

# 000 001 002 003 004 ITERATIVE DISTILLATION FOR REWARD-GUIDED FINE- 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TUNING OF DIFFUSION MODELS IN BIOMOLECULAR DESIGN

006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
**Anonymous authors**

Paper under double-blind review

## ABSTRACT

We address the problem of fine-tuning diffusion models for reward-guided generation in biomolecular design. While diffusion models have proven highly effective in modeling complex, high-dimensional data distributions, real-world applications often demand more than high-fidelity generation, requiring optimization with respect to potentially non-differentiable reward functions such as physics-based simulation or rewards based on scientific knowledge. Although RL methods have been explored to fine-tune diffusion models for such objectives, they often suffer from instability, low sample efficiency, and mode collapse due to their on-policy nature. In this work, we propose an iterative distillation-based fine-tuning framework that enables diffusion models to optimize for arbitrary reward functions. Our method casts the problem as policy distillation: it collects off-policy data during the roll-in phase, simulates reward-based soft-optimal policies during roll-out, and updates the model by minimizing the KL divergence between the simulated soft-optimal policy and the current model policy. Our off-policy formulation, combined with KL divergence minimization, enhances training stability and sample efficiency compared to existing RL-based methods. Empirical results demonstrate the effectiveness and superior reward optimization of our approach across diverse tasks in protein, small molecule, and regulatory DNA design.

## 1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) have achieved remarkable success across diverse domains, including computer vision and scientific applications (e.g., protein design (Watson et al., 2023; Almdari et al., 2023)). Their strength lies in modeling complex, high-dimensional data distributions, including natural images and chemical structures such as proteins and small molecules. However, in many real-world scenarios, especially for biomolecular design, generating samples that merely resemble the training distribution is not sufficient. Instead, we often seek to optimize specific downstream reward functions. For instance, in protein design, beyond generating plausible structures, practical applications frequently require satisfying task-specific objectives such as structural constraints, binding affinity, and hydrophobicity (Hie et al., 2022; Pacesa et al., 2024). To meet these requirements, fine-tuning diffusion models with respect to task-specific rewards is crucial, enabling goal-directed generation aligned with downstream objectives.

Numerous algorithms have been proposed for fine-tuning diffusion models with respect to reward functions, motivated by the observation that this problem can be naturally framed as a reinforcement learning (RL) task within an entropy-regularized Markov Decision Process (MDP), where each policy corresponds to the denoising process of the diffusion model (Black et al., 2024; Fan et al., 2023). In computer vision, current state-of-the-art methods fine-tune diffusion models by directly backpropagating reward gradients through the generative process (Clark et al., 2023; Prabhudesai et al., 2023). However, in many scientific applications, reward functions are inherently non-differentiable, making such optimization inapplicable. For example, in protein design, rewards based on secondary structure matching (e.g., DSSP algorithm (Kabsch & Sander, 1983)) or binding affinity predictions (e.g., AlphaFold3 (Abramson et al., 2024)) typically rely on hard lookup-tables based on scientific knowledge. Similarly, in small molecule design, reward functions such as synthetic accessibility (SA), molecular fingerprints (Yang et al., 2021), and outputs from physics-based simulators (e.g., AutoDock Vina (Trott & Olson, 2010)) are also non-differentiable. These characteristics pose a fundamental challenge for direct back-propagation approaches in scientific domains.

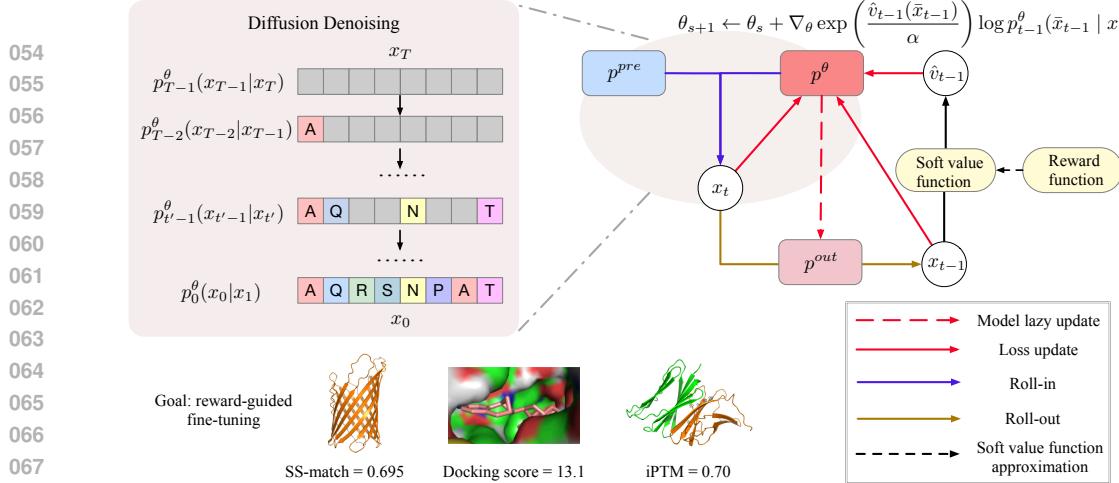


Figure 1: Overview of **VIDD**. **VIDD** fine-tunes diffusion models to maximize potentially non-differentiable rewards by iteratively distilling soft-optimal denoising policies. It alternates between (1) off-policy roll-in, (2) value-guided reward-weighted roll-out, and (3) forward KL-based model updates. Our algorithm leverages off-policy roll-ins and forward KL minimization rather, which contribute to improved optimization stability.

In such cases, policy gradient methods like Proximal Policy Optimization (PPO) (Schulman et al., 2017) offer a natural alternative, as they are used in diffusion models. However, PPO is known to exhibit instability, hyperparameter sensitivity, and susceptibility to mode collapse in many contexts Yuan et al. (2022); Moalla et al. (2024). These issues arise in part due to its on-policy nature — trajectories used for training the model are generated by the current fine-tuned policy, leading to narrow exploration around previously visited regions. Furthermore, from a theoretical perspective, PPO can be viewed as minimizing the *reverse Kullback–Leibler* (KL) divergence between the target and generated trajectory distributions. This reverse KL objective encourages mode-seeking behavior, potentially leading to mode collapse (Wang et al., 2023; Go et al., 2023; Kim et al., 2025).

To address the aforementioned challenges, we propose a new framework, **VIDD** (Value-guided Iterative Distillation for Diffusion models), designed to maximize possibly non-differentiable rewards in a stable and effective manner. The core idea is to iteratively distill soft-optimal policies—which serve as target denoising processes that optimize the reward while remaining close to the current fine-tuned model, as visualized in Figure 1. Concretely, the algorithm proceeds in three iterative steps: (1) roll-in using sufficiently exploratory off-policy trajectories, (2) roll-out to simulate soft-optimal policies, and (3) update the fine-tuned model by minimizing the KL divergence between the soft-optimal and current model policies. Importantly, in (2) and (3), our algorithm effectively leverages value functions tailored to diffusion models to guide fine-tuning, analogous to value-weighted MLE in RL (Peters et al., 2010). Notably, our framework leverages off-policy roll-ins—decoupling data collection from policy updates—and employs forward KL minimization rather than reverse KL, both of which contribute to improved optimization stability over complex reward landscapes.

Our contributions are summarized as follows. We propose a novel algorithm, **VIDD**, for fine-tuning diffusion models through iterative distillation of target policies composed of both value functions and the current policy. Unlike direct reward backpropagation methods, which require differentiable reward signals, our approach can handle non-differentiable rewards commonly encountered in scientific domains. Algorithmically, our key innovation lies in effectively incorporating value functions specifically tailored to the diffusion models. Empirically, we validate the effectiveness of our method across a range of scientific tasks, particularly in protein and small molecule design.

## 1.1 RELATED WORKS

**Fine-tuning diffusion models for reward-maximization.** When reward functions are differentiable, as is often the case in computer vision, state-of-the-art methods achieve strong performance by directly backpropagating gradients induced by the reward functions on the diffusion model (Clark et al., 2023; Prabhudesai et al., 2023; Wu et al., 2024; Wang et al., 2024). However, in many scientific domains such as biology and molecule field, reward functions are often non-differentiable (Lisanza et al., 2024; Hie et al., 2022). In such settings, a natural approach is to adopt RL techniques that

108 optimize reward without requiring differentiability (Zhang et al., 2024; Gupta et al., 2025; Ektefaie  
 109 et al., 2024; Vogt et al., 2024; Deng et al., 2024; Venkatraman et al., 2024; Rector-Brooks et al., 2024;  
 110 Zekri & Boullé, 2025). For instance, DPOK (Fan et al., 2023) and DDPO (Black et al., 2024) adapt  
 111 PPO, a stabilized variant of policy gradient methods, to the diffusion model fine-tuning. However,  
 112 these methods often suffer from instability when applied to diffusion models (Clark et al., 2023,  
 113 Figure 3), due to their inherently on-policy nature and the use of a reverse KL divergence objective  
 114 between the fine-tuned policy and a target policy (discussed further in Section 5). In contrast, our  
 115 method avoided on-policy updates and instead leverages a forward KL divergence objective, which  
 116 stabilizes training and mitigates mode collapse.

117 **Inference-time technique for reward-maximization.** An alternative line of work focuses on  
 118 training-free techniques that aim to improve rewards solely at inference time. The most straight-  
 119 forward example is Best-of-N sampling, which selects the highest-reward output from N generated  
 120 candidates. More sophisticated methods go further by evaluating and selecting promising interme-  
 121 diate generation states during the sampling process (Wu et al., 2023; Li et al., 2024; Kim et al.,  
 122 2025; Singhal et al., 2025; Ma et al., 2025; Tang et al., 2025). While these methods avoid the need  
 123 for fine-tuning, they often incur significantly higher inference-time costs due to repeated sampling.  
 124 Although they can boost reward in some cases, they do not directly improve the underlying generative  
 125 model. In this respect, training-free methods are orthogonal and complementary to fine-tuning-based  
 126 approaches, and the two can be effectively combined to achieve even stronger performance.

## 127 2 PRELIMINARY

129 We begin by reviewing the foundations of diffusion models. We then formulate our objective:  
 130 fine-tuning diffusion models to maximize task-specific reward functions.

### 132 2.1 DIFFUSION MODELS

133 Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) aim to learn a  
 134 sampling distribution  $p(\cdot) \in \Delta(\mathcal{X})$  over a predefined design space  $\mathcal{X}$  based on the observed data.  
 135 Formally, a diffusion model defines a forward *noising* process  $q_t(x_t | x_{t-1})$ , which gradually corrupts  
 136 from clean data  $x_0 \sim p(x_0)$  over discrete time steps  $t = 1, \dots, T$  into noise. The learning objective  
 137 is to approximate the reverse *denoising* process  $p_{t-1}(x_{t-1} | x_t)$ , where each  $p_t$  is a kernel mapping  
 138 from  $\mathcal{X}$  to  $\Delta(\mathcal{X})$ , such that the overall reverse trajectory transforms noise samples back into data  
 139 samples drawn from the true distribution. In practice, each  $p_t$  is parameterized by a neural network  
 140 and trained to minimize a variational lower bound on the negative log-likelihood of the data.

141 **Notation.** With slight abuse of notation, we often denote the initial noise distribution  $p_T \in \Delta(\mathcal{X})$   
 142 as  $p_T(\cdot | \cdot)$ , and we often refer to the denoising process as a *policy*, following terminology commonly  
 143 used in RL. We denote by  $\hat{x}_0(x_t) : \mathcal{X} \rightarrow \mathcal{X}$  the neural network used in pretrained diffusion models  
 144 to predict the denoised input. Extension to other parameterizations is straightforward.

### 146 2.2 REWARD MAXIMIZATION IN DIFFUSION MODELS

147 Our goal is to fine-tune diffusion models to produce outputs that achieve high rewards. Here, we  
 148 formalize the problem and highlight key challenges.

149 **Task Description** Our goal is to fine-tune a pretrained diffusion model to generate samples that  
 150 maximize a task-specific reward function. Formally, given a pretrained diffusion model  $p^{\text{pre}} \in \Delta(\mathcal{X})$   
 151 and a reward function  $r : \mathcal{X} \rightarrow \mathbb{R}$ , we aim to fine-tune pre-trained models such that

$$153 \quad \underset{\theta}{\operatorname{argmax}} \quad \underbrace{\mathbb{E}_{x_0 \sim p^{\theta}} [r(x_0)]}_{(a) \text{reward maximization}} \quad -\alpha \underbrace{\text{Dis}(\{p^{\theta}\}, \{p^{\text{pre}}\})}_{(b) \text{regularization}},$$

156 where  $p^{\theta} \in \Delta(\mathcal{X})$  denotes the distribution induced by the fine-tuned reverse denoising process  
 157  $\{p_t^{\theta}\}_{t=1}^T$ , and  $p^{\text{pre}}$  denotes the original pretrained distribution. Term (a) promotes the generation of  
 158 high-reward samples, while term (b) penalizes deviation from the pretrained model to maintain the  
 159 naturalness of generated samples. For example, when the discrepancy measure **Dis** in (b) is the KL  
 160 divergence, the optimal solution takes the following form up to normalizing constant:

$$161 \quad \exp(r(\cdot)/\alpha) p^{\text{pre}}(\cdot) \quad (1)$$

162 **Challenges.** In domains such as computer vision, reward functions are typically modeled using  
 163 differentiable regressors or classifiers, allowing for direct gradient-based optimization (Clark et al.,  
 164 2023; Prabhudesai et al., 2023). In contrast, many key objectives in biomolecular design, such as  
 165 structural constraints, hydrophobicity, binding affinity, often rely on non-differentiable features, as  
 166 detailed in Section 1. While RL-based approaches, such as policy gradient methods, can in principle  
 167 handle non-differentiable feedback (see Section 1.1), they often suffer from instability due to their  
 168 on-policy nature and reliance on reverse KL divergence. In the following, we introduce a novel  
 169 fine-tuning method that can effectively optimize possibly non-differentiable rewards.

170 **3 ITERATIVE DISTILLATION FRAMEWORK FOR FINE-TUNING DIFFUSION  
 171 MODELS**

173 Our algorithm is motivated by the goal of distilling desirable teacher policies that maximize task-  
 174 specific reward functions. To clarify this motivation, we first define what constitutes teacher policies  
 175 in our setting, followed by a detailed description of our approach to distilling them.

177 **3.1 TEACHER POLICIES IN DISTILLATION**

178 We introduce *soft-optimal policies*, which serve as the teacher policies that our algorithm aims to  
 179 distill. Specifically, we define the soft-optimal policy  $p_{t-1}^* : \mathcal{X} \rightarrow \Delta(\mathcal{X})$  as a value-weighted variant  
 180 of the pre-trained policy:

$$181 \quad p_{t-1}^*(\cdot|x_t) = \frac{p_{t-1}^{\text{pre}}(\cdot|x_t) \exp(v_{t-1}(\cdot)/\alpha)}{\exp(v_t(x_t)/\alpha)}. \quad (2)$$

184 Here, for  $t \in [T+1, \dots, 1]$ , the soft value function is defined as:

$$185 \quad v_{t-1}(\cdot) := \alpha \log \mathbb{E}_{x_0 \sim p^{\text{pre}}(x_0|x_{t-1})} \left[ \exp \left( \frac{r(x_0)}{\alpha} \right) | x_{t-1} = \cdot \right], \quad (3)$$

188 where the expectation is taken under the trajectory distribution induced by the pre-trained policies.

189 These soft-optimal policies naturally arise when diffusion models are framed within entropy-  
 190 regularized Markov Decision Processes. A key property of these policies is that, when sampling  
 191 trajectories according to the soft-optimal policy sequence  $\{p_t^*\}_{t=T}^0$ , the resulting marginal distribu-  
 192 tion over final outputs approximates the target distribution  $\exp(r(\cdot)/\alpha)p^{\text{pre}}(\cdot)$  in (1) (Uehara et al.,  
 193 2025a).

194 Importantly, many test-time guidance methods—such as classifier guidance in both continuous  
 195 diffusion models (e.g., (Dhariwal & Nichol, 2021; Bansal et al., 2023)) and discrete diffusion models  
 196 (e.g., (Nisonoff et al., 2024)), as well as sequential Monte Carlo (SMC)-based approaches (e.g.,  
 197 (Wu et al., 2023; Li et al., 2024; Kim et al., 2025))—can be interpreted as approximate sampling  
 198 schemes for these soft-optimal policies (Uehara et al., 2025a). While test-time guidance methods are  
 199 appealing due to their ease of implementation, they often incur substantial computational overhead  
 200 during inference and may struggle to achieve consistently high reward values. In contrast, we explore  
 201 how soft-optimal policies can inform the fine-tuning of diffusion models, enabling reward-guided  
 202 generation without requiring any additional computation at test time.

203 **3.2 ITERATIVE DISTILLATION**

204 Thus far, we have introduced soft-optimal policies and discussed their desirable properties. Within  
 205 our framework, we designate these policies as *teacher policies*, while the fine-tuned models are  
 206 treated as *student policies* (Czarnecki et al., 2019). A natural objective for distilling such policies into  
 207 a fine-tuned model  $\{p_t^\theta\}$  is given by

$$208 \quad \operatorname{argmin}_\theta \sum_t \mathbb{E}_{x_t \sim u_t} [\text{KL}(p_{t-1}^*(\cdot|x_t) \| p_{t-1}^\theta(\cdot|x_t))], \quad (4)$$

211 where  $u_t \in \Delta(\mathcal{X})$  denotes a roll-in distribution, where we will elaborate on in Section 4.1. By simple  
 212 algebra (see the detailed derivation in Appendix B), up to some constant, this objective reduces to

$$213 \quad \operatorname{argmax}_\theta \sum_t \mathbb{E}_{x_t \sim u_t} \left[ \frac{1}{\exp(v_t(x_t)/\alpha)} \mathbb{E}_{x_{t-1} \sim p_{t-1}^{\text{pre}}(x_{t-1}|x_t)} [\exp(v_{t-1}(x_{t-1})/\alpha) \log p_{t-1}^\theta(x_{t-1}|x_t)] \right]. \quad (5)$$

As we will demonstrate in Section 4.3, this objective can be optimized in practice by approximating value functions and replacing expectations with sample estimates. Notably, the objective is off-policy in nature, meaning that the roll-in distribution  $u_t$  can be arbitrary and does not need to match the current model policy. Indeed, this objective, commonly referred to as value-weighted maximum likelihood in the RL literature (Peters et al., 2010), has been employed as a scalable and stable approach for *off-policy* RL (Peng et al., 2019).

In practice, we adopt an iterative distillation procedure. This is motivated by the fact that, due to the reliance on empirical samples and approximate value functions, it is generally infeasible to accurately distill the target policy  $p_{t-1}^*$  into the student policy  $p_{t-1}^\theta$  in a single step. Rather than fixing  $p_{t-1}^{\text{pre}}$  throughout training, we periodically update it by the latest student policy but in a lazy manner, allowing the target to gradually improve over time. This dynamic yet infrequent (lazy) target update enables progressive refinement, allowing both the teacher and student policies to evolve iteratively toward better alignment. This strategy is analogous to standard RL practices grounded in the Policy Improvement Theorem (Mnih et al., 2015).

To formalize the above iterative process, we introduce an iteration index  $s \in [1, \dots, S]$  and perform recursive updates as follows:

$$\theta_{s+1} \leftarrow \theta_s + \nabla \sum_t \mathbb{E}_{x_t \sim u_t, p_{t-1}^{\text{out}}(x_{t-1}|x_t)} \left[ \frac{\exp(v_{t-1}^{\text{out}}(x_{t-1})/\alpha)}{\exp(v_t(x_t)/\alpha)} \log p_{t-1}^\theta(x_{t-1}|x_t) \right]. \quad (6)$$

where  $\{p^{\text{out}}\}$  denotes the roll-out policy, and  $v_{t-1}^{\text{out}}$  is the corresponding soft value function. The roll-out policy is updated in a lazy manner—specifically, it is refreshed every  $K$  steps using the current model parameters  $\theta_s$ . This lazy update scheme is critical for algorithmic stability in the *off-policy* setting, preventing rapid changes in the target while still allowing gradual improvement of the student policy toward higher reward. In the next section, we formalize this iterative distillation process as a complete algorithmic procedure.

## 4 ITERATIVE VALUE-WEIGHTED MLE

In this section, we present our algorithm for fine-tuning diffusion models to maximize reward functions. The full procedure is summarized in Algorithm 1. Each training iteration consists of three key components: (1) the *roll-in* phase, which defines the data distribution over which the loss is computed; (2) the *roll-out* phase, which aims to approximate the teacher policy by sampling from a roll-out policy and computing its corresponding weight (soft value); and (3) the *distillation* phase, where the objective is defined as the KL divergence between the teacher policies and the student policies (i.e., the fine-tuned models). We detail each of these components below.

### 4.1 ROLL-IN PHASE

Due to the off-policy nature of our algorithm, we have significant flexibility in selecting the roll-in distribution path  $x_T, x_{T-1}, \dots, x_0$ , which subsequently serves as the training distribution for loss computation. A well-designed roll-in policy should satisfy two competing desiderata: (1) exploration—ensuring broad coverage over the design space to avoid local optima, and (2) exploitation—maintaining proximity to high-reward trajectories for efficient policy improvement.

To balance these goals, we adopt a mixture roll-in strategy by sampling the roll-in distribution from:

- the pre-trained policy  $p_t^{\text{pre}}$ , which promotes exploration by generating diverse trajectories;
- the roll-out policy  $p_t^{\text{out}}$  which is periodically updated and reflects stabilized knowledge from the student model.

At each training step, we sample from  $p_t^{\text{pre}}$  with probability  $1 - \beta_s$ , and from  $p_t^{\text{out}}$  with probability  $\beta_s$ . Further details on the construction of  $p_t^{\text{out}}$  are provided in the following subsection.

### 4.2 ROLL-OUT PHASE

Our goal in this step is to approximate the current teacher policy. To this end, we aim to (1) sample  $x_{t-1}$  conditioned on  $x_t$  for each timestep  $t$  following a roll-out policy, and (2) compute its corresponding soft-value, which will later serve as a weight during the distillation process.

**Sampling from roll-out policy.** Recall the motivational formulation in Equation (6). Our goal here is to replace the expectation with its empirical counterpart. To this end, we draw samples  $\bar{x}_{t-1}$  from  $p_{t-1}^{\text{out}}$ , which is updated periodically at fixed time intervals.

---

270 **Algorithm 1** VIDD (Value-guided Iterative Distillation for Diffusion models)

---

271 1: **Require:** reward  $r : \mathcal{X} \rightarrow \mathbb{R}$ , pretrained model  $\{p_{t-1}^{\text{pre}}(\cdot | x_t)\}$ , fine-tuned model  $\{p_{t-1}^{\theta}(\cdot | x_t)\}$   
272 2: Initialize fine-tuned model  $p^{\theta} = p^{\text{pre}}$ , roll-out model  $p^{\text{out}} = p^{\text{pre}}$ , lazy update interval  $K$ ,  $\alpha$   
273 3: **for**  $s \in [1, \dots, S]$  **do**  
274 4:   **// Roll-in phase**  
275 5:   Generate roll-in samples following roll-in policies (explain in Section 4.1) and collect  $\mathcal{D} =$   
276 6:    $\{x_T^{(i)}, \dots, x_0^{(i)}\}_{i=1}^N$ .  
277 7:   **// Roll-out phase**  
278 8:   Obtain a sample following the roll-out policy  $p_{t-1}^{\text{out}}: \bar{x}_{t-1}^{[i]} \sim p_{t-1}^{\text{out}}(x_{t-1}^{[i]} | x_t^{[i]})$  for each  $t$ .  
279 9:   Approximate soft-value functions  $\hat{v}_{t-1}(\bar{x}_{t-1}^{[i]}) \leftarrow r(\hat{x}_0(\bar{x}_{t-1}^{[i]}; \theta^{\text{out}}))$  and  $\hat{v}_t(x_t^{[i]}) \leftarrow r(\hat{x}_0(x_t^{[i]}; \theta^{\text{out}}))$ .  
280 10:   If  $S\%K = 0$ , update the roll-out policy:  $\{p_t^{\text{out}}\} \leftarrow \{p_t^{\theta_s}\}$  and  $\theta^{\text{out}} \leftarrow \theta_s$ .  
281 11:   **// Distillation phase**  
282 12:   Update model parameters  $\theta$  by gradient ascent:  
283 13:   
$$\theta_{s+1} \leftarrow \theta_s + \gamma \nabla_{\theta} \sum_{i=1}^N \sum_t \left( \frac{\exp(\hat{v}_{t-1}(\bar{x}_{t-1}^{[i]})/\alpha)}{\exp(\hat{v}_t(x_t^{[i]})/\alpha)} \log p_{t-1}^{\theta}(\bar{x}_{t-1}^{[i]} | x_t^{(i)}) \right). \quad (7)$$
  
284 14: **end for**  
285 15: **return**  $\theta_S$

---

294 **Approximation of soft value functions.** Recall that soft-value functions in (3) are defined as  
295 conditional expectation given  $\bar{x}_{t-1}$ . While one could estimate these expectations using Monte  
296 Carlo sampling or regression, as commonly done in standard RL settings, we recommend a more  
297 practical approximation:  $\hat{v}_{t-1}(\bar{x}_{t-1}) := r(\hat{x}_0(\bar{x}_{t-1}; \theta^{\text{out}}))$ . Recalling  $\hat{x}_0(\bar{x}_{t-1}; \theta^{\text{out}})$  is the denoised  
298 prediction from the diffusion model parameterized by the current student policy. This approximation  
299 is based on the replacement of the expectation in (3) with its posterior mean. We apply the same  
300 approximation to  $\hat{v}_t(x_t)$ , estimating it via  $r(\hat{x}_0(x_t; \theta^{\text{out}}))$ . *Further discussions on soft value functions  
301 can be found in Appendix F.*

302 Notably, this approximation has been implicitly adopted in several recent test-time reward opti-  
303 mization methods (Chung et al., 2022; Wu et al., 2023; Li et al., 2024). Building on its empirical  
304 success, we extend this idea to the fine-tuning setting. Compared to Monte Carlo-based methods,  
305 this approximation is computationally efficient—requiring only a single forward pass through the  
306 denoising network—and avoids the need to train an additional value function.

### 307 4.3 DISTILLATION PHASE

309 Thus far, we have defined the training data distribution via the roll-in phase and specified the  
310 supervised signal through the roll-out phase. The final step is to perform distillation by solving a  
311 supervised learning problem over the roll-in distribution. Specifically, we minimize the KL divergence  
312 between the teacher and student policies, as formalized in (6). In our implementation, soft value  
313 functions are approximated using estimates from trajectories. The expectations over roll-in and  
314 roll-out distributions are replaced with empirical estimates obtained from samples collected in their  
315 respective phases. The resulting loss function is given in (7), which corresponds precisely to a  
316 value-weighted maximum likelihood objective.

## 317 5 COMPARISON WITH POLICY GRADIENT METHODS

319 In this section, we highlight the key differences between our algorithm, **VIDD**, and policy gradient  
320 methods (Fan et al., 2023; Black et al., 2024). Broadly, there are two main distinctions: (1) policy  
321 gradient methods are inherently on-policy, whereas **VIDD** naturally supports off-policy updates; and  
322 (2) policy gradient methods implicitly optimize the reverse KL divergence between the fine-tuned  
323 policy and the soft-optimal policy, while our objective more closely aligns with the forward KL  
divergence. We elaborate on each of these differences below.

324 **On-policy vs. off-policy nature.** In policy gradient algorithms, fine-tuning is typically framed as  
 325 the optimization of the following objective:  
 326

$$327 J(\theta) = \mathbb{E}_{\{p_t^\theta\}_{t=T}^0} \left[ r(x_0) - \alpha \sum_{t=T+1}^1 \text{KL}(p_{t-1}^\theta(\cdot | x_t) \| p_{t-1}^{\text{pre}}(\cdot | x_t)) \right].$$

329 In practice, this objective is optimized using the policy gradient (PG) theorem. For instance, when  
 330  $\alpha = 0$ , the gradient simplifies to the standard form (Black et al., 2024):  
 331

$$331 \nabla J(\theta) = \sum_t \mathbb{E}_{\{p_t^\theta\}_{t=T}^0} [r(x_0) \nabla \log p_{t-1}^\theta(\cdot | x_t)]. \quad (8)$$

333 However, accurate gradient estimation requires that the roll-in distribution used to sample  $x_t$  matches  
 334 the current policy, making the method inherently on-policy. This constraint limits exploration and  
 335 increases the risk of convergence to suboptimal local minima. Even more stable variants, such as PPO,  
 336 remain sensitive to hyperparameter choices (Adkins et al., 2024), and overly strong regularization—  
 337 while stabilizing the landscape—can significantly slow down learning (Clark et al., 2023, Fig. 3).  
 338

339 In contrast, **VIDD** naturally accommodates off-policy updates, allowing the use of more exploratory  
 340 roll-in distributions without sacrificing training stability.  
 341

342 **Reverse KL vs. forward KL divergence minimization.** Furthermore, we show that the PPO objective  
 343  $J(\theta)$  is equivalent to minimizing the reverse KL divergence between the trajectory distributions  
 344 induced by the soft-optimal policy and those induced by the fine-tuned policy.  
 345

346 **Theorem 1.** Denote  $p_{0:T}^\theta \in \mathcal{X} \times \dots \times \mathcal{X}$  as the induced joint distribution from  $t = T$  to  $t = 0$  by  $\{p_t^\theta\}$   
 347 and denote  $p_{0:T}^*$  as the corresponding distribution induced by the soft-optimal policy. Then,  
 348

$$346 J(\theta) = \text{KL}(p_{0:T}^\theta(\cdot) \| p_{0:T}^*(\cdot)) = \sum_t \mathbb{E}_{\{p_t^\theta\}_{t=T}^0} [\text{KL}(p_{t-1}^\theta(\cdot | x_t) \| p_{t-1}^*(\cdot | x_t))].$$

349 In contrast, **VIDD** optimizes an objective that more closely resembles the forward KL divergence.  
 350 Since the reverse KL is known to be mode-seeking and can lead to unstable optimization landscapes  
 351 (Wang et al., 2023; Go et al., 2023; Kim et al., 2025), avoiding reverse KL minimization contributes  
 352 to more stable and effective fine-tuning.  
 353

## 6 EXPERIMENTS

355 Thus far, we have introduced **VIDD**, a framework designed to optimize possibly non-differentiable  
 356 downstream reward functions effectively and stably in diffusion models in a sample-efficient manner.  
 357 In this section, we evaluate the performance of **VIDD** across a range of biomolecular design tasks.  
 358 We begin by describing the experimental setup.  
 359

### 6.1 EXPERIMENTAL SETUP

#### 6.1.1 TASK DESCRIPTORS

362 We aim to fine-tune diffusion models by maximizing task-specific reward functions. In the following,  
 363 we outline the choice of the pre-trained diffusion models and the formulation of the reward functions  
 364 used in our biomolecular design tasks (protein, DNA, small molecule design).  
 365

366 **Protein sequence design.** We adopt EvoDiff (Alamdar et al., 2023) as our pre-trained diffusion  
 367 model, a representative masked discrete diffusion model for protein sequence design, trained on  
 368 the UniRef database (Suzek et al., 2007). We use EvoDiff as an unconditional generative model to  
 369 produce natural protein sequences. To tackle downstream protein design tasks, we use the following  
 370 reward functions inspired by prior work (Hie et al., 2022; Verkuil et al., 2022; Lisanza et al., 2024;  
 371 Uehara et al., 2025b; Pacesa et al., 2024). Appendix D.1 provides detailed definitions of each reward  
 372 function. For tasks involving secondary structure matching optimization, we employ ESMFold (Lin  
 373 et al., 2023) to predict the 3D structures of generated sequences. For protein binder design, we  
 374 leverage AlphaFold2 (Jumper et al., 2021) to model the 3D structure of the multimers. In order  
 375 to encourage the naturalness and foldability of the designed proteins, we additionally incorporate  
 376 structural confidence metrics, such as pLDDT and radius of gyration (Pacesa et al., 2024), as part of  
 377 the reward function.  
 378

379 • **ss-match ( $\beta$ -sheet).** This task aims to maximize the probability of secondary structure (SS)  
 380 matching between the generated protein sequences and a predefined target pattern, computed  
 381

Table 1: Performance of different methods on both protein, DNA, and molecular generation tasks w.r.t. rewards and naturalness. The best result among fine-tuning baselines is highlighted in **bold**. We report the 50% quantile of the metric distribution. The  $\pm$  specifies the standard error of the estimate quantile with 95% confidence interval.

| Method               | Protein SS-match                  |                                   |                      | DNA Enhancer HepG2                |                                     |                       | Molecule Docking - Parp1        |                                |
|----------------------|-----------------------------------|-----------------------------------|----------------------|-----------------------------------|-------------------------------------|-----------------------|---------------------------------|--------------------------------|
|                      | $\beta$ -sheet% $\uparrow$        | pLDLT $\uparrow$                  | Diversity $\uparrow$ | Pred-Activity $\uparrow$          | ATAC-Acc $\uparrow$                 | 3-mer Corr $\uparrow$ | Docking Score $\uparrow$        | NLL $\downarrow$               |
| Pre-trained          | 0.05 $\pm$ 0.05                   | 0.37 $\pm$ 0.09                   | <b>0.91</b>          | 0.14 $\pm$ 0.26                   | 0.000 $\pm$ 0.000                   | -0.15                 | 7.2 $\pm$ 0.5                   | 971 $\pm$ 32                   |
| Best-of-N (N=32)     | 0.26 $\pm$ 0.13                   | 0.38 $\pm$ 0.11                   | 0.90                 | 1.30 $\pm$ 0.64                   | 0.000 $\pm$ 0.000                   | -0.17                 | 10.2 $\pm$ 0.4                  | 951 $\pm$ 22                   |
| DRAKES               | -                                 | -                                 | -                    | 6.44 $\pm$ 0.04                   | <b>0.825 <math>\pm</math> 0.028</b> | 0.307                 | -                               | -                              |
| Standard Fine-tuning | 0.48 $\pm$ 0.16                   | 0.30 $\pm$ 0.04                   | 0.57                 | 1.17 $\pm$ 1.23                   | 0.094 $\pm$ 0.292                   | 0.829                 | 7.8 $\pm$ 1.8                   | 908 $\pm$ 77                   |
| DDPP                 | 0.63 $\pm$ 0.07                   | 0.36 $\pm$ 0.07                   | 0.85                 | 5.33 $\pm$ 0.94                   | 0.305 $\pm$ 0.460                   | <b>0.879</b>          | 7.9 $\pm$ 1.3                   | 981 $\pm$ 52                   |
| DDPO                 | 0.81 $\pm$ 0.02                   | 0.55 $\pm$ 0.05                   | 0.52                 | 7.38 $\pm$ 0.11                   | 0.086 $\pm$ 0.280                   | 0.398                 | 8.5 $\pm$ 1.3                   | 929 $\pm$ 43                   |
| VIDD                 | <b>0.83 <math>\pm</math> 0.01</b> | <b>0.82 <math>\pm</math> 0.01</b> | 0.52                 | <b>8.28 <math>\pm</math> 0.18</b> | 0.820 $\pm$ 0.384                   | 0.162                 | <b>9.4 <math>\pm</math> 1.7</b> | <b>741 <math>\pm</math> 21</b> |

Table 2: Performance of different methods on protein binding design tasks w.r.t. ipTM, optimized reward, and diversity. The best result is highlighted in **bold**.

| Method               | PD-L1                  |                        |               | IFNAR2                 |                        |               |
|----------------------|------------------------|------------------------|---------------|------------------------|------------------------|---------------|
|                      | ipTM↑                  | Reward↑                | Diversity↑    | ipTM↑                  | Reward↑                | Diversity↑    |
| Pre-trained          | 0.1468 ± 0.0538        | 0.0847 ± 0.1317        | <b>0.9022</b> | 0.1179 ± 0.0153        | 0.0612 ± 0.0621        | 0.9007        |
| Best-of-N (N=128)    | 0.2662 ± 0.1091        | 0.2654 ± 0.0629        | 0.8996        | 0.2463 ± 0.1055        | 0.2225 ± 0.0675        | 0.9058        |
| Standard Fine-tuning | 0.1640 ± 0.0215        | 0.1598 ± 0.0351        | 0.8999        | 0.1307 ± 0.0503        | 0.0926 ± 0.0712        | <b>0.9063</b> |
| DDPP                 | 0.1889 ± 0.0330        | 0.2065 ± 0.0453        | 0.8763        | 0.1375 ± 0.0794        | 0.1236 ± 0.0782        | 0.8850        |
| DDPO                 | 0.7881 ± 0.0250        | 0.8767 ± 0.0301        | 0.5266        | 0.2403 ± 0.0488        | 0.3142 ± 0.0544        | 0.7169        |
| VIDD                 | <b>0.8182 ± 0.0213</b> | <b>0.9079 ± 0.0237</b> | 0.5539        | <b>0.5090 ± 0.1079</b> | <b>0.5120 ± 0.1093</b> | 0.5176        |

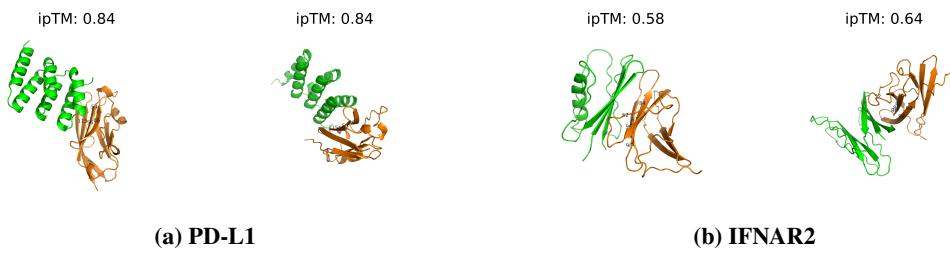


Figure 2: Protein structure visualizations for the PD-L1 and IFNAR2 binding design tasks. The binder protein is shown in green and target protein is in orange, with hotspot residues labeled on the structure.

across all residues. SS are predicted using the DSSP (Kabsch & Sander, 1983), and include  $\alpha$ -helices,  $\beta$ -sheets, and coils. Following Pacesa et al. (2024), we specifically encourage the formation of  $\beta$ -sheets, as protein generative models are known to exhibit a bias toward  $\alpha$ -helices.

- **Binding affinity.** This task focuses on designing binder proteins given target proteins, with the goal of maximizing their binding affinity. We quantify binding affinity using the ipTM score predicted by the AlphaFold-Multimer model (Jumper et al., 2021). Following prior work (Pacesa et al., 2024), we select PD-L1 and IFNAR2 as representative target proteins.

**DNA sequence design.** We focus on the regulatory DNA designs widely used in the cell engineering (Taskiran et al., 2024; Su et al., 2025). Following Wang et al. (2024), we adopt a discrete diffusion model (Sahoo et al., 2024) trained on enhancer datasets from Gosai et al. (2023) as our pre-trained model ( $T = 128$ ). For the reward function, we use predictions from the Enformer model (Avsec et al., 2021) to estimate enhancer activity in the HepG2 cell line (denoted by **Pred-Activity**). This reward has been widely employed in prior DNA design studies (Taskiran et al., 2024; Lal et al., 2024) due to its relevance in cell engineering, particularly for modulating cell differentiation.

**Small molecule design.** We use GDSS (Jo et al., 2022), trained on ZINC-250k (Irwin & Shoichet, 2005), as the pre-trained diffusion model ( $T = 1000$ ). For rewards, we use **binding affinity** to protein Parp1 (Yang et al., 2021) (docking score (**DS**) calculated by QuickVina 2 (Alhossary et al., 2015)), which is non-differentiable. Here, we renormalize docking score to  $\max(-\text{DS}, 0)$ , so that a higher value indicates better performance. Note these rewards have been widely used Lee et al. (2023); Jo et al. (2022); Yang et al. (2021); Li et al. (2025).

## 432 6.1.2 BASELINES

433 We compare **VIDD** with the following baselines.

- 434
- 435 • **Best-of-N**: This is a naive yet widely adopted approach for reward maximization at test time.  
436 Note that such inference-time methods are significantly slower compared to our fine-tuned models.  
437 Additional comparisons will be provided in Appendix E. Given that this method is  $N$  times slower  
438 than the baseline methods, we do *not* consider it a practical baseline for fine-tuning.
  - 439 • **Standard Fine-Tuning (SFT)**. This method fine-tunes the model by sampling from the pretrained  
440 model and applying the same loss used during pretraining, but with reweighting based on reward  
441 values (Peng et al., 2019).
  - 442 • **DDPO (Black et al., 2024)**: A PPO-style algorithm discussed in Section 5.
  - 443 • **DDPP (Rector-Brooks et al., 2024)**: Another recent state-of-the-art method applicable to our  
444 setting with non-differentiable reward functions by enforcing detailed balance between reward-  
445 weighted posteriors and denoising trajectories.
  - 446 • **VIDD**: Our algorithm. Regarding more detailed setting of hyperparameters, refer to Appendix D.2.

## 447 6.1.3 METRICS

448 Recall that our objective is to generate samples with high desired reward as in Section 2.2. Accordingly, we report the median reward of generated samples as the primary evaluation metric. As secondary metrics, we include additional measures whose specific choice depends on the task context, such as the naturalness of generated samples. More specifically, we use **pLDDT** scores for protein design; the 3-mer Pearson correlation (**3-mer Corr**) between the generated sequences and those in the dataset from Gosai et al. (2023); the negative log-likelihood (**NLL**) of the generated samples with respect to the pretrained model for small molecule design. For further results, refer to Appendix E.

## 456 6.2 RESULTS

457 All results are summarized in Table 1 and Table 2. Below,  
458 we provide an interpretation of each outcome.

459 **Protein sequence design.** **VIDD** consistently outperforms baseline methods by achieving higher rewards in  
460  $\beta$ -sheet content and ipTM binding affinity. Additionally,  
461 Figure 2 and Figure 3 illustrate the predicted binder-target  
462 complexes and secondary-structure matching tasks, con-  
463 firming effective binding of the designed binders to their  
464 targets and reasonable secondary structures of the designed  
465 proteins. Other quantitative results are provided in Appendix E.4, further validating the quality and  
466 effectiveness of the generated proteins, *as well as effects of varying parameters such as mixture of  
467 roll-in policy, lazy update interval and regularization coefficient*.

468 **DNA sequence design.** Here, since this reward is technically differentiable, we include an additional  
469 baseline, **DRAKES** (Wang et al., 2024), which directly backpropagates through the reward signal.  
470 Notably, as shown in the **Pred-Activity** column, **VIDD** outperforms not only **DDPP** and **DDPO**,  
471 but also **DRAKES**. In addition to the aforementioned **Pred-Activity** and **3-mer Corr** metrics, we  
472 follow Wang et al. (2024) in incorporating **ATAC-Acc**—an independent binary classification model  
473 trained on chromatin accessibility data from the HepG2 cell line (Consortium et al., 2012)—as an  
474 orthogonal reward. This is motivated by the fact that **Pred-Activity** is a trained reward model and  
475 thus may be susceptible to overoptimization. In the **ATAC-Acc** column, our method also exhibits  
476 strong performance, suggesting that **VIDD** would be robust to over-optimization. *More quantitative  
477 results can be found in Appendix E.2.*

478 **Small molecule design.** **VIDD** outperforms the fine-tuning baseline methods in terms of reward.  
479 More quantitative metrics that describe naturalness in molecules is in Appendix E.3.

## 481 7 CONCLUSION

483 In this work, we present **VIDD**, a novel fine-tuning algorithm for diffusion models under possibly non-  
484 differentiable reward functions. Our method has the potential to accelerate discovery in areas such as  
485 protein and drug design, but we also recognize possible misuse in generating harmful biomolecular  
sequences. We advocate for safeguards and responsible research practices in deploying such models.

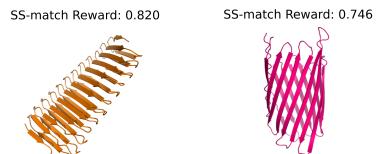


Figure 3: Protein structure visualizations for protein SS-match tasks.

486 REFERENCES  
487

- 488 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf  
489 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure  
490 prediction of biomolecular interactions with alphafold 3. *Nature*, pp. 1–3, 2024.
- 491 Jacob Adkins, Michael Bowling, and Adam White. A method for evaluating hyperparameter  
492 sensitivity in reinforcement learning. *Advances in Neural Information Processing Systems*, 37:  
493 124820–124842, 2024.
- 494 Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Neil Tenenholz, Bob Strome, Alan Moses,  
495 Alex Xijie Lu, Nicolo Fusi, Ava Pardis Amini, and Kevin K Yang. Protein generation with  
496 evolutionary diffusion: sequence is all you need. *BioRxiv*, pp. 2023–09, 2023.
- 497 Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, and Chee-Keong Kwoh. Fast, accurate,  
498 and reliable molecular docking with quickvina 2. *Bioinformatics*, 31(13):2214–2216, 2015.
- 499 Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka Grabska-Barwinska,  
500 Kyle R Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R Kelley. Effective gene  
501 expression prediction from sequence by integrating long-range interactions. *Nature methods*, 18  
502 (10):1196–1203, 2021.
- 503 Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas  
504 Geiping, and Tom Goldstein. Universal guidance for diffusion models. In *Proceedings of the  
505 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 843–852, 2023.
- 506 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models  
507 with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2024.
- 508 Patrick Bryant, Gabriele Pozzati, and Arne Elofsson. Improved prediction of protein-protein interac-  
509 tions using alphafold2. *Nature communications*, 13(1):1265, 2022.
- 510 Hanqun Cao, Haosen Shi, Chenyu Wang, Sinno Jialin Pan, and Pheng-Ann Heng. Glid $\ominus$ e: A  
511 gradient-free lightweight fine-tune approach for discrete sequence design. In *ICLR 2025 Workshop  
512 on Generative and Experimental Perspectives for Biomolecular Design*, 2025.
- 513 Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for  
514 inverse problems using manifold constraints. *Advances in Neural Information Processing Systems*,  
515 35:25683–25696, 2022.
- 516 Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models on  
517 differentiable rewards. *arXiv preprint arXiv:2309.17400*, 2023.
- 518 ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the human  
519 genome. *Nature*, 489(7414):57, 2012.
- 520 Wojciech M Czarnecki, Razvan Pascanu, Simon Osindero, Siddhant Jayakumar, Grzegorz Swirszcz,  
521 and Max Jaderberg. Distilling policy distillation. In *The 22nd international conference on artificial  
522 intelligence and statistics*, pp. 1331–1340. PMLR, 2019.
- 523 Fei Deng, Qifei Wang, Wei Wei, Tingbo Hou, and Matthias Grundmann. Prdp: Proximal reward  
524 difference prediction for large-scale reward finetuning of diffusion models. In *Proceedings of the  
525 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7423–7433, 2024.
- 526 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances  
527 in neural information processing systems*, 34:8780–8794, 2021.
- 528 Yasha Ektefaie, Olivia Viessmann, Siddharth Narayanan, Drew Dresser, J Mark Kim, and Armen  
529 Mkrtchyan. Reinforcement learning on structure-conditioned categorical diffusion for protein  
530 inverse folding. *arXiv preprint arXiv:2410.17173*, 2024.
- 531 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,  
532 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. DPOK: Reinforcement learning for  
533 fine-tuning text-to-image diffusion models. *arXiv preprint arXiv:2305.16381*, 2023.

- 540 Dongyoung Go, Tomasz Korbak, Germán Kruszewski, Jos Rozen, Nahyeon Ryu, and Marc Dymet-  
 541 man. Aligning language models with preferences through f-divergence minimization. *arXiv*  
 542 *preprint arXiv:2302.08215*, 2023.
- 543
- 544 Sager J Gosai, Rodrigo I Castro, Natalia Fuentes, John C Butts, Susan Kales, Ramil R Noche,  
 545 Kousuke Mouri, Pardis C Sabeti, Steven K Reilly, and Ryan Tewhey. Machine-guided design of  
 546 synthetic cell type-specific cis-regulatory elements. *bioRxiv*, 2023.
- 547
- 548 Shashank Gupta, Chaitanya Ahuja, Tsung-Yu Lin, Sreya Dutta Roy, Harrie Oosterhuis, Maarten  
 549 de Rijke, and Satya Narayan Shukla. A simple and effective reinforcement learning method for  
 550 text-to-image diffusion fine-tuning. *arXiv preprint arXiv:2503.00897*, 2025.
- 551
- 552 Brian Hie, Salvatore Candido, Zeming Lin, Ori Kabeli, Roshan Rao, Nikita Smetanin, Tom Sercu,  
 553 and Alexander Rives. A high-level programming language for generative protein design. *bioRxiv*,  
 554 pp. 2022–12, 2022.
- 555
- 556 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in  
 557 neural information processing systems*, 33:6840–6851, 2020.
- 558
- 559 Fumitaka Inoue, Anat Kreimer, Tal Ashuach, Nadav Ahituv, and Nir Yosef. Identification and  
 560 massively parallel characterization of regulatory elements driving neural induction. *Cell stem cell*,  
 561 25(5):713–727, 2019.
- 562
- 563 John J Irwin and Brian K Shoichet. ZINC- a free database of commercially available compounds for  
 564 virtual screening. *Journal of chemical information and modeling*, 45(1):177–182, 2005.
- 565
- 566 Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the  
 567 system of stochastic differential equations. In *International Conference on Machine Learning*, pp.  
 568 10362–10383. PMLR, 2022.
- 569
- 570 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,  
 571 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate  
 572 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.
- 573
- 574 Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary structure: pattern recognition  
 575 of hydrogen-bonded and geometrical features. *Biopolymers: Original Research on Biomolecules*,  
 576 22(12):2577–2637, 1983.
- 577
- 578 Sunwoo Kim, Minkyu Kim, and Dongmin Park. Test-time alignment of diffusion models without  
 579 reward over-optimization. In *The Thirteenth International Conference on Learning Representations*,  
 580 2025.
- 581
- 582 Avantika Lal, David Garfield, Tommaso Biancalani, et al. reglm: Designing realistic regulatory dna  
 583 with autoregressive language models. *bioRxiv*, pp. 2024–02, 2024.
- 584
- 585 Seul Lee, Jaehyeong Jo, and Sung Ju Hwang. Exploring chemical space with score-based out-of-  
 586 distribution generation. *Proceedings of the 40th International Conference on Machine Learning*,  
 587 2023.
- 588
- 589 Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso Bian-  
 590 calani, Aviv Regev, Sergey Levine, and Masatoshi Uehara. Derivative-free guidance in continuous  
 591 and discrete diffusion models with soft value-based decoding. *arXiv preprint arXiv:2408.08252*,  
 592 2024.
- 593
- 594 Xiner Li, Masatoshi Uehara, Xingyu Su, Gabriele Scalia, Tommaso Biancalani, Aviv Regev, Sergey  
 595 Levine, and Shuiwang Ji. Dynamic search for inference-time alignment in diffusion models. *arXiv*  
 596 *preprint arXiv:2503.02039*, 2025.
- 597
- 598 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,  
 599 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level  
 600 protein structure with a language model. *Science*, 379(6637):1123–1130, 2023.

- 594 Sidney Lyayuga Lisanza, Jacob Merle Gershon, Samuel WK Tipps, Jeremiah Nelson Sims, Lucas  
 595 Arnoldt, Samuel J Hendel, Miriam K Simma, Ge Liu, Muna Yase, Hongwei Wu, et al. Multistate  
 596 and functional protein design using rosettafold sequence space diffusion. *Nature biotechnology*,  
 597 pp. 1–11, 2024.
- 598 Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,  
 599 Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion models beyond  
 600 scaling denoising steps. *arXiv preprint arXiv:2501.09732*, 2025.
- 602 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,  
 603 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control  
 604 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.
- 605 Skander Moalla, Andrea Miele, Daniil Pyatko, Razvan Pascanu, and Caglar Gulcehre. No repre-  
 606 sentation, no trust: connecting representation, collapse, and trust issues in ppo. *arXiv preprint*  
 607 *arXiv:2405.00662*, 2024.
- 609 Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance  
 610 for discrete state-space diffusion and flow models. *arXiv preprint arXiv:2406.01572*, 2024.
- 611 Martin Pacesa, Lennart Nickel, Christian Schellhaas, Joseph Schmidt, Ekaterina Pyatova, Lucas  
 612 Kissling, Patrick Barendse, Jagrity Choudhury, Srajan Kapoor, Ana Alcaraz-Serna, et al. Bindcraft:  
 613 one-shot design of functional protein binders. *bioRxiv*, pp. 2024–09, 2024.
- 615 A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint*  
 616 *arXiv:1912.01703*, 2019.
- 617 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:  
 618 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.
- 620 Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In *Proceedings of*  
 621 *the AAAI Conference on Artificial Intelligence*, volume 24, pp. 1607–1612, 2010.
- 622 Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-image  
 623 diffusion models with reward backpropagation. *arXiv preprint arXiv:2310.03739*, 2023.
- 625 Jarrid Rector-Brooks, Mohsin Hasan, Zhangzhi Peng, Zachary Quinn, Chenghao Liu, Sarthak Mittal,  
 626 Nouha Dziri, Michael Bronstein, Yoshua Bengio, Pranam Chatterjee, et al. Steering masked discrete  
 627 diffusion models via discrete denoising posterior prediction. *arXiv preprint arXiv:2410.08134*,  
 628 2024.
- 629 Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T  
 630 Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language  
 631 models. *arXiv preprint arXiv:2406.07524*, 2024.
- 632 Anirban Sarkar, Ziqi Tang, Chris Zhao, and Peter Koo. Designing dna with tunable regulatory activity  
 633 using discrete diffusion. *bioRxiv*, pp. 2024–05, 2024.
- 635 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 636 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
- 637 Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and  
 638 Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion  
 639 models. *arXiv preprint arXiv:2501.06848*, 2025.
- 641 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised  
 642 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,  
 643 pp. 2256–2265. PMLR, 2015.
- 644 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*  
 645 *preprint arXiv:2010.02502*, 2020.
- 647 Xingyu Su, Haiyang Yu, Degui Zhi, and Shuiwang Ji. Learning to discover regulatory elements for  
 648 gene expression prediction. *arXiv preprint arXiv:2502.13991*, 2025.

- 648 Baris E Suzek, Hongzhan Huang, Peter McGarvey, Raja Mazumder, and Cathy H Wu. Uniref:  
 649 comprehensive and non-redundant uniprot reference clusters. *Bioinformatics*, 23(10):1282–1288,  
 650 2007.
- 651 Sophia Tang, Yinuo Zhang, and Pranam Chatterjee. Peptune: De novo generation of therapeutic  
 652 peptides with multi-objective-guided discrete diffusion. *ArXiv*, pp. arXiv–2412, 2025.
- 653 Ibrahim I Taskiran, Katina I Spanier, Hannah Dickmänen, Niklas Kempynck, Alexandra Pančíková,  
 654 Eren Can Ekşi, Gert Hulselmans, Joy N Ismail, Koen Theunis, Roel Vandepoel, et al. Cell-type-  
 655 directed design of synthetic enhancers. *Nature*, 626(7997):212–220, 2024.
- 656 Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with  
 657 a new scoring function, efficient optimization, and multithreading. *Journal of computational  
 658 chemistry*, 31(2):455–461, 2010.
- 659 Masatoshi Uehara, Yulai Zhao, Chenyu Wang, Xiner Li, Aviv Regev, Sergey Levine, and Tommaso  
 660 Biancalani. Inference-time alignment in diffusion models with reward-guided generation: Tutorial  
 661 and review. *arXiv preprint arXiv:2501.09685*, 2025a.
- 662 Masatoshi Uehara, Yulai Zhao, Chenyu Wang, Xiner Li, Aviv Regev, Sergey Levine, and Tommaso  
 663 Biancalani. Reward-guided controlled generation for inference-time alignment in diffusion models:  
 664 Tutorial and review. *arXiv preprint arXiv:2501.09685*, 2025b.
- 665 Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke  
 666 Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, et al. Amortizing intractable inference in  
 667 diffusion models for vision, language, and control. *arXiv preprint arXiv:2405.20971*, 2024.
- 668 Robert Verkuil, Ori Kabeli, Yilun Du, Basile IM Wicky, Lukas F Milles, Justas Dauparas, David  
 669 Baker, Sergey Ovchinnikov, Tom Sercu, and Alexander Rives. Language models generalize beyond  
 670 natural proteins. *BioRxiv*, pp. 2022–12, 2022.
- 671 Yannick Vogt, Mehdi Naouar, Maria Kalweit, Christoph Cornelius Miething, Justus Duyster, Joschka  
 672 Boedecker, and Gabriel Kalweit. Betterbodies: Reinforcement learning guided diffusion for  
 673 antibody sequence design. *arXiv preprint arXiv:2409.16298*, 2024.
- 674 Chaoqi Wang, Yibo Jiang, Chenghao Yang, Han Liu, and Yuxin Chen. Beyond reverse kl: Gen-  
 675 eralizing direct preference optimization with diverse divergence constraints. *arXiv preprint  
 676 arXiv:2309.16240*, 2023.
- 677 Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Tommaso Biancalani, Avantika Lal,  
 678 Tommi Jaakkola, Sergey Levine, Hanchen Wang, and Aviv Regev. Fine-tuning discrete diffusion  
 679 models via reward optimization with applications to dna and protein design. *arXiv preprint  
 680 arXiv:2410.13643*, 2024.
- 681 Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,  
 682 Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein  
 683 structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100, 2023.
- 684 Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical and  
 685 asymptotically exact conditional sampling in diffusion models. *Advances in Neural Information  
 686 Processing Systems*, 36:31372–31403, 2023.
- 687 Xiaoshi Wu, Yiming Hao, Manyuan Zhang, Keqiang Sun, Zhaoyang Huang, Guanglu Song, Yu Liu,  
 688 and Hongsheng Li. Deep reward supervisions for tuning text-to-image diffusion models. In  
 689 *European Conference on Computer Vision*, pp. 108–124. Springer, 2024.
- 690 Soojung Yang, Doyeong Hwang, Seul Lee, Seongok Ryu, and Sung Ju Hwang. Hit and lead discovery  
 691 with explorative rl and fragment-based molecule generation. *Advances in Neural Information  
 692 Processing Systems*, 34:7924–7936, 2021.
- 693 Rui Yuan, Robert M Gower, and Alessandro Lazaric. A general sample complexity analysis of  
 694 vanilla policy gradient. In *International Conference on Artificial Intelligence and Statistics*, pp.  
 695 3332–3380. PMLR, 2022.

- 702 Oussama Zekri and Nicolas Boullé. Fine-tuning discrete diffusion models with policy gradient  
703 methods. *arXiv preprint arXiv:2502.01384*, 2025.  
704  
705 Yinan Zhang, Eric Tzeng, Yilun Du, and Dmitry Kislyuk. Large-scale reinforcement learning for  
706 diffusion models. In *European Conference on Computer Vision*, pp. 1–17. Springer, 2024.  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755

756 **A PROOF OF THEOREM 1: CONNECTING PPO OBJECTIVE WITH REVERSE KL  
757 DIVERGENCE**  
758

759 We restate the formal version of Theorem 1. The statement is  $J(\theta)$  is equal to  
760

$$761 - \sum_t \mathbb{E}_{\{p_t^\theta\}_{t=T}^0} [\text{KL}(p_{t-1}^\theta(\cdot|x_t) \| p_{t-1}^*(\cdot|x_t))].$$

763 up to some constant. We will provide its proof in this section.  
764

765 Now, we prove this statement. We start calculating the inverse KL divergence. This is

$$\begin{aligned} 766 \alpha \sum_{t=T+1}^1 \text{KL}(p_{t-1}^\theta(\cdot|x_t) \| p_{t-1}^*(\cdot|x_t)) \\ 767 = \alpha \sum_{t=T+1}^1 \text{KL}\left(p_{t-1}^\theta(\cdot|x_t) \| \frac{p_{t-1}^{\text{pre}}(\cdot|x_t) \exp(v_{t-1}(\cdot)/\alpha)}{\exp(v_t(x_t)/\alpha)}\right) \\ 769 = \alpha \sum_{t=T+1}^1 \mathbb{E}_{\{p_{t-1}^\theta(x_{t-1}|x_t)\}_t} \left[ \log p_{t-1}^\theta(x_{t-1}|x_t) + \frac{v_t(x_t)}{\alpha} - \log p_{t-1}^{\text{pre}}(x_{t-1}|x_t) - \frac{v_{t-1}(x_{t-1})}{\alpha} \right] \\ 771 \\ 772 = \sum_{t=T+1}^1 \mathbb{E}_{\{p_{t-1}^\theta(x_{t-1}|x_t)\}_t} [-r(x_0) + \alpha \text{KL}(p_{t-1}^\theta(\cdot|x_t) \| p_{t-1}^{\text{pre}}(\cdot|x_t))] + c \\ 774 \\ 776 \end{aligned}$$

778 Here,  $c$  corresponds to constant  $v_{T+1}(\cdot)$  where it is defined by  
779

$$780 \alpha \log \mathbb{E}_{x_0 \sim p^{\text{pre}}(x_0|x_T)} [\exp(r(x_0)/\alpha)],$$

781 recalling its definition (3).  
782

783 **B CONNECTING VIDD OBJECTIVE WITH KL DIVERGENCE**  
784

785 In this section, we plan to explain how we derive (4). Recall that the original objective is  
786

$$787 \underset{\theta}{\text{argmin}} \mathbb{E}_{x_t \sim u_t} [\text{KL}(p_{t-1}^*(\cdot|x_t) \| p_{t-1}^\theta(\cdot|x_t))].$$

789 *Based on the definition of conditional KL divergence*  
790

$$791 \text{KL}(p(\cdot|x_t) \| q(\cdot|x_t)) = \mathbb{E}_{x_{t-1} \sim p(\cdot|x_t)} [\log p(x_{t-1}|x_t) - \log q(x_{t-1}|x_t)],$$

792 *and the definition of soft optimal policy  $p_{t-1}^*$ :*  
793

$$794 p_{t-1}^*(\cdot|x_t) = \frac{p_{t-1}^{\text{pre}}(\cdot|x_t) \exp(v_{t-1}(\cdot)/\alpha)}{\exp(v_t(x_t)/\alpha)},$$

796 *our objective can be rewritten as*  
797

$$\begin{aligned} 798 \underset{\theta}{\text{argmin}} \mathbb{E}_{x_t \sim u_t, x_{t-1} \sim p_{t-1}^*(x_{t-1}|x_t)} [\log p_{t-1}^*(x_{t-1}|x_t) - \log p_{t-1}^\theta(x_{t-1}|x_t)] \\ 799 \\ 800 = \underset{\theta}{\text{argmin}} \sum_t \mathbb{E}_{x_t \sim u_t, x_{t-1} \sim p_{t-1}^*(x_{t-1}|x_t)} [\log p_{t-1}^*(x_{t-1}|x_t)] \\ 801 \\ 802 - \sum_t \mathbb{E}_{x_t \sim u_t} \left[ \frac{1}{\exp(v_t(x_t)/\alpha)} \mathbb{E}_{x_{t-1} \sim p_{t-1}^{\text{pre}}(x_{t-1}|x_t)} [\exp(v_{t-1}(x_{t-1})/\alpha) \log p_{t-1}^\theta(x_{t-1}|x_t)] \right]. \\ 803 \\ 804 \end{aligned}$$

805 Hence, ignoring the first term since this is constant, the objective function reduces to  
806

$$807 \underset{\theta}{\text{argmax}} \sum_t \mathbb{E}_{x_t \sim u_t} \left[ \frac{1}{\exp(v_t(x_t)/\alpha)} \mathbb{E}_{x_{t-1} \sim p_{t-1}^{\text{pre}}(x_{t-1}|x_t)} [\exp(v_{t-1}(x_{t-1})/\alpha) \log p_{t-1}^\theta(x_{t-1}|x_t)] \right],$$

808 thus we obtain (5).  
809

810 C BROADER IMPACT AND LIMITATIONS  
811812 C.1 BROADER IMPACT  
813814 This paper presents work whose goal is to advance the field of Deep Learning, particularly diffusion  
815 models. While this research primarily contributes to technical advancements in generative modeling,  
816 it has potential implications in domains such as drug discovery and biomolecular engineering. We  
817 acknowledge that generative models, particularly those optimized for specific reward functions, could  
818 be misused if not carefully applied. However, our work is intended for general applications, and  
819 we emphasize the importance of responsible deployment and alignment with ethical guidelines in  
820 generative AI. Overall, our contributions align with the broader goal of machine learning methodolo-  
821 gies, and we do not foresee any immediate ethical concerns beyond those generally associated with  
822 generative models.  
823824 C.2 LIMITATIONS AND FUTURE WORKS  
825826 The success of reward-guided fine-tuning such as reinforcement learning critically depends on the  
827 quality of the reward signal. However, in reality, reward functions are often imperfect: they may  
828 reflect proxy objectives that are only loosely correlated with real-world biological or chemical utility.  
829 Poorly designed rewards can lead to over-optimization and exploit the reward without producing truly  
830 meaningful or functional outputs.  
831832 Furthermore, post-training is often sensitive to the precision of the reward—when the reward signal is  
833 noisy or misaligned, learning can become unstable or entirely fail. In practice, reward evaluation can  
834 also be expensive (e.g., involving structure prediction or simulation), making it essential to design  
835 reward mechanisms that are not only accurate but also sample-efficient, enabling effective training  
836 under limited reward budget.  
837838 *Finally, since reward signals are imperfect and often expensive to evaluate, hyperparameters that  
839 regulate reward exploitation such as rollout frequency, may require some tuning in practice. Overly  
840 aggressive configurations can amplify reward noise, while overly conservative choices may cap  
841 achievable gains, reflecting a practical tradeoff inherent to reward-driven optimization. Designing  
842 fully adaptive schedules for these parameters would require domain-specific assumptions about  
843 reward reliability and exploration metrics, which falls outside the scope of this work but represents a  
844 promising engineering extension built on top of our framework.*  
845846 D ADDITIONAL DETAILS FOR EXPERIMENT SETTING  
847848 D.1 DETAILS ON TASKS AND REWARD FUNCTIONS  
849850 Here we present the detailed descriptions of the task settings and reward functions used in the  
851 experiments.  
852853 **SS-match.** The secondary structure matching steers the energy toward user-defined secondary  
854 structure. To annotate residue secondary structure, we use the DSSP algorithm (Kabsch & Sander,  
855 1983), which identifies elements such as  $\alpha$ -helices,  $\beta$ -sheets and coils. This reward function returns  
856 the fraction of residues assigned to the desired secondary structure element. In our case, we aim  
857 to maximize the fraction of residues forming  $\beta$ -sheets, thereby encouraging structures with higher  
858  $\beta$ -sheet content (Pacesa et al., 2024).  
859860 **pLDDT.** pLDDT (predicted Local Distance Difference Test) is a per-residue confidence score  
861 produced by structure prediction models such as AlphaFold and ESMFold. It estimates the local  
862 accuracy of predicted atomic positions, with higher scores indicating greater confidence. In protein  
863 generation tasks, pLDDT is widely used to evaluate the structural reliability of predicted models, as  
864 higher average pLDDT values correlate with well-formed and accurate local geometry. In our setting,  
865 we use the average pLDDT score—computed via ESMFold (Lin et al., 2023)—as a reward signal to  
866 encourage the generation of structurally confident protein designs.  
867

864  
865  
866 Table 3: Hyperparameter values for the DNA generation task.  
867  
868  
869  
870  
871  
872  
873  
874  
875  
876

| Hyperparameters                   | Values        |
|-----------------------------------|---------------|
| Value weight coefficient $\alpha$ | 1.0           |
| Sequence length                   | 200           |
| # of decoding steps               | 128           |
| Update interval K                 | 5             |
| # of training steps               | 2000          |
| Batch size                        | 32            |
| Learning rate                     | $1e - 4$      |
| Reward                            | Pred-Activity |

877  
878 **Protein Binding Affinity.** We aim to generate binder proteins conditioned on given target proteins.  
879 To optimize binding affinity, we maximize the ipTM score, a widely used metric calculated by the  
880 AlphaFold2-Multimer model (Jumper et al., 2021; Paclesa et al., 2024). To further encourage the  
881 naturalness and foldability of the generated binders, we incorporate additional structural confidence  
882 terms into the reward function: Reward = ipTM + 0.1 × pLDDT + 0.02 × radius. The weights are  
883 chosen to ensure that ipTM remains the primary optimization objective and is not overwhelmed by  
884 the other, more easily optimized components. The pLDDT is computed from the predicted multimer  
885 complex using AlphaFold2, while the radius of gyration encourages the formation of well-folded,  
886 globular structures (Paclesa et al., 2024).  
887

888 **Molecule Binding Affinity.** We use the docking program QuickVina 2 (Alhossary et al., 2015) to  
889 compute the docking scores following Yang et al. (2021), with exhaustiveness as 1. Note that the  
890 docking scores are initially negative values, while we reverse it to be positive and then clip the values  
891 to be above 0, *i.e.*. We compute DS regarding protein parp1 (Poly [ADP-ribose] polymerase-1),  
892 which is a target protein that has the highest AUROC scores of protein-ligand binding affinities for  
893 DUD-E ligands approximated with AutoDock Vina.  
894

895 **Enhancer HepG2.** We examine a publicly available large dataset on enhancers ( $n \approx 700k$ ) (Gosai  
896 et al., 2023), with activity levels measured by massively parallel reporter assays (MPRA) (Inoue et al.,  
897 2019), where the expression driven by each sequence is measured. In the Enhancers dataset, each  $x$  is  
898 a DNA sequence of length 200. We pretrain the masked discrete diffusion model (Sahoo et al., 2024)  
899 on all the sequences. We then split the dataset and train two reward oracles (one for finetuning and one  
900 for evaluation) on each subset. Each reward oracle is learned using the Enformer architecture (Avsec  
901 et al., 2021), while  $y \in \mathbb{R}$  is the measured activity in the HepG2 cell line. The Enformer trunk has 7  
902 convolutional layers, each having 1536 channels, as well as 11 transformer layers, with 8 attention  
903 heads and a key length of 64. Dropout regularization is applied across the attention mechanism,  
904 with an attention dropout rate of 0.05, positional dropout of 0.01, and feedforward dropout of 0.4.  
905 The convolutional head for final prediction has 2\*1536 input channels and uses average pooling,  
906 without an activation function. We learn two These datasets and reward models are widely used in  
907 the literature on computational enhancer design (Lal et al., 2024; Sarkar et al., 2024).  
908

## 909 D.2 HYPERPARAMETERS

910 Here we present the hyperparameters in Table 3, Table 4 and Table 5.  
911

## 912 D.3 SOFTWARE AND HARDWARE

913 Our implementation is under the architecture of PyTorch (Paszke, 2019). The deployment environments  
914 are Ubuntu 20.04 with 48 Intel(R) Xeon(R) Silver, 4214R CPU @ 2.40GHz, 755GB RAM,  
915 and graphics cards NVIDIA RTX 2080Ti. All experiments are conducted on a single GPU, selected  
916 from NVIDIA RTX 2080Ti, RTX A6000, or NVIDIA H100 with 80GB HBM3 memory, depending  
917 on the scale of the task.  
918

918  
919  
920 Table 4: Hyperparameter values for the protein generation task.  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930

| Hyperparameters                   | Values                                                |
|-----------------------------------|-------------------------------------------------------|
| Value weight coefficient $\alpha$ | 1.0                                                   |
| Sequence length                   | 256 (ss-match), 100 (binding affinity)                |
| # of decoding tokens each step    | 4                                                     |
| Update interval K                 | 5 (binder IFNAR2), 50 (ss-match, binder PD-L1)        |
| # of training steps               | 10000                                                 |
| Batch size                        | 32                                                    |
| Learning rate                     | $1e-5$                                                |
| Reward (ss-match)                 | ss-match                                              |
| Reward (Binding Affinity)         | $ipTM + 0.1 \times pLDDT + 0.02 \times \text{radius}$ |

931  
932 Table 5: Hyperparameter values for the molecule generation task.  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942

| Hyperparameters                   | Values        |
|-----------------------------------|---------------|
| Value weight coefficient $\alpha$ | 6.0           |
| Maximum atom number               | 38            |
| # of decoding steps               | 1000          |
| Update interval K                 | 20            |
| # of training steps               | 1000          |
| Batch size                        | 1024          |
| Learning rate                     | $5e-6$        |
| Reward                            | Docking Score |

943  
944 Table 6: Final performance combined with inference-time techniques.  
945  
946  
947  
948

| Method            | Protein SS-match           |                  | DNA Enhancer HepG2       |                     |                       | Molecule Docking - Parp1 |                  |
|-------------------|----------------------------|------------------|--------------------------|---------------------|-----------------------|--------------------------|------------------|
|                   | $\beta$ -sheet% $\uparrow$ | pLDDT $\uparrow$ | Pred-Activity $\uparrow$ | ATAC-Acc $\uparrow$ | 3-mer Corr $\uparrow$ | Docking Score $\uparrow$ | NLL $\downarrow$ |
| VIDD              | $0.83 \pm 0.01$            | $0.82 \pm 0.01$  | $8.28 \pm 0.18$          | $0.820 \pm 0.384$   | 0.162                 | $9.4 \pm 1.7$            | $741 \pm 21$     |
| VIDD + BoN (N=32) | $0.84 \pm 0.00$            | $0.82 \pm 0.01$  | $8.40 \pm 0.07$          | $0.750 \pm 0.433$   | 0.152                 | $12.1 \pm 1.0$           | $726 \pm 28$     |

949  
950 D.4 LICENSES  
951952 The dataset for molecular tasks is under Database Contents License (DbCL) v1.0. The pretrained  
953 protein generation model EvoDiff is under MIT License. The dataset for DNA task is covered under  
954 AGPL-3.0 license. We follow the regulations for all licenses.  
955956 E ADDITIONAL EXPERIMENT RESULTS  
957958 E.1 CONNECTING VIDD WITH INFERENCE-TIME TECHNIQUES  
959960 As discussed in Section 1.1, inference-time techniques are orthogonal to our approach. Here we  
961 clarify the connection between VIDD and inference-time methods. Among various inference-time  
962 schemes, the most relevant to VIDD is SVDD (Li et al., 2024). Both methods approximate the value  
963 function using

964  
965 
$$v_t(x_t) \approx r(\hat{x}_0(x_t)),$$

966 but their usage differs fundamentally: SVDD leverages this estimated value to guide the choice of  
967 the next denoising step during sampling, whereas VIDD fine-tunes the diffusion model based on  
968 the estimated value, leading to a learnable and reusable policy rather than a purely inference-time  
969 adjustment.970 Furthermore, inference-time techniques can be combined with VIDD to further enhance performances.  
971 Table 6 and Table 7 presents the results of applying VIDD with Best-of-N sampling, demonstrating  
972 that additional performance gains can be achieved through this combination.

972 Table 7: Final performance combined with inference-time techniques for protein binder design.  
973

| Method             | PD-L1       |             |              |            | IFNAR2      |             |             |            |
|--------------------|-------------|-------------|--------------|------------|-------------|-------------|-------------|------------|
|                    | ipTM↑       | pLDDT↑      | Radius↓      | Diversity↑ | ipTM↑       | pLDDT↑      | Radius↓     | Diversity↑ |
| VIDD               | 0.82 ± 0.02 | 0.87 ± 0.04 | -0.12 ± 0.11 | 0.55       | 0.51 ± 0.11 | 0.47 ± 0.05 | 2.20 ± 2.00 | 0.52       |
| VIDD + BoN (N=128) | 0.84 ± 0.00 | 0.91 ± 0.01 | -0.16 ± 0.06 | 0.39       | 0.66 ± 0.02 | 0.55 ± 0.04 | 1.04 ± 0.45 | 0.43       |

978 Table 8: *Performance of different methods on DNA generation tasks. The best result among fine-979  
980 tuning baselines is highlighted in bold, and the second best result is highlighted in underline.*

| Method               | Pred-Activity↑     | ATAC-Acc↑            | 3-mer Corr↑  | Log-Lik↑          |
|----------------------|--------------------|----------------------|--------------|-------------------|
| Pre-trained          | 0.14 ± 0.26        | 0.000 ± 0.000        | -0.15        | -245 ± 9.1        |
| Best-of-N (N=32)     | 1.30 ± 0.64        | 0.000 ± 0.000        | -0.17        | -240 ± 7.2        |
| DRAKES w/o KL        | 6.44 ± 0.04        | 0.825 ± 0.028        | 0.307        | -281 ± 0.6        |
| DRAKES               | 5.61 ± 0.07        | <u>0.925 ± 0.006</u> | <b>0.887</b> | -264 ± 0.6        |
| Standard Fine-tuning | 1.17 ± 1.23        | 0.094 ± 0.292        | 0.829        | -263 ± 9.3        |
| DDPP                 | 5.33 ± 0.94        | 0.305 ± 0.460        | <u>0.879</u> | -218 ± 10.4       |
| DDPO                 | <u>7.38 ± 0.11</u> | 0.086 ± 0.280        | 0.398        | <b>-126 ± 9.5</b> |
| GLID <sup>2</sup> E  | 7.35 ± 0.07        | 0.906 ± 0.003        | 0.490        | -240 ± 14.2       |
| VIDD                 | <b>8.28 ± 0.18</b> | 0.820 ± 0.384        | 0.162        | <u>-198 ± 8.6</u> |

992 E.2 FURTHER RESULTS FOR DNA GENERATION  
993

994 **More metrics on DNA generation tasks.** *Here we provide additional evaluation results for the  
995 DNA generation task in Table 8 to offer a more comprehensive comparison across a broader set  
996 of metrics. We add a new baseline GLID<sup>2</sup>E (Cao et al., 2025) here for comparison. Note that our  
997 optimization target is solely the Pred-Activity. Following the prior work (Wang et al., 2024), we  
998 fine-tune using one Pred-Activity reward model and evaluate using a different one to avoid data  
999 leakage. In terms of performance, VIDD attains strong gains in Pred-Activity, as well as competitive  
1000 results on ATAC-Acc and Log-Likelihood. Although its 3-mer correlation diverges from that of the  
1001 pretrained model distribution, the substantially higher functional rewards indicate that VIDD is able  
1002 to discover novel yet highly effective sequences. This suggests that VIDD explores regions beyond  
1003 conventional motif statistics while still generating functionally superior designs.*

1004 *Regarding overall performance, DRAKES benefits from explicit gradient information as discussed in  
1005 Section 6.1.2. Gradient-based methods are expected to have better performances because they rely  
1006 on precise token-level gradients, while methods designed for non-differentiable rewards must operate  
1007 using only sequence-level reward signals. Despite this disadvantage, VIDD still achieves superior  
1008 performance on the optimized Pred-Activity objective, demonstrating its effectiveness. We include  
1009 DRAKES in the comparison to help readers better understand the level of results VIDD can achieve.*

1010 **Lazy update interval** *We study the effect of the lazy update interval  $K$  on the DNA sequence  
1011 design discussed in Section 4.2, and other parameters are provided in Table 3. As shown in Table 9,  
1012 performance is different under different  $K$  and does not improve monotonically with more frequent  
1013 updates. These results suggest that less updates of roll-out policy can stabilize training and improve  
1014 optimization.*

1016 **Regularization coefficient** *We study the effect of the regularization coefficient  $\alpha$  as shown in (7).  
1017 Hyperparameter details for the remaining settings are listed in Table 3. In the DNA sequence design  
1018 task, the performance comparison is presented in Table 10, show that  $\alpha = 1.0$ , i.e., keeping the  
1019 reward distribution unchanged, yields the best performance.*

1021 E.3 FURTHER RESULTS FOR MOLECULE GENERATION  
1022

1023 First, we report the diversity comparisons across methods in Table 11 on page 21.

1024 To evaluate the validity of our method in molecule generation, we further report several key metrics  
1025 that capture different aspects of molecule quality and diversity in Table 12 on page 21.

1026 Table 9: *The influence of lazy update interval  $K$  on the performances of DNA sequence design.*  
1027

| Lazy Update Interval | Pred-Activity $\uparrow$          | ATAC-Acc $\uparrow$                 | 3-mer Corr $\uparrow$ | Log-Lik $\uparrow$                |
|----------------------|-----------------------------------|-------------------------------------|-----------------------|-----------------------------------|
| 1                    | $7.06 \pm 0.35$                   | $0.000 \pm 0.000$                   | 0.211                 | <b>-156 <math>\pm</math> 12.0</b> |
| 5                    | <b>8.28 <math>\pm</math> 0.18</b> | <b>0.820 <math>\pm</math> 0.384</b> | 0.162                 | $-198 \pm 8.6$                    |
| 10                   | $7.76 \pm 0.32$                   | $0.047 \pm 0.211$                   | 0.457                 | $-265 \pm 5.5$                    |
| 20                   | $7.71 \pm 0.37$                   | $0.086 \pm 0.280$                   | 0.398                 | $-265 \pm 5.3$                    |
| 50                   | $7.23 \pm 0.42$                   | $0.484 \pm 0.500$                   | <b>0.470</b>          | $-266 \pm 7.2$                    |

1034 Table 10: *The influence of regularization coefficient  $\alpha$  on the performances of DNA sequence design.*  
1035

| Regularization Coefficient | Pred-Activity $\uparrow$          | ATAC-Acc $\uparrow$                 | 3-mer Corr $\uparrow$ | Log-Lik $\uparrow$               |
|----------------------------|-----------------------------------|-------------------------------------|-----------------------|----------------------------------|
| 0.8                        | $8.21 \pm 0.24$                   | $0.820 \pm 0.384$                   | 0.272                 | $-246 \pm 6.2$                   |
| 1.0                        | <b>8.28 <math>\pm</math> 0.18</b> | $0.820 \pm 0.384$                   | 0.162                 | <b>-198 <math>\pm</math> 8.6</b> |
| 2.0                        | $7.26 \pm 0.39$                   | <b>0.977 <math>\pm</math> 0.151</b> | <b>0.351</b>          | $-248 \pm 8.0$                   |

1042 The validity of a molecule indicates its adherence to chemical rules, defined by whether it can be  
1043 successfully converted to SMILES strings by RDKit. Uniqueness refers to the proportion of generated  
1044 molecules that are distinct by SMILES string. Novelty measures the percentage of the generated  
1045 molecules that are not present in the training set. Fréchet ChemNet Distance (FCD) measures the  
1046 similarity between the generated molecules and the test set. The Similarity to Nearest Neighbors  
1047 (SNN) metric evaluates how similar the generated molecules are to their nearest neighbors in the  
1048 test set. Fragment similarity measures the similarity of molecular fragments between generated  
1049 molecules and the test set. Scaffold similarity assesses the resemblance of the molecular scaffolds  
1050 in the generated set to those in the test set. The neighborhood subgraph pairwise distance kernel  
1051 Maximum Mean Discrepancy (NSPDK MMD) quantifies the difference in the distribution of graph  
1052 substructures between generated molecules and the test set considering node and edge features. Atom  
1053 stability measures the percentage of atoms with correct bond valencies. Molecule stability measures  
1054 the fraction of generated molecules that are chemically stable, *i.e.*, whose all atoms have correct bond  
1055 valencies. Specifically, atom and molecule stability are calculated using conformers generated by  
1056 RDKit and optimized with UFF (Universal Force Field) and MMFF (Merck Molecular Force Field).  
1057

1058 We compare the metrics using 512 molecules generated from the pre-trained GDSS model and from  
1059 different methods, as shown in Table 12 on page 21. Overall, our method achieves comparable  
1060 performances with the pre-trained model on all metrics, maintaining high validity, novelty, and  
1061 uniqueness while outperforming on several metrics such as FCD, SNN, and NSPDK MMD. Pre-  
1062 trained performs consistently well across all metrics, particularly in SNN and atomic stability.  
1063 However, it does not optimize specific molecular properties as effectively as the other methods. DDPP  
1064 performs poorly in scaffold similarity and NSPDK MMD, indicating that it generates unrealistic  
1065 molecules. These results indicate that our approach can generate a diverse set of novel molecules that  
1066 are chemically plausible and relevant.

#### 1066 E.4 FURTHER RESULTS FOR PROTEIN GENERATION

1068 **More metrics on protein binder design** Tables 13 and Table 14 report the full evaluation metrics  
1069 for the protein binding affinity design tasks. Here  $\text{Reward} = \text{ipTM} + 0.1 \times \text{pLDDT} + 0.02 \times \text{radius}$ ,  
1070 indicate the aggregated metrics. While ipTM serves as the primary metric for binding affinity, pLDDT  
1071 and radius of gyration are included as secondary metrics to encourage the generation of well-folded,  
1072 globular binder proteins.

1073 *Additional evaluation metrics are reported in Table 15. We present results for both pTM and pDockQ,  
1074 where pTM values are obtained directly from AlphaFold2-Multimer (Jumper et al., 2021) and pDockQ  
1075 scores follow Bryant et al. (2022). From the table, we observe that our proposed VIDD consistently  
1076 achieves the best performance among the main baselines. Note pTM and pDockQ are not directly  
1077 optimized during the fine-tuning, but only used for evaluation. Protein binding affinity can be assessed  
1078 using a wide variety of metrics, raising the question of how to effectively integrate multiple objectives.  
1079 Developing a principled multi-objective fine-tuning framework therefore remains an interesting  
1080 direction for future work to explore.*

1080 Table 11: Performance of different methods on molecular generation task w.r.t. reward, NLL, and  
1081 diversity.  
1082

| Method               | Binding Affinity - Parp1 |          |                 |
|----------------------|--------------------------|----------|-----------------|
|                      | Docking Score↑           | NLL↓     | Diversity↑      |
| Pre-trained          | 7.2 ± 0.5                | 971 ± 32 | 0.7784 ± 0.2998 |
| Best-of-N (N=32)     | 10.2 ± 0.4               | 951 ± 22 | 0.7938 ± 0.3052 |
| Standard Fine-tuning | 7.8 ± 1.8                | 908 ± 77 | 0.8787 ± 0.1088 |
| DDPP                 | 7.9 ± 1.3                | 981 ± 52 | 0.8067 ± 0.0845 |
| DDPO                 | 8.5 ± 1.3                | 929 ± 43 | 0.8993 ± 0.0567 |
| VIDD                 | 9.4 ± 1.7                | 741 ± 21 | 0.9019 ± 0.0477 |
| VIDD + BoN           | 12.1 ± 1.0               | 726 ± 28 | 0.9135 ± 0.0509 |

1090 Table 12: Comparison of the generated molecules across various metrics. The best values for each  
1091 metric are highlighted in **bold**.  
1092

| Method               | Valid↑       | Unique↑      | Novelty↑     | FCD ↓        | SNN ↑        | Frag ↑       | Scaf ↑       | NSPDK MMD ↓  | Mol Stable ↑ | Atm Stable ↑ |
|----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Pre-trained          | <b>1.000</b> | <b>1.000</b> | <b>1.000</b> | 12.979       | 0.414        | 0.513        | <b>1.000</b> | 0.038        | 0.320        | 0.917        |
| DPS                  | <b>1.000</b> | <b>1.000</b> | <b>1.000</b> | 13.230       | 0.389        | 0.388        | <b>1.000</b> | 0.040        | 0.310        | 0.878        |
| SMC                  | <b>1.000</b> | 0.406        | <b>1.000</b> | 22.710       | 0.225        | 0.068        | <b>1.000</b> | 0.285        | 0.000        | <b>0.968</b> |
| SVDD                 | <b>1.000</b> | <b>1.000</b> | <b>1.000</b> | 12.278       | 0.428        | 0.622        | <b>1.000</b> | 0.052        | 0.478        | 0.910        |
| Standard Fine-tuning | <b>1.000</b> | <b>1.000</b> | <b>1.000</b> | 9.698        | 0.485        | 0.597        | <b>1.000</b> | 0.026        | 0.375        | 0.935        |
| DDPP                 | <b>1.000</b> | 0.671        | <b>1.000</b> | 5.280        | 0.426        | <b>0.759</b> | NaN          | 0.778        | 0.379        | 0.919        |
| DDPO                 | <b>1.000</b> | <b>1.000</b> | <b>1.000</b> | 11.506       | 0.333        | 0.484        | 0.975        | 0.032        | <b>0.581</b> | 0.961        |
| VIDD                 | <b>1.000</b> | <b>1.000</b> | <b>1.000</b> | <b>4.869</b> | <b>0.489</b> | 0.714        | 0.999        | <b>0.016</b> | 0.458        | 0.911        |

1100 Table 13: Performance of different methods on protein binding design tasks on target protein PD-L1.  
1101

| Method               | Reward↑                | ipTM↑                  | pLDDT↑                 | Radius↓                 | Diversity↑    |
|----------------------|------------------------|------------------------|------------------------|-------------------------|---------------|
| Pre-trained          | 0.0847 ± 0.1317        | 0.1468 ± 0.0538        | 0.3284 ± 0.0420        | 4.7420 ± 5.2352         | <b>0.9022</b> |
| Best-of-N (N=128)    | 0.2654 ± 0.0629        | 0.2662 ± 0.1091        | 0.3890 ± 0.0530        | 1.9883 ± 3.4164         | 0.8996        |
| Standard Fine-tuning | 0.1598 ± 0.0351        | 0.1640 ± 0.0215        | 0.3349 ± 0.0328        | 1.8829 ± 1.1945         | 0.8999        |
| DDPP                 | 0.2065 ± 0.0453        | 0.1889 ± 0.0330        | 0.3720 ± 0.0269        | 0.9780 ± 0.9635         | 0.8763        |
| DDPO                 | 0.8767 ± 0.0301        | 0.7881 ± 0.0250        | 0.8244 ± 0.0821        | <b>-0.3081 ± 0.1285</b> | 0.5266        |
| VIDD                 | <b>0.9079 ± 0.0237</b> | <b>0.8182 ± 0.0213</b> | <b>0.8720 ± 0.0421</b> | -0.1232 ± 0.1066        | 0.5539        |

1110 Table 14: Performance of different methods on protein binding design tasks on target protein IFNAR2.  
1111

| Method               | Reward↑                | ipTM↑                  | pLDDT↑                 | Radius↓                 | Diversity↑    |
|----------------------|------------------------|------------------------|------------------------|-------------------------|---------------|
| Pre-trained          | 0.0612 ± 0.0621        | 0.1179 ± 0.0153        | 0.3525 ± 0.0513        | 4.5964 ± 2.9320         | 0.9007        |
| Best-of-N (N=128)    | 0.2225 ± 0.0675        | 0.2463 ± 0.1055        | 0.3843 ± 0.0515        | 3.1082 ± 2.9186         | 0.9058        |
| Standard Fine-tuning | 0.0926 ± 0.0712        | 0.1307 ± 0.0503        | 0.3321 ± 0.0381        | 3.5632 ± 2.1944         | <b>0.9063</b> |
| DDPP                 | 0.1236 ± 0.0782        | 0.1375 ± 0.0794        | 0.3624 ± 0.0359        | 2.5107 ± 1.1723         | 0.8850        |
| DDPO                 | 0.3142 ± 0.0544        | 0.2403 ± 0.0488        | <b>0.6300 ± 0.0743</b> | <b>-0.5435 ± 0.1219</b> | 0.7169        |
| VIDD                 | <b>0.5120 ± 0.1093</b> | <b>0.5090 ± 0.1079</b> | 0.4711 ± 0.0490        | 2.2039 ± 1.9989         | 0.5176        |

1120 Table 15: *Additional evaluation metrics for protein binder design. Note that those metrics are not  
1121 optimized during training and only used for evaluation.*  
1122

| Method | PD-L1                  |                        | IFNAR2                 |                        |
|--------|------------------------|------------------------|------------------------|------------------------|
|        | pTM↑                   | pDockQ↑                | pTM↑                   | pDockQ↑                |
| DDPP   | 0.5537 ± 0.0179        | 0.0693 ± 0.0214        | 0.4697 ± 0.0084        | 0.0359 ± 0.0082        |
| DDPO   | 0.7862 ± 0.0809        | 0.2445 ± 0.0478        | 0.5064 ± 0.0178        | 0.0516 ± 0.0190        |
| VIDD   | <b>0.8369 ± 0.0300</b> | <b>0.4164 ± 0.0460</b> | <b>0.5885 ± 0.0368</b> | <b>0.1241 ± 0.0352</b> |

1131 **Mixed roll-in policy** In Section 4.1, we describe a mixed roll-in strategy that samples trajectories  
1132 from the pre-trained policy  $p_t^{\text{pre}}$  and the roll-out policy  $p_t^{\text{out}}$  with probabilities  $1 - \beta_s$  and  $\beta_s$ ,  
1133 respectively. Figure 4 ablates  $\beta_s$  and find that injecting a non-zero fraction of  $p_t^{\text{pre}}$  (i.e., not always  
rolling in from  $p_t^{\text{out}}$ ) improves diversity and often yields better overall performance. The specific

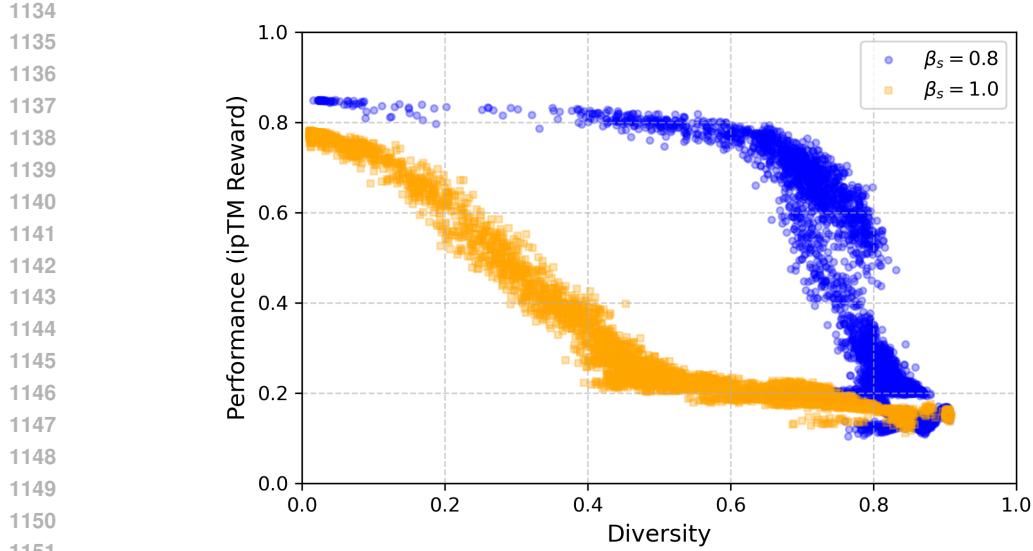


Figure 4: Performance vs. diversity in PD-L1 binder design under different roll-in mixtures. Mixing in the pre-trained policy during roll-in (smaller  $\beta_s$ ) increases diversity compared to relying solely on the roll-out policy ( $\beta_s=1$ ).

Table 16: *The influence of lazy update interval  $K$  on the performances on protein sequence design for ss-match task.*

| Lazy Update Interval $K$ | $\beta$ -sheet%↑                      | pLDDT↑                                | Diversity↑    |
|--------------------------|---------------------------------------|---------------------------------------|---------------|
| 1                        | $0.7972 \pm 0.0323$                   | $0.6745 \pm 0.0643$                   | <b>0.8238</b> |
| 5                        | <b><math>0.8914 \pm 0.0155</math></b> | $0.6196 \pm 0.0263$                   | 0.5023        |
| 50                       | $0.8281 \pm 0.0098$                   | <b><math>0.8202 \pm 0.0118</math></b> | 0.5154        |

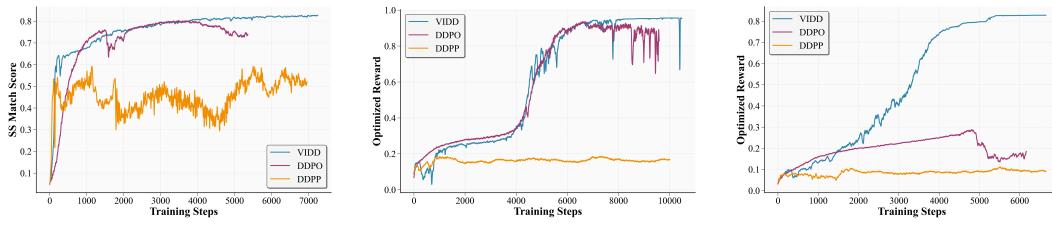


Figure 5: Training curves of different methods on SS-match, PD-L1, and IFNAR2 binder design tasks. The  $y$ -axis shows the optimized reward, and the  $x$ -axis shows training steps.

optimal mixture is task-dependent; accordingly, we treat  $\beta_s$  as a tunable hyperparameter selected by validation to balance exploration ( $p_t^{\text{pre}}$ ) and exploitation ( $p_t^{\text{out}}$ ).

**Lazy update interval** *For the hyperparameter of lazy update interval  $K$  discussed in Section 4.2, we present the results in Table 16, Table 17 and Table 18 for the protein sequence design task, and other parameters are provided in Table 4.*

**Regularization coefficient** *For the regularization coefficient  $\alpha$  in (7), the performance comparison for protein sequence design tasks is presented in Table 19 and Table 20. We could notice that similar as DNA sequence design, keep the reward distribution unchanged ( $\alpha = 1.0$ ) yields the best performances.*

Table 17: *The influence of lazy update interval  $K$  on the performances on protein binder design tasks for target protein PD-L1.*

| Lazy Update Interval $K$ | Reward $\uparrow$   | ipTM $\uparrow$     | pLDDT $\uparrow$    | Radius $\downarrow$  | Diversity $\uparrow$ |
|--------------------------|---------------------|---------------------|---------------------|----------------------|----------------------|
| 1                        | $0.4336 \pm 0.1214$ | $0.4090 \pm 0.1208$ | $0.4174 \pm 0.0304$ | $0.8551 \pm 0.7798$  | 0.5048               |
| 5                        | $0.6983 \pm 0.1195$ | $0.6428 \pm 0.1116$ | $0.6211 \pm 0.0814$ | $0.3270 \pm 0.2587$  | 0.5140               |
| 10                       | $0.5537 \pm 0.0490$ | $0.5073 \pm 0.0458$ | $0.5606 \pm 0.0374$ | $0.4791 \pm 0.2324$  | 0.5062               |
| 20                       | $0.1902 \pm 0.0880$ | $0.2327 \pm 0.0804$ | $0.4367 \pm 0.0678$ | $4.3089 \pm 0.9180$  | 0.5033               |
| 50                       | $0.9079 \pm 0.0237$ | $0.8182 \pm 0.0213$ | $0.8720 \pm 0.0421$ | $-0.1232 \pm 0.1066$ | <b>0.5539</b>        |

Table 18: *The influence of lazy update interval  $K$  on the performances on protein binder design tasks for target protein IFNAR2.*

| Lazy Update Interval $K$ | Reward $\uparrow$   | ipTM $\uparrow$     | pLDDT $\uparrow$    | Radius $\downarrow$ | Diversity $\uparrow$ |
|--------------------------|---------------------|---------------------|---------------------|---------------------|----------------------|
| 1                        | $0.1702 \pm 0.0311$ | $0.1433 \pm 0.0099$ | $0.4195 \pm 0.0321$ | $0.7567 \pm 1.3396$ | 0.7454               |
| 5                        | $0.5120 \pm 0.1093$ | $0.5090 \pm 0.1079$ | $0.4711 \pm 0.0490$ | $2.2039 \pm 1.9989$ | 0.5176               |
| 10                       | $0.2305 \pm 0.0252$ | $0.1955 \pm 0.0167$ | $0.4517 \pm 0.0302$ | $0.5062 \pm 0.5819$ | 0.6052               |
| 20                       | $0.1528 \pm 0.0352$ | $0.1266 \pm 0.0270$ | $0.3809 \pm 0.0421$ | $0.5971 \pm 0.6893$ | 0.8597               |
| 50                       | $0.1227 \pm 0.0231$ | $0.1160 \pm 0.0108$ | $0.3618 \pm 0.0393$ | $1.4747 \pm 0.8167$ | <b>0.8717</b>        |

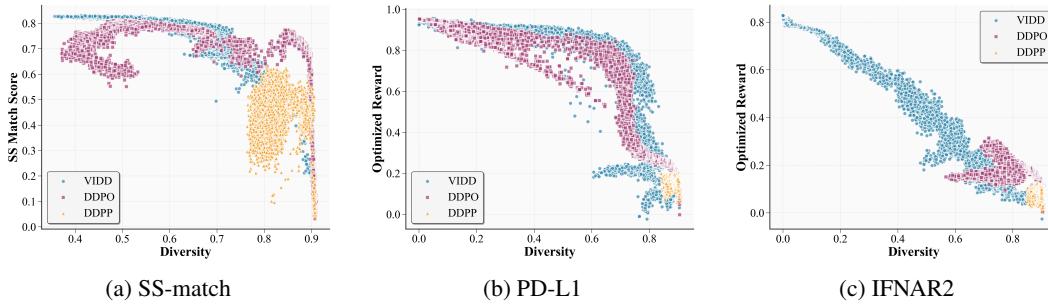


Figure 6: Scatter plots of reward versus diversity for different methods on SS-match, PD-L1, and IFNAR2 binder design tasks. Each point corresponds to a training checkpoint.

**Trade-off between Reward and Diversity** Readers may be concerned that higher rewards could come at the cost of reduced diversity from results in Table 1 and Table 2 (as well as Table 13 and Table 14). To clarify this, we include the training curves (Figure 5) and the reward–diversity scatter plots (Figure 6). The curves show how reward evolves over training, while the scatter plots visualize the reachable regions in the reward–diversity plane for each method. These figures illustrate that only our method is able to expand the reachable set and achieve substantially higher rewards across training.

## F SOFT VALUE FUNCTION

### F.1 POSTERIOR MEAN APPROXIMATION

We use (3) to define the soft value function:

$$v_t(x) := \alpha \log \mathbb{E}_{x_0 \sim p^{\text{pre}}(x_0|x_t)} \left[ \exp\left(\frac{r(x_0)}{\alpha}\right) \middle| x_t \right].$$

Recall that the training objective of diffusion models (Section 2.1) is to accurately recover the clean sample  $x_0$  from a noisy state  $x_t$ . In practice, this means that the diffusion model aims to produce a reliable estimate  $\hat{x}_0(x_t)$  of the posterior mean  $\mathbb{E}[x_0|x_t]$ . Following prior work (Uehara et al., 2025a; Li et al., 2024), substituting this estimate into the expectation above yields the commonly used soft value approximation:

$$v_t(x_t) \approx r(\hat{x}_0(x_t)),$$

which is often referred to as the posterior mean approximation. In our implementation, we obtain  $\hat{x}_0(x_t)$  via argmax decoding from the distribution  $p(x_0 | x_t)$  at  $t = 0$ .

1242 Table 19: *The influence of regularization coefficient  $\alpha$  on the performances on protein binder design*  
1243 *tasks for target protein PD-L1.*

| Regularization Coefficient $\alpha$ | Reward $\uparrow$                     | ipTM $\uparrow$                       | pLDDT $\uparrow$                      | Radius $\downarrow$                    | Diversity $\uparrow$ |
|-------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|----------------------|
| 0.8                                 | $0.5505 \pm 0.0809$                   | $0.4839 \pm 0.0739$                   | $0.5430 \pm 0.0565$                   | <b>-0.6149 <math>\pm 0.1902</math></b> | <b>0.5592</b>        |
| 1                                   | <b>0.9079 <math>\pm 0.0237</math></b> | <b>0.8182 <math>\pm 0.0213</math></b> | <b>0.8720 <math>\pm 0.0421</math></b> | $-0.1232 \pm 0.1066$                   | 0.5539               |
| 2                                   | $0.4443 \pm 0.0854$                   | $0.3930 \pm 0.0812$                   | $0.4752 \pm 0.0552$                   | $-0.1865 \pm 0.3129$                   | 0.5038               |

1249 Table 20: *The influence of regularization coefficient  $\alpha$  on the performances on protein binder design*  
1250 *tasks for target protein IFNAR2.*

| Regularization Coefficient $\alpha$ | Reward $\uparrow$                     | ipTM $\uparrow$                       | pLDDT $\uparrow$                      | Radius $\downarrow$                   | Diversity $\uparrow$ |
|-------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------|
| 0.8                                 | $0.2729 \pm 0.0844$                   | $0.2472 \pm 0.0733$                   | $0.4013 \pm 0.0448$                   | <b>0.7226 <math>\pm 0.6606</math></b> | 0.5017               |
| 1                                   | <b>0.5120 <math>\pm 0.1093</math></b> | <b>0.5090 <math>\pm 0.1079</math></b> | <b>0.4711 <math>\pm 0.0490</math></b> | $2.2039 \pm 1.9989$                   | 0.5176               |
| 2                                   | $0.1005 \pm 0.0480$                   | $0.1247 \pm 0.0455$                   | $0.3587 \pm 0.0329$                   | $3.0035 \pm 1.3196$                   | <b>0.8769</b>        |

## 1258 F.2 MONTE CARLO ESTIMATION

1260 *Beyond the posterior mean, one may also approximate the soft value using Monte Carlo sampling,*  
1261 *which computes multiple predictions of  $x_0$  and averages their rewards:*

$$1264 \quad v_t(x_t) \approx \frac{1}{M} \sum_{m=1}^M r\left(\hat{x}_0^{(m)}(x_t)\right), \quad \hat{x}_0^{(m)}(x_t) \sim p(x_0 \mid x_t),$$

1267 *where we sample from  $p(x_0 \mid x_t)$  multiple times to get different  $\hat{x}_0^{(m)}(x_t)$  by temperature sampling.*  
1268 *Temperature sampling is used because argmax decoding above produces a single deterministic mode*  
1269 *and therefore cannot support multiple samples for Monte Carlo estimation.*

1270 *Table 21 and Table 22 reports the effect of different soft value estimation functions in our setting.*  
1271 *Specifically, Posterior mean represents take the argmax decoding to get  $x_0$  from  $p(x_0 \mid x_t)$ . The*  
1272 *interesting observation is that even when we use Monte Carlo estimation with  $M = 4$ , which*  
1273 *increases reward computation cost by 4 $\times$  (and reward calculation itself is expensive using models*  
1274 *like ESMFold-3B or AlphaFold2-Multimer-93M parameters), the performance becomes worse. This*  
1275 *suggests that the posterior mean (argmax) provides a more stable and discriminative value signal*  
1276 *for estimating  $v_t(x_t)$ . In contrast, small- $M$  Monte Carlo samples mix high- and low-quality draws,*  
1277 *weakening the training guidance. Increasing  $M$  further could reduce this variance, but it would*  
1278 *require substantially more reward calls, making it computationally impractical in biomolecular*  
1279 *design, where reward evaluation is both high-cost and non-regular.*

1280 *Therefore, using argmax decoding to approximate the value offers the best trade-off: it minimizes*  
1281 *reward computation while providing a stable and reliable signal for fine-tuning, making it the most*  
1282 *practical choice for VIDD.*

## 1284 F.3 TRAINING VALUE NETWORK

1286 *Another alternative is to train a separate neural network to approximate the soft value function*  
1287 *directly. Although such critic models are common in standard reinforcement learning, they are*  
1288 *considerably less practical in biomolecular design. Reward functions in our domains (e.g., protein*  
1289 *binder design, secondary-structure-matching design) rely on large structure prediction models such*  
1290 *as AlphaFold2-Multimer (Jumper et al., 2021) (93.2M parameters) or ESMFold (Lin et al., 2023)*  
1291 *(3B parameters), which operate on full sequences rather than individual denoising steps. In contrast,*  
1292 *the diffusion generator used in our experiments (EvoDiff (Alamdari et al., 2023)) contains only 38M*  
1293 *parameters. Training an accurate value network over intermediate states  $x_t$  instead of the final state*  
1294 *is extremely challenging and computationally extensive. Consequently, we focus on the posterior*  
1295 *mean and Monte Carlo estimators in this work, and leave the training of scalable and accurate value*  
1296 *networks for complex biomolecular tasks as an interesting future direction.*

1296 Table 21: *The influences of soft value function on the performances on protein binder design tasks for*  
 1297 *target protein PD-L1.*

|                              | Reward↑                | ipTM↑                  | pLDDT↑                 | Radius↓                 | Diversity↑    |
|------------------------------|------------------------|------------------------|------------------------|-------------------------|---------------|
| Posterior mean               | <b>0.9079 ± 0.0237</b> | <b>0.8182 ± 0.0213</b> | <b>0.8720 ± 0.0421</b> | -0.1232 ± 0.1066        | <b>0.5539</b> |
| Monte carlo estimation (M=4) | 0.7758 ± 0.0620        | 0.7105 ± 0.0603        | 0.4993 ± 0.0359        | <b>-0.7711 ± 0.1049</b> | 0.5155        |

1302 Table 22: *The influences of soft value function on the performances on protein binder design tasks for*  
 1303 *target protein IFNAR2.*

|                              | Reward↑                | ipTM↑                  | pLDDT↑                 | Radius↓                | Diversity↑    |
|------------------------------|------------------------|------------------------|------------------------|------------------------|---------------|
| Posterior mean               | <b>0.5120 ± 0.1093</b> | <b>0.5090 ± 0.1079</b> | 0.4711 ± 0.0490        | 2.2039 ± 1.9989        | 0.5176        |
| Monte carlo estimation (M=4) | 0.4149 ± 0.0936        | 0.3474 ± 0.0906        | <b>0.6892 ± 0.0617</b> | <b>0.0703 ± 0.2881</b> | <b>0.5195</b> |

## G NOISE REWARD FUNCTION

1312 *In this section, we inject synthetic noise into the reward estimation function to assess the robustness*  
 1313 *of VIDD under imperfect reward signals. This scenario reflects realistic biomolecular settings, where*  
 1314 *surrogate reward models may deviate from true experimental measurements. Specifically, we add n%*  
 1315 *Gaussian noise to the reward function as:*

$$r_n = r + r \cdot n\% \cdot \mathcal{N}(0, 1),$$

1316 *where  $\mathcal{N}(0, 1)$  is the normal distribution. During training, we use the noised reward  $r_n$  as signal,*  
 1317 *and for inference, we observe the clean reward  $r$ . The results in Table 23 and Table 24 show that,*  
 1318 *as noise levels increase, the performance degrades noticeably. This is expected: VIDD does not*  
 1319 *incorporate explicit robustness mechanisms, so inaccuracies in reward estimation can mislead the*  
 1320 *optimization process and fine-tune the model toward suboptimal directions.*

1321 *Since noisy or biased rewards exist in biomolecular design, addressing reward uncertainty remains a*  
 1322 *crucial direction. Incorporating robustness-aware reinforcement learning techniques, such as reward*  
 1323 *denoising or uncertainty calibration, represents a promising direction for future research.*

## H VISUALIZATION OF GENERATED SAMPLES

1324 In Figure 7 we visualize the docking of VIDD generated molecular ligands to protein parp1. Docking  
 1325 scores presented above each column quantify the binding affinity of the ligand-protein interaction,  
 1326 while the figures include various representations and perspectives of the ligand-protein complexes.  
 1327 We aim to provide a complete picture of how each ligand is situated within both the local binding  
 1328 environment and the larger structural framework of the protein. First rows show close-up views of  
 1329 the ligand bound to the protein surface, displaying the topography and electrostatic properties of the  
 1330 protein’s binding pocket and providing insight into the complementarity between the ligand and the  
 1331 pocket’s surface. Second rows display distant views of the protein using the surface representation,  
 1332 offering a broader perspective on the ligand’s spatial orientation within the global protein structure.  
 1333 Third rows provide close-up views of the ligand interaction using a ribbon diagram, which represents  
 1334 the protein’s secondary structure, such as alpha-helices and beta-sheets, to highlight the specific  
 1335 regions of the protein involved in binding. Fourth rows show distant views of the entire protein  
 1336 structure in ribbon diagram, with ligands displayed within the context of the protein’s full tertiary  
 1337 structure. Ligands generally fit snugly within the protein pocket, as evidenced by the close-up views  
 1338 in both the surface and ribbon diagrams, which show minimal steric clashes and strong surface  
 1339 complementarity.

1350  
 1351  
 1352 Table 23: *The influences of noise reward function on the performances on protein binder design tasks*  
 1353 *for target protein PD-L1.*

1354  
 1355

|           | Reward↑                | ipTM↑                  | pLDDT↑                 | Radius↓                 | Diversity↑    |
|-----------|------------------------|------------------------|------------------------|-------------------------|---------------|
| noise=0.0 | <b>0.9079 ± 0.0237</b> | <b>0.8182 ± 0.0213</b> | <b>0.8720 ± 0.0421</b> | <b>-0.1232 ± 0.1066</b> | <b>0.5539</b> |
| noise=0.1 | 0.4744 ± 0.1172        | 0.4570 ± 0.1192        | 0.4306 ± 0.0255        | 1.2802 ± 0.9287         | 0.5154        |

1358  
 1359  
 1360  
 1361  
 1362 Table 24: *The influences of noise reward function on the performances on protein binder design tasks*  
 1363 *for target protein IFNAR2.*

1364  
 1365

|           | Reward↑                | ipTM↑                  | pLDDT↑                 | Radius↓                 | Diversity↑    |
|-----------|------------------------|------------------------|------------------------|-------------------------|---------------|
| noise=0.0 | <b>0.5120 ± 0.1093</b> | <b>0.5090 ± 0.1079</b> | <b>0.4711 ± 0.0490</b> | $2.2039 \pm 1.9989$     | 0.5176        |
| noise=0.1 | 0.1970 ± 0.0217        | 0.1446 ± 0.0160        | 0.4692 ± 0.0620        | <b>-0.2763 ± 0.2740</b> | <b>0.5234</b> |



Figure 7: Visualization of generated molecules using VIDD optimizing the reward of docking score for parp1 (normalized as  $\max(-DS, 0)$ ).