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Abstract

Large language models (LLMs) sometimes produce chains-of-thought (CoT) that
do not faithfully reflect their internal reasoning. In particular, a biased context with
a hint can cause a model to change its answer while rationalizing the hinted option
without acknowledging its reliance on the hint, a form of unfaithful motivated
reasoning. We investigate this phenomenon in the Qwen2.5-7B-Instruct model
on the MMLU benchmark and show that motivated reasoning can be detected in
the model’s internal representations. We train non-linear probes over the model’s
residual stream and find that the hinted option is consistently predictable from
representations at the end of CoT. Focusing on cases where the model changes its
output to the hint without mentioning it, we demonstrate that probes can (i) predict
whether the model will follow a hint from its internal representations early in the
CoT, and (ii) determine whether a hint-consistent final answer was counterfactually
dependent on the hint based on internal representations at the end of CoT.

1 Introduction

Large language models (LLMs) use chain-of-thought (CoT) reasoning to produce intermediate
reasoning steps before giving a final output [19, |14} [7]. This ability enables skills such as planning,
search, and verification to solve complex tasks, and improves their performance [15} |5 [12} 16}
17]]. From a theoretical standpoint, models become computationally more expressive with a larger
workspace available for inference-time computations in the form of CoT [6} 10,8, [13L[11]. In addition,
CoT reasoning offers appealing safety promises by making it possible to trace the computations that
lead to a model’s final decision through monitoring its CoT [1]].

However, a model’s CoT does not necessarily explain its internal computations. Prior work on
faithfulness shows that CoT explanations can be unfaithful: they may rationalize a biased or hint-
driven answer without mentioning the true cause of the decision [[18]]. Recent studies demonstrate
that even reasoning models often fail to verbalize the influence of misleading hints, highlighting a
gap between internal reasoning and CoT explanation [3} 4].

This gap motivates studying the internal representations of LLMs directly, to identify cognitive
behaviors such as motivated reasoning, where the model plans toward a hint-consistent answer.
Mechanistic interpretability works have shown traces of such behaviors in the model [9]. By studying
the internal representations of the model in a biased context with a hint, our contributions are the
following:

Model always recalls the hint. We show that a probe can perfectly predict the hint from the internal
representations of the model at the end of CoT, even when the CoT does not mention the hint.
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Figure 1: Hint prediction probe accuracy across layers of the model and (middle) steps normalized by CoT
length, (left) steps in the beginning of CoT, and (right) steps at the end of CoT before the final output.

Early switch to a hint detection. We show that the model’s switching to a hint can be predicted
from the model internal representations before CoT generation.

Reliance on a hint detection. We show that the model’s reliance on the hint to produce a hint-
consistent final output can be detected from its internal representations at the end of CoT.

2 Setup

While a language model’s CoT is commonly interpreted as the model’s reasoning trace leading to its
final response and CoT monitoring is becoming adopted as a Al safety approach, its effectiveness
depends on the CoT being a faithful explanation of the way the model reaches its answer.

Inspired by this, recent works have evaluated faithfulness of language models under paired unbiased
and biased prompts 18 3} [4]]. The unbiased prompt presents only the question, while the biased
prompt includes a hint suggesting one of the answer choices. These studies show that models can
be misled by such hints: even when the unbiased answer is correct, the biased answer may change
to match the hint. Crucially, the chain-of-thought in these cases sometimes rationalizes the hinted
answer without acknowledging the hint’s influence. In our experiments we will follow the setting of

these studies [[18}, 3] 4].

Setting and notation. For each unbiased prompt x,, and biased prompt x;, with hint s, the model
M produces

(Cu, ) = M(24,), (cn,an) = M(zp),
where a, and aj, denote the model’s final answers and ¢, ¢;, the generated chains-of-thought. We
categorize the paired outcomes (a,,, a;,) with respect to the hint & as follows:
1. Resist (a,, # h — aj, # h): The model does not follow the hint in either condition.
2. Switch (a,, # h — aj, = h): The model changes its answer to follow the hint.
3. Redundant (a,, = h — a;, = h): The model selects the hint in both conditions.
4. Abandon (a,, = h — aj, # h): The model initially selects the hint but moves away from it

under bias (rare).

We are specifically interested in the cases where the model switches its answer to the hint but does not
mention the hint in its CoT (we check this by searching for the keywords "hint’ and "expert’ in c,).
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Figure 2: (left) Model behavior in response to biased prompts, conditioned on whether the hint confirms with
the unbiased response. (right) Fraction of CoT that explicitly mention the hint within each category.

Probing tasks. We design complementary experiments to capture different aspects of detecting
motivated reasoning:

1. Hint prediction. We train probes on internal representations of the model to predict the hint
h. We use the accuracy of these hint prediction probes accross layers and positions in CoT
to examine where and when the model retrieves the information about the hint.

2. Switching to the hint detection. Among the cases where a,, # h and the CoT does not
mention the hint, we want to distinguish switch cases (a;, = h) from resist cases (ap # h).
They both are in conflict with the hint, but only the switch cases ultimately adopt the hint.
There are 1873 switch cases and 1360 resist cases among those not mentioning the hint. We
train probes on model internal representations to predict whether the model switches.

3. Reliance on the hint detection. Among items where a;, = h and the CoT does not mention
the hint, we want to distinguish switch cases (a,, # h) from redundant cases (a,, = h). They
both end with the hint, but only the switch cases are counterfactually dependent on the hint.
There are 1873 switch cases and 1718 redundant cases among those not mentioning the hint.
We train probes on model internal representations to predict whether the model relies on the
hint.

Together, these probing tasks capture complementary aspects of the problem: when the model
accesses the information about the hint during its computations, whether the model begins to bend
toward a hinted answer early in reasoning, and whether its final choice is counterfactually reliant on
the hint.

2.1 Experimental Setup

Model. We conduct experiments with the Qwen2.5-7B-Instruct model. We prompt the model to
think step-by-step and then write its final option letter. We sample with temperature 0 and set the
maximum number of generation tokens to 2048.

Data. We use the MMLU benchmark, which contains multiple-choice questions across diverse
domains. Each question has four candidate answers. For every question we construct two paired
prompts: 1) an unbiased prompt x,, containing only the question, and 2) a biased prompt xj, formed
by appending a hint of the form: Hint: An expert indicates the answer is <h>. The
hinted choice % is sampled uniformly at random. The model’s responses (¢, a,,) and (cp, ay) are
then paired to categorize outcomes into the four transition types.

Probing. To analyze motivated reasoning, we extract residual stream activations after each attention
block, at multiple generation steps of ¢;,. We train a nonlinear Recursive Feature Machine (RFM)
probe on these representations, with one probe per layer. We also experimented with training
separate probes for each layer—step combination. Interestingly, the layer-level probe performed as
well as step-specific probes within that layer, so we report results using the layer-level probes.
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Figure 3: AUC of probes detecting (left) whether the model switches its hint-inconsistent output to the hint
(resist vs switch), and (right) whether the model’s hint-consistent output relies on the hint (redundant vs switch).
In both cases, we have only retained the cases where the CoT does not mention the hint.

3 Experiments & Results

Models frequently adopt the hinted answer. Consistent with prior work [3} 4} 18], we find that
the model is highly sensitive to biased prompts. Its accuracy drops from 74.46% in the unbiased
setting to 45.94% under hints, far exceeding the baseline change rate of 2—-6% due to stochasticity
and prompt sensitivity. When the hint confirms the unbiased answer, the model almost always retains
it; when the hint conflicts, it usually switches to the hinted option. Notably, in many of these switch
cases the model’s CoT does not explicitly acknowledge the hint (See Figure[2)).

Model recalls the hint at the end of CoT. The hint prediction probe’s accuracy shows that the
hint is perfectly detectable in the beginning and end of CoT, but not in the middle (See Figure [I)).
Note that this includes the cases in which the model does not mention the hint at the end of its CoT.
Moreover, while the hint is better detectable in the first layers in the early stage of CoT, it is only
detectable in the final layers in the late stage of CoT.

Switching to the hint is detectable before CoT generation. The switching detection probe that
is trained to predict whether the model follows a hint that contradicts the model’s unbiased answer,
achieves an accuracy of %79.69 with AUC of %87.22 before CoT generation (See Figure[3). This
shows the possibility of detecting motivated reasoning intention from the internal representations of
the model, even before generating CoT. The probe expectedly achieves perfect accuracy at the end of
CoT because it can compare the model’s final output with the hint.

Reliance on the hint is detectable at the end of CoT. The reliance detection probe that is trained
to decide whether the model is relying on the hint or it would output the same answer in an unbiased
context achieves an accuracy of %82.42 with AUC of %90.12 at the end of CoT (See Figure 3). This
shows the possibility of detecting the model’s reliance on the hint, even though its CoT does not
mention the hint.

4 Discussion & Conclusion

In this paper, we focused on motivated reasoning as a cognitive behavior of language models that
cannot always be detected by monitoring their CoT. By probing the internal representations of the
model, we traced its access to the hint in the biased context and showed that it is possible to detect
the model’s intention to switch to the hint early in its CoT, as well as its reliance on the hint late in its
CoT. We note that hints that are consistent with the correct answer may be processed differently from
misleading hints; understanding this distinction remains an important direction for future work.
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