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Abstract

Large language models (LLMs) sometimes produce chains-of-thought (CoT) that1

do not faithfully reflect their internal reasoning. In particular, a biased context with2

a hint can cause a model to change its answer while rationalizing the hinted option3

without acknowledging its reliance on the hint, a form of unfaithful motivated4

reasoning. We investigate this phenomenon in the Qwen2.5-7B-Instruct model5

on the MMLU benchmark and show that motivated reasoning can be detected in6

the model’s internal representations. We train non-linear probes over the model’s7

residual stream and find that the hinted option is consistently predictable from8

representations at the end of CoT. Focusing on cases where the model changes its9

output to the hint without mentioning it, we demonstrate that probes can (i) predict10

whether the model will follow a hint from its internal representations early in the11

CoT, and (ii) determine whether a hint-consistent final answer was counterfactually12

dependent on the hint based on internal representations at the end of CoT.13

1 Introduction14

Large language models (LLMs) use chain-of-thought (CoT) reasoning to produce intermediate15

reasoning steps before giving a final output [19, 14, 7]. This ability enables skills such as planning,16

search, and verification to solve complex tasks, and improves their performance [15, 5, 12, 16,17

17]. From a theoretical standpoint, models become computationally more expressive with a larger18

workspace available for inference-time computations in the form of CoT [6, 10, 8, 13, 11]. In addition,19

CoT reasoning offers appealing safety promises by making it possible to trace the computations that20

lead to a model’s final decision through monitoring its CoT [1].21

However, a model’s CoT does not necessarily explain its internal computations. Prior work on22

faithfulness shows that CoT explanations can be unfaithful: they may rationalize a biased or hint-23

driven answer without mentioning the true cause of the decision [18]. Recent studies demonstrate24

that even reasoning models often fail to verbalize the influence of misleading hints, highlighting a25

gap between internal reasoning and CoT explanation [3, 4].26

This gap motivates studying the internal representations of LLMs directly, to identify cognitive27

behaviors such as motivated reasoning, where the model plans toward a hint-consistent answer.28

Mechanistic interpretability works have shown traces of such behaviors in the model [9]. By studying29

the internal representations of the model in a biased context with a hint, our contributions are the30

following:31

Model always recalls the hint. We show that a probe can perfectly predict the hint from the internal32

representations of the model at the end of CoT, even when the CoT does not mention the hint.33
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Figure 1: Hint prediction probe accuracy across layers of the model and (middle) steps normalized by CoT
length, (left) steps in the beginning of CoT, and (right) steps at the end of CoT before the final output.

Early switch to a hint detection. We show that the model’s switching to a hint can be predicted34

from the model internal representations before CoT generation.35

Reliance on a hint detection. We show that the model’s reliance on the hint to produce a hint-36

consistent final output can be detected from its internal representations at the end of CoT.37

2 Setup38

While a language model’s CoT is commonly interpreted as the model’s reasoning trace leading to its39

final response and CoT monitoring is becoming adopted as a AI safety approach, its effectiveness40

depends on the CoT being a faithful explanation of the way the model reaches its answer.41

Inspired by this, recent works have evaluated faithfulness of language models under paired unbiased42

and biased prompts [18, 3, 4]. The unbiased prompt presents only the question, while the biased43

prompt includes a hint suggesting one of the answer choices. These studies show that models can44

be misled by such hints: even when the unbiased answer is correct, the biased answer may change45

to match the hint. Crucially, the chain-of-thought in these cases sometimes rationalizes the hinted46

answer without acknowledging the hint’s influence. In our experiments we will follow the setting of47

these studies [18, 3, 4].48

Setting and notation. For each unbiased prompt xu and biased prompt xh with hint h, the model49

M produces50

(cu, au) = M(xu), (ch, ah) = M(xh),

where au and ah denote the model’s final answers and cu, ch the generated chains-of-thought. We51

categorize the paired outcomes (au, ah) with respect to the hint h as follows:52

1. Resist (au ̸= h → ah ̸= h): The model does not follow the hint in either condition.53

2. Switch (au ̸= h → ah = h): The model changes its answer to follow the hint.54

3. Redundant (au = h → ah = h): The model selects the hint in both conditions.55

4. Abandon (au = h → ah ̸= h): The model initially selects the hint but moves away from it56

under bias (rare).57

We are specifically interested in the cases where the model switches its answer to the hint but does not58

mention the hint in its CoT (we check this by searching for the keywords ’hint’ and ’expert’ in ch).59
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Figure 2: (left) Model behavior in response to biased prompts, conditioned on whether the hint confirms with
the unbiased response. (right) Fraction of CoT that explicitly mention the hint within each category.

Probing tasks. We design complementary experiments to capture different aspects of detecting60

motivated reasoning:61

1. Hint prediction. We train probes on internal representations of the model to predict the hint62

h. We use the accuracy of these hint prediction probes accross layers and positions in CoT63

to examine where and when the model retrieves the information about the hint.64

2. Switching to the hint detection. Among the cases where au ̸= h and the CoT does not65

mention the hint, we want to distinguish switch cases (ah = h) from resist cases (ah ̸= h).66

They both are in conflict with the hint, but only the switch cases ultimately adopt the hint.67

There are 1873 switch cases and 1360 resist cases among those not mentioning the hint. We68

train probes on model internal representations to predict whether the model switches.69

3. Reliance on the hint detection. Among items where ah = h and the CoT does not mention70

the hint, we want to distinguish switch cases (au ̸= h) from redundant cases (au = h). They71

both end with the hint, but only the switch cases are counterfactually dependent on the hint.72

There are 1873 switch cases and 1718 redundant cases among those not mentioning the hint.73

We train probes on model internal representations to predict whether the model relies on the74

hint.75

Together, these probing tasks capture complementary aspects of the problem: when the model76

accesses the information about the hint during its computations, whether the model begins to bend77

toward a hinted answer early in reasoning, and whether its final choice is counterfactually reliant on78

the hint.79

2.1 Experimental Setup80

Model. We conduct experiments with the Qwen2.5-7B-Instruct model. We prompt the model to81

think step-by-step and then write its final option letter. We sample with temperature 0 and set the82

maximum number of generation tokens to 2048.83

Data. We use the MMLU benchmark, which contains multiple-choice questions across diverse84

domains. Each question has four candidate answers. For every question we construct two paired85

prompts: 1) an unbiased prompt xu containing only the question, and 2) a biased prompt xh formed86

by appending a hint of the form: Hint: An expert indicates the answer is <h>. The87

hinted choice h is sampled uniformly at random. The model’s responses (cu, au) and (ch, ah) are88

then paired to categorize outcomes into the four transition types.89

Probing. To analyze motivated reasoning, we extract residual stream activations after each attention90

block, at multiple generation steps of ch. We train a nonlinear Recursive Feature Machine (RFM)91

probe [2] on these representations, with one probe per layer. We also experimented with training92

separate probes for each layer–step combination. Interestingly, the layer-level probe performed as93

well as step-specific probes within that layer, so we report results using the layer-level probes.94
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Figure 3: AUC of probes detecting (left) whether the model switches its hint-inconsistent output to the hint
(resist vs switch), and (right) whether the model’s hint-consistent output relies on the hint (redundant vs switch).
In both cases, we have only retained the cases where the CoT does not mention the hint.

3 Experiments & Results95

Models frequently adopt the hinted answer. Consistent with prior work [3, 4, 18], we find that96

the model is highly sensitive to biased prompts. Its accuracy drops from 74.46% in the unbiased97

setting to 45.94% under hints, far exceeding the baseline change rate of 2–6% due to stochasticity98

and prompt sensitivity. When the hint confirms the unbiased answer, the model almost always retains99

it; when the hint conflicts, it usually switches to the hinted option. Notably, in many of these switch100

cases the model’s CoT does not explicitly acknowledge the hint (See Figure 2).101

Model recalls the hint at the end of CoT. The hint prediction probe’s accuracy shows that the102

hint is perfectly detectable in the beginning and end of CoT, but not in the middle (See Figure 1).103

Note that this includes the cases in which the model does not mention the hint at the end of its CoT.104

Moreover, while the hint is better detectable in the first layers in the early stage of CoT, it is only105

detectable in the final layers in the late stage of CoT.106

Switching to the hint is detectable before CoT generation. The switching detection probe that107

is trained to predict whether the model follows a hint that contradicts the model’s unbiased answer,108

achieves an accuracy of %79.69 with AUC of %87.22 before CoT generation (See Figure 3). This109

shows the possibility of detecting motivated reasoning intention from the internal representations of110

the model, even before generating CoT. The probe expectedly achieves perfect accuracy at the end of111

CoT because it can compare the model’s final output with the hint.112

Reliance on the hint is detectable at the end of CoT. The reliance detection probe that is trained113

to decide whether the model is relying on the hint or it would output the same answer in an unbiased114

context achieves an accuracy of %82.42 with AUC of %90.12 at the end of CoT (See Figure 3). This115

shows the possibility of detecting the model’s reliance on the hint, even though its CoT does not116

mention the hint.117

4 Discussion & Conclusion118

In this paper, we focused on motivated reasoning as a cognitive behavior of language models that119

cannot always be detected by monitoring their CoT. By probing the internal representations of the120

model, we traced its access to the hint in the biased context and showed that it is possible to detect121

the model’s intention to switch to the hint early in its CoT, as well as its reliance on the hint late in its122

CoT. We note that hints that are consistent with the correct answer may be processed differently from123

misleading hints; understanding this distinction remains an important direction for future work.124
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