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ABSTRACT

We address the problem of fine-tuning diffusion models for reward-guided genera-
tion in biomolecular design. While diffusion models have proven highly effective in
modeling complex, high-dimensional data distributions, real-world applications of-
ten demand more than high-fidelity generation, requiring optimization with respect
to potentially non-differentiable reward functions such as physics-based simula-
tion or rewards based on scientific knowledge. Although RL methods have been
explored to fine-tune diffusion models for such objectives, they often suffer from
instability, low sample efficiency, and mode collapse due to their on-policy nature.
In this work, we propose an iterative distillation-based fine-tuning framework that
enables diffusion models to optimize for arbitrary reward functions. Our method
casts the problem as policy distillation: it collects off-policy data during the roll-in
phase, simulates reward-based soft-optimal policies during roll-out, and updates
the model by minimizing the KL divergence between the simulated soft-optimal
policy and the current model policy. Our off-policy formulation, combined with
KL divergence minimization, enhances training stability and sample efficiency
compared to existing RL-based methods. Empirical results demonstrate the effec-
tiveness and superior reward optimization of our approach across diverse tasks in
protein, small molecule, and regulatory DNA design.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) have achieved
remarkable success across diverse domains, including computer vision and scientific applications
(e.g., protein design (Watson et al., 2023; Alamdari et al., 2023)). Their strength lies in modeling
complex, high-dimensional data distributions, including natural images and chemical structures such
as proteins and small molecules. However, in many real-world scenarios, especially for biomolecular
design, generating samples that merely resemble the training distribution is not sufficient. Instead, we
often seek to optimize specific downstream reward functions. For instance, in protein design, beyond
generating plausible structures, practical applications frequently require satisfying task-specific
objectives such as structural constraints, binding affinity, and hydrophobicity (Hie et al., 2022; Pacesa
et al., 2024). To meet these requirements, fine-tuning diffusion models with respect to task-specific
rewards is crucial, enabling goal-directed generation aligned with downstream objectives.

Numerous algorithms have been proposed for fine-tuning diffusion models with respect to reward
functions, motivated by the observation that this problem can be naturally framed as a reinforcement
learning (RL) task within an entropy-regularized Markov Decision Process (MDP), where each
policy corresponds to the denoising process of the diffusion model (Black et al., 2024; Fan et al.,
2023). In computer vision, current state-of-the-art methods fine-tune diffusion models by directly
backpropagating reward gradients through the generative process (Clark et al., 2023; Prabhudesai et al.,
2023). However, in many scientific applications, reward functions are inherently non-differentiable,
making such optimization inapplicable. For example, in protein design, rewards based on secondary
structure matching (e.g., DSSP algorithm (Kabsch & Sander, 1983)) or binding affinity predictions
(e.g., AlphaFold3 (Abramson et al., 2024)) typically rely on hard lookup-tables based on scientific
knowledge. Similarly, in small molecule design, reward functions such as synthetic accessibility
(SA), molecular fingerprints (Yang et al., 2021), and outputs from physics-based simulators (e.g.,
AutoDock Vina (Trott & Olson, 2010)) are also non-differentiable. These characteristics pose a
fundamental challenge for direct back-propagation approaches in scientific domains.
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Figure 1: Overview of VIDD. VIDD fine-tunes diffusion models to maximize potentially non-
differentiable rewards by iteratively distilling soft-optimal denoising policies. It alternates between
(1) off-policy roll-in, (2) value-guided reward-weighted roll-out, and (3) forward KL-based model
updates. Our algorithm leverages off-policy roll-ins and forward KL minimization rather, which
contribute to improved optimization stability.

In such cases, policy gradient methods like Proximal Policy Optimization (PPO) (Schulman et al.,
2017) offer a natural alternative, as they are used in diffusion models. However, PPO is known to
exhibit instability, hyperparameter sensitivity, and susceptibility to mode collapse in many contexts
Yuan et al. (2022); Moalla et al. (2024). These issues arise in part due to its on-policy nature —
trajectories used for training the model are generated by the current fine-tuned policy, leading to
narrow exploration around previously visited regions. Furthermore, from a theoretical perspective,
PPO can be viewed as minimizing the reverse Kullback–Leibler (KL) divergence between the target
and generated trajectory distributions. This reverse KL objective encourages mode-seeking behavior,
potentially leading to mode collapse (Wang et al., 2023; Go et al., 2023; Kim et al., 2025).

To address the aforementioned challenges, we propose a new framework, VIDD (Value-guided
Iterative Distillation for Diffusion models), designed to maximize possibly non-differentiable rewards
in a stable and effective manner. The core idea is to iteratively distill soft-optimal policies—including,
which serve as target denoising processes that optimize the reward while remaining close to the current
fine-tuned model, as visualized in Figure 1. Concretely, the algorithm proceeds in three iterative steps:
(1) roll-in using sufficiently exploratory off-policy trajectories, (2) roll-out to simulate soft-optimal
policies, and (3) update the fine-tuned model by minimizing the KL divergence between the soft-
optimal and current model policies. Importantly, in (2) and (3), our algorithm effectively leverages
value functions tailored to diffusion models to guide fine-tuning, analogous to value-weighted MLE
in RL (Peters et al., 2010). Notably, our framework leverages off-policy roll-ins—decoupling data
collection from policy updates—and employs forward KL minimization rather than reverse KL, both
of which contribute to improved optimization stability over complex reward landscapes.

Our contributions are summarized as follows. We propose a novel algorithm, VIDD, for fine-tuning
diffusion models through iterative distillation of target policies composed of both value functions and
the current policy. Unlike direct reward backpropagation methods, which require differentiable reward
signals, our approach can handle non-differentiable rewards commonly encountered in scientific
domains. Algorithmically, our key innovation lies in effectively incorporating value functions
specifically tailored to the diffusion models. Empirically, we validate the effectiveness of our method
across a range of scientific tasks, particularly in protein and small molecular design.

1.1 RELATED WORKS

Fine-tuning diffusion models for reward-maximization. When reward functions are differen-
tiable, as is often the case in computer vision, state-of-the-art methods achieve strong performance by
directly backpropagating gradients induced by the reward functions on the diffusion model (Clark
et al., 2023; Prabhudesai et al., 2023; Wu et al., 2024; Wang et al., 2024). However, in many scientific
domains such as biology and molecule field, reward functions are often non-differentiable (Lisanza
et al., 2024; Hie et al., 2022). In such settings, a natural approach is to adopt RL techniques that

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

optimize reward without requiring differentiability (Zhang et al., 2024; Gupta et al., 2025; Ektefaie
et al., 2024; Vogt et al., 2024; Deng et al., 2024; Venkatraman et al., 2024; Rector-Brooks et al., 2024;
Zekri & Boullé, 2025). For instance, DPOK (Fan et al., 2023) and DDPO (Black et al., 2024) adapt
PPO, a stabilized variant of policy gradient methods, to the diffusion model fine-tuning. However,
these methods often suffer from instability when applied to diffusion models (Clark et al., 2023,
Figure 3), due to their inherently on-policy nature and the use of a reverse KL divergence objective
between the fine-tuned policy and a target policy (discussed further in Section 5). In contrast, our
method avoided on-policy updates and instead leverages a forward KL divergence objective, which
stabilizes training and mitigates mode collapse.

Inference-time technique for reward-maximization. An alternative line of work focuses on
training-free techniques that aim to improve rewards solely at inference time. The most straight-
forward example is Best-of-N sampling, which selects the highest-reward output from N generated
candidates. More sophisticated methods go further by evaluating and selecting promising interme-
diate generation states during the sampling process (Wu et al., 2023; Li et al., 2024; Kim et al.,
2025; Singhal et al., 2025; Ma et al., 2025; Tang et al., 2025). While these methods avoid the need
for fine-tuning, they often incur significantly higher inference-time costs due to repeated sampling.
Although they can boost reward in some cases, they do not directly improve the underlying generative
model. In this respect, training-free methods are orthogonal and complementary to fine-tuning-based
approaches, and the two can be effectively combined to achieve even stronger performance.

2 PRELIMINARY

We begin by reviewing the foundations of diffusion models. We then formulate our objective:
fine-tuning diffusion models to maximize task-specific reward functions.

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) aim to learn a
sampling distribution p(·) ∈ ∆(X ) over a predefined design space X based on the observed data.
Formally, a diffusion model defines a forward noising process qt(xt | xt−1), which gradually corrupts
from clean data x0 ∼ p(x0) over discrete time steps t = 1, . . . , T into noise. The learning objective
is to approximate the reverse denoising process pt−1(xt−1 | xt), where each pt is a kernel mapping
from X to ∆(X ), such that the overall reverse trajectory transforms noise samples back into data
samples drawn from the true distribution. In practice, each pt is parameterized by a neural network
and trained to minimize a variational lower bound on the negative log-likelihood of the data.

Notation. With slight abuse of notation, we often denote the initial noise distribution pT ∈ ∆(X )
as pT (·|·), and we often refer to the denoising process as a policy, following terminology commonly
used in RL. We denote by x̂0(xt) : X → X the neural network used in pretrained diffusion models
to predict the denoised input. Extension to other parameterizations is straightforward.

2.2 REWARD MAXIMIZATION IN DIFFUSION MODELS

Our goal is to fine-tune diffusion models to produce outputs that achieve high rewards. Here, we
formalize the problem and highlight key challenges.

Task Description Our goal is to fine-tune a pretrained diffusion model to generate samples that
maximize a task-specific reward function. Formally, given a pretrained diffusion model ppre ∈ ∆(X )
and a reward function r : X → R, we aim to fine-tune pre-trained models such that

argmax
θ

Ex0∼pθ [r(x0)]︸ ︷︷ ︸
(a)reward maximization

−αDis({pθ}, {ppre})︸ ︷︷ ︸
(b)regularization

,

where pθ ∈ ∆(X ) denotes the distribution induced by the fine-tuned reverse denoising process
{pθt }0t=T , and ppre denotes the original pretrained distribution. Term (a) promotes the generation of
high-reward samples, while term (b) penalizes deviation from the pretrained model to maintain the
naturalness of generated samples. For example, when the discrepancy measure Dis in (b) is the KL
divergence, the optimal solution takes the following form up to normalizing constant:

exp(r(·)/α)ppre(·) (1)
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Challenges. In domains such as computer vision, reward functions are typically modeled using
differentiable regressors or classifiers, allowing for direct gradient-based optimization (Clark et al.,
2023; Prabhudesai et al., 2023). In contrast, many key objectives in biomolecular design, such as
structural constraints, hydrophobicity, binding affinity, often rely on non-differentiable features, as
detailed in Section 1. While RL-based approaches, such as policy gradient methods, can in principle
handle non-differentiable feedback (see Section 1.1), they often suffer from instability due to their
on-policy nature and reliance on reverse KL divergence. In the following, we introduce a novel
fine-tuning method that can effectively optimize possibly non-differentiable rewards.

3 ITERATIVE DISTILLATION FRAMEWORK FOR FINE-TUNING DIFFUSION
MODELS

Our algorithm is motivated by the goal of distilling desirable teacher policies that maximize task-
specific reward functions. To clarify this motivation, we first define what constitutes teacher policies
in our setting, followed by a detailed description of our approach to distilling them.

3.1 TEACHER POLICIES IN DISTILLATION

We introduce soft-optimal policies, which serve as the teacher policies that our algorithm aims to
distill. Specifically, we define the soft-optimal policy p⋆t−1 : X → ∆(X ) as a value-weighted variant
of the pre-trained policy:

p⋆t−1(·|xt) =
ppret−1(·|xt) exp(vt−1(·)/α)

exp(vt(xt)/α)
. (2)

Here, for t ∈ [T + 1, · · · , 1], the soft value function is defined as:

vt−1(·) := α logEx0∼ppre(x0|xt−1)

[
exp

(
r(x0)

α

)
|xt−1 = ·

]
, (3)

where the expectation is taken under the trajectory distribution induced by the pre-trained policies.

These soft-optimal policies naturally arise when diffusion models are framed within entropy-
regularized Markov Decision Processes. A key property of these policies is that, when sampling
trajectories according to the soft-optimal policy sequence {p⋆t }0t=T , the resulting marginal distribu-
tion over final outputs approximates the target distribution exp(r(·)/α)ppre(·) in (1) (Uehara et al.,
2025a).

Importantly, many test-time guidance methods—such as classifier guidance in both continuous
diffusion models (e.g., (Dhariwal & Nichol, 2021; Bansal et al., 2023)) and discrete diffusion models
(e.g., (Nisonoff et al., 2024)), as well as sequential Monte Carlo (SMC)-based approaches (e.g.,
(Wu et al., 2023; Li et al., 2024; Kim et al., 2025))—can be interpreted as approximate sampling
schemes for these soft-optimal policies (Uehara et al., 2025a). While test-time guidance methods are
appealing due to their ease of implementation, they often incur substantial computational overhead
during inference and may struggle to achieve consistently high reward values. In contrast, we explore
how soft-optimal policies can inform the fine-tuning of diffusion models, enabling reward-guided
generation without requiring any additional computation at test time.

3.2 ITERATIVE DISTILLATION

Thus far, we have introduced soft-optimal policies and discussed their desirable properties. Within
our framework, we designate these policies as teacher policies, while the fine-tuned models are
treated as student policies (Czarnecki et al., 2019). A natural objective for distilling such policies into
a fine-tuned model {pθt } is given by

argmin
θ

∑

t

Ext∼ut [KL(p⋆t−1(·|xt)∥pθt−1(·|xt))], (4)

where ut ∈ ∆(X ) denotes a roll-in distribution, where we will elaborate on in Section 4.1. By simple
algebra (see the detailed derivation in Appendix B), up to some constant, this objective reduces to

argmax
θ

∑

t

Ext∼ut

[
1

exp(vt(xt)/α)
Ext−1∼ppre

t−1(xt−1|xt)[exp(vt−1(xt−1)/α) log p
θ
t−1(xt−1|xt))]

]
.

(5)
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As we will demonstrate in Section 4.3, this objective can be optimized in practice by approximating
value functions and replacing expectations with sample estimates. Notably, the objective is off-policy
in nature, meaning that the roll-in distribution ut can be arbitrary and does not need to match the
current model policy. Indeed, this objective, commonly referred to as value-weighted maximum
likelihood in the RL literature (Peters et al., 2010), has been employed as a scalable and stable
approach for off-policy RL (Peng et al., 2019).

In practice, we adopt an iterative distillation procedure. This is motivated by the fact that, due
to the reliance on empirical samples and approximate value functions, it is generally infeasible to
accurately distill the target policy p⋆t−1 into the student policy pθt−1 in a single step. Rather than fixing
ppret−1 throughout training, we periodically update it by the latest student policy but in a lazy manner,
allowing the target to gradually improve over time. This dynamic yet infrequent (lazy) target update
enables progressive refinement, allowing both the teacher and student policies to evolve iteratively
toward better alignment. This strategy is analogous to standard RL practices grounded in the Policy
Improvement Theorem (Mnih et al., 2015).

To formalize the above iterative process, we introduce an iteration index s ∈ [1, · · · , S] and perform
recursive updates as follows:

θs+1 ← θs +∇
∑

t

Ext∼ut,pout
t−1(xt−1|xt)

[
exp(voutt−1(xt−1)/α)

exp(vt(xt)/α)
log pθt−1(xt−1|xt)

]
. (6)

where {pout} denotes the roll-out policy, and voutt−1 is the corresponding soft value function. The
roll-out policy is updated in a lazy manner—specifically, it is refreshed every K steps using the
current model parameters pθs . This lazy update scheme is critical for algorithmic stability in the
off-policy setting, preventing rapid changes in the target while still allowing gradual improvement of
the student policy toward higher reward. In the next section, we formalize this iterative distillation
process as a complete algorithmic procedure.

4 ITERATIVE VALUE-WEIGHTED MLE
In this section, we present our algorithm for fine-tuning diffusion models to maximize reward
functions. The full procedure is summarized in Algorithm 1. Each training iteration consists of three
key components: (1) the roll-in phase, which defines the data distribution over which the loss is
computed; (2) the roll-out phase, which aims to approximate the teacher policy by sampling from a
roll-out policy and computing its corresponding weight (soft value); and (3) the distillation phase,
where the objective is defined as the KL divergence between the teacher policies and the student
policies (i.e., the fine-tuned models). We detail each of these components below.
4.1 ROLL-IN PHASE

Due to the off-policy nature of our algorithm, we have significant flexibility in selecting the
roll-in distribution path xT , xT−1, · · · , x0, which subsequently serves as the training distribution
for loss computation. A well-designed roll-in policy should satisfy two competing desiderata:
(1) exploration—ensuring broad coverage over the design space to avoid local optima, and (2)
exploitation—maintaining proximity to high-reward trajectories for efficient policy improvement.

To balance these goals, we adopt a mixture roll-in strategy by sampling the roll-in distribution from:

• the pre-trained policy ppre
t , which promotes exploration by generating diverse trajectories;

• the roll-out policy poutt which is periodically updated and reflects stabilized knowledge from the
student model.

At each training step, we sample from ppre
t with probability 1− βs, and from poutt with probability

βs. Further details on the construction of poutt are provided in the following subsection.

4.2 ROLL-OUT PHASE
Our goal in this step is to approximate the current teacher policy. To this end, we aim to (1)
sample xt−1 conditioned on xt for each timestep t following a roll-out policy, and (2) compute its
corresponding soft-value, which will later serve as a weight during the distillation process.

Sampling from roll-out policy. Recall the motivational formulation in Equation (6). Our goal here
is to replace the expectation with its empirical counterpart. To this end, we draw samples x̄t−1 from
pout
t−1, which is updated periodically at fixed time intervals.

5
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Algorithm 1 VIDD (Value-guided Iterative Distillation for Diffusion models)

1: Require: reward r : X → R, pretrained model {ppret−1(· | xt)}, fine-tuned model {pθt−1(· | xt)}
2: Initialize fine-tuned model pθ = ppre, roll-out model pout = ppre, lazy update interval K, α
3: for s ∈ [1, · · · , S] do
4: // Roll-in phase
5: Generate roll-in samples following roll-in policies (explain in Section 4.1) and collect D =

{x(i)
T , · · · , x(i)

0 }Ni=1.
6: // Roll-out phase
7: Obtain a sample following the roll-out policy poutt−1: x̄[i]

t−1 ∼ poutt−1(x
[i]
t−1 | x

[i]
t ) for each t.

8: Approximate soft-value functions v̂t−1(x̄
[i]
t−1) ← r

(
x̂0(x̄

[i]
t−1; θ

out)
)

and v̂t(x
[i]
t ) ←

r
(
x̂0(x

[i]
t ; θout)

)
.

9: If S%K = 0, update the roll-out policy: {poutt } ← {pθst } and θout ← θs.
10: // Distillation phase
11: Update model parameters θ by gradient ascent:

θs+1 ← θs + γ∇θ

N∑

i=1

∑

t

(
exp(v̂t−1(x̄

[i]
t−1)/α)

exp(v̂t(x
[i]
t )/α)

log pθt−1(x̄
[i]
t−1 | x

(i)
t )

)
. (7)

12: end for
13: return θS

Approximation of soft value functions. Recall that soft-value functions in (3) are defined as
conditional expectation given x̄t−1. While one could estimate these expectations using Monte
Carlo sampling or regression, as commonly done in standard RL settings, we recommend a more
practical approximation: v̂t−1(x̄t−1) := r (x̂0(x̄t−1; θ

out)). Recalling x̂0(x̄t−1; θ
out) is the denoised

prediction from the diffusion model parameterized by the current student policy. This approximation
is based on the replacement of the expectation in (3) with its posterior mean. We apply the same
approximation to v̂t(xt), estimating it via r(x̂0(xt; θ

out)). Further discussions on soft value functions
can be found in Appendix F.

Notably, this approximation has been implicitly adopted in several recent test-time reward opti-
mization methods (Chung et al., 2022; Wu et al., 2023; Li et al., 2024). Building on its empirical
success, we extend this idea to the fine-tuning setting. Compared to Monte Carlo-based methods,
this approximation is computationally efficient—requiring only a single forward pass through the
denoising network—and avoids the need to train an additional value function.

4.3 DISTILLATION PHASE

Thus far, we have defined the training data distribution via the roll-in phase and specified the
supervised signal through the roll-out phase. The final step is to perform distillation by solving a
supervised learning problem over the roll-in distribution. Specifically, we minimize the KL divergence
between the teacher and student policies, as formalized in (6). In our implementation, soft value
functions are approximated using estimates from trajectories. The expectations over roll-in and
roll-out distributions are replaced with empirical estimates obtained from samples collected in their
respective phases. The resulting loss function is given in (7), which corresponds precisely to a
value-weighted maximum likelihood objective.

5 COMPARISON WITH POLICY GRADIENT METHODS

In this section, we highlight the key differences between our algorithm, VIDD, and policy gradient
methods (Fan et al., 2023; Black et al., 2024). Broadly, there are two main distinctions: (1) policy
gradient methods are inherently on-policy, whereas VIDD naturally supports off-policy updates; and
(2) policy gradient methods implicitly optimize the reverse KL divergence between the fine-tuned
policy and the soft-optimal policy, while our objective more closely aligns with the forward KL
divergence. We elaborate on each of these differences below.

6
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On-policy vs. off-policy nature. In policy gradient algorithms, fine-tuning is typically framed as
the optimization of the following objective:

J(θ) = E{pθ
t }0

t=T

[
r(x0)− α

∑1
t=T+1 KL(pθt−1(· | xt)∥ppret−1(· | xt)

]
.

In practice, this objective is optimized using the policy gradient (PG) theorem. For instance, when
α = 0, the gradient simplifies to the standard form (Black et al., 2024):

∇J(θ) =
∑

t

E{pθ
t }0

t=T

[
r(x0)∇ log pθt−1(·|xt)

]
. (8)

However, accurate gradient estimation requires that the roll-in distribution used to sample xt matches
the current policy, making the method inherently on-policy. This constraint limits exploration and
increases the risk of convergence to suboptimal local minima. Even more stable variants, such as PPO,
remain sensitive to hyperparameter choices (Adkins et al., 2024), and overly strong regularization—
while stabilizing the landscape—can significantly slow down learning (Clark et al., 2023, Fig. 3).

In contrast, VIDD naturally accommodates off-policy updates, allowing the use of more exploratory
roll-in distributions without sacrificing training stability.

Reverse KL vs. forward KL divergence minimization. Furthermore, we show that the PPO objec-
tive J(θ) is equivalent to minimizing the reverse KL divergence between the trajectory distributions
induced by the soft-optimal policy and those induced by the fine-tuned policy.
Theorem 1. Denote pθ0:T ∈ X × · · · X as the induced joint distribution from t = T to t = 0 by {pθt }
and denote p⋆0:T as the corresponding distribution induced by the soft-optimal policy. Then,

J(θ) = KL(pθ0:T (·)∥p⋆0:T (·)) =
∑

t

E{pθ
t }0

t=T
[KL(pθt−1(·|xt)∥p⋆t−1(·|xt))].

In contrast, VIDD optimizes an objective that more closely resembles the forward KL divergence.
Since the reverse KL is known to be mode-seeking and can lead to unstable optimization landscapes
(Wang et al., 2023; Go et al., 2023; Kim et al., 2025), avoiding reverse KL minimization contributes
to more stable and effective fine-tuning.

6 EXPERIMENTS

Thus far, we have introduced VIDD, a framework designed to optimize possibly non-differentiable
downstream reward functions effectively and stably in diffusion models in a sample-efficient manner.
In this section, we evaluate the performance of VIDD across a range of biomolecular design tasks.
We begin by describing the experimental setup.

6.1 EXPERIMENTAL SETUP

6.1.1 TASK DESCRIPTORS

We aim to fine-tune diffusion models by maximizing task-specific reward functions. In the following,
we outline the choice of the pre-trained diffusion models and the formulation of the reward functions
used in our biomolecular design tasks (protein, DNA, small molecule design).

Protein sequence design. We adopt EvoDiff (Alamdari et al., 2023) as our pre-trained diffusion
model, a representative masked discrete diffusion model for protein sequence design, trained on
the UniRef database (Suzek et al., 2007). We use EvoDiff as an unconditional generative model to
produce natural protein sequences. To tackle downstream protein design tasks, we use the following
reward functions inspired by prior work (Hie et al., 2022; Verkuil et al., 2022; Lisanza et al., 2024;
Uehara et al., 2025b; Pacesa et al., 2024). Appendix D.1 provides detailed definitions of each reward
function. For tasks involving secondary structure matching optimization, we employ ESMFold (Lin
et al., 2023) to predict the 3D structures of generated sequences. For protein binder design, we
leverage AlphaFold2 (Jumper et al., 2021) to model the 3D structure of the multimers. In order
to encourage the naturalness and foldability of the designed proteins, we additionally incorporate
structural confidence metrics, such as pLDDT and radius of gyration (Pacesa et al., 2024), as part of
the reward function.

• ss-match (β-sheet). This task aims to maximize the probability of secondary structure (SS)
matching between the generated protein sequences and a predefined target pattern, computed

7
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Table 1: Performance of different methods on both protein, DNA, and molecular generation tasks
w.r.t. rewards and naturalness. The best result among fine-tuning baselines is highlighted in bold.
We report the 50% quantile of the metric distribution. The ± specifies the the standard error of the
estimate quantile with 95% confidence interval.

Method Protein SS-match DNA Enhancer HepG2 Molecule Docking - Parp1
β-sheet%↑ pLDDT↑ Diversity↑ Pred-Activity↑ ATAC-Acc↑ 3-mer Corr↑ Docking Score↑ NLL↓

Pre-trained 0.05 ± 0.05 0.37 ± 0.09 0.91 0.14 ± 0.26 0.000 ± 0.000 -0.15 7.2 ± 0.5 971 ± 32
Best-of-N (N=32) 0.26 ± 0.13 0.38 ± 0.11 0.90 1.30 ± 0.64 0.000 ± 0.000 -0.17 10.2 ± 0.4 951 ± 22

DRAKES - - - 6.44 ± 0.04 0.825 ± 0.028 0.307 - -

Standard Fine-tuning 0.48 ± 0.16 0.30 ± 0.04 0.57 1.17 ± 1.23 0.094 ± 0.292 0.829 7.8 ± 1.8 908 ± 77
DDPP 0.63 ± 0.07 0.36 ± 0.07 0.85 5.33 ± 0.94 0.305 ± 0.460 0.879 7.9 ± 1.3 981 ± 52
DDPO 0.81 ± 0.02 0.55 ± 0.05 0.52 7.38 ± 0.11 0.086 ± 0.280 0.398 8.5 ± 1.3 929 ± 43

VIDD 0.83 ± 0.01 0.82 ± 0.01 0.52 8.28 ± 0.18 0.820 ± 0.384 0.162 9.4 ± 1.7 741 ± 21

Table 2: Performance of different methods on protein binding design tasks w.r.t. ipTM, optimized
reward, and diversity. The best result is highlighted in bold.

Method PD-L1 IFNAR2
ipTM↑ Reward↑ Diversity↑ ipTM↑ Reward↑ Diversity↑

Pre-trained 0.1468 ± 0.0538 0.0847 ± 0.1317 0.9022 0.1179 ± 0.0153 0.0612 ± 0.0621 0.9007
Best-of-N (N=128) 0.2662 ± 0.1091 0.2654 ± 0.0629 0.8996 0.2463 ± 0.1055 0.2225 ± 0.0675 0.9058

Standard Fine-tuning 0.1640 ± 0.0215 0.1598 ± 0.0351 0.8999 0.1307 ± 0.0503 0.0926 ± 0.0712 0.9063
DDPP 0.1889 ± 0.0330 0.2065 ± 0.0453 0.8763 0.1375 ± 0.0794 0.1236 ± 0.0782 0.8850
DDPO 0.7881 ± 0.0250 0.8767 ± 0.0301 0.5266 0.2403 ± 0.0488 0.3142 ± 0.0544 0.7169

VIDD 0.8182 ± 0.0213 0.9079 ± 0.0237 0.5539 0.5090 ± 0.1079 0.5120 ± 0.1093 0.5176

(a) PD-L1 (b) IFNAR2

Figure 2: Protein structure visualizations for the PD-L1 and IFNAR2 binding design tasks. The
binder protein is shown in green and target protein is in orange, with hotspot residues labeled on the
structure.

across all residues. SS are predicted using the DSSP (Kabsch & Sander, 1983), and include
α-helices, β-sheets, and coils. Following Pacesa et al. (2024), we specifically encourage the
formation of β-sheets, as protein generative models are known to exhibit a bias toward α-helices.

• Binding affinity. This task focuses on designing binder proteins given target proteins, with the goal
of maximizing their binding affinity. We quantify binding affinity using the ipTM score predicted
by the AlphaFold-Multimer model (Jumper et al., 2021). Following prior work (Pacesa et al.,
2024), we select PD-L1 and IFNAR2 as representative target proteins.

DNA sequence design. We focus on the regulatory DNA designs widely used in the cell engineer-
ing (Taskiran et al., 2024; Su et al., 2025). Following Wang et al. (2024), we adopt a discrete diffusion
model (Sahoo et al., 2024) trained on enhancer datasets from Gosai et al. (2023) as our pre-trained
model (T = 128). For the reward function, we use predictions from the Enformer model (Avsec
et al., 2021) to estimate enhancer activity in the HepG2 cell line (denoted by Pred-Activity). This
reward has been widely employed in prior DNA design studies (Taskiran et al., 2024; Lal et al., 2024)
due to its relevance in cell engineering, particularly for modulating cell differentiation.

Small molecule design. We use GDSS (Jo et al., 2022), trained on ZINC-250k (Irwin & Shoichet,
2005), as the pre-trained diffusion model (T = 1000). For rewards, we use binding affinity to
protein Parp1 (Yang et al., 2021) (docking score (DS) calculated by QuickVina 2 (Alhossary et al.,
2015)), which is non-differentiable. Here, we renormalize docking score to max(−DS, 0), so that
a higher value indicates better performance. Note these rewards have been widely used Lee et al.
(2023); Jo et al. (2022); Yang et al. (2021); Li et al. (2025).
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6.1.2 BASELINES

We compare VIDD with the following baselines.
• Best-of-N: This is a naïve yet widely adopted approach for reward maximization at test time.

Note that such inference-time methods are significantly slower compared to our fine-tuned models.
Additional comparisons will be provided in Appendix E. Given that this method is N times slower
than the baseline methods, we do not consider it a practical baseline for fine-tuning.

• Standard Fine-Tuning (SFT). This method fine-tunes the model by sampling from the pretrained
model and applying the same loss used during pretraining, but with reweighting based on reward
values (Peng et al., 2019).

• DDPO (Black et al., 2024): A PPO-style algorithm discussed in Section 5.
• DDPP (Rector-Brooks et al., 2024): Another recent state-of-the-art method applicable to our

setting with non-differentiable reward functions by enforcing detailed balance between reward-
weighted posteriors and denoising trajectories.

• VIDD: Our algorithm. Regarding more detailed setting of hyperparameters, refer to Appendix D.2.

6.1.3 METRICS

Recall that our objective is to generate samples with high desired reward as in Section 2.2. Ac-
cordingly, we report the median reward of generated samples as the primary evaluation metric. As
secondary metrics, we include additional measures whose specific choice depends on the task context,
such as the naturalness of generated samples. More specifically, we use pLDDT scores for protein
design; the 3-mer Pearson correlation (3-mer Corr) between the generated sequences and those in
the dataset from Gosai et al. (2023); the negative log-likelihood (NLL) of the generated samples with
respect to the pretrained model for small molecule design. For further results, refer to Appendix E.

6.2 RESULTS

Figure 3: Protein structure visualizations
for protein SS-match tasks.

All results are summarized in Table 1 and Table 2. Below,
we provide an interpretation of each outcome.
Protein sequence design. VIDD consistently outper-
forms baseline methods by achieving higher rewards in
β-sheet content and ipTM binding affinity. Additionally,
Figure 2 and Figure 3 illustrate the predicted binder–target
complexes and secondary-structure matching tasks, con-
firming effective binding of the designed binders to their
targets and reasonable secondary structures of the designed
proteins. Other quantitative results are provided in Appendix E.4, further validating the quality and
effectiveness of the generated proteins, as well as effects of varying parameters such as mixture of
roll-in policy, lazy update interval and regularization coefficient.

DNA sequence design. Here, since this reward is technically differentiable, we include an additional
baseline, DRAKES (Wang et al., 2024), which directly backpropagates through the reward signal.
Notably, as shown in the Pred-Activity column, VIDD outperforms not only DDPP and DDPO,
but also DRAKES. In addition to the aforementioned Pred-Activity and 3-mer Corr metrics, we
follow Wang et al. (2024) in incorporating ATAC-Acc—an independent binary classification model
trained on chromatin accessibility data from the HepG2 cell line (Consortium et al., 2012)—as an
orthogonal reward. This is motivated by the fact that Pred-Activity is a trained reward model and
thus may be susceptible to overoptimization. In the ATAC-Acc column, our method also exhibits
strong performance, suggesting that VIDD would be robust to over-optimization. More quantitative
results can be found in Appendix E.2.

Small molecule design. VIDD outperforms the fine-tuning baseline methods in terms of reward.
More quantitative metrics that describe naturalness in molecules is in Appendix E.3.

7 CONCLUSION

In this work, we present VIDD, a novel fine-tuning algorithm for diffusion models under possibly non-
differentiable reward functions. Our method has the potential to accelerate discovery in areas such as
protein and drug design, but we also recognize possible misuse in generating harmful biomolecular
sequences. We advocate for safeguards and responsible research practices in deploying such models.
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A PROOF OF THEOREM 1: CONNECTING PPO OBJECTIVE WITH REVERSE KL
DIVERGENCE

We restate the formal version of Theorem 1. The statement is J(θ) is equal to

−
∑

t

E{pθ
t }0

t=T
[KL(pθt−1(·|xt)∥p⋆t−1(·|xt))].

up to some constant. We will provide its proof in this section.

Now, we prove this statement. We start calculating the inverse KL divergence. This is

α

1∑

t=T+1

KL
(
pθt−1(·|xt)∥p⋆t−1(·|xt)

)

=α

1∑

t=T+1

KL

(
pθt−1(·|xt)∥

ppret−1(·|xt) exp(vt−1(·)/α)
exp(vt(xt)/α)

)

=α

1∑

t=T+1

E{pθ
t−1(xt−1|xt)}t

[
log pθt−1(xt−1|xt) +

vt(xt)

α
− log ppret−1(xt−1|xt)−

vt−1(xt−1)

α

]

=

1∑

t=T+1

E{pθ
t−1(xt−1|xt)}t

[
−r(x0) + αKL

(
pθt−1(·|xt)∥ppret−1(·|xt)

)]
+ c

Here, c corresponds to constant vT+1(·) where it is defined by

α logEx0∼ppre(x0|xT )[exp(r(x0)/α)],

recalling its definition (3).

B CONNECTING VIDD OBJECTIVE WITH KL DIVERGENCE

In this section, we plan to explain how we derive (4). Recall that the original objective is

argmin
θ

Ext∼ut
[KL(p⋆t−1(·|xt)∥pθt−1(·|xt))].

Based on the definition of conditional KL divergence

KL
(
p(· | xt) ∥ q(· | xt)

)
= Ext−1∼p(·|xt)

[
log p(xt−1 | xt)− log q(xt−1 | xt)

]
,

and the definition of soft optimal policy p⋆t−1:

p⋆t−1(·|xt) =
ppret−1(·|xt) exp(vt−1(·)/α)

exp(vt(xt)/α)
,

our objective can be rewritten as

argmin
θ

Ext∼ut,xt−1∼p⋆
t−1(xt−1|xt)

[
log p⋆t−1(xt−1 | xt)− log pθt−1(xt−1 | xt)

]

=argmin
∑

t

Ext∼ut,xt−1∼p⋆
t−1(xt−1|xt)[log p

⋆
t−1(xt−1|xt)]

−
∑

t

Ext∼ut

[
1

exp(vt(xt)/α)
Ext−1∼ppre

t−1(xt−1|xt)[exp(vt−1(xt−1)/α) log p
θ
t−1(xt−1|xt)]

]
.

Hence, ignoring the first term since this is constant, the objective function reduces to

argmax
θ

∑

t

Ext∼ut

[
1

exp(vt(xt)/α)
Ext−1∼ppre

t−1(xt−1|xt)[exp(vt−1(xt−1)/α) log p
θ
t−1(xt−1|xt)]

]
,

thus we obtain (5).
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C BROADER IMPACT AND LIMITATIONS

C.1 BROADER IMPACT

This paper presents work whose goal is to advance the field of Deep Learning, particularly diffusion
models. While this research primarily contributes to technical advancements in generative modeling,
it has potential implications in domains such as drug discovery and biomolecular engineering. We
acknowledge that generative models, particularly those optimized for specific reward functions, could
be misused if not carefully applied. However, our work is intended for general applications, and
we emphasize the importance of responsible deployment and alignment with ethical guidelines in
generative AI. Overall, our contributions align with the broader goal of machine learning methodolo-
gies, and we do not foresee any immediate ethical concerns beyond those generally associated with
generative models.

C.2 LIMITATIONS AND FUTURE WORKS

The success of reward-guided fine-tuning such as reinforcement learning critically depends on the
quality of the reward signal. However, in reality, reward functions are often imperfect: they may
reflect proxy objectives that are only loosely correlated with real-world biological or chemical utility.
Poorly designed rewards can lead to over-optimization and exploit the reward without producing truly
meaningful or functional outputs.

Furthermore, post-training is often sensitive to the precision of the reward—when the reward signal is
noisy or misaligned, learning can become unstable or entirely fail. In practice, reward evaluation can
also be expensive (e.g., involving structure prediction or simulation), making it essential to design
reward mechanisms that are not only accurate but also sample-efficient, enabling effective training
under limited reward budget.

Finally, since reward signals are imperfect and often expensive to evaluate, hyperparameters that
regulate reward exploitation such as rollout frequency, may require some tuning in practice. Overly
aggressive configurations can amplify reward noise, while overly conservative choices may cap
achievable gains, reflecting a practical tradeoff inherent to reward-driven optimization. Designing
fully adaptive schedules for these parameters would require domain-specific assumptions about
reward reliability and exploration metrics, which falls outside the scope of this work but represents a
promising engineering extension built on top of our framework.

D ADDITIONAL DETAILS FOR EXPERIMENT SETTING

D.1 DETAILS ON TASKS AND REWARD FUNCTIONS

Here we present the detailed descriptions of the task settings and reward functions used in the
experiments.

SS-match. The secondary structure matching steers the energy toward user-defined secondary
structure. To annotate residue secondary structure, we use the DSSP algorithm (Kabsch & Sander,
1983), which identifies elements such as α-helices, β-sheets and coils. This reward function returns
the fraction of residues assigned to the desired secondary structure element. In our case, we aim
to maximize the fraction of residues forming β-sheets, thereby encouraging structures with higher
β-sheet content (Pacesa et al., 2024).

pLDDT. pLDDT (predicted Local Distance Difference Test) is a per-residue confidence score
produced by structure prediction models such as AlphaFold and ESMFold. It estimates the local
accuracy of predicted atomic positions, with higher scores indicating greater confidence. In protein
generation tasks, pLDDT is widely used to evaluate the structural reliability of predicted models, as
higher average pLDDT values correlate with well-formed and accurate local geometry. In our setting,
we use the average pLDDT score—computed via ESMFold (Lin et al., 2023)—as a reward signal to
encourage the generation of structurally confident protein designs.
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Table 3: Hyperparameter values for the DNA generation task.

Hyperparameters Values

Value weight coefficient α 1.0
Sequence length 200

# of decoding steps 128
Update interval K 5
# of training steps 2000

Batch size 32
Learning rate 1e− 4

Reward Pred-Activity

Protein Binding Affinity. We aim to generate binder proteins conditioned on given target proteins.
To optimize binding affinity, we maximize the ipTM score, a widely used metric calculated by the
AlphaFold2-Multimer model (Jumper et al., 2021; Pacesa et al., 2024). To further encourage the
naturalness and foldability of the generated binders, we incorporate additional structural confidence
terms into the reward function: Reward = ipTM + 0.1× pLDDT + 0.02× radius. The weights are
chosen to ensure that ipTM remains the primary optimization objective and is not overwhelmed by
the other, more easily optimized components. The pLDDT is computed from the predicted multimer
complex using AlphaFold2, while the radius of gyration encourages the formation of well-folded,
globular structures (Pacesa et al., 2024).

Molecule Binding Affinity. We use the docking program QuickVina 2 (Alhossary et al., 2015) to
compute the docking scores following Yang et al. (2021), with exhaustiveness as 1. Note that the
docking scores are initially negative values, while we reverse it to be positive and then clip the values
to be above 0, i.e.. We compute DS regarding protein parp1 (Poly [ADP-ribose] polymerase-1),
which is a target protein that has the highest AUROC scores of protein-ligand binding affinities for
DUD-E ligands approximated with AutoDock Vina.

Enhancer HepG2. We examine a publicly available large dataset on enhancers (n ≈ 700k) (Gosai
et al., 2023), with activity levels measured by massively parallel reporter assays (MPRA) (Inoue et al.,
2019), where the expression driven by each sequence is measured. In the Enhancers dataset, each x is
a DNA sequence of length 200. We pretrain the masked discrete diffusion model (Sahoo et al., 2024)
on all the sequences. We then split the dataset and train two reward oracles (one for finetuning and one
for evaluation) on each subset. Each reward oracle is learned using the Enformer architecture (Avsec
et al., 2021), while y ∈ R is the measured activity in the HepG2 cell line. The Enformer trunk has 7
convolutional layers, each having 1536 channels. as well as 11 transformer layers, with 8 attention
heads and a key length of 64. Dropout regularization is applied across the attention mechanism,
with an attention dropout rate of 0.05, positional dropout of 0.01, and feedforward dropout of 0.4.
The convolutional head for final prediction has 2*1536 input channels and uses average pooling,
without an activation function. We learn two These datasets and reward models are widely used in
the literature on computational enhancer design (Lal et al., 2024; Sarkar et al., 2024).

D.2 HYPERPARAMETERS

Here we present the hyperparameters in Table 3, Table 4 and Table 5.

D.3 SOFTWARE AND HARDWARE

Our implementation is under the architecture of PyTorch (Paszke, 2019). The deployment environ-
ments are Ubuntu 20.04 with 48 Intel(R) Xeon(R) Silver, 4214R CPU @ 2.40GHz, 755GB RAM,
and graphics cards NVIDIA RTX 2080Ti. All experiments are conducted on a single GPU, selected
from NVIDIA RTX 2080Ti, RTX A6000, or NVIDIA H100 with 80GB HBM3 memory, depending
on the scale of the task.
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Table 4: Hyperparameter values for the protein generation task.

Hyperparameters Values

Value weight coefficient α 1.0
Sequence length 256 (ss-match), 100 (binding affinity)

# of decoding tokens each step 4
Update interval K 5 (binder IFNAR2), 50 (ss-match, binder PD-L1)
# of training steps 10000

Batch size 32
Learning rate 1e− 5

Reward (ss-match) ss-match
Reward (Binding Affinity) ipTM + 0.1× pLDDT + 0.02× radius

Table 5: Hyperparameter values for the molecule generation task.

Hyperparameters Values

Value weight coefficient α 6.0
Maximum atom number 38

# of decoding steps 1000
Update interval K 20
# of training steps 1000

Batch size 1024
Learning rate 5e− 6

Reward Docking Score

Table 6: Final performance combined with inference-time techniques.

Method Protein SS-match DNA Enhancer HepG2 Molecule Docking - Parp1
β-sheet%↑ pLDDT↑ Pred-Activity↑ ATAC-Acc↑ 3-mer Corr↑ Docking Score↑ NLL↓

VIDD 0.83 ± 0.01 0.82 ± 0.01 8.28 ± 0.18 0.820 ± 0.384 0.162 9.4 ± 1.7 741 ± 21
VIDD + BoN (N=32) 0.84 ± 0.00 0.82 ± 0.01 8.40 ± 0.07 0.750 ± 0.433 0.152 12.1 ± 1.0 726 ± 28

D.4 LICENSES

The dataset for molecular tasks is under Database Contents License (DbCL) v1.0. The pretrained
protein generation model EvoDiff is under MIT License. The dataset for DNA task is covered under
AGPL-3.0 license. We follow the regulations for all licenses.

E ADDITIONAL EXPERIMENT RESULTS

E.1 CONNECTING VIDD WITH INFERENCE-TIME TECHNIQUES

As discussed in Section 1.1, inference-time techniques are orthogonal to our approach. Here we
clarify the connection between VIDD and inference-time methods. Among various inference-time
schemes, the most relevant to VIDD is SVDD (Li et al., 2024). Both methods approximate the value
function using

vt(xt) ≈ r(x̂0(xt)),

but their usage differs fundamentally: SVDD leverages this estimated value to guide the choice of
the next denoising step during sampling, whereas VIDD fine-tunes the diffusion model based on
the estimated value, leading to a learnable and reusable policy rather than a purely inference-time
adjustment.

Furthermore, inference-time techniques can be combined with VIDD to further enhance performances.
Table 6 and Table 7 presents the results of applying VIDD with Best-of-N sampling, demonstrating
that additional performance gains can be achieved through this combination.
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Table 7: Final performance combined with inference-time techniques for protein binder design.

Method PD-L1 IFNAR2
ipTM↑ pLDDT↑ Radius↓ Diversity↑ ipTM↑ pLDDT↑ Radius↓ Diversity↑

VIDD 0.82 ± 0.02 0.87 ± 0.04 -0.12 ± 0.11 0.55 0.51 ± 0.11 0.47 ± 0.05 2.20 ± 2.00 0.52
VIDD + BoN (N=128) 0.84 ± 0.00 0.91 ± 0.01 -0.16 ± 0.06 0.39 0.66 ± 0.02 0.55 ± 0.04 1.04 ± 0.45 0.43

Table 8: Performance of different methods on DNA generation tasks. The best result among fine-
tuning baselines is highlighted in bold, and the second best result is highlighted in underline.

Method Pred-Activity↑ ATAC-Acc↑ 3-mer Corr↑ Log-Lik↑
Pre-trained 0.14 ± 0.26 0.000 ± 0.000 -0.15 -245 ± 9.1
Best-of-N (N=32) 1.30 ± 0.64 0.000 ± 0.000 -0.17 -240 ± 7.2

DRAKES w/o KL 6.44 ± 0.04 0.825 ± 0.028 0.307 -281 ± 0.6
DRAKES 5.61 ± 0.07 0.925 ± 0.006 0.887 -264 ± 0.6

Standard Fine-tuning 1.17 ± 1.23 0.094 ± 0.292 0.829 -263 ± 9.3
DDPP 5.33 ± 0.94 0.305 ± 0.460 0.879 -218 ± 10.4
DDPO 7.38 ± 0.11 0.086 ± 0.280 0.398 -126 ± 9.5
GLID2E 7.35 ± 0.07 0.906 ± 0.003 0.490 -240 ± 14.2

VIDD 8.28 ± 0.18 0.820 ± 0.384 0.162 -198 ± 8.6

E.2 FURTHER RESULTS FOR DNA GENERATION

More metrics on DNA generation tasks. Here we provide additional evaluation results for the
DNA generation task in Table 8 to offer a more comprehensive comparison across a broader set
of metrics. We add a new baseline GLID2E (Cao et al., 2025) here for comparison. Note that our
optimization target is solely the Pred-Activity. Following the prior work (Wang et al., 2024), we
fine-tune using one Pred-Activity reward model and evaluate using a different one to avoid data
leakage. In terms of performance, VIDD attains strong gains in Pred-Activity, as well as competitive
results on ATAC-Acc and Log-Likelihood. Although its 3-mer correlation diverges from that of the
pretrained model distribution, the substantially higher functional rewards indicate that VIDD is able
to discover novel yet highly effective sequences. This suggests that VIDD explores regions beyond
conventional motif statistics while still generating functionally superior designs.

Regarding overall performance, DRAKES benefits from explicit gradient information as discussed in
Section 6.1.2. Gradient-based methods are expected to have better performances because they rely
on precise token-level gradients, while methods designed for non-differentiable rewards must operate
using only sequence-level reward signals. Despite this disadvantage, VIDD still achieves superior
performance on the optimized Pred-Activity objective, demonstrating its effectiveness. We include
DRAKES in the comparison to help readers better understand the level of results VIDD can achieve.

Lazy update interval We study the effect of the lazy update interval K on the DNA sequence
design discussed in Section 4.2, and other parameters are provided in Table 3. As shown in Table 9,
performance is different under different K and does not improve monotonically with more frequent
updates. These results suggest that less updates of roll-out policy can stabilize training and improve
optimization.

Regularization coefficient We study the effect of the regularization coefficient α as shown in (7).
Hyperparameter details for the remaining settings are listed in Table 3 In the DNA sequence design
task, the performance comparison is presented in Table 10, show that α = 1.0, i.e., keeping the
reward distribution unchanged, yields the best performance.

E.3 FURTHER RESULTS FOR MOLECULE GENERATION

First, we report the diversity comparisons across methods in Table 11 on page 21.

To evaluate the validity of our method in molecule generation, we further report several key metrics
that capture different aspects of molecule quality and diversity in Table 12 on page 21.
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Table 9: The influence of lazy update interval K on the performances of DNA sequence design.

Lazy Update Interval Pred-Activity↑ ATAC-Acc↑ 3-mer Corr↑ Log-Lik↑
1 7.06 ± 0.35 0.000 ± 0.000 0.211 -156 ± 12.0
5 8.28 ± 0.18 0.820 ± 0.384 0.162 -198 ± 8.6
10 7.76 ± 0.32 0.047 ± 0.211 0.457 -265 ± 5.5
20 7.71 ± 0.37 0.086 ± 0.280 0.398 -265 ± 5.3
50 7.23 ± 0.42 0.484 ± 0.500 0.470 -266 ± 7.2

Table 10: The influence of regularization coefficient α on the performances of DNA sequence design.

Regularization Coefficient Pred-Activity↑ ATAC-Acc↑ 3-mer Corr↑ Log-Lik↑
0.8 8.21 ± 0.24 0.820 ± 0.384 0.272 -246 ± 6.2
1.0 8.28 ± 0.18 0.820 ± 0.384 0.162 -198 ± 8.6
2.0 7.26 ± 0.39 0.977 ± 0.151 0.351 -248 ± 8.0

The validity of a molecule indicates its adherence to chemical rules, defined by whether it can be
successfully converted to SMILES strings by RDKit. Uniqueness refers to the proportion of generated
molecules that are distinct by SMILES string. Novelty measures the percentage of the generated
molecules that are not present in the training set. Fréchet ChemNet Distance (FCD) measures the
similarity between the generated molecules and the test set. The Similarity to Nearest Neighbors
(SNN) metric evaluates how similar the generated molecules are to their nearest neighbors in the
test set. Fragment similarity measures the similarity of molecular fragments between generated
molecules and the test set. Scaffold similarity assesses the resemblance of the molecular scaffolds
in the generated set to those in the test set. The neighborhood subgraph pairwise distance kernel
Maximum Mean Discrepancy (NSPDK MMD) quantifies the difference in the distribution of graph
substructures between generated molecules and the test set considering node and edge features. Atom
stability measures the percentage of atoms with correct bond valencies. Molecule stability measures
the fraction of generated molecules that are chemically stable, i.e., whose all atoms have correct bond
valencies. Specifically, atom and molecule stability are calculated using conformers generated by
RDKit and optimized with UFF (Universal Force Field) and MMFF (Merck Molecular Force Field).

We compare the metrics using 512 molecules generated from the pre-trained GDSS model and from
different methods, as shown in Table 12 on page 21. Overall, our method achieves comparable
performances with the pre-trained model on all metrics, maintaining high validity, novelty, and
uniqueness while outperforming on several metrics such as FCD, SNN, and NSPDK MMD. Pre-
trained performs consistently well across all metrics, particularly in SNN and atomic stability.
However, it does not optimize specific molecular properties as effectively as the other methods. DDPP
performs poorly in scaffold similarity and NSPDK MMD, indicating that it generates unrealistic
molecules. These results indicate that our approach can generate a diverse set of novel molecules that
are chemically plausible and relevant.

E.4 FURTHER RESULTS FOR PROTEIN GENERATION

More metrics on protein binder design Tables 13 and Table 14 report the full evaluation metrics
for the protein binding affinity design tasks. Here Reward = ipTM + 0.1× pLDDT + 0.02× radius,
indicate the aggregated metrics. While ipTM serves as the primary metric for binding affinity, pLDDT
and radius of gyration are included as secondary metrics to encourage the generation of well-folded,
globular binder proteins.

Additional evaluation metrics are reported in Table 15. We present results for both pTM and pDockQ,
where pTM values are obtained directly from AlphaFold2-Multimer (Jumper et al., 2021) and pDockQ
scores follow Bryant et al. (2022). From the table, we observe that our proposed VIDD consistently
achieves the best performance among the main baselines. Note pTM and pDockQ are not directly
optimized during the fine-tuning, but only used for evaluation. Protein binding affinity can be assessed
using a wide variety of metrics, raising the question of how to effectively integrate multiple objectives.
Developing a principled multi-objective fine-tuning framework therefore remains an interesting
direction for future work to explore.
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Table 11: Performance of different methods on molecular generation task w.r.t. reward, NLL, and
diversity.

Method Binding Affinity - Parp1
Docking Score↑ NLL↓ Diversity↑

Pre-trained 7.2 ± 0.5 971 ± 32 0.7784 ± 0.2998
Best-of-N (N=32) 10.2 ± 0.4 951 ± 22 0.7938 ± 0.3052

Standard Fine-tuning 7.8 ± 1.8 908 ± 77 0.8787 ± 0.1088
DDPP 7.9 ± 1.3 981 ± 52 0.8067 ± 0.0845
DDPO 8.5 ± 1.3 929 ± 43 0.8993 ± 0.0567

VIDD 9.4 ± 1.7 741 ± 21 0.9019 ± 0.0477
VIDD + BoN 12.1 ± 1.0 726 ± 28 0.9135 ± 0.0509

Table 12: Comparison of the generated molecules across various metrics. The best values for each
metric are highlighted in bold.

Method Valid↑ Unique↑ Novelty↑ FCD ↓ SNN ↑ Frag ↑ Scaf ↑ NSPDK MMD ↓ Mol Stable ↑ Atm Stable ↑
Pre-trained 1.000 1.000 1.000 12.979 0.414 0.513 1.000 0.038 0.320 0.917
DPS 1.000 1.000 1.000 13.230 0.389 0.388 1.000 0.040 0.310 0.878
SMC 1.000 0.406 1.000 22.710 0.225 0.068 1.000 0.285 0.000 0.968
SVDD 1.000 1.000 1.000 12.278 0.428 0.622 1.000 0.052 0.478 0.910
Standard Fine-tuning 1.000 1.000 1.000 9.698 0.485 0.597 1.000 0.026 0.375 0.935
DDPP 1.000 0.671 1.000 5.280 0.426 0.759 NaN 0.778 0.379 0.919
DDPO 1.000 1.000 1.000 11.506 0.333 0.484 0.975 0.032 0.581 0.961
VIDD 1.000 1.000 1.000 4.869 0.489 0.714 0.999 0.016 0.458 0.911

Table 13: Performance of different methods on protein binding design tasks on target protein PD-L1.

Method Reward↑ ipTM↑ pLDDT↑ Radius↓ Diversity↑

Pre-trained 0.0847 ± 0.1317 0.1468 ± 0.0538 0.3284 ± 0.0420 4.7420 ± 5.2352 0.9022
Best-of-N (N=128) 0.2654 ± 0.0629 0.2662 ± 0.1091 0.3890 ± 0.0530 1.9883 ± 3.4164 0.8996

Standard Fine-tuning 0.1598 ± 0.0351 0.1640 ± 0.0215 0.3349 ± 0.0328 1.8829 ± 1.1945 0.8999
DDPP 0.2065 ± 0.0453 0.1889 ± 0.0330 0.3720 ± 0.0269 0.9780 ± 0.9635 0.8763
DDPO 0.8767 ± 0.0301 0.7881 ± 0.0250 0.8244 ± 0.0821 -0.3081 ± 0.1285 0.5266

VIDD 0.9079 ± 0.0237 0.8182 ± 0.0213 0.8720 ± 0.0421 -0.1232 ± 0.1066 0.5539

Table 14: Performance of different methods on protein binding design tasks on target protein IFNAR2.

Method Reward↑ ipTM↑ pLDDT↑ Radius↓ Diversity↑

Pre-trained 0.0612 ± 0.0621 0.1179 ± 0.0153 0.3525 ± 0.0513 4.5964 ± 2.9320 0.9007
Best-of-N (N=128) 0.2225 ± 0.0675 0.2463 ± 0.1055 0.3843 ± 0.0515 3.1082 ± 2.9186 0.9058

Standard Fine-tuning 0.0926 ± 0.0712 0.1307 ± 0.0503 0.3321 ± 0.0381 3.5632 ± 2.1944 0.9063
DDPP 0.1236 ± 0.0782 0.1375 ± 0.0794 0.3624 ± 0.0359 2.5107 ± 1.1723 0.8850
DDPO 0.3142 ± 0.0544 0.2403 ± 0.0488 0.6300 ± 0.0743 -0.5435 ± 0.1219 0.7169

VIDD 0.5120 ± 0.1093 0.5090 ± 0.1079 0.4711 ± 0.0490 2.2039 ± 1.9989 0.5176

Table 15: Additional evaluation metrics for protein binder design. Note that those metrics are not
optimized during training and only used for evaluation.

Method PD-L1 IFNAR2
pTM↑ pDockQ↑ pTM↑ pDockQ↑

DDPP 0.5537 ± 0.0179 0.0693 ± 0.0214 0.4697 ± 0.0084 0.0359 ± 0.0082
DDPO 0.7862 ± 0.0809 0.2445 ± 0.0478 0.5064 ± 0.0178 0.0516 ± 0.0190
VIDD 0.8369 ± 0.0300 0.4164 ± 0.0460 0.5885 ± 0.0368 0.1241 ± 0.0352

Mixed roll-in policy In Section 4.1, we describe a mixed roll-in strategy that samples trajectories
from the pre-trained policy ppre

t and the roll-out policy poutt with probabilities 1 − βs and βs,
respectively. Figure 4 ablates βs and find that injecting a non-zero fraction of ppre

t (i.e., not always
rolling in from poutt ) improves diversity and often yields better overall performance. The specific
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Figure 4: Performance vs. diversity in PD-L1 binder design under different roll-in mixtures. Mixing
in the pre-trained policy during roll-in (smaller βs) increases diversity compared to relying solely on
the roll-out policy (βs=1).

Table 16: The influence of lazy update interval K on the performances on protein sequence design
for ss-match task.

Lazy Update Interval K β-sheet%↑ pLDDT↑ Diversity↑
1 0.7972 ± 0.0323 0.6745 ± 0.0643 0.8238
5 0.8914 ± 0.0155 0.6196 ± 0.0263 0.5023
50 0.8281 ± 0.0098 0.8202 ± 0.0118 0.5154

(a) SS-match (b) PD-L1 (c) IFNAR2

Figure 5: Training curves of different methods on SS-match, PD-L1, and IFNAR2 binder design
tasks. The y-axis shows the optimized reward, and the x-axis shows training steps.

optimal mixture is task-dependent; accordingly, we treat βs as a tunable hyperparameter selected by
validation to balance exploration (ppre

t ) and exploitation (poutt ).

Lazy update interval For the hyperparameter of lazy update interval K discussed in Section 4.2,
we present the results in Table 16, Table 17 and Table 18 for the protein sequence design task, and
other parameters are provided in Table 4.

Regularization coefficient For the regularization coefficient α in (7), the performance comparison
for protein sequence design tasks is presented in Table 19 and Table 20. We could notice that
similar as DNA sequence design, keep the reward distribution unchanged (α = 1.0) yields the best
performances.
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Table 17: The influence of lazy update interval K on the performances on protein binder design tasks
for target protein PD-L1.

Lazy Update Interval K Reward↑ ipTM↑ pLDDT↑ Radius↓ Diversity↑
1 0.4336 ± 0.1214 0.4090 ± 0.1208 0.4174 ± 0.0304 0.8551 ± 0.7798 0.5048
5 0.6983 ± 0.1195 0.6428 ± 0.1116 0.6211 ± 0.0814 0.3270 ± 0.2587 0.5140
10 0.5537 ± 0.0490 0.5073 ± 0.0458 0.5606 ± 0.0374 0.4791 ± 0.2324 0.5062
20 0.1902 ± 0.0880 0.2327 ± 0.0804 0.4367 ± 0.0678 4.3089 ± 0.9180 0.5033
50 0.9079 ± 0.0237 0.8182 ± 0.0213 0.8720 ± 0.0421 -0.1232 ± 0.1066 0.5539

Table 18: The influence of lazy update interval K on the performances on protein binder design tasks
for target protein IFNAR2.

Lazy Update Interval K Reward↑ ipTM↑ pLDDT↑ Radius↓ Diversity↑
1 0.1702 ± 0.0311 0.1433 ± 0.0099 0.4195 ± 0.0321 0.7567 ± 1.3396 0.7454
5 0.5120 ± 0.1093 0.5090 ± 0.1079 0.4711 ± 0.0490 2.2039 ± 1.9989 0.5176
10 0.2305 ± 0.0252 0.1955 ± 0.0167 0.4517 ± 0.0302 0.5062 ± 0.5819 0.6052
20 0.1528 ± 0.0352 0.1266 ± 0.0270 0.3809 ± 0.0421 0.5971 ± 0.6893 0.8597
50 0.1227 ± 0.0231 0.1160 ± 0.0108 0.3618 ± 0.0393 1.4747 ± 0.8167 0.8717

(a) SS-match (b) PD-L1 (c) IFNAR2

Figure 6: Scatter plots of reward versus diversity for different methods on SS-match, PD-L1, and
IFNAR2 binder design tasks. Each point corresponds to a training checkpoint.

Trade-off between Reward and Diversity Readers may be concerned that higher rewards could
come at the cost of reduced diversity from results in Table 1 and Table 2 (as well as Table 13 and
Table 14). To clarify this, we include the training curves (Figure 5) and the reward–diversity scatter
plots (Figure 6). The curves show how reward evolves over training, while the scatter plots visualize
the reachable regions in the reward–diversity plane for each method. These figures illustrate that
only our method is able to expand the reachable set and achieve substantially higher rewards across
training.

F SOFT VALUE FUNCTION

F.1 POSTERIOR MEAN APPROXIMATION

We use (3) to define the soft value function:

vt(x) := α logEx0∼ppre(x0|xt)

[
exp

(
r(x0)

α

)∣∣∣∣xt

]
.

Recall that the training objective of diffusion models (Section 2.1) is to accurately recover the clean
sample x0 from a noisy state xt. In practice, this means that the diffusion model aims to produce a
reliable estimate x̂0(xt) of the posterior mean E[x0|xt]. Following prior work (Uehara et al., 2025a;
Li et al., 2024), substituting this estimate into the expectation above yields the commonly used soft
value approximation:

vt(xt) ≈ r(x̂0(xt)),

which is often referred to as the posterior mean approximation. In our implementation, we obtain
x̂0(xt) via argmax decoding from the distribution p(x0 | xt) at t = 0.
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Table 19: The influence of regularization coefficient α on the performances on protein binder design
tasks for target protein PD-L1.

Regularization Coefficient α Reward↑ ipTM↑ pLDDT↑ Radius↓ Diversity↑
0.8 0.5505 ± 0.0809 0.4839 ± 0.0739 0.5430 ± 0.0565 -0.6149 ± 0.1902 0.5592
1 0.9079 ± 0.0237 0.8182 ± 0.0213 0.8720 ± 0.0421 -0.1232 ± 0.1066 0.5539
2 0.4443 ± 0.0854 0.3930 ± 0.0812 0.4752 ± 0.0552 -0.1865 ± 0.3129 0.5038

Table 20: The influence of regularization coefficient α on the performances on protein binder design
tasks for target protein IFNAR2.

Regularization Coefficient α Reward↑ ipTM↑ pLDDT↑ Radius↓ Diversity↑
0.8 0.2729 ± 0.0844 0.2472 ± 0.0733 0.4013 ± 0.0448 0.7226 ± 0.6606 0.5017
1 0.5120 ± 0.1093 0.5090 ± 0.1079 0.4711 ± 0.0490 2.2039 ± 1.9989 0.5176
2 0.1005 ± 0.0480 0.1247 ± 0.0455 0.3587 ± 0.0329 3.0035 ± 1.3196 0.8769

F.2 MONTE CARLO ESTIMATION

Beyond the posterior mean, one may also approximate the soft value using Monte Carlo sampling,
which computes multiple predictions of x0 and averages their rewards:

vt(xt) ≈
1

M

M∑

m=1

r
(
x̂
(m)
0 (xt)

)
, x̂

(m)
0 (xt) ∼ p(x0 | xt),

where we sample from p(x0 | xt) multiple times to get different x̂(m)
0 (xt) by temperature sampling.

Temperature sampling is used because argmax decoding above produces a single deterministic mode
and therefore cannot support multiple samples for Monte Carlo estimation.

Table 21 and Table 22 reports the effect of different soft value estimation functions in our setting.
Specifically, Posterior mean represents take the argmax decoding to get x0 from p(x0 | xt). The
interesting observation is that even when we use Monte Carlo estimation with M = 4, which
increases reward computation cost by 4× (and reward calculation itself is expensive using models
like ESMFold–3B or AlphaFold2-Multimer-93M parameters), the performance becomes worse. This
suggests that the posterior mean (argmax) provides a more stable and discriminative value signal
for estimating vt(xt). In contrast, small-M Monte Carlo samples mix high- and low-quality draws,
weakening the training guidance. Increasing M further could reduce this variance, but it would
require substantially more reward calls, making it computationally impractical in biomolecular
design, where reward evaluation is both high-cost and non-regular.

Therefore, using argmax decoding to approximate the value offers the best trade-off: it minimizes
reward computation while providing a stable and reliable signal for fine-tuning, making it the most
practical choice for VIDD.

F.3 TRAINING VALUE NETWORK

Another alternative is to train a separate neural network to approximate the soft value function
directly. Although such critic models are common in standard reinforcement learning, they are
considerably less practical in biomolecular design. Reward functions in our domains (e.g., protein
binder design, secondary-structure–matching design) rely on large structure prediction models such
as AlphaFold2-Multimer (Jumper et al., 2021) (93.2M parameters) or ESMFold (Lin et al., 2023)
(3B parameters), which operate on full sequences rather than individual denoising steps. In contrast,
the diffusion generator used in our experiments (EvoDiff (Alamdari et al., 2023)) contains only 38M
parameters. Training an accurate value network over intermediate states xt instead of the final state
is extremely challenging and computationally extensive. Consequently, we focus on the posterior
mean and Monte Carlo estimators in this work, and leave the training of scalable and accurate value
networks for complex biomolecular tasks as an interesting future direction.
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Table 21: The influences of soft value function on the performances on protein binder design tasks for
target protein PD-L1.

Reward↑ ipTM↑ pLDDT↑ Radius↓ Diversity↑
Posterior mean 0.9079 ± 0.0237 0.8182 ± 0.0213 0.8720 ± 0.0421 -0.1232 ± 0.1066 0.5539
Monte carlo estimation (M=4) 0.7758 ± 0.0620 0.7105 ± 0.0603 0.4993 ± 0.0359 -0.7711 ± 0.1049 0.5155

Table 22: The influences of soft value function on the performances on protein binder design tasks for
target protein IFNAR2.

Reward↑ ipTM↑ pLDDT↑ Radius↓ Diversity↑
Posterior mean 0.5120 ± 0.1093 0.5090 ± 0.1079 0.4711 ± 0.0490 2.2039 ± 1.9989 0.5176
Monte carlo estimation (M=4) 0.4149 ± 0.0936 0.3474 ± 0.0906 0.6892 ± 0.0617 0.0703 ± 0.2881 0.5195

G NOISE REWARD FUNCTION

In this section, we inject synthetic noise into the reward estimation function to assess the robustness
of VIDD under imperfect reward signals. This scenario reflects realistic biomolecular settings, where
surrogate reward models may deviate from true experimental measurements. Specifically, we add n%
Gaussian noise to the reward function as:

rn = r + r · n% · N (0, 1),

where N (0, 1) is the normal distribution. During training, we use the noised reward rn as signal,
and for inference, we observe the clean reward r. The results in Table 23 and Table 24 show that,
as noise levels increase, the performance degrades noticeably. This is expected: VIDD does not
incorporate explicit robustness mechanisms, so inaccuracies in reward estimation can mislead the
optimization process and fine-tune the model toward suboptimal directions.

Since noisy or biased rewards exist in biomolecular design, addressing reward uncertainty remains a
crucial direction. Incorporating robustness-aware reinforcement learning techniques, such as reward
denoising or uncertainty calibration, represents a promising direction for future research.

H VISUALIZATION OF GENERATED SAMPLES

In Figure 7 we visualizes the docking of VIDD generated molecular ligands to protein parp1. Docking
scores presented above each column quantify the binding affinity of the ligand-protein interaction,
while the figures include various representations and perspectives of the ligand-protein complexes.
We aim to provide a complete picture of how each ligand is situated within both the local binding
environment and the larger structural framework of the protein. First rows show close-up views of
the ligand bound to the protein surface, displaying the topography and electrostatic properties of the
protein’s binding pocket and providing insight into the complementarity between the ligand and the
pocket’s surface. Second rows display distant views of the protein using the surface representation,
offering a broader perspective on the ligand’s spatial orientation within the global protein structure.
Third rows provide close-up views of the ligand interaction using a ribbon diagram, which represents
the protein’s secondary structure, such as alpha-helices and beta-sheets, to highlight the specific
regions of the protein involved in binding. Fourth rows show distant views of the entire protein
structure in ribbon diagram, with ligands displayed within the context of the protein’s full tertiary
structure. Ligands generally fit snugly within the protein pocket, as evidenced by the close-up views
in both the surface and ribbon diagrams, which show minimal steric clashes and strong surface
complementarity.
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Table 23: The influences of noise reward function on the performances on protein binder design tasks
for target protein PD-L1.

Reward↑ ipTM↑ pLDDT↑ Radius↓ Diversity↑
noise=0.0 0.9079 ± 0.0237 0.8182 ± 0.0213 0.8720 ± 0.0421 -0.1232 ± 0.1066 0.5539
noise=0.1 0.4744 ± 0.1172 0.4570 ± 0.1192 0.4306 ± 0.0255 1.2802 ± 0.9287 0.5154

Table 24: The influences of noise reward function on the performances on protein binder design tasks
for target protein IFNAR2.

Reward↑ ipTM↑ pLDDT↑ Radius↓ Diversity↑
noise=0.0 0.5120 ± 0.1093 0.5090 ± 0.1079 0.4711 ± 0.0490 2.2039 ± 1.9989 0.5176
noise=0.1 0.1970 ± 0.0217 0.1446 ± 0.0160 0.4692 ± 0.0620 -0.2763 ± 0.2740 0.5234

Figure 7: Visualization of generated molecules using VIDD optimizing the reward of docking score
for parp1 (normalized as max(−DS, 0)).
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