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Abstract

Deep learning models often struggle with distribution shifts between training and
deployment environments. Distributionally Robust Optimization (DRO) offers a
promising framework by optimizing worst-case performance over a set of candidate
distributions, referred to as the uncertainty set. However, the efficacy of DRO
heavily depends on the design of the uncertainty set, and existing methods often
perform suboptimally due to an inappropriate or inflexible uncertainty set. In
this work, we first propose a novel perspective that casts entropy-regularized
Wasserstein DRO as a dynamic process of distributional exploration and semantic
alignment, both driven by optimal transport (OT). This unified viewpoint yields
two key new techniques: semantic calibration, which bootstraps semantically
meaningful transport costs via inverse OT, and adaptive refinement, which adjusts
uncertainty set using OT-driven feedback. Together, these components form an
exploration-and-feedback system, where the transport costs and uncertainty set
evolve jointly during training, enabling the model to better adapt to potential
distribution shifts. Moreover, we provide an in-depth analysis of this adaptive
process and prove theoretical guarantees of convergence. Finally, we present our
experimental results across diverse distribution shift scenarios, which demonstrate
that our approach significantly outperforms existing methods, achieving state-of-
the-art robustness.

1 Introduction

Distribution shifts between training and deployment environments present a fundamental challenge
to machine learning systems, often leading to significant performance degradation in real-world
applications. This challenge has motivated robust learning algorithms that ensure performance
under distributional uncertainty. Among these approaches, distributionally robust optimization
(DRO) [20,143] has emerged as a popular framework that optimizes for worst-case performance across
a set of potential test distributions, known as the “uncertainty set”. Unlike empirical risk minimization
(ERM), which directly minimizes the expected loss ¢(6, z:) over the empirical training distribution
Py, DRO seeks robustness by solving the minimax problem: ming supg ey (p,,) Eq[€(60, 7)]. Here,
U(P,;) represents the uncertainty set that encompasses distributions in the neighborhood of P,
capturing a range of plausible test-time deviations.

A critical challenge in implementing effective DRO lies in designing an appropriate uncertainty set.
Ideally, the uncertainty set should accurately capture potential distributional shifts while remaining
amenable to efficient optimization. Optimal transport (OT) [57] provides an elegant mathematical
framework for this purpose, offering both strong theoretical foundations and intuitive physical inter-
pretations (see Sec.[2.T). These properties make OT distances suitable for constructing meaningful
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uncertainty set in distribution space. In this work, we leverage the entropy-regularized OT distance
(also known as, Sinkhorn distance [14], and the formal definition is shown in Def. [2)) to define our
uncertainty set. Let D, denote the Sinkhorn distance and the DRO problem [58,13] is formalized as:

min  sup Eg[l(0,z)], whereU(P;,0) ={Q € P(X¥xY) | De(Pi,Q) <6}. (1)
QEU(Pix,0)

Here § > 0 serves as the radius to control the size of allowable distributional shift; P(X' x)’) denotes
the set of Borel probability distributions over the data-label space “X x ). The uncertainty set
reflects prior knowledge about potential distributional shifts. As we will demonstrate in Sec. the
Sinkhorn distance D, (P;,, Q) introduces a reference distribution v that guides the uncertainty set’s
shape. This reference distribution determines the “closeness” between distributions and the training
data P;,, thereby serving as a prior knowledge about the “geometry” of the uncertainty set.

Despite its popularity, OT-based DRO (e.g., (I))) still faces two major practical limitations [39]]. First,
the uncertainty set can be overly conservative, encompassing unrealistic worst-case distributions that
harm practical performance. Second, conventional transport cost is not very effective for encoding
semantic information, because the input training data is often in lack of explicit expression for
semantic similarities in some practical areas such as computer vision [27]. For instance, pixel-wise
distance is a poor proxy for image-level similarity [39]. As mentioned in above, the Sinkhorn distance
introduce a reference distribution v, which can mitigate those issues to some extent. In particular, the
distribution v regularizes the transport plan and implicitly shapes the geometry of the uncertainty
set U(P;;,0) by controlling where and how probability mass can be transported [58]. However,
constructing an appropriate reference distribution v remains challenging. When training data is
limited, v is typically synthesized through heuristics (e.g., mixup [63] or noise injection [23]]). But,
this operations may introduce unrealistic distributions in U (P, §). Moreover, we are also confronted
with a tricky dilemma for constructing the uncertainty set U (P, d):

Expanding the uncertainty set to capture meaningful shifts risks incorporating unrealistic
perturbations, while overly restricting it may exclude plausible distributional variations.

Our core idea is to design an adaptive DRO framework in which both the semantic distances and
uncertainty set evolve during training, yielding a dynamic uncertainty set. While introducing this
Slexibility to the uncertainty set U(P;,,0) is appealing, it also presents significant challenges for
implementation and analysis. Our proposed framework is grounded in optimal transport, offering
a principled geometric interpretation that guides the algorithm design and analysis. To our best
knowledge, our proposed framework is fundamentally different with existing DRO methods, from
both the formulation-level and algorithmic-design level (most of them rely on static uncertainty set).
We name our approach “AdaDRO” and summarize our contributions as follows,

* We introduce a novel theoretical perspective that frames entropy-regularized DRO as a
dynamic exploration-and-alignment process driven by OT. This perspective gives rise to two
core components: semantic calibration, which bootstraps transport costs via inverse OT, and
adaptive refinement, which filters the uncertainty set using OT-based feedback.

* We establish theoretical convergence guarantees despite the evolving nature of the transport
costs and uncertainty set, ensuring robust optimization stability throughout training. Further-
more, the OT-based structure of (1)) enables seamless integration of semantic calibration and
refinement into the training process.

» Extensive experiments demonstrate that our method improves both robustness and accuracy
across a range of distribution shift scenarios, thereby broadening the applicability of DRO.

To illustrate the benefit of our approach, consider the 2D binary classification task shown in Figure|[T}
Due to limited training data, the learned decision boundary significantly deviates from the ideal
boundary. The reference distribution v, constructed from Gaussian distributions around training
points, may include samples that fall outside the true data manifold. Such low-quality samples
can corrupt the uncertainty set and degrade classifier quality. By identifying and filtering out such
samples, we obtain a boundary (blue curve) that better reflects the structure of the data distribution
and more closely approximates the true decision boundary.
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Figure 1: Binary classification on a “double moon” dataset. (a) SVM (RBF-kernel) decision boundary
(red) trained on 20 samples (10 per class). (b) Comparison of Sinkhorn DRO (green) using Gaussian
reference v (small dots show 600 samples) versus our adaptive DRO (blue). Our method better
captures the true data manifold by filtering low-confidence regions in v.

1.1 Other Related Works

Distributionally robust optimization (DRO) methods seek model parameters that minimize worst-case
expected loss over an uncertainty set of distributions around the training data. Early work in this
area used ¢-divergence uncertainty set, yielding tractable reformulations via duality; for instance,
KL-DRO optimizes against distributions within a Kullback—Leibler ball around the empirical measure
[26] 43]]. Wasserstein DRO (WDRO) instead constructs uncertainty set based on optimal transport
(OT) costs, providing geometric robustness guarantees; seminal results include finite-sample bounds
and dual formulations by Blanchet and Murthy [9,|10] and extensions to high-dimensional settings by
Gao and Kleywegt [21]. Entropy-regularized OT, or Sinkhorn DRO, introduces a reference measure
and entropy penalty to yield smoother uncertainty set and more efficient algorithms [60, [58]]. The full
discussion on related works is deferred to Appendix [A.T]

2 Preliminaries

Consider the input-output space = = X x ), where X C R? is the data space and Y := [K]| =
{1,---, K} denotes the label space containing K distinct classes. Let P(E) represent the set of
Borel probablllty distributions supported on =Z. For 1 < ¢ < n, each sample pz = (x;,y;) is drawn
from an underlying distribution P € P(Z). The empirical distribution P, = 2 3>, §,,, is induced
by the dataset {p1,...,pn}, where J,, is the Dirac measure concentrated at p;. We endow = with
a transport cost function: C (p;,p;) = C¥(z4,7;) + C¥(y;,y;), where C¥ : X x X — R and

Y ¥ xY — R quantify the transport costs between features and labels, respectively. This transport
cost provides the foundation for defining the optimal transportation distance in (@).

We define our neural network as fg(-) = hy o ga(+), where go(-): X — Z serves as the encoder,
parameterized by 6, which maps input data 2 € X into a latent representation space Z C R,
The function hy (-): £ — Y acts as a linear classification head that generates predictions in the
output space ). The classifier weight matrix W = [wy, ..., wk] € REXde wwhere each w; is the
class-specific weight vector for the i-th class. The complete set of model parameters is © = {0, W}.
For notational simplicity, we sometimes abbreviate the notation as f(-) = h o g(-) and denote the
classification loss function as #(+).

2.1 OT and Inverse-OT

Optimal Transport (OT) and Inverse Optimal Transport (IOT) offer complementary perspectives: OT
seeks optimal couplings between distributions given a cost function, while IOT infers appropriate
cost functions that best explains observed coupling patterns.

Let P and () be probability distributions, and II(P, @) denote the set of all joint distributions
(called transport plans or couplings) with marginals P and Q). Formally, any v € II( P,Q) satisfies
J v(p,q)dg=P(p) and [~(p,q)dp =Q(q). Let p and v be reference measures such that P < and



Q < v (i.e., P and @ are absolutely continuous with respect to 1 and v, respectively). We begin
with the entropy regularization.

Definition 1 (Relative Entropy of Transport Plans). For any transport plan v € I1( P, @), the relative
entropy of v w.r.t. product measure p ® v is:

H(y|p@v) = [log (g5 P ) dv(p,9). )

This entropy term requires supp(P) Csupp(u) and supp(Q) C supp(v) to remain finite. A common
choice [37] uses uniform reference measures (du(p)dv(q) = const), simplifying the entropy to:

H(v) = Ep,q)~y [log (dv(p. q)) — 1], A3)

Entropy-Regularized Optimal Transport Cuturi [14] introduces an entropic penalty to the
classical OT problem, encouraging smoother couplings between distributions while minimizing
transport cost. This leads to the formulation of the Sinkhorn distance:

Definition 2 (Sinkhorn Distance (a.k.a. Entropy-regularized OT Distance)). Given distributions
P, Q, acost function C' : Ex=— R, and regularization strength € >0, the Sinkhorn distance is:

D(P,Q) = _int { E_[C(p.a)+eHOInow)}. )

Inverse Optimal Transport (IOT) 10T [53,[36] solves the inverse problem: inferring cost function
that explains observed couplings. To capture this, we add the subscript 6 to the previously defined
notations “v” and “C”, i.e., vy and Cy, which denote the corresponding optimal transport plan and
cost learned by the model parameterized by 6. In addition, we let 5 € I1(P,Q)) denote an observed
coupling that reflects ground-truth semantic relationships (details in Sec[3.2). Then we have the
following formulation for IOT:

ming KL(J]vg), s.t. 79 = arg min{ E [Co(p,q)] + eH(v)}. 3)
~EIL(P,Q) “(P,a)~Y

Here, the KL divergence KL (9|vs) quantifies how well Cyy explains the observed matching pattern 7.
The entropy term H () is defined as in (3). This bilevel structure allows us to learn transport costs
Cy such that the resulting optimal transport plan aligns with observed empirical semantic couplings.

2.2 Sinkhorn DRO

We now analyze the Sinkhorn DRO formulation in (T)), highlighting its theoretical foundations and
advantages over alternative approaches. Sinkhorn DRO extends Wasserstein DRO (WDRO) [9, 110} 21]]
through entropy regularization. When the transport cost C' is a metric and € = 0, the formulation
(T) reduces to standard WDRO. However, WDRO typically yields discrete, adversarial worst-case
distribution, making it well-suited for adversarial robustness but less effective for modeling natural
distribution shifts, which often appear as continuous, structured deformations [[17, 39} 52].

The introduction of entropy regularization in D, brings benefits through two complementary mecha-
nisms: Reference-guided uncertainty set: The relative entropy term H (v|u ® v) leverages reference
distributions p and v to shape the transport plan, guiding it toward more plausible distribution shifts
rather than arbitrary worst-case scenarios; Geometric Awareness: In contrast to divergence-based
DRO (e.g., KL-DRO [26]), Sinkhorn DRO incorporates transport costs C'(p, ¢) that reflects pairwise
sample similarities, preserving crucial geometric information within the data space.

Although the Sinkhorn distance in (@) depends on two reference measures p and v, following Wang
et al. [58], we set u = P, the empirical training distribution. This choice is both practical and
theoretically sound, as the relative entropy term differs only by a constant when P;, < p, leaving
the optimization unaffected. In contrast, the reference measure v plays a critical role: it defines the
support of feasible worst-case distributions by enforcing () < v. Through dual analysis, Wang et al.
[58] derived the closed-form expression for the worst-case distribution. When the optimal Lagrange
multiplier A > 0, the worst-case distribution @* has the density:

R (L) ~AC(p.a)) /(Ae)
dQ7(0) = Epr, [EW [e(E)=AC ) /(3] }dV(Q) ’ ©
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Figure 2: Overview of the AdaDRO framework. Starting from the empirical distribution P, we
construct a reference distribution v and dynamically filter out low-confidence samples to obtain the
refined set 7. Semantic calibration is performed by aligning model-derived transport couplings with
ground-truth couplings using inverse optimal transport (IOT) losses. This guides the construction of
semantically meaningful and adaptive uncertainty sets.

The role of v. The formula (6)) shows that the worst-case distribution Q" is essentially a reweighted
version of v, with weights determined by the loss function ¢ and transport cost C. The absolute
continuity condition () < v ensures that the support of Q* remains within that of v, highlighting
why the design of v is crucial for effective distributional robustness. By dynamically refining the
reference distribution v, we can induce a dynamic uncertainty set that evolves with the learning
dynamic to better reflect the underlying data geometry, which has not been explored previously.

3 Our Method: AdaDRO

To address the dilemma highlighted in Sec. [I] we propose a self-adaptive framework that jointly
learns semantic costs and refines uncertainty set based on OT.

High-level idea We reformulate the Sinkhorn DRO objective as a bilevel optimization whose
upper-level and lower-level objectives are OT and IOT objectives, respectively (Sec. [3.1). This
perspective inspires us to incorporate a more well-designed IOT for semantic calibration in Sec. [3.2}
moreover, the geometric implication of OT coupling can serve as a feedback to refine the uncertainty
set (Sec.[3.3). The overall framework is illustrated in Figure|[T]

3.1 Sinkhorn DRO Revisited: A New Perspective from OT

In this section, we introduce a new perspective for Sinkhorn DRO from OT. First, we cast Sinkhorn
DRO as a semi-relaxed optimal transport (OT) problem, where the benefit is that the worst-case
distribution Q* (defined in (6))) emerges naturally from the optimal transport plan. Additionally, we
reinterpret the softmax cross-entropy loss as a form of inverse OT. Taken together, these insights
enable the entire learning dynamics of DRO to be formulated through the OT/IOT objectives, so that
it paves the way for building our framework and theoretical analysis in the following subsections.

Distribution Exploration via OT. The optimal coupling of OT in Def. ] represents the most
efficient way to transport a source distribution P to the target distribution (). By relaxing the target
marginal constraint, i.e., replace the “y € II(P, Q)” with “y € II(P) := {~ | [ v(p,q)dg = P(p)}",

De(Py)=_inf {Eon[C.g)] +eH(y [ PRV)}. @)

This relaxation considers couplings that preserve only the source marginal, allowing the distribution
P to “explore” the target space. The exploration is guided by the transport cost function C' and



the reference measure v. Under an appropriately chosen cost, this exploration process recovers the
Sinkhorn DRO worst-case distribution Q* as its target marginal.

Lemma 3.1. Consider the DRO objective in (1) with P;, and v being the source and refer-
ence measures. If the transport cost in the semi-relaxed OT problem is taken as C'(p,q) =
1 (AC(p,q)—1(q)), then the optimal transport plan v* €I1(P%,) has its target marginal equal to the
worst-case distribution Q™ in (©).

Classification as Inverse OT. Complementing the above view, we interpret classification through
the lens of inverse OT. In this formulation, the goal is to learn a transport cost (implicitly parameterized
by the model) such that the resulting optimal coupling aligns with the known label structure. To make
this concrete, we define the ground-truth coupling and learned cost as:

V(@i k) = QM (x;)dy,—k, Co(wi, k) == c — (go(xi), wr), (8)
where (z;, k) encodes the coupling between sample x; and its true label y;, and Cy(z;, k) defines
the model-learned transport cost to class k € [K].

As shown by Shi et al. [49], when using the cost Cj in the semi-relaxed OT formulation (7)), the

. . g 1y - exp((g(x),wi)/e)
resulting optimal plan ~y, takes the form of a softmax distribution: s (z;,k) ST exp((g () 10,079

and the inverse OT objective, defined as KL(7|vy), becomes:

- _ exp({g(zi),wy,)/c)
KL (¥]v6) = —E;,~» log S oxp((o(@0).we) /) + Const. “
This expression exactly recovers the temperature-scaled cross-entropy loss commonly used in classi-
fication tasks.

Remark 1. This analysis shows that the DRO objective in (I) can be cast as a bilevel optimization [29]
grounded in OT: Lower level (Exploration): exploring the worst-case distribution Q*(6) by a semi-
relaxed OT (as Lemma 3.1)). Upper level (Alignment): updating parameters ¢ by solving an inverse
OT problem that aligns the model’s induced transport plan with ground-truth semantic labels. This
OT-based perspective not only provides theoretical clarity but also suggests natural mechanisms for
adaptive algorithmic design, as explored in the following subsections.

3.2 Semantic Calibration via Inverse OT

Recall from Sec. 2] that we defined our overall transport cost as the sum of feature and label
components: C (p;, p;) = C* (x4, 2;) + C¥ (y;, y;). The effectiveness of DRO critically depends
on how well these costs capture semantic relationships in the data. Rather than manually specifying
these costs, we propose a principled approach to learn them directly from the data using IOT.

Calibrating the Sample-level Transport Cost C*.  To ensure that transport costs capture task-
relevant semantic relationships, we propose learning CQX through a principled IOT formulation. We
define the parameterized transport cost as:

Cif (wi,25) = ¢ — Ker(go (1), g0 (7)) (10)
where c is a constant ensuring non-negativity, go () represents the embedding of sample x, and
Ker(+,) is a kernel function (e.g., cosine or Gaussian) measuring similarity in the embedding space.

Given a sample x; drawn from the worst-case distribution Q*, we generate a semantically equivalent
counterpart ; ~ Aug(z;) using standard data augmentation techniques (e.g., cropping, rotation).
These pairs (z;, 2;) define ground-truth semantic matching encoded as a coupling:

7 (@i, 25) = 1[j =, (1
where I[] is the indicator function. This coupling represents the semantically meaningful matches
that our transport cost should respect.

To calibrate C'(,X , we formulate the following IOT problem:

min KL(FY |y5t), sty =arg min E [Cf (z;,2")] + eH(7). (12)
in KL(Y*3') v =arg min (zi’z;)w[ b (i, ;)] + eH(7)
Similar to (7), II(Q*) denotes the set of couplings whose first marginal is Q*, i.e., TI(Q*) = {v|
>V (@iay) = Q*(x;)}. This optimization aims to learn parameters @ such that the transport plan

VQX , induced by the cost function C«gv , aligns with the ground-truth coupling 4 defined in (TT)).



Calibrating Label-level Transport Cost CY.  To define meaningful transport costs between class
labels, we need to quantify semantic relationships among them. Unlike data points, class labels
lack explicit representations in the embedding space. Fortunately, the “Classification as Inverse OT”
formulation from Sec. [3.T]offers a principled mechanism for semantic calibration in label space. To
formalize this connection, we revisit the classification loss through the lens of inverse OT:

min KL (5 s.t. = arg min E ik eH . 13
in KLGPo), st =ag min { B [Cola b+ )] a3)
Here, the cost function is defined as Cy(g;, k) = ¢ — {go(x;), wy), which can be seen as a special
case of a kernel-based cost: Cy(g;, k) = ¢ — Ker(gg(x;), wy), where Ker(-, ) is a linear kernel.
A fundamental property of such kernels, known as the reproducing property [44], establishes that:
(Ker(wg, -), Ker(wy, -)) = Ker(wy, wy ). This property reveals that standard cross-entropy train-
ing, which is equivalent to minimizing an inverse OT objective as shown in Sec. implicitly
calibrates the semantic structure in the label space. Leveraging this insight, we define the label-level
transport cost as:

Y (k, k') = ¢ — Ker(wy, wyr), Yk, k' € [K] (14)

where c is a constant ensuring non-negativity and Ker(-, -) is the linear kernel. Classes with similar
weight vectors will have lower transport costs between them, reflecting their semantic proximity. A
similar idea of using classifier weight vectors wy, to encode label semantics has also appeared in prior
work, such as [54], although they do not interpret this mechanism by inverse OT alignment.

3.3 Our Overall Algorithm

As discussed in Sec. [I] the reference distribution v serves as a crucial prior that defines the support
of the DRO uncertainty set. However, high-quality priors are rarely available: an overly broad v
may include implausible samples, while an overly restrictive one weakens robustness guarantees.
The OT formulations in Sec[3.1H3.2]incorporate relaxed marginal constraints, reducing the need to
forcefully match noisy or outlier samples [512]]. This flexibility enables the transport coupling to
reflect the intrinsic structure of the data [45] |60]]. Motivated by this observation, we introduce an
OT-based feedback mechanism that adaptively filters the reference distribution v, thereby refining the
uncertainty set during training.

Refining v via OT Feedback. We have introduced two Inverse OT frameworks for semantic
calibration—feature-level IOT in (T2)) and label-level IOT in (T3)). A key question now arises: how
can we leverage the resulting couplings to dynamically refine the uncertainty set?

To address this, we propose a confidence-based filtering mechanism that evaluates the alignment
strength between source-target pairs based on the inferred coupling. We illustrate this using the
feature-level IOT framework in . The key idea is to compare the model-induced coupling g
with the ground-truth coupling 4 (defined in (TT)). For any matched pair (p, ¢) ~ 4, we define its
matching confidence as 'yg( (p, q), which quantifies how strongly the model aligns p with ¢. A global
average confidence is then computed as 71 = E(, ;527" (P, q).

Because some targets may inherently be more difficult to match, particularly when the marginal
distribution of the ground-truth coupling 4 is imbalanced, we define a target-specific local matching
capacity for each ¢: 72(q) = E,v;' (p, q), which quantifies how much mass is transported to g across
all source. A larger 7o(q) indicates that the target ¢ is easier to match. Combining global and local
signals, we define a dynamic threshold:
I T2(q)

T(q) =T max,/ Tz(q’)' (15)
Each source p is retained in the filtered reference distribution ¥ only if it aligns well with at least one
target q:

v(p) = "(P)'HB'MX(qu)i()/wf(pyq)ZT(q)], (16)

where x normalizes ¥ to form a valid distribution.

This filtering mechanism offers several advantages: (1) It establishes a feedback loop between model
training dynamics and uncertainty set refinement, enabling adaptive robust optimization; (2) It uses



Algorithm 1 OT Driven Adaptive Distributionally Robust Optimization (AdaDRO)

Require: Initial parameter 6, step size « > 0, total iterations T.

1: Train 6 by the joint objective in and for Ny epochs. > Semantic calibrate by IOT

2: fort=0,1,...,T —1do

3: 1y + FilterReference(v,6;) © Filter via (T6)

4: @f‘ + SinkhornWorstCase(P;;, U, Cy,, A) > Compute worst-case distribution via (6)).

5:  Estimate gradient grad, via RT-MLMC estimation for the IOT objectives (I3) and (I2) > See
Algorithm 2]in Appendix

6:  Update 0;1 + 0 — a; grad,

7: end for

sample-specific thresholds to account for varying target difficulties, overcoming a key limitation of
static filtering rules. This design of our filtering mechanism is guided by the geometric intuition
behind transport couplings, as previously discussed. We also draw conceptual connections to the
well-known thresholding strategy introduced in FreeMatch [59], which adaptively filters samples in
semi-supervised learning by combining global and local (class-specific) thresholds. Such methods
eliminate the reliance on fixed, manually tuned thresholds and leverage data-driven signals to inform
selection.

Overall Algorithm. We apply the filtering rule in both semantic calibration tasks—feature-level
IOT in (T2) and label-level IOT in (T3)—to obtain a refined reference distribution . We then perform
Sinkhorn distributionally robust optimization using 2. The full procedure of our OT-driven adaptive
robust algorithm is summarized in Algorithm [I] and its schematic overview is provided in Figure[2]

Theorem 3.2 (Convergence of AdaDRO). Let the objective at iteration t to be defined as Fy(0) =
E, .5 [£(0,q)]). Under mild smoothness assumptions, Algorithm (I|with decaying step size a; =

a/+/t + 1 converges to a stationary point after at most T = O (6’4 log %) iterations:

i 2] < &2,
Jmin E [IVE(68,)]7] < e (17)

Here the total sample complexity O (6_4 log? %)

Theorem [3.2] establishes the convergence of our adaptive Sinkhorn DRO algorithm to a stationary
point, despite two major challenges: (i) the dynamically evolving uncertainty set @f‘ that depends
on both the model and the filtered reference distribution, and (ii) the presence of nested expectations
in the objective, which renders unbiased gradient estimation intractable.

To handle (i), we ensure that both the transport cost Cy and the filtered reference distribution 7y vary
smoothly with 6, as shown in Proposition[B.1] This ensures that changes to the uncertainty set remain
controlled during training.

For challenge (i), the objective F;(0) = E__5.[¢(0, g)] involves a composition of expectations.

Because the worst-case distribution @g\(q), as we introduced in (6)), is given by
QMa) = (@) Pula),  and 6(q) 1= By, | — i o .

Euns, [ =2C@u)/(0) |

Here the denominator of ¢(q) is also an expectation over u ~ U;. This nested structure makes
it impossible to construct an unbiased gradient estimator using standard Monte Carlo, and naive
stochastic approximations often incur intractable cost [35[58]]. To address this, we adopt the multilevel
Monte Carlo with Randomized Truncation (MLMC-RT) technique [25]], a method has been used in
robust optimization to trade off bias, variance, and computational cost efficiently. Related works such
as [35] use MLMC for estimating gradients in worst-case distributional settings. In our case, we
adapt MLMC-RT to the setting of dynamically changing uncertainty set and show that it remains
theoretically sound.

(18)

Together, these properties enable our AdaDRO to converge to an e-stationary point using a total of
O(e? log? %) samples (as in Theorem —only logarithmically worse than the known lower bound
for general non-convex stochastic optimization [1]]. This result demonstrates that robust optimization
with dynamically adaptive uncertainty sets and semantic costs can also be performed efficiently at
scale. Our full theoretical details are provided in Appendix [B]



4 Experiments

We evaluate the proposed AdaDRO framework across a diverse set of benchmarks to assess its
effectiveness under various types of distribution shifts.

4.1 Experimental Setup

Datasets. We evaluate on three widely studied distribution shift settings: Colored MNIST [2],
which tests robustness under spurious correlations; Waterbirds [46], a real-world dataset with strong
background-label correlation; CelebA [40]], a benchmark for facial attribute recognition. We also
evaluate on several long-tailed benchmark datasets: CIFAR-10-LT and CIFAR-100-LT [34].

Baselines. We compare AdaDRO with the following methods: KL-DRO [43]], Wasserstein DRO
(WDRO) [9], Sinkhorn DRO SDRO [58]], a unified DRO method UniDRO [[11] , semantic-aware
robust methods such as GroupDRO [46], an invariant risk minimization method IRM [2]].

Our models are implemented with PyTorch on a single NVIDIA RTX 6000 Ada GPU using the
AdamW optimizer [42]]. For AdaDRO, we use cosine similarity as the kernel in (I0), and employ
basic augmentations (flip, crop) for semantic calibration in Sec. [3.2]unless otherwise specified.

4.2 Experimental Results

AdaDRO is broadly applicable thanks to its flexible reference distribution design. While this flexibility
enables adaptation to various settings, our method still relies on prior knowledge to construct the
reference distribution, which may limit its applicability in some cases. Nevertheless, domain priors
can often be effectively incorporated, as in many specialized robust learning approaches. For instance,
in imbalanced settings, the reference distribution v can be constructed through reweighting or
resampling. We evaluate AdaDRO across diverse scenarios, including spurious correlation, group
shift, and long-tail generalization. Additional experimental details are in Appendix

Tables[I]and 2] show part of the results on Colored MNIST and Waterbirds. AdaDRO consistently
achieves top worst-group accuracy, outperforming or matching specialized methods like GroupDRO.

Table 1: Accuracy (%) on Colored MNIST under high spurious correlation. AdaDRO achieves the
highest robustness across methods.

Method Avg Accuracy Worst-group Acc  Gap
IRM [2] 79.5 75.3 4.2
GroupDRO [46] 78.4 73.0 54
KL-DRO [43] 74.9 68.5 6.4
WDRO [9] 75.8 69.1 6.7
SDRO [58]] 79.0 72.6 6.4
UniDRO [[11] 67.1 47.8 20.7
AdaDRO (ours) 87.2 79.9 7.3

Table 2: Accuracy (%) on Waterbirds. AdaDRO significantly improves the SDRO.

Method Avg Accuracy Worst-group Acc  Gap
IRM [2] 82.6 73.2 94
GroupDRO [46] 86.3 80.5 5.8
KL-DRO [43]] 81.0 71.5 9.5
SDRO [58]] 85.0 75.4 9.6
AdaDRO (ours) 87.1 80.5 6.6

Compared with other baselines, our method offers two main benefits. First, it performs a label-
agnostic, sample-level semantic calibration as in (T2). Second, it introduces a coupling-based filtering
mechanism derived from the coupling introduced by (I2) and (I3). An intuitive example is the
presence of noisy labels as shown in Table |3 when a portion of labels are flipped, sample-level



calibration (I2)) can still reliably capture semantics. This is because the process is unsupervised,
similar to contrastive learning [49], and thus remains robust to label noise. Building on this, the
coupling-based filtering mechanism can discards samples with wrong label, enabling the cross-entropy
to train on a cleaner subset of the data. In contrast, methods that rely heavily on label supervision,
such as ERM with augmentation, suffer from an inherent “garbage in, garbage out” problem. No
augmentation can correct mislabeled examples, and these label errors inevitably propagate through
the learning process, compromising model robustness.

A similar advantage is observed in Colored MNIST as in Table[d Even when augmentation occasion-
ally alters the spurious attribute (e.g., color), standard ERM still learns entangled representations, as
the label remains strongly correlated with color. In contrast, our label-agnostic calibration encourages
the model to identify truly invariant features—those that remain stable under augmentation—naturally
prioritizing shape over color in the absence of a strong supervisory signal.

Table 3: Accuracy (%) on CIFAR-100 with 50% label noise. Half of the training labels are randomly
corrupted. We report test accuracy under different regularization strengths A.

Accuracy (%) A=0.5 A=1.0 A=2.0 A=3.0 A=5.0
AdaDRO (Ours) 525+06 5424+05 572408 556+1.1 532+038
SDRO [58]] 425403 412+07 441£03 448+05 439+0.3

Table 4: Accuracy (%) on Colored MNIST benchmark under strong spurious correlations. ERM +
Aug denotes empirical risk minimization with carefully designed data augmentation.

Method ERM + Aug KL-DRO [43] IRM [2] SDRO [58] AdaDRO (Ours)
Accuracy (%) 43.5+0.6 412+£05 451+1.0 448=+0.6 572+ 0.8

5 Conclusion

We proposed a novel OT-based framework for adaptive robust optimization, where transport costs and
uncertainty set co-evolve through inverse optimal transport. By combining semantic calibration with
OT-based feedback, our method forms a closed-loop process that adapts to distribution shifts during
training. The experiments show consistent gains over strong DRO baselines, and our framework
opens promising directions for enhancing the flexibility of DRO methods. Moreover, our framework
offers a new perspective for enhancing the flexibility of DRO through the lens of OT, paving the way
for incorporating richer OT tools into robust learning.
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Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: included
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: we confirm our work complies with all stated principles.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: does not involve social impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our model and data do not pose high misuse risks requiring safeguards.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: the third-party datasets and code used are properly cited with licenses.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: does not involve human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: No LLMs were used as a part of the core methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Omitted Materials

A.1 Other Related Works

Metric learning. The inverse optimal transport problem shares conceptual and methodological
similarities with metric learning, thoroughly examined by [4} [31]. Metric learning focuses on
estimating pairwise distance metrics from observed interactions, typically constraining solutions
to specific metric classes such as Mahalanobis distances [62, 61} [16]]. However, while metric
learning directly optimizes distances, inverse optimal transport (iOT) employs a more sophisticated
bilevel optimization structure that accounts for global coupling relationships between point sets,
significantly increasing its complexity. Cuturi and Avis [15] conceptualized the inverse OT problem
as a metric learning task, an approach later applied to generative models [22]. Taking a different
direction, Frogner et al. [19] proposed constructing cost functions using external priors such as
word embeddings, where semantic similarity between labels is derived from Euclidean distances
in pre-trained word2vec spaces (as demonstrated with the Flickr dataset). Though intuitive, this
approach introduces external dependencies and may not adequately capture task-specific semantic
relationships.

Distributional robustness.  Distributionally robust optimization (DRO) [35} 48] provides a prin-
cipled framework for learning models that remain reliable under test-time distribution shifts. The
central idea is to optimize model performance against the worst-case distribution within a predefined
uncertainty set around the training distribution. A key ingredient of DRO is its dual formulation,
which enables tractable reformulations and efficient algorithms [28]]. This paradigm has been extended
to group-wise robustness, as in Group DRO [47], which seeks to ensure balanced performance across
predefined or latent subgroups—even when some groups are underrepresented. Recent methods such
as [55] further refine this idea by incorporating logit adjustment to improve performance parity across
groups without explicit group labels.

Other related robustness methods.  Another prominent class of techniques for handling distri-
bution shift is importance weighting (IW) [33]], which reweights training samples to better match
the test distribution. Several recent advances have extended IW to broader settings. For instance,
Shu et al. [S0] proposed a meta-learning framework that learns a sample-weighting function using a
small unbiased validation set, effectively addressing issues like class imbalance and label noise. Fang
et al. [17] introduced an iterative method that jointly estimates weights and performs classification in
an end-to-end fashion. More recently, Fang et al. [[18] proposed Generalized Importance Weighting
(GIW), which can handle complex shifts, including scenarios where the training and test distributions
differ in support.

A.2 Reproducing Kernel Hilbert Space (RKHS)

Reproducing Kernel Hilbert Space (RKHS) [8[7] serves as a cornerstone in modern machine learning
and functional analysis, providing a rigorous mathematical framework for kernel-based methods.
This paper outlines the fundamental concepts of RKHS, presents its formal definition, and highlights
its significance in computational applications.

In many areas of machine learning and statistics, the representation and manipulation of data in
high-dimensional spaces are crucial for understanding complex patterns. Reproducing Kernel Hilbert
Space (RKHS) provides an elegant framework that combines the computational efficiency of kernels
with the theoretical rigor of Hilbert spaces. RKHS is particularly notable for its role in kernel methods,
such as support vector machines and Gaussian processes.

The power of RKHS lies in its ability to map data into a potentially infinite-dimensional space while
enabling computations through finite-dimensional kernel functions. We begin by defining the key
components that constitute a Reproducing Kernel Hilbert Space.

Definition 3 (Reproducing Kernel). Let H be a Hilbert space of functions defined on a non-empty
set X'. A function Ker : X x X — R is called a reproducing kernel for H if: (i) For all x €
X, Ker(-,x) € H. (i) For all f € H and = € X, the reproducing property holds: f(x) =
<f7 Ker(-, x)>7~l

Definition 4 (Reproducing Kernel Hilbert Space). A Hilbert space H of functions on X is called a
Reproducing Kernel Hilbert Space if there exists a reproducing kernel Ker for H.
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The reproducing property ensures that the evaluation of a function f € #H at a point z € X" can
be expressed as an inner product in H. This property underpins the computational efficiency of
kernel-based methods. In our setting, we leverage this property to construct semantic transport
costs (see (I0) and (T4)) that reflect similarities in latent and label spaces, while enabling efficient
gradient-based optimization.

A.3 Differences and Connections with other DRO methods

Differences and Connections with Wasserstein DRO and KL DRO (1) Flexibility of the Cost
Function: WDRO requires the transport cost function C/(+, -) to be a metric, whereas Sinkhorn DRO
only imposes the weaker condition of non-negativity C'(x,y) > 0. This makes Sinkhorn DRO more
flexible. In WDRO without regularization, the worst-case distribution is typically discrete, while in
Sinkhorn DRO, the worst-case distribution Q* is absolutely continuous with respect to the reference
measure v. The reference measure v can be interpreted as prior knowledge about the structure of
the worst-case distribution, which enhances both the interpretability and practical applicability of
the model. Notably, as the regularization parameter ¢ — 0, the dual objective of Sinkhorn DRO
converges to that of Wasserstein DRO because the Sinkhorn distance is an entropy-regularized version
of the Wasserstein distance. (2) Connection to KL DRO: When the reference distribution v = Py,
and the transport cost function C(-, -) = 0, Sinkhorn DRO reduces to the KL-DRO problem. In this
case, the entropy regularization term of the Sinkhorn distance simplifies to the KL divergence, which
measures the cross-entropy difference between the worst-case distribution and the input distribution.

A.4 Solutions for Entropy-Regularized Optimal Transport

For completeness, we summarize the closed-form solutions for entropy-regularized optimal transport
(OT) problems under different levels of marginal constraint relaxation. These results are standard in
the OT literature and can be found in [49]. Such relaxations provide analytical forms for the optimal
transport plan -y, which significantly reduce computational complexity and enable efficient integration
into modern learning algorithms.

Remark 2. Let II(P, Q) denote the set of couplings (joint probability measures) with specified
marginals:

I(P,Q) = {v| [v(p.a)dg = P(p), [+(p.q)dp=Q(q)}, (19)
I(P) = {v| [v(p,q)dg = P(p)}, (20)
(1) = {y| [v(p,q)dpdg = 1} . 1)

Relaxed Marginal Constraint: v € II(P) This semi-relaxed formulation preserves only the
source marginal. The entropy-regularized OT problem is defined as:

* = in B, . ][Clp, H(y|Pov), 22
v =arg min B LC(p, @) +eH(y | Pov) (22)

where H (v | P ® v) denotes the relative entropy (defined in (2)) with respect to the product measure
of P and a reference measure v. The optimal coupling has a closed-form expression:

il P) (23)

_ eXp( .
J cxp(fic(’:u) ) dv(u)

v (p; q)

This expression yields a softmax-like kernel around each point p, shaped by the cost C' and regular-
ization €, and normalized with respect to the reference measure v.

Fully Relaxed Constraint: v € II(1) In this most relaxed case, only the total mass is constrained
to be 1:

7" =arg min Eq ) [C(p,q)] + eH (7). (24)
~€I(1)
The optimal transport plan admits the following form:
* _ EXD(*C(?Q)) _ C(u,v)
Y (p,q) = ——F——=%, where Z = [[exp (——2%) dudv. (25)

This represents a global Gibbs distribution over the joint space X x ) and is often used for uncon-
strained matching.
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Fully Constrained OT: v € II(P, Q) This is the standard OT formulation with both source and
target marginals enforced. In this case, no closed-form solution exists, but iterative scaling via the
Sinkhorn algorithm [51} 6] yields the unique entropy-regularized solution:

7(0) (p,q) = exp(—C(’e”q) ), (26)
®) .
AFHD(p, q) = W’Zflqu/ - P(p), (row normalization) (27)
(k+1) . .
~EF2) () q) = Wm -Q(q), (column normalization) (28)

This procedure is guaranteed to converge to the unique solution v* € II(P, Q) satisfying the marginal
constraints.

These closed-form and iterative solutions illustrate how different constraint relaxations influence the
structure of optimal couplings. In our framework (see Sec.[3.T]and Sec.[3.2), we make use of the
semi-relaxed formulation v € II(P) due to its analytical tractability and its suitability for dynamic
uncertainty set modeling under limited supervision.

A.5 Proof of Lemma[3.1]

Proof. We begin by considering the semi-relaxed optimal transport (OT) problem where the coupling
v preserves only the source marginal P, with reference distribution v, and a modified transport cost:

C'(p,q) == 5 (\C(p,q) — £(q)) - (29)

> =

We seek the optimal coupling v* € TI(P;,) that minimizes the entropy-regularized OT objective:

v =argmin (O] + eHy | P 0. (30)

Applying the standard solution for entropy-regularized semi-relaxed OT (see Appendix [A.4)), the
optimal coupling has the form:

_C'(p.a)

exp(
J exp(—M)du(u) .

¥ (p,q) = Py (p). (31)

Substituting the definition of C’(p, ¢), we obtain:

exp(—1-+ (A\C(p,0)—(q)))

V(P 9) = T Tk )i L) (32)
l0@)~AC0,0))/(36)
= fe(f(“)*Ac(p’“))/(k)dl/(u) - P (p). (33)

Taking the marginal over p ~ P, the target marginal (i.e., the induced distribution on ¢) becomes:

\ . eUa)=AC(p,a))/(Xe)
Q (CI) = /’Y (p7 q)dp = EPNPH j‘e(Z(u,)—)\C(p,u))/(Ae)dy(u) ’ (34)

This matches exactly the closed-form expression for the worst-case distribution Q* in (6), proving
the claim.

A.6 General Case for the Ground-truth Matching 7
In the main text, we introduced a filtering mechanism for the special case of one-to-one ground-truth

matchings. Here, we present a generalized formulation applicable to many-to-many matchings, which
naturally extends our approach while preserving its key properties.
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Generalized Matching Quality Metrics. For a given source p, we define its matching quality as:

70(p) = Egng (7(0, @) - 70 (0, @)] (35)

which measures the expected alignment between the model-derived coupling s (p, ¢) and the ground-
truth coupling 7(p, ¢) across all targets associated with p. This metric provides a source-specific
measure of how well the learned transport map matches the desired coupling structure.

The global average matching quality is computed across all sources as:
71 = Epplro(p)]; (36)
providing a dataset-wide measure of matching performance.
For each target q, we quantify its matching capacity by:
72(q) = Ep~pr0(p, 9)], 37)

representing the total transport mass received by target ¢ from all sources. A higher value of 75(q)
indicates that ¢ is easier to match, consistent with our intuition in the main text.

Generalized Filtering Mechanism. Using these metrics, we compute a dynamic threshold for each
target q:

S p— 10— (38)

maxy 72(q")
which adjusts the global threshold 7; based on the relative matching capacity of target q.

For each source p, we compute a personalized threshold by taking the expectation over all its
associated targets:

7(p) = Equ[7(p, @) - 7(9)] (39)

The generalized filtering rule retains source p in the filtered distribution if its matching quality exceeds
its personalized threshold:

v(p) - I[ro(p) > 7(p)]

o(p) = , 40
v(p) N (40)

where y normalizes 7 to a valid distribution.

This generalized mechanism preserves the key benefits of our approach: (1) it establishes an adaptive
feedback loop between model training and uncertainty set refinement, and (2) it accounts for varying
difficulties across different targets and source-target associations.

Lemma A.1 (Reduction to One-to-One Case). When the ground-truth coupling 7 is one-to-one (i.e.,
for each source p, there exists exactly one target q, such that %(p, qp) = 1 and 7¥(p, q) = 0 for all
q # qp), the generalized filtering rule in reduces to the one-to-one filtering rule in (16).

Proof. For a one-to-one ground-truth coupling 7, each source p is associated with exactly one target
qp where ¥(p, g,) = 1 and J(p, ¢) = 0 for all ¢ # g,. Under this condition:

(i) The source matching quality simplifies to:
70(p) = Eqno[V(p: @) - 70 (P, )] = 70 (p: 4p) (41)
(i1) The source-specific threshold becomes:
7(p) = Egno[¥(p: @) - 7(0)] = 7(qp) (42)
(iil) Therefore, the filtering condition 7o(p) > 7(p) becomes:
6P, dp) = 7(4p) (43)
This is equivalent to the condition in (I6): "3q : (p,q) > 0 A ve(p,q) > 7(g)" since g, is the only

target for which ¥(p, ¢) > 0. Thus, the generalized filtering mechanism correctly reduces to the
specific case presented in the main text when the ground-truth coupling is one-to-one. O
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B Theoretical Foundations

This section establishes the convergence of our adaptive Sinkhorn DRO approach. We address two
key technical challenges: (1) the dynamic nature of the uncertainty set during optimization, and (2)
the nested expectations in our objective leads to the biased gradient estimation.

We prove convergence under four mild regularity assumptions that govern the behavior of the reference
distribution filtering mechanism. First, we establish that the filtered reference distribution is Lipschitz
continuous with respect to model parameters (Proposition [B.I). Combined with our Lipschitz

semantic transport cost, we obtain the continuity of the worst-case distribution [|Q7,; — Q7 [|7v

(Theorem[B.4).

To handle nested gradient computation, we employ Multi-Level Monte Carlo with Random Truncation
(MLMC-RT), showing that bias decays quadratically with approximation level (O(2~%)) while
variance increases only logarithmically (Proposition [B.5].

By carefully integrating these results with stochastic optimization theory, we prove that our algorithm
with decaying stepsize oy = «/(v/t + 1) achieves miny .7 E||VF;(6,)||* < ein T = O(e *log 1)
iterations, with total sample complexity O(e~* log? %) (Theorem . This complexity nearly
matches lower bounds for non-convex stochastic optimization, differing only by logarithmic factors.

B.1 Key Assumptions

We first formalize the assumptions that underpin our theoretical analysis.

Assumption 1 (Smoothness of the Model). (i) The loss function ¢(6,x) is Lg-smooth in 6:
(IVE(01,2) — VE(O2,z)|| < Lg||61 — 02| Vz € X; (ii) The induced semantic cost is Lipschitz
continuous for any p, ¢ € P(Z): ||Cy, (p,q) — Co, (0, ¢)|| < L |61 — 02]].

Assumption 2 (Lipschitz Continuity of Matching Quality). (i) The matching quality function ¢ (p, q)
is L~-Lipschitz continuous in §:

170, (P, @) — Yo, (P, q)| < Ly |61 — 62 44)

(ii) The threshold function 7(g; ) is L,-Lipschitz continuous in 6:
|7(q:61) — 7(q;02)| < Lr[|61 — 02| (45)

These assumptions abstract the key continuity properties required for our theoretical results. Assump-
tion [I]ensures that both the model loss and the resulting semantic cost vary smoothly with respect to
model parameters. Assumption [2] guarantees that the OT-based matching quality and the adaptive
threshold used in filtering are stable under small changes in the model. In Section[C] we verify that
these conditions hold in our AdaDRO framework, specifically for the semantic cost function and the
OT-based feedback mechanism that determines the adaptive threshold.

Assumption 3 (Boundary Regularity). For the ground-truth coupling 7, where each source p is
associated with one target ¢, such that (p,q,) > 0, we assume that for any ¢ > 0 and 6, the
probability mass of points in the e-neighborhood of the decision boundary is bounded:

v({p:lve(p,ap) — 7(qp;0)] < e}) < Lpe (46)

for some constant Lp > 0 independent of § and ¢.

Assumption 4 (Non-degenerate Filtering). For the ground-truth coupling 7, where each source p
is associated with one target g, such that 7(p, g,) > 0, we assume there exists ¢ > 0 such that for
all 0 in the parameter space, v(Sg) > d, where Sp = {p : vo(p, ¢p) > 7(gp;8)} is the set of points
accepted by the filtering operation.

Interpretation of Regularity Assumptions The validity of our convergence analysis relies on
two interpretable regularity conditions governing the filtering mechanism: Boundary Regularity
(Assumption [3)) establishes that the reference distribution’s density decays linearly near decision
boundaries. This smoothness condition—analogous to the Tsybakov margin condition in statistical
learning [56]—prevents pathological scenarios where infinitesimal parameter changes could cause
discontinuous shifts in the filtered distribution. Non-Degenerate Filtering (Assumption4)) guarantees
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the filtered distribution maintains a minimum effective support throughout training. Implementation-
ally, this is achieved through adaptive threshold calibration or entropy constraints in the transport
plan. Theoretically, it prevents algorithmic instability from excessive sample rejection.

Generally speaking, these assumptions ensure that the filtering operation produces distributions that
vary continuously with respect to model parameters (Proposition [B.1)), which is essential for the
convergence guarantees of our adaptive robust optimization algorithm.

Algorithm Overview We analyze the convergence properties of our proposed iterative procedure
(Algorithm for updating parameters § € R?. At iteration ¢, let Jy, represent the filtered reference
distribution and Cjp, denote the transport cost. The algorithm proceeds through the following steps at
each iteration ¢:

1. Reference Distribution Filtering: Given 6;, we filter the reference distribution v to obtain g, by
removing low-confidence samples according to:

o U(AﬁSet)

l//\é‘t (A) = xe, where Sgt = {p | V6, (pa Q) > T(q;et)v (pa Q) ~ :)/}7 X0, = V(Set) 47

2. Semantic Cost Adaptation: We update the transport cost function to Cp,, capturing semantic
distances in both feature and label spaces.

3. Worst-Case Distribution Computation: Using 7y, and Cy,, we compute the Sinkhorn DRO
worst-case distribution O} with fixed regularization parameter \:

el(@)=XCo, (p,q)

d@;\(q) = EPNPtr |: Zg (p)

where Zy, (p) = Eu~s,, (eXW=ACe, (),
4. Gradient-Based Update: We perform a gradient step on the iteration-specific objective:
Fi(0) =E,_5:[€06,9)] (49)
0141 = 0; — aygrad, where grad, =~ VoF(6;) (50)

We will show that if 7y, and Cp, vary "slowly" with respect to 6;, and F; is smooth in 6, then the
sequence {6, } converges to a stationary point under standard non-convex optimization conditions.

B.2 Continuity of Filtered Distributions

A key aspect of our approach is the filtering operation applied to the reference distribution. We
establish that this operation produces distributions that vary continuously with respect to model
parameters. The following analysis focuses on the one-to-one ground-truth coupling case described
in the main paper, though similar results can be established for the general case in Appendix[A.6]

For a one-to-one ground-truth coupling 7, each source p is associated with exactly one target g, such
that ¥(p, ¢p) > 0 and ¥(p, ¢) = 0 for all ¢ # ¢,. The filtering operation is defined as:

~ v(p) - Ive(p, 4p) = 7(gp; 0

l/e(p) — ( ) [ ( P) ( p )]
X0

where Yy is a normalization constant ensuring 7y is a probability distribution.

Proposition B.1 (Lipschitz Continuity of Filtered Distributions). Under Assumptions[2{f4] the filtering
operation produces distributions that are Lipschitz continuous with respect to 0 in the total variation
distance:

; 6D

10, — Vo, |lTv < Lrv||6h — 62| (52)

holds for any 0,05 and some constant Ly > 0.

Proof. We proceed in three steps:

(i) Bounding the symmetric difference. Let S1 = {p | 70,0, qp) > 7(gp;01)} and S2 = {p |
0> (P, ap) = 7(qp3 02) }-
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For p € S1\ Sa, we have: g, (p, ¢p) > 7(qp; 61) and vo, (P, ¢p) < 7(qp; 62)
Using the Lipschitz continuity from Assumption [2}

10, (P, ap) = Y0, (Ps @) — Lo 1|61 — 02| (53)
7(qp; 02) < 7(qp; 01) + L (|01 — 02 (54)
where L., and L, are the Lipschitz constants from Assumption@

For p € S1 \ S2, these inequalities imply:

0 <76, (P, gp) = 7(gp; 61) < (Ly + L7)[|61 — b (55)
Similarly, for p € S, \ S, we obtain:
—(Ly + Lo)[161 = b2 <70, (P, gp) — (g3 01) <O (56)
Therefore, the symmetric difference S;ASy = (S1 \ S2) U (S2 \ S1) is contained within:
{P: o, (P, ) = 7(gp; 01)] < (Ly + L7)[|60 — 021} (57)
By Assumption[3] we have:
v(S1AS2) < Lp - (Ly+ L) |61 — 02| = L, |61 — 02| (58)

where L, = Lp - (L, + L) and Lp is the constant from Assumption[3|

(ii) Bounding normalization constants. The normalization constants are yg, = v(S7) and xg, =
v(S2), with difference:

X6, — Xo,| = [V(S1) — v(S2)| < v(S1AS2) < L,||6h — 0| (59)

By Assumption [4] both xp, and yg, are bounded below by § > 0, where ¢ is the constant from
Assumption [}

(iii) Bounding the total variation distance. The total variation distance between g, and vy, is:

~ ~ v(ANS v(ANS
Vo, — Vo, |lrv = supacr (le ) — (X; 2) (60)
We decompose this into:
V(ANS1) _ v(ANSy) | o |v(ANS1) _ v(ANS) n v(ANS1)  v(ANSa) ©61)
X6, X0 = X6, X6 X6 X6
For the first term:
M(ANS1) _ A0S | _ a0 8)) 11 y(AﬂSl)|X91 — X0, |
X0 X02 X6, X6, X6, X0,
_ L,
<o mxol Luyg g (62)
X6, d
where we used (AN Sy) < xp, and xp, > 0.
For the second term:
V(ANS))  v(Ansy) | _ V(AN S1) —v(ANS)|
X605 X605 - X6,
v((ANS1)A(ANS,)) < V(AN (S1AS3))
B X062 o X062
v(S1AS L,
< UELS) Luyy gy (63)
X0, o
Combining both terms:
v(ANS v(ANS.
(o5 ve05e) | < 219, — 6 (64)
Since this bound holds for any measurable set A, we have:
~ - 2L,
176, = Voollrv < —==[161 — b2l = Lrv |61 — 02| (65)
where Ly = ZLT” = %. O
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B.3 Stability Analysis of the Worst-case Distribution

To guarantee convergence of our algorithm, it is essential to characterize how the objective function
evolves in response to changes in the filtered distribution and the transport cost. The following lemma
establishes the smoothness of the Sinkhorn DRO objective, showing that it inherits the Lg-smoothness
of the loss function with respect to model parameters.

Lemma B.2 (Smoothness of Sinkhorn DRO Objective). Under Assumption|l| at any iteration t, the
Sinkhorn DRO objective Fy(0) =E__51[€(0,q)] is also Lg-smooth.
t

Proof. By Assumption the loss function (6, q) is Ly-smooth in @ for all g:
Vol(61,q) — Vol(02,q)|| < Lol|6h — 02 (66)

For the objective function F;(0) =E__5 > [4(0, q)], where Q\f‘ is fixed for a given ¢, we have:
IVE,(61) — VE(02)]| = ||V9]Eq~@? [€(01,9)] — Ve]EqN@? [€(02, q)]]|
= ||Eq~@tx [Vol(01,9)] — Eqw@ [Vol(62,q)]]|
< E, 5 [IIVel(01,9) = Vol(62, )]
< E, g3 [Loll6r — b2]]
= Lol|th — 02| (67)

Therefore, the objective function F(6) inherits the Ly-smoothness from the loss function £(6, ¢). O

To analyze the stability of our algorithm, we need to understand how the worst-case distribution

changes with model parameters. Let 7} be the worst-case distribution computed using parameter 6;
and regularization A:

et(01,0)=ACo, (p,q)
ZQt, (p)

where Zp, (p) = E, 5, (/% w)=2C0. (W) The total variation (TV) distance provides a natural
metric for quantifying the difference between probability distributions.

10Ng) = Eper, [ } 479, (q) (68)

Proposition B.3. Let (X, 1) be a measure space. Let f,g : X — R be measurable functions with
finite log-partition functions Zy = [, @ du(x), Z, = Jx e9@dpu(x) < oco. Define probability

. ol (@) 09(@)
densities dP(x) = fo dp(z), dQ(x) = ng dp(z). Then |P — Qllrv < VIIf — 9lloo-

Proof. We use Pinsker’s inequality to relate the total variation distance to the KL divergence:

1
1P - Qllov < |/ KL(PIQ) (69)
For the KL divergence between P and (), we have:
B P(z) ef (@) ef(“)/Zf
KL(P|Q) —/XP(.%‘) log Q(I)dx—/X Z; log /7, du(x) (70)
ef () | Z,
= [ 0@~ o) + lox () an
el (@) Z
— [ @)~ glo)uta) + 1o 2 )
x Zf Zs

of (@)

Since | f(z) — g(x)| < ||f — gl for all z, wehave [, <7—(f(2) = g(x))du(z) < [If = glloc-

For the partition function ratio, since g(x) < f(z) + || f — gl for all z, we have:

Zg:/ e9<r>du(x)g/ S @I =0l 4y ) = el Tl 7, 73)
X X
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Therefore, | log %’| < |If = glloo- Combining these bounds:

KL(P|Q) < [If = gllse + I1f = glloc = 2[f — gllos (74)
Substituting into Pinsker’s inequality: ||P — Q[lzv < /5 - 21f — glloo = v/ I/ — 9l
Thus, we have established || P — Q||7v < /|| f — 9/c- O

Theorem B.4 (Continuity of the Worst-Case Distribution). Under Assumptions[I{{4] for consecutive
iterations t and t 4 1:

~ ~ L
1Q%1 = Qtllrv < Glibrss = bull + 1101 — 60l (75)

where G = G+ ALc + Ly combines the gradient bound Gy = sup,c x [|Vol(0, q)||, the Lipschitz
constant L¢ of the transport cost, and the Lipschitz constant Ly of the filtered distribution.

Proof. Recall that the worst-case distribution at iteration ¢ is given by:
et (@) —=ACo, (p,q)

Zp, (p)

We introduce an intermediate distribution to separate the effect of parameter changes on conditional
weights and reference distribution:

dQ}(a) = Epmr, | a7, (a) (76)

~\ l@)=ACe, , (p.a) R
1Q%1(0) = By, [ — 50 @) W)
By the triangle inequality:
1@ = Qllzv < 1@ — Qllrv + QY — QPllrv (78)

For the first term, since @f‘ ' 1 and @f‘ ' 1 differ only in their reference distributions:
A AA = =
1@ 1 — Qevallry < We, . — o, lrv < Lov |01 — 04 (79)
where the last inequality follows from Proposition [B.T]

For the second term, we analyze the change in conditional weights. For each fixed p, define the

functions f,(q) = £(0¢, ¢) ~ACo, (p, q) and fi1(q) = £(0,11,q)— ACy,.., (p. q). By proposition[B3)
we have:

eft+1() elt()
Z0t+1 (p) Zat (p)

We bound | fi11 — f¢/|oc using Assumption [T}

< ||ft+1 - ftHoo
TV

1. For the loss function, by Taylor’s theorem with the smoothness property:
Ly
[(0rs1,q) — €0, @) < [Vol(Or, @)||[|60r41 — Oul| + 7||9t+1 - 9t||2
L
< Gol| O — Ol + 76||9t+1 — 02 (80)

2. For the transport cost, by Lipschitz continuity:
1Co:11 (P, ) — Co, (P, )| < Lo |01 — 04|

Combining these bounds:

[fe41 = filloo = sup | fi1(q) — fi(q)|
q
L
< sup (Gellfuia = 04l + S 101 = 00> + ALicl|frs1 — 601
q

L
= (G ALe)Besr = Ol + 101 — ] (81)
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Since this bound holds for all p, taking expectation over P, preserves the inequality:
~ . L
1@ = Qv < (Ge+ AL |01 — be| + 70||9t+1 — 0:? (82)

Combining the bounds and (82) into (78):
5 ~\ Ly 2
1741 = Q¢llrv < Lrv |01 = bell + (Ge + ALo)Gr1 — el + 7101 — G
Ly 9
=(Ge+ALc + Lrv) |01 — 0] + 7||9t+1 — O]
L
= Gll6r1 — Oill + 5 [1Besr — 6 (83)

where G = Gy + AL¢c + Lpy.

This establishes that the worst-case distribution has a continuous dependence on model parameters,
accounting for changes in both conditional weights and reference distribution. O

This result shows that small changes in model parameters lead to controlled changes in the worst-case
distribution, with a continuity constant that depends linearly on the regularization parameter A. The
quadratic term reflects the impact of the loss function’s smoothness. This continuity property is
crucial for establishing the convergence of our algorithm in next subsection.

B.4 Convergence Analysis

Now we present our main convergence result. Compared to standard optimization settings, our
algorithm must overcome two key challenges: (i) the dynamic nature of both transport costs and
uncertainty sets; (ii) biased gradient estimates arising from the nested expectations in the Sinkhorn
DRO objective.

For the first challenge, we have established the continuity of both the transport cost Cy and the filtered
distribution 7y with respect to model parameters 6 in Sec. To tackle the second challenge, we
employ the Multi-Level Monte Carlo (MLMC) gradient estimation technique, specifically the Random
Truncation variant (MLMC-RT), which achieves an effective trade-off between bias, variance, and
computational cost.

B.4.1 Multi-Level Approximation for Sinkhorn DRO

We adopt the Multilevel Monte Carlo with Randomized Truncation (MLMC-RT) framework [25]. In
our setting, we aim to optimize the following non-convex objective at each iteration ¢:

ef(@)—ACo, (p,9)

Z@t, (p)

where Zp, (p) = Equp, [e/97*C% (9] is a normalization factor. Because of the nested expectation
t
and normalization term, directly obtaining unbiased gradients is intractable.

Ft (9) = EpNPtr]EqN'V\gt g(ev Q) ) (84)

To overcome this difficulty, we introduce a sequence of approximations indexed by level [. Specif-
ically, we approximate the Sinkhorn DRO objective F;(0) via the following level-/ Monte Carlo
approximation:

£(q)—ACo, (p,q)
0 _ 1 e ¢
F.7(0) = ]EPNPtrEﬁélt) {? quﬁéi) ( Z(Sil)(p) 00, Q))]a (85)
where:

. ﬁéi) denotes a Monte Carlo approximation of T, using 2! independent and identically
distributed (i.i.d.) samples from 7y, , i.e., ﬁéi) ={q,...,qu},

. Zéi)(p) =E, 50 [e4(W)=ACo,(P-)] s the corresponding normalization factor at level I.
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Algorithm 2 MLMC-RT Gradient Estimation for Sinkhorn DRO

Requlre Current parameter 6,, target accuracy €, constantsa =2, b=c =1

. Set the maximum level L = [log,(e~1)]

Define sampling probabilities prob®) = 2=+ /(1 — 2=(E+1) forall l € {0,1,..., L}
Randomly sample a level I ~ {prob(®) prob® ... prob(*)}

(l)

Draw 2! i.i.d. samples from Dy, to form 7,

If [ > 0, reuse the first 2/~ samples to construct oy

Compute G (6, ¢") (from (86)) and G\~ (6,, ¢=1))if 1 > 0
Return the gradient estimate:

A A e

b G (0:,¢), ifl =0,
L (th)(ﬁt,C )—Gglfl)(Qt,C(l_l))» otherwise.

prob()

grad, =

MLMC-RT gradient idea. The gradient Vy F};(0) is approximated by estimating the gradient of
1

L (0):

(@) —ACo, (p,q)

6, ¢0) .= vFE(6) =E,yup E o
vty Z3 (p)

Vol(6,9)]. (86)

where () denotes the random samples used at level 1. As | — oo, G\"(0,¢0) — VE,(6).
In this framework, the gradient estimator is constructed by combining estimates across multiple
approximation levels, where higher levels yield lower bias but incur greater computational cost. We
now verify that this family of approximations satisfies the key MLMC conditions:

Proposition B.5 (MLMC Parameter for Sinkhorn DRO). At each iteration t, under Assumptions[IH4]
and bounded loss and transport cost, the sequence {Ft(l) (0)}2, satisfies:

1. Squared bias parameter a: ||VFt(l)(9) — VE0)|? < M2~ with a = 2 (quadratic
decay)

2. Variance parameter b: For the difference estimator H™ (0,¢0) := grad{’ (6, ¢®) —

grad,(fl 2 (6, ¢1U=1), we have the variance Var( H, tl)(9, ¢0Y)) < M2~ with b = 1 (linear
decay)

3. Cost parameter c: The cost of computing H." (0, (1) is bounded by C < M2 with
c = 1 (linear growth)

Here M, , My and M, are all constants.

Proof. For the bias parameter a, note that VF;(6) involves expectation over 7y, while VFt(l)(Q)
approximates this with 2! i.i.d. samples. Under standard Monte Carlo convergence results for bounded

smooth gradients, we have HVFt(l)( 0)—VE,(0)|| = O(27), so the squared bias is O(272), implying
a=2.

For variance, the difference estimator is:
Y =P 0,¢0) - 6V (0,¢O]pm0), 87)

where ¢(¥) |o1—1 reuses the first 2/~1 samples. This shared randomness ensures that the two estimates
are highly correlated, and their difference has variance O(27!), hence b = 1.

For cost, both G(l) and G(l_1 require evaluating gradients for 2! and 2!~! samples respectively.
Since 2! + 2!71 = 1.5 2, the cost is O(2'), implying ¢ = 1. O

Remark 3. The efficiency of MLMC-RT depends crucially on three problem-specific parameters:
(1) the bias decay rate a (how fast the approximation error decreases with level), (ii) the variance
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decay rate b (how fast the variance of level differences decreases), (iii) and the cost growth rate ¢
(how expensive each level is to evaluate). The above proposition establishes that, for our Sinkhorn
DRO setting, the objective gradient satisfies the standard MLMC assumptions with parameters
(a,b,¢) = (2,1,1). This result is key to applying MLMC-RT effectively and proving convergence
with nearly optimal sample complexity.

B.4.2 MLMC-RT Gradient Estimation

The stochastic gradients grad, employed in our optimization procedure are computed using a Multi-
Level Monte Carlo estimator with Randomized Truncation (MLMC-RT), following the methodology
developed in Hu et al. [25]].

Since computing exact expectations over @f‘ is intractable due to nested expectations and normaliza-
tions, MLMC-RT approximates the gradient via:

* Randomly selecting a level I € {0,1,...,L} according to a probability distribution
{prob(l)}, where prob(l) o 2~ (b+e)l/2

* Computing a reweighted difference estimator based on samples at level (.

This randomized truncation technique effectively balances bias and variance, while significantly
reducing computational cost compared to fixed-level or naive methods.

The resulting estimator grad, satisfies E[grad,] = V4 F(")(6,) rather than Vo F(6;), hence it is a

biased estimator of the true gradient. However, by carefully choosing L = [% log(4M,e~1)], we
ensure that this bias remains controlled and does not impair the convergence of our algorithm.

The detailed procedure for MLMC-RT in our setting is as follows:
The MLMC-RT estimator enjoys the following theoretical guarantees:

Lemma B.6 (Properties of MLMC-RT Estimator). Let grad, be generated according to Algorithm@
Then:

1. Controlled Bias: ||Elgrad,] — VF,(6;)| < v Mge,

2. Logarithmic Variance: E[||grad, — E[grad,]||?] < K log(e~') for some constant K > 0,

3. Efficient Computation: The expected computation cost per iteration is O(log(e™1)).
Proof. The controlled bias follows from truncating at level L, which ensures ||VFt(L) 0) —
VE(0)|? < M,27%L < M, €2, giving the bias bound ||E[grad,] — VF,(6,)| < v/ Me.

For the variance, with b = ¢ = 1 and prob(l) x 27 we have:

Var(H; (0, ¢))
i ) . JARAZAN)
E[l|lgrad, — Elgrad,]|*] Zpr b —prob(l)) (88)
M2~ bl
< rob® . 89
ZP prob(l)) (89)
We set prob() = 25:12*’“ = 1_22_7(:“) (which is approximately 2~!~! for large L). Substituting:
L
2! M2~
2 b
E[”gradt _E[gradtm ] < Z _ - (L+1) (2 l/( _9- (L+1)))
1=0
L
= My(1 - 27NN "1 = My (1 — 27 ) (L + 1)
1=0
= O(L) = O(log(¢™ 1)) (90)



This is consistent with the results from [25]], Table 1, for the MLMC-RT estimator with a = 2,
b=c=1.

We now analyze the computational cost of generating the MLMC-RT gradient estimate at each
iteration. Let W; denote the random variable representing the computational cost incurred at iteration
t, corresponding to the number of samples used to compute the stochastic gradient grad,.

Since the MLMC-RT procedure selects a random level [ according to the distribution
{prob® prob®, ... prob™}, and computing the estimator at level I requires a total cost W
proportional to 2!, the expected computational cost per iteration is given by:

L L
E[W;] = Zprob(l)Wl < M, Zprob(l)Qd (where ¢ = 1 and W, < M,2")

1=0 1=0
L L 271 27l
— gl 9l ()
ch;prob 2 —Mc§1_2_(“_1) 2" (since prob'’ = 1_2_(L+1))
M.(L+1) 1
=1 gy = Oloale™)). oD

Thus, the expected per-iteration computational cost grows only logarithmically with the desired
precision, which highlights the efficiency of the MLMC-RT approach. O

Remark 4 (Comparison with Standard SGD). The MLMC-RT estimator achieves a logarithmic
growth of variance, significantly better than the O(¢~!) variance growth under naive stochastic
gradient descent (SGD). This improvement critically reduces the overall sample complexity while
maintaining bias control.

B.4.3 Main Convergence Theorem

We now establish the convergence guarantees of our adaptive Sinkhorn DRO algorithm under MLMC-
RT gradient estimation.

Theorem B.7 (Convergence of AdaDRO). Suppose Assumptions hold, and the iterates
are bounded as ||0;]| < M. Using the MLMC-RT gradient estimator with maximum level

L = [log,(e~1)] and probability distribution prob!) oc 27!, and setting the step size as oy = -

:

for some constant o > 0, we have that after T = © (6_4 log %) iterations, Algorithmsatisﬁes
. 2] « 2
minE [|[VE(0)] < ¢

with a total sample complexity of O (6_4 log? %)

Proof. Our proof integrates both the adaptive dynamics of our algorithm and the properties of
MLMC-RT gradient estimation.

Step 1: Descent lemma with adaptive objectives. By the Ly-smoothness of F; (Lemma [B.2):
Fi(Br1) < Fi(0) - o0 (VE (). grad,) + 2200 graa, |? @)
To account for the changing objective function, we add and subtract F} 1 (6;1) to obtain:
Fp1(0i41) < Fi(0:) — o (VFi(61), grad,) + LQTO[?ngadtHQ + (Fig1(041) — Fi(0i41)) (93)

Step 2: Bounding the adaptive drift. Let M, := sup, |{(0, ¢)|, by Theorem we have:
|Fy1(0i51) — Fo(0i1)] < Mel|Qey — Q12

L
<M, <G||9t+1 — 0l + 70||9t+1 - 9t||2>

Lo Mo?
= GMuaylgrad, || + =" |lgrad, (94)
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Step 3: MLMC-RT bias-variance decomposition. For the key term E[(V F;(6,), grad,)], we apply
the bias-variance decomposition:

E[(VF;(0:), grad,)] = (VFi(6:), E[grad,])
= [VE(0:)|* + (VEFi(6:), Elgrad,] — VE(61))
From Lemma we have ||E[grad,] — VF(0;)|] < /M,e, by Cauchy—Schwarz inequality,
yielding:
E[(VF;(6:), grad,)] = [[VF(0,)|” + (VF3(6:), Elgrad,] — VF(6,))
> [VE(0.)I” = [VF(8,)]| - |Elgrad,] — VE(6,)]|
> ||VFt(9t)||2 - \/ﬁae' [V F(0:) |l 95)
For the second-moment term, using the variance bound from Lemma@
E[|grad,|*] = |E[grad,]||* + E[|grad, — E[grad,]||’]
< (IVE00)[l + v/ Ma€)* + K log(e ™)
< 2| VF(6,)] + 2M,e? + K log(e ™) (96)

Step 4: Combining the bounds. Combining the estimates from Steps 1-3, and pluging (94), (93)
and (96) into (93) gives
E[Ft+1(9t+1)] S E[Ff(ﬂf)} — Oy E[”va Gt || ] \/ O[tE]E[HVFt 6t)||]
N Lga? LoMa? B

]E[ngadt”z] + GMpoy E[ngadtH] + [||gradtH2} 97)

Substituting the bound for E[||grad, |?] from (96):

E[Fy11(6i41)] <E[Fi(60)] — v E[[VE,(00)11°] + v/ Macue B[|| VF(6:)]]
Lg(l + M@)a%

* 2

(2||VFt(9t)||2 + oM, + Kloge—l) + GMo, E||grad,||]. (98)

Bias cross—term. Using Young’s inequality ab < 1a? + b? with a = \/a¢ || VF,(6;) |, b = vV Maoue,
VvV MaateE[HVFt(Ht)M S Z]E[HVFt(et)H ] +Maat€ . (99)

Adaptive-drift linear term. First apply Jensen: E||grad, || < \/E|grad,||?; then plug (96) and use
Young’s inequality again to obtain

GMa, Ellgrad,| < GMéat<\/§E1/2||VFt(9t)”2 +v/2Mue? + K log 6_1)

< %1}5||V1?«}(9t)||2 + 204 (GQMKZ M+ Kloge—l) (100)
Quadratic term from smoothness. For the quadratic terms involving ||V F;(6;)|* in (98), choosing

« small enough such that oy Ly (1 + My) for all ¢, we have
Lo(L+ M) [VE0)| < ZHIVE6)]? (101)
Combining all pieces (99)-(T0T) into (O8) gives

E[Fi41(0141)] <E[F(6,)] — %EHVFt(Qt)HZ + O(cre?) + O(a loge™") + O(f log e 1),
(102)

Step 5: Telescoping. Summing (T02) for¢ = 0,...,7—1 and setting AF' := E[F ()] —infy F(0),
we have:

T-1 T-1 T-1 T-1
i Z a E|VF(6,)|* < AF + O(GQZat) + O(log e Zat) + O(log e Zaf).
t=0 t=0 t=0 t=0
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Since a; = =, we know ZtT;Ol oy = O(VT) and Zt o @ = O(logT). Because ZtT;()l ap >

T, we deduce:

- ZEHVB 0% < O(AF) + O( ) + O(%) n O(IOgé ) (103)
t=0
Choosing T' = O(e *log e 1) ensures M = O(e*loge™1), and ;?iﬁg_; = O(€*). Hence

in E|VE.(6,)]? < 2.
Jin E[[VE6,)]* < ¢

Each iteration costs O(log ¢ ~!) samples (Lemma , so the total sample complexity is
O( ~41og? *1) .
O

The sample complexity O(e~*log?(e~!)) matches the lower bound (¢~*) [I]] for general non-
convex stochastic optimization only by logarithmic factors.

C Verification of Technical Assumptions

To complete our theoretical analysis, we verify the key technical assumptions required for our
convergence guarantees.

Lemma C.1 (Lipschitz Continuity of Semantic Costs). Under mild conditions on the encoder
network and kernel function, both feature transport cost C* and label transport cost C” are
Lipschitz continuous with respect to 6.
Proof. For the feature transport cost Cj' (2, 2;) = ¢ — Ker(gq(w;), go(z;)), we assume:
(i) The encoder gy is Lg-Lipschitz continuous with respect to parameters 6:

90, () — g0, (2)|| < Lgll0h = 0o Vo e X (104)

(ii) The kernel function Ker(-, ) is L -Lipschitz continuous in both arguments:
|Ker(z1,w1) — Ker(z2,w2)| < Lg(||z1 — 22| + ||lw1 — w2]|) (105)
These are reasonable assumptions for common kernel functions like RBF kernels or dot product
kernels with bounded inputs.
For the feature transport cost:
(o (i, 5) — Ciy (w4, 25)| = [Ker(ga, (), o, () — Ker(go, (1), 9o, (7))
< Lr(llgo, () = go, (i) | + llg0, (25) = go. (2;)]])
< L (Lgl01 = 2] + Ly |62 — 02])
= 2Lk Ly||01 — 65| (106)

Thus, C’(;Y is Lipschitz continuous with constant Lox = 2Lk L.

For the label transport cost C’,%]k, = ¢ — Ker(og, ox’) where oy, = wy, (the classifier weights for class
k), a similar argument holds. Since wy is a subset of the parameters 6, we have:

w1k — wak|| < ||61 — 2| (107)

Therefore:
|C§i (k, k") — Coy2 (k,k")| = |Ker(w1k, wig) — Ker(way, war)|
< L (Jwik — wak|| + |wi — warr]])
< 20|61 — s (108)
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Thus, Cg} is Lipschitz continuous with constant Loy = 2L .

The combined transport cost Cy(p;, pj) = Cif (i, 7;)+C3 (ys,y;) is therefore Lipschitz continuous
with constant Lo = 2Lk (Lg + 1). O

Lemma C.2 (Matching Quality Lipschitz Continuity). Under suitable conditions on the encoder
network and kernel function, the matching quality function vg(p,q) = ~o(p,q) is L~-Lipschitz
continuous in 0.

Proof. We fix p and view v (p, q) as a probability density over g¢:
exp(—Co(p, q)/€)
v(q (109)
Zo(p) @

Let f(q) = —Co,(p,q)/e, 9(q) = —Co,(p,q)/e. Then, ~p,(p,-) for i = 1,2 defines a probability
density over (Q, v) of the form dP;(q) = e;(;) dv(q). By Proposition

Yo(p, q) =

1
170, (25 -) =70, (s )lrv < VIIf = gl = \/6||091 (p:) = Coy (P ) lloo (110)

From Lemmal[C.1] Cy is L¢-Lipschitz in 6, so

L
ey (b.) =78, (02 Mllrv < A/ = 1161 — 6] (11

This implies pointwise Lipschitz continuity:

/L
|791 (p, Q) - Vez(pv Q)l < ”791 (p7 ) - '792(17’ ')”TV < TC”el - 92” (112)

Hence, v¢(p, ¢) is L-Lipschitz in 6 with L, = \/L¢ /e. O

Lemma C.3 (Threshold Lipschitz Continuity). Under the conditions established in Lemma[C.2) the
threshold function 7(q; 0) is L.-Lipschitz continuous in 6.

Proof. The threshold function is defined as:

7(4;0) = 71(0) ma}:jl(f_z’ (Hq) 5 (113)
where 71 () = E(,,4)~570 (P, ¢) and 72(q; 0) = Epv(p, ¢).-
From Lemma (C.2| vy (p, ¢) is L.-Lipschitz. Therefore:
[71(01) = 11 (62)| = [Ep.q)~5 70, (5 0) = 76, (P, 9)]|
< Ep,q)~5(176: (P, @) — 70, (0, 0)]
< L,[|01 — 02| (114)
Similarly, 75 (g; ) is L.,-Lipschitz, and:
\rr;&}mz(q/; 01) — H};;txm(q’; 62)] < max 72(q';61) — 12(q';02)| < Ly ||61 — 02 (115)
Let r(¢q;0) = %. Under regularity conditions ensuring that 75(g; ) is bounded and
maxy 72(¢’; 0) is bounded away from zero, we can establish that (g; 0) is L,-Lipschitz.
Now consider the full threshold function:
17(q;01) — 7(q;02)| = |71(61)7r (g5 61) — 71(02)7(g; 02)]
< |ma(00)r(q;01) — 7(q; 02)] + [7(q; 02)[|71(61) — 71(62)]
< L.[|6y — 02 (116)
where L, = L, + L, = O(L,). O

These Lipschitz continuity properties ensure that small changes in model parameters lead to bounded
changes in both the matching quality function and the threshold function, which is essential for the
stability and convergence of our adaptive robust optimization algorithm.
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D Experimental Results

We evaluate the proposed AdaDRO framework across a diverse set of benchmarks to assess its
effectiveness under various types of distribution shifts. Here is the code.

D.1 Experimental Setup

Datasets. We evaluate on three widely studied distribution shift settings: Colored MNIST [2],
which tests robustness under spurious correlations; Waterbirds [46], a real-world dataset with strong
background-label correlation; CelebA [40], a benchmark for facial attribute recognition. We also
evaluate on several long-tailed benchmark datasets: CIFAR-10-LT and CIFAR-100-LT [34].

Baselines. We compare AdaDRO with the following well-known methods: KL-DRO [43]], Wasser-
stein DRO (WDRO) [9], Sinkhorn DRO SDRO [58]], a unified DRO method UniDRO [11]], semantic-
aware robust methods such as GroupDRO [46]], an invariant risk minimization method IRM [2].

For fairness, we report the average accuracy and the distribution shift gap (drop in performance under
shift). All models are implemented with PyTorch on a single NVIDIA RTX 6000 Ada GPU. The
model is optimized using the AdamW optimizer [42]. For AdaDRO, we use cosine similarity as the
kernel in (10), and employ basic augmentations (flip, crop) for semantic calibration in Sec.

D.2 Robustness to Spurious Correlation and Group Shift.

AdaDRO is broadly applicable thanks to its flexible reference distribution design. In imbalanced
settings, v can be constructed via reweighting or resampling. In other tasks, domain priors can be
easily integrated, similar to many specialized robust methods. We evaluate AdaDRO across diverse
scenarios, including spurious correlation, group shift, and long-tail generalization.

Spurious Correlation. On Colored MNIST, AdaDRO outperforms Sinkhorn DRO and IRM by
7.3% and 4.6% (on worst-group) respectively in worst-group accuracy, as shown in Table[5] This
demonstrates its ability to filter misleading correlations during training. Notably, when the correlation
between color and label is strong (bias = 0.9), all other DRO methods suffer a significant drop except
AdaDRO, which effectively mitigates the over-pessimism nature of DRO methods.

Real-world Group Shift. On Waterbirds, AdaDRO significantly improves the worst-group accuracy
(+5.1%) over Sinkhorn DRO and matches GroupDRO, which is specialized for group-shift scenarios.
Table [6] show the results on Waterbirds.

Table 5: Accuracy (%) on Colored MNIST under high spurious correlation. AdaDRO achieves the
highest robustness across methods.

Method Avg Accuracy Worst-group Acc  Gap
IRM [2] 79.5 75.3 4.2
GroupDRO [46] 78.4 73.0 54
KL-DRO [43] 74.9 68.5 6.4
WDRO [9] 75.8 69.1 6.7
SDRO [58]] 79.0 72.6 6.4
UniDRO [11]] 67.1 47.8 20.7
AdaDRO (ours) 87.2 79.9 7.3

Table 6: Accuracy (%) on Waterbirds. AdaDRO is competitive with GroupDRO while outperforming
others.

Method Avg Accuracy Worst-group Acc  Gap
IRM [2] 82.6 73.2 9.4
GroupDRO [46] 86.3 80.5 5.8
KL-DRO [43] 81.0 71.5 9.5
SDRO [58]] 85.0 75.4 9.6
AdaDRO (ours) 87.1 80.5 7.0
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Long-tail Generalization. We conduct our experiments on two widely used long-tailed benchmark
datasets: CIFAR-10-LT and CIFAR-100-LT. These datasets are derived from the original CIFAR-10
and CIFAR-100 by artificially reducing the number of training examples in tail classes to simulate
long-tailed distributions. The imbalance in these datasets is quantified by the imbalance factor (IF),
defined as the ratio between the number of samples in the most frequent class and that in the least
frequent class. We evaluate our model under three imbalance levels: IF=10, I[F=50, and I1F=100,
representing increasing levels of class imbalance.

Baselines. We compare AdaDRO with a diverse set of baselines tailored for long-tailed learning:
Decouple [24]: Decouples representation learning from classifier training, using balanced sampling
in the classifier phase; Focal Loss [38]: Reweights the loss to focus training on hard-to-classify
(often tail) examples; DRO-LT [48]]: A distributionally robust optimization framework specifically
adapted for long-tailed classification; SSL [32]]: A contrastive learning-based method that enhances
representations for tail classes via augmented positive samples; Resample [[13]: Performs oversam-
pling of minority classes to reduce imbalance; Reweight [13]]: Adjusts sample weights in the loss
function based on inverse class frequency; SinkhornDRO [58]: A recent OT-based DRO method
that regularizes transport cost to mitigate over-pessimism in robustness.

Results and Insights. As shown in Table[7} our method consistently outperforms all baselines across
different imbalance settings on both CIFAR-10-LT and CIFAR-100-LT. AdaDRO achieves the highest
accuracy under all imbalance factors, especially under the most severe imbalance (IF=100), where it
shows substantial gains over both traditional and robust baselines. This highlights the advantage of
our adaptive distributional robustness formulation in focusing learning on underrepresented regions
while maintaining calibrated semantic alignment.

Table 7: Accuracies of ResNet32 on long-tailed CIFAR-10 and CIFAR-100 datasets with different
imbalance factors (10, 50, and 100).

Dataset CIFAR-10-LT CIFAR-100-LT
100 50 10 100 50 10

Decouple [24] 70.4 76.2 86.4 41.2 46.8 57.9
Focal Loss [38] 70.3 76.7 86.6 38.4 443 55.7
DRO-LT (48] 737 772 869 454 553 612
SSL [32] 673 754 86,5 375 440 56.7
Resample [13] 66.5 748 864 334 439 551
SinkhornDRO [58]  65.7 745 847 382 493 563
AdaDRO 742 782 879 464 56.6 64.8

Table 8: Performance on ImageNet-LT. We report accuracy on three class splits: many-shot (more
than 100 images), medium-shot (20-100 images), and few-shot (fewer than 20 images), which follows
the settings in [30} 41]].

Method Many-shot Medium-shot Few-shot
ERM+Aug 41.8+0.2 2474+ 04 11.5+ 0.6
Class-Balanced Loss 40.8 £0.3 31.1+03 20.8 £0.5
DRO-LT 422 +0.2 326 +03 22.5+04
Sinkhorn DRO (SDRO) 40.1 £0.3 295+04 21.4+£0.5
AdaDRO (Ours) 42.14+0.2 344+ 0.3 273+ 04

AdaDRO w/o Adaptive Filtering  41.5 + 0.2 29.8£0.3 21.7£04
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D.3 Efficiency Analysis.

Tables 9] and [I0] report normalized total training time. While AdaDRO incurs moderate overhead due
to semantic alignment and filtering, it remains tractable and justifiable given the performance gains.

Table 9: Normalized total training time (relative to IRM) on Colored MNIST and Waterbirds.

Method Colored MNIST (Norm.) Waterbirds (Norm.)
GroupDRO 1.00 1.00
IRM 1.12 1.06
KL-DRO 1.16 1.14
WDRO 6.24 6.22
SDRO 1.25 1.27
UniDRO 6.03 5.49
AdaDRO (ours) 1.31 1.34

Table 10: Normalized total training time (relative to Decouple) on CIFAR-10-LT and CIFAR-100-LT.

Method CIFAR-10-LT (Norm.) CIFAR-100-LT (Norm.)
DRO-LT 1.00 1.00
Focal Loss 0.84 0.79
Decouple 1.07 1.03
SSL 1.05 1.02
Resample 0.95 0.93
SinkhornDRO 1.12 1.19
AdaDRO (ours) 1.28 1.26

D.4 Ablation Studies

We perform ablation studies to assess the contribution of key components in AdaDRO. Detailed
results are shown in Tables [TTHI3l

(i) Semantic Calibration. We disable the semantic calibration objective by replacing the inverse OT
formulation in (T2) with a simple Euclidean distance cost. This leads to significant drops in both
clean and worst-group accuracy, confirming the importance of semantically aligned transport.

(ii) Adaptive Filtering. We replace the filtered reference distribution 7; with a fixed one, either
generated by Mixup [63] or uniform sampling. Without filtering, performance degrades due to
irrelevant or noisy samples in v.

(iii) Robustness to Uncertainty Radius. We compare AdaDRO with Sinkhorn DRO under varying
uncertainty set radius A\. As shown in Table AdaDRO maintains stable robustness even under
aggressive uncertainty, whereas Sinkhorn DRO suffers from severe over-pessimism or instability.

Table 11: Impact of removing semantic calibration. Performance significantly drops without IOT-
based feature alignment.

Variant Clean Acc  Worst-group Acc
Full AdaDRO 84.2 79.9
w/o Semantic Calibration 80.6 73.7
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Table 12: Adaptive filtering improves robustness by focusing the uncertainty set on meaningful

support.

Variant Clean Acc  Worst-group Acc
AdaDRO (adaptive) 84.2 79.9
Fixed v (Mixup) 82.1 75.0
Fixed v (Uniform) 81.4 74.3

Table 13: Robustness comparison of AdaDRO and Sinkhorn DRO under varying A on Colored
MNIST. Higher A corresponds to smaller uncertainty sets. AdaDRO maintains stable performance,
while Sinkhorn DRO suffers significantly as A increases.

0.5
1.0
2.0
5.0

AdaDRO Sinkhorn DRO
Worst-group Acc (%) Average Acc (%) | Worst-group Acc (%) Average Acc (%)
71.0 81.2 62.1 74.3
76.4 84.0 69.1 75.8
79.9 87.2 72.6 78.6
78.7 85.5 72.3 79.0
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