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The non-parametric instrumental variable (NPIV) problem is, given N observations,
Oi = (Ai, Si, Yi) i = 1, . . . , N , on instrumental variables (IVs) A, interventions S ∈ Rp, and
outcomes Y ∈ R, to find a function h : Rp → R satisfying

E[Y − h(S) | A] = 0. (1)

This can be motivated by a structural (i.e., causal) model Y = h⋆(S) + ϵ, where S and ϵ can
be endogenous due, e.g., to the presence of common confounders (so that h⋆(S) ̸= E[Y | S]),
but A and ϵ are exogenous so that Eq. (1) holds for h⋆. A variety of work studies the
estimation of h⋆ and inference on functionals thereof under nonparametric restrictions on
h⋆ as we receive additional observations N from a fixed O = (A,S, Y ) distribution [Ai and
Chen, 2003, 2007, 2012, Bennett and Kallus, 2023, Bennett et al., 2019, 2023a,b,b, Chen and
Pouzo, 2009, 2012, Darolles et al., 2011, Dikkala et al., 2020, Hartford et al., 2017, Kremer
et al., 2022, 2023, Newey and Powell, 2003, Santos, 2011, Severini and Tripathi, 2006, 2012,
Singh et al., 2019, Zhang et al., 2023].

In this paper, we tackle NPIV in the challenging many-weak-IV setting, where A ∈
{1, . . . ,K} is discrete and we only see so many of each value, namely for each a ∈ [K], we
have n i.i.d. observations of (Y, S) | A = a, forming N = nK observations in total. Then,
we can have only n ≪ N observations for each value A = a, which is challenging as it limits
our ability to consistently estimate the moment E[Y − h(S) | A = a] and thus to empirically
check the fitness of a candidate h function, which is the general approach of many NPIV
estimators above.

In the linear setting where h⋆(S) = S⊤β⋆, Eq. (1) reduces to solving E[Y | A] = E[S |
A]⊤β for β. This motivates the two-stage least squares (2SLS) approach of estimating β
by ordinary least squares (OLS) of Y on the “first-stage" OLS prediction of S given A (for
discrete A this is simply the sample means of S for each A value). However, when n ≪ N ,
even as N → ∞ this can incur non-vanishing bias because the first-stage regression may not
converge at all [Angrist et al., 1999, Bibaut et al., 2024, Peysakhovich and Eckles, 2018].
JIVE [Angrist et al., 1999] addresses this by regressing Y on a prediction of S given A based
on OLS using all the data except the datapoint on which we make the prediction. This
renders the errors from the first stage uncorrelated with the second stage so they average
out to zero so that we regain consistency [Chao et al., 2012].

The NPIV analog, which we tackle, is, however, unresolved. It is also rather nuanced
because when S is continuous but A is discrete, a nonparametric h⋆ is generally not uniquely
identified by Eq. (1), which involves just K moments but a general function h. Nonetheless,
certain linear functionals of h⋆, meaning θ0 = E[h⋆(S)α(S)] for some α, may still be uniquely
identified, meaning θ0 = E[h(S)α(S)] for any h satisfying Eq. (1).

This problem setting is of particular interest in digital experimentation, where the rapid
pace of innovation means we have many (K) historical randomized experiments (with serial
numbers A), which can be used to instrument for the effect (h⋆) of short-term surrogate
observations (S) on long-term outcomes (Y ) even in the presence of unobserved confounding
between the two, but where each experiment has a certain sample size (n). If we know this
effect, we can construct a surrogate index h⋆(S) such that average treatment effects (ATEs)
on Y are the same as those on h⋆(S). Moreover, the ATEs on h⋆(S) is a linear functional
thereof. Then, for novel experiments predicting long-term ATEs before observing long-term
outcomes can be phrased as inference on a linear functional of a solution to Eq. (1).

In this paper we also tackle the question how to reliably do this inference in the presence of
underidentified and nonparameteric h⋆, which is another significant challenge, besides solving
Eq. (1) in the many-weak-IV setting. We furthermore extend the simple instrumentation
identification to account for the possibility that short-term surrogate observations do not fully
mediate the treatment effects on long-term outcomes (that is, there is exclusion violation).

In this paper, we develop both a novel estimator for h⋆ in the nonparametric many-weak-IV
setting and methods for debiased inference on surrogate-predicted ATEs.

Taken together, our methods and results provide new ways to conduct long-term causal
inference in challenging, but practically very relevant, settings.
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