
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROGRESSIVE COMPRESSION WITH
UNIVERSALLY QUANTIZED DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion probabilistic models have achieved mainstream success in many gen-
erative modeling tasks, from image generation to inverse problem solving. A
distinct feature of these models is that they correspond to deep hierarchical latent
variable models optimizing a variational evidence lower bound (ELBO) on the
data likelihood. Drawing on a basic connection between likelihood modeling and
compression, we explore the potential of diffusion models for progressive coding,
resulting in a sequence of bits that can be incrementally transmitted and decoded
with progressively improving reconstruction quality. Unlike prior work based on
Gaussian diffusion or conditional diffusion models, we propose a new form of
diffusion model with uniform noise in the forward process, whose negative ELBO
corresponds to the end-to-end compression cost using universal quantization. We
obtain promising first results on image compression, achieving competitive rate-
distortion-realism results on a wide range of bit-rates with a single model, bringing
neural codecs a step closer to practical deployment.

1 INTRODUCTION

A diffusion probabilistic model can be equivalently viewed as a deep latent-variable model (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Kingma et al., 2021), a cascade of denoising autoencoders that
perform score matching at different noise levels (Vincent, 2011; Song & Ermon, 2019), or a neural
SDE (Song et al., 2021b). Here we take the latent-variable model view and explore the potential of
diffusion models for communicating information. Given the strong performance of these models on
likelihood estimation (Kingma et al., 2021; Nichol & Dhariwal, 2021), it is natural to ask whether
they also excel in the closely related task of data compression (MacKay, 2003; Yang et al., 2023).

Ho et al. (2020); Theis et al. (2022) first proposed a progressive compression codec based on a
diffusion model and demonstrated its strong potential for data compression. Such a progressive
codec is desirable as it allows us to decode data reconstructions from partial bit-streams, starting
from lossy reconstructions at low bit-rates to perfect (lossless) reconstructions at high bit-rates, all
with a single model. The decoder’s ability to decode intermediate reconstructions without having to
wait for all bits to be received is a highly useful feature available in many traditional codecs, such
as JPEG. The use of diffusion models has the additional advantage that we can, in theory, obtain
perfectly realistic reconstructions (Theis et al., 2022), even at ultra-low bit-rates. Unfortunately, the
proposed method requires the communication of Gaussian samples across many steps, which remains
intractable because of an exponential runtime complexity (Goc & Flamich, 2024).

In this work, we take first steps towards a diffusion-based progressive codec that is computationally
tractable. The key idea is to replace Gaussian distributions in the forward process with suitable
uniform distributions and accordingly adjust the reverse process distributions. These modifications
allow the application of universal quantization (Zamir & Feder, 1992) for simulating the uniform
noise channel, avoiding the intractability of Gaussian channel simulation in (Theis et al., 2022).

Specifically, our contributions are as follows

1. We introduce a new form of diffusion model, Universally Quantized Diffusion Model
(UQDM), that is suitable for end-to-end learned progressive data compression. Unlike in the
closely-related Gaussian diffusion model (Kingma et al., 2021), compression with UQDM

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Example reconstructions from several traditional and neural codecs, chosen at roughly
similar bitrates. At high bitrates, our UQDM method preserves details (e.g. shape and color pattern
of the spider, or sharpness of the calligraphy) better than other neural codecs. Note that among the
methods considered here, only ours and CTC (Jeon et al., 2023) implement progressive coding.

is performed efficiently with universal quantization, avoiding the generally exponential
runtime of relative entropy coding (Agustsson & Theis, 2020; Goc & Flamich, 2024).

2. We investigate design choices of UQDM, specifying its forward and reverse processes
largely by matching the moments of those in Gaussian diffusion, and obtain the best results
when learning the reverse-process variance as inspired by (Nichol & Dhariwal, 2021).

3. We provide theoretical insight into UQDM in relation to VDM, and derive the continuous-
time limit of its forward process approaching that of the Gaussian diffusion. These results
may inspire future research in improving the modeling formalism and training efficiency.

4. We apply UQDM to image compression, and obtain competitive rate-distortion and rate-
realism results which exceed existing progressive codecs at a wide range of bit-rates (up to
lossless compression), all with a single model. Our results demonstrate, for the first time,
the high potential of an unconditional diffusion model as a practical progressive codec.

2 BACKGROUND

Diffusion models Diffusion probabilistic models learn to model data by inverting a Gaussian
noising process. Following the discrete-time setup of VDM (Kingma et al., 2021), the forward
noising process begins with a data observation x and defines a sequence of increasingly noisy latent
variables zt with a conditional Gaussian distribution,

q(zt|x) = N (αtx, σ
2
t I), t = 0, 1, ..., T.

Here αt and σ2
t are positive scalar-valued functions of time, with a strictly monotonically increasing

signal-to-noise-ratio SNR(t) := α2
t /σ

2
t . The variance-preserving process of DDPM (Ho et al.,

2020) corresponds to the choice α2
t = 1 − σ2

t . The reverse-time generative model is defined by a
collection of conditional distributions p(zt−1|zt), a prior p(zT) = N (0, I), and likelihood model
p(x|z0). The conditional distributions p(zt−1|zt) := q(zt−1|zt,x = x̂θ(zt, t)) are chosen to have
the same distributional form as the “forward posterior” distribution q(zt−1|zt,x), with x estimated
from its noisy version zt through the learned denoising model x̂θ. Further details on the forward and
backward processes can be found in Appendix A and B. Throughout the paper the logarithms use

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

base 2. The model is trained by minimizing the negative ELBO (Evidence Lower BOund),

L(x) = KL(q(zT |x) ∥ p(zT))︸ ︷︷ ︸
:=LT

+E [− log p(x|z0)]︸ ︷︷ ︸
:=Lx|z0

+

T∑
t=1

E [KL(q(zt−1|zt,x) ∥ p(zt−1|zt))]︸ ︷︷ ︸
:=Lt−1

, (1)

where the expectations are taken with respect to the forward process q(z0:T |x). Kingma et al. (2021)
showed that a larger T corresponds to a tighter bound on the marginal likelihood log p(x), and as
T → ∞ the loss approaches the loss of a class of continuous-time diffusion models that includes the
ones considered by Song et al. (2021b).

Relative Entropy Coding (REC) Relative Entropy Coding (REC) deals with the problem of
efficiently communicating a single sample from a target distribution q using a coding distribution
p. Suppose two parties in communication have access to a common “prior” distribution p and
pseudo-random number generators with a common seed; a Relative Entropy Coding (REC) method
(Flamich et al., 2020; Theis & Ahmed, 2022) allows the sender to transmit a sample z ∼ q using
close to KL(q ∥ p) bits, up to a logarithmic overhead. At a high level, a typical REC method works as
follows. The sender generates a (possibly large) number of candidate z samples from the prior p,

zn ∼ p, n = 1, 2, 3, ...,

and appropriately chooses an index K such that zK is a fair sample from the target distribution, i.e.,
zK ∼ q. The chosen index K ∈ N is then converted to binary and transmitted to the receiver. The
receiver recovers zK by drawing the same sequence of z candidates from p (made possible by using
a pseudo-random number generator with the same seed as the sender) and stopping at the Kth one.

A major challenge of REC algorithms is that their computational complexity generally scales ex-
ponentially with the amount of information being communicated (Agustsson & Theis, 2020; Goc
& Flamich, 2024). As an example, the MRC algorithm (Cuff, 2008; Havasi et al., 2018) draws M
candidate samples and selects K ∈ {1, 2, , ...,M} with a probability proportional to the importance
weights, q(zn)/p(zn), n = 1, ...,M ; similarly to importance sampling, M needs to be on the order of
2KL(q∥p) for zK to be (approximately) a fair sample from q, thus requiring a number of drawn samples
that scales exponentially with the relative entropy KL(q∥p) (and a coding cost of logM ≈ KL(q∥p)
bits). The exponential complexity prevents, e.g., naively communicating the entire latent tensor z
in a Gaussian VAE for lossy compression, as the relative entropy KL(q(z|x) ∥ p(z)) easily exceeds
thousands of bits, even for a small image. This difficulty can be partly remedied by performing REC
on sub-problems with lower dimensions (Flamich et al., 2020; 2022) for which computationally
viable REC algorithms exist (Flamich et al., 2024; Flamich, 2024), but at the expense of worse bitrate
efficiency due to the accumulation of codelength overhead across the dimensions.

Progressive Coding with Diffusion A progressive compression algorithm allows for lossy recon-
structions with improving quality as more bits are sent, up till a lossless reconstruction. This results
in variable-rate compression with a single bitstream, and is highly desirable in practical applications.

As we will explain, the NELBO of a diffusion model (eq. (1)) naturally corresponds to the lossless
coding cost of a progressive codec, which can be optimized end-to-end on the data distribution of
interest. Given a trained diffusion model, a REC algorithm, and a data point x, we can perform
progressive compression as follows (Ho et al., 2020; Theis et al., 2022): Initially, at time T , the sender
transmits a sample of q(zT |x) under the prior p(zT), using LT bits on average. At each subsequent
time step t, the sender transmits a sample of q(zt−1|zt,x) given the previously transmitted zt, under
the (conditional) prior p(zt−1|zt), using approximately Lt−1 bits. Finally, given z0 at t = 0, x can
be transmitted losslessly under the model p(x|z0) by an entropy coding algorithm (e.g., arithmetic
coding), with a codelength close to Lx|z0

bits (Polyanskiy & Wu, 2022, Chapter 13.1). Thus, the
overall cost of losslessly compressing x sums up to L(x) bits, as in the NELBO in eq. (1). Crucially, at
any time t, the receiver can use the most-recently-received zt to obtain a lossy data reconstruction x̂t.
For this, several options are possible: Ho et al. (2020) consider using the diffusion model’s denoising
prediction x̂θ(zt), while Theis et al. (2022) consider sampling x̂t ∼ p(x|zt), either by ancestral
sampling or a probability flow ODE (Song et al., 2021b). Note that if the reverse generative model
captures the data distribution perfectly, then x̂t ∼ p(x|zt) follows the same marginal distribution as
the data and has the desirable property of perfect realism, i.e., being indistinguishable from real data
(Theis et al., 2022).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Universal Quantization Although general-purpose REC algorithms suffer from exponential run-
time (Agustsson & Theis, 2020; Goc & Flamich, 2024), efficient REC algorithms exist if we are
willing to restrict the kinds of target and coding distributions allowed (Flamich et al., 2022; 2024).
Here, we focus on the special case where the target distribution q is given by a uniform noise chan-
nel, which is solved efficiently by Universal Quantization (UQ) (Roberts, 1962; Zamir & Feder,
1992). Specifically, suppose we (the sender) have access to a scalar r.v. Y ∼ pY , and would like to
communicate a noise-perturbed version of it,

Ỹ = Y + U,

where U ∼ U(−∆/2,∆/2) is an independent r.v. with a uniform distribution on the interval [−∆/2,∆/2].
UQ accomplishes this as follows: Step 1. Perturb Y by adding another independent noise U ′ ∼
U(−∆/2,∆/2), and quantize the result to the closet quantization point K on a uniform grid of
width ∆, i.e., computing K := ∆⌊Y+U ′

∆ ⌉ where ⌊·⌉ denotes rounding to the nearest integer. Step
2. Entropy code and transmit K under the conditional distribution of K given U ′. Step 3. The
receiver draws the same U ′ by using the same random number generator and obtains a reconstruction
Ŷ := K − U ′ = ∆⌊Y+U ′

∆ ⌉ − U ′. Zamir & Feder (1992) showed that Ŷ indeed has the same
distribution as Ỹ , and the entropy coding cost of K is related to the differential entropy of Ỹ via

H[K|U ′] = I(Y ; Ỹ) = h(Ỹ)− log(∆).

In the above, the optimal entropy coding distribution P(K|U ′ = u′) is obtained by discretizing
pỸ = pY ⋆ U(−∆/2,∆/2) on a grid of width ∆ and offset by U ′ = u′ (Zamir & Feder, 1992), where
⋆ denotes convolution. If the true pỸ is unknown, we can replace it with a surrogate density model
fθ(ỹ) during entropy coding and incur a higher coding cost,

Ey∼PY
[KL(u(·|y) ∥ fθ(·))] ≥ I(Y ; Ỹ), (2)

where u(·|y) denotes the density function of the uniform noise channel qỸ |Y=y = U(y−∆/2, y+∆/2).
It can be shown that the optimal choice of fθ is the convolution of pY with U(−∆/2,∆/2). Therefore,
as in prior work (Agustsson & Theis, 2020; Ballé et al., 2018), we will choose fθ to have the form of
another underlying density model gθ convolved with uniform noise, i.e.

fθ(·) = gθ(·) ⋆ U(· ;−∆/2,∆/2). (3)

3 UNIVERSALLY QUANTIZED DIFFUSION MODELS

We follow the same conceptual framework of progressive compression with diffusion models as in
(Ho et al., 2020; Theis et al., 2022), reviewed in the previous section. While Theis et al. (2022) use
Gaussian diffusion, relying on the communication of Gaussian samples which remains intractable
in higher dimensions, we want to apply UQ to similarly achieve a compression cost given by the
NELBO, while remaining computationally efficient. We therefore introduce a new model with a
modified forward process and reverse process, which we term universally quantized diffusion model
(UQDM), substituting Gaussian noise channels for uniform noise channels.

3.1 FORWARD PROCESS

The forward process of a standard diffusion model is often given by the transition kernel q(zt+1|zt)
(Ho et al., 2020) or perturbation kernel q(zt|x) (Kingma et al., 2021), which in turn determines the
conditional (reverse-time) distributions q(zT |x) and {q(zt−1|zt,x)|t = 1, ..., T} appearing in the
NELBO in eq. (1). As we are interested in operationalizing and optimizing the coding cost associated
with eq. (1), we will directly specify these conditional distributions to be compatible with UQ, rather
than deriving them from a transition/perturbation kernel. We thus specify the forward process with
the same factorization as in DDIM (Song et al., 2021a) via q(z0:T |x) = q(zT |x)

∏T
t=1 q(zt−1|zt,x),

and consider a discrete-time non-Markovian process as follows,{
q(zT |x) := N (αTx, σ

2
T I),

q(zt−1|zt,x) := U
(
b(t)zt + c(t)x− ∆(t)

2 , b(t)zt + c(t)x+ ∆(t)
2

)
, t = 1, 2, ..., T,

(4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where b(t), c(t), and ∆(t) are scalar-valued functions of time. Note that unlike in Gaussian diffusion,
our q(zt−1|zt,x) is chosen to be a uniform distribution so that it can be efficiently simulated with UQ
(as a result, our q(zt|x) for any t ̸= T does not admit a simple distributional form). There is freedom
in these choices of the forward process, but for simplicity we base them closely on the Gaussian case:
we choose a standard isotropic Gaussian q(zT |x), and set b(t), c(t), ∆(t) so that q(zt−1|zt,x) has
the same mean and variance as in the Gaussian case (see Appendix A for more details):

b(t) =
αt

αt−1

σ2
t−1

σ2
t

, c(t) = σ2
t|t−1

αt−1

σ2
t

, ∆(t) =
√
12σt|t−1

σt−1

σt
, with σ2

t|t−1 := σ2
t −

α2
t

α2
t−1

σ2
t−1.

We note here that q(zt|zT ,x) can be written as a sum of uniform distributions, which as we increase
T → ∞, converges in distribution to a Gaussian by the Central Limit Theorem. Under the assump-
tions αT = 0 and σT = 1, the forward process q(zt|x) therefore also converges to a Gaussian,
showing that our forward process has the same underlying continuous-time limit as in VDM (Kingma
et al., 2021). See Appendix A.3 for details and proof.

As in VDM (Kingma et al., 2021), the forward process schedules (i.e., αt and σt, as well as
b(t), c(t),∆(t)) can be learned end-to-end, e.g., by parameterizing σ2

t = sigmoid(ϕ(t)), where ϕ is
a monotonic neural network. We did not find this to yield significant improvements compared to
using a linear noise schedule similar to the one in (Kingma et al., 2021).

3.2 BACKWARD PROCESS

Analogously to the Gaussian case, we want to define a conditional distribution p(zt−1|zt) that
leverages a denoising model x̂t = x̂θ(zt, t) and closely matches the forward “posterior” q(zt−1|zt,x).
In our case, the forward “posterior” corresponds to a uniform noise channel with width ∆(t), i.e.,
zt−1 = b(t)zt + c(t)x+∆(t)ut,ut ∼ U(−1/2, 1/2); to simulate it with UQ, we choose a density
model for zt−1 with the same form as the convolution in eq. (3). Specifically, we let

p(zt−1|zt) = gθ(zt−1; zt, t) ⋆ U(−∆(t)/2,∆(t)/2), (5)

where gθ(zt−1; zt, t) is a learned density chosen to match q(zt−1|zt,x). Recall in Gaussian diffusion
(Kingma et al., 2021), p(zt−1|zt) is chosen to be a Gaussian of the form q(zt−1|zt,x = x̂θ(zt; t)),
i.e., the same as q(zt−1|zt,x) but with the original data x replaced by a denoised prediction x =
x̂θ(zt; t). For simplicity, we base gθ closely on the choice of p(zt−1|zt) in Gaussian diffusion, e.g.,

gθ(zt−1; zt, t) = N (b(t)zt + c(t)x̂θ(zt; t), σ
2
Q(t)I) (6)

or a logistic distribution with the same mean and variance,

gθ(zt−1; zt, t) = Logistic
(
b(t)zt + c(t)x̂θ(zt; t), σ

2
Q(t)I

)
. (7)

where σ2
Q(t) is the variance of the Gaussian forward “posterior”, and we use the same noise-prediction

network for x̂θ as in (Kingma et al., 2021). We found the Gaussian and logistic distributions to
give similar results, but the logistic to be numerically more stable and therefore adopt it in all our
experiments.

Inspired by (Nichol & Dhariwal, 2021), we found that learning a per-coordinate variance in the reverse
process to significantly improve the log-likelihood, which we demonstrate in Sec. 5. In practice, this
is implemented by doubling the output dimension of the score network to also compute a tensor of
scaling factors sθ(zt), so that the variance of gθ is σ2

θ = σ2
Q(t)⊙ sθ(zt). Refer to Appendix B.2 for

a more detailed analysis of the log-likelihood and how a learned variance is beneficial.

We note that other possibilities for gθ exist besides Gaussian or logistic, e.g., mixture distributions
(Cheng et al., 2020), which trade off higher computation cost for increased modeling power. Analyz-
ing the time reversal of the our forward process, similarly to (Song et al., 2021a), may also suggest
better choices of the reverse-time density model gθ. We leave these explorations to future work.

We adopt the same form of categorical likelihood model p(x|z0) as in VDM (Kingma et al., 2021),
as well as the use of Fourier features.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Encoding

zT ∼ p(zT)
for t = T, . . . , 2, 1 do

Compute the parameters of p(zt−1|zt)
▷ Send zt−1 ∼ q(zt−1|zt,x) with UQ:
ut ∼ U(−1/2, 1/2)
kt = ⌊(b(t)zt + c(t)x)/∆(t) + ut⌉
Entropy-code kt using p(zt−1|zt)
zt−1 = ∆(t)(kt − ut)

end for
Entropy-code x with p(x|z0)

Algorithm 2 Decoding

zT ∼ p(zT) ▷ Using shared seed
for t = T, . . . , 2, 1 do

Compute the parameters of p(zt−1|zt)

ut ∼ U(−1/2, 1/2) ▷ Using shared seed

Entropy-decode kt using p(zt−1|zt)
zt−1 = ∆(t)(kt − ut)
x̂t = x̂θ(zt−1; t− 1) ▷ Lossy reconstruction

end for
Entropy-decode x with p(x|z0) ▷ Lossless

3.3 PROGRESSIVE CODING

Given a UQDM trained on the NELBO in eq. (1), we can use it for progressive compression similarly
to (Ho et al., 2020; Theis et al., 2022), outlined in Section 2.

The initial step t = T involves transmitting a Gaussian zT . Since we do not assume access to an
efficient REC scheme for the Gaussian channel, we will instead draw the same zT ∼ p(zT) = N (0, I)
on both the encoder and decoder side, with the help of a shared pseudo-random seed.1 To avoid
a train/compression mismatch, we therefore always ensure q(zT |x) ≈ p(zT) and hence LT ≈ 0.
At any subsequent step t, instead of sampling zt−1 = b(t)zt + c(t)x + ∆(t)u′

t as in training,
we apply UQ to compress the prior mean vector µQ := b(t)zt + c(t)x. Specifically the sender
draws ut ∼ U(−1/2, 1/2), computes kt = ⌊ µQ

∆(t) + ut⌉, entropy codes/transmits kt under the
discretized p(zt−1|zt); the receiver recovers kt, draws the same ut ∼ U(−1/2, 1/2), and sets
zt−1 = ∆(t)(kt − ut). Finally, having transmitted z0, x is losslessly compressed using the entropy
model p(x|z0). Pseudocode can be found in Algorithms 1 and 2. Note that we can replace the
denoised prediction x̂t = x̂θ(zt−1; t−1) with more sophisticated ways to obtain lossy reconstructions
such as flow-based reconstruction or ancestral sampling (Theis et al., 2022). As our method is
progressive, the algorithm can be stopped at any time and the most recent lossy reconstruction be
used as the output. Compared to compression with VDM, the main difference is that we transmit
zt−1 ∼ q(zt−1|zt,x) under p(zt−1|zt) using UQ instead of Gaussian channel simulation; the overall
computation complexity is now dominated by the evaluation of the denoising network x̂θ (for
computing the parameters of p(zt−1|zt)), which scales linearly with the number of time steps.

We implemented the progressive codec using tensorflow-compression (Ballé et al.), and
found the actual file size to be within 3% of the theoretical NELBO.

4 RELATED WORK

Diffusion models (Sohl-Dickstein et al., 2015) have achieved impressive results on image generation
(Ho et al., 2020; Song et al., 2021a) and density estimation (Kingma et al., 2021; Nichol & Dhariwal,
2021). Our work is closely based on the latent-variable formalism of diffusion models (Ho et al.,
2020; Kingma et al., 2021), with our forward and backward processes adapted from the Gaussian case.
Our forward process is non-Markovian like DDIM (Song et al., 2021a), and our reverse process uses
learned variance, inspired by (Nichol & Dhariwal, 2021). Recent research has focused on efficient
sampling (Song et al., 2021a; Pandey et al., 2023) and better scalability via latent diffusion (Rombach
et al., 2022), consistency models (Song et al., 2023), and distillation (Sauer et al., 2024), whereas we
focus on the compression task. Related to our approach, cold diffusion (Bansal et al., 2024) showed
that alternative forward processes other than the Gaussian still produce good image generation results.

Several diffusion-based neural compression methods exist, but they use conditional diffusion models
(Yang & Mandt, 2023; Careil et al., 2023; Hoogeboom et al., 2023) which do not permit progressive

1This corresponds to a trivial REC problem where a sample from q = p can be transmitted using KL(q∥p) =
0 bits.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

decoding. Furthermore, they are also less flexible as a separate model has to be trained for each
bitrate. Progressive neural compression has so far been mostly achieved by combining non-linear
transform coding (for example using a VAE) with progressive quantization schemes. Such methods
include PLONQ (Lu et al., 2021), which uses nested quantization, DPICT (Lee et al., 2022) and its
extension CTC (Jeon et al., 2023), which use trit-plane coding, and DeepHQ (Lee et al., 2024) which
uses a learned quantization scheme. Finally, codecs based on hierarchical VAEs (Townsend et al.,
2024; Duan et al., 2023) are closely related but do not directly target the realism criterion.

5 EXPERIMENTS

We train UQDM end-to-end by directly optimizing the NELBO loss eq. (1), summing up Lt across
all time steps. This involves simulating the entire forward process {z0, ..., zT } according to eq. (4)
and can be computationally expensive when T is large but can be avoided by using a Monte-Carlo
estimate based on a single Lt as in the diffusion literature. Our current experiments found a small T
to give the best compression performance, and therefore leave the investigation of training with a
single-step Monte-Carlo objective to future work. Note that this would require sampling from the
marginal distribution q(zt|x), which becomes approximately Gaussian for large t (see Sec. 3.1).

When considering the progressive compression performance of VDM and UQDM, we consider three
kinds of progressive reconstructions (from zt): denoise, where x̂ = x̂θ(zt; t) is the prediction
from the denoising network; ancestral, where x̂ ∼ p(x|zt) is drawn by ancestral sampling;
and flow-based where x̂ ∼ p(x|zt) is computed deterministically using the probability flow
ODE in (Theis et al., 2022). In Gaussian diffusion, the probability flow ODE produces the same
trajectory of marginal distributions as ancestral sampling. In the case of UQDM, we apply the same
update equations and observe similar benefits, likely due to the continuous-time equivalence of
the underlying processes of UQDM and VDM. See Appendix B.3 for details. Note that DiffC-A
and DiffC-F (Theis et al., 2022) directly correspond to our VDM results with ancestral and
flow-based reconstructions.

In all experiments involving VDM and UQDM, we always use the same U-net architecture for both,
except UQDM uses twice as many output dimensions for both the denoising prediction and learned
reverse-process variance (see Sec. 3). We refer to Appendix Sec. C for further experiment details.

5.1 SWIRL TOY DATA

We obtain initial insights into the behavior of our proposed UQDM by experimenting on toy swirl data
(see Appendix C.1 for details) and comparing with the hypothetical performance of VDM (Kingma
et al., 2021).

First, we train UQDM end-to-end for various values of T ∈ {3, 4, 5, 10, 15, 20, 30}, with and without
learning the reverse process variance. For comparison, we also train a single VDM with T = 1000,
but compute the progressive-coding NELBO eq. (1) using different T . Fig. 2 plots the resulting
NELBO values, corresponding to the bits-per-dimension cost of lossless compression. We observe
that for UQDM, learning the reverse-process variance significantly improves the NELBO across all
T , and a higher T is not necessarily better. In fact, there seems to be an optimal T ≈ 5, for which
we obtain a bpd of around 8. The theoretical performance of VDM, by comparison, monotonically
improves with T (green curve) until it converges to a bpd of 5.8 at T = 1000, as consistent with theory
(Kingma et al., 2021). We also tried initializing a UQDM with fixed reverse-process variance to the
pre-trained VDM weights; interestingly, this resulted in very similar performance to the end-to-end
trained result (blue curve), and further finetuning gave little to no improvement.

We then examine the lossy compression performance of progressive coding. Here, we train UQDM
end-to-end with learned reverse-process variances, and perform progressive reconstruction by ances-
tral sampling. Figure 2 plots the results in fidelity v.s. bit-rate and realism v.s. bit-rate. For reference,
we also show the theoretical performance of VDM using T = 100 discretization steps, assuming a
hypothetical REC algorithm that operates with no overhead. The results are consistent with those on
lossless compression, with a similar performance ranking for T among UQDM, and a gap remains to
the hypothetical performance of VDM.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 10 15 20 25 30
T

5

10

15

20

25

NE
LB

O
(b

pd
)

UQDM (fixed rev. var.)
UQDM
VDM
VDM (T = 1000)

0 2 4 6 8 10 12
Rate (bpd)

10

20

30

40

50

60

70

80

PS
NR

 (d
B)

VDM (T=100)
UQDM T=5
UQDM T=10
UQDM T=20
UQDM T=30

0 2 4 6 8 10 12
Rate (bpd)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

sli
ce

d
W

D

VDM (T=100)
UQDM T=5
UQDM T=10
UQDM T=20
UQDM T=30

Figure 2: Results on swirl data. The VDM curves correspond to the hypothetical performance of
REC that remains computationally intractable. Left: Lossless compression rates v.s. the choice of
T , for UQDM with/without learned reverse-process variance (blue/orange) and VDM (green). For
UQDM, learning the reverse-process variance significantly improved the NELBO, and an optimal
T ≈ 5. Middle, Right: Progressive lossy compression performance for VDM and UQDM, measured
in fidelity (PSNR) v.s. bit-rate (middle), or realism (sliced Wasserstein distance) v.s. bit-rate (right).

Figure 3: Progressive lossy compression performance of UQDM on the CIFAR10 dataset, comparing
fidelity (PSNR) and realism (FID) with bit-rate per pixel (bpp), using either ancestral sampling or
denoised prediction to obtain progressive reconstructions as indicated. The VDM curve corresponds
to hypothetical performance of REC that is computationally intractable. We achieve better fidelity
and realism than JPEG and JPEG2000 across all bit-rates and than BPG in the high bit-rate regime.

Finally, we examine the quality of unconditional samples from UQDM with varying T . Although
our earlier results indicate worse compression performance for T > 5, Figure 7 shows that UQDM’s
sample quality monotonically improves with increasing T . We conjecture this is because the reverse
process of UQDM may also converge to that of VDM in the continuous-time limit.

5.2 CIFAR10

Next, we apply our method to natural images. We start with the CIFAR10 dataset containing 32× 32
images. We train a baseline VDM model with a smaller architecture than that used by Kingma et al.
(2021), converging to around 3 bits per dimension. We use the noise schedule σ2

t = σ(γt) where γt
is a linear in t with learned endpoints γT and γ0. For our UQDM model we empirically note that
T = 4 yields the best trade-off between bit-rates and reconstruction quality. We train our model
end-to-end on the progressive coding NELBO eq. (1) with learned reverse-process variances.

We compare against the wavelet-based codecs JPEG, JPEG2000, and BPG (Bellard, 2018). For JPEG
and BPG we use a fixed set of quality levels and encode the images independently, for JPEG2000 we
instead use its progressive compression mode that allows us to set the approximate size reduction in
each quality layer and obtain a rate-distortion curve from one bit-stream.

As shown in Figure 3, we consistently outperform both JPEG and JPEG2000 over all bit-rates
and metrics. Even though BPG, a competitive non-progressive codec optimized for rate-distortion
performance, achieves better reconstruction fidelity (as measured in PSNR) in the low bit-rate regime,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Progressive lossy compression performance of UQDM on the Imagenet64 dataset, compar-
ing fidelity (PSNR) and realism (FID) with bit-rate per pixel (bpp), using either ancestral sampling
or the denoised prediction to obtain progressive reconstructions as indicated. The VDM curve
corresponds to hypothetical performance of REC that remains computationally intractable. While
the reconstruction quality of other codecs like CDC or BPG plateaus at higher bit-rates, our method
continues to gradually improve fidelity and realism even at higher bit-rates where it achieves the best
results of any baseline. We beat compression performance of JPEG, JPEG2000, and CTC across all
bit-rates. Note that only UQDM, CTC, and JPEG2000 implement progressive coding.

Figure 5: Example progressive reconstructions from UQDM trained with T = 4, obtained with
denoised prediction (left) or ancestral sampling (right). The latter avoids blurriness but introduces
graininess at low bit-rates, likely because the UQDM is unable to completely capture the data
distribution and achieve perfect realism (perfect realism is also difficult to achieve also for Gaussian
diffusion, as seen in the rate-realism plot of (Theis et al., 2022)). Flow-based reconstructions are
qualitatively similar to the denoising-based reconstructions and can be found in Figure 8.

our method closely matches BPG in realism (as measured in FID) and even beats BPG in PSNR at
higher bit-rates. The theoretical performance of compression with Gaussian diffusion (e.g., VDM)
(Theis et al., 2022), especially with a high number of steps such as T = 1000, is computationally
infeasible, both due to the large number of neural function evaluations required, and due the intractable
runtime of REC algorithms in the Gaussian case. Still, for reference we report theoretical results
both for T = 1000 and T = 20, where the latter uses a smaller and more practical number of
diffusion/progressive reconstruction steps.

5.3 IMAGENET 64 × 64

Finally, we present results on the ImageNet 64 × 64 dataset. We train a baseline VDM model with
the same architecture as in (Kingma et al., 2021), reproducing their reported BPD of around 3.4;
we train a UQDM of the same architecture with learned reverse-process variances and T = 4. In
addition to the baselines described in the previous section, we also compare with CTC (Jeon et al.,
2023), a recent progressive neural codec, and CDC (Yang & Mandt, 2023), a non-progressive neural
codec based on a conditional diffusion model that can trade-off between distortion and realism
via a hyperparameter p. We separately report results for both p = 0, which purely optimizes the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

conditional diffusion objective, and p = 0.9, which prioritizes more realistic reconstructions that also
jointly minimizes a perceptual loss. For CTC we use pre-trained model checkpoints from the official
implementation (Jeon et al., 2023); for CDC we fix the architecture but train a new model for each
bit-rate v.s. reconstruction quality/realism trade-off.

The results are shown in Figure 4. When obtaining progressive reconstructions from denoised
predictions, UQDM again outperforms both JPEG and JPEG2000. Our results are comparable to, if
not slightly better than, CTC, and even though the reconstruction quality of other codecs plateaus
at higher bit-rates, our method continues to improve quality and realism gradually, even at higher
bit-rates. Refer to Figures 1, 5 and 8 for qualitative results demonstrating progressive coding and
comparison across codecs. At high bit-rates, UQDM preserves details better than other neural
codecs. UQDM with denoised predictions tends to introduce blurriness, while ancestral sampling
introduces graininess at low bit-rates, likely because the UQDM is unable to completely capture
the data distribution and achieve perfect realism. Flow-based denoising matches the distortion of
denoised predictions but achieves significantly higher realism as measured by FID. We note that
the ideal of perfect realism (i.e., achieving 0 divergence between the data distribution and model’s
distribution) remains a challenge even for state-of-the-art diffusion models.

6 DISCUSSION

In this paper, we presented a new progressive coding scheme based on a novel adaptation of the
standard diffusion model. Our universally quantized diffusion model (UQDM) implements the idea of
progressive compression with an unconditional diffusion model (Theis et al., 2022) but bypasses the
intractability of Gaussian channel simulation by using universal quantization (Zamir & Feder, 1992)
instead. We present promising first results that match or outperform classic and neural compression
baselines, including a recent progressive neural image compression method (Jeon et al., 2023). Given
the practical advantages of a progressive neural codec – allowing for dynamic trade-offs between
rate, distortion and computation, support for both lossy and lossless compression, and potential for
high realism, all in a single model – our approach brings neural compression a step closer towards
widespread deployment.

Future work may further improve our approach to close the performance gap to Gaussian diffusion
(Theis et al., 2022); the latter represents the ideal lossy compression performance under a perfect
realism constraint on, e.g., approximately Gaussian-distributed data. To this end, potential improve-
ments include better reconstruction methods than ancestral sampling, such as the ODE-based method
considered in (Theis et al., 2022), or exploring different parameterizations of the forward and reverse
process with better theoretical properties. Finally, we expect further improvement in computation
efficiency and scalability when combining our method with ideas such as latent diffusion (Rombach
et al., 2022), distillation (Sauer et al., 2024), or consistency models (Song et al., 2023).

ETHICS STATEMENT

Our work focuses on the methodology of a learning-based data compression method, and thus has no
direct ethical implications. The deployment of neural lossy compression however carries with it risks
of miscommunication and misrepresentation (Yang et al., 2023), and needs to carefully analyzed and
mitigated with future research.

REPRODUCIBILITY STATEMENT

We include proofs for all theoretical results introduced in the main text in Appendix A and B. We
include further experimental and implementation details (including model architectures and other
hyperparameter choices) in Appendix C. We plan to release our full codebase upon paper acceptance.

REFERENCES

Eirikur Agustsson and Lucas Theis. Universally Quantized Neural Compression. NeurIPS, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational
Image Compression with a Scale Hyperprior. ICLR, 2018.

Johannes Ballé, Sung Jin Hwang, Nick Johnston, and David Minnen. Tensorflow-compression: Data
compression in tensorflow. URL https://github.com/tensorflow/compression.

Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie Li, Hamid Kazemi, Furong Huang, Micah Goldblum,
Jonas Geiping, and Tom Goldstein. Cold Diffusion: Inverting Arbitrary Image Transforms without
Noise. NeurIPS, 2024.

Fabrice Bellard. Bpg image format, 2018. URL https://bellard.org/bpg/.

Marlène Careil, Matthew J Muckley, Jakob Verbeek, and Stéphane Lathuilière. Towards Image
Compression with Perfect Realism at Ultra-low Bitrates. ICLR, 2023.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned Image Compression with
Discretized Gaussian Mixture Likelihoods and Attention Modules. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7939–7948, 2020.

Paul Cuff. Communication requirements for generating correlated random variables. In 2008 IEEE
International Symposium on Information Theory, pp. 1393–1397. IEEE, 2008.

Zhihao Duan, Ming Lu, Zhan Ma, and Fengqing Zhu. Lossy Image Compression with Quantized
Hierarchical VAEs. In IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
198–207, 2023.

Gergely Flamich. Greedy Poisson Rejection Sampling. NeurIPS, 2024.

Gergely Flamich, Marton Havasi, and José Miguel Hernández-Lobato. Compressing Images by
Encoding their Latent Representations with Relative Entropy Coding. NeurIPS, 2020.

Gergely Flamich, Stratis Markou, and José Miguel Hernández-Lobato. Fast Relative Entropy Coding
with A* Coding. ICML, 2022.

Gergely Flamich, Stratis Markou, and José Miguel Hernández-Lobato. Faster Relative Entropy
Coding with Greedy Rejection Coding. NeurIPS, 2024.

Daniel Goc and Gergely Flamich. On Channel Simulation with Causal Rejection Samplers. arXiv
preprint arXiv:2401.16579, 2024.

Marton Havasi, Robert Peharz, and José Miguel Hernández-Lobato. Minimal random code learning:
Getting bits back from compressed model parameters. arXiv preprint arXiv:1810.00440, 2018.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. NeurIPS,
2020.

Emiel Hoogeboom, Eirikur Agustsson, Fabian Mentzer, Luca Versari, George Toderici, and Lucas
Theis. High-Fidelity Image Compression with Score-Based Generative Models. arXiv preprint
arXiv:2305.18231, 2023.

Seungmin Jeon, Kwang Pyo Choi, Youngo Park, and Chang-Su Kim. Context-Based Trit-Plane
Coding for Progressive Image Compression. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14348–14357, 2023.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational Diffusion Models.
NeurIPS, 2021.

Jae-Han Lee, Seungmin Jeon, Kwang Pyo Choi, Youngo Park, and Chang-Su Kim. DPICT: Deep
Progressive Image Compression using Trit-Planes. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16113–16122, 2022.

Jooyoung Lee, Se Yoon Jeong, and Munchurl Kim. DeepHQ: Learned Hierarchical Quantizer for
Progressive Deep Image Coding. arXiv preprint arXiv:2408.12150, 2024.

11

https://github.com/tensorflow/compression
https://bellard.org/bpg/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yadong Lu, Yinhao Zhu, Yang Yang, Amir Said, and Taco S Cohen. Progressive Neural Image
Compression with Nested Quantization and Latent Ordering. In IEEE International Conference on
Image Processing, pp. 539–543, 2021.

David JC MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University
Press, 2003.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models.
ICML, 2021.

Kushagra Pandey, Maja Rudolph, and Stephan Mandt. Efficient Integrators for Diffusion Generative
Models. ICLR, 2023.

Yury Polyanskiy and Yihong Wu. Information theory: From coding to learning. Book draft, 2022.

Lawrence Roberts. Picture Coding using Pseudo-Random Noise. IRE Transactions on Information
Theory, pp. 145–154, 1962.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
Resolution Image Synthesis with Latent Diffusion Models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10684–10695, 2022.

Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin Rombach.
Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation. arXiv
preprint arXiv:2403.12015, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
Learning using Nonequilibrium Thermodynamics. ICML, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. ICLR,
2021a.

Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Distribution.
NeurIPS, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR, 2021b.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021c.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency Models. ICML, 2023.

Lucas Theis and Noureldin Y Ahmed. Algorithms for the Communication of Samples. ICML, 2022.

Lucas Theis, Tim Salimans, Matthew D Hoffman, and Fabian Mentzer. Lossy Compression with
Gaussian Diffusion. arXiv preprint arXiv:2206.08889, 2022.

James Townsend, Thomas Bird, Julius Kunze, and David Barber. HiLLoc: Lossless Image Compres-
sion with Hierarchical Latent Variable Models. ICLR, 2024.

Pascal Vincent. A Connection Between Score Matching and Denoising Autoencoders. Neural
Computation, pp. 1661–1674, 2011.

Ruihan Yang and Stephan Mandt. Lossy Image Compression with Conditional Diffusion Models.
NeurIPS, 2023.

Yibo Yang, Stephan Mandt, Lucas Theis, et al. An Introduction to Neural Data Compression.
Foundations and Trends in Computer Graphics and Vision, pp. 113–200, 2023.

R. Zamir and M. Feder. On Universal Quantization by Randomized Uniform/Lattice Quantizers.
IEEE Transactions on Information Theory, pp. 428–436, 1992.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A FORWARD PROCESS DETAILS

A.1 GAUSSIAN (DDPM/VDM)

For completeness and reference, we restate the forward process and related conditionals given in
(Kingma et al., 2021). The forward process is defined by

q(zt|x) := N (αtx, σ
2
t I),

where αt and σ2
t are positive scalar-valued functions of t. As in (Kingma et al., 2021), we define the

following notation shorthand which are used in the rest of the appendix: for any s < t, let

αt|s :=
αt

αs
, σ2

t|s := σ2
t −

α2
t

α2
s

σ2
s , bt|s :=

αt

αs

σ2
s

σ2
t

, ct|s := σ2
t|s

αs

σ2
t

, βt|s := σt|s
σs

σt
.

By properties of the Gaussian distribution, it can be shown that for any 0 ≤ s < t ≤ T ,

q(zt|zs) = N (αt|sx, σ
2
t|sI),

q(zs|zt,x) = N (bt|szt + ct|sx, β
2
t|sI),

In particular,

q(zt−1|zt,x) = N (bt|t−1zt + ct|t−1x, β
2
t|t−1I),

q(zt|zT ,x) = N (bT |tzt + cT |tx, β
2
T |tI),

and we can use the reparameterization trick to write

zt−1 = bt|t−1 zt + ct|t−1 x+ βt|t−1 ϵt, ϵt ∼ N (0, I),

zt = bT |t zT + cT |t x+ βT |t ϵT , ϵT ∼ N (0, I)

A.2 UNIFORM (OURS)

Our forward process is specified by q(zT |x) and q(zt−1|zt,x) for each t, and closely follows that of
the Gaussian diffusion. We set q(zT |x) to be the same as in the Gaussian case, i.e.,

q(zT |x) := N (αTx, σ
2
T I),

and q(zt−1|zt,x) to be a uniform with the same mean and variance as in the Gaussian case, such that

q(zt−1|zt,x) := U(bt|t−1zt + ct|t−1x−
√
3βt|t−1, bt|t−1zt + ct|t−1x+

√
3βt|t−1),

or in other words,

zt−1 = bt|t−1zt + ct|t−1x+
√
12βt|t−1ut, ut ∼ U(−1/2, 1/2).

In the notation of eq. (4) this corresponds to letting b(t) = bt|t−1, c(t) = ct|t−1, ∆(t) =
√
12βt|t−1.

It follows by algebraic manipulation that

zt = bT |t zT + cT |t x+

T∑
v=t+1

√
12δv|tuv︸ ︷︷ ︸

:=ωt

,

where
uv ∼ U(−1/2, 1/2), v = t+ 1, ..., T

are independent uniform noise variables, and

δv|t := βv|v−1

v−1∏
j=t+1

bj|j−1 =
σ2
t

αt

√
SNR(v − 1)− SNR(v).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

It can be verified that

E [ωt] = 0,

Var (ωt) =

T∑
v=t+1

δ2v|t =
σ4
t

α2
t

[SNR(t)− SNR(T)] = β2
T |t,

or in other words, at any step t our forward-process “posterior” distribution q(zt|zT ,x) has the same
mean and variance as in the Gaussian case.

A.3 CONVERGENCE TO THE GAUSSIAN CASE

We show that both parameterizations are equivalent in the continuous-time limit. To allow comparison
across different number of steps T , we suppose that αt and σt are obtained from continuous-time
schedules α(·) : [0, 1] → R+ and σ(·) : [0, 1] → R+ (which were fixed ahead of time), such that
αt := α(t/T) and σt := σ(t/T) for t = 0, . . . , T , for any choice of T . We further assume that the
continuous-time signal-to-noise ratio snr(·) = α(·)2/σ(·)2 is strictly monotonically decreasing.

We start by showing that our q(zt|zT ,x) converges to the corresponding Gaussian distribution in
VDM in the continuous-time limit, which in turn implies the convergence of our q(zt|x) to the
corresponding Gaussian distribution in VDM, for each fixed t.

Theorem A.1.
For every t, q(zt|zT ,x)

d−→ N (bT |t zT + cT |t x, β
2
T |t I) as T → ∞.

Proof.
As snr(t) by assumption is continuous, strictly monotone, and defined on a compact domain, it has
finite range and is thus uniformly continuous. For σ2

ni := 12σ4
0/α

2
0(snr((i− 1)/n)− snr(i/n)) the

latter implies maxi∈{1,...,n} σ
2
ni → 0 as n → ∞. Let Xni := σni uni,uni ∼ U(−1/2, 1/2) iid, then

Xni is a triangular array with independent rows, E [Xni] = 0, and Var (Xni) = σ2
ni < ∞. Thus, we

can apply the Lindeberg-Feller CLT which yields that Zn :=
∑n

i=1 Xni
d−→ N (0, s) if

1

s

n∑
i=1

E
[
X2

ni1{|Xni| ≥ ϵ}
] n→∞−−−−→ 0

holds for all ϵ > 0. In this case, s = Var (Zn) = σ4
0/α

2
0(snr(0) − snr(1)) = β2

T |0. The condition
holds trivially as by construction P (|Xni| ≥

√
3σni) = 0 and for every ϵ > 0 there exists Nϵ with

ϵ >
√
3σni for all i and n > Nϵ as maxi∈{1,...n} σ

2
ni → 0. The statement follows for t = 0 as

Zn ∼ ωt|T=n, and analogously for arbitrary t by considering σ2
ni := 12σ4

t /α
2
t (snr(t+ (i− 1)(1−

t)/n)− snr(t+ i(1− t)/n)).

Corollary A.1.1.
If we assume σT = 1 and αT = 0, then for every t, q(zt|x)

d−→ N (αtx, σ
2
t I) as T → ∞, that is,

our forward model approaches the Gaussian forward process of VDM with an increasing number of
diffusion steps.

Proof. As q(zT |x) = N (αTx, σ
2
T I) = N (0, I) does not depend on T , the joint distribution

q(zt, zT |x) = q(zt|zT ,x)q(zT |x) converges in distribution, which in turn implies convergence
of q(zt|x). The statement then follows from the identity

N (zt;αtx, σ
2
t I) =

∫
N (zt; bT |t zT + cT |t x, β

2
T |t I)N (zT ;αTx, σ

2
T I) dzT .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B BACKWARD PROCESS DETAILS AND RATE ESTIMATES

B.1 GAUSSIAN (DDPM/VDM)

Kingma et al. (2021) set p(zt−1|zt) := q(zt−1|zt,x = x̂t) = N (bt|t−1 zt + ct|t−1 x̂t, β
2
t|t−1I)

which yields

Lt−1 = KL(N (bt|t−1 zt + ct|t−1 x, β
2
t|t−1I) ∥N (bt|t−1 zt + ct|t−1 x̂t, β

2
t|t−1I))

=
1

2

c2t|t−1

β2
t|t−1

∥x− x̂t∥22 =
1

2
(SNR(t− 1)− SNR(t)) ∥x− x̂t∥22 .

We have that Lt−1 → 0 as T → ∞, due to the continuity of SNR(· /T) = snr(·) = α(·)2/σ(·)2.

B.2 UNIFORM (OURS)

Recall that we choose each coordinate of the reverse-process model p(zt−1|zt) to have the density

p(zt−1|zt)i := gt(z) ⋆ U(z;−∆t/2,∆t/2)

=
1

∆t

∫ z+∆t/2

z−∆t/2

gt(z) dz =
1

∆t
(Gt(z + ∆t/2)−Gt(z − ∆t/2)),

where Gt and gt are the cdf and pdf of a distribution with mean µ̂t := b(t)z + c(t)x̂ and variance σ2
g ,

z := (zt)i, x := xi, and x̂ := x̂θ(zt; t)i. Using the shorthand µt := bt|t−1z + ct|t−1x we can derive
the rate associated with the ith coordinate

Lt−1 = KL(U(z;µt − ∆t/2, µt + ∆t/2) ∥ gt(z) ⋆ U(z;−∆t,∆t))

=
1

∆t

∫ µt+∆t/2

µt−∆t/2

log
1
∆t

1[µt−∆t/2,µt+∆t/2](z)
1
∆t

(Gt(z + ∆t/2)−Gt(z − ∆t/2))
dz

=
1

∆t

∫ ∆t/2

−∆t/2

− log(Gt(z + µt + ∆t/2)−Gt(z + µt − ∆t/2))︸ ︷︷ ︸
:= h(z)

dz.

To gain some intuition for this rate, note that h(z) is lowest when most of the probability mass of Gt

is concentrated tightly around z + µt, which is the case when |µt − µ̂t| is small. Specifically, if Gt is
in a distributional family with a standardized cdf G0 such that Gt(z) = G0((z − µ̂t)/σg) then

Gt(z + µt + ∆t/2)−Gt(z + µt − ∆t/2) →


1 if |z + µt − µ̂t| < ∆t/2

G0(0) if |z − µt − µ̂t| = ∆t/2

0 else

as σg → 0. Thus, if |µt − µ̂t| ≪ ∆t/2, we obtain improved bit-rates for σg that are small (relative
to ∆t). On the other hand, as almost certainly |µt − µ̂t| > 0, we can’t choose arbitrarily small
σg because in that case both max(−h(−∆t/2),−h(∆t/2)) → ∞ and Lt−1 → ∞ as σg → 0. This
further motivates the merit of learning the backwards variances as σ2

g = sθ(z)β
2
t|t−1 = sθ(z)∆

2
t/12,

allowing them to adapt to |µt − µ̂t|. Conversely, by the mean value theorem, there exists one
c ∈ (−∆t/2,∆t/2) so that

Gt(z + µt + ∆t/2)−Gt(z + µt − ∆t/2) = ∆tgt(z + µt + c) ≈ ∆tgt(z + µt)

where the last approximation becomes more accurate for larger σg. If we further assume that Gt is
Gaussian (or sufficiently similar) h(t) becomes approximately quadratic. In that case we study

h(z) ≈
(
1− 4z2

∆2
t

)
h(0) +

2z2 −∆tz

∆2
t

h(−∆t/2) +
2z2 +∆tz

∆2
t

h(∆t/2),

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

a quadratic function that exactly matches h at values z ∈ {−∆t/2, 0,∆t/2}. Finally, this results in

Lt−1 ≈ 1

∆t

[
2

∆2
t

(h(−∆t/2) + h(∆t/2)− 2h(0))

∫ ∆t/2

−∆t/2

z2 dz +
1

∆t
(h(∆t/2)− h(∆t/2)))

∫ ∆t/2

−∆t/2

z dz +∆th(0)

]

= −1

6
[4h(0) + h(−∆t/2) + h(∆t/2)] ≥ 1

3
log(2),

where the last equality uses h(z) ≤ 0 and h(−∆t/2) + h(∆t/2) ≤ log(0.25) which follow from the
fact that Gt is a cdf. Empirically we note that this estimate is very accurate as long as σ2

g ≥ β2
t|t−1,

demonstrating that simply matching moments as in VDM will occur a constant overhead for each
diffusion step. As seen in Figure 2, this can be partly mitigated with smaller σ2

g but increasing the
number of diffusion steps T might still lead to an increase in ELBO. Numerical integration of Lt−1

confirms that if σ2
g is close to the optimal choice of σg ≈ |µt − µ̂t|, Lt−1 → 0 as T → ∞ as in the

Gaussian case.

B.3 FLOW-BASED RECONSTRUCTIONS

Given an intermediate latent zt, ancestral sampling yields an intermediate lossy reconstruction
x̂ ∼ p(x|zt) that requires us to repeatedly sample from the conditional p(zt−1|zt) until finally
obtaining a reconstruction from z0 with the help of p(x|z0). This is equivalent to approximately
solving a reverse SDE (Song et al., 2021c) and introduces additional noise during inference, which
can make reconstructions grainy for diffusion models with a small number of steps, as can be seen in
Figure 5. Song et al. (2021c) further note that an alternative approximate solution to the SDE can
be obtained by deterministically reversing a “probability-flow” ODE (see also Theis et al. (2022)).
Specifically, this involves repeatedly evaluating zt−1 = f(zt, t), where f for VDM is defined as

f(zt, t) =
αt−1

αt
zt +

(
σt−1 −

αt−1

αt
σt

)
ϵ̂t =

σt−1

σt
zt +

(
αt−1 −

σt−1

σt
αt

)
x̂t, (8)

recovering the same process defined in (Song et al., 2021a). The equivalence of the continuous limit
in Corollary A.1.1, suggests that the discrete-time backward processes of UQDM and VDM are
similar enough in the sense that eq. (8) also approximately solves the implied reverse SDE of UQDM.
Thus we use eq. (8) to obtain flow-based reconstructions for both VDM and UQDM.

5 10 15 20 25 30
T

5

10

15

20

25

NE
LB

O
(b

pd
)

VDM
UQDM (VDM weights)
UQDM (from scratch)
UQDM (learned rev. var.)
VDM (T = 1000)

Figure 6: Left: 1000 samples from the toy swirl source. Right: Additional results on swirl data. We
examined the compression performance of applying universal quantization to a pre-trained VDM
model; conceptually this is equivalent to When using fixed reverse-process variances, we can directly
re-use weights from a pretrained VDM model (orange), which achieves comparable results to training
a UQDM model from scratch, even for a smaller number of timesteps.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

T = 2

true data
samples

T = 5 T = 10 T = 30

Unconditional UQDM samples

Figure 7: Unconditional samples from UQDM models trained with varying T on the swirl dataset.
The sample quality improves with larger T ; however the compression performance becomes worse
after T > 5, as discussed in Section 5.

Figure 8: Additional results on ImageNet 64x64 data. Left: Example progressive reconstructions
from UQDM trained with T = 4, obtained with flow-based denoising, as in Figure 5. Flow-based
reconstructions achieve similar distortion (as meassured with PSNR) than denoised predictions at
higher fidelity (as meassured with FID). Right: Ablation of the influence of model size on validation
loss. Bars are labeled with the number of parameters for each model. Increasing the size of the
denoising network allows for smaller bitrates.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 SWIRL DATA

We use the swirl data from the codebase of (Kingma et al., 2021); Figure 6 shows 1000 samples
from the toy data source. We use the same denoisng network x̂θ as in the official implementation,2
which consists of 2 hidden layers with 512 units each. Figure 6 highlights the consequence of
Corollary A.1.1: Because VDM and UQDM share the same continuous limit, we can use the weights
of a pretrained VDM to obtain comparable UQDM results as a UQDM model that has been trained
from scratch.

C.2 CIFAR10

We use a scaled-down version of the denoising network from the VDM paper (Kingma et al., 2021)
for faster experimentation. We use a U-Net of depth 8, consisting of 8 ResNet blocks in the forward
direction and 9 ResNet blocks in the reverse direction, with a single attention layer and two additional
ResNet blocks in the middle. We keep the number of channels constant throughout at 128.

We verified that our UQDM implementation based on tensorflow-compression achieves file
size close the theoretical NELBO. When compressing a single 32x32 CIFAR image, we observe file
size overhead ≤ 3% of the theoretical NELBO. In terms of computation speed, it takes our model
with fixed reverse-process variance less than 1 second to encode or decode a CIFAR image, either

2https://github.com/google-research/vdm/blob/main/colab/2D_VDM_Example.
ipynb

17

https://github.com/google-research/vdm/blob/main/colab/2D_VDM_Example.ipynb
https://github.com/google-research/vdm/blob/main/colab/2D_VDM_Example.ipynb

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

on CPU or GPU,3 likely because the very few neural-network evaluations required (T = 4). For
our model with learned reverse-process variance, however, it takes about 5 minutes to compress or
decompress a CIFAR image, with nearly all of the compute time spent on a single CPU core. This
is because with learned reverse-process variance, each latent dimension has a different predicted
variance, and a separate CDF table needs to be built for each latent dimension during entropy coding;
the tensorflow-compression library builds the CDF table for each coordinate in a naive
for-loop rather than in parallel. Thus we expect the coding speed to be dramatically faster with a
parallel implementation of entropy coding, e.g., using the DietGPU4 library.

C.3 IMAGENET 64× 64

We use the same denoising network as in the VDM paper (Kingma et al., 2021). We use a U-Net
of depth 64, consisting of 64 ResNet blocks in the forward direction and 65 ResNet blocks in the
reverse direction, with a single attention layer and two additional ResNet blocks in the middle. We
keep the number of channels constant throughout at 256. To investigate the impact of the size of the
denoising network, in addition to this configuration with 237M parameters we call UQDM-big, we
also run experiments with three smaller networks with 32 ResNet blocks and 128 channels (UQDM-
medium, 122M parameters), 8 ResNet blocks and 64 channels (UQDM-small, 2M parameters), and 1
ResNet block and 32 channels (UQDM-tiny, 127K parameters), respectively. Smaller network are
significantly faster and more resource-efficient but will naturally suffer from higher bitrates, as can
be seen in Figure 8.

The required number of FLOPS per pixel for encoding and decoding is strongly dominated by the
number of neural function evaluations (NFE) of our denoising network which depends on how soon
we stop the encoding and decoding process. For lossless compression we have to multiple the FLOPS
per NFE with T which is equal to 4 in our case. For lossy compression after t steps, with lossy
reconstructions obtained through a denoised prediction, we obtain the required FLOPS for encoding
and decoding by multiplying with t and t + 1 respectively. The FLOPS per NFE depend on the
network size, our investigated model size require 389K, 2.3M, 105M, and 204M FLOPS per pixel, in
order from smallest to biggest model.

Figures 9 and 10 show more example reconstructions from several traditional and neural codecs,
similar to Figure 1. At lower bitrates the artifacts each compression codecs introduces become more
visible.

3Around 0.6 s for encoding and 0.5 s for decoding on Intel(R) Xeon(R) Gold 5218 CPU @
2.30GHz CPU; 0.5 s for encoding and 0.3 s for decoding on a single Quadro RTX 8000 GPU.

4https://github.com/facebookresearch/dietgpu

18

https://github.com/facebookresearch/dietgpu

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 9: Additional example reconstructions , chosen at roughly similar (high) bitrates.

Figure 10: Additional example reconstructions , chosen at roughly similar (low) bitrates.

19

