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Abstract

Most previous methods for text data augmenta-001
tion are limited to simple tasks and weak base-002
lines. We explore data augmentation on hard003
tasks (i.e., few-shot natural language under-004
standing) and strong baselines (i.e., pretrained005
models with over one billion parameters). Un-006
der this setting, we reproduced a large number007
of previous augmentation methods and found008
that these methods bring marginal gains at best009
and sometimes degrade the performance much.010
To address this challenge, we propose a novel011
data augmentation method FlipDA that jointly012
uses a generative model and a classifier to gen-013
erate label-flipped data. Central to the idea of014
FlipDA is the discovery that generating label-015
flipped data is more crucial to the performance016
than generating label-preserved data. Experi-017
ments show that FlipDA achieves a good trade-018
off between effectiveness and robustness—it019
substantially improves many tasks while not020
negatively affecting the others.021

1 Introduction022

Data augmentation is a method to augment the023

training set by generating new data from the given024

data. For text data, basic operations including re-025

placement, insertion, deletion, and shuffle have026

been adopted widely and integrated into a wide027

range of augmentation frameworks (Zhang et al.,028

2015; Wang and Yang, 2015; Xie et al., 2020a;029

Kobayashi, 2018; Wei and Zou, 2019). Generative030

modeling methods such as back-translation have031

also been employed to generate augmented samples032

(Fadaee et al., 2017; Sennrich et al., 2016). How-033

ever, there are two major limitations. First, some034

general augmentation methods are based on weak035

baselines without using large-scale pretrained lan-036

guage models. Recent work showed that some of037

the data augmentation methods are less useful when038

combined with large pretrained models (Longpre039

et al., 2020). Second, most prior studies are carried040

on simple tasks such as single-sentence classifica-041

tion where it is easier to generate legit augmented 042

samples. For harder tasks such as natural language 043

inference (e.g., telling whether sentence A entails 044

sentence B), it is not clear whether previous meth- 045

ods still help. 046

This work takes a step further to study data aug- 047

mentation under strong baselines and hard tasks. 048

Our study employs large-scale pretrained language 049

models such as DeBERTa (He et al., 2020c) with 050

over one billion parameters as baselines. More- 051

over, we target a very challenging setting—few- 052

shot natural language understanding (NLU). Fol- 053

lowing (Schick and Schutze, 2021), we consider 054

challenging NLU tasks including question answer- 055

ing, textual entailment, coreference resolution, and 056

word sense disambiguation, and use only 32 train- 057

ing examples for each task. Under this setting, we 058

reproduced several widely-used prior methods for 059

data augmentation. Our experiments lead to two 060

unexpected discoveries: (1) most of prior augmen- 061

tation methods bring only marginal gains at best 062

and are not effective for most tasks; (2) in many 063

cases, using data augmentation results in instability 064

in performance and even entering a failure mode; 065

i.e., performance may drop by a lot or fluctuate 066

severely depending on which pretrained model is 067

used. The above issues prevent these augmentation 068

methods from practical usage for few-shot learning. 069

We propose a novel method FlipDA that achieves 070

both effectiveness and robustness for hard few-shot 071

tasks. Preliminary experiments showed that label- 072

flipped data often largely improve the generaliza- 073

tion of pretrained models, compared to augmented 074

data that preserve the original labels. Based on this 075

observation, FlipDA first generates data using word 076

substitution based on a pretrained T5 (Raffel et al., 077

2020) and uses a classifier to select label-flipped 078

data. Experiments demonstrate FlipDA substan- 079

tially improves performance on many of the hard 080

tasks, outperforming previous augmentation base- 081

lines in terms of average performance by a large 082
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margin. Moreover, FlipDA is robust across differ-083

ent pretrained models and different tasks, avoiding084

failure modes.085

2 Related Work086

Data Augmentation. An important type of aug-087

mentation methods are based on word substitution,088

such as synonym replacement (Zhang et al., 2015),089

KNN replacement (Wang and Yang, 2015; Vija-090

yaraghavan et al., 2016), Unif replacement (Xie091

et al., 2020a), TF-IDF replacement (Xie et al.,092

2020a), Bi-RNN replacement (Kobayashi, 2018),093

and other entity replacement methods (Raiman and094

Miller, 2017; Miao et al., 2020; Yue and Zhou,095

2020) etc. EDA (Wei and Zou, 2019) combines096

four simple augmentation methods, and back trans-097

lation (BT) (Fadaee et al., 2017; Sennrich et al.,098

2016; Yu et al., 2018) is also widely used. Unfor-099

tunately, EDA and BT are shown to be less useful100

with large pretrained models (Longpre et al., 2020).101

Other types of augmentation methods are based102

on the perturbation in the feature space (Zhang103

et al., 2018a; Guo et al., 2020; Chen et al., 2020b,a;104

Miao et al., 2020; Kumar et al., 2019), genera-105

tion (Xia et al., 2020; Li et al., 2019; Yoo et al.,106

2019; Ng et al., 2020; Liu et al., 2020; Hou et al.,107

2018), and large pretrained models (such as GPT-2,108

BERT, and BART) (Kumar et al., 2020; Anaby-109

Tavor et al., 2020; Yoo et al., 2021), etc.110

Self-training. Self-training (III, 1965) iteratively111

augments training data by labeling unlabeled data112

with a trained model (Yarowsky, 1995; Riloff,113

1996). Knowledge distillation and pseudo-labeling114

are special forms of self-training (Hinton et al.,115

2015; Lee et al., 2013; Reed et al., 2015). Strong116

data augmentation (Zoph et al., 2020), equal-or-117

larger model (Xie et al., 2020b), additional noise118

(Xie et al., 2020b; He et al., 2020a), and feedback119

of the student’s performance (Pham et al., 2020)120

are helpful for self-training.121

Self-training bears similarity to the second phase122

of FlipDA where a teacher model is used to filter123

samples. Different from self-training, FlipDA lever-124

ages the advantages of label flipping to improve125

performance and does not rely on unlabeled data.126

Label Flipping. Our manual label flipping aug-127

mentation procedure is analogous to (Kaushik et al.,128

2020) and (Gardner et al., 2020). Kaushik et al.129

(2020) aimed to mitigate the effects of learning130

spurious features. Gardner et al. (2020) targeted131

reducing systematic gaps in the dataset. In contrast,132

we target improving few-shot generalization. More- 133

over, we measure the performance on an existing 134

i.i.d. test set while Kaushik et al. (2020) and Gard- 135

ner et al. (2020) created more challenging test sets. 136

Most importantly, we propose an automatic method 137

of label flipping, going beyond manual efforts. 138

Contrastive Learning. FlipDA is connected to 139

contrastive learning (CL) (He et al., 2020b; Chen 140

et al., 2020c) in that they both improve general- 141

ization by considering label differences. CL uses 142

data augmentation to generate positive instances 143

and uses samples existing in the dataset as nega- 144

tive samples, while FlipDA shows that negative 145

samples can be automatically generated. While 146

previous work on CL focuses on training with large 147

datasets, our experiments show that augmenting a 148

small dataset can improve few-shot generalization. 149

3 Few-Shot Data Augmentation 150

3.1 Setting 151

Few-Shot NLU Tasks. This work considers a 152

collection of “difficult” NLU tasks from Super- 153

GLUE (Wang et al., 2019) that require in-depth 154

understanding of the input in order to obtain 155

high performance, including coreference resolution 156

(Levesque et al., 2011), causal reasoning (Gordon 157

et al., 2012), textual entailment (de Marneffe et al., 158

2019; Dagan et al., 2005), word sense disambigua- 159

tion (Pilehvar and Camacho-Collados, 2019), and 160

question answering (Clark et al., 2019; Khashabi 161

et al., 2018; Zhang et al., 2018b). Following Schick 162

and Schutze (2021), we used only 32 training ex- 163

amples to construct a few-shot setting to further 164

increase the difficulty. 165

Large-Scale Pretrained Models. Our setting as- 166

sumes a large-scale pretrained language model (De- 167

vlin et al., 2019; Lan et al., 2020; He et al., 2020c) is 168

available and few-shot learning is performed based 169

on the pretrained model. This setting is crucial 170

since previous studies found that using a strong 171

pretrained model as the baseline eliminates the ben- 172

efits of data augmentation (Longpre et al., 2020) 173

while large pretrained models are becoming more 174

and more available. Our main result is based on 175

DeBERTa (He et al., 2020c) with over one billion 176

parameters. We also provide results with ALBERT 177

which has fewer parameters (Lan et al., 2020). 178

Preliminary Experiments with Prior Methods. 179

Our preliminary experiments with a large number 180

of previous methods (in Section 4) lead to a conclu- 181

sion that there is not an effective and robust method 182
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available for this hard setting. We will discuss how183

we tackle this challenge by proposing a novel data184

augmentation method FlipDA in later sections.185

3.2 Desiderata: Effectiveness and Robustness186

We propose key desiderata for data augmentation187

methods under the setting of few-shot learning.188

1. Effectiveness. A data augmentation method189

should be able to improve performance on190

certain tasks in a significant manner.191

2. Robustness. A data augmentation method192

should not suffer from a failure mode in193

all cases. Failure modes are common for194

few-shot learning where some minor changes195

might cause substantial performance drop. We196

argue this should be used as a key evaluation197

metric. We consider two types of robustness:198

(1) robustness w.r.t. different base pretrained199

models and (2) robustness w.r.t. various tasks.200

3.3 Effectiveness: Manual Label Flipping201

Improves Performance202

Since previous methods are not sufficiently effec-203

tive and robust in our preliminary experiments (see204

Tables 5 and 6 in Section 4 for details), we use205

manual augmentation to investigate what kind of206

augmented data is beneficial for large pretrained207

models in the few-shot setting. We mainly study208

two types of data augmentation—one that preserves209

the labels and the other that flips the labels. Since210

manual augmentation is time consuming, we select211

a subset of representative SuperGLUE tasks here.212

To augment label-flipped data, the following213

principle is applied—making minimal changes to214

the original text sample to alter the label. Augmen-215

tation includes word addition, deletion, and substi-216

tution. To augment label-preserved data, we substi-217

tute some of the words with semantically similar218

words but make sure that the label is unchanged.219

Table 1: Manual data augmentation results. We manually
write augmented examples that preserve or flip the label. Flip-
ping the labels substantially improves performance on CB,
RTE and WSC by up to 10 points, while preserving the labels
only has minor gains.

Tasks No DA Preserves Flips
BoolQ 78.21±0.27 78.55±0.49 77.68±0.08
CB-Acc 81.55±4.12 82.14±3.57 91.07±3.09
CB-F1 72.16±7.02 77.07±4.91 88.14±3.93
COPA 90.33±1.15 91.33±0.58 90.33±0.58
RTE 68.11±3.28 67.63±2.61 76.05±0.75
WSC 79.49±2.22 78.53±2.78 85.58±0.96

Results are shown in Table 1.1 Flipping labels220

1For each original example, we produce one augmented

substantially improves performance on three of the 221

tasks by up to 10 points, while preserving the labels 222

only has minor gains. In contrast, many of prior 223

methods on data augmentation focus on creating 224

data examples that are assumed to have the same 225

labels as the original ones. This might explain why 226

previous augmentation methods are not sufficiently 227

effective for the few-shot setting. Some of the label- 228

flipped augmented examples are shown in Table 229

2. We conjecture that label flipping augmentation 230

provides useful information about the important 231

components in a sentence that determine the label. 232

In other words, augmented samples provide inter- 233

mediate supervision that explains the predictions, 234

improving generalization in a few-shot setting. 235

There is a caveat about this manual augmentation 236

experiment. Although we follow certain principles 237

and pay much attention to the augmentation quality, 238

the manual augmentation procedure is inevitably 239

subjective and hard to reproduce. For reference, we 240

will make our manually augmented dataset publicly 241

available. More importantly, we will design an au- 242

tomatic method (FlipDA) in the following sections 243

for objective evaluation and reproducibility. 244

3.4 Robustness: What Contribute to Failure 245

Modes? 246

We also analyze why augmentation methods usu- 247

ally suffer from failure modes. Most augmentation 248

methods are based on a label preserving assump- 249

tion, while it is challenging for automatic methods 250

to always generate label-preserved samples. We 251

first examine the samples generated by prior au- 252

tomatic methods EDA (Wei and Zou, 2019) and 253

KNN (Wang and Yang, 2015) in Table 4. In the 254

first example, a keyword “rabies” is deleted, which 255

not only results in a grammatically incorrect ex- 256

pression but also eliminates the key information 257

to support the hypothesis. In the second example, 258

the “Lake Titicaca” is replaced by “Lake Havasu”, 259

which results in a label change from entailment 260

to non-entailment. If a model is trained on these 261

noisy augmented data with the label preserving 262

assumption, performance degradation is expected. 263

We further experimented with EDA (Wei and 264

Zou, 2019) on the RTE task (Dagan et al., 2005) to 265

verify the cause of failure modes. Using EDA de- 266

example for each type. The augmented data and the original
data are combined for training. Following Schick and Schutze
(2021), we train each pattern with three seeds and ensemble
these (pattern, seed) pairs. We repeat this ensemble process 3
times and report their mean and standard deviation.
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Table 2: Label-flipped examples from manual augmentation. The augmentation principle is to make minimal changes that are
sufficient to alter the labels. Black denotes original examples, and blue denotes augmented examples. The second task WSC is
coreference resolution, which is to extract the referred entitiy from the text. In this case, “label” is defined as the referred entity
(denoted in red), and label flipping is defined as modifying the entity.

RTE
Premise: This case of rabies in western Newfoundland is the first case confirmed on the island since 1989.
Hypothesis: A case of rabies was confirmed. Entailment: True
Hypothesis: A case of smallpox was confirmed. Entailment: False

WSC
Text: The city councilmen refused the demonstrators a permit because they advocated violence.
Text: The city councilmen refused the criminals a permit because they advocated violence.

Table 3: Performance of correcting the wrong-labeled aug-
mented data by EDA on RTE. W-Del denotes replacing the
wrong-labeled augmented samples with corresponding origi-
nal samples, and W-Flip denotes flipping the labels of the
wrong-labeled augmented samples to be the correct ones.
The results show that in this case data augmentation with
the label-preserving assumption substantially contributes to
performance drop.

No DA EDA W-Del W-Flip
ALBERT 61.40 58.33 59.39 61.07
DeBERTa 81.95 77.38 80.75 83.39

creases the performance by a few percentage points267

with both ALBERT and DeBERTa, entering a fail-268

ure mode. We identified two types of noise in the269

augmented samples: (1) grammatical errors that270

lead to the difficulty of understanding and (2) mod-271

ification of key information that alters the labels.272

We experimented with (1) replacing these noisy273

samples with the original ones and (2) correcting274

the labels of the noisy samples. 2 As Table 3 shows,275

both replacing and correcting noisy samples largely276

improve performance to prevent the failure mode.277

Moreover, correcting the labels brings large gains,278

indicating label flipping tends to alleviate the issue.279

To reiterate, these experiments involve subjec-280

tive factors and are merely meant to show the intu-281

ition of FlipDA, rather than proving its superiority.282

3.5 FlipDA: Automatic Label Flipping283

Observations in Sections 3.3 and 3.4 show that284

label-flipping could benefit few-shot NLU in both285

effectiveness and robustness. Reducing grammati-286

cal errors is also key to preventing failure modes.287

This motivates our development of FlipDA that au-288

tomatically generates and selects label-flipped data289

without label-preserving assumption.290

FlipDA consists of 4 steps as shown in Figure 1:291

1. Train a classifier (e.g., finetuning a pretrained292

model) without data augmentation.293

2. Generate label-preserved and label-flipped294

2For label correction, if a sample has severe grammatical
mistakes and is not understandable by human, we always
mark it as “not entailment”. This is related to an interesting
phenomenon that label flipping is usually asymmetric for NLU
tasks. We will discuss more of the phenomenon in Section
4.5.

augmented samples. 295

3. Use the classifier to select generated samples 296

with largest probabilities for each label. 297

4. Retrain the classifier with the original samples 298

and the additional augmented samples. 299

Formally, given a few-shot training set 300

{(xi, yi)}i where xi is text (possibly a set of text 301

pieces or a single piece) and yi ∈ Y is a label. We 302

finetune a pretrained model f to fit the conditional 303

probability for classification f(x, y) = p̂(y|x). In 304

the second step, we generate augmented samples 305

from the original ones. For each training sam- 306

ple xi, we generate a set of augmented samples 307

Si = {x̃i,1, x̃i,2, · · · }. In our implementation, we 308

first use a cloze pattern (Schick and Schutze, 2021) 309

to combine both x and y into a single sequence, 310

and then randomly mask a fixed percentage of the 311

input tokens. This is followed by employing a pre- 312

trained T5 model (Raffel et al., 2020) to fill the 313

blanks to form a new sample x′ (see Appendix 314

A.3 for more details). We find it beneficial to re- 315

move the sample if T5 does not predict y given x′. 316

Note that using T5 to generate augmented samples 317

does introduce additional knowledge and reduce 318

grammatical errors, but naively using T5 for aug- 319

mentation without label flipping and selection does 320

not work well (see ablation study in Section 4). 321

After generating the augmented samples, we use 322

the classifier f for scoring. Specifically, let Si be a 323

set of augmented samples generated from the orig- 324

inal sample (xi, yi). For each label y′ 6= yi, we 325

construct a set 326

Si,y′ = {x|x ∈ Si and y′ = argmax
y

p̂(y|x)} 327

which contains all augmented samples with y′ be- 328

ing highest-probability class. Given the set Si,y′ , 329

we select the sample with the highest predicted 330

probability 331

x′, y′ = argmax
x∈Si,y′ ,y=y′

p̂(y|x) 332

where x′ is a sample in the generated set, y′ is the 333

flipped label, and the estimated probability p̂(y′|x′) 334

scored by the model f is the largest in Si,y′ . Af- 335
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Table 4: Augmented example with wrong labels. The first is by EDA, and the second is by KNN. Black denotes original
examples, blue denotes augmented examples and red denotes key entity. The phenomenon of asymmetric label transformation
(e.g., flipping from “entailment” to “not entailment” is more common) is further studied in Section 4.5.

Premise: This case of rabies in western Newfoundland is the first case confirmed on the island since 1989.
Hypothesis: A case of rabies was confirmed. Entailment: True
Premise: this case of in western newfoundland is the first case confirmed on the island since 1989.
Hypothesis: a case of rabies was confirmed. Entailment: False
Premise: ... including a peasant rally near Santa Cruz and a visit to naval installations on Lake Titicaca ...
Hypothesis: Lake Titicaca has a naval installation. Entailment: True
Premise: ... includes a peasant rally near santa cruz and a visit to naval installations on lake titicaca ...
Hypothesis: lake havasu has a naval installation . Entailment: False

Pretrained Language Model (T5-large)

(H: Sales rise, P: Sales increase, Original label: Yes) Input data

Sales increase ? Yes . Sales rise

Sales go up

Prompting

Random

masking

MLM 

prediction

Augmented  

candidates

[MASK] increase ? Yes . Sales [MASK]

Pretrained Language Model (T5-large)

Sales increase ? No . Sales rise

rise decrease

Sales [MASK] ? No . Sales [MASK]

(H: Sales go up, P: Sales increase) Yes (H: Sales decrease, P: Sales rise) No

(a) Generating candidate augmented data with pattern cloze

(b) Data selection policy

Strategy 2: Filtered candidates are grouped by labels. 

For each group, the augmented candidate with highest 

probability is selected.

C
lassifier

……

Label-flipped augmented data

(H: Sales go up, P: Sales increase)

(H: Sales decrease, P: Sales rise)

Yes

No

(H: Sales rise, P: Sales go down) No

(H: Sales increase, P : Prices rise)

……

(H: Sales go up, P: Sales increase)

(H: Sales decrease, P: Sales rise)

new label: Yes

new label: No

(H: Sales rise, P: Sales go down) new label: No

(H: Sales increase, P : Prices rise) new label: YesNo

Optional Strategy 1: Augmented candidates that are 

predicted with a different label from the original ones could 

be dropped. 

Augmented Candidates Filtered Augmented Candidates

(H: Sales go up, P : Sales increase) new label: Yes

(H: Sales decrease, P: Sales rise) new label: No

Label-preserved augmented data

(Could be dropped)

Figure 1: An illustration of (a) our prompt-based augmentation algorithm for both preserved/flipped labeled data, and (b) our
data selection policy. Whether to use Strategy 1 depends on the relative power of the augmentation model and the classification
model. If the augmentation model is accurate enough, drop the candidates with inconsistent labels, and otherwise, keep it.

ter selecting the label-flipped example (x′, y′), we336

add (x′, y′) to the augmented training set. In other337

words, we only add an example into the training338

set if the model f considers the flipped label to be339

correct. We apply this procedure to each possible340

label y′ 6= yi. In case Si,y′ is empty, we do not add341

any examples to the training set. In practice, we342

find it beneficial to also add the example with the343

highest probability of label preserving, using the344

same procedure. After augmenting the training set,345

we retrain the classifier f to obtain the final model.346

4 Experiments347

4.1 Experimental Setup348

Baselines. We take seven augmentation methods349

as the baseline, including Synonym Replacement350

(SR) (Zhang et al., 2015), KNN Replacement351

(KNN) (Wang and Yang, 2015), Easy Data Aug-352

mentation (EDA) (Wei and Zou, 2019), Back353

Translation (BT) (Fadaee et al., 2017), Tiny- 354

BERT (T-BERT) (Jiao et al., 2019), T5-MLM, 355

and MixUP (Zhang et al., 2018a). For more de- 356

tails about baseline selection and implementation, 357

please refer to Appendix A.2. 358

Evaluation Protocol We evaluate augmentation 359

methods based on PET (Schick and Schutze, 2021). 360

Following PET, we take a set of pre-fixed hyper- 361

parameters (see Appendix A.1). Considering few- 362

shot learning is sensitive to different patterns and 363

random seeds (Dodge et al., 2020; Schick and 364

Schutze, 2021), we reported the average perfor- 365

mance over multiple patterns and 3 iterations. 366

We evaluate FlipDA on 8 tasks with 2 pre- 367

trained models. For effectiveness, we use exactly 368

the same metrics (i.e., accuracy, F1, and EM) as 369

PET (Schick and Schutze, 2021). For robustness, 370

we propose a new metric MaxDrop (MD), which 371

measures the maximum performance drop com- 372

pared to not using augmentation over multiple tasks 373
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Table 5: Performance of baseline methods and FlipDA based on PET and ALBERT-xxlarge-v2 (“baseline” denotes the original
PET with no data augmentation. Underline denotes values that outperform “baseline”. Bold denotes the best-performed ones of
the task). “Avg.” is the average of scores and “MD” (MaxDrop) measures the maximum performance drop over multiple tasks
for a given method. All results are the the average over multiple patterns and 3 iterations.

BoolQ CB COPA RTE WiC WSC MultiRC ReCoRD
Method Acc. Acc./F1 Acc. Acc. Acc. Acc. EM/F1a Acc./F1 Avg. MD
Baseline 72.47 82.74/74.84 88.33 61.40 51.27 77.03 33.04/74.64 86.19/86.75 71.20 -
SR 74.98 83.33/78.12 87.50 59.24 51.25 78.74 34.09/75.55 85.63/86.12 71.64 2.16
KNN 74.51 82.14/74.39 85.50 61.91 51.62 75.00 32.72/75.20 84.77/85.31 70.73 2.83
EDA 72.68 81.10/73.58 84.50 58.33 51.81 75.85 28.74/73.05 85.39/85.95 69.63 3.83
BT-10 74.59 82.44/77.72 83.00 55.93 50.77 76.82 32.96/74.69 85.34/85.88 70.08 5.47
BT-6 75.36 82.89/76.55 86.50 57.46 51.01 77.78 34.85/75.82 85.83/86.41 71.16 3.94
T-BERT 72.60 85.42/82.35 84.67 58.66 51.10 78.95 30.47/73.20 84.57/85.12 70.82 3.66
T5-MLM 73.86 83.48/75.01 87.33 62.27 51.08 79.17 33.79/74.06 85.15/85.69 71.54 1.05
MixUP 75.03 83.93/79.28 70.33 62.06 52.32 68.70 34.06/74.66 80.93/81.70 68.22 18.00
FlipDA 76.98 86.31/82.45 89.17 70.67 54.08 78.74 36.38/76.23 86.43/86.97 74.63 0.00

Table 6: Performance of baseline methods and FlipDA based on PET and DeBERTa-v2-xxlarge. “baseline” denotes the original
PET without data augmentation. Underlines denote values that outperform the “baseline”. ‘FlipDA cls” denotes the same
classifier as in FlipDA for filtering candidate augmented data. Bold denotes the best-performing ones of the task. Wave-lines
denote methods with FlipDA classifiers that outperform the original (without FlipDA classifier) version. “Avg.” is the average of
scores and “MD” (MaxDrop) measures the maximum performance drop over multiple tasks for a given method. All results are
the the average over multiple patterns and 3 iterations.

BoolQ CB COPA RTE WiC WSC MultiRC ReCoRD
Method Acc. Acc./F1 Acc. Acc. Acc. Acc. EM/F1a Acc./F1 Avg. MD
Baseline 78.30 85.42/79.31 87.67 81.95 58.74 80.13 40.40/78.14 90.24/90.77 77.36 -
SR 77.37 87.20/80.28 87.00 76.29 58.88 80.88 35.70/76.25 89.06/89.55 76.18 5.66
+FlipDA cls

::::
80.37 83.48/79.01 85.50

::::
82.79

::::
59.75 78.10

:::::::::
37.51/76.84

:::::::::
89.27/89.77

::::
76.81

:::
2.17

KNN 75.35 83.78/75.61 85.00 75.45 59.63 79.38 29.84/69.14 88.26/88.75 74.06 9.78
+FlipDA cls

::::
78.51

:::::::::
87.50/82.53

:::::
88.33

::::
82.79 58.66 76.39

:::::::::
38.86/77.29

:::::::::
90.31/90.78 77.29 3.74

EDA 74.42 83.63/76.23 85.83 77.38 59.28 78.74 37.02/77.05 88.11/88.60 75.12 4.57
+FlipDA cls

::::
76.20

:::::::::
87.35/82.35

:::::
88.17

::::
82.31

::::
59.94

::::
79.81

:::::::::
42.84/79.30

:::::::::
90.29/90.77 77.86

:::
2.10

BT-10 75.38 88.24/84.03 85.33 79.66 59.46 76.71 38.88/77.79 90.08/90.56 76.42 3.42
+FlipDA cls

::::
79.97 85.71/80.50

:::::
87.50 78.58

::::
60.08

::::
77.24

:::::::::
40.97/78.25

:::::::::
90.39/90.94

::::
77.09

:::
3.37

BT-6 76.78 86.46/82.56 84.00 81.47 58.69 75.11 40.53/79.01 90.20/90.73 76.35 5.02
+FlipDA cls

::::
79.63 84.67/77.94 77.00

::::
82.91

::::
59.58

::::
77.56 39.03/77.64

:::::::::
90.41/90.95 75.88 10.67

T-BERT 70.53 86.01/82.77 86.17 72.80 57.49 78.85 34.94/75.17 86.94/87.47 74.06 9.15
+FlipDA cls

::::
80.24 86.16/81.25 83.00

::::
82.19

::::
59.49

::::
79.59

:::::::::
40.78/78.64

:::::::::
90.65/91.17

::::
77.35

:::
4.67

T5-MLM 77.39 83.04/73.71 88.17 81.23 60.73 82.37 35.02/74.98 89.71/90.25 76.66 4.27
MixUP 63.41 71.13/60.83 72.00 68.59 57.70 68.38 39.24/76.88 60.12/60.93 64.33 29.98
FlipDA 81.80 88.24/87.94 90.83 83.75 65.12 78.85 44.18/80.00 91.02/91.56 80.23 1.28

for a given method. Given tasks t1,...,tn, a target374

method M , and a baseline method MB , MD is de-375

fined as MD=maxt∈{t1,...,tn}max(0, scoret,MB
−376

scoret,M ), where scoret,M ( scoret,MB
) denotes the377

performance of methodM (MB) on task t. Smaller378

values indicate better robustness w.r.t tasks.379

4.2 Main Results380

Results are presented in Table 5 and Table 6. We381

observe that FlipDA achieves the best performance382

among all data augmentation methods in both ef-383

fectiveness (Avg.) and robustness (MD) on both384

ALBERT-xxlarge-v2 and DeBERTa-v2-xxlarge.385

Specifically, FlipDA achieves an average perfor-386

mance of 74.63 on ALBERT-xxlarge-v2 and an387

average of 80.23 on DeBERTa-v2-xxlarge, both of388

which outperform baselines by around 3 points. It389

suggests FlipDA is effective in boosting the per-390

formance of few-shot tasks by augmenting high-391

quality data without causing too many side effects. 392

FlipDA shows improvements on all tasks ex- 393

cept WSC, while all the other methods only work 394

on a few tasks (denoted with underlines). Such 395

observations are consistent with the MaxDrop re- 396

sults, where FlipDA achieves the lowest MaxDrop 397

value of 0.0 on ALBERT-xxlarge-v2 and 1.28 on 398

DeBERTa-v2-xxlarge. This implies FlipDA is ro- 399

bust to different types of tasks, while other augmen- 400

tation methods could only be effective for partial 401

tasks and not sufficiently robust. 402

4.3 Ablation Study of FlipDA 403

Effectiveness of Pattern-based Data Cloze To 404

study different methods of obtaining candidate aug- 405

mented data, we feed candidates obtained by dif- 406

ferent methods into the same classifier (as FlipDA 407

uses). Table 6 shows the ablation results. 408

FlipDA outperforms all the other baseline meth- 409
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Table 7: Ablation study on label-flipped data v.s. label-
preserved data on DeBERTa-v2-xxlarge. Bold denotes the
best-performed results. Underlines denote the second-best
results. “Avg.” is the average of scores and “MD” (MaxDrop)
measures the maximum performance drop over multiple tasks
for a given method. All results are the the average over multi-
ple patterns and 3 iterations.

BoolQ RTE WiC MultiRC
Method Acc. Acc. Acc. EM/F1a
Baseline 78.30 81.95 58.74 40.40/78.14
Both 81.80 83.75 65.12 44.18/80.00
Flipped 80.91 83.51 62.34 42.70/79.37
Preserved 77.04 80.99 60.08 39.55/78.30

ods with a classifier (i.e., with “FlipDA cls”). Other410

methods of obtaining augmented data candidates411

cannot reach similar performance as FlipDA when412

combining with FlipDA classifier, which proves413

the effectiveness of our pattern-based data cloze414

strategy with T5. Reasons could be that T5-based415

augmentation produces samples with less grammat-416

ical errors. (will further discuss in Sec 4.7). More-417

over, T5-style blank filling could produce samples418

that are more compatible with label flipping.419

Effectiveness of FlipDA Classifier We then com-420

pare the performance of different methods with and421

without the FlipDA classifier. According to Table 6,422

most baseline methods with the FlipDA classifier423

outperform the original version in terms of both424

effectiveness (Avg.) and robustness (MD). This425

demonstrates that the FlipDA classifier which is426

capable of flipping labels and filtering data is effec-427

tive in augmenting high-quality data and improving428

few-shot NLU performance. The only exceptions429

is BT-6. The reason could be data augmented by430

back translation usually lack diversity, and using431

the FlipDA classifier further decreases diversity432

and hurts its performance.433

The improvement brought by the FlipDA classi-434

fier is more consistent on BoolQ, RTE, and Mul-435

tiRC. This may be because these tasks involve pre-436

dicting single token with two opposite choices, and437

thus label flipping might happen more often. Some438

of the other tasks such as COPA and WSC involve439

predicting multiple tokens, which makes generat-440

ing label-flipped data more difficult. This leads to441

less substantial improvement on these tasks.442

4.4 Analysis of Label-Flipping v.s.443

Label-Preservation444

A follow-up question is how label-flipped data and445

label-preserved data respectively contribute to the446

overall improvements. We run decoupling label-447

flipped data and label-preserved data. Results are448

in Table 7, where bold text represents the best-449

Table 8: Results of different label transformation on De-
BERTa. RTE: A/B denotes entail/not-entail, indicating
whether the given premise entails with the given hypothe-
sis. BoolQ: A/B denotes False/True, representing the answer
for the given yes-no questions. WiC: A/B refers to F/T, indi-
cating whether the target word shares the same meaning in
both given sentences. MultiRC: A/B denotes 0/1, representing
whether the given answer is correct for the given question.

BoolQ RTE WiC MultiRC
Method Acc. Acc. Acc. EM/F1a
A→A 78.89 76.17 55.66 36.57/76.77
A→B 78.34 80.87 57.99 40.94/78.93
B→B 74.55 75.57 57.30 39.73/78.03
B→A 80.33 76.90 56.20 40.10/78.41

Table 9: Results of different strategies for choosing aug-
mented data on DeBERTa (xxlarge). “Avg.” is the average of
scores and “MD” (MaxDrop) measures the maximum perfor-
mance drop over multiple tasks for a given method. All results
are the the average over multiple patterns and 3 iterations.

BoolQ RTE WiC MultiRC
Method Acc. Acc. Acc. EM/F1a
Baseline 78.30 81.95 58.74 40.40/78.14
Noisy Student 82.13 82.79 64.11 39.99/77.43
Default 81.80 83.75 65.12 44.18/80.00
Global TopP 81.22 81.11 64.19 42.56/79.16
Global TopK 80.71 81.35 65.13 41.14/78.52
Diverse TopK 81.99 84.59 63.85 42.64/79.13

performed methods. We conclude that augmenting 450

both label-flipped and label-preserved data leads 451

to the best average performance. Besides, val- 452

ues with underlines denote the second-best perfor- 453

mance, most of which are augmenting only label- 454

flipped data. Augmenting only label-preserved 455

data leads to the worst performance, even slightly 456

underperforming the non-augmentation baseline. 457

This demonstrates the high effectiveness of label- 458

flipping. This aligns well with our analysis in Sec- 459

tion 3.3. More results are in Appendix A.7 and 460

A.8.2. 461

4.5 Analysis of Label Transformation 462

Section 4.4 proves that label-flipped augmented 463

data are more effective in improving few-shot per- 464

formance than label-preserved ones. It is even more 465

intriguing to study which direction of label flipping 466

is able to benefit the few-shot performance to the 467

maximum extent. We experiment with 4 binary 468

classification tasks, i.e., RTE, BoolQ, WiC, and 469

MultiRC. Each task has 4 directions of label trans- 470

formation. We conduct experiments that augment 471

data in each of the four directions respectively and 472

compare their effectiveness. 473

Results on DeBERTa 3 are shown in Table 8. 474

We can see that some tasks are asymmetric, i.e., 475

transforming in one direction is more beneficial 476

3Results on ALBERT are in Appendix A.8.3.
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Table 10: Some augmented examples selected by our model (DeBERTa) in RTE. Black denotes original examples,
and blue denotes augmented examples.

Entailment
→

Not Entailment

Premise: The university server containing the information relating to Mason’s ID cards was illegally
entered by computer hackers.
Hypothesis: Non-authorized personnel illegally entered into computer networks.
Premise: The university server that holds the information about Mason ’s ID number was not compro-
mised by hackers
Hypothesis: security personnel illegally hack into computer systems

Not Entailment
→

Entailment

Premise: Vodafone’s share of net new subscribers in Japan has dwindled in recent months.
Hypothesis: There have been many new subscribers to Vodafone in Japan in the past few months.
Premise: Vodafone ’s number of net new subscribers to Japan has increased in recent months
Hypothesis: There have been net new subscribers to Vodafone in Japan in recent months

than the other, such as BoolQ, RTE, and WiC. We477

conjecture that it is because it is relatively easy for478

a model to generate samples with answers in some479

direction (from “yes” to “no” in BoolQ, from ’en-480

tailment’ to “not entailment” in RTE, and so on).481

While some tasks are symmetric, i.e., the differ-482

ence between the two directions is not significant,483

such as MultiRC. On all tasks, even though some484

direction is better than others, augmenting with485

only one direction will affect the label distribution.486

This will likely lead to a lower performance than487

the baseline. Augmenting with all directions is still488

necessary for the best performance.489

4.6 Analysis of Strategies for Augmented490

Data Selection491

We propose four plausible strategies for augmented492

data selection, and quantitatively evaluate them.493

1. Default Strategy. It is described in Section494

3.5, with no hyper-parameters.495

2. Global TopK. For each label transformation496

direction, all the candidate augmented data are497

gathered and sorted by their predicted proba-498

bilities, and the top-K ( or top-r%) samples499

with the highest probabilities are selected.500

3. Global TopP . Similar to Global TopK, but501

augmented data with predicted probabilities502

higher than a threshold P are selected.503

4. Diverse TopK. Similar to Global TopK ex-504

cept that a mechanism is used to balance be-505

tween the original samples. Concretely, we506

first select the top-1 augmented samples of507

each original sample (ranked by decreasing508

probabilities), and then select the top-2, top-3,509

etc, until K samples have been selected.510

Since FlipDA can be viewed as a self-training511

algorithm, we also add a self-training algorithm512

Noisy Student (Xie et al., 2020b) as another base-513

line. We treat the augmented data as unlabeled data514

and add noises with a dropout rate of 0.1.515

Table 9 shows the results of different strategies 516

on different tasks. More results are in Appendix 517

A.7 and Appendix A.8.4. For Global TopP , we set 518

the threshold P at 0.9 or 0.95, whichever is better. 519

For Global TopK and Diverse TopK, we select the 520

top 10% or 20% augmented examples, whichever 521

is better. Our strategies outperform Noisy Student. 522

Among our four data selection strategies, the De- 523

fault strategy and Diverse TopK perform the best. 524

Both methods emphasize diversity by using aug- 525

mented data from different samples. This demon- 526

strates the importance of data diversity and balance 527

for augmented data selection. 528

4.7 Case Study 529

We show two label-flipped augmented cases on the 530

RTE task by FlipDA in Table 10. Please refer to 531

Appendix A.9 for more augmented examples. 532

The first case adds “not” to the premise and there- 533

fore the label flips. The second case changes “dwin- 534

dles” to its antonym “increased”, and then the label 535

changes from “Not Entailment” to “Entailment”. 536

We can see that the way to change or keep the label 537

is rich and natural. Moreover, the generation qual- 538

ity is improved compared to cases generated by 539

EDA in Table 4, which also addresses the concerns 540

of generation quality raised in Section 3.4. 541

5 Conclusions 542

We propose to study few-shot NLU based on large- 543

scale pretrained models. Two key desiderata, i.e., 544

effectiveness and robustness, are identified. Based 545

on the empirical insight that label flipping improves 546

few-shot generalization, we propose FlipDA with 547

automatic label flipping and data selection. Ex- 548

periments demonstrate the superiority of FlipDA, 549

outperforming previous methods in terms of both 550

effectiveness and robustness. In the future, it will 551

be crucial to further increase the diversity and qual- 552

ity of augmented data for better performance. 553
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A Appendix 843

A.1 More Details about the PET Baseline 844

Implementation 845

All experiments are carried out in a Linux environ- 846

ment with a single V100 GPU (32G). In order to 847

run each experiment in a single GPU, we fix the 848

bottom 16 layers’ (bottom 1/3 layers) parameters 849

of DeBERTa due to the limitation of GPU memory. 850

On ALBERT, all the parameters and patterns are 851

kept the same as PET/iPET(Schick and Schutze, 852

2021). We find that the patterns on RTE give ex- 853

tremely poor results on DeBERTa, so we change 854

the patterns of RTE on DeBERTa for a fair evalua- 855

tion. Let’s denote the hypothesis h and the premise 856

p, the new pattern is “pQuestion:h?Answer:___.”, 857

while keeping the verbalizer the same as PET/iPET 858

(maps “entailment” to “yes”, “not entailment” to 859

“no”). On DeBERTa, we also reduce the learning 860

rate from 1e-5 to 5e-6 on RTE and WiC, which can 861

improve the baseline a lot. Other settings are kept 862

the same as in ALBERT. 863

We run each pattern and repetition with seed 42. 864

Different from PET/iPET, to keep the order of the 865

train data loader for different patterns, we will give 866

the train data loader a seed of 10, 20, and 30 for 867

three repetitions. 868

A.2 Details of Baseline Augmentation 869

Methods 870

We compare our FlipDA with various data augmen- 871

tation baseline methods. We do not choose some 872

generation-based methods (Xia et al., 2020; Yoo 873

et al., 2019; Li et al., 2019), because they usually 874

need a lot of training data, which is not suitable 875

for few-shot learning tasks. We also attempted to 876
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experiment with methods like LAMBADA (Anaby-877

Tavor et al., 2020) and GPT3Mix (Yoo et al., 2021).878

Because SuperGLUE tasks often involve depen-879

dency between sentence pairs, correlation between880

augmented sentences is necessary in order for the881

data to be meaningful. However, we were not able882

to generate well-formed, meaningful data from ei-883

ther LAMBADA or GPT3Mix. For example, in884

RTE, we want a premise and a shorter hypothesis885

that may be contained in the premise, but meth-886

ods like GPT3Mix usually keep on generating long887

paragraphs in an uncontrollable manner. Moreover,888

these methods rely on priming, which is not suit-889

able for datasets with long sentences.890

Synonym Replacement (SR) (Zhang et al.,891

2015) augments data by randomly choosing r%892

words from original texts (stop words excluded),893

and replacing them with synonyms from WordNet4.894

Our implementation is based on parts of the code895

of EDA 5. We fix the word replacement ratio to 0.1.896

We augment 10 times for each sample and then mix897

them with original samples copied for 10 times.898

KNN Replacement (KNN) (Wang and Yang,899

2015) is similar with Synonym Replacement but900

differs in replacing randomly-chosen-words with901

one of the nearest words derived from GloVe6. Our902

implementation is based on parts of the code of903

TinyBert 7. We fix the word replacement ratio to904

0.1, and we replace each word with one of the clos-905

est 15 words (K=15) derived from GloVe. We use906

the word embedding version with 300 dimensions907

and 6 billion words. We augment 10 times for each908

sample and then mix them with original samples909

copied for 10 times.910

Easy Data Augmentation (EDA) (Wei and Zou,911

2019) mixes outputs from four data augmentation912

methods, including synonym replacement, random913

insertion, random swap, and random deletion. Our914

implementation is based on the code of EDA 5,915

which removes all punctuations. Here we imple-916

ment a new version with punctuation marks since917

we find them important for hard tasks. All hyper-918

parameters are kept default, i.e., the four augmen-919

tation methods are all with a ratio of 0.1, and each920

example is augmented 9 times. Finally, we will921

mix the augmented data with the original data as is922

done in (Wei and Zou, 2019).923

4https://wordnet.princeton.edu/
5http://github.com/jasonwei20/eda_nlp
6https://nlp.stanford.edu/projects/glove/
7https://github.com/huawei-noah/Pretrained-Language-

Model/tree/master/TinyBERT

Back Translation (BT) (Fadaee et al., 2017; 924

Sennrich et al., 2016) translates each text into an- 925

other language, and then back translates into the 926

original language. We implemented two versions 927

of BT with google translator. The first one is BT- 928

10, in which we get the augmented data with 9 929

languages (Spanish, French, German, Afrikaans, 930

Russian, Czech, Estonian, Haitian Creole, and Ben- 931

gali) and then mix it with the original sentences. 932

The second one is BT-6, in which we get the aug- 933

mented data with 5 intermediate languages (Span- 934

ish, French, German, Russian, and Haitian Creole) 935

and then mix it with the original sentences. 936

TinyBERT (T-BERT) (Jiao et al., 2019) gener- 937

ates augmented data by randomly (with probabil- 938

ity p) replacing each token with either word pre- 939

dicted by a Bert-base-cased model (for single-piece 940

word) or words derived by GloVe (for multiple- 941

piece word). Our implementation is based on the 942

code of TinyBert 7. If the sentence length is above 943

512, we will cut off the sentence. All parameters 944

are kept default. Finally, we mix the augmented 945

data with original examples in equal quantities. 946

T5-MLM. We randomly (with probability p) 947

masks some tokens, and then fills in the blanks with 948

a large pretrained model. We use pattern-based data 949

cloze to further improve its performance. This is 950

the same as FlipDA with only label-preserved data 951

and without data selection. You can refer to Ap- 952

pendix A.3 for more details. We augment with a 953

mask ratio of 0.1 because we find a smaller mask 954

ratio will be better without classification. We aug- 955

ment 10 times for each sample and then mix them 956

with original samples copied for 10 times. 957

MixUP (Zhang et al., 2018a; Guo et al., 2020) 958

augments data in the feature space, which linearly 959

interpolates between two source sentence embed- 960

dings, and correspondingly linearly interpolates 961

the two target embeddings. For each batch, we 962

first sample λ = Beta(0.5, 0.5), just as the au- 963

thor (Zhang et al., 2018a) recommended. Then, we 964

do linear interpolation on the embedding space of 965

two sentences, and make it the input of the model. 966

Finally, we calculate the loss as the interpolation 967

between its outputs and the two targets. 968

A.3 Details of Pattern-based Data Cloze 969

Strategy 970

Because the target and the format of tasks in 971

FewGLUE vary a lot, it is necessary for us to 972

adjust the details for data augmentation for each 973
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dataset. We will always keep the same framework:974

(1) firstly, mask the sentence, (2) secondly, gener-975

ate the new label (preserve or flip the label), and976

(3) finally fill in the blanks by T5. We also aug-977

ment 10 times for each example as the candidates.978

(Augmenting with more times might help, but we979

only augment 10 times for the sake of time, and we980

have shown its effectiveness.)981

The T5 model (Raffel et al., 2020) is not perfect,982

especially when it is not finetuned. During our983

experiments, we find it a good cloze model (good984

at filling in the blanks with information before or985

after the blanks) but not a good generation model986

(not good at generating meaning that is not in the987

original sentence). As a result, in some tasks whose988

sentence is short, we induce the T5 model to get989

some new information by adding extra sentences990

from other examples in the training data set.991

BoolQ. Each example contains two sentences, a992

question q and a passage p. We need to tell whether993

the answer of the question is True. Let’s denote the994

masked question masked_q and the masked pas-995

sage masked_p. If we want to get a True answer,996

we will feed “masked_q?Yes,masked_p" into the997

model. Otherwise, we will feed “masked_q?No,998

masked_q" into the model. The T5 model will fill999

the blanks in the masked sentences.1000

CB. Each example contains two sentences, a1001

premise p and a hypothesis h. We need to tell the1002

relationship between the premise and the hypoth-1003

esis, entailment, contradiction, or neutral. Let’s1004

denote the masked premise masked_p and the1005

masked hypothesis masked_h. We will feed1006

““masked_h” ?___. “masked_p”" into the model.1007

Similar to PET, the verbalizer maps “entailment”1008

to “Yes”, “contradiction” to “No” and “neutral” to1009

“Maybe”. The T5 model will fill the blanks in the1010

masked sentences.1011

COPA. Each example contains a premise p and1012

two choices c1, c2. We need to tell which one is1013

the cause or effect of the premise. The sentences in1014

the COPA dataset is much shorter than the others,1015

and the relationship between the three sentences1016

is much more difficult to be represented in one1017

sentence. So we only masked the premise p into1018

masked_p. When we flip the label, we want to1019

make the opposite choice the label, and we also1020

change the question with probability 0.5. If the1021

new question is “effect”, we will feed “masked_p1022

so that cnew_la" into the model. Otherwise, we will1023

feed “masked_p, because cnew_la" into the model.1024

Here new_la denotes the new label. 1025

RTE. Each example contains two sentences, a 1026

premise p and a hypothesis h. Our augmentation 1027

policy is same as BoolQ. Let’s denote the masked 1028

hypothesis masked_h and the masked premise 1029

masked_p. If we want to get a True answer, we 1030

will feed “masked_h?Yes, masked_p" into the 1031

model. Otherwise, we will feed “masked_h?No, 1032

masked_q" into the model. The T5 model will fill 1033

the blanks in the masked sentences. 1034

WiC. Each example contains two sentences s1 1035

and s2, and we need to tell whether the word “w” 1036

in them has the same meaning. If the new label is 1037

“same”, we will feed “masked_s1. masked_s2. 1038

Word “ w ” means the same in the two sentences” 1039

into the model. Sadly, we find if we concatenate 1040

them together with a large mask ratio, after filling 1041

in the masks they will be similar. This is because 1042

the two sentences are too short and T5 is not “imag- 1043

inative” enough. To solve this problem, if the new 1044

label is “different”, we will augment each sentence 1045

separately. We also add one sentence sampled from 1046

the training set to urge it to generate a more diverse 1047

representation. We still do not find a perfect way 1048

to augment because if a word does not have several 1049

meanings, it will be nearly impossible to flip its 1050

label from “same” to “different”. We are happy to 1051

see that our method can still benefit the model a lot 1052

even though it is far from perfect. 1053

WSC. In our experiments, we find it hard for 1054

T5 to generate new entities. In this paper, we do 1055

not flip its label, but we do believe that there ex- 1056

ists an automatic way to generate good augmented 1057

examples with different labels. 1058

MultiRC. Each example contains a passage p, 1059

a question q, and several candidate answers a. 1060

For each answer, it will have a label la. Our 1061

method is somewhat limited in this task, because 1062

it has been “fliped” when it is constructed. For 1063

the < p, q, a > with label True and < p, q, a′ > 1064

pair with label False, they have satisfied our key 1065

idea: similar but different label examples. Even 1066

though, we still try to flip it more. Let’s denote 1067

the masked question masked_q, the masked pas- 1068

sage masked_p, and masked answer masked_a. 1069

We fill feed “masked_q? Is the correct answer 1070

"masked_a"?Yes/No. masked_p" into the model. 1071

ReCoRD Each example contains a passage p, 1072

a question q, several candidate entities es, and 1073

several possible answers as. We fill first replace 1074

the “@placeholder” in the question q with new an- 1075
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swer a′, which is randomly sampled from es in1076

the “flip” version and otherwise is sampled from1077

as. Let’s denote the masked question masked_q1078

and the masked passage masked_p. We will feed1079

“masked_q. masked_p" into the model. Finally,1080

we will substitute the new answer a′ in the gener-1081

ated question with “@placeholder”.1082

A.4 Details of Pattern-based Filling-in1083

Strategy1084

We conclude three essential factors for the filling-1085

in strategy: the mask ratio, the decoding strategy,1086

and the fill-in strategy. We divide the mask ra-1087

tio into three levels: 0.3 (small), 0.5 (medium),1088

and 0.8 (large). The decoding strategy consists of1089

greedy search, random sampling (sample from top1090

15 words), and beam search (with a beam size of1091

10). The fill-in strategy consists of filling in the1092

blanks at a time or filling in k blanks at a time iter-1093

atively. Our experiments show that the mask ratio1094

is the key factor.1095

A.5 Hyper-parameter Search Space of1096

FlipDA1097

We do not search all the possible parameters to save1098

time and avoid overfitting. We are not surprised if1099

there are some better results with a larger search1100

space. Our search space is listed in Table 11.1101

We did preliminary experiments and found some1102

guiding principles. We find that datasets with larger1103

sentence lengths should have a smaller mask ratio,1104

and respectively, datasets with smaller sentence1105

lengths should have a larger mask ratio. (The WSC1106

dataset should be considered separately because1107

we do not flip its label.) We also find that if the1108

sentence length is too large, such as MultiRC or1109

ReCoRD, it is impossible to fill in all the blanks at1110

a time, because the number of blanks may exceed1111

100. To solve this problem, we fill in 10 random1112

blanks at a time, iteratively until all masks are filled.1113

What’s more, the COPA dataset is too short, so we1114

also try to fill in 1 random blank at a time, itera-1115

tively until all masks are filled. We do not figure out1116

the relationship between the characteristic of the1117

datasets and the decoding strategies, so we search1118

the three decoding strategies for all datasets. For1119

most of the datasets, greedy or sample is better1120

than beam search. For each dataset, we also try two1121

modes: allowing the classifier to change the label1122

or not. (Augmented candidates that are predicted1123

with a different label from the original ones could1124

be dropped.) Above all, for most of the datasets,1125

we only search 6 hyper-parameter combinations, 1126

we think this will not lead to severe overfitting, and 1127

our algorithm is stable. 1128

A.6 Additional Discussion 1129

Limitations for the WSC Task As is illustrated 1130

in the body part, label-flipped augmentation has 1131

inspiring advantages for few-shot learning perfor- 1132

mance, but it also has limitations. While FlipDA 1133

significantly outperforms existing baseline augmen- 1134

tation methods on most tasks, we also notice that its 1135

effect on the WSC task is a little behind some of the 1136

baselines. This is because, for the WSC task that 1137

disambiguates multi-token word senses, it is hard 1138

for T5 to generate its label-flipped cases. The T5 1139

model is not good at making up similar entities that 1140

are not in the original sentence, and thus unable to 1141

produce desired candidate examples. We leave a 1142

better pattern-based cloze algorithm for such tasks 1143

to the future work. We anticipate that entity-centric 1144

pretrained models might alleviate this issue (Rosset 1145

et al., 2020). 1146

Which Few-shot Setting to Use? Until now, it 1147

still remains an open problem of how to evalu- 1148

ate the performance of few-shot learning. Cur- 1149

rently, there are mainly two mainstream few-shot 1150

settings. The first is to use a set of pre-fixed hyper- 1151

parameters that are determined according to prac- 1152

tical consideration. The second is to construct a 1153

small dev set (e.g., a 32-sample-dev set), and then 1154

perform grid search and use the small dev set for 1155

hyper-parameters and model selection. Our experi- 1156

ments are based on the former setting. We respec- 1157

tively performed preliminary experiments using 1158

both settings and found that the first setting tends 1159

to be relatively more stable. We believe how to 1160

evaluate few-shot learning systems is an important 1161

research direction for future work, too. 1162

A.7 More Results on DeBERTa 1163

More Results on DeBERTa are in Table 12 and 1164

Table 13. 1165

A.8 More Results on ALBERT 1166

In the body part, we only report the ablation results 1167

on DeBERTa because the model is larger and seems 1168

more stable in our experiments. In this section, we 1169

report ablation results on ALBERT. Most of the 1170

conclusions are the same, but some details vary. We 1171

conjecture that this might be due to the instability of 1172

the training process, the quality of the classification 1173

model, or some other unknown issues. 1174
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Table 11: Hyper-parameter search space of our algorithm.
Dataset Mask Ratio Fill-in Strategy Decoding Strategy
BoolQ 0.3/0.5 default greedy/sample/beam search
CB 0.5 default greedy/sample/beam search
COPA 0.8 default/rand_iter_1 greedy/sample/beam search
RTE 0.5 default greedy/sample/beam search
WiC 0.8 default greedy/sample/beam search
WSC 0.3 default greedy/sample/beam search
MultiRC 0.3/0.5 rand_iter_10 greedy/sample/beam search
ReCoRD 0.3 rand_iter_10 greedy/sample/beam search

Table 12: Ablation study on label-flipped data v.s. label-
preserved data on DeBERTa-v2-xxlarge. Bold denotes the
best-performed results. Underlines denote the second-best
results. “Avg.” is the average of scores and “MD” (MaxDrop)
measures the maximum performance drop over multiple tasks
for a given method. All results are the the average over multi-
ple patterns and 3 iterations.

CB COPA
Method Acc./F1 Acc.
Baseline 85.42/79.31 87.67
FlipDA (both) 88.24/87.94 90.83
Label-Flipped 84.52/80.99 89.67
Label-Preserved 83.48/78.68 87.67

Table 13: Results of different strategies for choosing
augmented data on DeBERTa-v2-xxlarge. “Avg.” is
the average of scores and “MD” (MaxDrop) measures
the maximum performance drop over multiple tasks for
a given method. All results are the the average over
multiple patterns and 3 iterations.

CB COPA
Method Acc./F1 Acc.
Baseline 85.42/79.31 87.67
Noisy Student 86.31/82.60 84.33
Default Strategy 88.24/87.94 90.83
Global TopP 88.10/85.59 89.33
Global TopK 88.54/85.69 87.83
Diverse TopK 89.73/88.92 90.0

A.8.1 Effectiveness of Pattern-based Data1175

Cloze and FlipDA Classifier1176

From Table 14 we can see that FlipDA is still better1177

than other baselines with a classifier, which means1178

our pattern-based data cloze method will contribute1179

to higher quality data with kept/flipped data. From1180

the comparison between Table6 and Table 14, we1181

can see that the classification is much more useful1182

for DeBERTa than ALBERT. With DeBERTa, al-1183

most all augmentation methods will improve their1184

performance with the classifier. With ALBERT,1185

only some augmentation methods will improve its1186

performance on some tasks. This is normal because1187

a better classifier will lead to better classification1188

results, i.e., better-selected augmentation data.1189

A.8.2 Analysis of Label-Flipping v.s.1190

Label-Preservation1191

From Table 15, we can see that FlipDA is still1192

the best, i.e., augmentation with both directions1193

is better than with only one direction. Augmen- 1194

tation with only label-flipped data is better than 1195

with only label-preserved data in most tasks. This 1196

phenomenon is more obvious with DeBERTa than 1197

ALBERT, which may be because the classifier qual- 1198

ity of DeBERTa is better than ALBERT. What’s 1199

more, DeBERTa has learned better representations 1200

of similar phrases, so the label-kept examples will 1201

contribute less when we experiment with DeBERTa. 1202

1203

A.8.3 Analysis of Label Transformation 1204

We took a closer at the effect of label transforma- 1205

tion direction in Table 16. On BoolQ and RTE, 1206

the two flipped directions are better than the kept 1207

directions. On all datasets, adding data with more 1208

directions is better than with only one direction, 1209

even some direction seems extremely bad. This is 1210

the same as what we observed with DeBERTa. 1211

A.8.4 Analysis of Strategies for Augmented 1212

Data Selection 1213

From Table 17, we can see that Noisy Student per- 1214

forms well with the ALBERT model. It achieves 1215

good results on almost all the datasets except 1216

COPA. While with DeBERTa (see Table 9), the 1217

Noisy Student is somewhat weaker. This may be 1218

because the DeBERTa model fixes the bottom 1/3 1219

layers’ parameters to save Video Memory, and thus 1220

is not suitable for the perturbation on the embed- 1221

ding space. We have chosen the spatial dropout to 1222

alleviate the problem, and it will be much worser 1223

with other kinds of dropout. We think a better 1224

self-training policy could further improve the per- 1225

formance of data augmentation. All other observa- 1226

tions of the effectiveness of different strategies are 1227

somewhat similar to that with DeBERTa. 1228

A.9 Case Study 1229

We have provided some flipped augmented exam- 1230

ples on RTE in Table 10. Here we provide two kept 1231

cases on RTE and more augmented examples on 1232

other tasks, to be specific, BoolQ, WiC, and COPA. 1233
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Table 14: Ablation study on methods of obtaining candidate augmented data. The ablation study is based on
ALBERT-xxlarge-v2. “cls” denotes the same classifier as FlipDA for filtering candidate augmented data. Bold de-
notes the best-performed ones. Wave-lines denotes those that outperforms the original (without FlipDA classifier)
version.

BoolQ CB COPA RTE WiC MultiRC
Method Acc. Acc./F1 Acc. Acc. Acc. EM/F1a Avg. MD
Baseline 72.47 82.74/74.84 88.33 61.40 51.27 33.04/74.64 67.68 -
SR + FlipDA cls 74.32

:::::::::
84.52/79.32 82.17

::::
63.93 49.56 34.53/74.52 67.74 6.16

KNN + FlipDA cls 71.88
:::::::::
84.52/76.83 83.17

::::
67.39

::::
53.10 31.62/73.92

::::
68.16 5.16

EDA + FlipDA cls
::::
74.16

:::::::::
84.52/78.92 83.00

::::
60.41 50.49

:::::::::
34.22/75.52

::::
67.44 5.33

BT-10 + FlipDA cls 73.37 83.04/74.19
:::::
85.00

::::
63.12

::::
51.36

:::::::::
34.60/74.69 67.69 3.33

BT-6 + FlipDA cls 73.26 80.06/68.59
:::::
86.83

::::
61.46

::::
51.72 34.49/76.05 67.14

:::
4.46

T-BERT + FlipDA cls
::::
74.44 80.80/73.51 84.33

::::
65.40 50.19

:::::::::
33.75/74.31

::::
67.59 4.00

FlipDA 76.98 86.31/82.45 89.17 70.67 54.08 36.38/76.23 71.93 0.00

Table 15: Ablation study on label-flipped data v.s. label-preserved data on ALBERT-xxlarge-v2. Bold denotes
the best-performed results. Underlines denotes the second-best results. “Avg.” is the average of scores and “MD”
(MaxDrop) measures the maximum performance drop over multiple tasks for a given method. All results are the
the average over multiple patterns and 3 iterations.

BoolQ CB COPA RTE WiC MultiRC
Method Acc. Acc./F1 Acc. Acc. Acc. EM/F1a Avg. MD
Baseline 72.47 82.74/74.84 88.33 61.40 51.27 33.04/74.64 67.68 -
FlipDA(both) 76.98 86.31/82.45 89.17 70.67 54.08 36.38/76.23 71.93 0.00
Label-Flipped 75.09 81.40/73.31 86.33 67.78 53.81 32.47/74.67 68.99 2.00
Label-Preserved 73.95 81.25/74.95 87.17 64.98 51.03 34.07/74.81 68.27 1.16

Table 16: Results of different label transformation on
ALBERT-xxlarge-v2. RTE: A/B denotes entail/not-
entail, indicating whether the given premise entails
with the given hypothesis. BoolQ: A/B denotes
False/True, representing the answer for the given yes-
no questions. WiC: A/B refers to F/T, indicating
whether the target word shares the same meaning in
both given sentences.

BoolQ RTE WiC
Method Acc. Acc. Acc.
baseline 72.47 61.40 51.27
A→A 71.11 63.09 51.15
A→B 73.56 66.71 51.29
B→B 71.63 59.57 52.61
B→A 74.36 65.34 49.29

The four datasets cover tasks with different targets1234

and sentence lengths.1235

RTE Two kept cases are in Table 18. In the1236

first case, we can see that the T5-model changes1237

the name of the tropical storm from “Debby” to1238

“Maria”, and it also changes the “tropical storm” to1239

its hypernym “hurricane”, and all these changes1240

contribute to a different expression without affect-1241

ing its label. The second case changes the future1242

tense to the simple past tense, and it also changes1243

“April” to “March” and “May” to “April” corre-1244

spondingly. We can see that the way to change or1245

keep the label is rich and natural.1246

WiC is a task to tell whether the word w in the1247

two sentences has the same meaning. From Table1248

19, we can see that the two augmented sentences1249

with direction to “True” is similar. This is deter-1250

mined by the characteristic of T5. In the second 1251

case, “feel” in “feel the gravity” means “perceive 1252

by a physical sensation”, but in “felt so insignif- 1253

icant” means “have a feeling or perception about 1254

oneself in reaction to someone’s behavior or atti- 1255

tude”. The last example violates common sense, 1256

but it still can preserve the label and provide diver- 1257

sity, and thus boosting model performance. 1258

BoolQ is a QA task that provides a passage and 1259

a question. The author needs to tell whether the 1260

answer to the question is True or False according 1261

to the given passage. We provide augmented exam- 1262

ples of four directions. The augmented examples 1263

are in Table 20. The first case changes “green onyx” 1264

to “Brazilian onyx” without changing its label. The 1265

second case changes the passage to make the ques- 1266

tion True, even though it violates common sense. 1267

The third case copies some parts of the passage into 1268

the question, and then the label flips. The last case 1269

changes the keywords of the example but without 1270

changing its label. 1271

COPA is a task that needs to choose the effect 1272

or cause of the premise from choice1 and choice2. 1273

PET treats it as a multi-token cloze question, i.e., 1274

predict the whole sentence of choice1 or choice2. 1275

We only change the premise or the question to flip 1276

or keep the label. The augmented examples are 1277

in Table 21. As described in Appendix A.3, there 1278

will be three types: keep the label, flip the label 1279

but keep the question, and flip the label and the 1280
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Table 17: Results of different strategies for choosing augmented data on ALBERT-xxlarge-v2. “Avg.” is the
average of scores and “MD” (MaxDrop) measures the maximum performance drop over multiple tasks for a given
method. All results are the the average over multiple patterns and 3 iterations.

BoolQ CB COPA RTE WiC MultiRC
Method Acc. Acc./F1 Acc. Acc. Acc. EM/F1a Avg. MD
Baseline 72.47 82.74/74.84 88.33 61.40 51.27 33.04/74.64 67.68 -
Noisy Student 78.01 88.39/83.32 82.67 69.52 54.62 37.02/76.53 71.24 5.66
Default Strategy 76.98 86.31/82.45 89.17 70.67 54.08 36.38/76.23 71.93 0.00
Global TopP 77.73 88.54/84.88 87.50 67.30 54.30 35.47/76.47 71.59 0.83
Global TopK 76.86 87.50/84.42 85.33 69.43 51.97 36.48/75.36 70.91 3.00
Diverse TopK 77.27 88.39/83.18 88.67 70.61 55.28 32.40/73.64 71.77 0.82

Table 18: Some augmented examples selected by our model (DeBERTa) in RTE. Black denotes original examples,
and blue denotes augmented examples.

Entailment
→

Entailment

Premise: Tropical Storm Debby is blamed for several deaths across the Caribbean.
Hypothesis: A tropical storm has caused loss of life.

Premise: Tropical Storm Maria is blamed for the deaths across the Caribbean
Hypothesis: A hurricane has caused loss of life

Not Entailment
→

Not Entailment

Premise: The 10-men team is expected to arrive at the foot of the mountain in the end of April and
began their journey to the 8,586-meter peak in early May.
Hypothesis: Kanchenjunga is 8586 meters high.

Premise: The 10-men team arrived at the foot of the mountain at the end of March and reached their
goal of reaching the 8,586-meter peak in early April
Hypothesis: Kanchenjunga is 8586 meters

question at the same time. The first case changes1281

“ the archeologist” to “she” and “site” to “earth”,1282

both of them keep the meaning of the sentence. The1283

last three cases change almost the whole sentence,1284

but they are in line with human knowledge.1285
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Table 19: Some augmented examples selected by our model (DeBERTa) in WiC. Black denotes original examples,
and blue denotes augmented examples. Underlines denotes the word to be determined.

True
→

True

Context 1: We vaccinate against scarlet fever.
Context 2: The nurse vaccinated the children in the school.

Context 1: We vaccinate the children against fever and malaria
Context 2: The nurse vaccinated the children against fever and malaria

True
→

False

Context 1: You make me feel naked.
Context 2: She felt small and insignificant.

Context 1: You can feel the gravity
Context 2: She felt so insignificant and useless

False
→

True

Context 1: Can you back up your claims?
Context 2: I can’t back this plan.

Context 1: Can you please back to your home
Context 2: I can’t back from your house

False
→

False

Context 1: Turn and face your partner now.
Context 2: The bunkers faced north and east, toward Germany.

Context 1: Get up and face it now
Context 2: The ship faced north and south from the coast
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Table 20: Some augmented examples selected by our model (DeBERTa) in BoolQ. Black denotes original exam-
ples, and blue denotes augmented examples.

True
→

True

Passage: Onyx – Brazilian green onyx was often used as plinths for art deco sculp-
tures created in the 1920s and 1930s. The German sculptor Ferdinand Preiss used
Brazilian green onyx for the base on the majority of his chryselephantine sculptures.
Green onyx was also used for trays and pin dishes – produced mainly in Austria –
often with small bronze animals or figures attached.
Question: is there such a thing as green onyx

Passage: Onyx is Brazilian Onyx which was often used as the base for art glass
sculptures created in the 1920s and 1930s . The German sculptor Ferdinand von
Goethe used onyx as the base on the bases of his sculptures . It was also used for
making pin plates and pin dishes and many artists produced on-oniex sculptures with
various animals and figures attached
Question: Is there such a stone as Brazilian onyx

True
→

False

Passage: Atomic number – The atomic number or proton number (symbol Z) of a
chemical element is the number of protons found in the nucleus of an atom. It is
identical to the charge number of the nucleus. The atomic number uniquely identifies
a chemical element. In an uncharged atom, the atomic number is also equal to the
number of electrons.
Question: is the atomic number equal to the number of protons

Passage: Atomic number is not equal to atomic number or protons. Atomic number
( A, B, C, Z ) of a chemical element is the number of electrons in the nucleus of an
atom . The nucleus is composed by the electrons that are present in the nucleus .
The numeric value uniquely identifies an element . In case of uncharged atom , the
charge number is equal to the number of electrons
Question: number of the atomic element equal to the number or protons

False
→

True

Passage: Peace bond – The use of peace bonds is rather uncommon in the U.S.
justice system, but a deferred prosecution has a similar effect. Since there is no
conviction or admission of any guilt, signing a peace bond in Canada does not usually
result in U.S. inadmissibility under INA § 212 (a) (2).
Question: is a peace bond an admission of guilt

Passage: Peace bond is an important use of money that is widely used in the U.S.
justice system , and deferred prosecution has similar effect . Since there is no promise
or admission of guilt in any case , signing a peace bond does not usually result in
any conviction under U § 2 ( a ) ( b )
“question”: Is a peace bond part of the criminal justice system

False
→

False

Passage: The Princess and the Goblin (film) – The Princess and the Goblin (Hun-
garian: A hercegnő és a kobold) is a 1991 British-Hungarian-American animated
musical fantasy film directed by József Gémes and written by Robin Lyons, an
adaptation of George MacDonald’s 1872 novel of the same name.
Question: is the princess and the goblin a disney movie

Passage: The Goblet and the Goblin ( film ) – The Hound and the Goblin ( Hungarian
: A hoz és a kobold ) is a 1996 British-Hungarian-American film directed by Peter
Gémes and produced by John Lyons , an adaptation of George MacDonald ’s novel
of the same name
Question: Is the goblin and the hobbit disney movie
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Table 21: Some augmented examples selected by our model (DeBERTa) in COPA. In this task, we only change the
premise or question to flip/keep the label. Black denotes original examples, and blue denotes augmented examples.

Keep-label Keep-question

Alternative 1: She excavated ancient artifacts.
Alternative 2: She read about the site’s history.

Premise: The archeologist dug up the site.
Question: “effect” Correct Alternative: 0

Premise: She dug up the earth.
Question: Effect Correct Alternative: 0

Keep-question

Alternative 1: She began going to church.
Alternative 2: She began travelling abroad.

Premise: The woman had a religious awakening.
Question: Effect Correct Alternative: 0

Premise: She had a lot of money.
Question: Effect Correct Alternative: 1

Flip-label

Flip-question

(Effect
→

Cause)

Alternative 1: Her friend sent her a greeting card.
Alternative 2: Her friend cut off contact with her.

Premise: The woman betrayed her friend.
Question: Effect Correct Alternative: 1

Premise: A woman is happy.
Question: Cause Correct Alternative: 0

Flip-question

(Cause
→

Effect)

Alternative 1: The cafe reopened in a new location.
Alternative 2: They wanted to catch up with each other.

Premise: The women met for coffee.
Question: Cause Correct Alternative: 1

Premise: The cafe closed.
Question: Effect Correct Alternative: 0
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