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ABSTRACT

Traditional Dynamic Programming (DP) approaches suffer from slow backward
credit-assignment (CA): one time step per update. A popular solution for multi-
step CA is to use multi-step Bellman operators. Existing control methods, how-
ever, typically suffer from large variance of multi-step off-policy corrections or
are biased, preventing convergence. To overcome these problems, we introduce
a novel multi-step Bellman Optimality operator, which quickly transports credit
information from the future into the past through multiple “highways” induced by
various behavioral policies. Our operator is unbiased with respect to the optimal
value function and converges faster than the traditional Bellman Optimality oper-
ator. Its computational complexity is linear in the number of behavioral policies
and lookahead depth. Moreover, it yields a family of novel multi-step off-policy
algorithms that do not need importance sampling. We derive a convergent multi-
step off-policy variant of Q-learning called Highway Q-Learning, and also a deep
function approximation variant called Highway DQN. Experiments on toy tasks
and visual MinAtar Games (Young & Tian, 2019) illustrate that our algorithms
outperform similar multi-step methods.

1 INTRODUCTION

Recent advances in multi-step reinforcement learning (RL) have achieved remarkable empirical suc-
cess (Horgan et al., 2018; Barth-Maron et al., 2018). However, a major challenge of multi-step RL
is to balance the trade-off between traditional “safe” one-time-step-per-trial credit assignment (CA)
relying on knowledge stored in a learned Value Function (VF), and large CA jumps across many
time steps. A traditional way of addressing this issue is to impose a fixed prior distribution over
the possible numbers of CA steps, e.g., TD(λ) (Sutton & Barto, 2018), GAE(λ) (Schulman et al.,
2016). This typically ignores the current state-specific quality of the current VF, which dynamically
improves during learning. Besides, the prior distribution usually has to be tuned case by case.

Multi-step RL should also work for off-policy learning, that is, learning from data obtained by
other behavioral policies. Most previous research on this has focused on Policy Iteration(PI)-based
approaches (Sutton & Barto, 2018), which need to correct the discrepancy between target policy
and behavior policy to evaluate the VF (Precup, 2000; Harutyunyan et al., 2016; Munos et al., 2016;
Sutton & Barto, 2018; Schulman et al., 2016). Classic importance sampling(IS)-based methods is
proven to be unbiased, but suffer from high variance due to the product of IS ratios (Cortes et al.,
2010; Metelli et al., 2018). Recently, several variance reduction methods have been proposed and
shown to be effective in practice, such as Q(λ) (Harutyunyan et al., 2016), Retrace (λ) (Munos et al.,
2016) and C-trace (Rowland et al., 2020), and so on (Espeholt et al., 2018; Horgan et al., 2018;
Asis et al., 2017). In contrast to PI, Value Iteration (VI) methods propagate the values of the most
promising actions backward one step at a time (Sutton & Barto, 2018; Szepesvári, 2010). Such
methods can safely use data from any behavioral policy. However, step-by-step value propagation
makes them somewhat ill-suited for general multi-step CA.

Here we provide a new tool for multi-step off-policy learning by extending VI approaches to the
multi-step setting. The foundation of our method is a new Bellman operator, the Highway Operator,
which connects current and future states through multiple “highways,” and focuses on the most
promising one. Highways are constructed through various policies looking ahead for multiple steps.
Our operator has the following desirable properties: 1) It yields a new Bellman Optimality Equation
that reflects the latent structure of multi-step CA, providing a novel sufficient condition for the
optimal VF; 2) It effectively assigns future credit to past states across multiple time steps and has
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remarkable convergence properties; 3) It yields a family of novel multi-step off-policy algorithms
that do not need importance sampling, safely using arbitrary off-policy data. Experiments on toy
tasks and visual MinAtar Games (Young & Tian, 2019) illustrate that our Highway RL algorithms
outperform existing multi-step methods.

2 PRELIMINARIES

A Markov Decision Processes (MDP) (Puterman, 2014) is described by the tuple M =
(S,A, γ, T , µ0,R), where S is the state space; A is the action space; γ ∈ [0, 1) is the discount
factor. We assume MDPs with countable S (discrete topology) and finite A. T : S × A → ∆(S)
is the transition probability function; µ0 denotes the initial state distribution; R : S × A → ∆(R)
denotes reward probability function. We use the following symbols to denote related conditional
probabilities: T (s′|s, a), R(·|s, a), s, s′ ∈ S, a ∈ A. We also use r(s, a) ≜ ER∼R(·|s,a)[R] for
convenience. In order to make the space of value functions complete (assumption of Banach fixed
point theorem), we assume bounded rewards, which with discounting produce bounded value func-
tions. We denote l∞(X ) the space of bounded sequences with supremum norm ∥·∥∞ with supportX
assuming X is countable and has discrete topology. Completeness of our value spaces then follows
from completeness of l∞(N) 1.

The goal is to find a policy π : S → ∆(A) that yield maximal return. The return is defined as
the accumulated discounted reward from time step t, i.e., Gt =

∑∞
n=0 γ

nr(st+n, at+n). The state-
value function (VF) of a policy π is defined as the expected return of being in state s and following
policy π, V π(s) ≜ E [Gt|st = s;π]. Let Π denote the space of all policies. The optimal VF is V ∗ =

maxπ∈Π V π . It is also convenient to define the action-VF, Qπ(s, a) ≜ E [Gt|st = s, at = a;π]
and the optimal action-VF is denoted as Q∗ = maxπ∈Π Qπ . The Bellman Expectation/Optimality
Equation and the corresponding operators are as follows:

BπV π = V π, where (BπV )(s) ≜ Ea∼π(·|s),s′∼T (·|s,a) [r(s, a) + γV (s′)]

BV ∗ = V ∗, where (BV )(s) ≜ max
a

[
r(s, a) + γEs′∼T (·|s,a)[V (s′)]

]
.

(1)

(2)

3 HIGHWAY REINFORCEMENT LEARNING

Value Iteration (VI) looks ahead for one step to identify a promising value using only short-term
information (see eq. 2). How can we quickly exploit long-term information through larger looka-
heads? Our idea is to exploit the information conveyed by policies. We connect current and future
states through multiple “highways” induced by policies, allowing for the unimpeded flow of credit
across various lookaheads, and then focus on the most promising highway. Formally, we propose
the novel Highway Bellman Optimality Operator GΠ̂N (Highway Operator in short), defined by

GΠ̂NV (s0) ≜ max
π∈Π̂

max
n∈N

Eτn
s0

∼π

[
n−1∑
t=0

γtr (st, at) + γn max
a′
n

[
r(sn, a

′
n) + γEs′n+1

[
V
(
s′n+1

)]]]
, (3)

where Π̂ = {π1, · · · , πm · · · , πM |πm ∈ Π} is a set of behavioral policies, which are used to collect
data; n is called the lookahead depth (also named bootstrapping step in RL literature), and N is
the set of lookahead depths, which we assume always includes 0 (0 ∈ N ) unless explicitly stated
otherwise; τns0 = (s0, a0, s1, a1, s2, a2, · · · , sn), and τns0 ∼ π is the trajectory starting from s0 by
executing policy π for n steps. Fig. 1 (Left) illustrates the backup diagram of this operator. Our
operator can be rewritten using the Bellman Operators:

GΠ̂NV ≜ max
π∈Π̂

max
n∈N

(Bπ)n BV. (4)

As implied by eq. (3) and eq. (4), given some trial, we pick a policy and a possible lookahead (up
to the trial end if N is sufficiently large) that maximize the cumulative reward during the lookahead

1The space of all bounded sequences with supremum norm, which is known to be a complete metric space.
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Figure 1: (Left) Backup diagram of Highway Operator GΠ̂N with N = {0, 1, 2}. (Right) An illus-
trative example of “highway” under a simple N -horizon MDP, where N is the horizon between the
start state sA and the end state sZ . With the highway (dashed lines) induced by rolling-out behav-
ioral policies, the start state sA can directly access various deeper horizon information. By taking
maximization over this information, the high credit information can be directly assigned to the pre-
vious states through the highway.

interval plus a dynamic programming-based estimate of the future return. This provides a highway
to quickly transport credit information from the future into the past. That’s why our operator gen-
erally converges faster than the classical Bellman Optimality Operator. See the detailed theoretical
analysis in Section 5. Fig. 1 (Right) illustrates this highway through an example: an N -horizon
MDP problem and two policies. A highway connects the start state sA to information derived from
deeper lookaheads. In this example, our operator converges to the optimal VF within 2 iterations,
while B needs N .

The following result shows that our Highway operator is a contraction on the complete metric space
l∞ and admits V ∗ as a unique fixed point.

Theorem 1 (Properties of Highway Operator) For any Π̂ and N (s.t. 0 ∈ N ), we have

1) GΠ̂N is a contraction on complete metric space l∞(S), i.e. for any V, V ′ ∈ l∞(S), we have2

∥GΠ̂NV − GΠ̂NV ′∥ ≤ ∥BV − BV ′∥ ≤ γ∥V − V ′∥;
2) (Highway Bellman Optimality Equation, Highway Equation in short) V ∗ is the only fixed point
GΠ̂N , that is, for all V ∈ l∞(S) holds V = GΠ̂NV if and only if V = V ∗. Formally, we have

GΠ̂NV ∗ ≜ max
π∈Π̂

max
n∈N

(Bπ)n BV ∗ = V ∗, (5)

3) For any V0 ∈ l∞(S) and any sequence of policy sets (Π̂k),k ∈ N, the sequence (GΠ̂k

N ◦ GΠ̂k−1

N ◦
. . . ◦ GΠ̂1

N )[V0],k ∈ N converges R-linearly to V ∗ with convergence rate γ.

All the proofs are provided in Appendix A. Note that 0 ∈ N is necessary for the guarantee of the
fixed point property (Point 2), but not for the contraction property. This theorem implies that our
Highway operator can provide a powerful extension to Bellman Optimality Equation, which can be
potentially applied to various RL control methods. Table 1 summarizes the comparison to classical
Bellman Operators and some advanced operators. More details on the comparison are in Section 5.

4 ALGORITHMS

Here we illustrate three applications of our Highway theory for model-based and model-free RL
algorithms. Although we listed only three instances in this paper, note that our theory can be poten-
tially applied to various RL methods which involve value estimation, such as actor-critic methods.

2We denote by ∥ · ∥ the supremum norm throughout the paper.
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Type Operator Fixed Point Guaranteed convergence Convergence Rate NOT suffering
variance explosion

of IS ratios

Classical Operators Bellman Optimality Operator B (eq. 2) V ∗/Q∗ / γ ✓

Bellman Expectation Operator Bπ′
(eq. 1) V π′

/Qπ′ / γ ✓

Multi-Step Off-Policy
Operators

† Multi-Step Bellman Optimality Operator (N ≥ 2)
Eπ∼P

Π̂

[
(Bπ)N−1B

]
(Hessel et al., 2018; Horgan et al., 2018)

V ∗/Q∗ For Π̂ s.t.
∀π ∈ Π̂, π = π∗ γN ✓

§ Multi-Step IS-based Bellman Expectation Operator

Eπ∼P
Π̂

[
(B̆π′

π )N
]

(Sutton & Barto, 2018)

V π′
/Qπ′

For any Π̂, N γN ×

Q(λ) Operator
(Harutyunyan et al., 2016)

V π′
/Qπ′ For Π̂ s.t.

∀π ∈ Π̂, π is close to π′
γ ✓

Retrace(λ) Operator
(Munos et al., 2016)

V π′
/Qπ′

For any Π̂ γ ✓

Highway Operator
and its Variants

(Ours)

Highway Operator (eq. 4)

GΠ̂
N ≜ max

π∈Π̂
max
n∈N

(Bπ)n B
V ∗/Q∗ For any Π̂, N γ (γ2 , γN under

some conditions)
✓

Softmax Highway Operator (eq. 9)

G̃Π̂
N ≜ smaxα

π∈Π̂
smaxα

n′∈N
max

n∈{0,n′}
(Bπ)n B

V ∗/Q∗ For any Π̂, N , α γ ✓

‡ Expectation Highway Operator

GN
Π̂

≜ Eπ∼P
Π̂

[
max
n∈N

(Bπ)n B
] V ∗/Q∗ For any Π̂, N γ ✓

Table 1: Properties of the operators. Π̂ denote the set of behavioral policies; P
Π̂

is a distribution over

Π̂ and P
Π̂
(π) is the probability of selecting π; π′ denotes the target policy of policy evaluation. †

and ‡: Please refer to Appendix A.2 for details. §: B̆π′

π is the importance sampling-based (IS-based)
Bellman Expectation Operator (see Appendix A.4).

4.1 MODEL-BASED REINFORCEMENT LEARNING

Highway Value Iteration. From the new operator, we can naturally derive a new Value Iteration
algorithm, (Algorithm B.1). Specifically, for a finite S, the update using the Highway Operator GΠ̂N
(eq. 3) can be written as

vk+1 = max
π∈Π̂

max
n∈N

PART3︷ ︸︸ ︷[
n∑

i=0

[
(γTπ)

i−1
]
rπ︸ ︷︷ ︸

PART1

+ (γTπ)
n︸ ︷︷ ︸

PART2

[
max

a

[
ra + γTavk

]]]
, (6)

where vk is a |S| × 1 column vector of VF; ra and rπ are |S| × 1 column vectors of rewards
for action a and policy π respectively, where [ra]s = r(s, a), [rπ]s =

∑
a π(a|s)r(s, a). Ta

and Tπ are |S| × |S| matrices of transition probabilities for action a and policy π respectively,
where [Ta]s,s′ = T (s′|s, a), [Tπ]s,s′ =

∑
a π(a|s)T (s′|s, a). The computational complexity of

each iteration is O
((
|A|+

∣∣∣Π̂∣∣∣ |N |) |S|2). Two strategies can be adopted to accelerate the update
process. First, the matrix in PART 1 and PART 2 in eq. (6) can be computed and reused for each π
and n, as they are fixed during the iteration process. Second, PART 3 can be computed in parallel
for each policy π ∈ Π̂ and n ∈ N .

4.2 OFF-POLICY LEARNING IN MODEL-FREE REINFORCEMENT LEARNING

In model-free RL, it is convenient to use Q instead of V . The corresponding operator3 is defined as

3We use the same notation GΠ̂N to denote the operator w.r.t. the the VF V and the action VF Q when there
is no ambiguity. Similarly, for the Bellman operators, we will reuse the same symbols.
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GΠ̂NQ(s0, a0) ≜max
π∈Π̂

max
n∈N

E τn+1
s0,a0

∼ π

[
n∑

t=0

γtrt + γn+1 max
a′
n+1

Q ( sn+1, a
′
n+1 )

]
︸ ︷︷ ︸

Gn+1
Q (τn+1

s0,a0)

,
(7)

where Gn+1
Q (τn+1

s0,a0
) is the n+ 1-step return; τn+1

s0,a0
≜ (s0, a0, r0, s1, a1, r1, · · · , sn+1). This oper-

ator can also be represented by the Bellman Operators, i.e., GΠ̂NQ ≜ maxπ maxn (Bπ)n BQ; and
it converges to the optimal action VF Q∗ with any set of behavioral policies Π̂, i.e., GΠ̂NQ∗ = Q∗

(similar to Theorem 1, see APPENDIX Theorem 6 for a formal statement). This means that it can
utilize any off-policy data collected by arbitrary policy, without additional corrections. We propose
two methods for the tabular VF and VF approximation, named Highway Q-Learning and Highway
DQN respectively.

Highway Q-Learning. Let D(m)
s0,a0 = {τn+1

s0,a0
|τn+1

s0,a0
∼ πm} denote the trajectory data collected by

the policy πm. The k-th VF Qk is updated in the following way:

Qk+1 (s0, a0) = max
m∈Ms0,a0

max
n∈N

ÊD(m)
s0,a0 [Gn+1

Qk
(τn+1

s0,a0
)], (8)

where Ms0,a0 ⊆
{
m
∣∣|D(m)

s0,a0 | ≠ 0
}

is a subset of indexes of the dataset that are not empty under

(s0, a0); ÊD(m)
s0,a0 [·] = 1∣∣∣D(m)

s0,a0

∣∣∣
∑

τn+1
s0,a0

∈D(m)
s0,a0

[·] is the empirical averaged value. Note that all we

need to do is saving the trajectory data into the corresponding datasets D(m)
s0,a0 , and then search over

them, without having to know the form of πm or save the πm into the set of behavioral policies Π̂.
The algorithm, Highway Q-Learning, is presented in Appendix B Algorithm B.3.

Highway DQN. For large-scale space or continuous MDPs, the VF is usually approximated. Due to
the estimation noise involved in function approximation (Van Hasselt et al., 2016), our method may
lead to overestimation by the two maximization operations (over policies and lookahead depths).
However, as we show below, this issue can be easily solved through a minor modification.

We propose a new variant of eq. (7), named Softmax Highway Operator, as follows

G̃Π̂NQ (s0, a0) ≜ smaxα

π∈Π̂
smaxα

n′∈N
max

n∈{0,n′}
Eτn+1

s0,a0
∼π

[
Gn+1

Q (τn+1
s0,a0

)
]
, (9)

where the softmax operator smaxα with the temperature parameter α is defined as

smaxα

x∈X
f (x) ≜

∑
x∈X

exp (αf (x))∑
x′∈X exp (αf (x′))

f (x) , (10)

smaxα reduces to max when α→∞. We have the following theorem.

Theorem 2 For any α, any Π̂, and any N , we have G̃Π̂NQ∗ = Q∗ and (∀Q ∈ l∞(S × A)) :

∥G̃Π̂NQ−Q∗∥ ≤ γ∥Q−Q∗∥.

The operator in eq. (9) is derived in the following way. First, the Highway Q Operator GΠ̂N in eq. (7)
can be rewritten as an equivalent form, GΠ̂NQ ≜ maxπ∈Π̂ maxn′∈N maxn∈{0,n′}(Bπ)nBQ. Then,
we replace the first two max operators maxπ maxn′ with the softmax operators smaxα

π smaxα
n′ .

The above modification of Softmax Highway Operator G̃Π̂N is necessary to a) remain unbiased w.r.t.
Q∗ (as shown in APPENDIX Theorem 2)4 ; b) alleviate the overestimation issue and improve ex-
ploration with the softmax operation, which has been shown effective in recent RL literature (Fox
et al., 2015; Haarnoja et al., 2017; Schulman et al., 2017; Song et al., 2019).

4Note another variant smaxα
π smaxα

n(Bπ)nBQ (without maxn∈{0,n′}) is generally biased w.r.t. Q∗.
Please refer to Appendix A.3 for the detail of the reason.
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Based on the above theoretically justified operator, we propose the following objective function for
updating the action VF Qθ(s, a) parametrized by the parameter θ:

L (θ) =
∑

(s0,a0)∈D̂

[
Qθ (s0, a0)− smaxα

m∈Ms0,a0

smaxα

n′∈N
max

n∈{0,n′}
ÊD(m)

s0,a0

[
Gn+1

Qθ′
(τn+1

s0,a0
)
]]2

, (11)

where Qθ′ is the target network parametrized by θ′, occasionally copied from θ; D̂ = {(s0, a0)}) is
the sampled batch data of state-action (s0, a0) pairs. The computational complexity of the method
implied by the equation above is close to the one of existing eligibility trace-based methods (Schul-
man et al., 2016; Munos et al., 2016), which also need to compute n-step returns Gn

Q for each n.
The resulting algorithm is called Highway DQN, presented in APPENDIX Algorithm B.4.

In practice, our algorithm balances the trade-off between accuracy and sample efficiency by deciding
the number of trials per policy, the size of the search space (of behavioral policies and lookahead
depths), and the softmax temperature. While more trials per policy may improve the estimation
accuracy, they may also cost more samples and reduce sample efficiency. On the other hand, while a
larger search space may increase efficiency, it might incur overestimation issues when the estimate
is biased, leading to high variance.

In summary, our Highway Q-Learning and Highway DQN can recycle any trajectory data collected
by some arbitrary policy, and utilize the multiple-step trajectory data that do not require Importance
Sampling-based corrections (as stated in Theorem 1 and 2).

5 THEORETICAL ANALYSIS

In this section, we study the theoretical properties of Highway operator5 GΠ̂N and show its superiority
over classical Bellman operators, e.g., B and Bπ . For convenience, our analysis is in the space of
state VF, i.e., the operators GΠ̂N ,B,Bπ, . . . are assumed to be mappings on l∞(S).

First, we compare our Highway Operator GΠ̂N to the Bellman Optimality Operator B .

Theorem 3 (Comparison to Bellman Optimality Operator B) For all V, V0 ∈ l∞(S) holds:

1)
∥∥∥GΠ̂NV − V ∗

∥∥∥ ≤ ∥BV − V ∗∥;

2) Assume V0 ≤ V ∗. For any s we have
∣∣∣GΠ̂NV0 (s)− V ∗ (s)

∣∣∣ ≤ |BV0 (s)− V ∗ (s)|, where the

strict inequality holds as long as there exists π′ ∈ Π̂ such that argmaxn∈N

(
Bπ′

)n

BV0 (s) > 0.

The first point of the theorem implies that our operator converges at the same rate as the Bellman
Optimality Operator in the worst case. The second point shows a state-wise convergence comparison
under the case of V0 ≤ V ∗. Our operator generally converges faster than the Bellman Optimality
Operator as long as one behavioral policy finds a better path by looking forward for n steps (n > 0).
Note that the condition V0 ≤ V ∗ can be easily satisfied by setting V0 = mins′,a′ r(s′, a′). Moreover,
as long as V0 ≤ V ∗, we have (GΠ̂N )◦kV0 ≤ V ∗ for any k (see Lemma 2 in Appendix).

Then, we show the relation of our Highway operator with the Multi-step Bellman Expectation op-
erator BπN ≜ (Bπ)◦N , which is adopted in Generalized Policy Iteration (GPI) (see APPENDIX
Algorithm B.2). GPI needs to balance the evaluation-improvement trade-off by adapting hyper-
parameter N in (Bπ)◦N . Our Highway operator provides an optimal solution for deciding such
hyperparameter N in terms of approaching the optimal VF.

Theorem 4 (Comparison to Multi-Step Bellman Expectation Operator) Assume that the VF Vk ≤

V ∗. Let V GΠ̂k
N

k+1 and V
Bπk

N

k+1 denote the k + 1-th VF of Highway Value Iteration with hyperparameter

5Note that, unless otherwise stated, the results hold for any set of behavioral policies Π̂ and set of lookahead
depthsN . For convenience, we analyze under fixed Π̂. However, these results can also be extended to the case
of dynamically changing Π̂ (as shown Highway Value Iteration in Algorithm B.1, where Π̂k could change over
different k-th iterations as new policies are added to the set of behavioral policies).
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N and Generalized Policy Iteration with hyperparameter N . We have∥∥∥∥V GΠ̂k
N

k+1 − V ∗
∥∥∥∥ ≤ min

N∈N

∥∥∥∥V Bπk
N+1

k+1 − V ∗
∥∥∥∥ (12)

Next, we show that by assuming that some of the behavioral policies act optimally within a few time
steps, our Highway operator can achieve better convergence rates.

Assumption A(Π̂, n) Given set of behavioral policies Π̂, a lookahead depth n. Let Sπ′

s,n denote the
set of all possible visited states by executing policy π′ for n steps from state s. For each s ∈ S, there
exists at least one policy π′ ∈ Π̂ such that π′(s′) = π∗(s′) for any s′ ∈ Sπ′

s,n where π∗ refers to an
optimal policy. Note the quantification order: (∀s ∈ S, ∃π′ ∈ Π̂, ∀s′ ∈ Sπ′

s,n) : π
′(s′) = π∗(s′).

Theorem 5 (Better Contraction Rate) Assume N−1 ∈ N , Π̂ satisfies Assumption A(Π̂, N−1), and
V0 ∈ l∞(S) and V0 ≤ V ∗, the convergence rate of GΠ̂N is γN , i.e., ∥GΠ̂NV − V ∗∥ ≤ γN∥V − V ∗∥;

This theorem implies that when the set of behavioral policies Π̂ satisfies Assumption A(Π̂, N − 1),
our operator GΠ̂N has a convergence rate of γN . Note that, in Assumption A(Π̂, N − 1), Π̂ is not
required to include an optimal policy π∗. Instead, it only requires that, for each state, there exists
one policy that behaves well within a period (N − 1 consecutive steps), and the well-behaved policy
could be varying towards different starting from each state. Note that this condition is much weaker
than having some optimal or near-optimal policies included in the behavioral policy set. Specifically,
Assumption A(Π̂′, 1) can be satisfied by constructing a Π̂′ = {πa|a ∈ A, (∀s ∈ S) : πa(a|s) = 1},
yielding a convergence rate of γ2.

Note that although the operator (B)◦N also leads to a convergence rate of γN , our Highway operator
GΠ̂N differs essentially from it. A major difference is that Highway operator GΠ̂N applies Multi-step
Bellman Expectation Operator (Bπ)◦n instead of applying Multi-step Bellman Optimality Operator
(B)◦N . In the model-free case, (Bπ)◦n V can utilize the n-step trajectory data generated by π with
minor cost (just by accumulating rewards within n-step, i.e.,

∑
n′ γn′

rt+n′ + γnV (st+n)). While
(B)◦N can only utilize the 1-step data and needs to update the VF N times (implying by eq. 2).

6 RELATED WORK

Multi-step RL methods has been studied in RL for a long history, including multi-step SARSA (Sut-
ton & Barto, 2018), Tree Backup (Precup, 2000), Q(σ) (Asis et al., 2017), and Monte Carlo methods
(which can be regarded as ∞-step learning). λ-return assign exponentially decaying weights de-
pends on the decay factor λ (Sutton & Barto, 2018; Schulman et al., 2016; White & White, 2016).
Sahil et al. (2017) proposed a more general form called weighted returns, which assigns weights to
all n-step returns. Roughly, the lookahead depth, the decay factor, and the weights represent the
prior knowledge or bias regarding appropriate CA intervals, usually tuned in a case-by-case man-
ner. Our method instead adaptively adjusts the lookahead depth in line with the quality of the data
and the learned VF. Another similar work related to CA is RUDDER (Arjona-Medina et al., 2019),
which trains an LSTM to re-assign credits to previous actions. Our methods derive a simple but
sound principle for transporting the credit with minor cost.

Existing off-policy learning methods usually use additional corrections for off-policy data. Classical
importance sampling (IS)-based methods suffer from high variance due to the products of IS ratios
(Cortes et al., 2010; Metelli et al., 2018). Several variance reduction techniques have been proposed.
Munos et al. (2016)’s Retrace(λ) reduces the variance by clipping the IS ratios, and has achieved
great success in practice. Other work ignores IS: TB(λ) (Precup, 2000) corrects the off-policy data
by computing expectations w.r.t. data and estimated VF, using the probabilities of the target policy.
Harutyunyan et al. (2016)’s Q(λ) corrects the off-policy data by adding an off-policy correction
term. Our method provides an alternative IS-free tool for off-policy learning. Similar to Retrace(λ),
it can safely use arbitrary off-policy data. Moreover, it is very efficient, offering a faster convergence
rate under mild conditions. More research is needed, however, to understand how the variance of
our method compares to that of advanced IS-based variance reduction methods like Retrace(λ).
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(a) Multi-Room Environment
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Figure 2: (a) shows results of model-based algorithms in Multi-Room environments. The x-axis
is the number of rooms. The y-axes for the three figures are total iteration, total samples, and
total running time required by the algorithm, respectively. (b) and (c) in Choice and Trace Back
environments: number of episodes required to solve the task, as a function of the delay of reward.
Average over 100 seeds, 1 standard deviation.

Searching over various policies and (or) lookahead depths to improve the convergence of RL systems
is an active field. Barreto et al. (2020) search over various policies while using only a fixed lookahead
depth until the end of the trial. He et al. (2017) first propose to search over various lookahead depths
along the trajectory data, but they do not search over various policies. Moreover, they employ the
lookahead returns to construct additional inequality bounds on the VF. Our work instead contributes
to a novel Bellman operator on updating the VF directly and provides a thorough theoretical analysis
of the convergence properties. We also address that greedy operations (Barreto et al., 2020; He et al.,
2017) may cause overestimation, by proposing a novel softmax operation to alleviate this issue in
an unbiased fashion. Compared to previous methods searching over the product of original policy
space and action space (Efroni et al., 2018; 2019; 2020; Jiang et al., 2018; Tomar et al., 2020), ours
has a smaller search space (i.e., a limited set of policies). In summary, this paper contributes to a
theoretically-justified Bellman operator which searches both policies and lookahead depths, leading
to more flexibility and scalability against different settings and applications.

Our method can also be viewed as combining the best of both worlds: (1) direct policy search based
on policy gradients (Williams, 1992) or evolutionary computation (Rechenberg, 1971) (where looka-
head equals trial length—no runtime-based identification of useful subprograms and subgoals), and
(2) dynamic programming-based (Bellman, 1957) identification of useful subgoals during runtime.
This naturally and safely combines best subgoals/sub-policies (Schmidhuber, 1991) derived from
data collected by arbitrary previously encountered policies. It can be viewed as a soft hierarchical
chunking method (Schmidhuber, 1992) for rapid CA, with a sound Bellman-based foundation.

7 EXPERIMENTS

We designed our experiments to evaluate the algorithms under different cases and investigate their
properties. Please refer to Appendix C for additional details of the experiment settings.

Model-based Toy Tasks. We first evaluate on a model-based task: Multi-Room environments with
different number of rooms. The agent needs to go through many rooms and reach the goal to get
a reward. We compare our Highway Value Iteration to classical Value Iteration (VI) and Policy
Iteration (PI). The algorithms are evaluated until convergence. As shown in the three plots of Fig. 2
(a), our Highway Value Iteration outperforms VI and PI in terms of number of iterations required,
total number of samples (total number of queries to the MDP model), and computation time.

Model-free Toy Tasks. To evaluate credit assignment efficiency, we evaluate the algorithms on two
toy tasks involving delayed rewards (Arjona-Medina et al., 2019), in which a reward is only provided
at the end of each trial. We compare our method to classical eligibility trace methods including Q(λ),
SARSA(λ), Monte Carlo methods; and also the advanced credit assignment method RUDDER.

As shown in Fig. 2 (b) and (c), our method significantly outperforms all competitors on both tasks.
For example, on Trace Back, our method requires only 20 episodes to solve the task, while the sec-
ond best algorithm RUDDER requires more than 1000. Notably, the costs of Highway Q-Learning
do not observably increase with the reward delays. In contrast, other methods such as Q(λ) require
exponentially increasing numbers of trials.
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Figure 3: Episode rewards during the training on MinAtar Games (Young & Tian, 2019). Average
over 5 seeds, 1 standard deviation.

(a) Varying lookahead depths (b) Varying replay buffer sizes

Figure 4: The performance of Highway DQN and Multi-Step DQN using (a) varying lookahead
depth and (b) varying replay buffer sizes. Average over 5 seeds, 1 standard deviation.

MinAtar Games. We evaluate our algorithms on benchmark tasks from MinAtar (Young & Tian,
2019). We compare to several advanced multi-step off-policy methods, including Multi-Step DQN
(Horgan et al., 2018; Barth-Maron et al., 2018) and Retrace(λ) Munos et al. (2016). All multi-step
methods are implemented on top of Maxmin DQN (Lan et al., 2020), which chooses the smallest Q-
value among multiple target Q networks. All the compared methods adopt the same implementations
to ensure that we measure differences between algorithms, not implementations.

Fig. 3 shows the performance of the algorithms. Highway DQN significantly outperforms all com-
petitors in terms of both reward and sample efficiency on almost all the tasks. Compared to the
advanced Retrace(λ), our method performs significantly better on 3 of 5 tasks while performing on
par with it on the remaining 2 tasks.

Ablation Study. We conducted the following ablation studies to investigate properties of Highway
DQN. (1) Lookahead depth (N = {0, 1, · · · , N−1} for Highway DQN and N for Multi-step DQN).
As shown in Fig. 4a, compared to Multi-step DQN, our Highway DQN shows strong robustness
against variations of the lookahead depth. This is because Highway DQN can adaptively choose
the lookahead depth. (2) Replay buffer size. As shown in Fig. 4b, when the memory size increases
to 8 × 105 (orange line), our Highway DQN shows a performance improvement, while Multi-Step
DQN shows a degradation. (3) For the results with varying softmax Temperature α and number of
target networks, please refer to APPENDIX Appendix C.4 for more details.

8 CONCLUSIONS

We introduced a novel multi-step Bellman Optimality Equation for efficient multi-step credit as-
signment (CA) in reinforcement learning (RL). We proved that its solution is the optimal value
function and that the corresponding policy adjustments generally converge faster than the traditional
Bellman Optimality operator. Our Highway RL methods combine the best of direct policy search
(where CA is performed without trying to identify useful environmental states or subgoals dur-
ing runtime), and standard RL, which finds useful states/subgoals through dynamic programming.
Highway RL quickly and safely extracts useful sub-policies derived from data obtained through
previously tested policies. The derived algorithms have several advantages over existing off-policy
algorithms. Their feasibility and effectiveness were experimentally illustrated on a series of stan-
dard benchmark datasets. Future work will theoretically analyze the algorithm’s behavior in the
model-free case.
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Mark Rowland, Will Dabney, and Rémi Munos. Adaptive trade-offs in off-policy learning. In
International Conference on Artificial Intelligence and Statistics, pp. 34–44. PMLR, 2020.

Sharma Sahil, Raguvir J Girish, Ramesh Srivatsan, and Ravindran Balaraman. Learning to
mix n-step returns: Generalizing lambda-returns for deep reinforcement learning. CoRR,
abs/1705.07445, 2017. URL http://arxiv.org/abs/1705.07445.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

J. Schmidhuber. Learning to generate sub-goals for action sequences. In T. Kohonen, K. Mäkisara,
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A THEOREM PROOFS

A.1 PROOF OF PROPERTIES OF HIGHWAY OPERATOR GΠ̂N

Theorem 1 (Properties of Highway Operator) For any Π̂ and N (s.t. 0 ∈ N ), we have

1) GΠ̂N is a contraction on complete metric space l∞(S), i.e. for any V, V ′ ∈ l∞(S), we have6

∥GΠ̂NV − GΠ̂NV ′∥ ≤ ∥BV − BV ′∥ ≤ γ∥V − V ′∥;
2) (Highway Bellman Optimality Equation, Highway Equation in short) V ∗ is the only fixed point
GΠ̂N , that is, for all V ∈ l∞(S) holds V = GΠ̂NV if and only if V = V ∗. Formally, we have

GΠ̂NV ∗ ≜ max
π∈Π̂

max
n∈N

(Bπ)n BV ∗ = V ∗, (13)

3) For any V0 ∈ l∞(S) and any sequence of policy sets (Π̂k),k ∈ N, the sequence (GΠ̂k

N ◦ GΠ̂k−1

N ◦
. . . ◦ GΠ̂1

N )[V0],k ∈ N converges R-linearly to V ∗ with convergence rate γ.

Proof: 1) The contraction property can be obtained:∥∥∥GΠ̂NV − GΠ̂NV ′
∥∥∥ =

∥∥∥∥max
π∈Π̂

max
n∈N

(Bπ)n BV −max
π∈Π̂

max
n∈N

(Bπ)n BV ′
∥∥∥∥

≤ max
π∈Π̂

max
n∈N
∥(Bπ)n BV − (Bπ)n BV ′∥

≤ max
π∈Π̂

max
n∈N

γn ∥BV − BV ′∥

≤ ∥BV − BV ′∥
≤ γ ∥V − V ′∥

6We denote by ∥ · ∥ the supremum norm throughout the paper.
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2) By application of the Banach fixed point theorem to point 1., the operator GΠ̂N must have a unique
fixed point. Therefore, it suffices to verify that V ∗ is a fixed point of GΠ̂N . Our operator can be
rewritten as

GΠ̂NV ≜ max
π∈Π̂

max
n∈N

(Bπ)n BV.

Using the fact that BπV ∗ ≤ BV ∗ = V ∗ and Bπ monotony we obtain (Bπ)n BV ∗ ≤ V ∗ for any π
and n ≥ 0 (with the equality when n = 0), which implies

max
π∈Π̂

max
n∈N

(Bπ)n BV ∗ = V ∗.

3) From 1) and 2) follows: ∥(GΠ̂k

N ◦G
Π̂k−1

N ◦ . . .GΠ̂1

N )[V0]−V ∗∥ = ∥(GΠ̂k

N ◦G
Π̂k−1

N ◦ . . .GΠ̂1

N )[V0]−
GΠ̂k

N V ∗∥ ≤ γ∥(GΠ̂k−1

N ◦ . . .GΠ̂1

N )[V0] − V ∗∥. By repeating the same argument we end up with

∥(GΠ̂k

N ◦ GΠ̂k−1

N ◦ . . .GΠ̂1

N )[V0]− V ∗∥ ≤ γk∥V0 − V ∗∥ from which the statement follows.

□

Theorem 2 For any α, any Π̂, and any N , we have G̃Π̂NQ∗ = Q∗ and (∀Q ∈ l∞(S × A)) :

∥G̃Π̂NQ−Q∗∥ ≤ γ∥Q−Q∗∥.

Proof:

G̃Π̂NQ (s0, a0) ≜ smaxα

π∈Π̂
smaxα

n′∈N
max

n∈{0,n′}
Eτn+1

s0,a0
∼π

[
Gn+1

Q (τn+1
s0,a0

)
]
, (14)

This operator can be represented as

G̃Π̂NQ ≜ smaxα

π∈Π̂
smaxα

n′∈N
max

n∈{0,n′}
(Bπ)n BQ.

First, following the proof in Theorem 1, we have (Bπ)n BQ∗ ≤ Q∗, for any π and n ≥ 0 (with
equality when n = 0). Then, we have

smaxα

π∈Π̂
smaxα

n′∈N
max

n∈{0,n′}
(Bπ)n BQ∗ = Q∗

Given an action VF Q, let us define two distribution over Π̂ and N , denoted by Ps,a

Π̂
and Ps,a

N such
that

Eπ∼Ps,a

Π̂
,n′∼Ps,a

N
max

n∈{0,n′}
(Bπ)n BQ (s, a) = smaxα

π∈Π̂
smaxα

n′∈N
max

n∈{0,n′}
(Bπ)n BQ (s, a)

It follows∥∥∥G̃Π̂NQ−Q∗
∥∥∥ =

∥∥∥∥smaxα

π∈Π̂
smaxα

n′∈N
max

n∈{0,n′}
(Bπ)n BQ−Q∗

∥∥∥∥
=

∥∥∥∥Eπ∼PΠ̂,n′∼PN
max

n∈{0,n′}
(Bπ)n BQ− Eπ∼PΠ̂,n′∼PN

max
n∈{0,n′}

(Bπ)n BQ∗
∥∥∥∥

≤ max
π∈Π̂

max
n∈N
∥(Bπ)n BQ− (Bπ)n BQ∗∥

≤ γ ∥Q−Q∗∥ .

□

Corollary 1 Assume Q0 ∈ l∞(S × A) and Πk,k ∈ N be a sequence of sets of behavioral policies

then the sequence (G̃Π̂k

N ◦G̃
Π̂k−1

N ◦. . .◦G̃Π̂1

N )[Q0],k ∈ N converges R-linearly to Q∗ with convergence
rate γ.

Proof: The proof follows from just proved point Theorem 2 and proceeds analogically to proof of
Theorem 1 point 3). □
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Theorem 3 (Comparison to Bellman Optimality Operator B) For all V, V0 ∈ l∞(S) holds:

1)
∥∥∥GΠ̂NV − V ∗

∥∥∥ ≤ ∥BV − V ∗∥;

2) Assume V0 ≤ V ∗. For any s we have
∣∣∣GΠ̂NV0 (s)− V ∗ (s)

∣∣∣ ≤ |BV0 (s)− V ∗ (s)|, where the

strict inequality holds as long as there exists π′ ∈ Π̂ such that argmaxn∈N

(
Bπ′

)n

BV0 (s) > 0.

Proof: 1) has been proved in Theorem 1.

2) Note that GΠ̂NV0 ≥ BV0. Further, if V0 ≤ V ∗, then GΠ̂NV0 ≤ V ∗ and BV0 ≤ V ∗ (as they are both
monotonic). Putting all together we obtain

0 ≤ V ∗ − GΠ̂NV0 ≤ V ∗ − BV0,

from which the desired inequality follows. □

Theorem 4 (Comparison to Multi-Step Bellman Expectation Operator) Assume that the VF Vk ≤

V ∗. Let V GΠ̂k
N

k+1 and V
Bπk

N

k+1 denote the k + 1-th VF of Highway Value Iteration with hyperparameter
N and Generalized Policy Iteration with hyperparameter N . We have∥∥∥∥V GΠ̂k

N
k+1 − V ∗

∥∥∥∥ ≤ min
N∈N

∥∥∥∥V Bπk
N+1

k+1 − V ∗
∥∥∥∥ (15)

Proof: First, for any N ∈ N , π′ ∈ Π̂, and any s ∈ S,

max
π∈Π̂

max
n∈N

(Bπ)n BVk (s) ≥
(
Bπ

′
)N

BVk (s)

According to Algorithm B.1, we know that πk ∈ Π̂k Then, for any s we have∣∣∣GΠ̂NVk (s)− V ∗ (s)
∣∣∣

=

∣∣∣∣max
π∈Π̂

max
n∈N

(Bπ)n BVk (s)− V ∗ (s)

∣∣∣∣
= V ∗ (s)−max

π∈Π̂
max
n∈N

(Bπ)n BVk (s)

= min
π∈Π̂

min
n∈N

(V ∗ (s)− (Bπ)n BVk (s))

= min
π∈Π̂

min
n∈N
|(Bπ)n BVk (s)− V ∗ (s)|

≤ min
n∈N
|(Bπk)

n BVk (s)− V ∗ (s)|

= min
N∈N

∣∣∣(Bπk)
N+1

Vk (s)− V ∗ (s)
∣∣∣

= min
N∈N

∣∣∣∣V Bπk
N+1

k+1 − V ∗ (s)

∣∣∣∣
from which the conclusion follows.

□

Assumption A(Π̂, n) Given set of behavioral policies Π̂, a lookahead depth n. Let Sπ′

s,n denote the
set of all possible visited states by executing policy π′ for n steps from state s. For each s ∈ S, there
exists at least one policy π′ ∈ Π̂ such that π′(s′) = π∗(s′) for any s′ ∈ Sπ′

s,n where π∗ refers to an
optimal policy. Note the quantification order: (∀s ∈ S, ∃π′ ∈ Π̂, ∀s′ ∈ Sπ′

s,n) : π
′(s′) = π∗(s′).

Theorem 5 (Better Contraction Rate) Assume N−1 ∈ N , Π̂ satisfies Assumption A(Π̂, N−1), and
V0 ∈ l∞(S) and V0 ≤ V ∗, the convergence rate of GΠ̂N is γN , i.e., ∥GΠ̂NV − V ∗∥ ≤ γN∥V − V ∗∥;
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Proof: 1) First, if Π̂ satisfies assumption Assumption A(Π̂, N −1), that is, starting from any s, there
exists at least one π ∈ Π̂ executing the optimal actions for N − 1 steps, then we have

GΠ̂NV = max
π∈Π̂

max
n′∈N

(Bπ)n
′
BV

≥ max
π∈Π̂

(Bπ)N−1 BV

≥
(
Bπ

∗
)N−1

BV.

Second, if V ≤ V ∗, then GΠ̂NV ≤ V ∗ (GΠ̂N is monotonic) and
(
Bπ∗)N−1 BV ≤ V ∗.

Finally, with the results above, we have∥∥∥GΠ̂NV − V ∗
∥∥∥ ≤ ∥∥∥∥(Bπ∗

)N−1

BV − V ∗
∥∥∥∥

=

∥∥∥∥(Bπ∗
)N−1

BV −
(
Bπ

∗
)N−1

BV ∗
∥∥∥∥

≤ γN ∥V − V ∗∥ .

□

To utilize the better convergence rates obtained in theorem 5, we have to be a bit more careful than
in theorem 1 point 3) and take care of the monotony requirements in theorem 5. This is done in the
following lemma.

Lemma 1 Assume a sequence of operators Tk, k ∈ N on L∞(S), where all Tk satisfy (∀V ∈
L∞(S), V ≤ V ∗) : ∥TkV − V ∗∥ ≤ γ′∥V − V ∗∥ with common convergence rate γ′ and common
limit V ∗. Further assume all Tk are monotonic and have fixed point V ∗. Then for any V0 ∈
l∞(S), V0 ≤ V ∗ the sequence (Tk ◦ Tk−1 ◦ . . . T1)[V0],k ∈ N converges R-linearly to V ∗ with
convergence rate γ′.

Proof: Assuming V0 ∈ l∞(S), V0 ≤ V ∗ and monotony and fixed point of operators T1, . . . , Tk−1

implies: V := (Tk−1 ◦ Tk−2 ◦ . . . T1)[V0] ≤ V ∗. Now we can apply the inequality with γ′ to get
∥(Tk ◦ Tk−1 ◦ . . . T1)[V0]− V ∗∥ ≤ γ′∥(Tk−1 ◦ . . . T1)[V0]− V ∗∥. By repeating the same argument
we end up with ∥(Tk ◦Tk−1 ◦ . . . T1)[V0]−V ∗∥ ≤ γ′k∥V0−V ∗∥ from which the statement follows.

□

Let us denote Π̂k (k ∈ N) the sequence of behavioral policies generated by Algorithm B.1. In Al-
gorithm B.1 the set of behavioral policies Π̂k changes by adding a greedy policy every K iterations.
Regardless of the sets Π̂k, the algorithm converges to the optimal value function form theorem 1
point 3). This means that more and more close to optimal policies are added to Π̂k set with growing
iteration number k. When assumption Assumption A(·, n) gets satisfied for some n at iteration k0,
then due to monotony of the sequence Π̂k,k ∈ N (i.e. the set Π̂k can just grow over time) Assump-
tion A(·, n) is satisfied for the whole suffix Π̂k,k ≥ k0. We can then use lemma 1 on corresponding
suffix of operator sequence GΠ̂k

N ,k ≥ k0 with γ′ = γn+1 to claim better convergence rate (γn+1) of
the corresponding suffix of value functions Vk,k ≥ k0. When S is finite this gives us monotonic im-
provement of the convergence rate of the sequence Vk,k ∈ N as Assumption A(·, n) gets eventually
satisfied for bigger and bigger n.

Theorem 6 (Highway Bellman Optimality Equation (Highway Equation) w.r.t. action VF Q) For
any Π̂ and N , we have

1. GΠ̂N is a contraction on complete metric space l∞(S × A), i.e. for any Q,Q′ ∈ l∞(S × A), we
have ∥GΠ̂NQ− GΠ̂NQ′∥ ≤ ∥BQ− BQ′∥ ≤ γ∥Q−Q′∥;

2. Q∗ is the only fixed point GΠ̂N . That is,

GΠ̂NQ∗ = Q∗, (16)
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and for all Q ∈ l∞(S ×A) holds Q = GΠ̂NQ if and only if Q = Q∗.

Proof: Note that GΠ̂N w.r.t action VF Q can also be represented by the Bellman Operators w.r.t Q,
i.e.,

GΠ̂NQ ≜ max
π∈Π̂

max
n∈N

(Bπ)n BQ.

Except for the change of value spaces (l∞(S × A) instead of l∞(S)) the proof is the same as for
Theorem 1). □

Lemma 2 If V0 ≤ V ∗, then (GΠ̂k

N ◦ GΠ̂k−1

N ◦ . . . ◦ GΠ̂1

N )V0 ≤ V ∗ for any k and any sequence of
policy sets Π̂1, Π̂2, . . . , Π̂k.

Proof: As GΠ̂N is monotonic (for any set of behavioral policies Π̂), we have (GΠ̂1

N )V0 ≤ (GΠ̂1

N )V ∗ =

V ∗. Further, applying GΠ̂2

N again to the both sides we obtain (GΠ̂2

N ◦ GΠ̂1

N )V0 ≤ (GΠ̂2

N )V ∗ = V ∗.
Repeting the argument further k − 2 times we get the result.

□

A.2 PROOF OF PROPERTIES OF MULTI-STEP BELLMAN OPTIMALITY OPERATOR

Recent works combined multi-step trajectory data and estimated the values of the most promising
actions without any correction for the off-policy data (Horgan et al., 2018; Barth-Maron et al., 2018).
The underlying operator is defined as

BΠ̂NQ (s0, a0) ≜Eπ∼P
Π̂

[
(Bπ)N−1BQ(s0, a0)

]
=Eπ∼P

Π̂
,τN

s0,a0
∼π

[
N−1∑
t=0

γtrt + γN max
a′
N

Q (sN , a′N )

]
(17)

where P
Π̂

is a distribution over Π̂ and P
Π̂
(π) is the probability of selecting π. Here we use π ∼ P

Π̂

and τNs0,a0
∼ π to formulate the procedure of prioritized experience replay (Schaul et al., 2015;

Horgan et al., 2018), which samples the trajectory data collected by various behavioral policies
according to a prior distribution. Although these methods have shown promising results in practice,
below we will show that this operator is generally biased w.r.t. the optimal action VF Q∗. In
other words, the corresponding fixed point Q∗

BΠ̂
N

is different from the optimal VF Q∗, and unbiased

learning only happens when all behavioral policies are optimal.

Theorem 7 (Properties of the Multi-step Bellman Optimality Operator BΠ̂N ) For any N ≥ 2,
1) The operator BΠ̂N is a contraction on complete metric space l∞(S × A), i.e., for any two vectors
Q,Q′ ∈ l∞(S ×A), ∥BΠ̂NQ− BΠ̂NQ′∥ ≤ γN∥Q−Q′∥.
2) Let Q∗

BΠ̂
N

denote the fixed point of BΠ̂N , i.e., BΠ̂NQ∗
BΠ̂

N

= Q∗
BΠ̂

N

, we have Q∗
BΠ̂

N

≤ Q∗.

3) Q∗
BΠ̂

N

= Q∗ if and only if any π ∈ Π̂, P
Π̂
(π) > 0 satisfies π(s) = π∗(s) for any s ∈ U := {s1 ∈

S|∃s0, a0, T (s1|s0, a0) > 0} and π∗ an optimal policy.

Before giving the proof of the above theorem, we’d like to mention a variant of our Highway Oper-
ator, named Expectation Highway Operator, defined as

GNΠ̂ Q(s0, a0) ≜ Eπ∼P
Π̂

[
max
n∈N

(Bπ)n−1BQ(s0, a0)

]
(18)

Compared to the above Multi-Step Bellman Optimality Operator in eq. (17), our operator uses max-
imization over lookahead depths instead of a fixed lookahead depth. It’s interesting to note that this
operator is unbiased w.r.t. Q∗ for any set of behavioral policies Π̂. Formally, we have the following
theorem.
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Theorem 8 For any Π̂, any P
Π̂

, and any N ,

1) GNΠ̂ is a contraction on complete metric space l∞(S × A), i.e., for any two vectors Q,Q′ ∈
l∞(S ×A), (∀Q ∈ l∞(S ×A)) : ∥GNΠ̂ Q− GNΠ̂ Q′∥ ≤ γ∥Q−Q′∥;
2) GNΠ̂ Q∗ = Q∗.

We now give the proofs of Theorem 7 and 8 respectively.

Proof of Theorem 7:

For simplicity, we will use P instead of P
Π̂

.

1)

∥BΠ̂NQ− BΠ̂NQ′∥ ≤ Eπ∼P

∥∥∥(Bπ)N−1 BQ− (Bπ)N−1 BQ′
∥∥∥

≤ γN ∥Q−Q′∥

2) Applying Banach’s fixed point theorem to BΠ̂N using the contraction result, we know that BΠ̂N has
only one fixed point.

Following the proof in Theorem 1, we have (Bπ)N−1BQ∗ ≤ Q∗ for any π and N ≥ 2. This implies
that

Q∗ ≥ Eπ(Bπ)N−1BQ∗ = BΠ̂NQ∗. (19)

Using monotony of BΠ̂N (Q ≤ Q′ implies BΠ̂NQ ≤ BΠ̂NQ′), we get the monotonic sequence Q∗ ≥
BΠ̂NQ∗ ≥ (BΠ̂N )2Q∗ ≥ · · · which converges to the fixed point Q∗

BΠ̂
N

based on the contraction property

and Banach fixed point theorem :

Q∗ ≥ BΠ̂NQ∗ ≥ (BΠ̂N )2Q∗ ≥ · · · ≥ (BΠ̂N )kQ∗ ↘ Q∗
BΠ̂

N

. (20)

3) For the implication ”⇐=”it suffices to show for all π ∈ Π̂, P(π) > 0 BπQ∗ = Q∗. Since then
we get

BΠ̂NQ∗ = Eπ∼P(Bπ)N−1Q∗ = Eπ∼PQ
∗ = Q∗

and the implication is proved. Thus let us fix π ∈ Π̂, P(π) > 0 and s0 ∈ S, a0 ∈ A the following
holds BπQ∗(s0, a0) = Es1∼T (·|s0,a0)Ea1∼π(·|s1)[r(s0, a0) + γQ∗(s1, a1)]. Since in the first expec-
tation we just care about s1 for which T (s1|s0, a0) > 0, we can assume s1 ∈ U . As π on U can be
replaced by the optimal policy π∗ from the assumption, we get

BπQ∗(s0, a0) = Es1∼T (·|s0,a0)Ea1∼π(·|s1)[r(s0, a0) + γQ∗(s1, a1)]

= Es1∼T (·|s0,a0)Ea1∼π∗(·|s1)[r(s0, a0) + γQ∗(s1, a1)] = Q∗(s0, a0).

The remaining implication ”=⇒” will be proved by contradiction. Assume that the conclusion does
not hold, i.e. there exist π ∈ Π̂, P(π) > 0 and s1 ∈ U such that P(π) > 0 and π(·|s1) is not
optimal. Since s1 ∈ U there exists s0 ∈ S, a0 ∈ A such that T (s1|s0, a0) > 0. First we aim to
prove inequality

BπQ∗(s0, a0) < Q∗(s0, a0).

Since π(·|s1) assigns positive probability to non-optimal action, it is easy to obtain (especially for
finite A) that

Ea1∼π(·|s1)Q
∗(s1, a1) < V ∗(s1).

For other states different from s1 we can still have equality but the countable sum leaves the inequal-
ity strict

(BπQ∗)(s0, a0) = r(s0, a0) + Es′1∼T (·|s0,a0)Ea1∼π(·|s′1)Q
∗(s′1, a1)

< r(s0, a0) + Es′1∼T (·|s0,a0)V
∗(s′1) = Q∗(s0, a0).

Now since (Bπ)N−2Q∗ ≤ Q∗ we get

(Bπ)N−1BQ∗ = (Bπ)N−1Q∗ = Bπ(Bπ)N−2Q∗ ≤ BπQ∗.

17
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Using previous result we obtain

((Bπ)N−1BQ∗)(s0, a0) ≤ BπQ∗(s0, a0) < Q∗(s0, a0),

and applying expectation with finite set Π̂ using P(π) > 0 we get

BΠ̂NQ∗(s0, a0) < Q∗(s0, a0),

which can be combined with eq. (20) to show

Q∗
BΠ̂

N

(s0, a0) < Q∗(s0, a0).

□

We now give proof of Theorem 8.

Proof of Theorem 8: 1) We first prove the contraction property,

∥GNΠ̂ Q− GNΠ̂ Q′∥ ≤
∥∥∥∥Eπ∼PΠ̂

[
max
n∈N

(Bπ)n BQ
]
− Eπ∼PΠ̂

[
max
n∈N

(Bπ)n BQ′
]∥∥∥∥

≤ Eπ∼PΠ̂
max
n∈N
∥(Bπ)n BQ− (Bπ)n BQ′∥

≤ γ ∥Q−Q′∥

2) Similar to the proof in Theorem 1, (Bπ)n BQ∗ ≤ Q∗ for any π and n ≥ 0 (and the equality holds
when n = 0), we have

GNΠ̂ Q∗ ≜ Eπ∼PΠ̂

[
max
n∈N

(Bπ)n BQ∗
]
= Q∗

□

A.3 DISCUSSION ABOUT SOFTMAX HIGHWAY OPERATOR

The Softmax Highway Operator is defined by

G̃Π̂NQ ≜ smaxα

π∈Π̂
smaxα

n′∈N
max

n∈{0,n′}
(Bπ)nBQ,

If we remove the maxn∈{0,n′} in the above operator, i.e.,

smaxα

π∈Π̂
smaxα

n′∈N
(Bπ)nBQ

then the above operator is biased w.r.t. Q∗. This operator can be regarded as an extension to the
multi-step Bellman Optimality Operator BΠ̂n , average over various n with weights smaxα

n′∈N
(·). There-

fore, it has similar biased property to BΠ̂n . However, simply adding maxn∈{0,n′} with minor compu-
tational cost, our Softmax Highway operator is unbiased while alleviating the overestimation issue
and improving the exploration.

A.4 MULTI-STEP IMPORTANCE SAMPLING-BASED BELLMAN EXPECTATION OPERATOR

In this section, we describe the classical off-policy learning method based on importance sampling
(IS). IS-based off-policy methods evaluate the value function of a policy π′ (called target policy)
using the data collected by a different policy π (called behavior policy). The underlying opera-
tor, called Importance Sampling-based Bellman Expectation Operator (Sutton & Barto, 2018), is
defined as follows,

B̆π
′

π Q(s, a) ≜ Es′∼T (·|s,a),a′∼π(·|s′)

[
π′(a′|s′)
π(a′|s′)

(r(s, a) + γQ(s′, a′))

]
(21)
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To utilize the multi-step data collected by different behavior policies, the above operator can be ex-
tended to a multi-step version with a set of behavioral policies (we call Multi-Step IS-based Bellman
Expectation Operator) (Sutton & Barto, 2018), which is defined as

(Bπ,Π̂N Q)(s0, a0) ≜ Eπ∼P
Π̂

[
(B̆π

′

π )NQ(s0, a0)
]

= Eπ∼P
Π̂
,τN

s0
∼π

[
N−1∑
t=0

γtζ1:trt + γNζ1:NQ(sN , aN )

] (22)

where N is the lookahead depth/bootstrapping step; τNs0 = (s0, a0, s1, a1, s2, a2, · · · , sN ); τNs0 ∼ π

is the trajectory starting from s0 by executing policy π for N steps; and ζ1:t ≜
∏t

t′=1
π′(at′ |st′ )
π(at′ |st′ )

is
the product of IS ratios. The products of IS ratios could cause high variance.

B METHOD

B.1 ALGORITHMS

B.1.1 HIGHWAY VALUE ITERATION

The Highway Value Iteration algorithm is presented as Algorithm B.1.

B.1.2 HIGHWAY Q-LEARNING

The Highway Q-Learning algorithm is presented as Algorithm B.3.

B.1.3 HIGHWAY DQN

The Highway DQN algorithm is presented as Algorithm B.4.

C EXPERIMENTAL RESULTS

The code of this paper is publicly-available at https://anonymous.4open.science/r/
Highway-Reinforcement-Learning-4202.

C.1 EXPERIMENTS WITH MODEL-BASED ALGORITHMS

C.1.1 DETAILS OF ENVIRONMENTS

Multi-Room is a grid world environment with multiple rooms connected by doors. The agent’s
goal is to reach a goal square in the opposite corner and get a reward (r = 1000). In addition,
the agent will get a small reward r = 0.001 when it finds the exit door of the room. We use the
implementations based on the gym-minigrid (Chevalier-Boisvert et al., 2018).

Algorithm B.1 Highway Value Iteration

Input: Initial set of behavioral policies Π̂0; the set of lookahead depths N ; interval for adding
new policy K .
Initialize: Initial VF V0 ∈ R|S|, ϵ.
for k = 1, 2, . . . do

if (k − 1) mod K == 0 then
πk(s) = argmaxa[r(s, a) + γEs′ [Vk−1(s

′)]]

Π̂k = Π̂k−1 ∪ {πk}
end if
Vk ← GΠ̂k

N Vk−1

if ∥Vk − Vk−1∥∞ ≤ ϵ then break end if
end for
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Algorithm B.2 Generalized Policy Iteration (Sutton & Barto, 2018)

Input: the lookahead depth N .
Initialize: Initial VF V0 ∈ R|S|, ϵ.
for k = 1, 2 . . . do

πk(s) = argmaxa[r(s, a) + γEs′ [Vk−1(s
′)]]

Vk ← (Bπk)
◦N

Vk−1

if ∥Vk − Vk−1∥∞ ≤ ϵ then break end if
end for

Algorithm B.3 Highway Q-Learning
1: Input: Set of lookahead depthsN ; Number of behavior policies M (for computing target Q value); Epochs

of running algorithm Irun; Number of behavior policies M (for computing target Q value); Number of
searched behavior policies M ; Epochs of rolling-out policy Irollout; Epochs of updating value function
Iupdate; Initial value function Q0 ∈ R|S|×|A|; Exploration rate ϵ.

2: Initialize: k = 0; State-action replay buffer D = ∅; .
3: for m = 1, · · · , Irun do
4: Set πm to be ϵ-greedy policy with Qk

5: D(m)
s,a ← ∅, for all (s, a) ∈ S ×A

6: for j = 1, · · · , Irollout do
7: Collect a trajectory τ = (s0, a0, r0, s1, a1, r1, · · · , sT ) with πm.
8: for t = 0, 1, · · · , T − 1 do
9: Add (st, at, rt, st+1, at+1, rt+1, · · · , sT ) to D(m)

st,at

10: Add (st, at) to D
11: end for
12: end for
13: for j = 1, · · · , Iupdate do
14: Sample a (s0, a0) from D .
15: Update the value function by the following rules

Qk+1 (s0, a0) = max
m∈Ms0,a0

max
n∈N

ÊD(m)
s0,a0

[
Gn+1

Qk
(τn+1

s0,a0
)
]

where ÊD(m)
s0,a0 [·] = 1

D(m)
s,a

∑
rn+1
s0,a0

∈D(m)
s0,a0

[·]

Ms0,a0 = {m1, · · · ,mM},mi ∼ Uniform
({

m′∣∣|D(m′)
s0,a0
| ̸= 0

})
16: k = k + 1
17: end for
18: end for

C.1.2 DETAILS OF ALGORITHMS

We compare our Highway Value Iteration to Policy Iteration and Value Iteration. For Policy It-
eration, the lookahead step is set by N = 10 (see Algorithm B.2). For our Highway Value
Iteration method, the interval of adding policy is set by K = 7; the set of lookahead depths
N = {0, 1, 2, · · · , 9}; the size of behavioral policies is set by |Π̂| = 5. The error bound
(∥Vk − Vk−1∥∞ ≤ ϵ) for all algorithms is set by ϵ = 10−10.

C.2 EXPERIMENTS OF MODEL-FREE ALGORITHMS IN TOY TASKS

Here we present the details of model-free-algorithms in artificial tasks. We adopt the experimental
setting of Arjona-Medina et al. (2019).
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Algorithm B.4 Highway DQN
Input: Set of lookahead depthsN ; Number of behavior policies M (for computing target Q value); Epochs
of running algorithm Irun; Epochs of rolling-out policy Irollout; Epochs of updating value function Iupdate;
Batch size of updating value function b; Initial parameter θ of Q function; Exploration rate ϵ; Temperature
hyperparameter α for softmax function smaxα.
Initialize: State-action replay buffer D = ∅; Initialize parameter θ′ of target Q function, θ′ ← θ.
for m = 1, · · · , Irun do

Set πm to be ϵ-greedy policy with Qθ

D(m)
s,a ← ∅, for all (s, a) ∈ S ×A

for j = 1, · · · , Irollout do
Collect a trajectory τ = (s0, a0, r0, s1, a1, r1, · · · , sT ) with πm

for t = 0, 1, · · · , T − 1 do
Add (st, at, rt, st+1, at+1, rt+1, st+2, at+2, · · · , sT ) to D(m)

st,at

Add (st, at) to D
end for

end for
for j = 1, · · · , Iupdate do

Sample a mini-batch D̂ = {(s, a)} from D .
Update θ by minimizing the following loss function:

L (θ) =
∑

(s,a)∈D̂

[
Qθ (s, a)− smaxα

m∈Ms,a

smaxα

n′∈N
max

n∈{0,n′}
ÊD(m)

s,a

[
Gn+1

Qθ′
(τn+1

s,a )
]]2

(23)

where ÊD(m)
s0,a0 [·] = 1

D(m)
s,a

∑
rn+1
s0,a0

∈D(m)
s0,a0

[·]

Ms0,a0 = {m1, · · · ,mM},mi ∼ Uniform
({

m′∣∣|D(m′)
s0,a0
| ̸= 0

})
end for
θ′ ← θ every C timesteps

end for

• each move: -0.01
• achieving goal: 1000
• achieving the exit

door: 0.001
• achieving the entry

door: -1

Start

Door

Door

Goal

Figure 5: The illustration of the Minimalistic Gridworld Environment

21



Under review as a conference paper at ICLR 2023

C.2.1 DETAILS OF ENVIRONMENTS

We evaluate the model-free algorithms on two toy tasks involving delayed rewards (Arjona-Medina
et al., 2019), where a reward is only provided at the end of each trial and is associated with the
previous actions. For example, in task “Trace Back,” the final reward depends on the first two
actions. Each task is run with 100 random seeds. In task “Choice,” the stochastic reward depends
on the first action at the beginning; the final reward depends on the first two actions. Please refer to
Arjona-Medina et al. (2019) for more details.

C.2.2 ALGORITHMIC DETAILS

The following methods are compared:

• RUDDER with reward redistribution for Q-value estimation, and RUDDER applied on top
of Q-learning.

• Q-learning with eligibility traces according to Watkins (Q(λ)).

• SARSA with eligibility traces (SARSA(λ)).

• Monte Carlo.

For RUDDER, we use the default setting of Arjona-Medina et al. (2019). For Q(λ) and SARSA(λ),
the hyperparameter of eligibility traces is λ = 0.9. For Q(λ), we use Watkins’ implementation.

The algorithms are evaluated until the task is solved. For MC, Q-values are the exponential moving
average of the episode return. In all experiments, an ϵ-greedy policy with ϵ = 0.2 is adopted.

For our Highway Q-Learning, the set of lookahead depths N is set by {0, 1, 2, · · · , N − 1}, where
N = T − t is set to be the length until the end (T is the length of trajectory and t the timestep of
current state). Epochs of rolling-out policy is set by Irollout = 1. Epochs of updating value function
is set by Iupdate = T .

C.3 EXPERIMENTS OF MODEL-FREE ALGORITHMS IN MINATAR TASKS

C.3.1 ENVIRONMENTAL DETAILS

This paper uses 5 games in MinAtar (Young & Tian, 2019), including Asterix, Breakout, Free-
way, Seaquest, and Space Invaders. The details of the environments can be found at https:
//github.com/kenjyoung/MinAtar.

C.3.2 DETAILS OF ALGORITHMS

We implement our and competing methods by extending the implementation of Maxmin DQN Lan
(2019). The hyperparameters of training deep neural network are provided in Table 2.

We reuse the hyper-parameters and settings of neural networks in the Maxmin DQN paper (Lan
et al., 2020). For Maxmin DQN, the best number of target networks (a hyperparameter) was chosen
from [2, 3, 4, 5, 6, 7, 8, 9] and the best learning rates were chosen from [3×10−3; 3×10−4; 3×10−5].
The set of lookahead depths of our Highway DQN is set by {0, 1, · · · , N − 1}, and the lookahead
depth/bootstrapping step of Multi-Step DQN and Retrace(λ) is set by N . For our Highway DQN,
Multi-Step DQN and Multi-Step SARSA, the best hyperparameter N was chosen from [4, 8, 12];
the best learning rate from [3× 10−3; 3× 10−4], and the best number of target networks was chosen
from [2, 4, 6]. For Retrace(λ), λ is set by 1 according to the suggestion of Retrace(λ) paper (Munos
et al., 2016). For our Highway DQN, the best hyperparameter of softmax temperature α was chosen
from {0.1, 0.5}. Epochs of rolling-out policy is set by Irollout = 1.

In practice, we adopt several measures to accelerate the computation of Highway DQN. We cache
the Q values generated by the target network for data (s, a) such that they can be reused when the
data is sampled again for training until the target network is updated. With the cached Q values, all
we need is a softmax over |N | × |K| numbers, which is typically fast on GPUs.

22

https://github.com/kenjyoung/MinAtar
https://github.com/kenjyoung/MinAtar


Under review as a conference paper at ICLR 2023

Hyperparameter Value
Optimizer RMSprop

Batch size 32

Gradient Clipping Gym:5
MinAtari:1

Target network update frequency Gym:200
MinAtari:1000

Hidden units of Q network

Gym: Fully-connected layer (64,64)
MinAtari:

Conv. layer(out channels=16, kernel size=3, stride=1)
Conv. layer(out channels=16, kernel size=3, stride=1)

Activation function ReLU

Buffer size Gym:104

MinAtari:105

Discount factor γ 0.99

Exploration rate ϵ statr:1.0; end: 0.1; decay type: linear

Table 2: Hyperparameters of the implemented algorithms. We reused hyperparameters and settings
of neural networks in the Maxmin DQN paper (Lan et al., 2020).

1 2 3 4 5

Timestep (×106) 1e6

40

60

80

100

120

140

160

180

sc
or

es

SpaceInvaders

1 2 3 4 5

Timestep (×106) 1e6

8

10

12

14

16

18

Q 
Va

lu
es

SpaceInvaders

(a) Varying softmax temperatures.
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Figure 6: (a) Performance (left) and Q values (right) of Highway DQN using varying softmax
temperatures α. (b) Corresponding results using varying numbers of target networks. Average
over 5 seeds, 1 standard deviation.

C.4 ADDITIOANL RESULTS ON ABLATION STUDY

We evaluate our Highway DQN with varying softmax temperature α and number of target networks.
As shown in Fig. 6a and Fig. 6b, appropriate softmax temperature α and number of target networks
can reduce the overestimation of Q values and benefit the performance of the algorithm.
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