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Fig. 1. My past and ongoing research advances robot sensing, planning, and adaptability in medical environments.

I. INTRODUCTION

Advancements in robotics have made precise autonomy in
medical procedures possible. Autonomy in robotic medical
operations is crucial for delivering treatments to underserved
or hazardous areas. My research aims to develop efficient,
safe, and generalizable algorithms that enable robots to inde-
pendently perform safety-critical and time-sensitive medical
tasks, thereby democratizing access to quality treatments.

Automating medical tasks such as robotic surgery or human
extraction presents several challenges: (1) The robots must
be resilient despite environmental uncertainties to achieve the
precision and efficiency required for timely interventions. (2)
Actions performed on human bodies must be anatomically and
biomechanically safe. (3) Robots’ strategies should operate
across diverse environments, anatomies, and morphologies.

Given these challenges, my research advances robot sensing,
planning, and adaptability to achieve autonomous surgical
and human-body manipulation (Fig. 1). We developed visual
tracking algorithms that enable accurate localization of sur-
gical tools and tissues [1, 2, 3, 4] (sense). We designed safe
manipulation methods to ensure human biomechanical safety
and minimize surgical visual uncertainty throughout robot
operations [5, 6] (plan). We introduced reinforcement learning
(RL) frameworks that leverage arbitrary external policies and
accumulate knowledge over time, resulting in quick adaptation
to new environments and tasks [7, 8, 9] (adapt). Our sensing,
planning, and adapting algorithms allow robots to automate
over ten medical tasks in real and unstructured environments.

My future research will expand upon the foundation built
by our previous studies and explore the following directions:

1) (Sensing) Situation and Environment Understanding

from Multimodal Medical Data: I aim to leverage
multimodal data streams, such as videos, medical im-
ages (e.g., CT scans and MRI), haptic feedback, and
biosensor data, to make reliable decisions in operations.

2) (Planning) Advancing Medical Proficiency and Min-
imizing Risk in Human Manipulation: I intend to in-
troduce planning algorithms that incorporate systematic
medical knowledge and human anatomical and biome-
chanical models. These algorithms will allow for high-
quality procedures and avoid harm to human bodies.

3) (Adapting) Efficient, Generalizable, and Lifelong
Medical-Skill Development: I seek to enhance the
generalizability and incrementality of medical agents so
that they (1) operate across different conditions and (2)
accumulate unstructured knowledge over time to quickly
adapt to new environments, tasks, and human bodies.

II. PAST AND ONGOING RESEARCH

Sensing: Uncertainty-, Feasibility-, and Anatomy-Aware
Visual Tracking in Surgical Environments. Making safe
and effective movements in surgical environments requires
precisely localizing critical components, such as surgical tools
and various tissues. Prior work employed markers or deep
learning models to detect surgical instruments in static im-
ages [10, 11, 12, 13, 14, 15] or tracked their motions over
time [16, 17, 18, 19, 20]. Another line of research focused
on tracking tissue deformation using surface-based assump-
tions [21, 22, 23, 24, 25]. Building upon these foundations, we
integrate sensor uncertainty, object interactions, and semantic
information for more robust and accurate surgical localization.

We proposed uncertainty-, feasibility-, and anatomy-aware
surgical perception frameworks that achieve unprecedented



precision in real-time tool and tissue localization [1, 2, 3, 4].
By incorporating mathematical models of pixel-level uncer-
tainty, convex grasping constraints, and anatomy information
into Bayesian filters, our frameworks enable robust surgical
tool localization under noisy conditions [1, 3], tool reconstruc-
tion ensuring grasping feasibility [2], and deformable tissue
tracking that maintains anatomical consistency over time [4].
Our methods achieve sub-millimeter accuracy of surgical
manipulator and suture needle localization, can follow slight
tremors and shifts in tissues, and enable robots to succeed in
automating numerous real-world surgical tasks [7, 6, 9].

Planning: Guaranteeing Safety in Human Manipulation.
Despite the enhanced dexterity and manipulability, robots
nowadays still lack the systematic knowledge required for
medical automation, leaving them relying on teleoperation.
Prior work has implemented this knowledge through special-
ized tools [26, 27, 28, 29] and assistive devices [30, 31,
32, 33, 34, 35]. However, task-specific tools require frequent
switching, and devices designed for conscious patients may not
translate well to unconscious individuals. Furthermore, while
existing approaches to medical automation without specialized
devices offer promising directions [13, 36, 37, 38, 15, 39], they
usually rely on environment-specific trajectories to account for
the inherent uncertainties in medical settings.

We proposed uncertainty-aware mathematical models that
describe surgical procedures and human biomechanical struc-
tures [7, 6, 5]. These models, derived from long-standing sur-
gical practices and kinesiology literature, quantify the quality
of a surgical grasp [7], the environmental visibility from an
endoscopic camera [6], and the body reaction forces during
robot operations [5]. We integrated these models into RL
and constrained optimization frameworks to plan safe and
efficient robot trajectories in medical environments. Our real-
world experiments achieved (1) regrasping millimeter-scale
suture needles with less than 0.1s planning time, (2) increasing
automation success by more than fourfold in surgical-tool
manipulation, even with a moving endoscopic camera, and (3)
safely repositioning human bodies using a robotic manipulator.

Adaptability: Efficient and Lifelong Medical-Skill
Learning. Well-trained medical professionals can continually
enhance their expertise, staying current with the latest medical
advancements. Autonomous robots operating in underserved or
hazardous areas should also improve their skills over time to
perform medical tasks independently in diverse settings over
extended periods. While prior work enables robots to acquire
complex medical skills through optimization [28, 40, 41],
visual servoing [37, 15, 42], learning from demonstrations [43,
44, 38, 45, 46], and RL [47, 48, 49, 50, 51, 52], they struggle
with rapid adaptability for unseen tasks and continuous evo-
lution. The challenge of efficiently accumulating knowledge
over a robot’s lifetime extends beyond medical automation
and remains an open question in general robotics.

We developed RL algorithms that flexibly leverage external
guidance to enable efficient and lifelong robot learning. We
proposed the ego-centric state/action spaces and the mixed
exploration strategy for RL that harnesses medical knowledge

to help learn a generalizable suture-needle manipulation pol-
icy [7]. Extending this approach to the broader robot learning
domain, we introduced Knowledge-Grounded RL (KGRL) and
Knowledge-Inclusive Attention Network (KIAN) that flexibly
accumulate knowledge over tasks and simultaneously achieve
sample-efficient, generalizable, compositional, and incremen-
tal learning, which are the key foundations for efficient
robot learning [53]. Building upon KGRL and KIAN, we
then proposed Surgical Incremental RL (SurgIRL) [9]. Our
SurgIRL framework improves KIAN’s learning efficiency and
incrementally learns multiple surgical tasks by accumulating
medical knowledge over time. We effectively solved ten surgi-
cal tasks with SurgIRL and deployed the policies to real-world
environments, achieving over 90% success across all tasks.

III. FUTURE DIRECTIONS

Sensing: Situation and Environment Understanding
from Multimodal Medical Data. I aim to broaden robot
sensing in medical environments beyond vision to include data
across modalities. By pursuing partnerships with clinical part-
ners and search-and-rescue workers, I will first uncover the key
data attributes that help understand medical scenarios. Then,
I will bring together expertise in medical image, tactile, and
biosensor data processing to explore cross-modality feature
learning and multimodal neural networks for heterogeneous
medical data. This collaboration will provide robots with a
comprehensive understanding of medical environments.

Planning: Advancing Medical Proficiency and Mini-
mizing Risk in Human Manipulation. I intend to develop
mathematical models that span the broad spectrum of medical
operations. First, I will explore how different models, such
as finite element, viscoelastic, hyperelastic, fluid dynamics,
and position-based dynamics models, can be combined to
describe the physical attributes of organs and tissues. Next, I
will investigate spatial-temporal modeling methods to transfer
medical procedures into robot executable actions. Finally, I
will develop algorithms based on generative models, e.g.,
transformers and stable diffusion, to achieve intention pre-
diction in human-robot collaborative medical scenarios. The
models and methods proposed can be naturally embedded into
planning, optimization, and learning frameworks to enhance
the quality and safety of medical automation.

Adapting: Efficient, Generalizable, and Lifelong
Medical-Skill Development. I seek to design robot learning
frameworks that integrate the community’s efforts for lifelong
medical skill learning. Today, the research community is
teeming with datasets, robot policies for diverse tasks,
and foundation models, offering substantial information on
perceiving and navigating the world. Nonetheless, we need
algorithms that can function beyond the restrictions set by
current models, such as their black-box properties, to harness
the underlying information that can be shared across multiple
environments and tasks. The future directions in this research
line will aim to extract unified knowledge from diverse
datasets, policies, and models for continuous knowledge
accumulation in learning medical or general robotic skills.
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