b) /(K + Dn - %a (\/64LA Y3(B -1+ b))
A

<=

=3

because we choose

N

8 < LAvn and K+1<T.  (66)
AV2(1 + by)oVT (\/64LA +3(B—7+ b))

Pr (27 1-8

Note that the worst dependency w.r.t T is O(1/74).

This implies

K n
DBPBERT iy

t=0 i=1

A «
Sl —
- 8) 14T +1)

Final probability. Therefore, the probability event

Q= EKQ@K+1O< 1®K+1) NN ' NEyNEesNEsNEeN EsN EeN EyN Es,
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where each Eg-F denotes that each of 1-8-th terms is smaller than % implies that

<I>0
@+®+©+@+®+@+®+§8~§=A,

i.e. 7 in the induction assumption holds. Moreover, this also implies that
PETL <@ L A<SA+A=2A,
i.e. 6 in the induction assumption holds. The probability Pr(Ex ;1) can be lower bounded as follows
Pr(Ex+1) > Pr(Q)
— Pr (EK ne“*'n ( 1@K“) NN NEyNEeNEsNEsnEsn Es
NEo N Eg)
=1-Pr(Exu0fty (UL, 0f ") UNS T UEg UEs UEs UEe UEs U Ee
UEo U Ew)

>1-Pr(Eg) — Pr(©5*}) ZPr (OKTYy — Pr(NEF) — Pr(Eg) — Pr(Eg)

— PI‘(E@) — PI‘(E@) — PI‘(E@) — PI‘(E@) — PI‘(E@) — PI‘(E)

S Ca(K+1) o« _i: a R TSN

= T+1  6T+1) 26T +1) 6T +1) 4T +1)
_a(K+2)

B T+1

This finalizes the transition step of induction. The result of the theorem follows by setting K =
T — 1. Indeed, from (58) we obtain
K

A
T IVAE)I < @ - 0K+ A<2A = — Z IV f))? < ==
t=0

(67)

Final rate. Now we have the following restrictions on the momentum parameter in terms of de-
pendency on 7' from each bound of terms 1-8 correspondingly

B<0 (?Pﬁ@ %’ (LBAO—\/\/?Y’ (aﬁ(\/ﬁi\/g— )+ 2b)> .

ol

from term 1 from term 2 from term 3
LAny/n 3 LAn*y/n s
<a\/T(\/m+3(B—T+b)> ’(U\/T(\/m+3/2(3—7)+2b)) ’
from term 4 from term 5
LAn*\/n 2C=p) LA
(o\/T(\/M+3(B—T+b))> ’(a\/T(\/M+3/z(B—T)+2b>’
from term 7 from term 6
LAV B
(U\/T(m+3(B—T+b)>
from term 8

Multiplying the above by ﬁ gives restrictions on . The worst dependency on 7' is given by ® term
and translates to the rate of the form

5 LA ovVT(VLA + B +b) 5 o(vVLA + B +b)
T LAVR - VTn '

63



Under review as a conference paper at ICLR 2025

Therefore, with probability 1 — o Clip21-SGDM converges as

TZ“W ”2<O<LTAmf(\/L?\/J£B+b)>O(a(x/ﬂ\/%BJra))’ )

where O hides constant and logarithmic factors, and higher order terms decreasing with 7.

CASE Zx 1 = 0. This case is even easier. The only change will be with the term next to Rf. We
will get
48L2 1212 2 48L2
2V2* 272277 A2 >0
U B 3.

instead of b s ) )
168°L 48L 12L
1— ﬂ2 2 > 72 _ 52 72 Z 0
n n
as in the previous case. This difference comes from Lemma 18 because VE+L = 0. The rest is a
repetition of the previous derivations. O
Remark 2. Withv; ' = ¢! = 0 we have
0 — O lln i (0 £0 , 2L 4751 0) 12
= FO4 5D Nl clip BV’ &) - BV DI + Z IV £i(2®, )]
i=1
v 2
+50 |V f(2°,%)]]
71 < 16L7 1
< B0 D max {(IV S €D - )% 0} + an DI
i=1
F -8 VI, ).
4L
We have the stepsize restriction
2 64L%y?  48L%42
S b ) (69)

3 n? n?

For inequality of the form ay? + by < 1 the stepsize restriction of the form v < is tight up

f +b
to a constant factor 2, i.e. \/52 7 does not satisfy the inequality (see Lemma 5 in (Richtdrik et al.,

2021)). Using this lemma in our case we get that the stepsize satisfying Equation (69) should also
satisfy

L272§2-+.
72/p 4 4V/6
This implies that L?~y? < \/6 and L?~* < Consequently, it also satisfies 1 < 6L1\/§ (from the
last inequality). Therefore, we have
PO < FO 4 ——— N max {(|Vfi(2°,&))] - 7) +—f Vfi(x°,€9)]12
6sz {1V £, )] an &)l
2 0 (0
s L g2 v e
< FO — max { |V f; ,0204—** V£ (29 )2
< 6sz {1V 5. €)1 0} anfn
1 2 0 (0
b 2| vs )

which is independent of 7, and can be use as a bound for A. Terms containing ||V f;(z°, £9)]|? can
be bounded by B2 and ||V f;(x°)||? with high probability, i.e. A is again independent of 7.
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Figure 7: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGDM on logistic regression with non-
convex regularization for various the clipping radii 7 with mini-batch and Gaussian-added stochastic
gradients on Duke (two first rows) and Leukemia (two last rows).

H EXPERIMENTS DETAILS AND MORE

H.1 EXPERIMENTS WITH LOGISTIC REGRESSION

H.1.1 STOCHASTIC SETTING VARYING CLIPPING RADIUS

We conduct experiments on non-convex logistic regression with regularization parameter A = 1073
for 10* iterations. We use Duke and Leukemia datasets from LibSVM library and split the dataset
into n = 4 equal parts. We normalize the row of the feature matrix to demonstrate the differences
between algorithms. To simulate the stochastic gradients we either add centered Gaussian noise
with variance 0 = 0.05 for the Duke dataset and o = 0.1 for the Leukemia dataset, or mini-batch
gradients with batch-size of % of the whole local dataset for Duke dataset and i of the whole lo-
cal dataset for Leukemia dataset. For Clip21-SGD and Clip-SGD algorithms, we tune the stepsize
in {27°,...,25} and choose the one that gives the lowest final gradient norm in average across 3
random seeds. For Clip21-SGDM, we tune both the stepsize in {275,...,25} and the momentum
parameter in {0.1,0.5,0.9} and choose the best pair of parameters similarly as before. For com-
pleteness, we report the convergence curves in Figure 7. We observe that Clip21-SGDM is more
robust to the choice of the clipping radius 7 while Clip-SGD converges well only for large enough
7. Besides, Clip21-SGD does not converge in all cases which is also highlighted by our theory in
Theorem 1.

H.1.2 STOCHASTIC SETTING WITH ADDITIVE DP NOISE

We describe the setting in more detail for completeness. First, note that we use the same set of
problem parameters as in Appendix H.1.1 such as n, A\, o, and batch-size. Next, we fix a ratio
between Gaussian DP noise variance o, and the clipping parameter 7 from {0.1,1.0,10.0}. For
a given ratio, we tune Clip21-SGD and Clip-SGD algorithms across all possible pairs of the step-
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Figure 8: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGDM on training VGG16 model on
CIFAR10 dataset where the clipping is applied globally.
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Figure 9: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGDM on training VGG16 model on
CIFARI10 dataset the clipping is applied layer-wise.

size and the clipping radius 7 where the step-size v is taken from {2719 ... 2°} and 7 — from
{1074,...,10%}, and choose the pair (y,7) that gives the smallest final gradient norm averaged
over 3 runs. For Clip21-SGDM we perform the same grid search with an additional tuning of the
momentum parameter 5 € {0.1,0.5,0.9}. We report the last final gradient norm reached by each
algorithm averaged over 3 runs.

H.2 EXPERIMENTS WITH NEURAL NETWORKS

H.2.1 VARYING CLIPPING RADIUS T

Now we switch to the training of Resnet20 and VGG16 models on CIFARIO dataset. For
all algorithms, we do not use any techniques such as learning rate schedule, warm-up, or
weight decay. However, we do tuning of the learning rate for Clip-SGD and Clip21-SGD from
{1073,1072,10~*,10°} and choose the one that gives the highest test accuracy. For Clip21-SGDM
we tune both the learning rate from {1072,1072,10~%,10°} and the momentum parameter from
{0.1,0.5,0.9} and choose the pair that reaches the highest test accuracy. The batch size for all al-
gorithms is set to 32. We compare the performance of algorithms in two cases: when the clipping is
applied globally on the whole model and layer-wise.

We observe in Figures 8 to 11 that the performance of Clip-SGD gets worsen once the clipping radius
is small enough. For Clip21-SGDM is more robust to the choice of 7 and can achieve smaller train
loss and test accuracy even when 7 is small.
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Figure 10: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGDM on training Resnet20 model
on CIFAR10 dataset where the clipping is applied globally.
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Figure 11: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGDM on training Resnet20 model
on CIFAR10 dataset where the clipping is applied layer-wise.

H.2.2 ADDING ADDITIVE DP NOISE

We consider the same experiment section described in Appendix H.1.2 but now in the training of
MLP and CNN models on MNIST dataset.

We use MLP model with 1 hidden layer of size 256 and Tanh activation function. CNN model has
2 convolution layers with 16 convolutions each and kernel size 5 with one max-pooling layer and
Tanh activation function. We perform a grid search over the learning rate from {1072,...,10°} and
the clipping radius from {10~%,...,10~1}. The aforementioned tuning is performed for each value
of the noise-clipping ratio from {0.1,0.3,1.0,3.0,10.0}. he momentum parameter is tuned over
{0.5,0.1,0.01}. We highlight that we do not use the techniques such as a learning rate scheduler
although it might improve the performance of algorithms. The batch size for all algorithms is set to
64.

In Figures 12 to 15 we demonstrate that Clip-SGD and Clip-SGDM always outperform Clip21-SGD.
However, there is no clear separation between Clip21-SGDM and Clip-SGD: in some cases, the latter
has better performance, and in some cases — the former.
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Figure 12: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGDM on training CNN model on
MNIST dataset varying the noise-clipping ratio.
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Figure 13: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGDM on training CNN model on
MNIST dataset varying the noise-clipping ratio.
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Figure 14: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGDM on training MLP model on
MNIST dataset varying the noise-clipping ratio.
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Figure 15: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGDM on training MLP model on

MNIST dataset varying the noise-clipping ratio.
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